Science.gov

Sample records for absorption spectrum fluorescence

  1. Absorption Spectrum of the Green Fluorescent Protein Chromophore Anion In Vacuo

    NASA Astrophysics Data System (ADS)

    Nielsen, S. B.; Lapierre, A.; Andersen, J. U.; Pedersen, U. V.; Tomita, S.; Andersen, L. H.

    2001-11-01

    A sensitive photoabsorption technique for studies of gas-phase biomolecules has been used at the ELISA electrostatic heavy-ion storage ring. We show that the anion form of the chromophore of the green fluorescent protein in vacuo has an absorption maximum at 479 nm, which coincides with one of the two absorption peaks of the protein. Its absorption characteristics are therefore ascribed to intrinsic chemical properties of the chromophore. Evidently, the special β-can structure of the protein provides shielding of the chromophore from the surroundings without significantly changing the electronic structure of the chromophore through interactions with amino acid side chains.

  2. A new colorimetric and far-red fluorescent probe for hydrazine with a large red-shifted absorption spectrum.

    PubMed

    Xu, Zujun; Pang, Mengmeng; Li, Changwang; Zhu, Baocun

    2016-10-18

    Recently, growing attention has been paid to the detection of hydrazine (NH2 NH2 ) because of its important roles in industrial chemical and high toxicity to human beings. Herein, we have constructed a new colorimetric and far-red fluorescent probe containing a receptor of 4-bromobutanoate to selectively detect hydrazine. The probe could detect hydrazine quantitatively in the range of 40-500 μM with the detection limit of 2.9 μM. In addition, the probe could monitor hydrazine by the ratiometric method with a large (185 nm) red-shifted absorption spectrum, and the color changes from yellow to blue make it as a 'naked-eye' indicator for hydrazine. Consequently, our proposed probe would be of great benefit for monitoring hydrazine in aqueous solution.

  3. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  4. [Two-photon excitation fluorescence spectrum of the light-harvesting complex LH2 from Chromatium minutissimum within 650-745 nm range is determined by two-photon absorption of bacteriochlorophyll rather than of carotenoids].

    PubMed

    Krikunova, M A; Leupold, D; Rini, M; Voigt, B; Moskalenko, A A; Toropygina, O A; Razzhivin, A P

    2002-01-01

    Two-photon fluorescence excitation spectra of the peripheral light-harvesting complex LH2 from the purple photosynthetic bacterium Chromatium minutissimum were examined within the expected spectral range of the optically forbidden S1 singlet state of carotenoids. LH2 preparations isolated from wild-type and carotenoid-depleted cells were used. 100-fs laser pulses in the range of 1300-1490 nm with an energy of 7-9 mW (corresponding to one-photon absorption between 650 and 745 nm) were used for two-photon fluorescence excitation. It was shown that two-photon fluorescence excitation spectra of LH2 complex from wild and carotenoid-depleted cells are very similar to each other and to the two-photon fluorescence excitation spectrum of bacteriochlorophyll a in acetone. It was concluded that direct two-photon excitation of bacteriochlorophyll a determines the fluorescence of both samples within the 650-745 nm spectral range.

  5. The Absorption Spectrum of Sodium Vapor

    ERIC Educational Resources Information Center

    Ashby, R. A.; Gotthard, H. W.

    1974-01-01

    Procedures and discussion of an experiment to be used in an undergraduate course in spectroscopy are presented. The experiment involves the measurement of the absorption spectrum of sodium vapor. (DT)

  6. Electric-field-induced changes in absorption and fluorescence of the green fluorescent protein chromophore in a PMMA film.

    PubMed

    Nakabayashi, Takakazu; Hino, Kazuyuki; Ohta, Yuka; Ito, Sayuri; Nakano, Hirofumi; Ohta, Nobuhiro

    2011-07-07

    External electric field effects on absorption, fluorescence, and fluorescence decay of p-HBDI that is a model compound of the chromophore of GFP have been examined in a poly(methyl methacrylate) film. The electroabsorption spectrum is similar in shape to the first derivative of the absorption spectrum, which results from the difference in molecular polarizability between the ground state and the Franck-Condon excited state. The electrophotoluminescence spectrum is dominated by the corresponding fluorescence spectrum, indicating the enhancement of the fluorescence intensity in the presence of external electric fields. The direct measurements of the electric field effect on the fluorescence decay profile suggest that the field-induced deceleration of the nonradiative process contributes to the increase in the fluorescence intensity in the presence of electric fields.

  7. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  8. Simultaneous acquisition of absorption and fluorescence spectra of strong absorbers utilizing an evanescent supercontinuum.

    PubMed

    Kiefer, Johannes

    2016-12-15

    The determination of the absorption and emission spectra of strongly absorbing molecules is challenging, and the data can be biased by self-absorption of the fluorescence signal. To overcome this problem, a total internal reflection approach is proposed. The strongly absorbing sample is placed in an evanescent field of the radiation of a supercontinuum source. The collimated reflected light encodes the absorption spectrum, and the isotropic fluorescence emission is collected in a direction perpendicular to the surface at the same time. This ensures that the emitted light has a minimum possibility of self-absorption inside the sample.

  9. [Measurement and analysis of absorption spectrum of human blood].

    PubMed

    Zhao, Zhi-Min; Xin, Yu-Jun; Wang, Le-Xin; Zhu, Wei-Hua; Zheng, Min; Guo, Xin

    2008-01-01

    The present paper puts forward a method of disease diagnosis by using the technology of spectrum analysis of human blood serum. The generation mechanism of absorption spectrum is explained and the absorption spectra of the normal blood serum and the sick blood serum are listed from the experiments of absorption spectrometry. Though the value of absorbency of the sick blood serum is almost equal to that of the normal blood serum in the most absorption spectra, there are some differences around 278 nm in the absorption spectrum. The absorbency of the blood serum with hyperglycemia is greater than that of the normal blood serum at 285 nm in the spectrum, and besides, there comes a peak shift of absorption with hyperglycemia. In the absorption spectrum of the blood serum with hypercholesterolemia, there is a clear absorption peak at 414 nm. However there is not any peak at that wavelength in the absorption spectrum of the normal blood serum. Through comparing the characters of the spectrum, we can judge if the blood sample is or not, and this blood analysis is a new method for the diagnosis of disease. Compared with other methods of blood measurements, the method of absorption spectrum analysis of blood serum presented in this paper, is more convenient for measurement, simpler for analysis, and easier to popularize.

  10. Laser Induced Fluorescence Spectrum of Iridium Monophosphide

    NASA Astrophysics Data System (ADS)

    Pang, H. F.; Liu, Anwen; Cheung, A. S.-C.

    2009-06-01

    Laser induced fluorescence spectrum of IrP in the spectral region between 380-600 nm has been studied. Reacting laser ablated iridium atoms with 1% PH_3 seeded in argon produced the IrP molecule. A few vibronic transitions have been recorded. Preliminary analysis of the rotational structure indicated that these vibronic bands are with Ω^' = 0 and Ω^'' = 0 and is likely to be ^{1}Σ - X ^{1}Σ transition. Vibrational separation of the excited state is estimated to be about 442 cm^{-1}. The ground state bond length is determined to be 1.766 Å. This work represents the first experimental investigation of the spectra of IrP.

  11. [Infrared absorption spectrum analysis and its application to blood].

    PubMed

    Wang, Le-xin; Zhao, Zhi-min; Yao, Hong-bing; Chen, Yu-ming; Shi, Lei; Gao, Yong

    2002-12-01

    The technology of infrared absorption spectrum is a branch of optical ment measurement technology, and the research on the application of infrared spectrum plays an important role in the development of technology of optical measurement. In this paper, the analysis technology of blood infrared absorption spectrum is presented. By comparison, the difference of the spectra between normal and abnormal blood samples was obtained. The infrared absorption spectra of normal blood sample and abnormal blood sample were detected, and the differences between the spectra are presented. And the analysis results of the infrared absorption spectra of normal whole blood, serum and hyperglycemia are presented also. All of these provide an experimental basis for the diagnosis of diseases, which is valuable for application. This technology features easy operation, convenient analysis and suitability for advanced experiment. The work offers a new way in the research on the application of infrared absorption spectrum.

  12. The Absorption Spectrum of Iodine Vapour

    ERIC Educational Resources Information Center

    Tetlow, K. S.

    1972-01-01

    A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)

  13. The Absorption Spectrum of an Electron Solvated in Sodalite

    DTIC Science & Technology

    1992-05-15

    S. FUNDING NUMBERS The Absorption Spectrum of an Electron N00014-90-J-1159 Solvated in Sodalite C AUTHOR(S) K. Haug, V. Srdanov, G. Stucky, and H...words) We use a simple model to study the color change taking place when sodium atoms are absorbed in the zeolite sodalite . The Hamiltonian is that...the absorption spectrum on the magnitude of framework charges, the orientation of the Na 4 cluster in the sodalite cells, the localization of the

  14. The emission/absorption FE 2 spectrum of HD 45677

    NASA Technical Reports Server (NTRS)

    Stalio, R.; Selvelli, P. L.

    1981-01-01

    The complex behavior of the emission/absorption spectrum of Fe II is analyzed. The far UV spectrum is characterized almost solely by absorption lines, while, in the near UV, strong emissions are predominant. Radiative excitation from the ground to the highest levels (chi is approximately 10 eV) with re-emission in the near UV, visible and I.R. seems to be the main mechanism capable of explaining the observed spectral features.

  15. Observation of the visible absorption spectrum of H2O(+)

    NASA Technical Reports Server (NTRS)

    Das, Biman; Farley, John W.

    1991-01-01

    The water cation, H2O(+), has been studied, using laser absorption spectroscopy in a velocity-modulated discharge. It is shown that it is possible to observe the absorption spectrum of an ion that is not a terminal ion, despite the weak absorption oscillator strength, and despite the use of a relatively noisy dye laser. The relative intensities of the absorption lines have been measured to an accuracy of 13 percent. It is concluded that if the absorption cross section of a single transition can be measured absolutely, then the entire manifold will be known absolutely.

  16. Self-absorption Effects on Alpha-Induced Atmospheric Nitrogen Fluorescence Yield

    SciTech Connect

    Bachelor, Paula P.; Jordan, David V.; Harper, Warren W.; Cannon, Bret D.; Finn, Erin C.

    2009-12-01

    Nitrogen fluorescence induced by alpha, beta and gamma radiation can be used to detect the presence of radioactive contamination in the environment. Successful measurement of fluorescence yield involves a number of factors, including: known fluorescence signal rate during the measurement; the effective alpha spectrum of the radioactive sources used in the measurement; optical attenuation length of the fluorescence signal in air during the measurement; the absolute throughput of the instrumentation; calibration of the instrumentation; and radiation transport modeling of the "effective" array exposure rate given the spectrum of the alpha particles. Field testing of optical instrumentation was conducted to measure the nitrogen fluorescence yield from the alpha radiation generated from americium-241 (241Am) decay. The 241Am test sources were prepared by direct evaporation of ~1 mCi in nitric acid solution, and some solids were visible on the surface of the sources. A laboratory study was conducted with lower activities of 241Am to determine whether the presence of solids on the surface of the sources prepared both by direct evaporation and by electrodeposition onto stainless steel disks produced sufficient self-absorption to cause a decrease in expected fluorescence. Alpha spectroscopy was used to determine the apparent activity of the sources versus the known activity deposited on the surface. Results from the self-absorption laboratory studies were used to correct the activity values in the model and calculate the nitrogen fluorescence generated by the 241Am during the field experiments.

  17. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  18. [Using Fourier transform to analyse differential optical absorption spectrum].

    PubMed

    Liu, Qian-Lin; Wang, Li-Shi; Huang, Xin-Jian

    2008-05-01

    According to the theory of differential optical absorption spectral technique, the differential optical absorption spectral monitoring equipment was designed. Aiming at two kinds of main pollutants, SO2 and NO2, in the atmosphere, this technique was used to monitor them. The present article puts forward the signal analysis method of Fourier transformation to process the above-mentioned two kinds of absorption spectra. The two approaches contain the removeal of noise and the fitting of the slow variety. On the frequency chart after the spectrum was transformed, the low frequency corresponded to the slow variety part and the high frequency corresponded to the noise part of the original spectrum, so through intercepting a certain frequency segment and using inverse Fourier transformation the slow variety part of the low frequency and the noise part of the high frequency of the absorption spectrum could be subtracted. After farther processing we can get a higher resolution differential absorption spectrum of the gas. According to the strength of the spectrum, we can calculate the concentration of the gas. After analysis and comparison with the conventional method, it is considered a new processing method of differential optical absorption spectral technique, and the method can fit the slow variety much better.

  19. Implantable CMOS imaging device with absorption filters for green fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Sunaga, Yoshinori; Haruta, Makito; Takehara, Hironari; Ohta, Yasumi; Motoyama, Mayumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2014-03-01

    Green fluorescent materials such as Green Fluorescence Protein (GFP) and fluorescein are often used for observing neural activities. Thus, it is important to observe the fluorescence in a freely moving state in order to understand neural activities corresponding to behaviors. In this work, we developed an implantable CMOS imaging device for in-vivo green fluorescence imaging with efficient excitation light rejection using a combination of absorption filters. An interference filter is usually used for a fluorescence microscope in order to achieve high fluorescence imaging sensitivity. However, in the case of the implantable device, interference filters are not suitable because their transmission spectra depend on incident angle. To solve this problem we used two kinds of absorption filters that do not have angle dependence. An absorption filter consisting of yellow dye (VARYFAST YELLOW 3150) was coated on the pixel array of an image sensor. The rejection ratio of ideal excitation light (490 nm) against green fluorescence (510 nm) was 99.66%. However, the blue LED as an excitation light source has a broad emission spectrum and its intensity at 510 nm is 2.2 x 10-2 times the emission peak intensity. By coating LEDs with the emission absorption filters, the intensity of the unwanted component of the excitation light was reduced to 1.4 x 10-4. Using the combination of absorption filters, we achieved excitation light transmittance of 10-5 onto the image sensor. It is expected that high-sensitivity green fluorescence imaging of neural activities in a freely moving mouse will be possible by using this technology.

  20. Absorption Reconstruction Improves Biodistribution Assessment of Fluorescent Nanoprobes Using Hybrid Fluorescence-mediated Tomography

    PubMed Central

    Gremse, Felix; Theek, Benjamin; Kunjachan, Sijumon; Lederle, Wiltrud; Pardo, Alessa; Barth, Stefan; Lammers, Twan; Naumann, Uwe; Kiessling, Fabian

    2014-01-01

    Aim: Fluorescence-mediated tomography (FMT) holds potential for accelerating diagnostic and theranostic drug development. However, for proper quantitative fluorescence reconstruction, knowledge on optical scattering and absorption, which are highly heterogeneous in different (mouse) tissues, is required. We here describe methods to assess these parameters using co-registered micro Computed Tomography (µCT) data and nonlinear whole-animal absorption reconstruction, and evaluate their importance for assessment of the biodistribution and target site accumulation of fluorophore-labeled drug delivery systems. Methods: Besides phantoms with varying degrees of absorption, mice bearing A431 tumors were imaged 15 min and 48 h after i.v. injection of a fluorophore-labeled polymeric drug carrier (pHPMA-Dy750) using µCT-FMT. The outer shape of mice and a scattering map were derived using automated segmentation of the µCT data. Furthermore, a 3D absorption map was reconstructed from the trans-illumination data. We determined the absorption of five interactively segmented regions (heart, liver, kidney, muscle, tumor). Since blood is the main near-infrared absorber in vivo, the absorption was also estimated from the relative blood volume (rBV), determined by contrast-enhanced µCT. We compared the reconstructed absorption with the rBV-based values and analyzed the effect of using the absorption map on the fluorescence reconstruction. Results: Phantom experiments demonstrated that absorption reconstruction is possible and necessary for quantitative fluorescence reconstruction. In vivo, the reconstructed absorption showed high values in strongly blood-perfused organs such as the heart, liver and kidney. The absorption values correlated strongly with the rBV-based absorption values, confirming the accuracy of the absorption reconstruction. Usage of homogenous absorption instead of the reconstructed absorption map resulted in reduced values in the heart, liver and kidney, by

  1. Two-photon absorption properties of fluorescent proteins

    PubMed Central

    Drobizhev, Mikhail; Makarov, Nikolay S.; Tillo, Shane E.; Hughes, Thomas E.; Rebane, Aleksander

    2016-01-01

    Two-photon excitation of fluorescent proteins is an attractive approach for imaging living systems. Today researchers are eager to know which proteins are the brightest, and what the best excitation wavelengths are. Here we review the two-photon absorption properties of a wide variety of fluorescent proteins, including new far-red variants, to produce a comprehensive guide to choosing the right FP and excitation wavelength for two-photon applications. PMID:21527931

  2. [Anomalous absorption and a qualified far infrared spectrum].

    PubMed

    Hu, Yan-qin; Chen, Yu-jing; Li, Hui-hua; Wang, Hai-shui

    2012-02-01

    The ideal 100% line could not be obtained when the content of water vapor in the spectrometer is constant but high during the whole procedure of a far-infrared spectrum collection. This result indicates that anomalous absorption phenomenon takes place in high relative humidity atmosphere. In the present paper, the influences of the relative humidity of ambient air and spectral resolution on anomalous absorption were studied. It was found that both decreasing the water vapor content in the spectrometer and adopting low spectral resolution are effective methods to avoid anomalous absorption. Furthermore, the water vapor bands can be eliminated by "dry air and wet air titration" in the fluctuant humidity. This provides us a quick and economic method to obtain a qualified far infrared spectrum conveniently. It should be noticed that the working condition for "dry air and wet air titration" is low relative humidity to prevent water vapor abnormal absorption.

  3. The lineshape of the electronic spectrum of the green fluorescent protein chromophore, part I: gas phase.

    PubMed

    Davari, Mehdi D; Ferrer, Francisco J Avila; Morozov, Dmitry; Santoro, Fabrizio; Groenhof, Gerrit

    2014-10-20

    In this work we present the vibrationally resolved optical absorption spectrum of p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI), the green fluorescent protein (GFP) chromophore, computed at several levels of theory, including time-dependent DFT with various functionals and basis sets, CASSCF, CASPT2 and XMCQDPT2. We also investigated what happens to the spectrum if the ground- and excited-state geometries are optimized at different levels of theory (mixed approach), as has been used previously. The vibrationally resolved absorption spectra obtained by DFT, CASPT2 and XMCQDPT2 are very similar and consist of a main absorption peak and a shoulder that is ∼1500 cm(-1) higher in energy. The vibrational progression increases moderately with temperature. These spectra are in qualitative agreement with experimental action spectra, but much narrower and lack the long tail in the blue, even at high temperatures. Because our calculated emission spectra, which are equally narrow, are in good agreement with the emission of green fluorescent protein at 253 K, we argue that the action spectrum are too broad to be considered as the absorption spectrum. The CASSCF method and the mixed approaches overestimate the vibrational progressions with respect to CAM-B3LYP, CASPT2 and XMCQDPT2, due to inaccuracies in the geometric S0 →S1 displacements. Finally, we computed the vibronic spectra of four chromophore analogues with different substitutions on the rings and found that these substitutions hardly affect the lineshape in vacuum.

  4. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  5. Mechanochemical Tuning of Pyrene Absorption Spectrum Using Force Probes.

    PubMed

    Fernández-González, Miguel Ángel; Rivero, Daniel; García-Iriepa, Cristina; Sampedro, Diego; Frutos, Luis Manuel

    2017-02-14

    Control of absorption spectra in chromophores is a fundamental aspect of many photochemical and photophysical processes as it constitutes the first step of the global photoinduced process. Here we explore the use of mechanical forces to modulate the light absorption process. Specifically, we develop a computational formalism for determining the type of mechanical forces permitting a global tuning of the absorption spectrum. This control extends to the excitation wavelength, absorption bands overlap, and oscillator strength. The determination of these optimal forces permits us to rationally guide the design of new mechano-responsive chromophores. Pyrene has been chosen as the case study for applying these computational tools because significant absorption spectra information is available for the chromophore as well as for different strained derivatives. Additionally, pyrene presents a large flexibility, which makes it a good system to test the inclusion of force probes as the strategy to exert forces on the system.

  6. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  7. Giant many-body effects in liquid ammonia absorption spectrum

    NASA Astrophysics Data System (ADS)

    Ziaei, Vafa; Bredow, Thomas

    2016-11-01

    In the present work, we accurately calculate the absorption spectrum of liquid ammonia up to 13 eV using many-body perturbation approach. The electronic bandgap of liquid NH3 is perfectly described as the combination of density functional theory, Coulomb-hole screened exchange, and G0W0 approximation to the electronic self-energy, yielding a direct gap (Γ → Γ) of 7.71 eV, fully consistent with the experimentally measured gap from photo-emission spectroscopy. With respect to the NH3 optical properties, the entire spectrum in particular the low lying first absorption band is extremely affected by electron-hole interactions, leading to a fundamental redistribution of spectral weights of the independent-particle spectrum. Three well separated but broad main peaks are identified at 7.0, 9.8, and 11.8 eV with steadily increasing intensities in excellent agreement with the experimental data. Furthermore, we observe a giant net blue-shift of the first absorption peak of about 1.4 eV from gaseous to liquid phase as the direct consequence of many-body effects, allowing the associated liquid ammonia absorption band exciton to delocalize and feel more effectively the repulsion effects imposed by the surrounding solvent shells. Further, the spectrum is insensitive to the coupling of resonant and anti-resonant contributions. Concerning electronic response structure of liquid NH3, it is most sensitive to excitations at energies lower than its electronic gap.

  8. Absolute Ultraviolet Absorption Spectrum of a Criegee Intermediate CH2OO.

    PubMed

    Sheps, Leonid

    2013-12-19

    We present the time-resolved UV absorption spectrum of the B̃ ((1)A') ← X̃ ((1)A') electronic transition of formaldehyde oxide, CH2OO, produced by the reaction of CH2I radicals with O2. In contrast to its UV photodissociation action spectrum, the absorption spectrum of formaldehyde oxide extends to longer wavelengths and exhibits resolved vibrational structure on its low-energy side. Chemical kinetics measurements of its reactivity establish the identity of the absorbing species as CH2OO. Separate measurements of the initial CH2I radical concentration allow a determination of the absolute absorption cross section of CH2OO, with the value at the peak of the absorption band, 355 nm, of σabs = (3.6 ± 0.9) × 10(-17) cm(2). The difference between the absorption and action spectra likely arises from excitation to long-lived B̃ ((1)A') vibrational states that relax to lower electronic states by fluorescence or nonradiative processes, rather than by photodissociation.

  9. [The study of absorption spectrum for cell substrate].

    PubMed

    Zhao, Yuan-Li; Zhang, Feng-Qiu; Ge, Xiang-Hong; Yao, Shu-Xia; Liang, Er-jun

    2004-08-01

    The authors collected the absorption spectrum of RPMI 1640 and DMEM substrates that cultivated Hela and CNE by UV-3101 spectrophotometer and analysed the absorbability of proteins in the substrate. The absorption peaks of the RPMI 1 640 culture medium that cultivated cells for different times shifted from 227 to 222 or 218 nm and from 278 to 280 nm respectively; while during growing course of cultivated cells, one of the absorption peaks of DMEM culture medium shifted from 224 nm to one near 221 nm, and the absorption peak 278 nm almost had no shift. All of these shifts show that the content of each amino acid such as tryptophan and casein has already changed. That is, during the growing course of cultivating cancer cells, the tryptophan and casein were not depleted equivalently. In the growth period of Hela and CNE, they consumed different amino acid. So they need different component proportion for amino acid.

  10. [Laser Induced Fluorescence Spectrum Characteristics of Paddy under Nitrogen Stress].

    PubMed

    Yang, Jian; Shi, Shuo; Gong, Wei; Du, Lin; Zhu, Bo; Ma, Ying-ying; Sun, Jia

    2016-02-01

    Order to guide fertilizing andreduce waste of resources as well as enviro nmental pollution, especially eutrophication, which are caused by excessive fertilization, a system of laser-induced fluorescence(LIF) was built. The system aimed to investigate the correlation between nitrogen(N) content of paddy leaf and the fluorescence intensity. We measuredNcontent and SPAD of paddy leaf (the samples came from the second upper leaves of paddy in tillering stage and the study area was located in Jianghan plain of China) by utilizing the Plant Nutrient (Tester TYS-3N). The fluorescence spectrum was also obtained by using the systembuilt based on theLIFtechnology. Fluorescence spectra of leaf with different N-content were collected and then a fluorescence spectra database wasestablished. It is analyzed that the relationship between the parameters of fluorescence (F₇₄₀/F₆₈₅ is the ratio of fluorescence intensity of 740 nm. dividing that of 685 nm) and the N level of paddy. It is found that the effect of different N-content on the fluorescence spectrum characteristics is significant. The experiment demonstrated the positive correlation between fluorescence parameters and paddy leaf N-content. Results showed a positive linear correlation between the ratio of peak fluorescence (F₇₄₀/F₆₈₅) and N-content The correlation coefficient (r) reached 0.871 8 and the root mean square error (RMSE) was 0.076 82. The experiment demonstrated that LIF spectroscopy detection technology has the advantages of rapidand non-destructive measurement, and it also has the potential to measure plant content of nutrient elements. It will provide a more accurate remote sensing method to rapidly detect the crop nitrogen levels.

  11. A fluorescent benzothiazole probe with efficient two-photon absorption

    NASA Astrophysics Data System (ADS)

    Echevarria, Lorenzo; Moreno, Iván; Camacho, José; Salazar, Mary Carmen; Hernández, Antonio

    2012-11-01

    In this work, we report the two-photon absorption of 2-[4-(dimethylamino)phenyl]-1,3-benzothiazole-6-carbonitrile (DBC) in DMSO solution pumping at 779 nm with a 10 ns pulse laser-Nd:YAG system. The obtained two-photon absorption cross-section in DBC (407 ± 18 GM) is considerably high. Because DBC is a novel compound and have high values of fluorescence quantum yield, this result is expected to have an impact in biomolecules detection, diagnosis and treatment of cancer. Similar structures have previously been reported to show remarkable antitumour effects.

  12. A new near-infrared absorption and fluorescent probe based on bombesin for molecular imaging

    NASA Astrophysics Data System (ADS)

    Kujala, Naresh; Zhai, Huifang; Smith, Charles; Prasanphanich, Adam; Sieckman, Gary; Hoffman, Timothy; Volkert, Wynn; Ma, Lixin; Yu, Ping

    2009-02-01

    We have developed a series of new dye bombesin conjugates for site-specific absorption and fluorescence imaging of human prostate and breast cancers. Bombesin (BBN), an amphibian analog to the endogenous ligand, binds to the gastrin releasing peptide (GRP) receptors with high specificity and affinity. Previously, we developed an Alexa Fluor 680-GGG-BBN peptide conjugate which demonstrated high binding affinity and specificity for breast cancer cells in the in vitro and in vivo tests (Ref: Ma et al., Molecular Imaging, vol. 6, no. 3, 2007: 171-180). This probe can not be used as an absorption probe in near-infrared imaging because its absorption peak is in the visible wavelength range. In addition, site specific longer wavelength fluorescent probe is desired for in vivo molecular imaging because long wavelength photons penetrate deeper into tissue. The new absorption and fluorescent probe we developed is based on the last eight-residues of BBN, -Q-W-A-V-G-H-L-M-(NH2), and labeled with AlexaFluor750 through a chemical linker, beta-alanine. The new probe, Alexa Fluor 750-BetaAla-BBN(7-14)NH2, exhibits optimal pharmacokinetics for specific targeting and optical imaging of the GRP receptor over-expressing cancer cells. Absorption spectrum has been measured and showed absorption peaks at 690nm, 720nm and 735nm. Fluorescent band is located at 755nm. In vitro and in vivo investigations have demonstrated the effectiveness of the new conjugates to specifically target human cancer cells overexpressing GRP receptors and tumor xenografts in severely compromised immunodeficient mouse model.

  13. Excitonic effects and the optical absorption spectrum ofhydrogenated Si clusters

    SciTech Connect

    Rohlfing, Michael; Louie, Steven G.

    1997-10-19

    We calculate the optical absorption spectrum of hydrogen-terminated silicon clusters by solving the Bethe-Salpeter equation for the two-particle Green's function using an ab initio approach. The one-particle Green's function and the electron-hole interaction kernel are calculated within the GW approximation for the electron self-energy operator. Very large exciton binding energies are observed. Our results for the one-particle properties and the optical absorption spectra of the clusters are in very good agreement with available experimental data.

  14. Ultraviolet absorption spectrum of chlorine nitrite, ClONO

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1977-01-01

    The near-ultraviolet absorption spectrum of chlorine nitrite (ClONO) has been quantitatively investigated over the wavelength range 230-400 nm at 231 K. An absorption maximum was observed at 290 nm with a cross section of 1.5 by 10 to the -18th power sq cm. The calculated lifetime against photodissociation for ClONO in the atmosphere is 2 to 3 minutes. The large photolysis rate indicates that ClONO does not play a significant role in the stratosphere as a temporary holding tank for chlorine.

  15. Absorption and fluorescent spectral studies of imidazophenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Zozulya, V. N.; Voloshin, I. M.; Karachevtsev, V. A.; Makitruk, V. L.; Stepanian, S. G.

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7 D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Δ μ=9 D. The energies of the electronic S 1←S 0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization.

  16. Giant many-body effects in liquid ammonia absorption spectrum.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2016-11-07

    In the present work, we accurately calculate the absorption spectrum of liquid ammonia up to 13 eV using many-body perturbation approach. The electronic bandgap of liquid NH3 is perfectly described as the combination of density functional theory, Coulomb-hole screened exchange, and G0W0 approximation to the electronic self-energy, yielding a direct gap (Γ → Γ) of 7.71 eV, fully consistent with the experimentally measured gap from photo-emission spectroscopy. With respect to the NH3 optical properties, the entire spectrum in particular the low lying first absorption band is extremely affected by electron-hole interactions, leading to a fundamental redistribution of spectral weights of the independent-particle spectrum. Three well separated but broad main peaks are identified at 7.0, 9.8, and 11.8 eV with steadily increasing intensities in excellent agreement with the experimental data. Furthermore, we observe a giant net blue-shift of the first absorption peak of about 1.4 eV from gaseous to liquid phase as the direct consequence of many-body effects, allowing the associated liquid ammonia absorption band exciton to delocalize and feel more effectively the repulsion effects imposed by the surrounding solvent shells. Further, the spectrum is insensitive to the coupling of resonant and anti-resonant contributions. Concerning electronic response structure of liquid NH3, it is most sensitive to excitations at energies lower than its electronic gap.

  17. Imaging atoms from resonance fluorescence spectrum beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Liao, Zeyang; Al-Amri, Mohammad; Zubairy, M. Suhail

    2014-03-01

    We calculate the resonance fluorescence spectrum of a linear chain of two-level atoms driven by a gradient coherent laser field. The result shows that we can determine the positions of atoms from the spectrum even when the atoms locate within subwavelength range and the dipole-dipole interaction is significant. This far-field resonance fluorescence localization microscopy method does not require point-by-point scanning and it may be more time-efficient. We also give a possible scheme to extract the position information in an extended region without requiring more peak power of laser. We also briefly discuss how to do a 2D imaging based on our scheme. This work is supported by grants from the King Abdulaziz City for Science and Technology (KACST) and the Qatar National Research Fund (QNRF) under the NPRP project.

  18. Polarized fluorescence and absorption of macroscopically aligned Light Harvesting Complex II.

    PubMed

    van Amerongen, H; Kwa, S L; van Bolhuis, B M; van Grondelle, R

    1994-08-01

    Polarized absorption and fluorescence measurements have been performed at 77 K on isotropic and anisotropic preparations of trimeric Light Harvesting Complex II (LHC-II) from spinach. The results enable a decomposition of the absorption spectrum into components parallel and perpendicular to the trimeric plane. For the first time, it is shown quantitatively that the strong absorption band around 676 nm is polarized essentially parallel to the plane of the trimer, i.e., the average angle between the corresponding transition dipole moments and this plane is at most 12 degrees. The different absorption bands for LHC-II should not be considered as corresponding to individual pigments but to collective excitations of different pigments. Nevertheless, the average angle between the Qy transition dipole moments of all chlorophyll a pigments in LHC-II and the trimeric plane could be determined and was found to be 17.5 degrees +/- 2.5 degrees. For the chlorophyll b pigments, this angle is significantly larger (close to 35 degrees). At 77 K, most of the fluorescence stems from a weak band above 676 nm and the corresponding transition dipole moments are oriented further out of plane than the dipole moments corresponding to the 676-nm band. The results are shown to be of crucial significance for understanding the relation between the LHC-II structure and its spectroscopy.

  19. Terahertz absorption spectrum of D 2O vapor

    NASA Astrophysics Data System (ADS)

    Yu, B. L.; Yang, Y.; Zeng, F.; Xin, X.; Alfano, R. R.

    2006-02-01

    The absorption spectrum of D2O vapor from 0.2 to 2.0 THz (6.7-67 cm-1) which is associated with rotational modes was measured at one atmosphere using terahertz time-domain spectroscopy (THz-TDS). The linewidth and collisional dephasing times were measured for 26 pure rotational transitions in the ground vibrational state (0 0 0). The temperature dependence of the linewidth (Δν) behaves as Δν ∼ T-3/4 and the linewidth decrease with increasing temperature is attributed to the 1/r6 force of interaction between colliding D2O molecules.

  20. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  1. [Analysis of fluorescence spectrum of petroleum-polluted water].

    PubMed

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  2. Absorption and fluorescence of alexandrite and of titanium in sapphire and glass

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Hess, R. V.; Buoncristiani, A. M.

    1985-01-01

    The fluorescence and absorption data for titanium in crystalline sapphire and titanium doped into two silicate and one phosphate glass structures are analyzed. It is observed that the Ti-doped silicate glass sample exhibits no absorption related to the Ti(III) ion, the Ti-doped phosphate glass is deep blue, the absorption line width of the glass samples are a factor of two larger than that of sapphire, and the absorption peak for the Ti in the glass shifted about 100 nm to the red from the Ti:sapphire absorption peak. This shift reveals that the Ti(III) ion is sensitive to the crystalline environment and not to the glass environment. The photoluminescence spectra for Ti-doped sapphire and alexandrite are compared. It is detected that the Ti:sapphire exhibits a broader spectrum than that for alexandrite with a peak at 750 nm. The three zero phonon transitions of Ti:Al2O3 at liquid nitrogen temperatures are studied.

  3. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  4. Absorption into fluorescence. A method to sense biologically relevant gas molecules.

    PubMed

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection of analytes related to climate change. In particular, we focused our attention on the detection of nitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  5. Absorption and Fluorescence Lineshape Theory for Polynomial Potentials.

    PubMed

    Anda, André; De Vico, Luca; Hansen, Thorsten; Abramavičius, Darius

    2016-12-13

    The modeling of vibrations in optical spectra relies heavily on the simplifications brought about by using harmonic oscillators. However, realistic molecular systems can deviate substantially from this description. We develop two methods which show that the extension to arbitrarily shaped potential energy surfaces is not only straightforward, but also efficient. These methods are applied to an electronic two-level system with potential energy surfaces of polynomial form and used to study anharmonic features such as the zero-phonon line shape and mirror-symmetry breaking between absorption and fluorescence spectra. The first method, which constructs vibrational wave functions as linear combinations of the harmonic oscillator wave functions, is shown to be extremely robust and can handle large anharmonicities. The second method uses the cumulant expansion, which is readily solved, even at high orders, thanks to an ideally suited matrix theorem.

  6. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    SciTech Connect

    Silant’ev, A. V.

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  7. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  8. Vertical transition energies vs. absorption maxima: illustration with the UV absorption spectrum of ethylene.

    PubMed

    Lasorne, Benjamin; Jornet-Somoza, Joaquim; Meyer, Hans-Dieter; Lauvergnat, David; Robb, Michael A; Gatti, Fabien

    2014-02-05

    We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared directly to the results of electronic structure calculations for two very different reasons. After validation of our level of theory against experimental data, a new experimental reference of 7.28 eV is suggested for benchmarking the Rydberg state, and the often-cited average transition energy (7.80 eV) is confirmed as a safer estimate for the valence state.

  9. Comparison of absorption, fluorescence, and polarization spectroscopy of atomic rubidium

    NASA Astrophysics Data System (ADS)

    Ashman, Seth; Stifler, Cayla; Romero, Joaquin

    2015-05-01

    An ongoing spectroscopic investigation of atomic rubidium utilizes a two-photon, single-laser excitation process. Transitions accessible with our tunable laser include 5P1 / 2F' <-- 5S1 / 2 F and 5P3 / 2F' <-- 5S1 / 2 F . The laser is split into a pump and probe beam to allow for Doppler-free measurements of transitions between hyperfine levels. The pump and probe beams are overlapped in a counter-propagating geometry and the laser frequency scans over a transition. Absorption, fluorescence and polarization spectroscopy techniques are applied to this basic experimental setup. The temperature of the vapor cell and the power of the pump and probe beams have been varied to explore line broadening effects and signal-to-noise of each technique. This humble setup will hopefully grow into a more robust experimental arrangement in which double resonance, two-laser excitations are used to explore hyperfine state changing collisions between rubidium atoms and noble gas atoms. Rb-noble gas collisions can transfer population between hyperfine levels, such as 5P3 / 2 (F' = 3) <-- Collision 5P3 / 2 (F ' = 2) , and the probe beam couples 7S1 / 2 (F'' = 2) <-- 5P3 / 2 (F' = 3) . Polarization spectroscopy signal depends on the rate of population transfer due to the collision as well as maintaining the orientation created by the pump laser. Fluorescence spectroscopy relies only on transfer of population due to the collision. Comparison of these techniques yields information regarding the change of the magnetic sublevels, mF, during hyperfine state changing collisions.

  10. Recognition of edible oil by using BP neural network and laser induced fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Guo, Pan; Chen, He; Zhang, Hong-yan; Liu, Xiao-hua; Wang, Yuan; Bu, Zhi-chao

    2013-09-01

    In order to accomplish recognition of the different edible oil we set up a laser induced fluorescence spectrum system in the laboratory based on Laser induced fluorescence spectrum technology, and then collect the fluorescence spectrum of different edible oil by using that system. Based on this, we set up a fluorescence spectrum database of different cooking oil. It is clear that there are three main peak position of different edible oil from fluorescence spectrum chart. Although the peak positions of all cooking oil were almost the same, the relative intensity of different edible oils was totally different. So it could easily accomplish that oil recognition could take advantage of the difference of relative intensity. Feature invariants were extracted from the spectrum data, which were chosen from the fluorescence spectrum database randomly, before distinguishing different cooking oil. Then back propagation (BP) neural network was established and trained by the chosen data from the spectrum database. On that basis real experiment data was identified by BP neural network. It was found that the overall recognition rate could reach as high as 83.2%. Experiments showed that the laser induced fluorescence spectrum of different cooking oil was very different from each other, which could be used to accomplish the oil recognition. Laser induced fluorescence spectrum technology, combined BP neural network,was fast, high sensitivity, non-contact, and high recognition rate. It could become a new technique to accomplish the edible oil recognition and quality detection.

  11. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  12. High resolution laser induced fluorescence Doppler velocimetry utilizing saturated absorption spectroscopy

    SciTech Connect

    Aramaki, Mitsutoshi; Ogiwara, Kohei; Etoh, Shuzo; Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2009-05-15

    A high resolution laser induced fluorescence (LIF) system has been developed to measure the flow velocity field of neutral particles in an electron-cyclotron-resonance argon plasma. The flow velocity has been determined by the Doppler shift of the LIF spectrum, which is proportional to the velocity distribution function. Very high accuracy in velocity determination has been achieved by installing a saturated absorption spectroscopy unit into the LIF system, where the absolute value and scale of laser wavelength are determined by using the Lamb dip and the fringes of a Fabry-Perot interferometer. The minimum detectable flow velocity of a newly developed LIF system is {+-}2 m/s, and this performance remains unchanged in a long-time experiment. From the radial measurements of LIF spectra of argon metastable atoms, it is found that there exists an inward flow of neutral particles associated with neutral depletion.

  13. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine.

    PubMed

    Wang, Huan; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng Hsien

    2009-12-31

    Anharmonic effects of the absorption and fluorescence spectra of pyridine molecule are studied and analyzed for the two-low lying singlet excited states S(1)((1)B(1)) and S(2)((1)B(2)). The complete active space self-consistent field (CASSCF) method is utilized to compute equilibrium geometries and all 27 vibrational normal-mode frequencies for the ground state and the two excited states. The present calculations show that the frequency differences between the ground and two excited states are small for the ten totally symmetric vibrational modes so that the displaced oscillator approximation can be used for spectrum simulations. The Franck-Condon factors within harmonic approximation basically grasp the main features of molecular spectra, but simulated 0-0 transition energy position and spectrum band shapes are not satisfactorily good for S(1)((1)B(1)) absorption and fluorescence spectra in comparison with experiment observation. As the first-order anharmonic correction added to Franck-Condon factors, both spectrum positions and band shapes can be simultaneously improved for both absorption and fluorescence spectra. It is concluded that the present anharmonic correction produces a significant dynamic shifts for spectrum positions and improves spectrum band shapes as well. The detailed structures of absorption spectrum of S(2)((1)B(2)) state observed from experiment can be also reproduced with anharmonic Franck-Condon simulation, and these were not shown in the harmonic Franck-Condon simulation with either distorted or Duschinsky effects in the literature.

  14. Interstellar absorption lines in the spectrum of Gamma Velorum

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Bhavsar, S. P.

    1979-01-01

    Copernicus scans of selected interstellar absorption lines in the UV spectrum of Gamma Vel are analyzed, together with ground-based data, to obtain column densities for various ion states of C, N, O, Na, Mg, Al, Si, P, S, Cl, Ar, Ca, Mn, Fe, and CO. N I and O I are fitted to a single empirical curve of growth with a velocity parameter (b) of 8 km/s; Mg II, Si II, P II, S II, Mn II, and Fe II are fitted to another curve with b between 3 and 9 km/s. Abundance determinations relative to H I show that: (1) C, N, P, S, and Ar are probably close to their solar values; (2) O may be depleted by about a factor of 2; (3) Mg, Al, Si, Cl, Mn, and Fe are depleted by a factor of 4 or more: (4) Al is depleted by at least a factor of 10 in the H II region; and (5) both N V and O VI are present, but not C IV. The N V/O VI ratio implies that the electron temperature in the H II region is about 275,000 K.

  15. Infrared Absorption Spectrum of Matrix-Isolated Phenanthrene

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Stanley P. Sander

    2016-10-01

    The far-to-mid Infrared absorption spectrum of phenanthrene (C14H10), one of the polycyclic aromatic hydrocarbons (PAHs), has been measured in an argon matrix at 5 K. Thirty two fundamental bands for phenanthrene have been observed; one of them is detected for the first time (v54 = 1398.0 cm-1) and eight of them are detected for the first time at temperatures below room temperature (v43 = 233.8 cm-1, v42 = 425.2 cm-1, v66 = 441.6 cm-1, v65 = 499.0 cm-1, v21 = 546.3 cm-1, v63 = 714.5 cm-1, v18 = 1033.7 cm-1 and v55 = 1362.5 cm-1). The relative intensities of these 32 bands have been measured; three ( v21, v18, v54) of which are measured for the first time and six ( v43, v42, v66, v65, v63, and v55) of which are measured for the first time at temperatures below room temperature. Our low temperature study of the vibrational bands for phenanthrene provides important information for the spectral analysis of the Composite Infrared Spectrometer (CIRS) aboard the Cassini Spacecraft.

  16. Absorption spectrum of Pb I between 1350 and 2041 A

    NASA Technical Reports Server (NTRS)

    Brown, C. M.; Tilford, S. G.; Ginter, M. L.

    1977-01-01

    The high resolution absorption spectrum of Pb I is reported between 1350 and 2041 A. Transitions are observed from the 6p2 (1/2,1/2)0, (3/2,1/2)1, and (3/2,1/2)2 levels to levels with J less than or equal to 2 associated with 6pns and 6pnd configurations. Energy levels have been determined with n(asterisk) values as high as 74. More than 500 spectral features and 370 odd parity energy levels are reported, a major part of which are new. These observations include five electric quadrupole transitions and 31 nuclear-spin-induced transitions from the Pb-207 isotope. Ionization limits of 59819.57 per cm and 73900.64 per cm have been determined for levels converging on the 6p 2P(1/2)O and 6p 2P(3/2)O levels of Pb II, respectively. An analysis of these data in terms of Lu-Fano graphical methods and multichannel quantum defect parametrization also is presented.

  17. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  18. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  19. Absorption and fluorescence of PRODAN in phospholipid bilayers: a combined quantum mechanics and classical molecular dynamics study.

    PubMed

    Cwiklik, Lukasz; Aquino, Adelia J A; Vazdar, Mario; Jurkiewicz, Piotr; Pittner, Jiří; Hof, Martin; Lischka, Hans

    2011-10-20

    Absorption and fluorescence spectra of PRODAN (6-propionyl-2-dimethylaminonaphthalene) were studied by means of the time-dependent density functional theory and the algebraic diagrammatic construction method. The influence of environment, a phosphatidylcholine lipid bilayer and water, was taken into account employing a combination of quantum chemical calculations with empirical force-field molecular dynamics simulations. Additionally, experimental absorption and emission spectra of PRODAN were measured in cyclohexane, water, and lipid vesicles. Both planar and twisted configurations of the first excited state of PRODAN were taken into account. The twisted structure is stabilized in both water and a lipid bilayer, and should be considered as an emitting state in polar environments. Orientation of the excited dye in the lipid bilayer significantly depends on configuration. In the bilayer, the fluorescence spectrum can be regarded as a combination of emission from both planar and twisted structures.

  20. Substituent Effects on the Absorption and Fluorescence Properties of Anthracene.

    PubMed

    Abou-Hatab, Salsabil; Spata, Vincent A; Matsika, Spiridoula

    2017-02-16

    Substitution can be used to efficiently tune the photophysical properties of chromophores. In this study, we examine the effect of substituents on the absorption and fluorescence properties of anthracene. The effects of mono-, di-, and tetrasubstitution of electron-donating and -withdrawing functional groups were explored. In addition, the influence of a donor-acceptor substituent pair and the position of substitution were investigated. Eleven functional groups were varied on positions 1, 2, and 9 of anthracene, and on position 6 of 2-methoxyanthracene and 2-carboxyanthracene. Moreover, the donor-acceptor pair NH2/CO2H was added on different positions of anthracene for additional studies of doubly substituted anthracenes. Finally, we looked into quadruple substitutions on positions 1,4,5,8 and 2,3,6,7. Vertical excitation energies and oscillator strengths were computed using density functional theory with the hybrid CAM-B3LYP functional and 6-311G(d) basis set. Correlations between the excitation energies or oscillator strengths of the low-lying bright La state and the Hammett sigma parameter, σp(+), of the substituents were examined. The energy is red-shifted for all cases of substitution. Oscillator strengths increase when substituents are placed along the direction of the transition dipole moment of the bright La excited state. Substitution of long chain conjugated groups significantly increases the oscillator strength in comparison to the cases for other substituents. In addition, the results of quadruply substituted geometries reveal symmetric substitution at the 1,4,5,8 positions significantly increases the oscillator strength and can lower the band gap compared to that of the unsubstituted anthracene molecule by up to 0.5 eV.

  1. Absorption and fluorescence properties of aryl substituted porphyrins in different media

    NASA Astrophysics Data System (ADS)

    Bozkurt, Serap Seyhan; Merdivan, Melek; Ayata, Sevda

    2010-02-01

    Absorption and fluorescence properties of aryl substituted porphyrins, 5,10,15,20-tetra-4-oxy(aceticacid)phenylporphyrin (TAPP), 5,10,15,20-tetra-(4-phenoxyphenyl) porphyrin (TPPP), 5,10,15,20-tetra-(3-bromo-4-hydroxyphenyl) porphyrin (TBHPP), and 5,10,15,20-tetra-p-chloromethylphenyl porphyrin (CMPP) were investigated. The UV/vis absorption, fluorescence and excited spectra as the fluorescence quantum yields and fluorescence lifetimes for the compounds were measured in organic solvents (chloroform (CHCl 3), tetrahydrofuran (THF)) and immobilized media (PVC film, sol-gel matrix). The fluorescence quantum yields of TAPP and TPPP were higher than the others. The fluorescence lifetimes of all studied porphyrin derivates were found to be fifty percent lower and their fluorescence intensities were increased fifty percent more in both of immobilized mediums, as compared to organic solvents.

  2. Dye-doped sol-gel materials for two-photon absorption induced fluorescence

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Roger, Gisèle; Cassagne, Florence; Lévy, Yves; Brun, Alain; Chaput, Frédéric; Boilot, Jean-Pierre; Rapaport, Alexandra; Heerdt, Céline; Bass, Michael

    2002-01-01

    Two-photon absorption (TPA) and subsequent fluorescence properties of laser dyes are retained when doped into solid state sol-gel materials. These properties were demonstrated to be applicable in true 3D displays.

  3. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  4. Understanding the Two-Photon Absorption Spectrum of PE2 Platinum Acetylide Complex

    DTIC Science & Technology

    2014-07-09

    AFRL-RX-WP-JA-2014-0188 UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) Thomas M...UNDERSTANDING THE TWO-PHOTON ABSORPTION SPECTRUM OF PE2 PLATINUM ACETYLIDE COMPLEX (POSTPRINT) 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER...on the two-absorption crosssection spectrum of trans-Pt(PBu3)2 (C≡C−C6H4−C≡C−C6H5)2 (PE2) platinum acetylide complex employing the femtosecond

  5. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    PubMed

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  6. The system on positioning detecting plasma fluorescence spectrum in reaction chamber

    NASA Astrophysics Data System (ADS)

    He, Zhenjiang; Yang, Guanling; Huang, Zuohua; Huang, Linhai; Gu, Xiaoju

    2005-02-01

    The real-time detection of plasma fluorescence spectrum in reaction chamber is significant for optimizing running parameters of the plasma syntonization enhanced system and finding sample reaction state. This paper present the new type detection system of fluorescence spectrum. This system applies a principle of control light beam transmitting by entrance pupil and viewing field, and rotated method of optical tube. It can monitor fluorescence spectrum of pointed position in reaction chamber. Some designed essentials about plan of detection range, position optical path and optical path of detecting plasma fluorescence spectrum in the system are introduced in detail. The system features are that it can aim at pointed positions of big luminophor and measure spectrum. It especially suit to real-time detect for plasma states in range nearly substrate holder. This system can applied in PECVD and some research as Chemiluminescence reaction chamber.

  7. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  8. Cesium Absorption Spectrum Perturbed by Argon: Observation of Non-Lorentzian Wing Properties

    DTIC Science & Technology

    2012-03-01

    CESIUM ABSORPTION SPECTRUM PERTURBED BY ARGON : OBSERVATION OF NON-LORENTZIAN WING PROPERTIES THESIS Gordon E. Lott, Second Lieutenant, USAF AFIT...PERTURBED BY ARGON : OBSERVATION OF NON-LORENTZIAN WING PROPERTIES THESIS Presented to the Faculty Department of Engineering Physics Graduate School of...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT / APPLPHY / ENP / 12-MOS CESIUM ABSORPTION SPECTRUM PERTURBED BY ARGON : OBSERVATION OF NON-LORENTZIAN

  9. Excited-state absorption in bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii: Reinterpretation of the absorption difference spectrum

    SciTech Connect

    Amerongen, H. van; Struve, W.S. )

    1991-10-31

    Excited-state absorption arising from transitions between singly and doubly excited exciton components in strongly coupled photosynthetic antennae profoundly influences the absorption difference spectra observed in pump-probe spectroscopy. Model calculations of the absorption difference spectrum in the BChl a-protein complex from P. aestuarii are compared with the experimental spectrum.

  10. Diel oscillation in the optical activity of carotenoids in the absorption spectrum of Nannochloropsis.

    PubMed

    Possa, Gabriela C; Santana, Hugo; Brasil, Bruno S A F; Roncaratti, Luiz F

    2017-03-01

    In this paper we show that the absorption spectrum of the microalgae Nannochloropsis oceanica exhibits changes in response to the modulation of incident light. A model was used to analyze the contribution of different active pigments to the total absorption in the photosynthetically active radiation region and suggested consistent diel oscillations in the optical activity of carotenoids.

  11. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  12. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  13. [Laser induced fluorescence spectrum characteristics of common edible oil and fried cooking oil].

    PubMed

    Mu, Tao-tao; Chen, Si-ying; Zhang, Yin-chao; Chen, He; Guo, Pan; Ge, Xian-ying; Gao, Li-lei

    2013-09-01

    In order to detect the trench oil the authors built a trench oil rapid detection system based on laser induced fluorescence detection technology. This system used 355 nm laser as excitation light source. The authors collected the fluorescence spectrum of a variety of edible oil and fried cooking oil (a kind of trench oil) and then set up a fluorescence spectrum database by taking advantage of the trench oil detection system It was found that the fluorescence characteristics of fried cooking oil and common edible oil were obviously different. Then it could easily realize the oil recognition and trench oil rapid detection by using principal component analysis and BP neural network, and the overall recognition rate could reach as high as 97.5%. Experiments showed that laser induced fluorescence spectrum technology was fast, non-contact, and highly sensitive. Combined with BP neural network, it would become a new technique to detect the trench oil.

  14. Ultraviolet absorption spectrum of methylhydroperoxide vapor. [in troposphere

    NASA Technical Reports Server (NTRS)

    Molina, M. J.; Arguello, G.

    1979-01-01

    The ultraviolet absorption cross sections of methylhydroperoxide, CH3OOH, have been measured over the wavelength range 210 nm to 350 nm at 294 K. It was concluded that solar photolysis is a dominant sink for tropospheric CH3OOH. For midlatitudes the photodissociation rate was estimated for 0 deg, for 30 deg, and for 70 deg zenith angles.

  15. Hybrid nanocone forests with high absorption in full-solar spectrum for solar cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Yudong; Mao, Haiyang; Xiong, Jijun; Ming, Anjie; Wang, Weibing

    2016-11-01

    In this work, hybrid nanocone forests (HNFs) with high absorption in full-solar-spectrum are fabricated based on a plasma repolymerization technique. The HNFs combine light trapping effect of the nanocone forests with surface plasmon resonance effect of the metallic nanoparticles, thus can achieve an optimized absorption larger than 80% in the full-solar spectrum (i.e. 200-2500nm). Besides, with the hybrid nanostructures, the absorption decrease around the Si bandgap width can be narrowed greatly, while the normalized utilization efficiency of solar radiation can be increased. Therefore, usage of the HNFs as a texture structure in solar cells to obtain higher conversion efficiencies is foreseeable.

  16. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  17. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  18. The Absorption Spectrum of PKS 1756+237

    NASA Astrophysics Data System (ADS)

    Bauer, J. M.; Roth, K. C.; Jim, K. T. C.

    1998-05-01

    We are involved in a program to investigate the relationship between damped Lyalpha absorption systems and the interstellar medium of our own galaxy and nearby galaxies. This ultimately requires the proper identification of the systems responsible for the absorption so that a connection may be drawn between the absorption characteristics and the physical characteristics of the absorber, such as galaxy morphology, size, brightness, and separation from the QSO line of sight (see Jim & Roth, Kolhatkar et al., and Roth et al. also presenting here). PKS 1756+237 is a relatively bright QSO (m_V~18.0) with an emission redshift of z=1.721. There are two strong intervening absorption line systems at redshifts of 1.426 and 1.673. Both systems exhibit strong low-ionization lines, and so are believed to originate in the inner regions of galactic systems at some stage of formation. We obtained two hours of high quality HIRES spectra on the Keck 10m telescope for this QSO in May, 1997. The 6.5 km/s (0.09 Angstroms FWHM) resolution of this data is a ten-fold improvement over existing data, providing kinematic information as well as significantly improved column density measurements. Preliminary analysis of the data suggests the existence of significant Ni II abundance at z=1.67, possibly indicating a damped absorber system. The spectra cover the C II and Si II lines, enabling us to search for associated fine-structure excitation. These spectra also cover several additional low and high-ionization species from which we derive abundance and kinematic information. Images of this QSO, acquired at the UH 2.2m telescope using the QUIRC infrared and Tek2048 optical cameras with UH's tip-tilt system, show possible candidates for absorber systems.

  19. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  20. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  1. Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent.

    PubMed

    Rajian, Justin Rajesh; Carson, Paul L; Wang, Xueding

    2009-03-16

    In photoacoustic imaging, the intensity of photoacoustic signal induced by optical absorption in biological tissue is proportional to light energy deposition, which is the product of the absorption coefficient and the local light fluence. Because tissue optical properties are highly dependent on the wavelength, the spectrum of the local light fluence at a target tissue beneath the sample surface is different than the spectrum of the incident light fluence. Therefore, quantifying the tissue optical absorption spectrum by using a photoacoustic technique is not feasible without the knowledge of the local light fluence. In this work, a highly accurate photoacoustic measurement of the subsurface tissue optical absorption spectrum has been achieved for the first time by introducing an extrinsic optical contrast agent with known optical properties. From the photoacoustic measurements with and without the contrast agent, a quantified measurement of the chromophore absorption spectrum can be realized in a strongly scattering medium. Experiments on micro-flow vessels containing fresh canine blood buried in phantoms and chicken breast tissues were carried out in a wavelength range from 680 nm to 950 nm. Spectroscopic photoacoustic measurements of both oxygenated and deoxygenated blood specimens presented an improved match with the references when employing this technique.

  2. [Fluorescence spectrum analysis system for protoporphyrin IX in serum based on wavelet transform].

    PubMed

    Zhu, Dian-ming; Yang, Hong-peng; Luo, Xiao-sen; Liu, Ying; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2007-12-01

    Protoporphyrin IX is an important kind of organic compound for vital movement, and can be used as the sign of tumour blood. Human protoporphyrin IX content in serum is very low, and affected by various factors. The serum fluorescence spectrum analysis system based on wavelet transform was used to discriminated the protoporphyrin IX weak signals. The protoporphyrin IX fluorescence spectrum was obtained by a multi-function spectrum measuring system, and decomposed several times by wavelet transform to distinguish the noise and spectrum signals. The fluorescence spectrum can be divided into corresponding discrete approximations signals (a1-a6) and discrete details signals (d1-d6) by six times of decomposition, showing the signal frequency decreasing with decomposition times increasing and the protoporphyrin IX fluorescence character peak appears here. The weak signals were discriminated and the exactly component and quantity can be acquired for further analysis. So it can be analysed quantitatively. The researches in the present paper provide the potential application in the diagnosis of incipient tumous using the serum fluorescence spectrum

  3. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  4. The ultraviolet absorption spectrum of CO - Applications to planetary atmospheres

    NASA Technical Reports Server (NTRS)

    White, H. P.; Hua, Xin-Min; Caldwell, J.; Chen, F. Z.; Judge, D. L.; Wu, C. Y. R.

    1993-01-01

    Laboratory gas-phase photoabsorption cross sections of the CO Cameron 0-0 band and the underlying pseudocontinuum have been measured at a temperature of 147 K and pressures of about 200 mbar, conditions similar to ambient in various planetary and satellite stratospheres in the solar system. A theoretical modeling program has also been used to calculate the band's spectrum. Agreement between the theoretical and the experimental spectra is very good. Models suggest that the observations of the CO Cameron band using the Hubble Space Telescope will be straightforward for Mars, but marginal for Titan.

  5. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  6. Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture

    NASA Technical Reports Server (NTRS)

    Hallidy, William H. (Inventor); Chin, Robert C. (Inventor)

    1999-01-01

    The present invention is a system for chemometric analysis for the extraction of the individual component fluorescence spectra and fluorescence lifetimes from a target mixture. The present invention combines a processor with an apparatus for generating an excitation signal to transmit at a target mixture and an apparatus for detecting the emitted signal from the target mixture. The present invention extracts the individual fluorescence spectrum and fluorescence lifetime measurements from the frequency and wavelength data acquired from the emitted signal. The present invention uses an iterative solution that first requires the initialization of several decision variables and the initial approximation determinations of intermediate matrices. The iterative solution compares the decision variables for convergence to see if further approximation determinations are necessary. If the solution converges, the present invention then determines the reduced best fit error for the analysis of the individual fluorescence lifetime and the fluorescence spectrum before extracting the individual fluorescence lifetime and fluorescence spectrum from the emitted signal of the target mixture.

  7. Spectral analysis on origination of the bands at 437 nm and 475.5 nm of chlorophyll fluorescence excitation spectrum in Arabidopsis chloroplasts.

    PubMed

    Zeng, Lizhang; Wang, Yongqiang; Zhou, Jun

    2016-05-01

    Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non-photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light-harvesting pigments.

  8. Ultraviolet absorption spectrum of chlorine peroxide, ClOOCl.

    PubMed

    Pope, Francis D; Hansen, Jaron C; Bayes, Kyle D; Friedl, Randall R; Sander, Stanley P

    2007-05-24

    The photolysis of chlorine peroxide (ClOOCl) is understood to be a key step in the destruction of polar stratospheric ozone. This study generated and purified ClOOCl in a novel fashion, which resulted in spectra with low impurity levels and high peak absorbances. The ClOOCl was generated by laser photolysis of Cl2 in the presence of ozone, or by photolysis of ozone in the presence of CF2Cl2. The product ClOOCl was collected, along with small amounts of impurities, in a trap at about -125 degrees C. Gas-phase ultraviolet spectra were recorded using a long path cell and spectrograph/diode array detector as the trap was slowly warmed. The spectrum of ClOOCl could be fit with two Gaussian-like expressions, corresponding to two different electronic transitions, having similar energies but different widths. The energies and band strengths of these two transitions compare favorably with previous ab initio calculations. The cross sections of ClOOCl at wavelengths longer than 300 nm are significantly lower than all previous measurements or estimates. These low cross sections in the photolytically active region of the solar spectrum result in a rate of photolysis of ClOOCl in the stratosphere that is much lower than currently recommended. For conditions representative of the polar vortex (solar zenith angle of 86 degrees, 20 km altitude, and O3 and temperature profiles measured in March 2000) calculated photolysis rates are a factor of 6 lower than the current JPL/NASA recommendation. This large discrepancy calls into question the completeness of present atmospheric models of polar ozone depletion.

  9. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  10. Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy.

    PubMed

    Gallagher, Sean R

    2017-02-02

    Quantitation of nucleic acids is a fundamental tool in molecular biology that requires accuracy, reliability, and the use of increasingly smaller sample volumes. This unit describes the traditional absorbance measurement at 260 nm and three more sensitive fluorescence techniques employing Hoechst 33258, ethidium bromide, and PicoGreen. The range of the assays covers 25 pg/ml to 50 µg/ml. Absorbance at 260 nm has an effective range from 1 to 50 µg/ml; Hoechst 33258 from 0.01 to 15 µg/ml; ethidium bromide from 0.1 to 10 µg/ml; and PicoGreen from 25 to 1000 pg/ml. © 2017 by John Wiley & Sons, Inc.

  11. Note: Measurement of saturable absorption by intense vacuum ultraviolet free electron laser using fluorescent material.

    PubMed

    Inubushi, Y; Yoneda, H; Higashiya, A; Ishikawa, T; Kimura, H; Kumagai, T; Morimoto, S; Nagasono, M; Ohashi, H; Sato, F; Tanaka, T; Togashi, T; Tono, K; Yabashi, M; Yamaguchi, Y; Kodama, R

    2010-03-01

    Advances in free electron lasers (FELs) which generate high energy photons are expected to open novel nonlinear optics in the x-ray and vacuum ultraviolet (VUV) regions. In this paper, we report a new method for performing VUV-FEL focusing experiments. A VUV-FEL was focused with Kirkpatrick-Baez optics on a multilayer target, which contains fused silica as a fluorescent material. By measuring the fluorescence, a 5.6x4.9 microm(2) focal spot was observed in situ. Fluorescence was used to measure the saturable absorption of VUV pulses in the tin layer. The transmission increases nonlinearly higher with increasing laser intensity.

  12. [Chlorophyll fluorescence spectrum analysis of greenhouse cucumber disease and insect damage].

    PubMed

    Sui, Yuan-yuan; Yu, Hai-ye; Zhang, Lei; Luo, Han; Ren, Shun; Zhao, Guo-gang

    2012-05-01

    The present paper is based on chlorophyll fluorescence spectrum analysis. The wavelength 685 nm was determined as the primary characteristic point for the analysis of healthy or disease and insect damaged leaf by spectrum configuration. Dimensionality reduction of the spectrum was achieved by combining simple intercorrelation bands selection and principal component analysis (PCA). The principal component factor was reduced from 10 to 5 while the spectrum information was kept reaching 99.999%. By comparing and analysing three modeling methods, namely the partial least square regression (PLSR), BP neural network (BP) and least square support vector machine regression (LSSVMR), regarding correlation coefficient of true value and predicted value as evaluation criterion, eventually, LSSVMR was confirmed as the appropriate method for modeling of greenhouse cucumber disease and insect damage chlorophyll fluorescence spectrum analysis.

  13. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo

    PubMed Central

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M.; Specht, Christian G.; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-01

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling. PMID:26711992

  14. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo.

    PubMed

    Plamont, Marie-Aude; Billon-Denis, Emmanuelle; Maurin, Sylvie; Gauron, Carole; Pimenta, Frederico M; Specht, Christian G; Shi, Jian; Quérard, Jérôme; Pan, Buyan; Rossignol, Julien; Moncoq, Karine; Morellet, Nelly; Volovitch, Michel; Lescop, Ewen; Chen, Yong; Triller, Antoine; Vriz, Sophie; Le Saux, Thomas; Jullien, Ludovic; Gautier, Arnaud

    2016-01-19

    This paper presents Yellow Fluorescence-Activating and absorption-Shifting Tag (Y-FAST), a small monomeric protein tag, half as large as the green fluorescent protein, enabling fluorescent labeling of proteins in a reversible and specific manner through the reversible binding and activation of a cell-permeant and nontoxic fluorogenic ligand (a so-called fluorogen). A unique fluorogen activation mechanism based on two spectroscopic changes, increase of fluorescence quantum yield and absorption red shift, provides high labeling selectivity. Y-FAST was engineered from the 14-kDa photoactive yellow protein by directed evolution using yeast display and fluorescence-activated cell sorting. Y-FAST is as bright as common fluorescent proteins, exhibits good photostability, and allows the efficient labeling of proteins in various organelles and hosts. Upon fluorogen binding, fluorescence appears instantaneously, allowing monitoring of rapid processes in near real time. Y-FAST distinguishes itself from other tagging systems because the fluorogen binding is highly dynamic and fully reversible, which enables rapid labeling and unlabeling of proteins by addition and withdrawal of the fluorogen, opening new exciting prospects for the development of multiplexing imaging protocols based on sequential labeling.

  15. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart.

    PubMed

    Dyuba, A V; Vygodina, T V; Konstantinov, A A

    2013-12-01

    This paper presents a new experimental approach for determining the individual optical characteristics of reduced heme a in bovine heart cytochrome c oxidase starting from a small selective shift of the heme a absorption spectrum induced by calcium ions. The difference spectrum induced by Ca2+ corresponds actually to a first derivative (differential) of the heme a(2+) absolute absorption spectrum. Such an absolute spectrum was obtained for the mixed-valence cyanide complex of cytochrome oxidase (a(2+)a3(3+)-CN) and was subsequently used as a basis spectrum for further procession and modeling. The individual absorption spectrum of the reduced heme a in the Soret region was reconstructed as the integral of the difference spectrum induced by addition of Ca2+. The spectrum of heme a(2+) in the Soret region obtained in this way is characterized by a peak with a maximum at 447 nm and half-width of 17 nm and can be decomposed into two Gaussians with maxima at 442 and 451 nm and half-widths of ~10 nm (589 cm(-1)) corresponding to the perpendicularly oriented electronic π→π* transitions B0x and B0y in the porphyrin ring. The reconstructed spectrum in the Soret band differs significantly from the "classical" absorption spectrum of heme a(2+) originally described by Vanneste (Vanneste, W. H. (1966) Biochemistry, 65, 838-848). The differences indicate that the overall γ-band of heme a(2+) in cytochrome oxidase contains in addition to the B0x and B0y transitions extra components that are not sensitive to calcium ions, or, alternatively, that the Vanneste's spectrum of heme a(2+) contains significant contribution from heme a3(2+). The reconstructed absorption band of heme a(2+) in the α-band with maximum at 605 nm and half-width of 18 nm (850 cm(-1)) corresponds most likely to the individual Q0y transition of heme a, whereas the Q0x transition contributes only weakly to the spectrum.

  16. The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl.

    PubMed

    von Hobe, Marc; Stroh, Fred; Beckers, Helmut; Benter, Thorsten; Willner, Helge

    2009-03-14

    UV/Vis absorption spectra of ClOOCl isolated in neon matrices were measured in the wavelength range 220-400 nm. The purity of the trapped samples was checked by infrared and UV/Vis matrix spectroscopy as well as low-temperature Raman spectroscopy. At wavelengths below 290 nm, the results agree with the UV spectrum recently published by Pope et al. [J. Phys. Chem. A, 2007, 111, 4322-4332]. However, the observed absorption in the long wavelength tail of the spectrum-relevant for polar stratospheric ozone loss-is substantially higher than reported by Pope et al. Our results suggest the existence of a ClOOCl electronic state manifold leading to an absorption band similar to those of the near UV spectrum of Cl(2). The differences to previous studies can be accounted for quantitatively by contributions to the reported absorption spectra caused by impurities. The observed band in the long wavelength tail is supported by several high-level ab initio calculations. However, questions arise concerning absolute values of the ClOOCl cross sections, an issue that needs to be revisited in future studies. With calculated photolysis rates based on our spectrum scaled to previous cross sections at the peak absorption, the known polar catalytic ozone-destruction cycles to a large extent account for the observed ozone depletion in the spring polar stratosphere.

  17. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  18. The absorption spectrum of titanium between 1900 A and 2315 A

    NASA Technical Reports Server (NTRS)

    Forsberg, P.; Johansson, S.; Smith, P. L.

    1986-01-01

    The absorption spectrum of Ti I has been analyzed in the region 1900-2315 A. The list contains 219 lines, of which 64 have been identified as transitions between the ground term and terms of the odd configurations (3d + 4s)3 np (n = 4, 5). Sixteen new energy levels have been found, and three odd level values have been revised. Most of the identified Ti I lines are present in the solar spectrum.

  19. Absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers: an ab initio simulation.

    PubMed

    Cardozo, Thiago M; Aquino, Adélia J A; Barbatti, Mario; Borges, Itamar; Lischka, Hans

    2015-03-05

    The absorption and fluorescence spectra of poly(p-phenylenevinylene) (PPV) oligomers with up to seven repeat units were theoretically investigated using the algebraic diagrammatic construction method to second order, ADC(2), combined with the resolution-of-the-identity (RI) approach. The ground and first excited state geometries of the oligomers were fully optimized. Vertical excitation energies and oscillator strengths of the first four transitions were computed. The vibrational broadening of the absorption and fluorescence spectra was studied using a semiclassical nuclear ensemble method. After correcting for basis set and solvent effects, we achieved a balanced description of the absorption and fluorescence spectra by means of the ADC(2) approach. This fact is documented by the computed Stokes shift along the PPV series, which is in good agreement with the experimental values. The experimentally observed band width of the UV absorption and fluorescence spectra is well reproduced by the present simulations showing that the nuclear ensemble generated should be well suitable for consecutive surface hopping dynamics simulations.

  20. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  1. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  2. A new class of absorption feature in Io's near-infrared spectrum

    NASA Technical Reports Server (NTRS)

    Trafton, L. M.; Lester, D. F.; Ramseyer, T. F.; Salama, F.; Sandford, S. A.; Allamandola, L. J.

    1991-01-01

    A relatively weak IR absorption feature detected at 1200 resolving power in Io at 2.1253 microns does not correspond to any gas- or solid-phase absorption expected on the basis of previously identified Io surface constituents. The source material of the feature appears to be stable and more uniformly distributed in longitude than Io's hot spots. These characteristics imply the feature's participation in a class different from those of other Io absorption spectrum features, thereby potentially serving as a major indicator of Io's atmosphere-surface composition and interactions. Results of laboratory experiments with plausible surface ices are compared with these observations.

  3. Ortho effects on the change in electronic absorption spectrum of pyridinium salts of saturated bromohydrocarbon.

    PubMed

    Song, Jin-Ling; Gong, Li-Ming; Feng, Shou-Ai; Zhao, Jiang-Hong; Zheng, Jian-Feng; Zhu, Zhen-Ping

    2009-12-01

    The quaterisation process of 1,2-dibromoethane and pyridine is in situ traced by electronic absorption spectrum. Two absorption peaks, induced by mono- and bis-pyridinium salt of 1,2-dibromoethane, appear at 429 nm and 313 nm, respectively. To explain the phenomena, several kinds of alkyl bromides with special structures were selected and compared by experimental measurement and theoretical calculation. The results indicate that for mono-pyridinium salt of 1,2-dibromoethane, the electron donor property of ortho-bromine group increases the electron cloud density of the carbon atom associated with pyridinium cation, which induces red-shift of absorption wavelength.

  4. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  5. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence.

    PubMed

    Du Le, Vinh Nguyen; Patterson, Michael S; Farrell, Thomas J; Hayward, Joseph E; Fang, Qiyin

    2015-01-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  6. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    SciTech Connect

    Lee, Geon Joon Sim, Geon Bo; Choi, Eun Ha; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  7. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  8. White light-emitting diode with quasisolar spectrum based on organic fluorescent dyes

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Li, Ming-Chia; Sun, Ching-Cherng

    2015-07-01

    We present a study of light-emitting diodes (LEDs) using organic fluorescent dyes to replace the general phosphor. The blue die with a specific organic fluorescent dye gives the LED a single color appearance. Through a color-mixing cavity, multiple LEDs are used to produce a quasisolar spectrum at a certain band and white light with a color rendering index as high as 97 at around 2800 K.

  9. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  10. Ab initio calculation of the electronic absorption spectrum of liquid water.

    PubMed

    Martiniano, Hugo F M C; Galamba, Nuno; Cabral, Benedito J Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  11. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  12. [Identification of protoporphyrin IX fluorescence spectrum in human blood serum by biorthogonal spline wavelet].

    PubMed

    Zhu, Dian-ming; Jin, Wan-xiang; Luo, Xiao-sen; Liu, Ying; Shen, Zhong-hua; Lu, Jian; Ni, Xiao-wu

    2008-08-01

    For the low content and weak fluorescence intensity, usually presenting shoulder peaks, it is often hard to locate protoporphyrin IX and identify its fluorescence intensity in human blood serum. Biorthogonal spline wavelet may work for the identification of its weak signal Superimposing protoporphyrin IX fluorescence signal on the background of blood serum spectrum, a series of varied fluorescence spectra of them can be obtained. The protoporphyrin IX fluorescence signal from blood serum background is separated and the fluorescence spectrum can be divided into corresponding discrete approximate signals (a1-a7) and discrete details signals (d1-d7) by biorthogonal spline wavelet bior 5.5 seven levels decomposition. The signal frequency shows a gradual decrease with increasing decomposition. Protoporphyrin IX fluorescence peak emerges when it comes to the 7th decomposition. The signal peak shifts about 2.5 mm downwards as the signal intensity decreases, whereas the signal peak from wavelet filter remains where it was. As the synchronization disappears between signal intensity and signal peak, usually it is hard to assure the fluorescence intensity and peak location. However, signal from wavelet filter may ignore the affect and identify the protoporphyrin IX in human blood serum with the help of biorthogonal spline wavelet. As the linear alternation of wavelet and discrete details signals maintain their inborn linear relations, the authors can carry out the qualitative and quantitative analysis for the precise content and quantity of protoporphyrin IX in blood serum, which provides a feasible method for the application of blood serum fluorescence spectrum to tumor early diagnosis.

  13. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants.

  14. ULTRAVIOLET ABSORPTION SPECTRUM OF NITROUS OXIDE AS FUNCTION OF TEMPERATURE AND ISOTOPIC SUBSTITUTION

    SciTech Connect

    Selwyn, G.S.; Johnston, H.S.

    1980-07-01

    The ultraviolet absorption spectra of nitrous oxide and its {sup 15}N isotopes over the wavelength range 197 to 172 nm and between 150 and 500 K show a weak continuous absorption and a pattern of diffuse banding that became pronounced at higher temperatures. The temperature dependence of the absorption spectrum results from the activation of the n{sub 2}{double_prime} bending mode. Deconvolution of the data shows that absorption by molecules in the (010) vibrational mode results in a spectrum of vibrational bands superimposed on a continuum. A weaker and nearly continuous spectrum results from the ultraviolet absorption by molecules in the (000) vibrational mode. Analysis of the structuring indicates n{sub 2}{double_prime} = (490 {+-} 10) cm{sup -1}. No rotational structure can be observed. Measurement of the n{sub 2}{double_prime} isotope shift is used to identify the quantum number of the upper state vibrational levels. Normal coordinate analysis of the excited state is used to determine a self-consistent set of molecular parameters: bond angle (115{sup o}), the values of n{sub 1}{prime} and n{sub 3}{prime} (1372 and 1761 cm{sup -1}, respectively), and the force constants of the upper state. It is suggested that the transitions observed are {sup 1}S{sup -}({sup 1}A{sup -}) {l_arrow} X- {sup 1}{sup +} and {sup 1}D {l_arrow} {tilde X} {sup 1}S{sup +}.

  15. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  16. [Research on VOC concentration detection by photoelastic modulation infrared spectrum absorption method].

    PubMed

    Hu, Miao; Wang, Tai-yong; Qiao, Zhi-feng; Geng, Bo; Xiao, Xin-hua

    2011-12-01

    In order to ensure high stability and strong anti-interference ability in static interference system for qualitative and quantitative analysis of gas, a static scans interference detection system was designed based on photoelastic modulation infrared spectrum absorption system. The system consists of infrared laser, polarizer, photoelastic modulator, polarization analyzer and CCD components. By photoelastic modulator the principal refractive index of optical crystal will change cyclically by the modulation signal, producing cyclical changes in the optical path difference. With the calculation of modulation phase variation, the authors can get the function of the crystal length, the modulation cycle, and the range of optical path difference. Based on phase delay value and the energy distribution of interference pattern, the authors got the formula for the corresponding interference light intensity. The experiment used ZnSe crystal as the photoelastic modulation crystal, the polarizer uses the DOP3212 polarizer, and the detector uses the TCD5390AP array CCD. The five groups have different concentrations with three common VOC gases (formaldehyde, benzene and xylene) for detecting the concentrations of gases. The experimental results with the traditional infrared absorption were compared with the test results of photoelastic modulation infrared spectrum absorption method. The method of photoelastic modulation infrared spectrum absorption had high stability and real-time features, while the detection accuracy is better than the traditional infrared absorption method.

  17. THE VISIBILITY OF MONOCHROMATIC RADIATION AND THE ABSORPTION SPECTRUM OF VISUAL PURPLE

    PubMed Central

    Hecht, Selig; Williams, Robert E.

    1922-01-01

    1. After a consideration of the existing data and of the sources of error involved, an arrangement of apparatus, free from these errors, is described for measuring the relative energy necessary in different portions of the spectrum in order to produce a colorless sensation in the eye. 2. Following certain reasoning, it is shown that the reciprocal of this relative energy at any wave-length is proportional to the absorption coefficient of a sensitive substance in the eye. The absorption spectrum of this substance is then mapped out. 3. The curve representing the visibility of the spectrum at very low intensities has exactly the same shape as that for the visibility at high intensities involving color vision. The only difference between them is their position in the spectrum, that at high intensities being 48 µµ farther toward the red. 4. The possibility is considered that the sensitive substances responsible for the two visibility curves are identical, and reasons are developed for the failure to demonstrate optically the presence of a colored substance in the cones. The shift of the high intensity visibility curve toward the red is explained in terms of Kundt's rule for the progressive shift of the absorption maximum of a substance in solvents of increasing refractive index and density. 5. Assuming Kundt's rule, it is deduced that the absorption spectrum of visual purple as measured directly in water solution should not coincide with its position in the rods, because of the greater density and refractive index of the rods. It is then shown that, measured by the position of the visibility curve at low intensities, this shift toward the red actually occurs, and is about 7 or 8 µµ in extent. Examination of the older data consistently confirms this difference of position between the curves representing visibility at low intensities and those representing the absorption spectrum of visual purple in water solution. 6. It is therefore held as a possible hypothesis

  18. Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Hammond, T. J.; Monchocé, Sylvain; Zhang, Chunmei; Brown, Graham G.; Corkum, P. B.; Villeneuve, D. M.

    2016-12-01

    As light propagates through a medium, absorption caused by electronic or rovibrational transitions is evident in the transmitted spectrum. The incident electromagnetic field polarizes the medium and the absorption is due to the imaginary part of the linear susceptibility. In the time domain, the field establishes a coherence in the medium that radiates out of phase with the initial field. This coherence can persist for tens of picoseconds in atmospheric molecules such as H2O . We propagate a few-cycle laser pulse centered at 1.8 μ m through the atmosphere and measure the long-lasting molecular coherence in the time domain by high-order harmonic cross correlation. The measured optical free-induction decay of the pulse is compared with a calculation based on the calculated rovibrational spectrum of H2O absorption.

  19. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO.

    PubMed

    Smith, Mica C; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH3CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH3CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10(-17) cm(2) molecule(-1) at 308 nm and (9.7 ± 0.6) × 10(-18) cm(2) molecule(-1) at 352 nm. After scaling the UV spectrum of CH3CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10(-17) cm(2) molecule(-1) at 328 nm. Compared to the simplest Criegee intermediate CH2OO, the UV absorption band of CH3CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH3CHOO in the atmosphere.

  20. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO

    NASA Astrophysics Data System (ADS)

    Smith, Mica C.; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A.; Lin, Jim-Min, Jr.

    2014-08-01

    The UV spectrum of CH3CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH3CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10-17 cm2 molecule-1 at 308 nm and (9.7 ± 0.6) × 10-18 cm2 molecule-1 at 352 nm. After scaling the UV spectrum of CH3CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10-17 cm2 molecule-1 at 328 nm. Compared to the simplest Criegee intermediate CH2OO, the UV absorption band of CH3CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH3CHOO in the atmosphere.

  1. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  2. UV absorption and fluorescence properties of gas-phase p-difluorobenzene

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Dreier, Thomas; Schulz, Christof

    2017-01-01

    1,4-Difluorobenzene ( p-DFB) is a promising aromatic tracer for determining concentration, temperature, and O2 partial pressure in mixing gas flows based on laser-induced fluorescence (LIF). Signal quantification requires the knowledge of absorption and fluorescence properties as a function of environmental conditions. We report absorption and fluorescence spectra as well as fluorescence lifetimes of p-DFB in the temperature, pressure, and oxygen partial pressure range that is relevant for many applications including internal combustion engines. The UV absorption cross section, investigated between 296 and 675 K, has a peak value close to 266 nm and decreases with temperature, while still exceeding other single-ring aromatics. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (296-1180 K), pressure (1-10 bar), and O2 partial pressure (0-210 mbar) using a streak camera (temporal resolution 50 ps) coupled to a spectrometer. The fluorescence spectra red-shift ( 2 nm/100 K) and broaden (increase in full width at half maximum by 58% in the investigated temperature range) with temperature. In N2 as bath gas (1 bar), the fluorescence lifetime τ eff decreases with temperature by a factor of about 20 (from 7 ns at 298 K down to 0.32 ns at 1180 K), while at 8 bar the shortest lifetime at 975 K is 0.4 ns. A noticeable pressure dependence (i.e., reduced τ eff) is only visible at 675 K and above. Quenching of p-DFB LIF by O2 (for partial pressures up to 210 mbar) shortens the fluorescence lifetime significantly at room temperature (by a factor of 8), but much less at higher temperatures (by a factor of 1.8 at 970 K). For fixed O2 partial pressures (52 mbar and above), τ eff shows a plateau region with temperature which shifts toward higher temperatures at the higher O2 partial pressures. O2 quenching is less prominent for p-DFB compared to other aromatic compounds investigated so far. The temperature

  3. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.

    PubMed

    Chen, Yao; Chen, Zeng-Ping; Yang, Jing; Jin, Jing-Wen; Zhang, Juan; Yu, Ru-Qin

    2013-02-19

    The presence of practically unavoidable scatterers and background absorbers in turbid media such as biological tissue or cell suspensions can significantly distort the shape and intensity of fluorescence spectra of fluorophores and, hence, greatly hinder the in situ quantitative determination of fluorophores in turbid media. In this contribution, a quantitative fluorescence model (QFM) was proposed to explicitly model the effects of the scattering and absorption on fluorescence measurements. On the basis of the proposed model, a calibration strategy was developed to remove the detrimental effects of scattering and absorption and, hence, realize accurate quantitative analysis of fluorophores in turbid media. A proof-of-concept model system, the determination of free Ca(2+) in turbid media using Fura-2, was utilized to evaluate the performance of the proposed method. Experimental results showed that QFM can provide quite precise concentration predictions for free Ca(2+) in turbid media with an average relative error of about 7%, probably the best results ever achieved for turbid media without the use of advanced optical technologies. QFM has not only good performance but also simplicity of implementation. It does not require characterization of the light scattering properties of turbid media, provided that the light scattering and absorption properties of the test samples are reasonably close to those of the calibration samples. QFM can be developed and extended in many application areas such as ratiometric fluorescent sensors for quantitative live cell imaging.

  4. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  5. Azimuthal Doppler shift of absorption spectrum in optical vortex laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Aramaki, Mitsutoshi; Ozawa, Naoya; Terasaka, Kenichiro; Tanaka, Masayoshi; Nagaoka, Kenichi; Morisaki, Tomohiro

    2016-10-01

    Laser spectroscopy is a powerful diagnostic tool for measuring the mean flow velocity of plasma particles. We have been developing a new laser spectroscopy method utilizing an optical vortex beam, which has helical phase fronts corresponding to the phase change in the azimuthal direction. Because of this phase change, a Doppler effect is experienced even by an atom crossing the beam vertically. The additional azimuthal Doppler shift is proportional to the topological charge of optical vortex and is inversely proportional to the distance from the beam axis in which the beam intensity is vanished by destructive interference or the phase singularity. In order to detect the azimuthal Doppler shift, we have performed a laser absorption spectroscopy experiment with the linear ECR plasma device HYPER-I. Since the azimuthal Doppler shift depends on a position in the beam cross section, the absorption spectra at various positions were reconstructed from the transmitted beam intensity measured by a beam profiler. We have observed a clear spatial dependence of the Doppler shift, which qualitatively agreed with theory. Detailed experimental results, as well as remaining issues and future prospect, will be discussed at the meeting. This study was partially supported by JAPS KAKENHI Grand Numbers 15K05365 and 25287152.

  6. Optical sensor instrumentation using absorption- and fluorescence-based capillary waveguide optrodes

    NASA Astrophysics Data System (ADS)

    Weigl, Bernhard H.; Draxler, Sonja; Kieslinger, Dietmar; Lehmann, H.; Trettnak, Wolfgang; Wolfbeis, Otto S.; Lippitsch, Max E.

    1995-09-01

    An analytical instrument comprising absorption- and fluorescence-based capillary waveguide optrodes (CWOs) is described. Glass capillaries with a chemically sensitive coating on the inner surface are used for optical chemical sensing in gaseous and liquid samples. In case of absorption-based CWOs, light from a LED is coupled into and out of the capillary under a defined angle via a rigid waveguide and an immersion coupler. The coated glass capillary forms an inhomogeneous waveguide, in which the light is guided in both the glass and the coating. The portion of the light which is absorbed in the chemically sensitive coating is proportional to a chemcial concentration or activity. This principle is demonstrated with a pCO2-sensitive inner coating. Typical relative light intensity signal changes with this type of optical interrogation are 98%, with an active capillary length of 10 mm. For fluorescence- based CWOs, the excitation light from an LED is coupled diffusely into the glass capillary and the optical sensor layer. A major portion of the excited fluorescence light is then collected within the coated capillary, and guided to the photodiode, which is located on the distal end of the capillary waveguide. Hereby, the excitation light is separated very efficiently from the fluorescent light. As an example, a CWO for pO2 is described. By applying this optical geometry, it was possible to utilize fluorescence decay time of the sensor layer as the transducer signal even when using solid state components (LEDs and photodiodes).

  7. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  8. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  9. The widetilde{A}←widetilde{X} ABSORPTION SPECTRUM OF 2-NITROOXYBUTYL PEROXY RADICAL

    NASA Astrophysics Data System (ADS)

    Eddingsaas, Nathan; Takematsu, Kana; Okumura, Mitchio

    2009-06-01

    The nitrate radical is an important atmospheric oxidant in the nighttime sky. Nitrate radicals react by addition to alkenes, and in the presence of oxygen form nitrooxyalkyl peroxy radicals. The peroxy radical formed from the reaction of 2-butene, nitrate radical, and oxygen was detected by cavity ringdown spectroscopy (CRDS) via its widetilde{A}←widetilde{X} electronic absorption spectrum. The widetilde{A}←widetilde{X} electronic transition is a bound-bound transition with enough structure to distinguish between different peroxy radicals as well as different conformers of the same peroxy radical. Two conformers of the nitrooxybutyl peroxy radical have been observed; the absorption features are red shifted from the same absorption features of sec-butyl peroxy radical. Calculations on the structure of nitrooxyalkyl peroxy radicals and general trends of the position of the widetilde{A}←widetilde{X} absorption transitions have also been performed and compared to those of unsubstituted peroxy radicals.

  10. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  11. Fluorescence and absorption spectroscopy of the weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC6803.

    PubMed Central

    Peterman, E J; Wenk, S O; Pullerits, T; Pâlsson, L O; van Grondelle, R; Dekker, J P; Rögner, M; van Amerongen, H

    1998-01-01

    A spectroscopic characterization of the chlorophyll a (Chl) molecule in the monomeric cytochrome b6f complex (Cytb6f) isolated from the cyanobacterium Synechocystis PCC6803 is presented. The fluorescence lifetime and quantum yield have been determined, and it is shown that Chl in Cytb6f has an excited-state lifetime that is 20 times smaller than that of Chl in methanol. This shortening of the Chl excited state lifetime is not caused by an increased rate of intersystem crossing. Most probably it is due to quenching by a nearby amino acid. It is suggested that this quenching is a mechanism for preventing the formation of Chl triplets, which can lead to the formation of harmful singlet oxygen. Using site-selected fluorescence spectroscopy, detailed information on vibrational frequencies in both the ground and Qy excited states has been obtained. The vibrational frequencies indicate that the Chl molecule has one axial ligand bound to its central magnesium and accepts a hydrogen bond to its 13(1)-keto carbonyl. The results show that the Chl binds to a well-defined pocket of the protein and experiences several close contacts with nearby amino acids. From the site-selected fluorescence spectra, it is further concluded that the electron-phonon coupling is moderately strong. Simulations of both the site-selected fluorescence spectra and the temperature dependence of absorption and fluorescence spectra are presented. These simulations indicate that the Huang-Rhys factor characterizing the electron-phonon coupling strength is between 0.6 and 0.9. The width of the Gaussian inhomogeneous distribution function is 210 +/- 10 cm-1. PMID:9649396

  12. Semiclassical on-the-fly computation of the S(0)-->S(1) absorption spectrum of formaldehyde.

    PubMed

    Tatchen, Jörg; Pollak, Eli

    2009-01-28

    The anharmonic S(0)-->S(1) vibronic absorption spectrum of the formaldehyde molecule is computed on the fly using semiclassical dynamics. This first example of an on-the-fly semiclassical computation of a vibronic spectrum was achieved using a unit prefactor modified frozen Gaussian semiclassical propagator for the excited state. A sample of 6000 trajectories sufficed for obtaining a converged spectrum, which is in reasonable agreement with experiment. Similar agreement is not obtained when using a harmonic approximation for the spectrum, demonstrating the need for a full anharmonic computation. This first example provides a resolution of approximately 100 cm(-1). Potential ways of improving the methodology and obtaining higher resolution and accuracy are discussed.

  13. Solvatochromic Shifts on Absorption and Fluorescence Bands of N,N-Dimethylaniline.

    PubMed

    Fdez Galván, Ignacio; Elena Martín, M; Muñoz-Losa, Aurora; Aguilar, Manuel A

    2009-02-10

    A theoretical study of the absorption and fluorescence UV/vis spectra of N,N-dimethylaniline in different solvents has been performed, using a method combining quantum mechanics, molecular mechanics, and the mean field approximation. The transitions between the three lowest-lying states have been calculated in vacuum as well as in cyclohexane, tetrahydrofuran, and water. The apparent anomalies experimentally found in water (a blue shift in the absorption bands with respect to the trend in other solvents, and an abnormally high red shift for the fluorescence band) are well reproduced and explained in view of the electronic structure of the solute and the solvent distribution around it. Additional calculations were done with a mixture of cyclohexane and tetrahydrofuran as solvent, which displays a nonlinear solvatochromic shift. Results, although not conclusive, are consistent with experiment and provide a possible explanation for the nonlinear behavior in the solvent mixture.

  14. Optical imaging of non-fluorescent nanodiamonds in live cells using transient absorption microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Lu, Feng; Streets, Aaron M.; Fei, Peng; Quan, Junmin; Huang, Yanyi

    2013-05-01

    We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism.We directly observe non-fluorescent nanodiamonds in living cells using transient absorption microscopy. This label-free technology provides a novel modality to study the dynamic behavior of nanodiamonds inside the cells with intrinsic three-dimensional imaging capability. We apply this method to capture the cellular uptake of nanodiamonds under various conditions, confirming the endocytosis mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00308f

  15. The UV absorption spectrum of the simplest Criegee intermediate CH2OO.

    PubMed

    Ting, Wei-Lun; Chen, Ying-Hsuan; Chao, Wen; Smith, Mica C; Lin, Jim Jr-Min

    2014-06-14

    SO2 scavenging and self-reaction of CH2OO were utilized for the decay of CH2OO to extract the absorption spectrum of CH2OO under bulk conditions. Absolute absorption cross sections of CH2OO at 308.4 and 351.8 nm were obtained from laser-depletion measurements in a jet-cooled molecular beam. The peak cross section is (1.23 ± 0.18) × 10(-17) cm(2) at 340 nm.

  16. Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters

    SciTech Connect

    Rohlfing, M.; Louie, S.G. |

    1998-04-01

    We calculate the optical absorption spectrum of hydrogen-terminated silicon clusters by solving the Bethe-Salpeter equation for the two-particle Green{close_quote}s function using an {ital ab initio} approach. The one-particle Green{close_quote}s function and the electron-hole interaction kernel are calculated within the GW approximation for the electron self-energy operator. Very large exciton binding energies are observed. Our results for the one-particle properties and the optical absorption spectra of the clusters are in very good agreement with available experimental data. {copyright} {ital 1998} {ital The American Physical Society}

  17. The exciton absorption spectrum of thin CuPb3Br7 superionic conductor films

    NASA Astrophysics Data System (ADS)

    Yunakova, O. N.; Yunakov, N. N.; Kovalenko, E. N.; Kovalenko, V. V.

    2016-09-01

    A study of the absorption spectrum of thin CuPb2Br7 films in the 2-6 eV spectral and 90-500 K temperature ranges. It is shown that the exciton spectrum of the compound is associated with transitions in the lead ion. The temperature dependence of the spectral position and half-width of the low-frequency exciton band contains features associated with phase transitions γ → β (Tc1 = 159 K) and β → α (Tc2 = 434 K) and the disordering of the cation sublattice of the compound in the transition to the superionic state.

  18. Donor-acceptor substituted phenylethynyltriphenylenes – excited state intramolecular charge transfer, solvatochromic absorption and fluorescence emission

    PubMed Central

    Nandy, Ritesh

    2010-01-01

    Summary Several 2-(phenylethynyl)triphenylene derivatives bearing electron donor and acceptor substituents on the phenyl rings have been synthesized. The absorption and fluorescence emission properties of these molecules have been studied in solvents of different polarity. For a given derivative, solvent polarity had minimal effect on the absorption maxima. However, for a given solvent the absorption maxima red shifted with increasing conjugation of the substituent. The fluorescence emission of these derivatives was very sensitive to solvent polarity. In the presence of strongly electron withdrawing (–CN) and strongly electron donating (–NMe2) substituents large Stokes shifts (up to 130 nm, 7828 cm−1) were observed in DMSO. In the presence of carbonyl substituents (–COMe and –COPh), the largest Stokes shift (140 nm, 8163 cm−1) was observed in ethanol. Linear correlation was observed for the Stokes shifts in a Lippert–Mataga plot. Linear correlation of Stokes shift was also observed with E T(30) scale for protic and aprotic solvents but with different slopes. These results indicate that the fluorescence emission arises from excited state intramolecular charge transfer in these molecules where the triphenylene chromophore acts either as a donor or as an acceptor depending upon the nature of the substituent on the phenyl ring. HOMO–LUMO energy gaps have been estimated from the electrochemical and spectral data for these derivatives. The HOMO and LUMO surfaces were obtained from DFT calculations. PMID:21085512

  19. X-ray absorption and soft x-ray fluorescence analysis of KDP optics

    SciTech Connect

    Nelson, A J; van Buuren, T; Miller, E; Land, T A; Bostedt, C; Franco, N; Whitman, P K; Baisden, P A; Terminello, L J; Callcott, T A

    2000-08-09

    Potassium Dihydrogen Phosphate (KDP) is a non-linear optical material used for laser frequency conversion and optical switches. Unfortunately, when KDP crystals are coated with a porous silica anti-reflection coating [1] and then exposed to ambient humidity, they develop dissolution pits [2,3]. Previous investigations [2] have shown that thermal annealing renders KDP optics less susceptible to pitting suggesting that a modification of surface chemistry has occurred. X-ray absorption and fluorescence were used to characterize changes in the composition and structure of KDP optics as a function of process parameters. KDP native crystals were also analyzed to provide a standard basis for interpretation. Surface sensitive total electron yield and bulk sensitive fluorescence yield from the K 2p, P 2p (L{sub 2,3}-edge) and O 1s (K-edge) absorption edges were measured at each process step. Soft X-ray fluorescence was also used to observe changes associated with spectral differences noted in the absorption measurements. Results indicate that annealing at 160 C dehydrates the surface of KDP resulting in a metaphosphate surface composition with K:P:O = 1:1:3.

  20. Fluorescence upconversion properties of a class of improved pyridinium dyes induced by two-photon absorption

    NASA Astrophysics Data System (ADS)

    Xu, Guibao; Hu, Dawei; Zhao, Xian; Shao, Zongshu; Liu, Huijun; Tian, Yupeng

    2007-06-01

    We report the fluorescence upconversion properties of a class of improved pyridinium toluene- p-sulfonates having donor- π-acceptor (D- π-A) structure under two-photon excitation at 1064 nm. The experimental results show that both the two-photon excited (TPE) fluorescence lifetime and the two-photon pumped (TPP) energy upconversion efficiency were increased with the enhancement of electron-donating capability of the donor in the molecule. It is also indicated that an overlong alkyl group tends to result in a weakened molecular conjugation, leading to a decreased two-photon absorption (TPA) cross section. By choosing the donor, we can obtain a longest fluorescence lifetime of 837 ps, a highest energy upconversion efficiency of ˜6.1%, and a maximum TPA cross-section of 8.74×10 -48 cm 4 s/photon in these dyes.

  1. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  2. Analysis of CDOM fluorescence spectrum characteristics in coastal water and its application

    NASA Astrophysics Data System (ADS)

    Xing, Xufeng; Lv, Xianqiang; Liu, Fang; Liu, Yuan; Zhan, Jie; Huang, Miaofen

    2014-05-01

    In accordance with the data which were experiment of mixing-ratio in water tank and collecting water samples in situ from natural seawater and urban sewage discharged into the sea along Dalian coast of the northern Yellow Sea in February and April 2012, with quinine sulfate and sodium humate as a reference, the calibration curve was established among CDOM (Chromophoric dissolved organic matter) concentration and fluorescence intensity and reference wave absorption coefficient. To calibration curve as the foundation, the CDOM samples concentration of various sources was determined after analyzing CDOM sample from Dalian coast of the northern Yellow Sea sewage into the sea and natural sea. Based on the comparative analysis on CDOM fluorescence fingerprint, the main component of water CDOM were determined. The results showed that in Dalian coastal waters of the northern Yellow Sea, the main component of CDOM in natural seawater is tryptophan and in urban sewage discharged into the sea are tryptophan, tyrosine, and humic acid. On the basis of comprehensive analysis of CDOM fluorescence and absorption spectral, the thinking of synergy inversion of CDOM absorption spectral slope S by connecting fluorescence and ocean color remote sensing is put forward.

  3. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    PubMed

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  4. Molecular level all-optical logic with chlorophyll absorption spectrum and polarization sensitivity

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, B.; Bhattacharyya (Bhaumik), S.

    2008-06-01

    Chlorophyll is suggested as a suitable medium for realizing optical Boolean logic at the molecular level in view of its wavelength-selective property and polarization sensitivity in the visible region. Spectrophotometric studies are made with solutions of total chlorophyll and chromatographically isolated components, viz. chlorophyll a and b and carotenoids extracted from pumpkin leaves of different maturity stages. The absorption features of matured chlorophyll with two characteristic absorption peaks and one transmission band are molecular properties and independent of concentration. A qualitative explanation of such an absorption property is presented in terms of a ‘particle in a box’ model and the property is employed to simulate two-input optical logic operations. If both of the inputs are either red or blue, absorption is high. If either one is absent and replaced by a wavelength of the transmission band, e.g. green, absorption is low. Assigning these values as 0 s or 1 s, AND and OR operations can be performed. A NOT operation can be simulated with the transmittance instead of the absorbance. Also, the shift in absorbance values for two different polarizations of the same monochromatic light can simulate two logical states with a single wavelength. Cyclic change in absorbance is noted over a rotation of 360° for both red and blue peaks, although the difference is not very large. Red monochromatic light with polarizations apart by 90°, corresponding to maximum and minimum absorption, respectively, may be assigned as the two logical states. The fluorescence emissions for different pigment components are measured at different excitation wavelengths and the effect of fluorescence on the red absorbance is concluded to be negligible.

  5. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

  6. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  7. Collision-induced absorption in the far infrared spectrum of Titan

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Poll, J. D.; Goorvitch, D.; Tipping, R. H.

    1983-01-01

    The effects of collision-induced absorption on the far infrared spectrum of Titan have been investigated. After a review of the procedure for the theoretical calculation of the N2 translation-rotational spectrum, new results for the temperature range o 70 to 120 K are reported. These are used as input data for a simple atmospheric model in order to compute the far infrared radiance, brightness temperature, and specral limb function. This source of opacity alone is not capable of explaining the Voyager results. When the collision-induced methane is included, the results are in closer agreement in the range between 200 and 300/cm, suggesting that a more complete treatment of collision-induced absorption including particularly CH4-N2, N2-H2, and H2-H2 results, may provide sufficient opacity to reduce or obviate the need for opacities due to clouds or aerosols in order to explain the observed spectra.

  8. Degenerate two-photon absorption in all-trans retinal: nonlinear spectrum and theoretical calculations.

    PubMed

    Vivas, M G; Silva, D L; Misoguti, L; Zaleśny, R; Bartkowiak, W; Mendonca, C R

    2010-03-18

    In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal in ethanol employing the Z-scan technique with femtosecond pulses. The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and a peak at 790 nm. We attribute the 2PA band to the mixing of states (1)B(u)(+)-like and |S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to |S(1)>, |S(2)> ("(1)B(u)(+)"), |S(3)>, and |S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.

  9. THE SURPRISING ABSENCE OF ABSORPTION IN THE FAR-ULTRAVIOLET SPECTRUM OF Mrk 231

    SciTech Connect

    Veilleux, S.; Trippe, M.; Krug, H.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Genzel, R.; Sturm, E.; Tacconi, L.; Sembach, K. R.; Teng, S. H.; Maiolino, R. E-mail: veilleux@astro.umd.edu

    2013-02-10

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering {approx}1150-1470 A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint ({approx}<2% of predictions based on H{alpha}), broad ({approx}>10,000 km s{sup -1} at the base), and highly blueshifted (centroid at {approx} -3500 km s{sup -1}) Ly{alpha} emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F {sub {lambda}}{proportional_to}{lambda}{sup 1.7}) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly{alpha} emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (A{sub V} {approx} 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  10. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; Genzel, R.; Maiolino, R.; Sturm, E.; Tacconi, L.

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  11. Nonlinear Correction to Absorption Spectrum under Irradiation of Microwave Field in Conventional BCS Superconductors

    NASA Astrophysics Data System (ADS)

    Jujo, Takanobu

    2017-02-01

    We investigate the absorption spectrum of s-wave superconductors under microwave pump field irradiation. The third-order response function is calculated in the dirty limit with the electron-phonon interaction included at finite temperatures. We find that the nonlinear correction to the linear absorption shows peculiar behavior when the pump field frequency is smaller than the superconducting gap. At finite temperatures, a negative nonlinear correction exists, which is caused by thermally excited quasiparticles. The vertex correction by impurity scattering is found to contain a dissipation mechanism by inelastic scattering (interaction between electrons and acoustic phonons) or nonlocality. We need this mechanism to obtain finite absorption in a nonequilibrium stationary state under a monochromatic external field. Although this term originates from the deformation of a one-particle state, there is also a final-state interaction (the amplitude mode). The latter term represents two-photon excitation and is almost independent of temperature.

  12. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  13. Strong water absorption in the dayside emission spectrum of the planet HD 189733b.

    PubMed

    Grillmair, Carl J; Burrows, Adam; Charbonneau, David; Armus, Lee; Stauffer, John; Meadows, Victoria; van Cleve, Jeffrey; von Braun, Kaspar; Levine, Deborah

    2008-12-11

    Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.

  14. The second derivative electronic absorption spectrum of cytochrome c oxidase in the Soret region.

    PubMed

    Horvath, M P; Copeland, R A; Makinen, M W

    1999-09-01

    The electronic absorption spectrum of solubilized beef heart cytochrome c oxidase was analyzed in the 400-500 nm region to identify the origin of doublet features appearing in the second derivative spectrum associated with ferrocytochrome a. This doublet, centered near 22,600 cm(-1), was observed in the direct absorption spectrum of the a(2+)a(3)(3+).HCOO(-) form of the enzyme at cryogenic temperatures. Since evidence for this doublet at room temperature is obtained only on the basis of the second derivative spectrum, a novel mathematical approach was developed to analyze the resolving power of second derivative spectroscopy as a function of parameterization of spectral data. Within the mathematical limits defined for resolving spectral features, it was demonstrated that the integrated intensity of the doublet feature near 450 nm associated with ferrocytochrome a is independent of the ligand and oxidation state of cytochrome a(3). Furthermore, the doublet features, also observed in cytochrome c oxidase from Paracoccus denitrificans, were similarly associated with the heme A component and were correspondingly independent of the ligand and oxidation state of the heme A(3) chromophore. The doublet features are attributed to lifting of the degeneracy of the x and y polarized components of the B state of the heme A chromophore associated with the Soret transition.

  15. Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations

    SciTech Connect

    Xu, Xuefei; Zheng, Jingjing; Truhlar, Donald G.

    2015-07-01

    Free energy calculations for eight enol isomers of malonaldehyde (MA) and simulation of the ultraviolet (UV) absorption spectrum in both the gas phase and water (pH = 3, where the molecule exists in neutral undeprotonated form) show that in water the two s-trans nonchelated enol conformers of MA become thermodynamically more stable than the internally hydrogen-bonded (“chelated enol”) conformer (CE). The pure CE conformer in water has a slightly red-shifted UV spectrum with respect to that in the gas phase, but the blue-shifted spectrum observed in water at pH 3 is dominated by solvent-stabilized conformations that have negligible populations in the gas phase. Density functional calculations with the solvation model based on density (SMD) and an ensemble-averaged vertical excitation model explain the experimental observations in detail.

  16. Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations.

    PubMed

    Xu, Xuefei; Zheng, Jingjing; Truhlar, Donald G

    2015-07-01

    Free energy calculations for eight enol isomers of malonaldehyde (MA) and simulation of the ultraviolet (UV) absorption spectrum in both the gas phase and water (pH = 3, where the molecule exists in neutral undeprotonated form) show that in water the two s-trans nonchelated enol conformers of MA become thermodynamically more stable than the internally hydrogen-bonded ("chelated enol") conformer (CE). The pure CE conformer in water has a slightly red-shifted UV spectrum with respect to that in the gas phase, but the blue-shifted spectrum observed in water at pH 3 is dominated by solvent-stabilized conformations that have negligible populations in the gas phase. Density functional calculations with the solvation model based on density (SMD) and an ensemble-averaged vertical excitation model explain the experimental observations in detail.

  17. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  18. [Study on the characteristic and significance of synchronous fluorescence spectrum of crude oil and nature gas samples].

    PubMed

    Song, Ji-mei; Wang, Ling-feng

    2002-10-01

    Based on studying characteristic of constant-wavelength synchronous fluorescence spectrum of various kinds of crude oils and nature gases from the large fields of our nation, the similar peak and characteristic peak of various crude oils and nature gas were proposed. This approach has several advantages, including narrowing of spectral bands, simplification of conventional fluorescence spectra, contraction of the spectral range and so on. The technique can be used not only in judging oil and gas layers, types of crude oil, but also in providing the arms of petrolium exploration. In fact, the synchronous fluorescence spectrum and the three dimensional fluorescence spectra are the same in essence. The more achievement will be obtained by replacing the three dimensional fluorescence spectra analysis with the synchronous the fluorescence spectrum analysis.

  19. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.

    PubMed

    Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue

    2012-10-08

    We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

  20. The ultraviolet absorption spectrum of the quasar H1821+643 (z = 0.297)

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.; Green, Richard F.

    1992-01-01

    High resolution UV observations of the nearby luminous quasar H1821+643 are reported. A complete sample of 38 absorption lines has been constructed. There are five strong extragalactic Ly-alpha absorption lines in the spectrum, all with observed equivalent widths greater than 0.45 A. The local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A is estimated to be 13 +/- 5 Ly-alpha lines per unit redshift. Some of the Ly-alpha systems with redshifts significantly different from the quasar appear to be associated with galaxies or with clusters of galaxies. Two of the Ly-alpha lines have the same redshift within 400 km/s as that of an emission-line galaxy located at a projected separation from the quasar of about 90 kpc. One of the Ly-alpha systems in H1821+643 occurs at an a absorption redshift approximately equal to the emission-line redshift of the quasar and is accompanied by absorption from the C IV and of VI doublets; this is an example of associated absorption for large-redshift quasars.

  1. Ultrafast relaxation dynamics of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin studied by fluorescence up-conversion and transient absorption spectroscopy.

    PubMed

    Kumar, P Hemant; Venkatesh, Yeduru; Siva, Doddi; Ramakrishna, B; Bangal, Prakriti Ranjan

    2015-02-26

    The ultrafast photophysical characterization of 5,10,15,20-meso-tetrakis pentafluorophenyl porphyrin (H2F20TPP) in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solution has been done in the femtosecond-picosecond time domain, by combining fluorescence up-conversion and femtosecond transient absorption spectroscopy. Fluorescence up-conversion studies on H2F20TPP were done demonstrating fluorescence dynamics over the whole spectral range from 440 to 650 nm when excited at 405 nm, 360.5 cm(-1) excess vibrational energy of Soret band (411 nm). Single-exponential decay with ∼160 ± 50 fs lifetime of Soret fluorescence (also called S2 fluorescence or B band fluorescence) at around 440 nm was observed. On going from 440 nm, S2 fluorescence to S1 fluorescence, (Q-band) around 640 nm (wavelength of 0-0 transition in the stationary spectrum), single-exponential fluorescence time profile turns into a multiexponential time profile and it could be resolved critically into five-exponential components. An ultrafast rise component with ∼160 ± 50 fs followed by two decay components: a very fast decay component with 200 ± 50 fs time constant and another relatively slower 1.8 ± 0.5 ps decay component. Next, a very prominent rise component with 105 ± 30 ps lifetime followed by long-lived 10 ns decay component. The initial rise of S1 (Q-band) fluorescence around 640 nm agreed with the decay time of S2 (Soret or B band) fluorescence indicates that internal conversion (IC) from relaxed S2 to vibrationally excited S1 occurs in the ∼160 fs time scale and subsequent very fast decay with 200 fs time constant, which is assigned to be intramolecular vibrational dephasing or redistribution. The 1.8 ps decay component of S1 fluorescence is attributed to be "hot" fluorescence from vibrationally excited S1 state, and it reveals the vibrational relaxation time induced by elastic or quasi-elastic collision with solvent molecules. The 105 ps rise component is the creation time of the

  2. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    SciTech Connect

    Gustavsson, Thomas; Fujiwara, Takashige; Lim, Edward C.

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  3. Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation.

    PubMed

    Roy, R; Sevick-Muraca, E

    1999-05-10

    The development of non-invasive, biomedical optical imaging from time-dependent measurements of near-infrared (NIR) light propagation in tissues depends upon two crucial advances: (i) the instrumental tools to enable photon "time-of-flight" measurement within rapid and clinically realistic times, and (ii) the computational tools enabling the reconstruction of interior tissue optical property maps from exterior measurements of photon "time-of-flight" or photon migration. In this contribution, the image reconstruction algorithm is formulated as an optimization problem in which an interior map of tissue optical properties of absorption and fluorescence lifetime is reconstructed from synthetically generated exterior measurements of frequency-domain photon migration (FDPM). The inverse solution is accomplished using a truncated Newtons method with trust region to match synthetic fluorescence FDPM measurements with that predicted by the finite element prediction. The computational overhead and error associated with computing the gradient numerically is minimized upon using modified techniques of reverse automatic differentiation.

  4. Observation of upconversion fluorescence and stimulated emission based on three-photon absorption

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Lin, S.; Xu, L.; Yang, F.; Yang, Y.; Pan, L.; Sun, C.; Li, Y.; Sun, G.; Jiang, Z.

    2005-06-01

    The observations of three-photon-induced frequency-upconversion fluorescence and the highly directional stimulated visible emission in two dyes, 4-[p-(dicyanoethylamino) styryl]-N-methylpyridinium iodide (abbreviated as CEASP) and the complex of CEASP and Ce(NO3) (abbreviated as CEASP-Ce), are reported. The photographs of the forward amplified spontaneous emissions spots, pumped by an optical parametric oscillator idler with a pulse width of 8 ns and a wavelength of 1.3 μ m, are shown. The upconversion fluorescence produced both in dimethyl formamide solution and 2-hydroxyethyl methacrylate (HEMA) polymer spans from green to red, with a cubic dependence on the pump light intensity. The experimental results imply that the existence of the lanthanide ion Ce3 + sensitizes the nonlinear absorption and emission.

  5. UV absorption spectrum of the C2 Criegee intermediate CH{sub 3}CHOO

    SciTech Connect

    Smith, Mica C.; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A.; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH{sub 3}CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH{sub 3}CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10{sup −17} cm{sup 2} molecule{sup −1} at 308 nm and (9.7 ± 0.6) × 10{sup −18} cm{sup 2} molecule{sup −1} at 352 nm. After scaling the UV spectrum of CH{sub 3}CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10{sup −17} cm{sup 2} molecule{sup −1} at 328 nm. Compared to the simplest Criegee intermediate CH{sub 2}OO, the UV absorption band of CH{sub 3}CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH{sub 3}CHOO in the atmosphere.

  6. Two-Photon Absorption Spectrum of a Single Crystal Cyanine-like Dye.

    PubMed

    Hu, Honghua; Fishman, Dmitry A; Gerasov, Andrey O; Przhonska, Olga V; Webster, Scott; Padilha, Lazaro A; Peceli, Davorin; Shandura, Mykola; Kovtun, Yuriy P; Kachkovski, Alexey D; Nayyar, Iffat H; Masunov, Artëm E; Tongwa, Paul; Timofeeva, Tatiana V; Hagan, David J; Van Stryland, Eric W

    2012-05-03

    The two-photon absorption (2PA) spectrum of an organic single crystal is reported. The crystal is grown by self-nucleation of a subsaturated hot solution of acetonitrile, and is composed of an asymmetrical donor-π-acceptor cyanine-like dye molecule. To our knowledge, this is the first report of the 2PA spectrum of single crystals made from a cyanine-like dye. The linear and nonlinear properties of the single crystalline material are investigated and compared with the molecular properties of a toluene solution of its monomeric form. The maximum polarization-dependent 2PA coefficient of the single crystal is 52 ± 9 cm/GW, which is more than twice as large as that for the inorganic semiconductor CdTe with a similar absorption edge. The optical properties, linear and nonlinear, are strongly dependent upon incident polarization due to anisotropic molecular packing. X-ray diffraction analysis shows π-stacking dimers formation in the crystal, similar to H-aggregates. Quantum chemical calculations demonstrate that this dimerization leads to the splitting of the energy bands and the appearance of new red-shifted 2PA bands when compared to the solution of monomers. This trend is opposite to the blue shift in the linear absorption spectra upon H-aggregation.

  7. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO.

    PubMed

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A; Lee, Yuan-Pern

    2016-07-28

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm(-1) are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm(-1) is blue shifted from the corresponding band of CH2OO at 1286 cm(-1); this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm(-1), observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.

  8. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A.; Lee, Yuan-Pern

    2016-07-01

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm-1 are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm-1 is blue shifted from the corresponding band of CH2OO at 1286 cm-1; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm-1, observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.

  9. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  10. Understanding the two-photon absorption spectrum of PE2 platinum acetylide complex.

    PubMed

    Vivas, Marcelo G; De Boni, Leonardo; Cooper, Thomas M; Mendonca, Cleber R

    2014-07-31

    Herein, we report on the two-absorption cross-section spectrum of trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-C6H5)2 (PE2) platinum acetylide complex employing the femtosecond wavelength-tunable Z-scan technique. The PE2 complex can be visualized as two branches containing two phenylacetylene units, each one linked by a platinum center, completely transparent in the visible region. Because of this structure, large delocalization of π-electrons allied to the strong intramolecular interaction between the branches is expected. The 2PA absorption spectrum was measured using the femtosecond wavelength-tunable Z-scan technique with low repetition rate (1 kHz), in order to obtain the 2PA spectrum without excited-state contributions. Our results reveal that PE2 in dichloromethane solution presents two 2PA allowed bands located at 570 and 710 nm, with cross section of about 320 and 45 GM, respectively. The first one is related to the strong intramolecular interaction between the molecule's branches due to the presence of platinum atom, while the second one is associated with the breaking of symmetry of the chromophore in solution due, most probably to a large twisting angle of the ligand's phenyl rings relative to the Pt core.

  11. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  12. Theoretical simulation of 87Rb absorption spectrum in a thermal cell

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zhang, Shan-Shan; Xin, Pei-Pei; Cheng, Yuan; Liu, Hong-Ping

    2016-11-01

    In this paper, we present a theoretical simulation of 87Rb absorption spectrum in a thermal cm-cell which is adaptive to the experimental observation. In experiment, the coupling and probe beams are configured to copropagate but perpendicular polarized, making up to five velocity selective optical pumping (VSOP) absorption dips able to be identified. A Λ-type electromagnetically induced transparency (EIT) is also observed for each group of velocity-selected atoms. The spectrum by only sweeping the probe beam can be decomposed into a combination of Doppler-broadened background and three VSOP dips for each group of velocity-selected atoms, accompanied by an EIT peak. This proposed theoretical model can be used to simulate the spectrum adaptive to the experimental observation by the non-linear least-square fit method. The fit for the high quality of experimental observation can determine valuable transition parameters such as decaying rates and coupling beam power accurately. Project supported by the National Basic Research Program of China (Grant No. 2013CB922003) and the National Natural Science Foundation of China (Grant Nos. 91421305, 91121005, and 11174329).

  13. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  14. New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses

    SciTech Connect

    Burda, C.; Link, S.; Green, T.C.; El-Sayed, M.A.

    1999-12-09

    The power dependence of the transient absorption spectrum of CdSe nanoparticle colloids with size distribution of 4.0 {+-} 0.4 nm diameter is studied with femtosecond pump-probe techniques. At the lowest pump laser power, the absorption bleaching (negative spectrum) characteristic of the exciton spectrum is observed with maxima at 560 and 480 nm. As the pump laser power increases, two new transient absorptions at 510 and 590 nm with unresolved fast rise (<100 fs) and long decay times ({much{underscore}gt}150 ps) are observed. The energy of each of the positive absorption is red shifted from that of the bleach bands by {approximately}120 MeV. The origin of this shift is discussed in terms of the effect of the internal electric field of the many electron-hole pairs formed within the quantum dot at the high pump intensity, absorption from a metastable excited state or the formation of biexcitons.

  15. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence.

    PubMed

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-07

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  16. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-01

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  17. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  18. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).

    PubMed

    Dawes, Richard; Jiang, Bin; Guo, Hua

    2015-01-14

    The lowest-lying singlet states of the simplest Criegee intermediate (CH2OO) have been characterized along the O-O dissociation coordinate using explicitly correlated MRCI-F12 electronic structure theory and large active spaces. It is found that a high-level treatment of dynamic electron-correlation is essential to accurately describe these states. A significant well on the B-state is identified at the MRCI-F12 level with an equilibrium structure that differs substantially from that of the ground X-state. This well is presumably responsible for the apparent vibrational structure in some experimental UV absorption spectra, analogous to the structured Huggins band of the iso-electronic ozone. The B-state potential in the Franck-Condon region is sufficiently accurate that an absorption spectrum calculated with a one-dimensional model agrees remarkably well with experiment.

  19. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  20. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  1. INCIDENCE OF Mg II ABSORPTION SYSTEMS TOWARD FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Chand, Hum; Gopal-Krishna E-mail: krishna@ncra.tifr.res.in

    2012-07-20

    The conventional wisdom that the rate of incidence of Mg II absorption systems, dN/dz (excluding 'associated systems' having a velocity {beta}c relative to the active galactic nucleus (AGN) of less than {approx}5000 km s{sup -1}), is totally independent of the background AGNs has been challenged by a recent finding that dN/dz for strong Mg II absorption systems toward distant blazars is 2.2 {+-} {sup 0.8}{sub 0.6} times the value known for normal optically selected quasars (QSOs). This has led to the suggestion that a significant fraction of even the absorption systems with {beta} as high as {approx}0.1 may have been ejected by the relativistic jets in the blazars, which are expected to be pointed close to our direction. Here, we investigate this scenario using a large sample of 115 flat-spectrum radio-loud quasars (FSRQs) that also possess powerful jets, but are only weakly polarized. We show, for the first time, that dN/dz toward FSRQs is, on the whole, quite similar to that known for QSOs and that the comparative excess of strong Mg II absorption systems seen toward blazars is mainly confined to {beta} < 0.15. The excess relative to FSRQs probably results from a likely closer alignment of blazar jets with our direction; hence, any gas clouds accelerated by them are more likely to be on the line of sight to the active quasar nucleus.

  2. Comparison of path integral molecular dynamics methods for the infrared absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Habershon, Scott; Fanourgakis, George S.; Manolopoulos, David E.

    2008-08-01

    The ring polymer molecular dynamics (RPMD) and partially adiabatic centroid molecular dynamics (PA-CMD) methods are compared and contrasted in an application to the infrared absorption spectrum of a recently parametrized flexible, polarizable, Thole-type potential energy model for liquid water. Both methods predict very similar spectra in the low-frequency librational and intramolecular bending region at wavenumbers below 2500 cm-1. However, the RPMD spectrum is contaminated in the high-frequency O-H stretching region by contributions from the internal vibrational modes of the ring polymer. This problem is avoided in the PA-CMD method, which adjusts the elements of the Parrinello-Rahman mass matrix so as to shift the frequencies of these vibrational modes beyond the spectral range of interest. PA-CMD does not require any more computational effort than RPMD and it is clearly the better of the two methods for simulating vibrational spectra.

  3. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-04

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  4. Transient Absorption Spectroscopy of C1 and C2 Criegee Intermediates: UV Spectrum and Reaction Kinetics

    NASA Astrophysics Data System (ADS)

    Smith, M. C.; Chao, W.; Ting, A.; Chang, C. H.; Lin, L. C.; Takahashi, K.; Boering, K. A.; Lin, J. J. M.

    2015-12-01

    Atmospheric production and removal rates of Criegee intermediates produced in alkene ozonolysis must be understood to constrain the importance of these species in VOC oxidation and other processes. To estimate these rates, reliable detection methods and laboratory measurements of the UV absorption spectra and reaction kinetics of Criegee intermediates are needed. Here, transient absorption spectroscopy was used to directly measure the UV spectrum of the C2 Criegee intermediate CH3CHOO in a flow reactor at 295 K. The UV spectrum was scaled to the absolute absorption cross section at 308 nm determined by laser depletion measurements in a molecular beam, resulting in a peak UV cross section of (1.27±0.11) × 10-17 cm2 molecule-1 at 328 nm. This spectrum represents the absorption of the syn and anti conformers of CH3CHOO under near-atmospheric conditions, both of which contribute to CH3CHOO atmospheric removal due to UV photolysis. Transient UV absorption was also used to measure the kinetics of the reaction of the C1 Criegee intermediate CH2OO with water vapor at temperatures from 283 to 324 K. The observed CH2OO decay is quadratic with respect to the H2O concentration, indicating that reaction with water dimer is the primary process affecting CH2OO loss. The rate coefficient for the reaction of CH2OO with water dimer exhibits a strong negative temperature dependence with an Arrhenius activation energy of -8.1±0.6 kcal mol-1. The temperature dependence increases the effective loss rate for CH2OO (relative to 298 K) by a factor of ˜2.5 at 278 K and 70% relative humidity, and decreases the loss rate by a factor of ˜2 at 313 K and 30% humidity, which demonstrates that variations in reaction rate due to temperature differences should be included in estimates of Criegee intermediate removal via reactions with water dimer in the atmosphere.

  5. Comparison of different fluorescence spectrum analysis techniques to characterize humification levels of waste-derived dissolved organic matter.

    PubMed

    Shao, L M; Zhang, C Y; He, P J; Lü, F

    2012-12-01

    In the present work, the humification level of waste-derived dissolved organic matter (DOM) at different waste biostability was investigated, by using fluorescent excitation-emission matrix (EEM) scanning. Different fluorescence spectrum analysis techniques were applied and compared. Experimental results demonstrate that parallel factor (PARAFAC) analysis was sensitive to reflect DOM humification, and the most reasonable to deconstruct DOM compositions, when compared with other spectrum analysis techniques. It suggests applying the DOM-EEM-PARAFAC pipeline for rapid estimation of waste biostability.

  6. CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-09-01

    (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than that currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The calculated global annually averaged lifetime was 58.1 ± 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations.

  7. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  8. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  9. X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Mieszczynski, Cyprian; Borca, Camelia; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2014-10-01

    The analysis of krypton in irradiated uranium dioxide fuel has been successfully achieved by X-ray fluorescence and X-ray absorption. The present study focuses on the analytical challenge of sample and sub-sample production to perform the analysis with the restricted conditions dictated by the radioprotection regulations. It deals also with all potential interferences that could affect the quality of the measurement in fluorescence as well as in absorption mode. The impacts of all dissolved gases in the fuel matrix are accounted for the analytical result quantification. The krypton atomic environment is ruled by the presence of xenon. Other gases such as residual argon and traces of helium or hydrogen are negligible. The results are given in term of density for krypton (∼3 nm-3) and xenon (∼20 nm-3). The presence of dissolved, interstitial and nano-phases are discussed together with other analytical techniques that could be applied to gain information on fission gas behaviour in nuclear fuels.

  10. Solvent effects on the absorption and fluorescence spectra of rhaponticin: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Liang, Xuhua; Zhao, Yingyong; Fan, Jun

    2013-02-01

    Rhaponticin (RH) possesses a variety of pharmacological activities including potent antitumor, antitumor-promoting, antithrombotic, antioxidant and vasorelaxant effects. The fundamental photophysics of RH is not well understood. In this work, solvent effect on the photoluminescence behavior of RH was studied by fluorescence and absorption spectra. The bathchromic shift was observed in absorption and fluorescence spectra with the increase of solvents polarity, which implied that transition involved was π → π*. A quantitative estimation of the contribution from different solvatochromic parameters, like normalized transition energy value (ETN), was made using the linear stokes shift (Δν) relationship based on the Lippert-Suppan equation. The ground state and excited state dipole moments were calculated by quantum-mechanical second-order perturbation method as a function of the dielectric constant (ɛ) and refractive index (n). The result was found to be 2.23 and 3.67 D in ground state and excited state respectively. The density functional theory (DFT) was used to obtain the most stable structure, electronic excitation energy, dipole moments and charge distribution. The analysis revealed that the RH exhibited strong photoinduced intramolecular charge transfer (ICT), and the intermolecular hydrogen bonding ability of the solvent was the most important parameter to characterize the photophysics behavior of RH. The hydrogen bonding effect occurred at the localized electron-acceptor oxygen at the glycoside bond. The experimental and theoretical results would help us better understand the photophysical properties of RH.

  11. Measurement and analysis of the far infrared absorption spectrum of the gaseous mixture H2-CH4

    NASA Technical Reports Server (NTRS)

    Birnbaum, George; Borysow, Aleksandra; Sutter, Herbert G.

    1987-01-01

    The collision-induced absorption of H2-CH4 mixtures was measured from 20 to 900/cm at 195 and 297 K. By subtracting the absorption due to H2-H2 and CH4-CH4 collisions from that of the mixture, the absorption due to H2-CH4 collisions was obtained. This spectrum was analyzed using the BC model line shape to provide a way of estimating the far-IR spectrum of H2-CH4 for various concentrations of H2 and CH4. Theoretical spectral moments were computed with different potential functions and compared with experimental values.

  12. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  13. Absorption and fluorescence spectroscopic characterization of BLUF domain of AppA from Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Schiereis, T.; Hegemann, P.; Jung, A.; Schlichting, I.

    2005-08-01

    The BLUF domain of the transcriptional anti-repressor protein AppA from the non-sulfur anoxyphototrophic purple bacterium Rhodobacter sphaeroides was characterized by absorption and emission spectroscopy. The BLUF domain constructs AppA 148 (consisting of amino-acid residues 1-148) and AppA 126 (amino-acid residues 1-126) are investigated. The cofactor of the investigated domains is found to consist of a mixture of the flavins riboflavin, FMN, and FAD. The dark-adapted domains exist in two different active receptor conformations (receptor states) with different sub-nanosecond fluorescence lifetimes (BLUF r,f and BLUF r,sl) and a small non-interacting conformation (BLUF nc). The active receptor conformations are transformed to putative signalling states (BLUF s,f and BLUF s,sl) of low fluorescence efficiency and picosecond fluorescence lifetime by blue-light excitation (light-adapted domains). In the dark at room temperature both signalling states recover back to the initial receptor states with a time constant of about 17 min. A quantum yield of signalling state formation of about 25% was determined by intensity dependent transmission measurements. A photo-cycle scheme is presented including photo-induced charge transfer complex formation, charge recombination, and protein binding pocket reorganisation.

  14. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  15. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  16. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials.

  17. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT.

    PubMed

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond G

    2015-11-10

    We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires half of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.

  18. Dynamic registration of D216O absorption spectrum in silica aerogel

    NASA Astrophysics Data System (ADS)

    Sinitsa, L.; Lavrentieva, N.; Lugovskoi, A.

    2014-09-01

    Absorption spectra of the gas phase and adsorbed D2О in the silica aerogel with nanoscale pores were investigated in 3700-5400 cm-1 range using dynamic registration with Fourier Transform spectrometer IFS-125M. Two types of sample with pores of 60 nm wide - the nitrogen gas-treated and untreated aerogels - were examined. The surface treatment of the sample changes noticeably the broadband absorption of adsorbed water. Spectrum of D2O in the pores differs from the spectrum of bulk water as for bandwidth so for band maximum. It was found that treatment of the pores by dry nitrogen leads to increasing hydrophilic properties of the material and to change water band contour. The D2О line widths in both the aerogels exceed those of free monomer in 1.1-3 times at the same pressure. Calculations of self-broadening coefficients of the D2O lines were performed using semi-empirical method based on the impact theory of broadening and includes the correction factors. The calculated results well agree with experimental data. Greater differences were found for the shift of the line centre. The D2O line shifts in the treated pores significantly exceed line shifts in the untreated pores. For some lines, these shifts have the opposite sign indicating complex nature of the molecule-wall interaction.

  19. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates.

  20. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  1. Chemiluminescence and fluorescence spectrum methods for determination of Aflatoxin B1 mediated by FCLA + BSA

    NASA Astrophysics Data System (ADS)

    Chen, WenLi; Xing, Da

    2005-04-01

    BSA (Bovine Serum Albumin) can enlarge the CL intensity of FCLA(3,7-dihydro-6-{4-{2-(N'-(5-fluoresceinyl) thioureido)ethoxy}phenyl}-2-methylimi-dazo{1,2-a}pyrazin-3-one dosium salt) to 763%. This report presents novel methods for determination of Aflatoxin B1 (AfB1) mediated by FCLA+BSA. The concentration of AFB1 showed an obvious positive correlation with the chemiluminescence (CL) intensity mediated by FCLA+BSA, correlative coefficient R@0.94. This method could measure accurately ng/ml of AfB1 concentration. 365nm as excitated wavelength, 440nm and 520nm-two fluorescence peaks of FCLA+BSA+AfB1 were found. The fluorescence intensity of peak at 440nm showed an obvious positive correlation with the concentration of AFB1, R@0.97; the fluorescence intensity of peak at 520nm showed a positive correlation with the concentration of AFB1, R@0.90. Comparing the peak of FCLA, FCLA+BSA and FCLA+BSA+AfB1 had a 6nm Einstein shift (red shift). The study suggested that CL and fluorescence spectrum methods mediated by FCLA+BSA might be applicable to the determination of AfB1 concentration.

  2. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  3. Absorption spectrum, mass spectrometric properties, and electronic structure of 1,2-benzoquinone.

    PubMed

    Albarran, Guadalupe; Boggess, William; Rassolov, Vitaly; Schuler, Robert H

    2010-07-22

    Absorption spectrophotometric and mass spectrometric properties of 1,2-benzoquinone, prepared in aqueous solution by the hexachloroiridate(IV) oxidation of catechol and isolated by HPLC, are reported. Its absorption spectrum has a broad moderately intense band in the near UV with an extinction coefficient of 1370 M(-1)cm(-1) at its 389 nm maximum. The oscillator strength of this band contrasts with those of the order-of-magnitude stronger approximately 250 nm bands of most 1,4-benzoquinones. Gaussian analysis of its absorption spectrum indicates that it also has modestly intense higher energy bands in the 250-320 nm region. In atmospheric pressure mass spectrometric studies 1,2-benzoquinone exhibits very strong positive and negative mass 109 signals that result from the addition of protons and hydride ions in APCI and ESI ion sources. It is suggested that the hydride adduct is formed as the result of the highly polar character of ortho-quinone. On energetic collision the hydride adduct loses an H atom to produce the 1,2-benzosemiquinone radical anion. The present studies also show that atmospheric pressure mass spectral patterns observed for catechol are dominated by signals of 1,2-benzoquinone resulting from oxidation of catechol in the ion sources. Computational studies of the electronic structures of 1,2-benzoquinone, its proton and hydride ion adducts, and 1,2-benzosemiquinone radical anion are reported. These computational studies show that the structures of the proton and hydride adducts are similar and indicate that the hydride adduct is the proton adduct of a doubly negatively charged 1,2-benzoquinone. The contrast between the properties of 1,2- and 1,4-benzoquinone provides the basis for considerations on the effects of conjugation in aromatic systems.

  4. The anomalous X-ray absorption spectrum of Vela X-1

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; White, N. E.

    1982-01-01

    The HEAO 2 satellite's Solid State Spectrometer and Monitor Proportional Counter was used to observe one orbit of the massive X-ray binary Vela X-1. Using spectral fits to the data as a function of orbital phase, the column density and state of the material along the line of sight to the X-ray source has been inferred. The spectrum near orbital phase 0.2 compares favorably with absorption by neutral material with a column density corresponding to plausible values of stellar wind velocity law and total primary mass loss rate. Spectra at later orbital phases, which show unexpected strong absorption features near 2.0 and 2.5 keV, are interpreted as due to absorption by material with suppressed opacity below 2.0 keV. The opacity required to produce the observed features implies either the presence of an intense soft X-ray flux, or altered elemental abundances in the gas near Vela X-1.

  5. Optical absorption spectrum and electronic structure of multiferroic hexagonal YMnO3 compound

    NASA Astrophysics Data System (ADS)

    Lima, A. F.; Lalic, M. V.

    2017-02-01

    Optical absorption (OA) spectrum and electronic structure of the hexagonal YMnO3 compound have been investigated by employment of the first-principles calculations based on density functional theory. The calculations were performed upon the ferroelectric structure of the YMnO3, by testing various approximations of the exchange-correlation effects between the Mn d-electrons and considering two types of magnetic ordering of the Mn sub-lattice: (1) collinear anti-ferromagnetic order of the G-type and (2) non-collinear antiferromagnetic order that correspond to magnetic space group P63. The results demonstrate that satisfactory agreement between the theoretical and the experimental OA spectrum can be achieved only if both non-collinear anti-ferromagnetic order of the Mn spins and strong correlations between the Mn d-electrons are taken into account. The latter is found to be best described by effective Hubbard parameter Ueff = 2.55 eV. The principal features of the OA spectrum are interpreted in terms of calculated electronic structure. It is found that the most important, threshold 1.6 eV OA peak is generated by electron transitions from strongly hybridized occupied Mn d- and its neighboring in-plane O p-states to unoccupied Mn d-states. It is also concluded that the electronic gap (calculated as ∼1.1 eV) should be smaller than the optical one (∼1.6 eV).

  6. Influence of transannular interaction over absorption and fluorescent properties of [2.2] paracyclophane and its phenyl derivatives

    NASA Astrophysics Data System (ADS)

    Nurmukhametov, R. N.; Shapovalov, A. V.; Antonov, D. Yu.

    2016-12-01

    A significant bathochromic shift of the fluorescent and long-wavelength absorption bands of [2.2] paracyclophane comparing to corresponding bands of alkyl-benzenes is due to a strong transannular interaction, resulting in formation of a principally new excited state of lower energy. It is concluded that the fluorescent levels for alkylbenzene excimers and for the macrocycle are of the same nature. Analysis of [2.2] paracyclophane mono- and diphenylderivatives spectra shows that their intensive absorption bands (230-310 nm) are originated from electron transitions of biphenyl groups and weak long wavelength absorption (310-340 nm) and fluorescent bands are governed by the same electron transitions between ground and excimer-like excited states as in the case of non-substituted macrocycle.

  7. Absorption spectrum and absolute absorption cross sections of CH3O2 radicals and CH3I molecules in the wavelength range 7473-7497 cm(-1).

    PubMed

    Faragó, Eszter P; Viskolcz, Bela; Schoemaecker, Coralie; Fittschen, Christa

    2013-12-05

    The absorption spectrum of CH3O2 radicals and CH3I molecules has been measured in the range 7473-7497 cm(-1). CH3O2 radicals have been generated by 248 nm laser photolysis of CH3I in the presence of O2, and the relative absorption has been measured by time-resolved continuous-wave cavity ring-down spectroscopy (cw-CRDS). Calibration of the relative absorption spectrum has been carried out on three distinct wavelengths by carefully measuring CH3O2 decays under different experimental conditions and extracting the initial radical concentration (and with this the absolute absorption cross sections) by using the well-known rate constant for the CH3O2 self-reaction. The following, pressure-independent absorption cross sections were determined: 3.41 × 10(-20), 3.40 × 10(-20), and 2.11 × 10(-20) cm(2) at 7748.18, 7489.16, and 7493.33 cm(-1). These values are 2-3 times higher than previous determinations ( Pushkarsky, M. B.; Zalyubovsky, S. J.; Miller, T. A. J. Chem. Phys. 2000, 112 (24), 10695 - 10698 and Atkinson, D. B.; Spillman, J. L. J. Phys. Chem. A 2002, 106 (38), 8891 - 8902). The absorption spectrum of the stable precursor CH3I has also been determined and three characteristic sharp absorption lines with absorption cross sections up to 2 × 10(-21) cm(2) have been observed in this wavelength range.

  8. Theoretical Calculation of the Particle Spectrum Following Absorption of Stopped Negative Pion by Helium -3.

    NASA Astrophysics Data System (ADS)

    Roginsky, Jacob

    1987-09-01

    In 1982 Gotta et al^1, experimentally observed the branching ratios for n + D, n + D^', where D ^' represents the virtual S _{0} np state, and the probability density for three-body (n + n + p) events following absorption of stopped (pi) ^{-} in ^3He. The purpose of the thesis was to calculate theoretically the particle spectrum following the absorption, using the two-nucleon model of pion absorption ^2 and to compare it to the results obtained in the Gotta experiment. The ^3 He pionic atom is unique in that it is the simplest nucleus which provides an opportunity for the verification of the two-nucleon absorption model. For this calculation the effective two-nucleon Hamiltonian^{3,4,5} was chosen as the T-matrix for low energy pion scattering from one nucleon followed by absorption on the second nucleon. The constants g_{0} and g _1 are obtained from the corresponding two-nucleon interaction processes resulting in the pion production with the first one corresponding to the spin triplet and the second to the spin singlet nucleon interactions. The initial bound-state momentum-space wave function was chosen ^6 to be consistent with the charge radius of the ^3He nucleus and to have the correct singularities generated by the asymptotic two- and three-body channels. The final-state wave functions are characterized by non-interacting n + D, non-interacting n + D^', and a non-interacting n + n + p states (when the energy is roughly equally shared between the nucleons). The results of the calculation turned out to be in a fairly good agreement with those obtained in ^1. The branching ratio of singlet deuteron rate of transition to the corresponding rate into deuteron differed from the result in the former by less than one percent. As a check some of the results obtained in ^6 were reproduced, giving a very good agreement with it as well. The calculation indicates that the two-nucleon absorption model gives a good result when used for a simple system like ^3He. Those

  9. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  10. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  11. Advanced glycation end products in hemodialysates as fluorescent and optical absorption markers of patients mortality

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A.; Frorip, A.; Maiste, A.; Ots-Rosenberg, M.; Sünter, A.; Sablonin, J.; Vasil'chenko, J.

    2014-10-01

    Hemodialysate (HD) samples collected from the end stage renal disease patients (ESRD Pts) were used for search for possible correlation between the intensity of HD visible auto-fluorescence (VF) detected at 420 nm as well as their optical absorption at 320 nm and the mortality events among the Pts. Previous but strongly promising correlations has been found in both cases which deserve further supplementation and examination. Investigation of possible influence of quenchers onto the VF intensity has been carried out. Endogenous inorganic ions present in biological fluids (serum, urine and HD) (Na, K, Ca, Mg and ammonia) do not affect the VF intensity remarkably but exogenous Al ions do that indirectly and specifically. Carbon based entities (nanoparticles of graphene type, humins) quench the VF effectively according to the Stern-Volmer law. The quenching phenomena and influence of aluminium must be taken into account by the further investigations, medical care and nutrition.

  12. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy.

    PubMed

    Carriles, Ramón; Schafer, Dawn N; Sheetz, Kraig E; Field, Jeffrey J; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W; Squier, Jeffrey A

    2009-08-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences.

  13. Solvent effects on the steady-state absorption and fluorescence spectra of uracil, thymine and 5-fluorouracil.

    PubMed

    Gustavsson, Thomas; Sarkar, Nilmoni; Bányász, Akos; Markovitsi, Dimitra; Improta, Roberto

    2007-01-01

    We report a comparison of the steady-state absorption and fluorescence spectra of three representative uracil derivatives (uracil, thymine and 5-fluorouracil) in alcoholic solutions. The present results are compared with those from our previous experimental and computational studies of the same compounds in water and acetonitrile. The effects of solvent polarity and hydrogen bonding on the spectra are discussed in the light of theoretical predictions. This comparative analysis provides a more complete picture of the solvent effects on the absorption and fluorescence properties of pyrimidine nucleobases, with special emphasis on the mechanism of the excited state deactivation.

  14. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  15. Stress-induced alteration of chlorophyll fluorescence polarization and spectrum in leaves of Alocasia macrorrhiza L. Schott.

    PubMed

    Lin, Zhi-Fang; Liu, Nan; Lin, Gui-Zhu; Pan, Xiao-Ping; Peng, Chang-Lian

    2007-11-01

    The value of intrinsic chlorophyll fluorescence polarization, and the intensity in emission spectrum were investigated in leaf segments of Alocasia macrorrhiza under several stress conditions including different temperatures (25-50 degrees C), various concentrations of NaCl (0-250 mM), methyl viologen (MV, 0-25 microM), SDS (0-1.0%) and NaHSO(3) (0-80 microM). Fluorescence emission spectrum of leaves at wavelength regions of 500-800 nm was monitored by excitation at 436 nm. The value of fluorescence polarization (P value), as result of energy transfer and mutual orientation between chlorophyll molecules, was determined by excitation at 436 nm and emission at 685 nm. The results showed that elevated temperature and concentrations of salt (NaCl), photooxidant (MV), surfactant (SDS) and simulated SO(2) (NaHSO(3)) treatments all induced a reduction of fluorescence polarization to various degrees. However, alteration of the fluorescence spectrum and emission intensity of F(685) and F(731) depended on the individual treatment. Increase in temperature and concentration of NaHSO(3) enhanced fluorescence intensity mainly at F(685), while an increase in MV concentration led to a decrease at both F(685) and F(731). On the contrary, NaCl and SDS did not cause remarkable change in fluorescence spectrum. Among different treatments, the negative correlation between polarization and fluorescence intensity was found with NaHSO(3) treatments only. We concluded that P value being measured with intrinsic chlorophyll fluorescence as probe in leaves is a susceptible indicator responding to changes in environmental conditions. The alteration of P value and fluorescence intensity might not always be shown a functional relation pattern. The possible reasons of differed response to various treatments were discussed.

  16. Electronically excited dipole moment of 4-aminobenzonitrile from thermochromic absorption and fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-07-01

    The effect of temperature on absorption and fluorescence spectra of 4-aminobenzonitrile (ABN) in 1,2-dichloroethane is studied for temperature ranging from 296 K to 343 K. The analysis of absorption and fluorescence band shift on the basis of Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621], for the known dipole moment in the ground state μg = 5.92 D, and α/ a3 = 0.5 ( α is the polarizability and a is the Onsager interaction radius of the solute) yields for ABN: (1) the empirical Onsager interaction radius a = 3.3 Å, (2) the dipole moment in the excited S 1 state μe = 7.14 D which agrees very well with the value of μe = 7.20 D obtained by Borst et al. [D.R. Borst, T.M. Korter, D.W. Pratt, Chem. Phys. Lett. 350 (2001) 485] from Stark effect studies. Both values of μe concern free ABN molecule and differ significantly from the values of μg (8.0 D, 8.5 D and 8.3 D in cyclohexane, benzene and 1,4-dioxane, respectively) obtained by Schuddeboom et al. [W. Schuddeboom, S.A. Jonker, J.M. Warman, U. Leinhos, W. Kühnle, K.A. Zachariasse, J. Phys. Chem. 96 (1992) 10809] from the time-resolved microwave conductivity measurements which are solvent-dependent. The group moment additivity law in the case of ABN molecule is approximately applicable, both in the ground and in the excited electronic state.

  17. A simple dental caries detection system using full spectrum of laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Rocha-Cabral, Renata Maciel; Mendes, Fausto Medeiros; Maldonado, Edison Puig; Zezell, Denise Maria

    2015-06-01

    Objectives: to develop an apparatus for the detection of early caries lesions in enamel using the full extent of the tooth fluorescence spectrum, through the integration of a laser diode, fiber optics, filters and one portable spectrometer connected to a computer, all commercially available; to evaluate the developed device in clinical and laboratory tests, and compare its performance with commercial equipment. Methods: clinical examinations were performed in patients with indication for exodontics of premolars. After examinations, the patients underwent surgery and the teeth were stored individually. The optical measurements were repeated approximately two months after extraction, on the same sites previously examined, then histological analysis was carried out. Results: the spectral detector has presented high specificity and moderate sensitivity when applied to differentiate between healthy and damaged tissues, with no significant differences from the performance of the commercial equipment. The developed device is able to detect initial damages in enamel, with depth of approximately 300 μm. Conclusions: we successfully demonstrated the development of a simple and portable system based in laser-induced fluorescence for caries detection, assembled from common commercial parts. As the spectral detector acquires a complete recording of the spectrum from each tissue, it is possible to use it for monitoring developments of caries lesions.

  18. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  19. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  20. The Millimeter Direct Absorption and Fourier Transform Microwave Spectrum of Vanadium Sulfide (X^{4}Σ^{-})

    NASA Astrophysics Data System (ADS)

    Adande, Gilles; Ziurys, L. M.

    2013-06-01

    The pure rotational spectrum of VS (X^{4}Σ^{-} ) has been measured with Fourier transform microwave (FTMW) and millimeter-wave direct absorption methods in the frequency range of 5-40 GHz and 210-315 GHz. Discharge assisted laser ablation (DALAS) of a vanadium rod in presence of H_{2}S gas was used to synthesize the radical in the microwave region. In the millimeter-wave range, the species was produced from the mixture of CS_{2} and VCl_{4} vapor in a DC discharge. The hyperfine structure was resolved and accurate fine and hyperfine parameters were obtained. Insights into the bonding character can be gleamed from the hyperfine constants, and an estimate of the position of two low-lying interacting electronic states can be obtain from the fine structure parameters. Details of these results will be discussed.

  1. Infrared absorption spectrum of the simplest Criegee intermediate CH2OO.

    PubMed

    Su, Yu-Te; Huang, Yu-Hsuan; Witek, Henryk A; Lee, Yuan-Pern

    2013-04-12

    The Criegee intermediates are carbonyl oxides postulated to play key roles in the reactions of ozone with unsaturated hydrocarbons; these reactions constitute an important mechanism for the removal of unsaturated hydrocarbons and for the production of OH in the atmosphere. Here, we report the transient infrared (IR) absorption spectrum of the simplest Criegee intermediate CH2OO, produced from CH2I + O2 in a flow reactor, using a step-scan Fourier-transform spectrometer. The five observed bands provide definitive identification of this intermediate. The observed vibrational frequencies are more consistent with a zwitterion rather than a diradical structure of CH2OO. The direct IR detection of CH2OO should prove useful for kinetic and mechanistic investigations of the Criegee mechanism.

  2. Absorption Features in the X-ray Spectrum of an Ordinary Radio Pulsar

    NASA Astrophysics Data System (ADS)

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G.

    2012-08-01

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.

  3. The UV-vis absorption spectrum of the flavonol quercetin in methanolic solution: A theoretical investigation.

    PubMed

    Andrade-Filho, T; Ribeiro, T C S; Del Nero, J

    2009-07-01

    The UV-vis absorption spectrum of the solvated quercetin molecule in methanol was investigated theoretically by means of an elegant type of QM/MM scheme better known as sequential Monte Carlo/quantum mechanics (S-MC/QM) methodology. A set of 125 uncorrelated Monte Carlo molecular liquid structures were properly selected through the autocorrelation function of the energy in order to be used in the quantum mechanical calculations. These molecular liquid structures were obtained by means of the radial and minimum distance distribution functions. A detailed account of the pattern of hydrogen bond structures obtained in this study is also available. The computed results obtained here were directly compared with the available experimental data in order to validate our theoretical model and through this comparison a very good conformity between theoretical and available experimental results was found.

  4. Temperature effect on the two-photon absorption spectrum of all-trans-β-carotene.

    PubMed

    Vivas, M G; Mendonca, C R

    2012-07-05

    In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-β-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans→cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.

  5. Absorption features in the x-ray spectrum of an ordinary radio pulsar.

    PubMed

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G

    2012-08-24

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.

  6. Analysis of ultraviolet absorption spectrum of Chinese herbal medicine-Cortex Fraxini by double ANN

    NASA Astrophysics Data System (ADS)

    Bai, Lifei; Zhang, Haitao; Wang, Hongxia; Li, Junfeng; Lu, Lei; Zhang, Hanqi; Wang, Hongyan

    2006-11-01

    A fast, accurate and convenient method for the simultaneous determination of multi-component in the Chinese herbal medicine was proposed by using ultraviolet absorption spectrum. In this method, dummy components were added to training sample, and a double artificial neural network (DANN) that has the function of high self-revision and self-simulation was used. Effect of other interference components could be eliminated by adjusting concentration of dummy components. Therefore, the accuracy of concentration prediction for multi-component in the complicated Chinese herbal medicine was improved. It has been realized that two effective components of Cortex Fraxini, aesculin and aesculetin, were simultaneously determined, without any separation. The predicted accuracy was 92% within the permitted relative errors. The measurement precisions of the aesculin and aesculetin were 0.37% and 1.5%, respectively.

  7. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry

    SciTech Connect

    Rey-Raap, Natalia

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer New treatments for CFL are required considering the aim of Directive 202/96/CE. Black-Right-Pointing-Pointer It is shown that most of the mercury introduced into a CFL is in the phosphor powder. Black-Right-Pointing-Pointer Experimental conditions for microwave-assisted sample digestion followed by AAS measurements are described. Black-Right-Pointing-Pointer By washing the glass it is possible to reduce the concentration below legal limits. - Abstract: In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52 {+-} 0.4 ppb of mercury in the vapor phase, 204.16 {+-} 8.9 ppb of mercury in the phosphor powder, and 18.74 {+-} 0.5 ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  8. Vibrational Spectrum of an Excited State and Huang-Rhys Factors by Coherent Wave Packets in Time-Resolved Fluorescence Spectroscopy.

    PubMed

    Lee, Gyeongjin; Kim, Junwoo; Kim, So Young; Kim, Dong Eon; Joo, Taiha

    2017-01-10

    Coherent nuclear wave packet motions in an electronic excited state of a molecule are measured directly by time-resolved spontaneous fluorescence spectroscopy with an unprecedented time resolution by using two-photon absorption excitation and fluorescence upconversion by noncollinear sum frequency generation. With an estimated time resolution of approximately 25 fs, wave packet motions of vibrational modes up to 1600 cm(-1) are recorded for coumarin 153 in ethanol. Two-color transient absorption at 13 fs time resolution are measured to confirm the result. Vibrational displacements between the ground and excited states and Huang-Rhys factors (HRFs) are calculated by quantum mechanical methods and are compared with the experimental results. HRFs calculated by density functional theory (DFT) and time-dependent DFT reproduce the experiment adequately. This fluorescence-based method provides a unique and direct way to obtain the vibrational spectrum of a molecule in an electronic excited state and the HRFs, as well as the dynamics of excited states, and it might provide information on the structure of an excited state through the HRFs.

  9. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    SciTech Connect

    Wang, Yuxin; Wen, Wenhui; Wang, Kai; Wang, Ke; Zhai, Peng; Qiu, Ping

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersion enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.

  10. The effects of pH and surfactants on the absorption and fluorescence properties of ochratoxin A and zearalenone.

    PubMed

    Li, Taihua; Kim, Bo Bae; Ha, Tae Hwan; Shin, Yong-Beom; Kim, Min-Gon

    2015-11-01

    The pH and surfactant dependencies of the absorption and fluorescence properties of ochratoxin A (OTA) and zearalenone (ZEN), the main mycotoxins found as contaminants in foods and feeds, were evaluated. Three surfactants with different ionic properties were investigated, namely sodium dodecyl sulfate (SDS, anionic), Tween 20 (nonionic) and hexadecyltrimethylammonium bromide (CTAB, cationic). The results show that the effects of pH on the absorption wavelength maxima and fluorescence efficiencies of the mycotoxins, which are a consequence of the presence of acidic phenol and/or carboxyl containing fluorophores, are dependent on the ionic nature of the added surfactants. Specifically, the fluorescence responses to pH changes of OTA and ZEN are similar in the presence or absence of Tween 20 and SDS. By contrast, the pH-dependent fluorescence properties of these mycotoxins are altered when CTAB is present in the solutions. Moreover, unlike OTA, ZEN in aqueous solution displays almost no fluorescence. However, fluorescence enhancement takes place when surfactants are present in aqueous solutions of this mycotoxin. The results of this study demonstrate that the different microenvironments, present in the organized micellar systems created by the individual surfactants, can be potentially employed to modulate the sensitivities and selectivities of the fluorescence detection of OTA or ZEN.

  11. Tight binding model of conformational disorder effects on the optical absorption spectrum of polythiophenes.

    PubMed

    Bombile, Joel H; Janik, Michael J; Milner, Scott T

    2016-05-14

    Semiconducting polymers are soft materials with many conformational degrees of freedom. The limited understanding of how conformational disorder affects their optoelectronic properties is a key source of difficulties that limits their widespread usage in electronic devices. We develop a coarse-grained approach based on the tight binding approximation to model the electronic degrees of freedom of polythiophene chains, taking into account conformational degrees of freedom. Particularly important is dihedral disorder, which disrupts extended electronic states. Our tight binding model is parameterized using density functional theory (DFT) calculations of the one-dimensional band structures for chains with imposed periodic variations in dihedral angles. The model predicts valence and conduction bands for these chain conformations that compare well to DFT results. As an initial application of our model, we compute the optical absorption spectrum of poly(3-hexylthiophene) chains in solution. We observe a broadening of the absorption edge resulting from dihedral disorder, just shy of the experimental broadening. We conclude that the effects of molecular disorder on the optoelectronic properties of conjugated polymer single chains can be mostly accounted for by torsional disorder alone.

  12. CHBr3 (bromoform): Revised UV Absorption Spectrum and Atmospheric Photolysis Rates

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Papanastasiou, D.; McKeen, S. A.

    2013-12-01

    CHBr3 (bromoform) is a short-lived atmospheric trace compound primarily of natural origin that is a source of reactive bromine in both the troposphere and stratosphere. Estimating the impact of CHBr3 on the environment and its transport to the stratosphere requires a thorough understanding of its atmospheric loss processes, which are primarily UV photolysis and reaction with the OH radical. In this presentation, new measurements of the UV absorption spectrum of CHBr3 will be presented. Spectra were measured at wavelengths between 300 and 345 nm at temperatures between 260 and 330 K using cavity ring-down spectroscopy. The present results will be compared with currently recommended values for use in atmospheric modeling taken from Moortgat et al. [The tropospheric chemistry of ozone in the polar regions, edited by H. Niki and K. H. Becker, Springer-Verlag Berlin Heidelberg, 1993]. The discrepancies and impact on CHBr3 photolysis lifetime will be discussed. A parameterization of the CHBr3 UV spectrum for use in atmospheric models will be presented and local photolysis rate calculations used to highlight the impact of the revised cross section data on local lifetimes and the relative importance of photolysis loss versus reaction with the OH radical. The results from the present study will contribute to a better understanding (and accuracy) of estimates of stratospheric ozone loss due to very short-lived brominated substances.

  13. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    NASA Astrophysics Data System (ADS)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  14. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  15. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES

  16. Multi-heterodyne molecular absorption spectrum detection of H13C14N based on dual frequency combs

    NASA Astrophysics Data System (ADS)

    Yang, Honglei; Wei, Haoyun; Li, Yan

    2014-11-01

    In order to acquire high-resolution molecular absorption spectrum, a measurement system consisting of two Erbium-doped fiber optical frequency combs based on multi-heterodyne detection method is established. Preliminary result shows that the specific line in the RF spectrum corresponding to 6452.59 cm-1 in the optical region, where there is an error of 0.14 cm-1 compared with the simulation result. And the further improvement of this system will be discussed in the end.

  17. Sizeable red-shift of absorption and fluorescence of subporphyrazine induced by peripheral push and pull substitution.

    PubMed

    Liang, Xu; Shimizu, Soji; Kobayashi, Nagao

    2014-11-18

    Peripheral substitution with electron-donating (push) and electron-withdrawing (pull) substituents caused a sizeable red-shift of the Q band absorption and fluorescence of subporphyrazine, and the red-shift was controlled by the push substituents. Control of the chromophore symmetry and inherent molecular chirality arising from the pattern of substitution were also investigated.

  18. [Effect of straw incorporation on three-dimensional fluorescence spectrum of dissolved organic matter in arid loess].

    PubMed

    Fan, Chun-Hui; Zhang, Ying-Chao; He, Lei; Wang, Jia-Hong

    2013-07-01

    The three-dimensional fluorescence spectrum was used to investigate the fluorescence characterization of dissolved organic matter (DOM) before and after straw incorporation in arid loess, and the variation of humification degree and Pb(II) speciation were illustrated. The results showed that the fluorescence peaks of loess appears at the regions of lambda(ex/em) = 240-270/280-340 and lambda(ex/em) = 325/450, referred as UV fulvic-like fluorescence, and visible fulvic-like and humic-like fluorescence, respectively. After straw incorporation for 60 days, the intensity of UV fulvic-like fluorescence peaks increases, and novel humic-like fluorescence peaks appears around the region of lambda(ex/em) = 250/440 and lambda(ex/em) = 320-350/350-400. The longer time of straw incorporation would accelerate the humification degree of loess and decrease the bioactivity of Pb(II). The three-dimensional fluorescence spectrum is appropriate for characterization identification of DOM in arid loess before and after straw incorporation.

  19. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  20. Application of the Kubelka-Munk correction for self-absorption of fluorescence emission in carmine lake paint layers.

    PubMed

    Clementi, Catia; Miliani, Costanza; Verri, Giovanni; Sotiropoulou, Sophia; Romani, Aldo; Brunetti, Brunetto G; Sgamellotti, A

    2009-12-01

    The variations of the fluorescence emission of carmine lake travelling through an absorbing and scattering medium, such as a paint layer, were investigated by ultraviolet (UV)-visible absorption, fluorescence spectroscopy, and imaging techniques. Samples of the lake were studied in dilute and saturated solutions, on a reference test panel and a real case study. Relevant spectral modifications have been observed as a function of the lake concentration mainly consisting of a fluorescence quenching, red shift of emission maxima, and deformation of emission band. The application of a correction factor based on the Kubelka-Munk model allowed fluorescence spectra obtained in solution and on painted samples of known composition to be compared and correlated, highlighting that the fluorescence of the lake within paint layers is affected by both self-absorption and aggregation phenomena. This approach has been successfully applied on a painting by G. Vasari for the noninvasive identification of carmine lake. The results reported here emphasize the necessity of taking physical phenomena into account in the interpretation of the fluorescence spectra for a proper and reliable characterization and identification of painting materials in works of art.

  1. [Applications of three-dimensional fluorescence spectrum of dissolved organic matter to identification of red tide algae].

    PubMed

    Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao

    2011-01-01

    The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.

  2. Nonlinear reconstruction of absorption and fluorescence contrast from measured diffuse transmittance and reflectance of a compressed-breast-simulating phantom.

    PubMed

    Ziegler, Ronny; Nielsen, Tim; Koehler, Thomas; Grosenick, Dirk; Steinkellner, Oliver; Hagen, Axel; Macdonald, Rainer; Rinneberg, Herbert

    2009-08-20

    We report on the nonlinear reconstruction of local absorption and fluorescence contrast in tissuelike scattering media from measured time-domain diffuse reflectance and transmittance of laser as well as laser-excited fluorescence radiation. Measurements were taken at selected source-detector offsets using slablike diffusely scattering and fluorescent phantoms containing fluorescent heterogeneities. Such measurements simulate in vivo data that would be obtained employing a scanning, time-domain fluorescence mammograph, where the breast is gently compressed between two parallel glass plates, and source and detector optical fibers scan synchronously at various source-detector offsets, allowing the recording of laser and fluorescence mammograms. The diffusion equations modeling the propagation of the laser and fluorescence radiation were solved in frequency domain by the finite element method simultaneously for several modulation frequencies using Fourier transformation and preprocessed experimental data. To reconstruct the concentration of the fluorescent contrast agent, the Born approximation including higher-order reconstructed photon densities at the excitation wavelength was used. Axial resolution was determined that can be achieved by various detection schemes. We show that remission measurements increase the depth resolution significantly.

  3. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    SciTech Connect

    Scime, Earl E.

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  4. The ultraviolet absorption spectrum of the quasar PKS 0405-12 and the local density of Lyman-alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.

    1993-01-01

    A sample of 32 absorption lines has been identified in the ultraviolet spectrum of the z = 0.57 quasar PKS 0405-12. Data cover the wavelength range 1190-3260 A. There are 10 extragalactic Ly-alpha absorption lines in the complete sample, all with observed equivalent widths greater than or equal to 0.40 A; three of the Ly-alpha lines have Ly-beta counterparts. The number of Ly-alpha lines observed in the spectrum of PKS 0405-12 is within 1 sigma of the number predicted on the basis of previous HST observations of 3C 273 and of H1821 + 643. Combining the HST observations of 3C 273, H1821 + 643, and PKS 0405-12, we estimate the local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A to be about 15 +/- 4 Ly-alpha lines per unit redshift. Ground-based images reveal a rich field of galaxies in the direction of PKS 0405-12, including many galaxies with the brightnesses and sizes expected if they belong to a cluster associated with the quasar. The quasar spectrum does not show any evidence for absorption at the redshift of the emission lines, indicating a covering factor of less than unity for the halos of galaxies in the cluster around PKS 0405 - 12.

  5. Defining the Absorption Spectrum of the Skin After Application of a Popular Sunless Tanner, Dihydroxyacetone, Using Re ectance Photospectrometry.

    PubMed

    Graves, Michael S; Lloyd, Amanda A; Ross, E Victor

    2016-11-01

    Dihydroxyacetone (DHA) is a popular ingredient in sunless tanner and lotions. We sought to measure the absorption spectrum of hu- man skin after application of DHA. A male in his 30's applied DHA to one underarm once daily for seven days. Re ectance spectropho- tometry was performed on the treated and untreated side. The area treated with DHA revealed increased absorption in the 400-700 nm range. Compared to normal skin, the absorption spectrum of human skin after application of DHA is altered from 400-700 nm. Care should be taking with using lasers in these wavelengths on skin treated with DHA. J Drugs Dermatol. 2016;15(11):1459-1460..

  6. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils.

    PubMed

    Ishimatsu, Naoki; Matsumoto, Ken; Maruyama, Hiroshi; Kawamura, Naomi; Mizumaki, Masaichiro; Sumiya, Hitoshi; Irifune, Tetsuo

    2012-09-01

    Nano-polycrystalline diamond (NPD) [Irifune et al. (2003), Nature (London), 421, 599] has been used to obtain a glitch-free X-ray absorption spectrum under high pressure. In the case of conventional single-crystal diamond (SCD) anvils, glitches owing to Bragg diffraction from the anvils are superimposed on X-ray absorption spectra. The glitch has long been a serious problem for high-pressure research activities using X-ray spectroscopy because of the difficulties of its complete removal. It is demonstrated that NPD is one of the best candidate materials to overcome this problem. Here a glitch-free absorption spectrum using the NPD anvils over a wide energy range is shown. The advantage and capability of NPD anvils is discussed by a comparison of the glitch map with that of SCD anvils.

  7. Temperature sounding from the absorption spectrum of CO2 at 4.3 microns. [in stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Toth, R. A.

    1977-01-01

    A new method is described for obtaining the temperature profile in the stratosphere and lower mesosphere from observations of the absorption spectrum of the high J lines of carbon dioxide at 4.3 microns. This concept is based upon the measurement of the integrated absorption of individual CO2 lines whose strengths depend strongly on temperature and that the absorption of these lines are obtained from measurements of the solar or stellar spectrum through an atmospheric path. The technique involves a rapidly converging iterative process in which the equivalent widths of the individual vibration-rotation lines of CO2 are used. Theoretical calculations are presented for balloon and satellite observations using a model atmosphere. Experimental results are given from spectra obtained with a balloon-borne Fourier interferometer spectrometer in which the sun was observed at low zenith angles. The experimental results are compared to rocketsonde data.

  8. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  9. Theoretical studies on the vibrationally-resolved absorption and fluorescence spectra of H-Pyrene+ and H-Coronene+

    NASA Astrophysics Data System (ADS)

    Li, JunFeng; Tian, GuanJun; Luo, Yi; Cao, ZeXing

    2015-11-01

    H-Pyrene+ and H-Coronene+ are important carrier candidates for the diffuse interstellar band. In order to understand the observed absorption and fluorescence emission spectra of H-Pyrene+ and H-Coronene+, time-dependent density functional theory (TD-DFT) method and Franck-Condon approximation have been employed to simulate the corresponding vibrationally-resolved optical spectra. For H-Pyrene+, the calculated absorption, emission and 0-0 band energies are in good agreement with the experimental values. The strong absorption and emission vibrational peaks near the 0-0 band match well with the experiment peaks. A noticeable deviation for several weak peaks far away from the origin band is observed, as a result of the vibronic coupling with other excited states. For H-Coronene+, the predicted vibrationally resolved electronic absorption and emission spectra resemble very well their experimental counterparts spectra, allowing to fully assign the observed vibronic peaks.

  10. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  11. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  12. A variable absorption feature in the X-ray spectrum of a magnetar.

    PubMed

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss.

  13. Nitryl chloride (ClNO2): UV/vis absorption spectrum between 210 and 296 K and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K; Talukdar, Ranajit K; Roberts, James M; Burkholder, James B

    2012-06-21

    Recent studies have shown that the UV/vis photolysis of nitryl chloride (ClNO2) can be a major source of reactive chlorine in the troposphere. The present work reports measurements of the ClNO2 absorption spectrum and its temperature dependence between 210 and 296 K over the wavelength range 200–475 nm using diode array spectroscopy. The room temperature spectrum obtained in this work was found to be in good agreement with the results from Ganske et al. (J. Geophys. Res. 1992, 97, 7651) over the wavelength range common to both studies (200–370 nm) but differs systematically from the currently recommended spectrum for use in atmospheric models. The present results lead to a decrease in the calculated atmospheric ClNO2 photolysis rate by 30%. Including the temperature dependence of the ClNO2 spectrum decreases the calculated atmospheric photolysis rate at lower temperatures (higher altitudes) even further. A parametrization of the wavelength and temperature dependence of the ClNO2 spectrum is presented. O(3P) quantum yields, Φ(ClNO2)(O), in the photolysis of ClNO2 at 193 and 248 nm were measured at 296 K using pulsed laser photolysis combined with atomic resonance fluorescence detection of O(3P) atoms. Φ(ClNO2)(O)(λ) was found to be 0.67 ± 0.12 and 0.15 ± 0.03 (2σ error limits, including estimated systematic errors) at 193 and 248 nm, respectively, indicating that multiple dissociation channels are active in the photolysis of ClNO2 at these wavelengths. The Φ(ClNO2)(O)(λ) values obtained in this work are discussed in light of previous ClNO2 photodissociation studies and the differences are discussed.

  14. Effects of color centers absorption on the spectrum of the temperature-dependent radiation-induced attenuation in fiber.

    PubMed

    Jin, Jing; Hou, Yunxia; Liu, Chunjing

    2015-02-01

    Spectra ranging from 800 to 1650 nm of the temperature-dependent radiation-induced attenuation (RIA) in the irradiated and sufficiently annealed fiber with germanium and phosphorous dopant has been measured. These RIA spectra were investigated based on the mechanism of color centers absorption. With the configurational coordinate model, these RIA spectra were decomposed by the absorption bands of three kinds of color centers. The effects of color centers absorption on the spectrum of temperature-dependent RIA is discussed by comparing the absorption intensity of different color centers at a same wavelength. Moreover, the temperature-dependent RIA of the fiber has been measured separately at 850, 1310, and 1550 nm. The measured results agreed well with the analysis of RIA spectra.

  15. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  16. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  17. High-speed laser-induced fluorescence and spark plug absorption sensor diagnostics for mixing and combustion studies in engines.

    PubMed

    Cundy, Michael; Schucht, Torsten; Thiele, Olaf; Sick, Volker

    2009-02-01

    Simultaneous high-speed in-cylinder measurements of laser-induced fluorescence of biacetyl as a fuel tracer and mid-infrared broadband absorption of fuel and combustion products (water and carbon dioxide) using a spark plug probe are compared in an optical engine. The study addresses uncertainties and the applicability of absorption measurements at a location slightly offset to the spark plug when information about mixing at the spark plug is desired. Absorbance profiles reflect important engine operation events, such as valve opening and closing, mixing, combustion, and outgassing from crevices.

  18. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  19. Spectrum of excess partial molar absorptivity. I. Near infrared spectroscopic study of aqueous acetonitrile and acetone.

    PubMed

    Koga, Yoshikata; Sebe, Fumie; Minami, Takamasa; Otake, Keiko; Saitow, Ken-ichi; Nishikawa, Keiko

    2009-09-03

    We study the mixing schemes or the molecular processes occurring in aqueous acetonitrile (ACN) and acetone (ACT) by near-infrared spectroscopy (NIR). Both solutions (any other aqueous solutions) are not free from strong and complex intermolecular interactions. To tackle such a many-body problem, we first use the concept of the excess molar absorptivity, epsilonE, which is a function of solute mole fraction in addition to that of wavenumber, nu. The plots of epsilonE calculated from NIR spectra for both aqueous solutions against nu showed two clearly separated bands at 5020 and 5230 cm(-1); the former showed negative and the latter positive peaks. At zero and unity mole fractions of solute, epsilonE is identically zero independent of nu. Similar to the thermodynamic excess functions, both negative and positive bands grow in size from zero to the minimum (or the maximum) and back to zero, as the mole fraction varies from 0 to 1. Since the negative band's nu-locus coincides with the NIR spectrum of ice, and the positive with that of liquid H(2)O, we suggest that on addition of solute the "ice-likeness" decreases and the "liquid-likeness" increases, reminiscent of the two-mixture model for liquid H(2)O. The modes of these variations, however, are qualitatively different between ACN-H(2)O and ACT-H(2)O. The former ACN is known to act as a hydrophobe and ACT as a hydrophile from our previous thermodynamic studies. To see the difference more clearly, we introduced and calculated the excess partial molar absorptivity of ACN and ACT, epsilon(E)(N) and epsilon(E)(T), respectively. The mole fraction dependences of epsilon(E)(N) and epsilon(E)(T) show qualitatively different behavior and are consistent with the detailed mixing schemes elucidated by our earlier differential thermodynamic studies. Furthermore, we found in the H(2)O-rich region that the effect of hydrophobic ACN is acted on the negative band at 5020 cm(-1), while that of hydrophilic ACT is on the positive high

  20. Reconstruction of the Primary Energy Spectrum from Fluorescence Telescope Data of the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Geenen, H.

    2007-07-01

    The Pierre Auger Observatory is the largest extensive air-shower (EAS) experiment in operation. It is still being constructed, and the final configuration will have detectors at the two sites Argentina and USA observing both celestial hemispheres. The aim of the experiment is to determine the energy, composition and origin of ultra-high energy cosmic-rays (UHECR) using two complementary detection techniques. The detector at the southern site presently contains more than 1400 (Jul. 2007) water-Cherenkov detectors at ground level (870 gcm^-2). Completion of the 3000 km^2 large detector array is expected by the end of 2007 with finally more than 1600 tanks. The atmosphere above the site is observed by 24 fluorescence telescopes located in four buildings at the boundary of the array. During clear moon-less nights, this configuration permits hybrid measurement of both longitudinal development of an EAS and lateral particle density at ground. All fluorescence telescopes are fully operational since February 2007. The aim of this work is to reconstruct the cosmic ray energy spectrum between a few 10^17 eV up to 10^20 eV. This would provide an overlap to spectral results from other experiments at lower energies. The hybrid detection provides an accurate geometry determination and thereby a good energy resolution. However, the energy threshold is limited to the threshold of the surface array: larger than a few 10^18 eV. The advantage of FD-monocular events (FD-mono) is a lower energy threshold in the aimed 10^17 eV regime. In addition, the present FD-mono exposure is about 1.5 times larger than the hybrid one. However, the energy resolution of FD-mono events is worse compared to hybrid, and the detector acceptance is strongly energy dependent. Therefore, the determination of the energy spectrum requires an unfolding procedure, which considers both the limited acceptance and the limited resolution. In this analysis the FD-mono data are reconstructed. The reconstruction

  1. Absolute excited-state absorption cross section and fluorescence quantum efficiency of Cr/sup 3 +/: gadolinium scandium gallium garnet

    SciTech Connect

    Seelert, W.; Strauss, E.

    1987-10-01

    Excited-state properties of the laser material Cr/sup 3 +/:Gd/sub 3/Sc/sub 2/(GaO/sub 4/)/sub 3/ were determined by a photocaloric technique. The excited-state absorption cross section at 650 nm is (3.6 +- 0.6)10/sup -20/ cm/sup 2/, and the fluorescence quantum efficiency at ambient temperature is (91 +- 1)%.

  2. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  3. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  4. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect

    Galante, M. E.; Magee, R. M.; Scime, E. E.

    2014-05-15

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup −1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.

  5. Explicit solvent effects on the visible absorption spectrum of a photosynthetic pigment: Chlorophyll-c 2 in methanol

    NASA Astrophysics Data System (ADS)

    Jaramillo, Paula; Coutinho, Kaline; Cabral, Benedito J. C.; Canuto, Sylvio

    2011-11-01

    The explicit solvent effects on the light absorption properties of a photosynthetic pigment are analyzed from a combined study using Monte Carlo simulation and quantum mechanical Density-Functional Theory calculations. The case considered is chlorophyll-c2 in methanol and excellent results are obtained for both position and intensities in the entire visible region. Explicit solvent molecules are essential for describing the absorption spectrum. Analysis is also made of the coordination of the Mg atom, the influence of solute-solvent hydrogen bonds, the existence and location of dark states for internal conversion mechanisms and the adequacy of the four-state model for classifying the transitions.

  6. The near-infrared (1.30-1.70 microm) absorption spectrum of methane down to 77 K.

    PubMed

    Kassi, Samir; Gao, Bo; Romanini, Daniele; Campargue, Alain

    2008-08-14

    The high resolution absorption spectrum of methane has been recorded at liquid nitrogen temperature by direct absorption spectroscopy between 1.30 and 1.70 microm (5850-7700 cm(-1)) using a newly developed cryogenic cell and a series of DFB diode lasers. The investigated spectral range includes part of the tetradecad and the full icosad regions for which only very partial theoretical analysis are available. The analysis of the low temperature spectrum will benefit from the reduction of the rotational congestion and from the narrowing by a factor of 2 of the Doppler linewidth allowing the resolution of a number of multiplets. Moreover, the energy value and rotational assignment of the angular momentum J of the lower state of a given transition can be obtained from the temperature variation of its line intensity. This procedure is illustrated in selected spectral regions by a continuous monitoring of the spectrum during the cell cool-down to 77 K, the temperature value being calculated at each instant from the measured Doppler linewidth. A short movie showing the considerable change of a spectrum during cool-down is attached as Supplementary Material. The method applied to a 30 cm(-1) section of the tetradecad spectrum around 6110 cm(-1) has allowed an unambiguous determination of the J values of part of the observed transitions.

  7. Ultrashort Two-Photon-Absorption Laser-Induced Fluorescence in Nanosecond-Duration, Repetitively Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob Brian

    Absolute number densities of atomic species produced by nanosecond duration, repetitively pulsed electric discharges are measured by two-photon absorption laser-induced fluorescence (TALIF). Relatively high plasma discharge pulse energies (=1 mJ/pulse) are used to generate atomic hydrogen, oxygen, and nitrogen in a variety of discharge conditions and geometries. Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF). Fs-TALIF offers a number of advantages compared to more conventional ns-pulse-duration laser systems, including better accuracy of direct quenching measurements in challenging environments, significantly reduced photolytic interference including photo-dissociation and photo-ionization, higher signal and increased laser-pulse bandwidth, the ability to collect two-dimensional images of atomic species number densities with far greater spatial resolution compared with more conventional diagnostics, and much higher laser repetition rates allowing for more efficient and accurate measurements of atomic species number densities. In order to fully characterize the fs-TALIF diagnostic and compare it with conventional ns-TALIF, low pressure (100 Torr) ns-duration pulsed discharges are operated in mixtures of H2, O2, and N2 with different buffer gases including argon, helium, and nitrogen. These discharge conditions are used to demonstrate the capability for two-dimensional imaging measurements. The images produced are the first of their kind and offer quantitative insight into spatially and temporally resolved kinetics and transport in ns-pulsed discharge plasmas. The two-dimensional images make possible comparison with high-fidelity plasma kinetics models of the presented data. The comparison with the quasi-one-dimensional kinetic model show good spatial and temporal agreement. The same diagnostics are used at atmospheric pressure, when atomic oxygen fs-TALIF is performed in an atmospheric-pressure plasma jet (APPJ). Here, the

  8. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  9. Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue.

    PubMed

    Lukins, Philip B; Rehman, Shakil; Stevens, Gregory B; George, Doaa

    2005-01-01

    Fluorescence, absorption and vibrational spectroscopic techniques were used to study spinach at the photosystem II (PS II), chloroplast and cellular levels and to determine the effects and mechanisms of ultraviolet-B (UV-B) photoinhibition of these structures. Two-photon fluorescence spectroscopic imaging of intact chloroplasts shows significant spatial variations in the component fluorescence spectra in the range 640-740 nm, indicating that the type and distribution of chlorophylls vary markedly with position in the chloroplast. The chlorophyll distributions and excitonic behaviour in chloroplasts and whole plant tissue were studied using picosecond time-gated fluorescence imaging, which also showed UV-induced kinetic changes that clearly indicate that UV-B induces both structural and excitonic uncoupling of chlorophylls within the light-harvesting complexes. Transient absorption measurements and low-frequency infrared and Raman spectroscopy show that the predominant sites of UV-B damage in PS II are at the oxygen-evolving centre (OEC) itself, as well as at specific locations near the OEC-binding sites.

  10. [Study on the absorption spectrum properties of flexible black silicon doped with sulfur and fluorine based on first-principles].

    PubMed

    Wei, Wei; Zhu, Yong; Lin, Cheng; Tian, Li; Xu, Zu-Wen; Nong, Jin-Peng

    2014-04-01

    It is quite urgent to need a flexible photodetector in the ultraviolet-visible-near infrared region for building a miniaturization broadband spectrometer. In the present paper, one kind of flexible black silicon doped with sulfur and fluorine was proposed and the optical absorption spectrum was investigated in broadband region. Firstly, the electronic structure, band structure and the optical absorption properties of the flexible black silicon doped with sulfur and fluoride were calculated using the first-principles pseudo potential calculations based on density-functional theory. Then, the absorption spectrum model of the flexible black silicon was built based on both the first-principles and finite domain time difference method. The results show that the cut-off wavelength has a red shift as the band gap of doped material becomes narrower. The higher the doping concentration is, the higher the optical absorption coefficient is obtained. The absorption coefficient of flexible black silicon doped with 50% sulfur is 8.3 times higher than that of 1.5% sulfur doping sample at the wavelength of 1 500 nm while the ratio turns to be 3 times when doped with 50% and 1.5% fluoride. The black silicon with small-size surface microstructure has the highest absorptance in the near-infrared region at the same doping concentration of 50%. Finally, a sample of flexible black silicon was fabricated by the femtosecond laser auto scanning system. The test results indicate that the absorptance of the sample is higher than 95% both in the ultraviolet and visible region and is fluctuated from 70% to 80% in the near-infrared region. It shows that as a novel light-absorbing material in broadband region the flexible black silicon doped with Sulfur and Fluorine has an potential application in exploring miniaturization broadband spectroscopy.

  11. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  12. [X-ray fluorescence spectrum studies on bioorganic carbon in cereals and carbon chemical circulation].

    PubMed

    Duan, De-liang; Bian, Fu-yong; Yuan, Bo; Wang, Shu; Ge, Mao-fa; Zhang, Xing-kang; Xu, Si-chuan

    2011-05-01

    The bioorganic carbon contents and chemical element compositions in six kinds of cereals: paddy (rice), wheat (flour), soybean, millet, sorghum and corn were determined by X-ray fluorescence (XRF) spectrum, meanwhile a new method was established to probe their protein contents. In the cereals, the average bioorganic carbon content is about 440%. The highest protein content is 42.74% from soybean, and other protein content is 28.56% in millet, 27.57% in wheat, 24.99% in corn, 22.21% in sorghum, but only 20.31% in rice. Based on our new definition of carbon chemical circulation presented in the current work, the authors have found that in 2009 humankind used bioorganic carbon to discharge CO2 into the earth's atmosphere that accounts for one percent of the total CO2 discharge, and consumed organic carbon to release CO2 into the earth's atmosphere, accounting for 10.73% of the total CO2 discharge. The clear definition of carbon chemical circulation and the discharged CO2 content from the distinct types of carbon compounds would advance the study on carbon chemical circulation and the atmospheric CO2 greenhouse effect. Our work further found that it takes eight years to circulate the total earth's atmospheric CO2. The short period shows the sensitivity for CO2 to keep its dynamical equilibrium in the earth's atmosphere. However, no experimental data has been reported to prove a heavy destructive greenhouse effect of CO2 existing in the earth's atmosphere.

  13. The fluorescence-dominated X-ray spectrum of the spiral galaxy NGC 6552

    NASA Technical Reports Server (NTRS)

    Fukazawa, Yasushi; Makishima, Kazuo; Ebisawa, Ken; Fabian, Andrew C.; Gendreau, Keith C.; Ikebe, Yasushi; Iwasawa, Kazushi; Kii, Tsuneo; Mushotzky, Richard F.; Ohashi, Takaya

    1994-01-01

    A hard X-ray source with a 2-10 keV flux of approximately 6 x 10(exp -13) ergs/sec/sq cm was detected with ASCA in the north ecliptic pole region. It is identified with the spiral galaxy NGC 6552 at a redshift of z = 0.026, which is optically classified as a Seyfert 2 galaxy. The X-ray spectrum consists of a series of atomic K-emission lines from (nearly-) neutral species of at least seven abundant elements, and a heavily absorbed (N(sub H) approx. = 6 x 10(exp 23)/sq cm) hard continuum. The iron line has an equivalent width as large as approximately 0.9 keV. Our results show that NGC 6552 is an extreme type 2 Seyfert galaxy, in which the fluorescent lines are produced when hard X-rays from a hidden active nucleus are reflected off thick cool matter into our line of sight. The intrinsic 2-10 keV luminosity of the nucleus is estimated to be at least 6 x 10(exp 42) ergs/s.

  14. Diode-laser absorption spectroscopy of supersonic carbon cluster beams: the nu 3 spectrum of C5.

    PubMed

    Heath, J R; Cooksy, A L; Gruebele, M H; Schmuttenmaer, C A; Saykally, R J

    1989-05-05

    A new spectroscopic experiment has been developed in which rovibrational transitions of supersonically cooled carbon clusters, which were produced by laser vaporization of graphite, have been measured by direct-absorption diode-laser spectroscopy. Thirty-six sequential rovibrational lines of the nu 3 band of the C5 carbon cluster have been measured with Doppler-limited resolution. The absorption spectrum is characteristic of a linear molecule with a center of symmetry. Least-squares analysis of the spectrum indicates an effective carbon-carbon bond length of 1.283 angstroms, in good agreement with ab initio quantum chemical calculations. This work confirms the detection of C5 in IRC + 10216 reported in the accompanying paper.

  15. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  16. [Absorption spectrum study of HeLa cells treated with vacuum and low-energy ions implantation].

    PubMed

    Zhang, Feng-Qiu; Zhao, Yuan-Li; Ge, Xiang-Hong; Liu, Wei; Zhang, Guang-Shui; Qin, Guang-Yong

    2009-08-01

    Mineral oil was selected to protect HeLa cells from water evaporation during low-energy ions implantation in the present paper. Then, HeLa cells having been treated with vacuum and low-energy N+ ions implantation were used to collect ultraviolet absorption spectrum by spectrophotometer. Analytical results indicated that HeLa cells had some characteristic absorption peaks near 202 and 260 nm, respectively. And then the study also found: (1) The spectral intensity increased with the vacuum treatment time. In addition, the effect of vacuum on cellular spectrum was greater than that of mineral oil. (2) The influence of low energy N+ ions on absorption spectrum was far more than that of vacuum. (3) The spectral intensity increased with the implantation dose. According to these results, the effect of low-energy N+ ions implantation and vacuum on tumorous cells (HeLa cells), especially on the molecular configuration and component of tumorous cells (HeLa cells) was discussed. In a word, this study provides a basis for further research on the functionary mechanism of low-energy ions implantation on biomaterial.

  17. Dynamic registration of the absorption spectrum of water in the SiO(2) nanopores in high-frequency range.

    PubMed

    Sinitsa, L N; Lugovskoy, A A

    2010-11-28

    The high-frequency region was used to record the absorption spectrum of water in nanoscale pores during vacuum pumping or injection of water. The wide spectral range, which included the vibration overtones, allowed to resolve the structure of the absorption bands with variation of water concentration in the pores of SiO(2). The absorption bands of water clusters in the 4570-5400 cm(-1) range consist of well-resolved sub-bands with interpeak intervals of up to 580 cm(-1). When the pore diameter is decreased from 11.8 to 2.6 nm, the absorption bands of clusters in this frequency range are shifted by 530 cm(-1) in the direction of the water monomer which indicates an increase of hydrogen bond strength in confined water with an increase of the pore diameter. The spectrum recorded during water pumping is extremely variable in time, and the cluster dynamics in large pores (11.8 nm) differs greatly from the dynamics in small pores (2.6 nm). While all types of water clusters are removed from small pores uniformly, in the case of large pores, the water clusters relating to strong hydrogen bonds are removed from the sample at the beginning of the vacuum pumping and the loosely coupled clusters are removed later. The rate of this process is not steady and varies throughout pumping.

  18. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  19. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  20. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1.

  1. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Polgári, Zs.; Meirer, F.; Sasamori, S.; Ingerle, D.; Pepponi, G.; Streli, C.; Rickers, K.; Réti, A.; Budai, B.; Szoboszlai, N.; Záray, G.

    2011-03-01

    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl 2 or NiCl 2 treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-α,α'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  2. Matrix-Isolated Infrared Absorption Spectrum of CH2IOO Radical.

    PubMed

    Zhang, Xu; Sander, Stanley P; Cheng, Lan; Thimmakondu, Venkatesan S; Stanton, John F

    2016-01-21

    The peroxyiodomethyl radical, CH2IOO, was generated in cryogenic matrices using tandem supersonic nozzles. One hyperthermal nozzle decomposes diiodomethane (CH2I2) to generate intense beams of CH2I radicals, while the second nozzle continuously deposits O2/argon (Ar) on the matrix at 10 K. The CH2I and O2 in the Ar matrix react to produce the target peroxy radical (CH2IOO). The absorption spectra of the products are monitored with a Fourier transform infrared spectrometer. Eight of the 12 fundamental infrared bands for CH2IOO were observed in an argon matrix at 5 K. The experimental frequencies (cm(-1)) are ν3 = 1407.3, ν4 = 1230.4, ν5 = 1223.2, ν6 = 1085.3, ν7 = 919.9, ν8 = 839.9, ν9 = 567.5, and ν10 = 496.2. Additional confirmation for the vibrational assignment comes from a study of the CH2I(18)O(18)O isotopic species. The six observed frequencies (cm(-1)) for CH2I(18)O(18)O are ν3 = 1407.8, ν4 = 1228.0, ν6 = 1030.8, ν7 = 899.6, ν8 = 836.0, and ν10 = 494.6. Unlike CH2I(16)O(16)O, the ν5 and ν9 bands were not observed for CH2I(18)O(18)O. To guide the experimental analysis, ab initio calculations of the infrared spectrum based on second-order vibrational perturbation theory were performed using force fields computed with relativistic coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computed fundamental frequencies except for ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O). Our findings were compared with the study by Lee and Lee conducted in a para-H2 matrix. The fundamental frequencies are in good agreement (within 6 cm(-1)) except for the two low-frequency modes, ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O) likely due to different matrix shifts for para-H2 and Ar matrices. In addition, our calculations are in somewhat better agreement with the experiment values than the calculations by Lee and Lee. Our study also shows that reaction CH2I + O2 produces the peroxy radical CH2IOO in cold matrices (10

  3. Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue-green part of the spectrum

    NASA Astrophysics Data System (ADS)

    Omidvar, A.; RashidianVaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.; Noroozi, M.

    2016-11-01

    Graphene oxide (GO) has a wide fluorescence bandwidth, which makes it a prospective candidate for numerous applications. For many of these applications, the fluorescence yield of GO should be further increased. The sp2-hybridized carbons in GO confine the π-electrons. Radiative recombination of electron-hole pairs in such sp2 clusters is the source of fluorescence in this material. Palladium nanoparticles are good catalysts for sp2 bond formations. We report on the preparation of GO, palladium nanoparticles and their nanocomposites in two different solvents. It is shown that palladium nanoparticles can considerably enhance the intrinsic fluorescence of GO in the blue-green part of the visible light spectrum. Fluorescence enhancement has been attributed to the catalytic role of palladium nanoparticles in increasing the number of sp2 bonds of GO with the molecules of the surrounding media. It is shown that palladium nanoparticles could be the nanoparticle of choice for fluorescence enhancement of GO because of their catalytic role in sp2 bond formation.

  4. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-11-03

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime.

  5. Cl2O photochemistry: ultraviolet/vis absorption spectrum temperature dependence and O(3P) quantum yield at 193 and 248 nm.

    PubMed

    Papanastasiou, Dimitrios K; Feierabend, Karl J; Burkholder, James B

    2011-05-28

    The photochemistry of Cl(2)O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O((3)P) atom quantum yield, Φ(Cl(2)O)(O)(λ), in its photolysis at 193 and 248 nm. The Cl(2)O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl(2)O absorption cross sections, σ(Cl(2)O)(λ,T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl(2)O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground (1)A(1) electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O((3)P) quantum yields in the photolysis of Cl(2)O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O((3)P) atoms. O((3)P) quantum yields were measured to be 0.85 ± 0.15 for 193 nm photolysis at 296 K and 0.20 ± 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N(2)). The quoted uncertainties are at the 2σ (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl(2)O at 248 nm, as reported previously in Feierabend et al. [J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl(2) photodissociation channel, which indicates that O((3)P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 ± 0.1 at 248 nm. The results from this work are compared with previous studies where possible.

  6. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  7. Chromatography, Absorption, and Fluorescence: A New Instrumental Analysis Experiment on the Measurement of Polycyclic Aromatic Hydrocarbons in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Wingen, Lisa M.; Low, Jason C.; Finlayson-Pitts, Barbara J.

    1998-12-01

    The recent approval by the American Chemical Society of an undergraduate chemistry degree with an option in environmental chemistry requires the development of new experiments that teach fundamental chemistry in the context of environmental issues. We present an experiment suitable for an undergraduate junior/senior-level instrumental analysis laboratory which illustrates the principles of high-performance liquid chromatography (HPLC) and its application to the identification and measurement of polycyclic aromatic hydrocarbons (PAH) in tobacco smoke. Absorption and fluorescence detection methods for PAH, especially the differences in sensitivity and selectivity of these methods, are clearly demonstrated along with the basic principles of HPLC.

  8. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    NASA Astrophysics Data System (ADS)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  9. Two-Photon Absorption and Fluorescence with Quadrupolar and Branched CHROMOPHORES—EFFECT of Structure and Branching

    NASA Astrophysics Data System (ADS)

    Porrès, Laurent; Mongin, Olivier; Katan, Claudine; Charlot, Marina; Bhatthula, Bharath Kumar Goud; Jouikov, Viatcheslav; Pons, Thomas; Mertz, Jerome; Blanchard-Desce, Mireille

    The photophysical and two-photon absorption (TPA) properties of three homologous quadrupolar and one related three-branched chromophores were investigated. Design of the quadrupoles is based on the symmetrical functionalization of a biphenyl core. Modulation of the nonlinear absorptivity/transparency/photostability trade-off can be achieved by playing with the twist angle of the core and on the spacers (phenylene-vinylene versus phenylene-ethynylene). The quadrupolar chromophores combine high TPA cross-sections, high fluorescence quantum yield and solvent sensitive photoluminescence properties. The branched structure exhibits spectrally broadened TPA in the NIR region (up to 3660 GM at 740 nm measured in the femtosecond regime) but reduced sensitivity to the environment.

  10. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    SciTech Connect

    Llorens, Isabelle; Lahera, Eric; Delnet, William; Proux, Olivier; Dermigny, Quentin; Gelebart, Frederic; Morand, Marc; Shukla, Abhay; Bardou, Nathalie; Ulrich, Olivier; and others

    2012-06-15

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1-2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  11. Surface vs. atmospheric origin of 2.1-2.5 micron absorption features in the Martian spectrum

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Crisp, David

    1992-01-01

    For 20 years the origin of subtle absorption features in the spectrum of Mars near 2.3 micro-m ('K' band: 1.9-2.5 micro-m) has been debated. This spectral region contains gaseous absorption features predominantly from CO2 and CO on Mars and from telluric H2O and CO2. The authors have obtained new higher spectral resolution telescopic K band spectra of 10 surface regions using the Infrared Telescope Facility (IRTF) at Mauna Kea during 1990. The goals were to confirm the existence of broad features seen at lower spectral resolution and to determine whether these bands are caused by atmospheric gases, surface (or airborne dust) minerals, or a combination of both.

  12. Absorption Spectrum of a Ru(II)-Aquo Complex in Vacuo: Resolving Individual Charge-Transfer Transitions.

    PubMed

    Xu, Shuang; Weber, J Mathias

    2015-11-25

    Ruthenium(II) complexes are of great interest as homogeneous catalysts and as photosensitizers; however, their absorption spectra are typically very broad and offer only little insight into their electronic structure. We present the electronic spectrum of the aquo complex [(trpy)(bipy)Ru(II)-OH2](2+) measured by photodissociation spectroscopy of mass-selected ions in vacuo (bipy = 2,2'-bipyridine and trpy = 2,2':6',2″-terpyridine). In the visible and near-UV, [(trpy)(bipy)Ru(II)-OH2](2+) has several electronic bands that are not resolved in absorption spectra of this complex in solution but are partially resolved in vacuo. The experimental results are compared with results from time-dependent density functional theory calculations.

  13. A close to unity and all-solar-spectrum absorption by ion-sputtering induced Si nanocone arrays.

    PubMed

    Qiu, Ying; Hao, Hong-Chen; Zhou, Jing; Lu, Ming

    2012-09-24

    Si nanocone arrays are formed on Si(100) by Ar(+) ion sputtering combined with metal ion co-deposition. The aspect ratio of Si cone is found to increases steadily with increasing sample temperature, but decreases slowly with increasing ion dose. Furthermore, the height and base diameter of Si cone increase monotonously with increasing dose at a constant temperature. The absorptivity increases in general with increasing aspect ratio and height. A close to unity and all-solar-spectrum absorption by the nanostructured Si is finally achieved, with the absorbance for λ = 350 to 1100 nm being higher than 96%, and that for λ = 1100 to 2000 nm higher than 92%. Photocurrents for different Si samples are also investigated.

  14. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite

    NASA Astrophysics Data System (ADS)

    Green, David C.; Ihli, Johannes; Thornton, Paul D.; Holden, Mark A.; Marzec, Bartosz; Kim, Yi-Yeoun; Kulak, Alex N.; Levenstein, Mark A.; Tang, Chiu; Lynch, Christophe; Webb, Stephen E. D.; Tynan, Christopher J.; Meldrum, Fiona C.

    2016-11-01

    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required.

  15. 3D visualization of additive occlusion and tunable full-spectrum fluorescence in calcite

    PubMed Central

    Green, David C.; Ihli, Johannes; Thornton, Paul D.; Holden, Mark A.; Marzec, Bartosz; Kim, Yi-Yeoun; Kulak, Alex N.; Levenstein, Mark A.; Tang, Chiu; Lynch, Christophe; Webb, Stephen E. D.; Tynan, Christopher J.; Meldrum, Fiona C.

    2016-01-01

    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallization processes. There is growing evidence that these additives are often occluded within the crystal lattice. This promises an elegant means of creating nanocomposites and tuning physical properties. Here we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy is then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required. PMID:27857076

  16. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons.

  17. [Application of the differential absorption UV-VIS spectrum to assay some of humic compounds in therapeutic peats].

    PubMed

    Drobnik, Michał; Latour, Teresa

    2009-01-01

    Delineated were differential 4th degree absorption spectrum UV-VIS range for standardized humid acids produced by "Fluka". These acids were separated through selective extraction (acid, alcoholic, alkaline). Determined was wavelength for which distinct, well separated, symmetrical peaks characteristic for particular compounds were found. The similar procedure were applied to separate the same sort of acids extracted from 4 Polish peat deposits. Certified are the presence of hymatomelanoic acid, fulvic acid, humic acid in examined peat of low type. These acids occurred in different quantity and proportions.

  18. UV absorption spectrum of the ClO dimer (Cl2O2) between 200 and 420 nm.

    PubMed

    Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Fahey, David W; Burkholder, James B

    2009-12-10

    The UV photolysis of Cl(2)O(2) (dichlorine peroxide) is a key step in the catalytic destruction of polar stratospheric ozone. In this study, the gas-phase UV absorption spectrum of Cl(2)O(2) was measured using diode array spectroscopy and absolute cross sections, sigma, are reported for the wavelength range 200-420 nm. Pulsed laser photolysis of Cl(2)O at 248 nm or Cl(2)/Cl(2)O mixtures at 351 nm at low temperature (200-228 K) and high pressure (approximately 700 Torr, He) was used to produce ClO radicals and subsequently Cl(2)O(2) via the termolecular ClO self-reaction. The Cl(2)O(2) spectrum was obtained from spectra recorded following the completion of the gas-phase ClO radical chemistry. The spectral analysis used observed isosbestic points at 271, 312.9, and 408.5 nm combined with reaction stoichiometry and chlorine mass balance to determine the Cl(2)O(2) spectrum. The Cl(2)O(2) UV absorption spectrum peaks at 244.5 nm with a cross section of 7.6(-0.5)(+0.8) x 10(-18) cm(2) molecule(-1) where the quoted error limits are 2sigma and include estimated systematic errors. The Cl(2)O(2) absorption cross sections obtained for wavelengths in the range 300-420 nm are in good agreement with the Cl(2)O(2) spectrum reported previously by Burkholder et al. (J. Phys. Chem. A 1990, 94, 687) and significantly higher than the values reported by Pope et al. (J. Phys. Chem. A 2007, 111, 4322). A possible explanation for the discrepancy in the Cl(2)O(2) cross section values with the Pope et al. study is discussed. Representative, atmospheric photolysis rate coefficients are calculated and a range of uncertainty estimated based on the determination of sigma(Cl(2)O(2))(lambda) in this work. Although improvements in our fundamental understanding of the photochemistry of Cl(2)O(2) are still desired, this work indicates that major revisions in current atmospheric chemical mechanisms are not required to simulate observed polar ozone depletion.

  19. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  20. Refinement of the ice absorption spectrum in the visible using radiance profile measurements in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Picard, Ghislain; Libois, Quentin; Arnaud, Laurent

    2016-11-01

    Ice is a highly transparent material in the visible. According to the most widely used database (IA2008; Warren and Brandt, 2008), the ice absorption coefficient reaches values lower than 10-3 m-1 around 400 nm. These values were obtained from a vertical profile of spectral radiance measured in a single snow layer at Dome C in Antarctica. We reproduced this experiment using an optical fiber inserted in the snow to record 56 profiles from which 70 homogeneous layers were identified. Applying the same estimation method on every layer yields 70 ice absorption spectra. They present a significant variability but absorption coefficients are overall larger than IA2008 by 1 order of magnitude at 400-450 nm. We devised another estimation method based on Bayesian inference that treats all the profiles simultaneously. It reduces the statistical variability and confirms the higher absorption, around 2 × 10-2 m-1 near the minimum at 440 nm. We explore potential instrumental artifacts by developing a 3-D radiative transfer model able to explicitly account for the presence of the fiber in the snow. The simulation shows that the radiance profile is indeed perturbed by the fiber intrusion, but the error on the ice absorption estimate is not larger than a factor of 2. This is insufficient to explain the difference between our new estimate and IA2008. The same conclusion applies regarding the plausible contamination by black carbon or dust, concentrations reported in the literature are insufficient. Considering the large number of profiles acquired for this study and other estimates from the Antarctic Muon and Neutrino Detector Array (AMANDA), we nevertheless estimate that ice absorption values around 10-2 m-1 at the minimum are more likely than under 10-3 m-1. A new estimate in the range 400-600 nm is provided for future modeling of snow, cloud, and sea-ice optical properties. Most importantly, we recommend that modeling studies take into account the large uncertainty of the ice

  1. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    NASA Astrophysics Data System (ADS)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  2. Excited state dipole moments of N, N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-01-01

    The effect of temperature on absorption and fluorescence spectra of N, N-dimethylaniline (DMA) in ethyl acetate has been studied for temperature ranging from 293 to 388 K. The permittivity ɛ and refractive index n of the solvent decrease with temperature increase and the absorption and fluorescence bands are blue shifted (so-called "thermochromic shift"). Based on this phenomenon, the dipole moment μe in the excited singlet state and the Onsager interaction radius a for DMA were determined using the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621; 18a (1963) 10, 256]. For the known dipole moment in the ground state μg = 1.61 D and for α/ a3 = 0.54 ( α is the polarizability of the solute) the average value of μe = 3.55 D and a = 3.1 Å were determined. The obtained values for DMA are compared with the experimental values determined by other authors.

  3. [The absorption and fluorescence spectra of the cyanobacterial phycobilins of cryptoendolithic lichens in the high-polar region of Antarctica].

    PubMed

    Erokhina, L G; Shatilovich, A V; Kaminskaia, O P; Gilichinskiĭ, D A

    2002-01-01

    The algologically pure cultures of the green-brown cyanobacterium Chroococcidiopsis sp. and three cyanobacteria of the genus Gloeocapsa, the blue-green Gloeocapsa sp.1, the brown Gloeocapsa sp.2, and the red-orange Gloeocapsa sp.3, were isolated from sandstones and rock fissures in the high-polar regions of Antarctica. These cyanobacteria are the most widespread phycobionts of cryptoendolithic lichens in these regions. The comparative analysis of the absorption and the second-derivative absorption spectra of the cyanobacteria revealed considerable differences in the content of chlorophyll a and in the content and composition of carotenoids and phycobiliproteins. In addition to phycocyanin, allophycocyanin, and allophycocyanin B, which were present in all of the cyanobacteria studied, Gloeocapsa sp.2 also contained phycoerythrocyanin and Gloeocapsa sp.3 phycoerythrocyanin and C-phycoerythrin (the latter pigment is typical of nitrogen-fixing cyanobacteria). The fluorescence spectra of Gloeocapsa sp.2 and Gloeocapsa sp.3 considerably differed from the fluorescence spectra of the other cyanobacteria as well. The data obtained suggest that various zones of the lichens may be dominated either by photoheterotrophic or photoautotrophic cyanobacterial phycobionts, which differ in the content and composition of photosynthetic pigments.

  4. Would the solvent effect be the main cause of band shift in the theoretical absorption spectrum of large lanthanide complexes?

    NASA Astrophysics Data System (ADS)

    Freire, Ricardo O.; Rodrigues, Nailton M.; Rocha, Gerd B.; Gimenez, Iara F.; da Costa Junior, Nivan B.

    2011-06-01

    As most reactions take place in solution, the study of solvent effects on relevant molecular properties - either by experimental or theoretical methods - is crucial for the design of new processes and prediction of technological properties. In spite of this, only few works focusing the influence of the solvent nature specifically on the spectroscopic properties of lanthanide complexes can be found in the literature. The present work describes a theoretical study of the solvent effect on the prediction of the absorption spectra for lanthanide complexes, but other possible relevant factors have been also considered such as the molecular geometry and the excitation window used for interaction configuration (CI) calculations. The [Eu(ETA) 2· nH 2O] +1 complex has been chosen as an ideal candidate for this type of study due to its small number of atoms (only 49) and also because the absorption spectrum exhibits a single band. Two Monte Carlo simulations were performed, the first one considering the [Eu(ETA) 2] +1 complex in 400 water molecules, evidencing that the complex presents four coordinated water molecules. The second simulation considered the [Eu(ETA) 2·4H 2O] +1 complex in 400 ethanol molecules, in order to evaluate the solvent effect on the shift of the maximum absorption in calculated spectra, compared to the experimental one. Quantum chemical studies were also performed in order to evaluate the effect of the accuracy of calculated ground state geometry on the prediction of absorption spectra. The influence of the excitation window used for CI calculations on the spectral shift was also evaluated. No significant solvent effect was found on the prediction of the absorption spectrum for [Eu(ETA) 2·4H 2O] +1 complex. A small but significant effect of the ground state geometry on the transition energy and oscillator strength was also observed. Finally it must be emphasized that the absorption spectra of lanthanide complexes can be predicted with great accuracy

  5. Study of the Photodegradation Process of Vitamin E Acetate by Optical Absorption, Fluorescence, and Thermal Lens Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, J. A.; Marcelín-Jiménez, G.; Leanos-Castaneda, O. L.; Yanez-Limon, J. M.; Alvarado-Gil, J. J.

    2012-11-01

    The stability of vitamin E acetate exposed to ultraviolet (UV) light was studied using three spectroscopic methods. An ethanol solution of vitamin E acetate was treated with either UVC light (254 nm) or UVA light (366 nm) during a period of 10 min followed by a study of UV-Vis optical absorption, then by fluorescence spectroscopy excitation by UV radiation at either 290 nm or 368 nm and, finally the solution was studied by thermal lens spectroscopy. Immediately, the same solution of vitamin E acetate was subjected to the UV irradiation process until completion of six periods of irradiation and measurements. UVC light treatment induced the appearance of a broad absorption band in the range of 310 nm to 440 nm with maximum absorbance at 368 nm, which progressively grew as the time of the exposure to UVC light increases. In contrast, UVA light treatment did not affect the absorption spectra of vitamin E acetate. Fluorescence spectra of the vitamin E acetate (without UV light treatment) showed no fluorescence when excited with 368 nm while exciting with 290 nm, an intense and broad emission band (300 nm to 440 nm) with a maximum at 340 nm appeared. When vitamin E acetate was treated with UVC light, this emission band progressively decreased as the time of the UVC light irradiation grew. No signal from UV-untreated vitamin E acetate could be detected by the thermal lens method. Interestingly, as the time of the UVC light treatment increased, the thermal lens signal progressively grew. Additional experiments performed to monitor the time evolution of the process during continuous UVC treatment of the vitamin E acetate using thermal lens spectroscopy exhibited a progressive increase of the thermal lens signal reaching a plateau at about 8000 s. This study shows that the vitamin E acetate is stable when it is irradiated with UVA light, while the irradiation with UVC light induces the formation of photodegradation products. Interestingly, this photodegradation process using

  6. Use of Microcomputers in the Undergraduate Chemistry Laboratory: An Absorption Spectrum Experiment.

    ERIC Educational Resources Information Center

    Terry, Ronald J.; And Others

    1989-01-01

    Describes a computer program designed to enable undergraduate students to apply computer skills for data acquisition and processing in experimental chemistry. An example is given that examines the absorption spectra of conjugated molecules such as carbocyanine dyes, and the free electron model is explained. (six references) (LRW)

  7. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    NASA Astrophysics Data System (ADS)

    Hall, C.

    2013-06-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  8. Fluorescence Spectrum and Decay Measurement for Hsil VS Normal Cytology Differentiation in Liquid Pap Smear Supernatant

    NASA Astrophysics Data System (ADS)

    Vaitkuviene, A.; Gegzna, V.; Juodkazis, S.; Jursenas, S.; Miasojedovas, S.; Kurtinaitiene, R.; Rimiene, J.; Vaitkus, J.

    2009-06-01

    Cervical smear material contains endo and exocervical cells, mucus and inflammative, immune cells in cases of pathology. Just not destroyed keratinocytes lay on the glass for microscopy. Liquid cytology supernatant apart other diagnostics could be used for photodiagnostic. The spectroscopic parameters suitable for Normal and HSIL cytology groups supernatant differentiation are demonstrated. The dried liquid PAP supernatant fractions—sediment and liquid were investigated. Excitation and emission matrices (EEM), supernatant fluorescence decay measured under 280 nm diode short pulse excitation and fluorescence spectroscopy by excitation with 355 nm laser light were analyzed. The differences between Normal and HSIL groups were statistically proven in the certain spectral regions. Fluorescence decay peculiarities show spectral regions consisting of few fluorophores. Obtained results on fluorescence differences in Normal and HSIL groups' supernatant shows the potency of photodiagnosis application in cervical screening.

  9. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment.

    PubMed

    Grebenshchikov, Sergy Yu

    2013-06-14

    The absorption spectrum of CO2 in the wavelength range 120-160 nm is analyzed by means of quantum mechanical calculations performed using vibronically coupled potential energy surfaces of five singlet valence electronic states and the coordinate dependent transition dipole moment vectors. The thermally averaged spectrum, calculated for T = 190 K via Boltzmann averaging of optical transitions from many initial rotational states, accurately reproduces the experimental spectral envelope, consisting of a low and a high energy band, the positions of the absorption maxima, their FWHMs, peak intensities, and frequencies of diffuse structures in each band. Contributions of the vibronic interactions due to Renner-Teller coupling, conical intersections, and the Herzberg-Teller effect are isolated and the calculated bands are assigned in terms of adiabatic electronic states. Finally, diffuse structures in the calculated bands are vibronically assigned using wave functions of the underlying resonance states. It is demonstrated that the main progressions in the high energy band correspond to consecutive excitations of the pseudorotational motion along the closed loop of the CI seam, and progressions differ in the number of nodes along the radial mode perpendicular to the closed seam. Irregularity of the diffuse peaks in the low energy band is interpreted as a manifestation of the carbene-type "cyclic" OCO minimum.

  10. Substituted benzoxadiazoles as fluorogenic probes: a computational study of absorption and fluorescence.

    PubMed

    Brown, Alex; Ngai, Tsz Yan; Barnes, Marie A; Key, Jessie A; Cairo, Christopher W

    2012-01-12

    General chemical strategies which provide controlled changes in the emission or absorption properties of biologically compatible fluorophores remain elusive. One strategy employed is the conversion of a fluorophore-attached alkyne (or azide) to a triazole through a copper-catalyzed azide-alkyne coupling (CuAAC) reaction. In this study, we have computationally examined a series of structurally related 2,1,3-benzoxadiazole (benzofurazan) fluorophores and evaluated changes in their photophysical properties upon conversion from alkyne (or azide) to triazole forms. We have also determined the photophysical properties for a known set of benzoxadiazole compounds. The absorption and emission energies have been determined computationally using time-dependent density functional theory (TD-DFT) with the Perdew, Burke, and Ernzerhof exchange-correlation density functional (PBE0) and the 6-31+G(d) basis set. The TD-DFT results consistently agreed with the experimentally determined absorption and emission wavelengths except for certain compounds where charge-transfer excited states occurred. In addition to determining the absorption and emission wavelengths, simple methods for predicting relative quantum yields previously derived from semiempirical calculations were reevaluated on the basis of the new TD-DFT results and shown to be deficient. These results provide a necessary framework for the design of new substituted benzoxadiazole fluorophores.

  11. Bilirubin calculi crushing by laser irradiation at a molecular oscillating region wavelength based on infrared absorption spectrum analysis using a free-electron laser: an experimental study.

    PubMed

    Watanabe, M; Kajiwara, H; Awazu, K; Aizawa, K

    2001-01-01

    We investigated a new laser technique of crushing bilirubin calculi, our aim being to crush calculi in isolation using a minimally invasive procedure. Infrared absorption spectrum analysis of the bilirubin calculi was conducted, revealing maximum absorption spectrum at a wavelength of the C=O stretching vibration of ester binding that exists within the molecular structure of bilirubin calcium. As an experiment to crush calculi using the free-electron laser, we set the laser at the effective irradiation wavelength of ester binding, and conducted noncontact irradiation of the bilirubin calculi. The calculi began to slowly ablate until the irradiated site had been completely obliterated after 20s of irradiation. Moreover, absorption spectrum analysis of the irradiated site, from a comparison of absorption peak ratios, revealed that absorption peak intensities decreased over time at the absorption wavelength of ester binding. These findings suggest that irradiation of molecular oscillating region wavelengths peculiar to calculi based on infrared absorption spectrum analysis results in the gradual crushing of calculi in isolation by breaking down their molecular structure.

  12. The infrared-ultraviolet dispersed fluorescence spectrum of acetylene: New classes of bright states

    NASA Astrophysics Data System (ADS)

    Hoshina, Kennosuke; Iwasaki, Atsushi; Yamanouchi, Kaoru; Jacobson, Matthew P.; Field, Robert W.

    2001-05-01

    Single rotational levels of ungerade vibrational levels, 2ν3'+ν6' and 3ν3'+ν6' (both with bu symmetry), in the à 1Au electronically excited state of acetylene were excited by an IR-UV double resonance scheme via the ν3″ fundamental level in the X˜ 1Σg+ state, and the rotationally resolved dispersed fluorescence (DF) spectra were recorded at 3.2-4.5 cm-1 resolution. The term values of the new ungerade levels were determined within an accuracy of 0.56 cm-1(1σ) through careful calibration achieved by frequency standard atomic Fe and Hg lines. A total of 111 new ungerade vibrational levels with Σu+, Σu-, and Δu symmetry below 10 000 cm-1 was identified in the high-resolution IR-UV-DF spectra, which provide access to new classes of X˜ 1Σg+ bright states: (i) (0,v2″,0,v4″1,1-1)Σu+, (0,v2″,0,v4″1,11)Δu, and (0,v2″,0,v4″3,1-1)Δu, which are the Franck-Condon (FC) bright levels from the nν3'+ν6' (n=2,3) levels in the à 1Au state; (ii) (0,v2″,0,v4″-1,11)Σu- levels which appear through the a-axis Corioris interaction between nν3'+ν6' and nν3'+ν4' (n=2,3) in the à 1Au state; and (iii) (0,v2″,1,v4″0,0)Σu+ and (0,v2″,1,v4″2,0)Δu levels which gain transition intensity from the Duschinsky effect associated with the bent-linear ÖX˜ transition. All observed ungerade term values and previously determined gerade and ungerade term values below 10 000 cm-1 were fitted by two effective model Hamiltonians, i.e., a pure-bend effective Hamiltonian and a stretch-bend effective Hamiltonian. The stretch-bend effective Hamiltonian is expressed in terms of 31 Dunham expansion parameters and 11 anharmonic resonance parameters associated with (i) five stretch-bend anharmonic resonances; (ii) one stretch-stretch and two bend-bend Darling-Dennison resonances; and (iii) one vibrational l resonance. The parameters in this Hamiltonian were determined from a least-squares fit of 287 vibrational term values (111 new ungerade levels, 128 levels from

  13. [Study on the reaction mechanism of chloroacetanilide herbicides with urease using fluorescence spectrum and high-performance liquid chromatography].

    PubMed

    Liu, Hui-jun; Zhan, Xiu-Ming; Li, Ke-bin; Liu, Wei-ping

    2005-03-01

    The relationship between excess thermodynamic function and binding to urease of four chloroacetanilide herbicides was studied using high-performance liquid chromatography and fluorescence spectrum. The linear relationship between the composition of mobile phase of RP-HPLC and the capacity factor of chloroacetanilide herbicides has been obtained. The excess thermodynamic enthalpy (deltaH* ) of acetochlor, pretilachlor, butachlor and metolachlor was determined, and the binding constant K and the number of binding sites with urease were calculated. The relationship between excess thermodynamic function and the binding constant K was suggested.

  14. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  15. Indirect IUE observation of O VI from photoexcited fluorescence lines of Fe II, present in the spectrum of RR Telescopii

    NASA Technical Reports Server (NTRS)

    Johansson, Sveneric

    1988-01-01

    A new, highly excited level of Fe II at 13.7 eV has been established by means of six lines in the laboratory spectrum below 2000 A. Confirming transitions appear in the infrared region. Four of the ultraviolet lines coincide with previously unidentified lines in the IUE spectrum of RR Tel reported by Penston et al. in 1983. One of the remaining UV lines coincides with the resonance line of O VI at 1032 A, outside the range of the IUE. This suggests that the new FE II level is selectively photoexcited by O VI in RR Tel, resulting in the strong fluorescence lines observed. This case of a Bowen mechanism provides an indirect observation of O VI, important for diagnostics of, e.g., symbiotic stars.

  16. Comment on 'Discrepancies in the resonance-fluorescence spectrum calculated with two methods'

    SciTech Connect

    Ficek, Zbigniew

    2009-05-15

    There are two alternative methods used in the literature to calculate the incoherent part of the spectrum of light scattered by an atomic system. In the first, one calculates the spectrum of the total light scattered by the system and obtains the incoherent part by subtracting the coherent part. In the second method, one introduces the fluctuation operators and obtains the incoherent part of the spectrum by taking the Fourier transform of the two-time correlation function of the fluctuation operators. These two methods have been recognized for years as completely equivalent for evaluating the incoherent part of the spectrum. In a recent paper, Xu et al. [Phys. Rev. A 78, 013407 (2008)] showed that there are discrepancies between the incoherent parts of the stationary spectrum of a three-level {lambda}-type system calculated with these two methods. The predicted discrepancies can be severe that over a wide range of the Rabi frequencies and atomic decay rates, the spectrum calculated with the variance method can have negative values. In this Comment, we show that there are no discrepancies between these two methods. We show the equivalence of these two methods that leads to the same incoherent spectra which are positive for all frequencies independent of values of the parameters involved. We also identify the source of the discrepancy, that is, in an incorrect treatment of the incoherent part of the spectrum calculated with the two-time correlation function of the fluctuation operators.

  17. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  18. Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance

    DTIC Science & Technology

    2004-01-01

    For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/cubic meter, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote - sensing reflectance using a newly...potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments. (7 figures, 47 refs.)

  19. [Determination of enthalpy change of coordinating color reaction by UV-Vis absorption spectrum method].

    PubMed

    Yang, D; An, L; Chen, L

    2001-08-01

    In this paper, a simple experimental method for the determination of enthalpy change of coordinating color reaction has been proposed and a relation formula between absorption and temperature has been deduced. Using coordinating color reaction of cobalt(II) thiocyanate in Tween-80 medium, the linear relation of this formula has been validated: r = 0.9957 and delta H = -44.7 kJ.mol-1, which is accordant with the result obtained from Van't Hoff equation.

  20. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  1. Absorption-line spectrum of GC 1556 + 335 - ejected or intervening material

    SciTech Connect

    Morris, S.L.; Weymann, R.J.; Foltz, C.B.; Turnshek, D.A.; Shectman, S.

    1986-11-01

    Two rich C IV absorption complexes in the radio-loud QSO GC 1556 + 335 are described. Column densities for seven of the redshift systems in these complexes are measured, and limits on the distances between the QSO and absorbing clouds are derived using ionization parameters estimated from matching photoionization models to the observations and a density estimated from an upper limit to the C II(asterisk) column density in the z = 1.65367 redshift system. These limits show that GC 1556 + 335 is not a typical member of the BALQSO class. Two alternative models are discussed in which the absorption complexes are caused by material either entrained into a radio jet from the QSO or contained in two clusters of galaxies along the line of sight. It is suggested that the emission associated with the complexes may be detectable, and that a study of the velocity field and geometry of such emission might be decisive in determining the mechanism responsible for the absorption. 40 references.

  2. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  3. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride.

    PubMed

    Hughes, Patrick P; Beasten, Amy; McComb, Jacob C; Coplan, Michael A; Al-Sheikhly, Mohamad; Thompson, Alan K; Vest, Robert E; Sprague, Matthew K; Irikura, Karl K; Clark, Charles W

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of (10)BF3 with other gases, knowledge was required of the photoabsorption cross sections of (10)BF3 for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10(-20) cm(2) at 135 nm to less than 10(-21) cm(2) in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135-145 nm, 150-165 nm, and 190-205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

  4. Solvent dependence of structure, charge distribution, and absorption spectrum in the photochromic merocyanine-spiropyran pair.

    PubMed

    Murugan, N Arul; Chakrabarti, Swapan; Ågren, Hans

    2011-04-14

    We have studied the structures and absorption spectra of merocyanine, the photoresponsive isomer of the spiropyran (SP)-merocyanine (MC) pair, in chloroform and in water solvents using a combined hybrid QM/MM Car-Parrinello molecular dynamics (CP-QM/MM) and ZINDO approach. We report remarkable differences in the molecular structure and charge distribution of MC between the two solvents; the molecular structure of MC remains in neutral form in chloroform while it becomes charge-separated, zwitterionic, in water. The dipole moment of MC in water is about 50% larger than in chloroform, while the value for SP in water is in between, suggesting that the solvent is more influential than the conformation itself in deciding the dipole moment for the merocyanine-spiropyran pair. The calculations could reproduce the experimentally reported blue shift in the absorption spectra of MC when going from the nonpolar to the polar solvent, though the actual value of the absorption maximum is overestimated in chloroform solvent. We find that the CP-QM/MM approach is appropriate for structure modeling of solvatochromic and thermochromic molecules as this approach is able to capture the solvent and thermal-induced structural changes within the solute important for an accurate assessment of the properties.

  5. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  6. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  7. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    SciTech Connect

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; Doughty, Benjamin; Yang, Bin

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. The remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.

  8. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    DTIC Science & Technology

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av...Trabalhador Saocarlense 400 Sao Carlos, SP, 13566-590 Brazil 8. PERFORMING ORGANIZATION REPORT NUMBER Report 3 - Final 9. SPONSORING/MONITORING AGENCY

  9. Towards a spectrum-based bar code for identification of weakly fluorescent microparticles

    NASA Astrophysics Data System (ADS)

    Petrášek, Zdeněk; Wiedemann, Jens; Schwille, Petra

    2014-03-01

    Spectrally resolved detection of fluorescent probes can be used to identify multiple labeled target molecules in an unknown mixture. We study how the spectral shape, the experimental noise, and the number of spectral detection channels affect the success of identification of weakly fluorescent beads on basis of their emission spectra. The proposed formalism allows to estimate the performance of the spectral identification procedure with a given set of spectral codes on the basis of the reference spectra only. We constructed a simple prism-based setup for spectral detection and demonstrate that seven distinct but overlapping spectral codes realized by combining up to three fluorescent dyes bound to a single bead in a barcode-based manner can be reliably identified. The procedure allows correct identification even in the presence of known autofluorescence background stronger than the actual signal.

  10. Rotational structure in the near-infrared absorption spectrum of ozone

    NASA Technical Reports Server (NTRS)

    Anderson, Stuart M.; Hupalo, Peter; Mauersberger, Konrad

    1993-01-01

    The lowest energy members of the near-IR absorption bands of ozone possess fine structure which is probably due to the rotation of the molecule in the upper vibronic state, suggesting that this state is metastable. A preliminary analysis of the structures as rotational subbands supports a recent theoretical assignment of the near-IR vibronic features to the 3A2 - 1A1 electronic transition. A binding energy of about 0.1 eV is inferred from the breakoff in the observed structure.

  11. Enhanced two-photon absorption and fluorescence upconversion in Thioflavin T micelle-type aggregates in glycerol/water solution

    NASA Astrophysics Data System (ADS)

    Donnelly, Julie; Vesga, Yuly; Hernandez, Florencio E.

    2016-09-01

    In this article, we report the systematic characterization of the two-photon absorption of ThT in different mixtures of glycerol/water solution. The relationships of TPA peak position and amplitude revealed a dependence on particle size suggesting that the curious trend observed in TPA with changing glycerol content can be attributed to the presence of micelle-type aggregates. Consequently, the relatively strong TPA cross-section (δTPA = 300 GM) obtained in 8.75% glycerol/water solutions could be attributed to the immobilization of dye molecules and the strong coupling of the molecular transition dipoles in micelle-type aggregates. This enhancement of TPA, in addition to the already reported significant fluorescence quantum yield of ThT attached to brain tissue, is expected to boost the application of this compound for in vitro and perhaps in vivo high resolution multiphoton bioimaging of amyloids in brain tissue.

  12. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    NASA Astrophysics Data System (ADS)

    Centomo, P.; Meneghini, C.; Zecca, M.

    2013-05-01

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 °C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O2, H2, H2O2, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H2O2) in methanol solution from dihydrogen and dioxygen.

  13. Absorption and Luminescence Studies of Some Highly Fluorescent Derivatives of Vitamin B1; Solvent and pH Effects

    NASA Astrophysics Data System (ADS)

    Marciniak, B.; Koput, J.; Kozubek, H.

    1990-08-01

    The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied

  14. Excited-state intramolecular proton transfer of 2-acetylindan-1,3-dione studied by ultrafast absorption and fluorescence spectroscopy

    PubMed Central

    Verma, Pramod Kumar; Steinbacher, Andreas; Schmiedel, Alexander; Nuernberger, Patrick; Brixner, Tobias

    2015-01-01

    We employ transient absorption from the deep-UV to the visible region and fluorescence upconversion to investigate the photoinduced excited-state intramolecular proton-transfer dynamics in a biologically relevant drug molecule, 2-acetylindan-1,3-dione. The molecule is a ß-diketone which in the electronic ground state exists as exocyclic enol with an intramolecular H-bond. Upon electronic excitation at 300 nm, the first excited state of the exocyclic enol is initially populated, followed by ultrafast proton transfer (≈160 fs) to form the vibrationally hot endocyclic enol. Subsequently, solvent-induced vibrational relaxation takes place (≈10 ps) followed by decay (≈390 ps) to the corresponding ground state. PMID:26798837

  15. Studying Photosynthesis by Measuring Fluorescence

    ERIC Educational Resources Information Center

    Sanchez, Jose Francisco; Quiles, Maria Jose

    2006-01-01

    This paper describes an easy experiment to study the absorption and action spectrum of photosynthesis, as well as the inhibition by heat, high light intensity and the presence of the herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the photosynthetic process. The method involves measuring the chlorophyll fluorescence emitted by intact…

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  17. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  18. Detection of a Deep 3-μm Absorption Feature in the Spectrum of Amalthea (JV)

    NASA Astrophysics Data System (ADS)

    Takato, Naruhisa; Bus, Schelte J.; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-01

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  19. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  20. Aerosol Absorption Retrievals from the PACE Broad Spectrum Ocean Color Instrument (OCI)

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine A.; Levy, Robert C.; Gupta, Pawan; Ahmad, Ziauddin; Martins, J. Vanderlei; Lima, Adriana Rocha; Torres, Omar

    2016-01-01

    The PACE (Pre-­Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s, is designed to characterize oceanic and atmospheric properties. The primary instrument on-­-board will be a moderate resolution (approximately 1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR. The OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. (Image credit: PACE Science Definition Team Report). Objective: Can we make use of the UV-­SWIR measurements to derive information about aerosol absorption when aerosol loading is high?

  1. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  2. Rutile TiO2(011)-2 × 1 Reconstructed Surfaces with Optical Absorption over the Visible Light Spectrum.

    PubMed

    Zhou, Rulong; Li, Dongdong; Qu, Bingyan; Sun, Xiaorui; Zhang, Bo; Zeng, Xiao Cheng

    2016-10-12

    The stable structures of the reconstructed rutile TiO2(011) surface are explored based on an evolutionary method. In addition to the well-known "brookite(001)-like" 2 × 1 reconstruction model, three 2 × 1 reconstruction structures are revealed for the first time, all being more stable in the high Ti-rich condition. Importantly, the predicted Ti4O4-2 × 1 surface model not only is in excellent agreement with the reconstructed metastable surface detected by Tao et al. [Nat. Chem. 3, 296 (2011)] from their STM experiment but also gives a consistent formation mechanism and electronic structures with the measured surface. The computed imaginary part of the dielectric function suggests that the newly predicted reconstructed surfaces are capable of optical absorption over the entire visible light spectrum, thereby offering high potential for photocatalytic applications.

  3. Study of preferential solvation of 2,6-diaminoanthraquinone in binary mixtures by absorption and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Sasirekha, V.; Ramakrishnan, V.

    2008-08-01

    The role of solute-solvent and solvent-solvent interaction on the preferential solvation characteristics of 2,6-diaminoanthraquinone (DAAQ) has been analysed by monitoring the optical absorption and fluorescence emission spectra. Binary mixtures consist of dimethylformamide (DMF)-ethanol (EtOH), DMF-dimelthylsulfoxide (DMSO), benzene (BZ)-DMF and acetonitrile (ACN)-DMF. The optical absorption spectra maximum and emission spectra maximum of DAAQ show the changes with varying the solvents and change in the composition in the case of binary mixtures. Non-ideal solvation characteristics are observed in all binary mixtures. It is found that at certain concentrations two mixed solvents interact to form a common structure with a ν12 (wave number in cm -1) value not always intermediate ( ν1 and ν2) between the values of the solvents mixed. Synergistic effect is observed in the case of DMF-EtOH mixtures. The preferential solvation parameters local mole fraction X2L, solvation index δS2, exchange constant K12 are calculated in all binary mixtures expect in the case of DMF-BZ mixture and DMF-EtOH mixture in the ground state. We have also monitored excitation wavelength effect on the probe molecule in aprotic polar and protic polar solvents.

  4. Designed plasmonic nanocatalysts for the reduction of eosin Y: absorption and fluorescence study

    NASA Astrophysics Data System (ADS)

    Komalam, Abha; Muraleegharan, Lekha Girija; Subburaj, Suganthi; Suseela, Suji; Babu, Aswathy; George, Sony

    2012-10-01

    In this work, we report a one-step green synthesis of gold nanoparticles (AuNPs) by microwave irradiation using nontoxic and biodegradable polysaccharide chitosan as a reducing and stabilizing agent. The interaction between gold nanoparticles with the amine group of chitosan was confirmed by Fourier transform infrared spectroscopy analysis, and the stability of the nanoparticle is ascertained by zeta potential measurements. Transmission electron microscopy photograph and dynamic light scattering measurements confirmed the average size of gold nanoparticles as 25 nm. The ability of the synthesised gold nanoparticles as a catalyst for the reduction of eosin dye in the presence of NaBH4 was monitored by means of spectrofluorometry and spectrophotometry. It is found that the NaBH4-induced reduction of eosin is enhanced in the presence of AuNPs even without a catalyst. Time-resolved fluorescence decay studies also confirmed the reduction of eosin in the presence of AuNPs.

  5. [Study on the concentration of mineral oil in water by online intelligent detection based on fluorescence spectrum].

    PubMed

    Tang, Yuan-he; Liu, Qing-song; Ivieng, Lei; Liu, Han-chen; Liu, Qian; Li, Cun-xia

    2015-02-01

    In order to monitor the oil pollution of water real time and accurately for the environmental protection, an intelligent online detection system for the mineral oil in water is put forward in the present paper, based on the technology of ultraviolet fluorescence and internet of things (IOT). For this system, the resolution can be improved by using the higher precision asymmetric Czemy-Turner monochromator; the impact of light fluctuations on the results of exploration can be corrected by a bunch reference light; the optical system deviation caused by the instrument vibration can be reduced by optical fiber transmission; the coupling efficiency of fiber and output signal can be increased by a special fiber beam; the real-time measurement, data processing and remote control can be achieved by the control module and wireless communication module. This system has characteristics of high integration, high precision and good stability etc. The concentration of the unknown sample can be accurately calculated by the methods of parallel algorithms of chemometric metrology and the calculation errors caused by different components can be reduced by the theory of chemical correction factor analysis. The fluorescence spectra of three kinds of sample solution, diesel, engine and crude oil in preparative concentration of 10, 25, 50 and 100 mg x L(-1) were measured by this system respectively. The absorption wavelengths of the above-mentioned three oils were measured to be 256, 365 and 397 nm by a grating spectrometer; their absorbances were measured to be 0.028, 0.036 and 0.041 by fluorescence spectrophotometer, respectively. Their fluorescence emission wavelengths are 355, 419 and 457 nm respectively. Finally the concentration detection limits of the mineral oil in water of diesel, engine and crude oil were obtained, i.e., 0.03, 0.04 and 0.06 mg x L(-1) respectively. Their relative errors are 2.1%, 1.0% and 2.8% respectively.

  6. On the infrared absorption spectrum of the hydrated hydroxide (H3O2-) cluster anion

    NASA Astrophysics Data System (ADS)

    Peláez, Daniel; Meyer, Hans-Dieter

    2017-01-01

    In this work, we present an MCTDH simulation of the infrared (IR) spectrum of the H3O2- cluster anion and compare it to the Ar vibrational predissociation experimental one. In particular, we have focused on the 600-1900cm-1 energy region, which is the lowest energy region experimentally accessible. The computed bands have been assigned to the corresponding eigenstates. The latter have been obtained through Block Improved Relaxation calculations. An overall very good agreement between theory and experiment is achieved. However, certain discrepancies between the calculated IR and the experimental Ar vibrational predissociation one exist. We provide evidence that they are due to the influence of the attached Ar atom.

  7. Vibrational structure of n-π* transition of the UV absorption spectrum of acryloyl fluoride in the gas phase.

    PubMed

    Koroleva, Lidiya A; Tyulin, Vladimir I; Matveev, Vladimir K; Pentin, Yuriy A

    2014-03-25

    UV absorption spectrum of acryloyl fluoride molecule in the gas phase has been obtained in the region at 32600-35500 cm(-1) with the purpose of the investigation of the hindered internal rotation. The resolved vibrational structure of this spectrum consists of 92 absorption bands, each of which corresponds to a certain transition from the ground (S0) to excited (S1) electronic state. The assignment of all bands has been made. The values ν00trans=34831.8 cm(-1) and ν00cis=34679.2 cm(-1) have been determined. Several Deslandres Tables (DTs) have been constructed for torsional vibration of s-trans- and s-cis-isomers of investigated molecule. The origins in these DTs correspond to bands assigned to ν00 and to fundamental frequencies of each isomer in the S0 and S1 states. These DTs have been used to determine the harmonic frequencies ωe, anharmonicity coefficients x11, and frequencies of the torsional vibration transitions (0-υ) up to high values of the vibrational quantum number υ of s-trans- and s-cis-isomers in the both electronic states. The frequencies of torsional vibrations are ν1(″)=116.5cm(-1) for s-trans-isomer and ν1(″)=101.2 cm(-1) for s-cis-isomer in the S0 state. The frequencies of ones are ν1(')=170.4 cm(-1) for s-trans-isomer and ν1(')=139.7 cm(-1) for s-cis-isomer in the S1 state. The fundamental vibrational frequencies set has been found for isomers in the S0 and S1 states.

  8. Optical tuning of the fluorescence spectrum of a π-conjugated polymer through excitation power.

    PubMed

    Deichmann, Vitor Angelo Fonseca; Yakutkin, Vladimir; Baluschev, Stanislav; Akcelrud, Leni

    2011-05-26

    The photophysical properties of a π-conjugated polymer containing 2,2'-bipyridyl alternated with 2,5-dihexyloxyphenylene units (PBPyDHP) are investigated experimentally in terms of the conditions used (solvent, concentration, presence or absence of molecular oxygen, and optical excitation power). The experimental results have suggested that the fluorescence from PBPyDHP can be tuned by proper selection of the experimental conditions showing only one or two emission peaks: 445 nm (blue) and 555 nm (green). The observed effects were interpreted in terms of the twisted intramolecular charge transfer (TICT) theory. This is the first experimental report showing the interconversion of an usual fluorescence, called locally emission state (LE), to a TICT state in second scale time by varying the excitation power; that is, even though the torsion of only one fluorophore occurs in a nano or picosecond scale, the global change (the interconversion for all fluorophores) has occurred in the second time scale.

  9. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    PubMed

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  10. Substituent and solvent effects on the UV-vis absorption spectrum of the photoactive yellow protein chromophore.

    PubMed

    García-Prieto, F Fernández; Aguilar, M A; Galván, I Fdez; Muñoz-Losa, A; Olivares del Valle, F J; Sánchez, M L; Martín, M E

    2015-05-28

    Solvent effects on the UV-vis absorption spectra and molecular properties of four models of the photoactive yellow protein (PYP) chromophore have been studied with ASEP/MD, a sequential quantum mechanics/molecular mechanics method. The anionic trans-p-coumaric acid (pCA(-)), thioacid (pCTA(-)), methyl ester (pCMe(-)), and methyl thioester (pCTMe(-)) derivatives have been studied in gas phase and in water solution. We analyze the modifications introduced by the substitution of sulfur by oxygen atoms and hydrogen by methyl in the coumaryl tail. We have found some differences in the absorption spectra of oxy and thio derivatives that could shed light on the different photoisomerization paths followed by these compounds. In solution, the spectrum substantially changes with respect to that obtained in the gas phase. The n → π1* state is destabilized by a polar solvent like water, and it becomes the third excited state in solution displaying an important blue shift. Now, the π → π1* and π → π2* states mix, and we find contributions from both transitions in S1 and S2. The presence of the sulfur atom modulates the solvent effect and the first two excited states become practically degenerate for pCA(-) and pCMe(-) but moderately well-separated for pCTA(-) and pCTMe(-).

  11. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  12. Quantum dynamical effects in liquid water: A semiclassical study on the diffusion and the infrared absorption spectrum.

    PubMed

    Liu, Jian; Miller, William H; Paesani, Francesco; Zhang, Wei; Case, David A

    2009-10-28

    The important role of liquid water in many areas of science from chemistry, physics, biology, geology to climate research, etc., has motivated numerous theoretical studies of its structure and dynamics. The significance of quantum effects on the properties of water, however, has not yet been fully resolved. In this paper we focus on quantum dynamical effects in liquid water based on the linearized semiclassical initial value representation (LSC-IVR) with a quantum version of the simple point charge/flexible (q-SPC/fw) model [Paesani et al., J. Chem. Phys. 125, 184507 (2006)] for the potential energy function. The infrared (IR) absorption spectrum and the translational diffusion constants have been obtained from the corresponding thermal correlation functions, and the effects of intermolecular and intramolecular correlations have been studied. The LSC-IVR simulation results are compared with those predicted by the centroid molecular dynamics (CMD) approach. Although the LSC-IVR and CMD results agree well for the broadband for hindered motions in liquid water, the intramolecular bending and O-H stretching peaks predicted by the LSC-IVR are blueshifted from those given by CMD; reasons for this are discussed. We also suggest that the broadband in the IR spectrum corresponding to restricted translation and libration gives more information than the diffusion constant on the nature of quantum effects on translational and rotational motions and should thus receive more attention in this regard.

  13. A method to obtain the absorption coefficient spectrum of single grain coal in the aliphatic C-H stretching region using infrared transflection microspectroscopy.

    PubMed

    Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru

    2014-01-01

    A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.

  14. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGES

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; ...

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  15. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  16. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  17. Optoelectronic set for measuring the absorption spectrum of the thin biological media

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian

    2013-10-01

    In the paper the authors present the developed optoelectronic system for controlled, repetitive exposure by electromagnetic radiation of biological structures in the Low Level Laser (LED) Therapy procedures. The set allows for objective selection and control of the irradiation parameters by light from spectral range of the tissues transmission window. Measurements of optical parameters of thin biological medium - spectral absorption coefficient and the amount of absorbed energy - can be implemented in the measuring chamber during irradiation treatment. The radiation source is the broadband illuminator consists of set of selected high power LEDs. The maximum optical power of single source is from 80 mW to 800 mW. Illuminator is controlled and powered by the multi-channel prototype control system, which allows independently control a current of each emitter. This control allows shaping spectral emission characteristic of broadband source in range 600-1000 nm. Illuminator allows providing in the working area of 700 cm2 a uniform distribution of optical power density, of 10 mW/cm2 for maximum. Set ensure uniform distribution of the spectral power density of up to 40 mW/nm.

  18. Infrared-absorption spectrum of the electron bubble in liquid helium

    NASA Astrophysics Data System (ADS)

    Grimes, C. C.; Adams, G.

    1992-02-01

    The energy of the electronic transition from the ground state to the first excited state in the electron bubble in liquid helium has been measured by direct infrared absorption at pressures from zero to the solidification pressure and at temperatures from 1.3 to 4.2 K. At 1.3 K the 1s-1p splitting varies from 0.102 eV at P=0 to 0.227 eV at P=25 atm. At intermediate pressures a simple spherical-square-well model calculation fits the measured splittings within a few percent if the surface tension is taken to be independent of pressure. This model, when extended to allow for dilation and elongation of bubbles trapped on vorticity and dilation of rapidly drifting bubbles, agrees well with the observed transition energies at all pressures. The measured linewidths are larger by at least a factor of 2 than those calculated, which may indicate heating of rapidly drifting bubbles.

  19. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite.

  20. Nonadiabatic photodynamics and UV absorption spectrum of all-trans-octatetraene.

    PubMed

    Lyskov, Igor; Köppel, Horst; Marian, Christel M

    2017-02-01

    The short-time molecular quantum dynamics of all-trans-octatetraene after electronic excitation to the first bright valence state is theoretically investigated. A semiempirical approach of a multireference configuration interaction based on density functional theory, the so called hybrid DFT/MRCI, in both its original and redesigned formulations, is used for treating the electronic part of the problem. The nuclear kinetic part is defined with the help of symmetry-adapted internal coordinates also suitable for a large amplitude displacement. By incorporating ten in-plane and two out-of-plane nuclear degrees of freedom in the underlying Hamiltonian, the results of the time evolution of the excited wave packet are discussed. We show that the population transfer between the two coupled low-lying states in all-trans-octatetraene occurs in a 100-200 fs time regime. The calculated UV absorption spectra describe the main vibronic features correctly except for the band associated with the single-bond stretching motion which lacks intensity. The possible products of the photoisomerization in terms of symmetry-adapted coordinates are also discussed.

  1. Absorption and fluorescence properties of chromophoric dissolved organic matter: implications for the monitoring of water quality in a large subtropical reservoir.

    PubMed

    Liu, Xiaohan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Xu, Hai; Zhu, Mengyuan

    2014-12-01

    The development of techniques for real-time monitoring of water quality is of great importance for effectively managing inland water resources. In this study, we first analyzed the absorption and fluorescence properties in a large subtropical reservoir and then used a chromophoric dissolved organic matter (CDOM) fluorescence monitoring sensor to predict several water quality parameters including the total nitrogen (TN), total phosphorus (TP), chemical oxygen demand (COD), dissolved organic carbon (DOC), and CDOM fluorescence parallel factor analysis (PARAFAC) components in the reservoir. The CDOM absorption coefficient at 254 nm (a(254)), the humic-like component (C1), and the tryptophan-like component (C3) decreased significantly along a gradient from the northwest to the lake center, northeast, southwest, and southeast region in the reservoir. However, no significant spatial difference was found for the tyrosine-like component (C2), which contributed only four marked peaks. A highly significant linear correlation was found between the a(254) and CDOM concentration measured using the CDOM fluorescence sensor (r(2) = 0.865, n = 76, p < 0.001), indicating that CDOM concentrations could act as a proxy for the CDOM absorption coefficient measured in the laboratory. Significant correlations were also found between the CDOM concentration and TN, TP, COD, DOC, and the maximum fluorescence intensity of C1, suggesting that the real-time monitoring of CDOM concentrations could be used to predict these water quality parameters and trace the humic-like fluorescence substance in clear aquatic ecosystems with DOC <2 mg/L and total suspended matter (TSM) concentrations <15 mg/L. These results demonstrate that the CDOM fluorescence sensor is a useful tool for on-line water quality monitoring if the empirical relationship between the CDOM concentration measured using the CDOM fluorescence sensor and the water quality parameters is calibrated and validated.

  2. Study of C2H2 optic-fiber monitoring system on spectrum absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yutian; Li, Xiao-Xin; Wang, Zhong-Dong

    2005-02-01

    We report our research on the development of optical fiber trace gas sensors for environmental applications. A novel optical fiber sensor for monitoring acetylene (C2H2) gases is described. Through studying the measure theory, we use the Beer-Lambert law to monitor the gas. And after analyzing the C2H2 spectrum, we select Distributed Feedback Laser Diode (DFB LD) as light source. Comparing many kinds" sensor detection head, the gas absorbing cell with tail fiber can have good coupling with optical fiber and improve the coupling stability. In the data processing system, signals are distilled by lock-in amplifiers and then harmonic measure technology processes that distilled faint signals. After the all, the electronic signals are transmitted into computer to process, alarm and display. We design the instrument who can remote and on-line measuring acetylene. Through theory analysis and system experiment, the design of the system is practicable, and has a better precision and some apply foreground.

  3. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  4. Two-photon absorption of fluorescent protein chromophores incorporating non-canonical amino acids: TD-DFT screening and classical dynamics.

    PubMed

    Alaraby Salem, M; Brown, Alex

    2015-10-14

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool characterized by deep tissue penetration and little damage. However, two-photon spectroscopy has lower sensitivity than one-photon microscopy alternatives and hence a protein with a large two-photon absorption cross-section is needed. We use time-dependent density functional theory (TD-DFT) at the B3LYP/6-31+G(d,p) level of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the green fluorescent protein (GFP) chromophore with a non-canonical amino acid. A proposed chromophore with a nitro substituent was found to have a large two-photon absorption cross-section (29 GM) compared to other fluorescent protein chromophores as determined at the same level of theory. Classical molecular dynamics are then performed on a nitro-modified fluorescent protein to test its stability and study the effect of the conformational flexibility of the chromophore on its two-photon absorption cross-section. The theoretical results show that the large cross-section is primarily due to the difference between the permanent dipole moments of the excited and ground states of the nitro-modified chromophore. This large difference is maintained through the various conformations assumed by the chromophore in the protein cavity. The nitro-derived protein appears to be very promising as a two-photon absorption probe.

  5. Optical absorption and fluorescence properties of Er3+/Yb3+ codoped lead bismuth alumina borate glasses

    NASA Astrophysics Data System (ADS)

    Goud, K. Krishna Murthy; Reddy, M. Chandra Shekhar; Rao, B. Appa

    2014-04-01

    Lead bismuth alumina borate glasses codoped with Er3+/Yb3+ were prepared by melt quenching technique. Optical absorption, FTIR and photoluminescence spectra of these glasses have been studied. Judd-Ofelt theory has been applied to to the f ↔ f transitions for evaluating Ω2, Ω4 and Ω6 parameters. Radiative properties like branching ratio βr and the radiative life time τR have been determined on the basis of Judd-Ofelt theory. Upconversion emissions have been observed under 980nm laser excitation at room temperature. Green and red up-conversion emissions are centered at 530, 550 and 656 nm corresponding to 2H11/2→4I15/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3+ respectively. The results obtained are discussed quantitatively based on the energy transfer between Yb3+ and Er3+.

  6. [Ultraviolet absorption spectrum analysis and identification of medicinal plants of Paris].

    PubMed

    Zhang, Jin-yu; Wang, Yuan-zhong; Zhao, Yan-li; Yang, Shao-bing; Zhang, Ji; Yuan, Tian-jun; Wang, Jia-jun; Jin, Hang

    2012-08-01

    Species of Paris are important medicinal plants of China. They possess anticancer, hot alexipharmic, detumescence, acesodyne, and arrest blood and remove blood stasis effects. They are the main raw material for several Chinese patent drugs such as "Yunnan Baiyao", "Gong Xue Ning", "Re Du Qing" and "Ji De Sheng Sheyaopian". The present paper, through optimizing the chloroform, absolute ethyl alcohol and water extraction condition of Paris by orthogonal test L3(4) (16), using mean value, smoothness and second differential methods on the observed UV spectrum, to inspects the RSD of stability and repeatability of different waveband. By SIMCA and the common and variant peak ratio dual index sequence analysis method, it evaluated the quality and quantity of Paris. The results showed that at the time of 50, 40 and 50 min, chloroform, absolute ethyl alcohol and water had the highest extraction ratios. Within 20 h, the RSDs of stability were 0.06-1.88, 0.05-2.42 and 0.03-0.35; the RSDs of accuracy were 0-1.48, 0.05-0.37 and 0.09-0.44; and the RSDs of repeatability were 0-1.23, 0.04-0.30 and 0.12-0.25 respectively. The qualitative analysis revealed large differences between different Paris species and different areas. The quantitative analysis indicated that the highest common peak ratio among the Paris samples was 80.00% and the lowest variant peak ratio was 6.25%. The method evaluated Paris of different species and from different producing areas, and also quantitatively assessed the arbitrary two samples, clarified the similarity between the species and areas of Paris, which provided basis of distinguishing the real and false, identification of variety and quality evaluation for Chinese herbal medicine.

  7. Atomic Emission, Absorption and Fluorescence in the Laser-induced Plasma

    SciTech Connect

    Winefordner, J. D.

    2009-01-22

    The main result of our efforts is the development and successful application of the theoretical model of laser induced plasma (LIP) that allows a back-calculation of the composition of the plasma (and the condensed phase) based on the observable plasma spectrum. The model has an immediate experimental input in the form of LIP spectra and a few other experimentally determined parameters. The model is also sufficiently simple and, therefore, practical. It is conveniently interfaced in a graphical user-friendly form for using by students and any laboratory personnel with only minimal training. In our view, the model opens up the possibility for absolute analysis, i.e. the analysis which requires no standards and tedious calibration. The other parts of this proposal (including plasma diagnostics) were somewhat subordinate to this main goal. Plasma diagnostics provided the model with the necessary experimental input and led to better understanding of plasma processes. Another fruitful direction we pursued was the use of the correlation analysis for material identification and plasma diagnostics. Through a number of computer simulations we achieved a clear understanding of how, where and why this approach works being applied to emission spectra from a laser plasma. This understanding will certainly improve the quality of forensic and industrial analyses where fast and reliable material identification and sorting are required.

  8. Quantitative measurement of hydroxyl radical (OH) concentration in premixed flat flame by combining laser-induced fluorescence and direct absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Shuang; Su, Tie; Li, Zhong-Shan; Bai, Han-Chen; Yan, Bo; Yang, Fu-Rong

    2016-10-01

    An accurate and reasonable technique combining direct absorption spectroscopy and laser-induced fluorescence (LIF) methods is developed to quantitatively measure the concentrations of hydroxyl in CH4/air flat laminar flame. In our approach, particular attention is paid to the linear laser-induced fluorescence and absorption processes, and experimental details as well. Through measuring the temperature, LIF signal distribution and integrated absorption, spatially absolute OH concentrations profiles are successfully resolved. These experimental results are then compared with the numerical simulation. It is proved that the good quality of the results implies that this method is suitable for calibrating the OH-PLIF measurement in a practical combustor. Project supported by the National Natural Science Foundation of China (Grant No. 11272338), the Science and Technology on Scramjet Key Laboratory Funding, China (Grant No. STSKFKT 2013004), and the China Scholarship Council.

  9. An experimental study of the electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles and their electrosynthesized polymers.

    PubMed

    Diaw, A K D; Gningue-Sall, D; Yassar, A; Brochon, J-C; Henry, E; Aaron, J-J

    2015-01-25

    Electronic absorption and fluorescence spectral properties of new p-substituted-N-phenylpyrroles (N-PhPys), including HOPhPy, MeOPhPy, ThPhPy, PhDPy, DPhDPy, PyPhThThPhPy, and their available, electrosynthesized polymers were investigated. Electronic absorption spectra, fluorescence excitation and emission spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), and other photophysical parameters of these N-PhPy derivatives and their polymers were measured in DMF, DMSO diluted solutions and/or solid state at room temperature. The electronic absorption spectra of N-PhPy derivatives and their polymers included one to several bands, located in the 270-395 nm region, according to the p-phenyl substituent electron-donating effect and conjugated heteroaromatic system length. The fluorescence excitation spectra were characterized by one broad main peak, with, in most cases, one (or more) poorly resolved shoulder (s), appearing in the 270-405 nm region, and their emission spectra were generally constituted of several bands located in the 330-480 nm region. No significant shift of the absorption, fluorescence excitation and emission spectra wavelengths was found upon going from the monomers to the corresponding polymers. ΦF values were high, varying between 0.11 and 0.63, according to the nature of substituents(s) and to the conjugated system extension. Fluorescence decays were mono-exponential for the monomers and poly-exponential for PyPhThThPhPy and for polymers. τF values were relatively short (0.35-5.17 ns), and markedly decreased with the electron-donor character of the phenyl group p-substituent and the conjugated system extension.

  10. The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2013-08-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array's middle drum detector and the direct comparison to the high resolution fly's eye experiment, Astroparticle Physics 39 (2012) 109-119, http://dx.doi.org/10.1016/j.astropartphys.2012.05.012, Available from: ]. This combined spectrum corroborates the recently published Telescope Array surface detector spectrum [T. Abu-Zayyad, et al., The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment, ApJ 768 (2013) L1, http://dx.doi.org/10.1088/2041-8205/768/1/L1, Available from: ] with independent systematic uncertainties.

  11. The quenching-resolved fluorescence spectrum and its application to studies of the folding/unfolding of trypsin inhibitor from seeds of the bitter gourd.

    PubMed

    Matsumoto, Shuzo; Nishimoto, Etsuko; Soejima, Hironori; Yamashita, Shoji

    2010-01-01

    With reference to the local conformation of a protein, it is interesting to differentiate the individual fluorescence properties of included tryptophan residues without modification. The fluorescence spectrum of bitter gourd trypsin inhibitor (BGTI) was separated into two emission bands by the quenching-resolved fluorescence method. One emission band was given as a fraction with the Stern-Volmer quenching constant, 44.9 x 10(-3) M(-1), against the fluorescence quenching by KI, and it showed an emission maximum intensity at 341 nm. The fluorescence quenching constant of the other band was 1.58 x 10(-3) M(-1), and the maximum wavelength was found at 337 nm. These separated emissions were due to the fluorescence of Trp54 and Trp9 of BGTI. The quenching resolved-fluorescence spectrum was effectively applied to the precise description of the polar circumstances surrounding the Trp residues in the unfolding intermediate state of BGTI. The results suggested that the molten globule-like state of BGTI adopted such a peculiar conformation that the helix domain including Trp9 was packed more densely while the other loop domain partially unfolded.

  12. [X-ray fluorescence spectrum analysis of chemical element for spider and silkworm silk and its applications].

    PubMed

    Yuan, Bo; Xu, Ze-ren; Xie, Zhuo-jun; Shi, Qiang; Zhang, Xing-kang; Xu, Si-chuan

    2010-07-01

    Elemental compositions in spider and silkworm silks were determined by X-ray fluorescence (XRF) spectrum to probe the silk-forming mechanisms and an elemental basis for spider silk with excellent characteristics. XRF analysis demonstrates that in the silkworm silk, the elemental content is 47.10% for C, 29.92% for O and 16. 52% for N, including metal elemental contents: 0.166 2% for Ca, 0.104 0% for Mg and 0.039 5% for K, while Na, Zn, Ni, Fe and Cr show less micro quantity. Due to relative high quantity for Ca and Mg, they both play an important role in the silk-forming mechanism by silkworm. In the spider silk, the determined main nonmetal elemental contents are 44.09% for C, 26.64% for O and 22.34% for N. The high content of nitrogen may be an elemental basis for spider silk with excellent characteristic. The main metal elemental contents are 0.268 0% for Na, 0.081 4% for K and 0.011 6% for Mg, while Ca, Zn, Ni, Cu and Cr possess less micro quantity in the spider silk. Because of relative high quantity for Na and K, they both play an important role in the silk-forming mechanism by spider. The elemental compositions investigated by using mathematic statistic method are quite in agreement with those demonstrated by using XRF spectrum, which validates the experimentally determined elemental compositions in the spider and silkworm silks.

  13. The absorption spectrum of monodeuterated methane /CH3D/ in the 6000-12000 A spectral region. [in atmospheres of outer planets

    NASA Technical Reports Server (NTRS)

    Danehy, R. G.; Lutz, B. L.; Owen, T.; Scattergood, T. W.; Goetz, W.

    1977-01-01

    Preliminary results of a laboratory study of the absorption spectrum of CH3D are presented. Three new parallel-type bands are reported at 8379 A, 9613 A, and 1.065 microns. The application of this work to the search for CH3D in the atmospheres of the outer planets is discussed.

  14. Prediction of two-photon absorption enhancement in red fluorescent protein chromophores made from non-canonical amino acids.

    PubMed

    Salem, M Alaraby; Twelves, Isaac; Brown, Alex

    2016-09-21

    Two-photon spectroscopy of fluorescent proteins is a powerful bio-imaging tool known for deep tissue penetration and little cellular damage. Being less sensitive than the one-photon microscopy alternatives, a protein with a large two-photon absorption (TPA) cross-section is needed. Here, we use time-dependent density functional theory (TD-DFT) at the B3LYP and CAM-B3LYP/6-31+G(d,p) levels of theory to screen twenty-two possible chromophores that can be formed upon replacing the amino-acid Tyr66 that forms the red fluorescent protein (RFP) chromophore with a non-canonical amino acid. The two-level model for TPA was used to assess the properties (i.e., transition dipole moment, permanent dipole moment difference, and the angle between them) leading to the TPA cross-sections determined via response theory. Computing TPA cross-sections with B3LYP and CAM-B3LYP yields similar overall trends. Results using both functionals agree that the RFP-derived model of the Gold Fluorescent Protein chromophore (Model 20) has the largest intrinsic TPA cross-section at the optimized geometry. TPA was further computed for selected chromophores following conformational changes: variation of both the dihedral angle of the acylimine moiety and the tilt and twist angles between the rings of the chromophore. The TPA cross-section assumed an oscillatory trend with the rotation of the acylimine dihedral, and the TPA is maximized in the planar conformation for almost all models. Model 21 (a hydroxyquinoline derivative) is shown to be comparable to Model 20 in terms of TPA cross-section. The conformational study on Model 21 shows that the acylimine angle has a much stronger effect on the TPA than its tilt and twist angles. Having an intrinsic TPA ability that is more than 7 times that of the native RFP chromophore, Models 20 and 21 appear to be very promising for future experimental investigation.

  15. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    PubMed

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  16. Absorption and fluorescence characteristics of photo-activated adenylate cyclase nano-clusters from the amoeboflagellate Naegleria gruberi NEG-M strain

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Stierl, M.; Hegemann, P.; Kateriya, S.

    2012-01-01

    The spectroscopic characteristics of BLUF (BLUF = sensor of blue light using flavin) domain containing soluble adenylate cyclase (nPAC = Naegleria photo-activated cyclase) samples from the amoeboflagellate Naegleria gruberi NEG-M strain is studied at room temperature. The absorption and fluorescence spectroscopic development in the dark was investigated over two weeks. Attenuation coefficient spectra, fluorescence quantum distributions, fluorescence quantum yields, and fluorescence excitation distributions were measured. Thawing of frozen nPAC samples gave solutions with varying protein nano-cluster size and varying flavin, tyrosine, tryptophan, and protein color-center emission. Protein color-center emission was observed in the wavelength range of 360-900 nm with narrow emission bands of small Stokes shift and broad emission bands of large Stokes shift. The emission spectra evolved in time with protein nano-cluster aging.

  17. [Formation of maxima in the absorption spectrum of carotenoids in the region around 370 nm; consequences for the interpretation of certain action spectra].

    PubMed

    Hager, A

    1970-03-01

    1. Most carotenoids show a 3-peak-absorption curve in the visible spectral region in polar solutions. The addition of a definite quantity of H2O to such solutions (ethanol, methanol, aceton, isopropanol) changes the absorption curve of these pigments in a characteristic manner. A new peak appears in the uv region of the spectrum (e.g.in the case of lutein at 370 nm); simultaneously the 3-peak fine structure of the visible spectrum diminishes and completely disappears after further addition of H2O. Such changes are observed especially in the case of lutein and zeaxanthin, but also in the case of neoxanthin, violaxanthin and lycopene (of the carotenoids analyzed). During thermic excitation (45° C) the uv-peak in the carotenoid spectrum disappears and the normal 3-peak curve is restored; upon cooling the uv-peak appears again. The variation of the carotenoid spectrum and the formation of a maximum in the uv-region are possibly caused by an aggregation of the pigment molecules with participation of H2O molecules. This formation of polymers obviously leads to an alteration in the distribution of electrons in the chromophore system of the carotenoid molecule and thereby to a change of the light absorption. 2. Water-soluble carotenoid complexes isolated from spinach chloroplasts show a strong light absorption in the uv-region and a one-peak absorption curve in the visible blue. After transfer of the complex to polar solutions a characteristic 3-peak carotenoid curve appears in the blue region of the spectrum; concomitantly the maximum in the uv disappears. That means that carotenoids which are bound to membranes or particles in the intact cell may have a 4-peak absorption curve similar to that of pigments which are dissolved in the water-containing alcohols mentioned above. It is conceivable that those carotenoids which do not form uv peaks in the dissolved state are able to do so under conditions under which carotenoids are bound to membranes or particles. 3. The

  18. Atmospheric chemistry of hydrazoic acid (HN3): UV absorption spectrum, HO reaction rate, and reactions of the N3 radical.

    PubMed

    Orlando, John J; Tyndall, Geoffrey S; Betterton, Eric A; Lowry, Joe; Stegall, Steve T

    2005-03-15

    Processes related to the tropospheric lifetime and fate of hydrazoic acid, HN3, have been studied. The ultraviolet absorption spectrum of HN3 is shown to possess a maximum near 262 nm with a tail extending to at least 360 nm. The photolysis quantum yield for HN3 is shown to be approximately 1 at 351 nm. Using the measured spectrum and assuming unity quantum yield throughout the actinic region, a diurnally averaged photolysis lifetime near the earth's surface of 2-3 days is estimated. Using a relative rate method, the rate coefficient for reaction of HO with HN3 was found to be (3.9 +/-0.8) x 10(-12) cm3 molecule(-1) s(-1), substantially larger than the only previous measurement. The atmospheric HN3 lifetime with respect to HO oxidation is thus about 2-3 days, assuming a diurnally averaged [HO] of 10(6) molecule cm(-3). Reactions of N3, the product of the reaction of HO with HN3, were studied in an environmental chamber using an FTIR spectrometer for end-product analysis. The N3 radical reacts efficiently with NO, producing N2O with 100% yield. Reaction of N3 with NO2 appears to generate both NO and N2O, although the rate coefficient for this reaction is slower than that for reaction with NO. No evidence for reaction of N3 with CO was observed, in contrast to previous literature data. Reaction of N3 with O2 was found to be extremely slow, k < 6 x 10(-20) cm3 molecule(-1) s(-1), although this upper limit does not necessarily rule out its occurrence in the atmosphere. Finally, the rate coefficient for reaction of Cl with HN3 was measured using a relative rate method, k = (1.0+/-0.2) x 10(-12) cm3 molecule(-1) s(-1).

  19. Absorption and fluorescence of hydrophobic components of dissolved organic matter in several Karelian lakes with stratified structures

    NASA Astrophysics Data System (ADS)

    Khundzhua, Daria A.; Kharcheva, Anastasia V.; Krasnova, Elena D.; Gorshkova, Olga M.; Chevel, Kira A.; Yuzhakov, Viktor I.; Patsaeva, Svetlana V.

    2016-04-01

    Hydrophobic components of cromophoric dissolved organic matter (CDOM) extracted from water samples and sediments taken in several relic basins located on Karelian shoreline of the White Sea were analyzed using spectroscopic techniques. Those water reservoirs exist at various stages of isolation from the White Sea and represent complex stratified systems of fresh and marine water layers not completely mixing trough the year. Basins separating from the White Sea are the unique natural objects for investigations of properties CDOM, its transformation in the process of turning the marine ecosystem into freshwater environment. CDOM occurring in all types of natural water represents a significant reservoir of organic carbon and plays a key role in the carbon cycle on the Earth. However, aquatic CDOM and nonliving organic matter in sediments from relic separating basins still have not been studied. The target of this work was to study absorption and fluorescence spectra of hydrophobic components of aquatic CDOM from different water depth and sediments in several separated basins of the Kandalaksha Gulf of the White Sea located near the N.A. Pertsov White Sea Biological Station.

  20. Calcium in the developing Ambystoma neural axis shown by 3H and fluorescent chlortetracycline and atomic absorption spectrometry

    SciTech Connect

    Moran, D.J. )

    1990-12-01

    The calcium ion has been implicated in the mediation of the morphogenetic movements that occur during neural tube formation. The present study identifies high levels of calcium in the neuroepithelium of the neural plate, folds, and tube. These levels are substantially higher than those discerned elsewhere in the embryo. The calcium is localized in morphogenetically active regions by using the antibiotic chlortetracycline (CTC) which chelates calcium and is demonstrated in this investigation by both autoradiography and calcium-linked fluorescence. The specificity of CTC reaction for calcium in the developing neural axis is confirmed by EGTA competition. A comparison of the actual calcium levels in the developing neural axis (dorsal) with equivalently weighted ventral tissues was obtained by atomic absorption spectrometry (AAS). This method provides a total count of the calcium without any loss during tissue processing. For AAS, living tissues were precisely excised and immediately dessicated. Each tissue sample (dry weight 1.5 mg) was then solubilized for analysis. The spectrometric data reveal that the embryonic dorsal aspect forming the neural tube contains 57% more calcium than an equivalent weight of the ventral aspect.

  1. Versatile plug flow catalytic cell for in situ transmission/fluorescence x-ray absorption fine structure measurements

    SciTech Connect

    Centomo, P.; Zecca, M.; Meneghini, C.

    2013-05-15

    A novel flow-through catalytic cell has been developed for in situ x-ray absorption spectroscopy (XAS) experiments on heterogeneous catalysts under working conditions and in the presence of a liquid and a gas phase. The apparatus allows to carry out XAS measurements in both the transmission and fluorescence modes, at moderate temperature (from RT to 50-80 Degree-Sign C) and low-medium gas pressure (up to 7-8 bars). The materials employed are compatible with several chemicals such as those involved in the direct synthesis of hydrogen peroxide (O{sub 2}, H{sub 2}, H{sub 2}O{sub 2}, methanol). The versatile design of the cell allows to fit it to different experimental setups in synchrotron radiation beamlines. It was used successfully for the first time to test nanostructured Pd catalysts during the direct synthesis of hydrogen peroxide (H{sub 2}O{sub 2}) in methanol solution from dihydrogen and dioxygen.

  2. Solvent Effects on the Electronic Absorption and Fluorescence Spectra of HNP: Estimation of Ground and Excited State Dipole Moments.

    PubMed

    Desai, Vani R; Hunagund, Shirajahammad M; Basanagouda, Mahantesha; Kadadevarmath, Jagadish S; Sidarai, Ashok H

    2016-07-01

    We report the effect of solvents on absorption and fluorescence spectra of biologically active 3(2H)-pyridazinone namely 5-(2-hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (HNP) in different solvents at room temperature. The ground and the excited state dipole moments of HNP molecule was estimated from Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations using the solvatochromic shift method. The ground state dipole moment (μ g ) was also estimated by Guggenheim and Higasi method using the dielectric constant and refractive index of solute at different concentrations, the μ g value obtained from these two methods are comparable to the μ g value obtained by the solvatochromic shift method. The excited state dipole moment (μ e ) is greater than the ground state dipole moment (μ g ), which indicates that the excited state is more polar than the ground state. Further, we have evaluated the change in dipole moment (Δμ) from the solvatochromic shift method and on the basis of molecular-microscopic solvent polarity parameter[Formula: see text], later on the values were compared.

  3. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  4. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  5. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability.

  6. Ion pairs of indobenzimidazolo cyanines: a structural study based on conductivity, absorption, fluorescence and 1H-NMR

    NASA Astrophysics Data System (ADS)

    Tatikolov, Aleksandr S.; Ishchenko, Aleksandr A.; Ghelli, Stefano; Ponterini, Glauco

    1998-11-01

    Asymmetric benzimidazolo carbo, di- and tricarbocyanines form ion pairs of the solvent-separated and contact types with different counterions in tetrahydrofuran, toluene and toluene-nitrile mixtures. The dissociation constants of the ion pairs in tetrahydrofuran, evaluated from conductivity data, do not depend on the length of the polymethine chain and show only a small decrease with decreasing counterion size. The absorption and fluorescence excitation spectra of the contact ion pairs exhibit a pronounced hypsochromic shift with respect to the solvated ions and the solvent-separated ion pairs. 1H-NMR experiments have provided information about the electronic structures of the ions of both the asymmetric dyes and the corresponding symmetric carbocyanines. They have also revealed different preferred anion locations in the contact ion pairs of the symmetric indocarbocyanine on one hand, and of the benzimidazolo carbocyanine and the asymmetric dyes on the other. This structural difference is suggested to be a cause of the observed opposite effects of ion pairing on the isomerization kinetics of the two groups of dyes.

  7. Multi-wavelength fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Lo, Pei-An; Cho, Jaedu; Nouizi, Farouk; Chiang, Huihua K.; Kim, Chang-Seok; Gulsen, Gultekin

    2016-03-01

    The strong scattering and absorption of light in biological tissue makes it challenging to model the propagation of light, especially in deep tissue. This is especially true in fluorescent tomography, which aims to recover the internal fluorescence source distribution from the measured light intensities on the surface of the tissue. The inherently ill-posed and underdetermined nature of the inverse problem along with strong tissue scattering makes Fluorescence Tomography (FT) extremely challenging. Previously, multispectral detection fluorescent tomography (FT) has been shown to improve the image quality of FT by incorporating the spectral filtering of biological tissue to provide depth information to overcome the inherent absorption and scattering limitations. We investigate whether multi-wavelength fluorescent tomography can be used to distinguish the signals from multiple fluorophores with overlapping fluorescence spectrums using a unique near-infrared (NIR) swept laser. In this work, a small feasibility study was performed to see whether multi-wavelength FT can be used to detect subtle shifts in the absorption spectrum due to differences in fluorophore microenvironment.

  8. Resonance Rayleigh scattering, frequency doubling scattering and absorption spectrum of the interaction for mebendazole with 12-tungstophosphoric acid and its analytical applications.

    PubMed

    Tian, Fengling; Yang, Jidong; Huang, Wei; Zhou, Shang; Yao, Gengyang

    2013-12-01

    The interaction of mebendazole (MBZ) with 12-tungstophosphoric acid (TP) has been investigated by using resonance Rayleigh scattering (RRS) and frequency doubling scattering (FDS) combining with absorption spectrum. In pH 1.0 HCl medium, MBZ reacted with TP to form 3:1 ion-association complex. As a result, not only the spectrum of absorption was changed, but also the intensities of RRS and FDS were enhanced greatly. The maximum RRS, FDS and absorption wavelengths are located at 372, 392 and 260 nm, respectively. The increments of scattering intensity (ΔI) and absorption (ΔA) are directly proportional to the concentrations of MBZ in certain ranges. The detection limits (3σ) of RRS, FDS and absorption are 0.56, 0.86 and 130.16 ng/mL, respectively. The sensitivity of RRS method is higher than FDS and absorption methods. The optimum conditions of RRS method and the influence factors were discussed in the paper, in addition, the structure of ion-association complex and the reaction mechanism were investigated. Based on the ion-association reaction and its spectral response, the rapid, simple and sensitive RRS method for the determination of MBZ has been developed.

  9. Lifetime-Broadening-Suppressed X-ray Absorption Spectrum of β-YbAlB4 Deduced from Yb 3d → 2p Resonant X-ray Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kawamura, Naomi; Kanai, Noriko; Hayashi, Hisashi; Matsuda, Yasuhiro H.; Mizumaki, Masaichiro; Kuga, Kentaro; Nakatsuji, Satoru; Watanabe, Shinji

    2017-01-01

    In this work, the Yb 3d → 2p (Yb Lα1,2) resonant X-ray emission spectrum of β-YbAlB4 was acquired using excitation energies around the Yb L3-edge, at 2 K. Subsequently, the lifetime-broadening-suppressed (LBS) X-ray absorption structure (XAS) spectrum was obtained using the SIM-RIXS program. This spectrum was found to exhibit clearly resolved pre-edge and shoulder structures. Resonant Lα1 emission spectra were well reproduced from LBS-XAS profiles over wide ranges of excitation and emission energies. In contrast, noticeable discrepancies appeared between the experimental and simulated Lα2 emission spectra, suggesting an effect resulting from M4M5O1 Coster-Kronig transitions. LBS-XAS, in conjunction with partial fluorescence yield (PFY) XAS and transmission XAS, determined a value for the Yb valence (v) in β-YbAlB4 of 2.76 ± 0.08 at 2 K. Despite this relatively large uncertainty in v, each method provided a consistent variation in valence (δv) as the temperature was raised from 2 to 280 K: 0.060 ± 0.004 (LBS-XAS), 0.061 ± 0.005 (PFY-XAS) and 0.058 ± 0.007 (transmission XAS). The smaller δv associated with LBS-XAS demonstrates the greater precision of this method.

  10. Upper limits on the 21 cm power spectrum at z = 5.9 from quasar absorption line spectroscopy

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Greig, Bradley; Mesinger, Andrei

    2016-11-01

    We present upper limits on the 21 cm power spectrum at z = 5.9 calculated from the model-independent limit on the neutral fraction of the intergalactic medium of x_{H I} < 0.06 + 0.05 (1σ ) derived from dark pixel statistics of quasar absorption spectra. Using 21CMMC, a Markov chain Monte Carlo Epoch of Reionization analysis code, we explore the probability distribution of 21 cm power spectra consistent with this constraint on the neutral fraction. We present 99 per cent confidence upper limits of Δ2(k) < 10-20 mK2 over a range of k from 0.5 to 2.0 h Mpc-1, with the exact limit dependent on the sampled k mode. This limit can be used as a null test for 21 cm experiments: a detection of power at z = 5.9 in excess of this value is highly suggestive of residual foreground contamination or other systematic errors affecting the analysis.

  11. The energy spectrum of cosmic rays above 1017.2 eV measured by the fluorescence detectors of the Telescope Array experiment in seven years

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2016-07-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 1017.2eV measured by the fluorescence detectors and a comparison with previously published results.

  12. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2010-09-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  13. Photosynthetic light-harvesting complexes: fluorescent and absorption spectroscopy under two-photon (1200-1500 nm) and one-photon (600-750 nm) excitation by laser femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Stepanenko, Il'ya A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Makhneva, Zoya K.; Moskalenko, Andrey A.; Razjivin, Andrei P.

    2011-02-01

    The pathways of excitation energy transfer (EET) via pigments of the light-harvesting antenna are still in discussion. The bacteriochlorophyll fluorescence of peripheral light-harvesting complexes (LH2) from purple bacteria can be observed upon two-photon excitation (TPE) within 1200-1500 nm spectral range (a broad band near 1300 nm). Earlier the occurrence of this band was taken as an evidence for the participation of "dark" carotenoid S1 state in EET processes (see [Walla et al., Proc. Nat. Acad. Sci. U.S.A. 97, 10808-10813 (2000)] and references in it). However we showed that TPE spectrum of LH2 fluorescence within 1200-1500 nm is not associated with carotenoids [Stepanenko et al., J. Phys. Chem. B. 113(34), 11720-11723 (2009)]. Here we present TPE spectra of fluorescence for chromatophores and lightharvesting complexes LH2 and LH1 from wild-type cells and from carotenoid-depleted or carotenoidless mutant cells of several purple bacteria. The broad band within 1300-1400 nm was found for all preparations. Absorption pump-probe femtosecond spectroscopy applied to LH2 complex from Rb. sphaeroides revealed the similar spectral and kinetic patterns for TPE at 1350 nm and one-photon excitation at 675 nm. Analysis of pigment composition of this complex by high-pressure liquid chromatography showed that even under mild isolation conditions some bacteriochlorophyll molecules were oxidized to 3-acetyl-chlorophyll molecules having the long-wavelength absorption peak in the 650-700 nm range. It is proposed that these 3-acetyl-chlorophyll molecules are responsible for the broad band in TPE spectra within the 1200-1500 nm region.

  14. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  15. Robust and economical multi-sample, multi-wavelength UV/vis absorption and fluorescence detector for biological and chemical contamination

    NASA Astrophysics Data System (ADS)

    Lu, Peter J.; Hoehl, Melanie M.; Macarthur, James B.; Sims, Peter A.; Ma, Hongshen; Slocum, Alexander H.

    2012-09-01

    We present a portable multi-channel, multi-sample UV/vis absorption and fluorescence detection device, which has no moving parts, can operate wirelessly and on batteries, interfaces with smart mobile phones or tablets, and has the sensitivity of commercial instruments costing an order of magnitude more. We use UV absorption to measure the concentration of ethylene glycol in water solutions at all levels above those deemed unsafe by the United States Food and Drug Administration; in addition we use fluorescence to measure the concentration of d-glucose. Both wavelengths can be used concurrently to increase measurement robustness and increase detection sensitivity. Our small robust economical device can be deployed in the absence of laboratory infrastructure, and therefore may find applications immediately following natural disasters, and in more general deployment for much broader-based testing of food, agricultural and household products to prevent outbreaks of poisoning and disease.

  16. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  17. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  18. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    DOE PAGES

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; ...

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 gmore » Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.« less

  19. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    SciTech Connect

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; Lai, Barry; Stauber, Jennifer; Jolley, Dianne F.

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 g Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.

  20. Origin of absorption peaks in reflection loss spectrum in Ku- frequency band of Co-Zr substituted strontium hexaferrites prepared using sucrose precursor

    NASA Astrophysics Data System (ADS)

    Narang, Sukhleen Bindra; Pubby, Kunal; Chawla, S. K.; Kaur, Prabhjyot

    2017-03-01

    This study presents the detailed explanation of the factors, contributing towards the absorption peaks in reflection loss spectrum of hexaferrites. Cobalt-Zirconium substituted strontium hexaferrites, synthesized using sucrose precursor sol-gel technique, were analyzed in 12.4-18 GHz frequency range. The concepts of impedance matching through quarter wavelength condition, complex thickness, dielectric phase angle and attenuation constant have been used to determine the location as well as intensity of absorption peaks. This study also demonstrates the potential application of three compositions of this series with doping content (x)==0.0, 0.6 and 0.8 as an effective microwave absorbers in Ku-frequency band.

  1. Charge transfer optical absorption and fluorescence emission of 4-(9-acridyl)julolidine from long-range-corrected time dependent density functional theory in polarizable continuum approach

    NASA Astrophysics Data System (ADS)

    Kityk, A. V.

    2014-07-01

    A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω≈0.245 Bohr-1) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr-1. Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening.

  2. Franck-Condon factors perturbed by damped harmonic oscillators: Solvent enhanced X 1Ag ↔ A1B1u absorption and fluorescence spectra of perylene

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Wen; Yang, Ling; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng-Hsien

    2014-08-01

    Damped harmonic oscillators are utilized to calculate Franck-Condon factors within displaced harmonic oscillator approximation. This is practically done by scaling unperturbed Hessian matrix that represents local modes of force constants for molecule in gaseous phase, and then by diagonalizing perturbed Hessian matrix it results in direct modification of Huang-Rhys factors which represent normal modes of solute molecule perturbed by solvent environment. Scaling parameters are empirically introduced for simulating absorption and fluorescence spectra of an isolated solute molecule in solution. The present method is especially useful for simulating vibronic spectra of polycyclic aromatic hydrocarbon molecules in which hydrogen atom vibrations in solution can be scaled equally, namely the same scaling factor being applied to all hydrogen atoms in polycyclic aromatic hydrocarbons. The present method is demonstrated in simulating solvent enhanced X 1Ag ↔ A1B1u absorption and fluorescence spectra of perylene (medium-sized polycyclic aromatic hydrocarbon) in benzene solution. It is found that one of six active normal modes v10 is actually responsible to the solvent enhancement of spectra observed in experiment. Simulations from all functionals (TD) B3LYP, (TD) B3LYP35, (TD) B3LYP50, and (TD) B3LYP100 draw the same conclusion. Hence, the present method is able to adequately reproduce experimental absorption and fluorescence spectra in both gas and solution phases.

  3. Cavity Ringdown Absorption Spectrum of the T_1 (n,π^{*}) ← S_0 Transition of 2-CYCLOHEXEN-1-ONE

    NASA Astrophysics Data System (ADS)

    Zabronsky, Katherine L.; McAnally, Michael O.; Stupca, Daniel J.; Pillsbury, Nathan R.; Drucker, Stephen

    2013-06-01

    The cavity ringdown (CRD) absorption spectrum of 2-cyclohexen-1-one (CHO) was recorded over the range 401.5-410.5 nm in a room-temperature gas cell. The very weak band system (ɛ ≤ 0.02 dm^3 mol^{-1} {cm}^{-1}) in this region is due to the T_1(n, π*) ← S_0 electronic transition. The 0^0_0 origin band was assigned to the feature observed at {24,558.6 ± 0.3 {cm}^{-1}}. We have assigned about 25 vibronic transitions in a region extending from {-200 to +350 cm^{-1}} relative to the origin band. From these assignments we determined fundamental frequencies for several vibrational modes in the T_1 excited state. The table below compares their frequencies to corresponding values measured for CHO vapor in the S_0 electronic ground state (via far-IR spectroscopy) and the S_1(n, π*) excited state (via near-UV CRD spectroscopy). Low-frequency fundamentals (cm^{-1}) of CHO vapor Mode Description S_0 S_1(n,π^*) T_1(n,π^*) 39 ring twist 99.2 122.1 99.5 38 bend (inversion of C-5) 247 251.9 253.2 37 C=C twist 304.1 303.3 247.8 36 C=O wag 485 343.9 345.5 For ν_{39} and ν_{37}, the differences between S_1 and T_1 frequencies are noteworthy. These differences suggest that the electron delocalization associated with the π^* ← n chromophore in CHO is substantially different for singlet vs. triplet excitation. T. L. Smithson and H. Wieser, J. Chem. Phys. {73}, 2518 (1980) M. Z. M. Rishard and J. Laane, J. Molec. Struct. {976}, 56 (2010). M. Z. M. Rishard, E. A. Brown, L. K. Ausman, S. Drucker and J. Laane, J. Phys. Chem. A {112}, 38 (2008).

  4. Intramolecular charge transfer with the planarized 4-cyanofluorazene and its flexible counterpart 4-cyano-N-phenylpyrrole. Picosecond fluorescence decays and femtosecond excited-state absorption.

    PubMed

    Druzhinin, Sergey I; Kovalenko, Sergey A; Senyushkina, Tamara A; Demeter, Attila; Machinek, Reinhard; Noltemeyer, Mathias; Zachariasse, Klaas A

    2008-09-11

    The fluorescence spectrum of the rigidified 4-cyanofluorazene (FPP4C) in n-hexane consists of a dual emission from a locally excited (LE) and an intramolecular charge-transfer (ICT) state, with an ICT/LE fluorescence quantum yield ratio of Phi'(ICT)/Phi(LE) = 3.3 at 25 degrees C. With the flexible 4-cyano- N-phenylpyrrole (PP4C) in n-hexane, such an ICT reaction also takes place, with Phi'(ICT)/Phi(LE) = 1.5, indicating that for this reaction, a perpendicular twist of the pyrrole and benzonitrile moieties is not required. The ICT emission band of FPP4C and PP4C in n-hexane has vibrational structure, but a structureless band is observed in all other solvents more polar than the alkanes. The enthalpy difference Delta H of the LE --> ICT reaction in n-hexane, -11 kJ/mol for FPP4C and -7 kJ/mol for PP4C, is determined by analyzing the temperature dependence of Phi'(ICT)/Phi(LE). Using these data, the energy E(FC,ICT) of the Franck-Condon ground state populated by the ICT emission is calculated, 41 (FPP4C) and 40 kJ/mol (PP4C). These large values for E(FC,ICT) lead to the conclusion that with FPP4C and PP4C, direct ICT excitation, bypassing LE, does not take place. FPP4C has an ICT dipole moment of 15 D, similar to that of PP4C (16 D). Picosecond fluorescence decays allow the determination of the ICT lifetime, from which the radiative rate constant k'(f)(ICT) is derived, with comparable values for FPP4C and PP4C. This shows that an argument for a twisted ICT state of PP4C cannot come from k'(f)(ICT). After correction for the solvent refractive index and the energy of the emission maximum nu(max)(ICT), it appears that k'(f)(ICT) is solvent-polarity-independent. Femtosecond transient absorption with FPP4C and PP4C in n-hexane reveals that the ICT state is already nearly fully present at 100 fs after excitation, in rapid equilibrium with LE. In MeCN, the ICT state of FPP4C and PP4C is likewise largely developed at this delay time, and the reaction is limited by dielectric

  5. Effect of zeolite properties on ground-state and triplet-triplet absorption, prompt and oxygen induced delayed fluorescence of tetraphenylporphyrin at gas/solid interface

    NASA Astrophysics Data System (ADS)

    Levin, P. P.; Costa, Silvia M. B.; Lopes, J. M.; Serralha, F. N.; Ribeiro, F. Ramôa

    2000-08-01

    The ground-state and transient absorption, prompt and delayed fluorescence of tetraphenylporphyrin (TPP) adsorbed onto the external surface of different zeolites was monitored using diffuse-reflectance steady-state and laser flash photolysis. The delayed fluorescence (DF) of TPP detected in the presence of O 2 is attributed to the energy transfer from 3TPP to 3O 2 to form 1O 2 and subsequent energy transfer from 1O 2 to some other 3TPP within the organised molecular ensembles on the zeolite surface. The spectroscopic and kinetic parameters, namely the yield of DF (2-20% relative to prompt fluorescence), depend on the zeolite properties: the observed differences were correlated with the acid-base properties of the two zeolite series studied in this work (KA, NaA, CaA) and (NaA, NaX, NaY).

  6. Mechanism for optical enhancement and suppression of fluorescence.

    PubMed

    Bradshaw, David S; Andrews, David L

    2009-06-18

    When fluorescence from electronically excited states follows the absorption of radiation, the emission spectrum is often a key to identification of the excited species. It now emerges that passing off-resonant laser light through such an electronically excited system may enhance or suppress the fluorescent emission. This report establishes the mechanism and theory for this optical control of spontaneous fluorescence, derived by quantum electrodynamical analysis. Experimental techniques to detect the enhanced signal are also proposed.

  7. The Q(y) absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations.

    PubMed

    Zucchelli, Giuseppe; Santabarbara, Stefano; Jennings, Robert C

    2012-04-03

    The absorption spectrum of the main antenna complex of photosystem II, LHCII, has been modeled using, as starting points, the chlorophyll (chl) atomic coordinates as obtained by the LHCII crystal analysis [Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004) Nature 428, 287-292] of three different trimers. The chl site Q(y) transition energies have been obtained in terms of the chl macrocycle deformations influencing the energy level of the chl frontier orbitals. Using these chl site transition energy values and the entire set of interaction energies, calculated in the ideal dipole approximation, the complete Hamiltonians for the three LHCII trimers have been written and the full set of 42 eigenstates of each LHCII trimer have been calculated. With the 42 transition energies and transition dipole strengths, either unperturbed or associated to the eigenstates, the LHCII Q(y) absorption spectrum has been calculated using a chl absorption band shape. These calculations have been performed both in vacuo and in the presence of a medium. Despite the number of approximations, a good correlation with the measured absorption spectrum of a LHCII preparation is obtained. This analysis shows that, although a substantial C3 symmetry of the LHCII trimer in terms of both chl-chl distances and interaction energies is present, a marked variation among monomer subsets of site transition energies is estimated. This leads to a C3 symmetry breaking in the unperturbed chl site transition energies set and, consequently, in the trimer eigenstates. It is also concluded that interactions among chlorophylls do not significantly modify the light absorption role of LHCII in plant leaves.

  8. The UV-absorption spectrum of human iridal melanosomes: a new perspective on the relative absorption of eumelanin and pheomelanin and its consequences.

    PubMed

    Peles, Dana N; Simon, John D

    2012-01-01

    Photoemission electron microscopy is used to measure the absorption coefficients, εc, of intact iridal stroma melanosomes isolated from dark brown and blue-green human irides for the spectral range λ=244-310 nm. These iridal stroma melanosomes were chosen because different colored irides produce organelles of varying eumelanin:pheomelanin ratios with similar size and morphology. Similar absorption spectra are found for the two types of melanosomes. The experimental spectra measured within are compared with both the extinction coefficient spectra obtained on soluble synthetic model systems and the monomeric precursors to each pigment.

  9. Reconstruction of the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its digital image: the challenge of algal colours.

    PubMed

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna Maria; Gualtieri, Paolo

    2016-12-01

    A novel procedure for deriving the absorption spectrum of an object spot from the colour values of the corresponding pixel(s) in its image is presented. Any digital image acquired by a microscope can be used; typical applications are the analysis of cellular/subcellular metabolic processes under physiological conditions and in response to environmental stressors (e.g. heavy metals), and the measurement of chromophore composition, distribution and concentration in cells. In this paper, we challenged the procedure with images of algae, acquired by means of a CCD camera mounted onto a microscope. The many colours algae display result from the combinations of chromophores whose spectroscopic information is limited to organic solvents extracts that suffers from displacements, amplifications, and contraction/dilatation respect to spectra recorded inside the cell. Hence, preliminary processing is necessary, which consists of in vivo measurement of the absorption spectra of photosynthetic compartments of algal cells and determination of spectra of the single chromophores inside the cell. The final step of the procedure consists in the reconstruction of the absorption spectrum of the cell spot from the colour values of the corresponding pixel(s) in its digital image by minimization of a system of transcendental equations based on the absorption spectra of the chromophores under physiological conditions.

  10. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.

    PubMed

    Adriano Junior, L; Fonseca, T L; Castro, M A

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  11. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum

    NASA Astrophysics Data System (ADS)

    Mondelain, D.; Vasilchenko, S.; Čermák, P.; Kassi, S.; Campargue, A.

    2017-01-01

    The CO2 absorption continuum near 2.3 μm is determined for a series of sub atmospheric pressures (250-750 Torr) by high sensitivity Cavity Ring Down Spectroscopy. An experimental procedure consisting in injecting successively a gas flow of CO2 and synthetic air, keeping constant the gas pressure in the CRDS cell, has been developed. This procedure insures a high stability of the spectra baseline by avoiding changes of the optical alignment due to pressure changes. The CO2 continuum was obtained as the difference between the CO2 absorption coefficient and a local lines simulation using a Voigt profile truncated at ±25 cm-1. Following the results of the preceding analysis of the CO2 rovibrational lines (Vasilchenko S et al. J Quant Spectrosc Radiat Transfer 10.1016/j.jqsrt.2016.07.002, a CO2 line list with intensities obtained by variational calculations and empirical line positions was preferred to the HITRAN line list. A quadratic pressure dependence of the absorption continuum is observed, with an average binary absorption coefficient increasing from 2 to 4×10-8 cm-1 amagat-2 between 4320 and 4380 cm-1. The obtained continuum is found in good agreement with a previous measurement using much higher densities (20 amagat) and a low resolution grating spectrograph and is consistent with values currently used in the analysis of Venus spectra.

  12. The action of oxygen on chlorophyll fluorescence quenching and absorption spectra in pea thylakoid membranes under the steady-state conditions.

    PubMed

    Garstka, Maciej; Nejman, Patrycja; Rosiak, Małgorzata

    2004-12-02

    The effect of oxygen concentration on both absorption and chlorophyll fluorescence spectra was investigated in isolated pea thylakoids at weak actinic light under the steady-state conditions. Upon the rise of oxygen concentration from anaerobiosis up to 412 microM a gradual absorbance increase around both 437 and 670 nm was observed, suggesting the disaggregation of LHCII and destacking of thylakoids. Simultaneously, an increase in oxygen concentration resulted in a decline in the Chl fluorescence at 680 nm to about 60% of the initial value. The plot of normalized Chl fluorescence quenching, F(-O(2))/F(+O(2)), showed discontinuity above 275 microM O(2), revealing two phases of quenching, at both lower and higher oxygen concentrations. The inhibition of photosystem II by DCMU or atrazine as well as that of cyt b(6)f by myxothiazol attenuated the oxygen-induced quenching events observed above 275 microM O(2), but did not modify the first phase of oxygen action. These data imply that the oxygen mediated Chl fluorescence quenching is partially independent on non-cyclic electron flow. The second phase of oxygen-induced decline in Chl fluorescence is diminished in thylakoids with poisoned PSII and cyt b(6)f activities and treated with rotenone or N-ethylmaleimide to inhibit NAD(P)H-plastoquinone dehydrogenase. The data suggest that under weak light and high oxygen concentration the Chl fluorescence quenching results from interactions between oxygen and PSI, cyt b(6)f and Ndh. On the contrary, inhibition of non-cyclic electron flow by antimycin A or uncoupling of thylakoids by carbonyl cyanide m-chlorophenyl hydrazone did not modify the steady-state oxygen effect on Chl fluorescence quenching. The addition of NADH protected thylakoids against oxygen-induced Chl fluorescence quenching, whereas in the presence of exogenic duroquinone the decrease in Chl fluorescence to one half of the initial level did not result from the oxygen effect, probably due to oxygen action as a

  13. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  14. The HD spectrum near 2.3 μm by CRDS-VECSEL: Electric quadrupole transition and collision-induced absorption

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Mondelain, D.; Kassi, S.; Čermák, P.; Chomet, B.; Garnache, A.; Denet, S.; Lecocq, V.; Campargue, A.

    2016-08-01

    The HD absorption spectrum is investigated near 2.3 μm with the help of a newly developed Cavity Ring Down Spectrometer (CRDS) using a VECSEL (Vertical External Cavity Surface Emitting Laser) as light source. The HD CRDS spectra were recorded for a series of ten pressure values in the range 50-650 Torr. The sensitivity of the recordings - noise equivalent absorption of the spectra on the order of αmin ≈ 5 × 10-10 cm-1 - has allowed for the first detection of the S(3) quadrupole electric transition of the HD fundamental band, at 4359.940 cm-1. The line center determined with an uncertainty of 0.002 cm-1 agrees with the most recent theoretical calculations. The retrieved value of the line intensity (2.5 × 10-27 cm/molecule at 296 K) agrees within 12% with the ab initio values included in the HITRAN spectroscopic database. We take the opportunity of this contribution to provide an exhaustive review of seventy-three HD absorption lines previously detected up to 20,000 cm-1. From the pressure dependence of the baseline of the CRDS spectra, the binary absorption coefficient of the HD collision induced absorption band is determined to be 1.17(4) × 10-6 cm-1amagat-2 at 4360 cm-1.

  15. The effect of deformation and intermolecular interaction on the absorption spectrum of 5-aminotetrazole and hydrazine: A computational molecular spectroscopy study on hydrazinium 5-aminotetrazolate

    NASA Astrophysics Data System (ADS)

    Farrokhpour, H.; Dehbozorgi, A.; Manassir, M.; Najafi Chermahini, A.

    2016-03-01

    In the present work, the UV absorption spectra of seven complexes of hydrazinium 5-aminotetrazolate (HY-5AT), in the range of 4-12 eV, were calculated in both gas and water. The UV absorption spectra of the selected HY-5AT complexes were also calculated in the absence of the intermolecular interaction between 5-aminotetrazole (5AT) and hydrazine (HY) and compared with the calculated UV absorption spectra of isolated HY and 5AT in the gas phase to see the effect of deformation on the electronic structures of the fragments. In addition, the calculated spectra of HY-5AT complexes were compared with the corresponding calculated spectra of HY-5AT complexes in the absence of the interaction between HY and 5AT to see the effect of interaction between two fragments on the absorption spectra of the complexes. Similar studies were performed on the most stable structure of HY-5AT complex in water and different trend was observed for the effect of deformation and interaction on the absorption spectrum of complex compared to the gas phase.

  16. Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA.

    PubMed

    Banyasz, Akos; Vayá, Ignacio; Changenet-Barret, Pascale; Gustavsson, Thomas; Douki, Thierry; Markovitsi, Dimitra

    2011-04-13

    The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ∼420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes.

  17. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    PubMed

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  18. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    NASA Astrophysics Data System (ADS)

    Hoffman, A. S.; Debefve, L. M.; Bendjeriou-Sedjerari, A.; Ould-Chikh, S.; Bare, Simon R.; Basset, J.-M.; Gates, B. C.

    2016-07-01

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  19. Effects of ionizable residues on the absorption spectrum and initial electron-transfer kinetics in the photosynthetic reaction center of Rhodobacter sphaeroides.

    PubMed

    Johnson, E T; Nagarajan, V; Zazubovich, V; Riley, K; Small, G J; Parson, W W

    2003-11-25

    Effects of ionizable amino acids on spectroscopic properties and electron-transfer kinetics in the photosynthetic reaction center (RC) of Rhodobacter sphaeroides are investigated by site-directed mutations designed to alter the electrostatic environment of the bacteriochlorophyll dimer that serves as the photochemical electron donor (P). Arginine residues at homologous positions in the L and M subunits (L135 and M164) are changed independently: Arg L135 is replaced by Lys, Leu, Glu, and Gln and Arg M164 by Leu and Glu. Asp L155 also is mutated to Asn, Tyr L164 to Phe, and Cys L247 to Lys and Asp. The mutations at L155, L164, and M164 have little effect on the absorption spectrum, whereas those at L135 and L247 shift the long-wavelength absorption band of P to higher energies. Fits to the ground-state absorption and hole-burned spectra indicate that the blue shift and increased width of the absorption band in the L135 mutants are due partly to changes in the distribution of energies for the zero-phonon absorption line and partly to stronger electron-phonon coupling. The initial electron-transfer kinetics are not changed significantly in most of the mutants, but the time constant increases from 3.0 +/- 0.2 in wild-type RCs to 4.7 +/- 0.2 in C(L247)D and 7.0 +/- 0.3 ps in C(L247)K. The effects of the mutations on the solvation free energies of the product of the initial electron-transfer reaction (P(+)) and the charge-transfer states that contribute to the absorption spectrum ( and ) were calculated by using a distance-dependent electrostatic screening factor. The results are qualitatively in accord with the view that electrostatic interactions of the bacteriochlorophylls with ionized residues of the protein are strongly screened and make only minor contributions to the energetics and dynamics of charge separation. However, the slowing of electron transfer in the Cys L247 mutants and the blue shift of the spectrum in some of the Arg L135 and Cys L247 mutants cannot be

  20. The Near Infrared Absorption Spectrum of Water by CRDS Between 1.26-1.70 µm:Complete Empirical Line List and Continuum Absorption

    NASA Astrophysics Data System (ADS)

    Mondelain, Didier; Campargue, Alain; Kassi, Samir; Mikhailenko, Semen

    2014-06-01

    Due to the increasing performances of Airborne- and ground-based spectrometers, a more and more accurate characterization of the water vapor absorption is required. This is especially true in the transparency windows, corresponding to low absorption spectral regions widely used for probing the Earth's atmosphere. State-of-the-art experimental developments are required to fulfill the needs in terms of accuracy of the spectroscopic data. For that purpose, we are using high-sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) allowing reproducing in laboratory conditions comparable to the atmospheric ones in terms of absorption path length (tens of kilometers), temperature and pressure. From extensive analysis of our CRDS spectra, we have constructed an empirical line list for "natural" water vapor at 296 K in the 5850 7920 cm-1 region including 38 318 transitions of four major water isotopologues (H2 16O, H218O, H217O and HD16O) with an intensity cut-off of 1·10-29 cm/molecule. The list is made mostly complete over the whole spectral region by including a large number of unobserved weak lines with positions calculated using experimentally determined energy levels and intensities obtained from variational calculations. In addition, we provide HD18O and HD 17O lists in the same region for transitions with intensities larger than 1·10-29 cm/molecule. The HD18O and HD17O lists (1 972 lines in total) were obtained using empirical energy levels available in the literature and variational intensities. The global list (40 290 transitions) including the contribution of the six major isotopologues has been adopted for the new edition of the GEISA database in the region. The advantages and drawbacks of our list will be discussed in comparison with the list provided for the same region in the 2012 edition of the HITRAN database. Separate experiments were dedicated to the measurement of the water vapor self-continuum crosssections in the 1.6 µm window by CW

  1. Estimation of ground- and excited-state dipole moments of Nile Red dye from solvatochromic effect on absorption and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Bojarski, P.; Kukliński, B.

    2008-10-01

    The effect of various nonpolar and polar solvents on the location of absorption and fluorescence of Nile Red at room temperature was investigated. Based on the batochromic shift of electronic spectra of Nile Red and Bilot-Kawski theory the following values of ground- and excited-state dipole moments μg = 8.2 ± 1.0 D and μe = 10.0 ± 1.0 D were found. The reasons of high discrepancy between the literature results were discussed.

  2. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    DOE PAGES

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; ...

    2016-03-07

    Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the NiL3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the NiL edge whichmore » is far from the O K edge.« less

  3. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  4. The intervening and associated O VI absorption-line systems in the ultraviolet spectrum of H1821+643

    NASA Astrophysics Data System (ADS)

    Savage, Blair D.; Tripp, Todd M.; Lu, Limin

    1998-02-01

    GHRS and FOS ultraviolet spectra of the bright QSO H1821+643 reveal the presence of strong O VI 1031.93, 1037.62 A absorption systems at z(abs) = 0.225 and 0.297, the latter being at the redshift of the QSO itself. Ground-based galaxy redshift measurements by us and others reveal two emission-line galaxies near the redshift of the intervening system at z(abs) = 0.225, suggesting the existence of a galaxy group at this redshift. The intervening O VI absorption system is also detected in H I but is not detected in the lines of Si II, Si IV, C IV, or N V. These ionization characteristics can be explained by a low-density, extended diffuse gas distribution that is photoionized by the metagalactic UV background if the gas has a metallicity of 0.1 times solar. Such a photoionized gas may be associated with the extended halo of the luminous intervening spiral galaxy at a projected distance of 100 h kpc, or with an intragroup medium. Alternatively, the absorption may be produced in hot collisionally ionized halo gas or in a hot intragroup medium. The associated system with z(abs) = 0.297 contains narrow and broad O VI absorption. The narrow absorption, which is also detected in H I, C III, C IV, and Si IV, can be modeled as gas photoionized by H1821+643 with roughly solar abundances. This gas is probably situated close to H1821+643. The broad O VI absorption that is centered at the emission redshift of H1821+643 may represent a weak and narrow example of the broad absorption line phenomena.

  5. Theoretical investigation of the structure and electronic absorption spectrum of a complex zinc bis-[8-(3,5-difluorophenylsulfanylamino)quinolinate

    NASA Astrophysics Data System (ADS)

    Minaev, B. F.; Baryshnikov, G. V.; Korop, A. A.; Minaeva, V. A.; Kaplunov, M. G.

    2012-09-01

    Using the quantum-chemical methods of the density functional theory DFT/B3LYP/DGDZVP, of the electron density topological analysis QTAIM, and of the time-dependent density functional theory TDDFT/BMK/DGDZVP, we have studied the structure and spectral properties of the electroluminescent complex zinc bis-[8-(3,5-difluorophenylsulfanylamino)quinolinate]. Good agreement of calculation results with experimental data on the electron density topological characteristics and on the absorption spectrum in the visible and UV ranges has been obtained. Based on the analysis of orbitals and wave functions of the TDDFT/BMK/DGDZVP method, we have elucidated the nature of absorption bands of the complex under study.

  6. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  7. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  8. Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein

    PubMed Central

    Isborn, Christine M.; Götz, Andreas W.; Clark, Matthew A.; Walker, Ross C.; Martínez, Todd J.

    2012-01-01

    We describe a new interface of the GPU parallelized TeraChem electronic structure package and the Amber molecular dynamics package for quantum mechanical (QM) and mixed QM and molecular mechanical (MM) molecular dynamics simulations. This QM/MM interface is used for computation of the absorption spectra of the photoactive yellow protein (PYP) chromophore in vacuum, aqueous solution, and protein environments. The computed excitation energies of PYP require a very large QM region (hundreds of atoms) covalently bonded to the chromophore in order to achieve agreement with calculations that treat the entire protein quantum mechanically. We also show that 40 or more surrounding water molecules must be included in the QM region in order to obtain converged excitation energies of the solvated PYP chromophore. These results indicate that large QM regions (with hundreds of atoms) are a necessity in QM/MM calculations. PMID:23476156

  9. Keto-enol tautomerism and conformational landscape of 1,3-cyclohexanedione from its free jet millimeter-wave absorption spectrum.

    PubMed

    Calabrese, Camilla; Maris, Assimo; Evangelisti, Luca; Favero, Laura B; Melandri, Sonia; Caminati, Walther

    2013-12-19

    The free jet millimeter-wave absorption spectrum of 1,3-cyclohexanedione has been investigated in the 59.6-74.4 GHz frequency range, and the rotational spectra of two conformational species, the chair-diketo and boat-diketo, and probably one excited vibrational state belonging to the chair-diketo form have been assigned. Quantum chemical calculations, performed at the B3LYP/6-311++G** and MP2/6-311++G** levels, were used to characterize the potential energy surface minima. The potential energy surface related to the interconversion of the observed diketonic species was modeled at the DFT level.

  10. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser

    PubMed Central

    Trägårdh, J; Robb, G; Amor, R; Amos, WB; Dempster, J; McConnell, G

    2015-01-01

    We have studied the wavelength dependence of the two-photon excitation efficiency for a number of common UV excitable fluorescent dyes; the nuclear stains DAPI, Hoechst and SYTOX Green, chitin- and cellulose-staining dye Calcofluor White and Alexa Fluor 350, in the visible and near-infrared wavelength range (540–800 nm). For several of the dyes, we observe a substantial increase in the fluorescence emission intensity for shorter excitation wavelengths than the 680 nm which is the shortest wavelength usually available for two-photon microscopy. We also find that although the rate of photo-bleaching increases at shorter wavelengths, it is still possible to acquire many images with higher fluorescence intensity. This is particularly useful for applications where the aim is to image the structure, rather than monitoring changes in emission intensity over extended periods of time. We measure the excitation spectrum when the dyes are used to stain biological specimens to get a more accurate representation of the spectrum of the dye in a cell environment as compared to solution-based measurements. PMID:25946127

  11. Multiphoton excitation of fluorescent DNA base analogs.

    PubMed

    Katilius, Evaldas; Woodbury, Neal W

    2006-01-01

    Multiphoton excitation was used to investigate properties of the fluorescent DNA base analogs, 2-aminopurine (2AP) and 6-methylisoxanthopterin (6MI). 2-aminopurine, a fluorescent analog of adenine, was excited by three-photon absorption. Fluorescence correlation measurements were attempted to evaluate the feasibility of using three-photon excitation of 2AP for DNA-protein interaction studies. However, high excitation power and long integration times needed to acquire high signal-to-noise fluorescence correlation curves render three-photon excitation FCS of 2AP not very useful for studying DNA base dynamics. The fluorescence properties of 6-methylisoxanthopterin, a guanine analog, were investigated using two-photon excitation. The two-photon absorption cross-section of 6MI was estimated to be about 2.5 x 10(-50) cm(4)s (2.5 GM units) at 700 nm. The two-photon excitation spectrum was measured in the spectral region from 700 to 780 nm; in this region the shape of the two-photon excitation spectrum is very similar to the shape of single-photon excitation spectrum in the near-UV spectral region. Two-photon excitation of 6MI is suitable for fluorescence correlation measurements. Such measurements can be used to study DNA base dynamics and DNA-protein interactions over a broad range of time scales.

  12. Measurement and theoretical characterization of electronic absorption spectrum of neutral chrysene (C18H12)and its positive ion in H3BO3 matrix.

    PubMed

    Husain, Mudassir M

    2007-09-01

    The ultraviolet and visible spectrum of chrysene and its radical cation formed by ultraviolet irradiation were measured in boric acid glass at room temperature. The theoretical electronic absorption spectrum of any polycyclic aromatic hydrocarbon (PAH) in boric acid matrix is calculated for the first time using semi empirical methods. Earlier reported theoretical results of electronic spectrum are calculated in free state and the results are compared with the spectrum of aromatic systems in glassy or other matrices. The interaction between the trapped PAHs (neutral and ions) and its environment induces strong perturbations of the energy levels which results in large shifts of the electronic transitions as compared to the ideal case of a free, isolated PAH molecule. This shifting due to perturbation has largely been ignored in earlier calculations, while comparing the calculations with the experimentally measured spectrum, in other matrices. The spectrum of singlet and doublet state of chrysene are computed in aqueous medium and also in free state to estimate the spectral shift. Several other geometric (bond length and bond angles) and spectroscopic parameters of chrysene like difference of HOMO-LUMO, ionization potential, dipole moment and polarizability are calculated using semi empirical methods, namely Austin Model 1 (AM1) and Parametric Method 3 (PM3). To get an idea about how the symmetry of chrysene molecule varies upon ionization, the mean polarizability (alpha) as well as its tensor components alpha(xx), alpha(yy) and alpha(zz) are calculated within a field of 0.005 a.u. The lasing action in neutral chrysene and in its cationic form is also discussed for the first time.

  13. Unusual non-fluorescent broad spectrum siderophore activity (SID EGYII) by Pseudomonas aeruginosa strain EGYII DSM 101801 and a new insight towards simple siderophore bioassay.

    PubMed

    Embaby, Amira M; Heshmat, Yasmin; Hussein, Ahmed

    2016-03-01

    Present study highlights an unusual non-fluorescent hydroxamate broad spectrum siderophore (SID EGYII) activity from Pseudomonas aeruginosa strain EGYII DSM 101801, a soil bacterial isolate, along with simple low cost effective siderophore bioassay. Detection of SID EGYII activity qualitatively was proved by masking this activity against Erwinia amylovora strain EGY1 DSM 101800, an indicator strain, in well-cut diffusion assay containing 100 µM FeCl3. SID EGYII activity was expressed quantitatively as arbitrary units [Siderophore arbitrary units (SAU)] 380 SAU/mL against E. amylovora strain EGY1 DSM 101800. Maximal SID EGYII activity was achieved upon growing P. aeruginosa strain EGYII DSM 101801 in PYB broth at 180 rpm for 24 h. SID EGYII displayed a broad spectrum antimicrobial activity against some human pathogens (i.e., Gram-positive bacteria, Gram-negative bacteria and yeasts) and a fireblight plant pathogen. Interestingly, transformants of Escherichia coli JM109 (DE3)pSID/EGYII harboring P. aeruginosa strain EGYII DSM 101801 plasmid demonstrated a perceivable antimicrobial activity against E. amylovora strain EGY1 DSM 101800. The broad spectrum antimicrobial activity of the unusual non-fluorescent SID EGYII would underpin its high potential in targeting bacterial pathogens posing probable threats to human health and agricultural economy. The present simple low cost effective bioassay is a new insight towards an alternative to the expensive cumbersome siderophore Chrome Azurol S assay.

  14. Biocompatible photoresistant far-red emitting, fluorescent polymer probes, with near-infrared two-photon absorption, for living cell and zebrafish embryo imaging.

    PubMed

    Adjili, Salim; Favier, Arnaud; Fargier, Guillaume; Thomas, Audrey; Massin, Julien; Monier, Karine; Favard, Cyril; Vanbelle, Christophe; Bruneau, Sylvia; Peyriéras, Nadine; Andraud, Chantal; Muriaux, Delphine; Charreyre, Marie-Thérèse

    2015-04-01

    Exogenous probes with far-red or near-infrared (NIR) two-photon absorption and fluorescence emission are highly desirable for deep tissue imaging while limiting autofluorescence. However, molecular probes exhibiting such properties are often hydrophobic. As an attractive alternative, we synthesized water-soluble polymer probes carrying multiple far-red fluorophores and demonstrated here their potential for live cell and zebrafish embryo imaging. First, at concentrations up to 10 μm, these polymer probes were not cytotoxic. They could efficiently label living HeLa cells, T lymphocytes and neurons at an optimal concentration of 0.5 μm. Moreover, they exhibited a high resistance to photobleaching in usual microscopy conditions. In addition, these polymer probes could be successfully used for in toto labeling and in vivo two-photon microscopy imaging of developing zebrafish embryos, with remarkable properties in terms of biocompatibility, internalization, diffusion, stability and wavelength emission range. The near-infrared two-photon absorption peak at 910 nm is particularly interesting since it does not excite the zebrafish endogenous fluorescence and is likely to enable long-term time-lapse imaging with limited photodamage.

  15. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices.

    PubMed

    Hur, Jin; Cho, Jinwoo

    2012-01-01

    The development of a real-time monitoring tool for the estimation of water quality is essential for efficient management of river pollution in urban areas. The Gap River in Korea is a typical urban river, which is affected by the effluent of a wastewater treatment plant (WWTP) and various anthropogenic activities. In this study, fluorescence excitation-emission matrices (EEM) with parallel factor analysis (PARAFAC) and UV absorption values at 220 nm and 254 nm were applied to evaluate the estimation capabilities for biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total nitrogen (TN) concentrations of the river samples. Three components were successfully identified by the PARAFAC modeling from the fluorescence EEM data, in which each fluorophore group represents microbial humic-like (C1), terrestrial humic-like organic substances (C2), and protein-like organic substances (C3), and UV absorption indices (UV(220) and UV(254)), and the score values of the three PARAFAC components were selected as the estimation parameters for the nitrogen and the organic pollution of the river samples. Among the selected indices, UV(220), C3 and C1 exhibited the highest correlation coefficients with BOD, COD, and TN concentrations, respectively. Multiple regression analysis using UV(220) and C3 demonstrated the enhancement of the prediction capability for TN.

  16. Application of excitation and emission matrix fluorescence (EEM) and UV-vis absorption to monitor the characteristics of Alizarin Red S (ARS) during electro-Fenton degradation process.

    PubMed

    Lai, Bo; Zhou, Yuexi; Wang, Juling; Yang, Zhishan; Chen, Zhiqiang

    2013-11-01

    Oxidative degradation of Alizarin Red S (ARS) in aqueous solutions by using electro-Fenton was studied. At first, effect of operating parameters such as current density, aeration rate and initial pH on the degradation of ARS were studied by using UV-vis spectrum, respectively. Then, under the optimal operating conditions (current density: 10.0mAcm(-2), aeration rate: 1000mLmin(-1), initial pH: 2.8), the identification of degradation products of ARS was carried out by using GC-MS and HPLC, meanwhile its degradation pathway was proposed according to the intermediates. Considering the location, intensity and intensity ratio of fluorescence center peak of the ARS in aqueous solution, a convenient and quick monitoring method by using excitation-emission matrix fluorescence spectrum technology was developed to monitor the degradation degree of ARS through electro-Fenton process. Furthermore, it is suggested that the developed method would be promising for the quick analysis and evaluation of the degradation degree of the pollutants with π-conjugated system.

  17. Design and daytime performance of laser-induced fluorescence spectrum lidar for simultaneous detection of multiple components, dissolved organic matter, phycocyanin, and chlorophyll in river water.

    PubMed

    Saito, Yasunori; Kakuda, Kei; Yokoyama, Mizuho; Kubota, Tomoki; Tomida, Takayuki; Park, Ho-Dong

    2016-08-20

    In this work, we developed mobile laser-induced fluorescence spectrum (LIFS) lidar based on preliminary experiments on the excitation emission matrix of a water sample and a method for reducing solar background light using the synchronous detection technique. The combination of a UV short-pulse laser (355 nm, 6 ns) for fluorescence excitation with a 10-100 ns short-time synchronous detection using a gated image-intensified multi-channel CCD of the fluorescence made the LIFS lidar operation possible even in daytime. The LIFS lidar with this construction demonstrated the potential of natural river/lake water quality monitoring at the Tenryu River/Lake Suwa. Three main components in the fluorescence data of the water, dissolved organic matter, phycocyanin, and chlorophyll, were extracted by spectral analysis using the standard spectral functions of these components. Their concentrations were estimated by adapting experimentally calibrated data. Results of long-term field observations using our LIFS lidar from 2010 to 2012 show the necessity of simultaneous multi-component detection to understand the natural water environment.

  18. A Simple Analytical Approximation to an Inhomogeneously-Broadened Dispersion Spectrum. Application to Absorption-Dispersion Admixtures.

    PubMed

    Bales, Barney L

    2016-09-19

    A simple analytical approximation to an inhomogeneously-broadened dispersion signal is proposed and tested with resonance lines broadened by unresolved hyperfine structure. Spectral parameters may be rapidly and accurately extracted using a nonlinear least-squares fitting algorithm. Combining the new approximation to a dispersion signal with a well-known approximation to the absorption signal allows dispersion-absorption admixtures, a problem of growing importance, to be analyzed quickly and accurately. For pure dispersion signals, the maximum difference between the fit and the signal for unresolved lines is 1.1 % of the maximum intensity. For pure absorption, the difference is 0.33 % of the peak-to-peak intensity, and for admixtures up to 40 % dispersion (maximum intensity/peak-to-peak intensity), the difference is 0.7 %. The accuracy of the recovered spectral parameters depends on the degree of inhomogeneously-broadened and the percentage admixture, but they are generally about 1 % at most. A significant finding of the work is that the parameters pertinent to the dispersion or the absorption are insignificantly different when fitting isolated lines vs. fitting admixtures. Admixtures with added noise or an unsuspected extraneous line are investigated.

  19. Spectrum of induced absorption of oxygen in mixtures with various gases in the region of the Herzberg photodissociation continuum

    NASA Astrophysics Data System (ADS)

    Zelikina, G. Y.; Kiseleva, M. B.; Burtsev, Andrei P.; Bertsev, V. V.

    1999-01-01

    Values of the binary absorption coefficients are obtained for the region of Herzberg photodissociation continuum in mixtures of oxygen with various foreign gases X, where X - Ar, Kr, Xe, N2, N2O, CH4, C3H8, CO2, NH3, NF3, SF6, CF4, C2F6, C3F8, CF3H, CF3Cl, CF3Br, CF2ClH, CF2Cl2 - group I (the ionization potential of molecules >= 11 eV) and C2H4, CF3I, C2F5I - group II (the ionization potential < 11 eV). The induced absorption of the mixtures of O2 with gases from group I is found to result from the Herzberg III band of oxygen. The obtained regular dependence of the intensity of induced absorption in an O2 - X pair on the ionization potential of a molecule X, confirms the hypothesis that excited electronic states of the ionic type of the molecular pair serve as the main intensity source for the Herzberg III band. The long-wavelength wing of the charge transfer band of the O2 - X pair is shown to contribute to the induced absorption of the mixtures of O2 with gases from group II.

  20. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  1. A QM/MM study of the absorption spectrum of harmane in water solution and interacting with DNA: the crucial role of dynamic effects.

    PubMed

    Etienne, Thibaud; Very, Thibaut; Perpète, Eric A; Monari, Antonio; Assfeld, Xavier

    2013-05-02

    We present a time-dependent density functional theory computation of the absorption spectra of one β-carboline system: the harmane molecule in its neutral and cationic forms. The spectra are computed in aqueous solution. The interaction of cationic harmane with DNA is also studied. In particular, the use of hybrid quantum mechanics/molecular mechanics methods is discussed, together with its coupling to a molecular dynamics strategy to take into account dynamic effects of the environment and the vibrational degrees of freedom of the chromophore. Different levels of treatment of the environment are addressed starting from purely mechanical embedding to electrostatic and polarizable embedding. We show that a static description of the spectrum based on equilibrium geometry only is unable to give a correct agreement with experimental results, and dynamic effects need to be taken into account. The presence of two stable noncovalent interaction modes between harmane and DNA is also presented, as well as the associated absorption spectrum of harmane cation.

  2. Asymmetry in ground and excited states in styryls and methoxystyryls detected by NMR (13C), absorption, fluorescence and fluorescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanova, A. V.; Ryabitsky, A. B.; Yashchuk, V. M.; Kachkovsky, O. D.; Gerasov, A. O.; Prostota, Ya. O.; Kropachev, O. V.

    2011-03-01

    Combined quantum-chemical and spectral study of electron structure features of styryls and their oxyanalogues containing benzothiazolium, benzooxazolium, indoleninium, pyridium, quinolinium residues has been fulfilled. It showed that asymmetry degree of molecular geometry and charge distribution in the chromophore of styryls and methoxystyryls considerably differ in the ground and excited states. It was established that two the lowest transitions in styryls are splitting and involve both donor levels, similarly to symmetrical cyanines. If compare with methoxystyryls the long-wave high intensive absorption band is shifted bathochromically due to considerable interaction between the donor quasi-local chromophores. In contrary, because of the low position of a lone electron pair of oxygen in methoxystyryls, only one donor quasi-local chromophore is effective, hence such unsymmetrical dyes absorb appreciably higher.

  3. Probing CuI in Homogeneous Catalysis using High-Energy-Resolution Fluorescence-Detected X-ray Absorption Spectroscopy

    PubMed Central

    Walroth, Richard C.; Uebler, Jacob W. H.

    2015-01-01

    Metal-to-ligand charge transfer excitations in CuI X-ray absorption spectra are introduced as spectroscopic handles for the characterization of species in homogeneous catalytic reaction mixtures. Analysis is supported by correlation of a spectral library to calculations and to complementary spectroscopic parameters. PMID:25994112

  4. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  5. Localized absorption in aluminum mask in visible spectrum due to longitudinal modes in vertical silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhindsa, Navneet; Saini, Simarjeet Singh

    2015-06-01

    Localized optical absorption in aluminum masks used for vertical silicon nanowire fabrication is demonstrated experimentally and supported using computer simulations. The mask is in the form of 30 nm thick aluminum nano-disks on top of silicon nanowires arranged in square lattices. The nanowires are 1 μm long, with diameters ranging from 60 nm to 100 nm and spaced 400 nm apart. New spectral features appear in the 500 nm-700 nm wavelengths range and are dependent on both the nanowire diameter and length. The former is due to the excitation of radial modes, whereas the latter stems from longitudinal (Fabry-Perot) resonances. The salient features associated with absorption in the aluminum mask and the role nanowire plays in this connection are discussed.

  6. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  7. Chandra Discovery of Intervening, Local and Intrinsic Highly Ionized Absorption in an extremely bright high resolution X-ray spectrum of an Extragalactic Source

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Elvis, M.; Fang, T.; Mathur, S.; Siemiginowska, A.; Zezas, A.

    2003-03-01

    In this contribution we present the brightest high resolution X-ray spectrum ever taken for an extragalactic source. Following our ToO request, Chandra observed the blazar Mkn 421 (z=0.03) during an exceptionally high-luminosity flare. The observation lasted about 100 ks, during which the source reached a flux level of > 0.1 Crab in the 0.5-2 keV band This allowed us to collect 4.2 million counts in the 1st-order ACIS-LETG spectrum of Mkn 421, and more than 3000 counts per resolution elements at the rest frame wavelength of the OVII Kα resonant transitions (21.6 Å). A forest of very weak (EW=3.1-10 mÅ) resonant absorption lines is detected from the rest frame wavelength of the OVII Kα all the way down to the position of the OVII Kα line at the source redshift. We identify these lines as due to: (a) Local Group Warm-Hot Intergalactic Medium (WHIM) absorption, (b) intervening WHIM absorption at redshifts z=0.01 (associated with faint H Lyα absorption) and z=0.025, and (c) intrinsic source absorption. The strongest of these systems is associated with the local WHIM first discovered along the line of sight to PKS 2155-304 (Nicastro et al., 2002, 2003), and now observed (always with consistent gas properties) along all the lines of sight for which Chandra high resolution spectra with sufficient signal to noise ratio are available. The faintest systems (probing OVII column densities as low as 1015 cm-2) are those identified as due to the two intervening WHIM systems. If both these identification are correct this discovery implies a number of intervening OVII WHIM systems per unit redshift of dN/dz(NOVII>1015) = 75, about 3-4 times larger than the corresponding number estimated for OVI systems in the local Universe (down to OVI EW of 60 mÅ). The WHIM baryon fraction implied depends slightly on the ionization correction applied, and ranges between 40 % and 60 % of the total baryons at z<2, so confirming hydrodynamical simulation predictions and accounting for all of

  8. Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: Confounding effects of photo-degradation

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Crowell, Robert A.; Polyanskiy, Dmitriy E.; Thomas, Marie F.; Wishart, James F.; Katsumura, Yosuke; Takahashi, Kenji

    2015-12-01

    The photochemistry of the charge transfer (CT) band of the room temperature ionic liquid (RTIL) 1-hexyl-3-methylimidazolium bromide (HMIm+/Br-) is investigated using near-IR to vis ultrafast transient absorption (TA) and steady-state UV absorption spectroscopies. Continuous irradiation of the CT band at 266 nm results in the formation of photo-products that absorb strongly at 266 nm. It is shown that these photo-products, which are apparently very stable, adversely affect ultrafast TA measurements. Elimination of these effects reveals at least two transient species that exist within the TA detection window of 100 fs to 3 ns and 500-1250 nm. One of the components is a short-lived (<1 ps) species that absorbs at 1080 nm. The second band exhibits a multicomponent spectrum that is very broad with an absorption maximum around 600 nm and a lifetime that is longer than the 3 ns window of our TA spectrometer. Within the signal to noise ratio of the TA spectrometer little to no solvated electron is generated by the CT mechanism.

  9. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  10. Infrared fluorescence from PAHs in the laboratory

    NASA Technical Reports Server (NTRS)

    Cherchneff, Isabelle; Barker, John R.

    1989-01-01

    Several celestial objects, including UV rich regions of planetary and reflection nebulae, stars, H II regions, and extragalactic sources, are characterized by the unidentified infrared emission bands (UIR bands). A few years ago, it was proposed that polycyclic aromatic hydrocarbon species (PAHs) are responsible for most of the UIR bands. This hypothesis is based on a spectrum analysis of the observed features. Comparisons of observed IR spectra with lab absorption spectra of PAHs support the PAH hypothesis. An example spectrum is represented, where the Orion Bar 3.3 micron spectrum is compared with the absorption frequencies of the PAHs Chrysene, Pyrene, and Coronene. The laser excited 3.3 micron emission spectrum is presented from a gas phase PAH (azulen). The infrared fluorescence theory (IRF) is briefly explained, followed by a description of the experimental apparatus, a report of the results, and discussion.

  11. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Konefal, M.; Mondelain, D.; Kassi, S.; Čermák, P.; Tashkun, S. A.; Perevalov, V. I.; Campargue, A.

    2016-11-01

    The absorption of carbon dioxide is very weak near 2.3 μm which makes this transparency window of particular interest for the study of Venus' lower atmosphere. As a consequence of the weakness of the transitions located in this region, previous experimental data are very scarce and spectroscopic databases provide calculated line lists which should be tested and validated by experiment. In this work, we use the Cavity Ring Down Spectroscopy (CRDS) technique for a high sensitivity characterization of the CO2 absorption spectrum in two spectral intervals of the 2.3 μm window: 4248-4257 and 4295-4380 cm-1 which were accessed using a Distributed Feed Back (DFB) diode laser and a Vertical External Cavity Surface Emitting Laser (VECSEL) as light sources, respectively. The achieved sensitivity (noise equivalent absorption, αmin, on the order of 5×10-10 cm-1) allowed detecting numerous new transitions with intensity values down to 5×10-30 cm/molecule. The rovibrational assignments were performed by comparison with available theoretical line lists in particular those obtained at IAO Tomsk using the global effective operator approach. Hot bands of the main isotopologue and 16O12C18O bands were found to be missing in the HITRAN database while they contribute importantly to the absorption in the region. Additional CRDS spectra of a CO2 sample highly enriched in 18O were recorded in order to improve the spectroscopy of this isotopologue. As a result about 700 lines of 16O12C18O, 16O12C17O, 17O12C18O, 12C18O2 and 13C18O2 were newly measured. The status of the different databases (HITRAN, CDSD, variational calculations) in the important 2.3 μm transparency window is discussed. Possible improvements to correct evidenced deficiencies are suggested.

  12. Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    1981-01-01

    Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)

  13. Investigation of the 2-0 pressure-induced vibrational absorption spectrum of hydrogen at temperatures below ambient

    NASA Technical Reports Server (NTRS)

    Silvaggio, P. M.; Goorvitch, D.; Boese, R. W.

    1981-01-01

    A theoretical fit has been made to our laboratory measurements of the 2-0 collisionally induced H2 absorption band for temperatures of 122 and 273.3 K and at a density of 20 amagats. A Lennard-Jones 6-12 intermolecular potential and a Birnbaum-Cohen line profile have been used. The fit resulted in a chi-square of 0.2%. Line widths have also been derived as a function of temperature. The lifetimes of the states have been calculated.

  14. Investigation of the 1-0 pressure-induced vibrational absorption spectrum of hydrogen at temperatures below ambient

    NASA Technical Reports Server (NTRS)

    Goorvitch, D.; Silvaggio, P. M.; Boese, R. W.

    1981-01-01

    A theoretical fit has been made to laboratory measurements of the 1-0 collisionally induced H2 absorption band over a temperature range of 100-273 K and for densities up to 22 amagats. Both the Birnbaum-Cohen and the MacTaggert-Hunt line shape profiles were used. In addition, an intermolecular potential of either a Lennard-Jones 6-12 or a Morse-spline-van der Waals has been used for each line shape. The best fit resulted in a chi-square of 5%. Line widths have also been derived as a function of temperature. The lifetimes of the states were calculated.

  15. Speckle spectroscopy of fluorescent randomly inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Asharchuk, I. A.; Yuvchenko, S. A.; Sviridov, A. P.

    2016-11-01

    We propose a coherence optical method for probing fluorescent randomly inhomogeneous media based on the statistical analysis of spatial fluctuations of spectrally selected fluorescence radiation. We develop a phenomenological model that interrelates the flicker index of the spatial distribution of the fluorescence intensity at a fixed wavelength and the mean path difference of partial components of the fluorescence radiation field in the probed medium. The results of experimental approbation of the developed method using the layers of densely packed silicon dioxide particles saturated with the aqueous rhodamine 6G solution with a high concentration of the dye are presented. The experimentally observed significant decrease in the flicker index under the wavelength tuning from the edges of the fluorescence spectrum towards it central part is presumably a manifestation of spectrally dependent negative absorption in the medium.

  16. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    SciTech Connect

    Watanabe, Yoshihide Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake; Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru; Nimura, Tomoyuki

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  17. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  18. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  19. The O(3P) and N(4S) density measurement at 225 km by ultraviolet absorption and fluorescence in the Apollo-Soyuz test project

    NASA Technical Reports Server (NTRS)

    Kaufman, F.; Rawling, W. T.; Donahue, T. M.; Anderson, J. G.; Hudson, R. D.

    1976-01-01

    The densities of O(3P) and N(4S) at 225 km were determined during the Apollo Soyuz Test Project by a resonance absorption/fluorescence technique in which OI and NI line radiation produced and collimated on board the Apollo was reflected from the Soyuz back to the Apollo for spectral analysis. The two spacecraft maneuvered so that a range of observation angles of plus or minus 15 deg with respect to the normal to the orbital velocity vector was scanned. The measurements were made at night on two consecutive orbits at spacecraft separations of 150 and 500 m. The resulting relative counting rates as function of observation angle were compared to calculated values to determine the oxygen value. This value agrees with mass spectrometric measurements made under similar conditions. The nitrogen value is in good agreement with other measurements and suggests a smaller diurnal variation than is predicted by present models.

  20. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-26

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  1. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-04

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  2. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  3. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices.

    PubMed

    Richard, Charles; Renaudin, Alan; Aimez, Vincent; Charette, Paul G

    2009-05-21

    We present a hybrid optical filter design that combines interference and absorbing components for enhanced fluorescence detection in miniaturized highly-integrated lab-on-a-chip devices. The filter is designed in such a way that the advantages of each technology are used to offset the disadvantages of the other. The filter is fabricated with microfabrication compatible processes and materials for monolithic integration with microelectronics and microfluidics devices. The particular embodiment of the filter described herein is designed to discriminate fluorescence emission at 650 nm from excitation at 532 nm. The 9-layer interference filter component is fabricated with alternating TiO(2) and SiO(2) thin-film layers and has an attenuation of -12.6 dB at 532 nm and -0.76 dB at 650 nm. The absorbing filter component is fabricated using a dyed photopolymer (KMPR + Orasol Red) having an attenuation of -32.6 dB at 532 nm and -1.28 dB at 650 nm. The total rejection ratio of the hybrid filter is 43 dB. The filter exhibits very low autofluorescence and performs equally well at off-axis incidence angles.

  4. Effect of heat treatment on absorption and fluorescence properties of PbS-doped silica optical fibre

    NASA Astrophysics Data System (ADS)

    Qin, Fu; Dong, Yanhua; Wen, Jianxiang; Pang, Fufei; Luo, Yanhua; Peng, Gang-Ding; Chen, Zhenyi; Wang, Tingyun

    2017-02-01

    The effect of heat treatment on the optical properties of a PbS-doped silica optical fibre was investigated. The experimental results showed that the absorption peak of the fibre red shifted from 1032 to 1133 nm when the heat treatment temperatures were carried out at 900, 950, 1000, and 1100 °C for 1 h, respectively. At the same time, when the heat treatment at 900 °C was carried out for 2, 5, 10, 20, and 40 h, the absorption spectra of the fibre showed a red shift from 1074 to 1143 nm. In addition, the intensity of the absorption peak increased from 0.258 to 1.384 dB/m and the full width at half maximum (FWHM) became narrower (from 130 to 50 nm) as the heat treatment proceeded. Moreover, the photoluminescence (PL) intensity in the wavelength range of 1100-1500 nm decreased with an increase in the heat treatment temperature. The theoretical analysis, using an effective mass method, showed that the effective band gap energy and average size of the lead sulphide (PbS) quantum dots (QDs) in the silica fibre core varied from 1.199 to 1.083 eV and from 4.28 to 4.81 nm, respectively. The results indicate that the size of the PbS QDs present in the silica fibre core could be controlled by a proper heat treatment, which is of great interest in optical fibre amplifiers and other fibre optic devices.

  5. Absorption, fluorescence and second harmonic generation in Cr³⁺-doped BiB₃O₆ glasses.

    PubMed

    Kuznik, W; Fuks-Janczarek, I; Wojciechowski, A; Kityk, I V; Kiisk, V; Majchrowski, A; Jaroszewicz, L R; Brik, M G; Nagy, G U L

    2015-06-15

    Synthesis, spectral properties and photoinduced nonlinear optical effects of chromium-doped BiB3O6 glass are studied in the present paper. Absorption, excitation and time resolved luminescence spectra are presented and luminescence decay behavior is discussed. Detailed analysis of the obtained spectra (assignment of the most prominent spectral features in terms of the corresponding Cr(3+) energy levels, crystal field strength Dq, Racah parameters B and C) was performed. A weak photostimulated second harmonic generation signal was found to increase drastically due to poling by proton implantation in the investigated sample.

  6. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Kim, Anthony; Khurana, Mamta; Moriyama, Yumi; Wilson, Brian C.

    2010-11-01

    We present a method for tissue fluorescence quantification in situ using a handheld fiber optic probe that measures both the fluorescence and diffuse reflectance spectra. A simplified method to decouple the fluorescence spectrum from distorting effects of the tissue optical absorption and scattering is developed, with the objective of accurately quantifying the fluorescence in absolute units. The primary motivation is measurement of 5-aminolevulinic acid-induced protoporphyrin IX (ALA-PpIX) concentration in tissue during fluorescence-guided resection of malignant brain tumors. This technique is validated in phantoms and ex vivo mouse tissues, and tested in vivo in a rabbit brain tumor model using ALA-PpIX fluorescence contrast.

  7. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    SciTech Connect

    Manghnani, M.H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-29

    We report Ni K-edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90{sup o} with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe{sub 0.75}Ni{sub 0.05}S{sub 0.20} and Fe{sub 0.75}Ni{sub 0.05}Si{sub 0.20} melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth's core.

  8. [Characteristics of absorption and fluorescence spectra of dissolved organic matter from confluence of rivers: case study of Qujiang River-Jialing River and Fujiang River-Jialing River].

    PubMed

    Yan, Jin-Long; Jiang, Tao; Gao, Jie; Wei, Shi-Qiang; Lu, Song; Liu, Jiang

    2015-03-01

    Three-dimensional fluorescence spectroscopy combined with ultraviolet-visible (UV-Vis) absorption spectra was used to investigate the change characteristics of dissolved organic matter (DOM) in confluences water of Qujiang River-Jialing River and Fujiang River-Jialing River, respectively. The results suggested that DOM showed a significant terrestrial input signal in all the sampling sites, FI < 1.4, HIX > 0.8, possibly representing remarkable signals of humus resulted from humic-like component. Moreover, the mixing zone of this study showed a non-conservative mixed behavior, which had a limited contribution, and was not the dominant factor to interpret the change characteristics of DOM in confluences zones. Different land-use types along all the rivers had an obvious impact on DOM inputs. Results of cluster analysis showed that a higher degree of aromaticity and humification components was observed as the predominant contributor to DOM when the land-use type was forest and farmland ecosystem, for example the confluences of Qujiang River-Jialing River. On the other hand, high concentrations of DOM with relative simple structures were found in the water when the urban land-use type was predominant, for example the confluences of Fujiang River-Jialing River. Meanwhile, a new fluorescent signal of protein-like components (peak T) appeared, which manifested a significant effect on the water quality resulted from anthropogenic activities.

  9. Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish.

    PubMed

    Li, Wanying; Fang, Bingqing; Jin, Ming; Tian, Yang

    2017-02-21

    Zinc ion (Zn(2+)) not only plays an important function in the structural, catalytic, transcription, and regulatory of proteins, but is also an essential ionic signal to regulate brain neurotransmitters pass process. In this work, we designed and synthesized an intramolecular charge transfer-based ratiometric two-photon fluorescence probe, P-Zn, for imaging and biosensing of Zn(2+) in live cell, hippocampal tissue, and zebrafish. The developed probe demonstrated high two-photon absorption cross section (δ) of 516 ± 77 GM, which increased to 958 ± 144 GM after the probe was coordinated with Zn(2+). Furthermore, this P-Zn probe quickly recognized Zn(2+) with high selectivity, over other metal ions, amino acids, and reactive oxygen species. More interestingly, the initial emission peak of the present probe at 465 nm decreased with a new peak increased at 550 nm, leading to the ratiometric determination of Zn(2+) with high accuracy. Finally, this two-photon fluorescence probe with high temporal resolution and remarkable analytical performance, as well as low-cytotoxicity, was successfully applied in imaging of live cells, hippocampal tissues, and zebrafishes. The present P-Zn probe combined with FLIM provided accurate mapping of Zn(2+) distribution at single-cell level. More interestingly, the two-photon spectroscopic results demonstrated that the level of Zn(2+) in hippocampal tissue of mouse with AD was higher than that in normal mouse brain.

  10. A setup for synchrotron-radiation-induced total reflection X-ray fluorescence and X-ray absorption near-edge structure recently commissioned at BESSY II BAMline.

    PubMed

    Fittschen, U; Guilherme, A; Böttger, S; Rosenberg, D; Menzel, M; Jansen, W; Busker, M; Gotlib, Z P; Radtke, M; Riesemeier, H; Wobrauschek, P; Streli, C

    2016-05-01

    An automatic sample changer chamber for total reflection X-ray fluorescence (TXRF) and X-ray absorption near-edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF-XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml(-1) to µg ml(-1)). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml(-1)) for Ni were found. TXRF-XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state.

  11. FUSE and STIS Observations of Intervening O VI Absorption Line Systems in the Spectrum of PG 0953+415

    NASA Astrophysics Data System (ADS)

    Savage, B. D.; Sembach, K. R.; Tripp, T. M.; Richter, P.; Jenkins, E. B.

    2000-12-01

    We analyze Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph (STIS) observations of the intergalactic O VI absorption line systems in the direction of the bright QSO PG 0953+415 (z = 0.239). The FUSE observations cover the wavelength range from 905 to 1187 Å with a velocity resolution of 20 km/s. The STIS observations obtained with the E140M echelle spectrograph extend from 1150 to 1730 Å with a resolution of 8 km/s. These are supplemented with STIS G140M and G230M observations from 1145-1201 Å and from 1724-1814 A with a resolution of 30 km/s. We detect a strong O VI system at z = 0.06807 in the lines of H I Ly alpha, beta, and gamma, O VI 1031.93, 1037.62, N V 1238.80, 1242.80, C IV 1548.20, 1550.77, and C III 977.02 Å. We confirm the detection of the z = 0.14232 O VI system studied previously by Tripp and Savage (2000). The new FUSE observations of this system record Ly beta , O VI 1031.93, 1037.62, and C III 977.02 Å. We derive column densities for the absorption lines detected in both O VI systems using curve of growth and profile fitting techniques. We study the physical conditions in each system and attempt to determine the origin(s) of the ionization. Both detected O VI systems occur at redshifts where there are peaks in the number density of intervening galaxies along the line of sight based on a WIYN redshift survey of galaxies in the one degree field centered on PG 0953+415. We discuss the implications of these observations for the baryonic content of O VI absorption line systems. Financial support has been provided by NASA contract NAS-532985 and STSCI Grants GO 06499.02 and GO 08165.02.

  12. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  13. Thermodynamic consequence of the new attribution of bands in the electronic absorption spectrum of electron donor-iodine-solvent systems

    NASA Astrophysics Data System (ADS)

    Abramov, Sergey P.

    1999-06-01

    The subject review pays attention to the peculiarities in behaviour of bands in the electronic absorption spectra of electron donor-iodine-solvent systems, the appearance of which is associated with the intermolecular interaction of molecular iodine with electron donor organic molecules. The new concept of the bands’ attribution to the isomeric equilibrium molecular charge-transfer complexes (CTCs) of CTC-I and CTC-II types is considered. The features of possible phase transitions in the solid state are discussed on the basis of the thermodynamic properties and electronic structures of the CTC-I and CTC-II in electron donor-iodine-solvent systems. The stabilisation of the CTC-II structure with the temperature lowering coincided in many cases with the electrons’ localisation in the solid state structures having charge-transfer bonds.

  14. An interpretation of the near-ultraviolet absorption spectrum of SO2 - Implications for Venus, Io, and laboratory measurements

    NASA Technical Reports Server (NTRS)

    Belton, M. J. S.

    1982-01-01

    Line characteristics of remotely sensed SO2 spectra near the UV are discussed, noting the implications for the interpretation of data gathered by the IUE of Io and ground-based and Pioneer spectra of Venus. It is shown that the ratio of mean line spacing to linewidth is greater than unity, and that fully resolved lines have features consistent with concepts of temperature and pressure broadening. The application of Beer's approximation for the absorption spectra of Venus and Io atmospheres is found to be incorrect. Further, the spectroscopic limit on the SO2 line data from Io observations by the IUE are interpreted as establishing a lower bound on the SO2 in the Io atmosphere. A greater concentration of SO2 in vapor equilibrium may be present in the lower atmosphere. Laboratory measurements to resolve the uncertainties regarding the UV spectroscopic data from Io and Venus are suggested.

  15. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  16. Vacuum-UV absorption spectrum of a laser-produced chromium plasma: 3p-subshell photoabsorption by Cr2+ ions

    NASA Astrophysics Data System (ADS)

    McGuinness, C.; Martins, M.; van Kampen, P.; Hirsch, J.; Kennedy, E. T.; Mosnier, J.-P.; Whitty, W. W.; Costello, J. T.

    2000-11-01

    The dual laser plasma photoabsorption technique has been used to measure the time-resolved vacuum-UV photoabsorption spectrum of a chromium plasma. Resonant photoabsorption cross sections, constructed with the aid of Hartree-Fock calculations, and weighted in accordance with the plasma temperature, have been used to produce the synthetic Cr2+ spectra. The relevant plasma temperature and ionization balance are obtained from simple analytical models for various times during the expansion phase of the plasma plume. The experimental spectra taken at delays of 32, 62 and 90 ns compare well with Cr2+ spectra computed for corresponding predicted temperatures. It is found that in order to produce synthetic spectra that match experiment well, it is necessary to take into account absorption from many states belonging to the Cr2+ ground state configuration 3p63d4, while states from the nearest metastable configuration 3p63p34s make a negligible contribution.

  17. The 5 f r arrow 6 d absorption spectrum of Pa sup 4+ /Cs sub 2 ZrCl sub 6

    SciTech Connect

    Edelstein, N.; Kot, W.K. ); Krupa, J. )

    1992-01-01

    The 5{ital f}{sup 1}{r arrow}6{ital d}{sup 1} absorption spectrum of {sup 231}Pa{sup 4+} diluted in a single crystal of Cs{sub 2}ZrCl{sub 6} has been measured at 4.2 K. Three bands corresponding to the 6{ital d}({Gamma}{sub 8{ital g}}, {Gamma}{sub 7{ital g}}, and {Gamma}{sup {prime}}{sub 8{ital g}} ) levels are assigned. Extensive vibronic structure has been observed for the lowest 5{ital f}{r arrow}6{ital d} transition and this structure is compared to that recently reported for the 6{ital d}{sup 1}{r arrow}5{ital f}{sup 1} emission spectra in the same system.

  18. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    PubMed

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U3O8 and U3O7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U3O8 is a mixture of U(V) and U(VI), whereas U in U3O7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  19. Effects of solvent polarity on the absorption and fluorescence spectra of chlorogenic acid and caffeic acid compounds: determination of the dipole moments.

    PubMed

    Belay, Abebe; Libnedengel, Ermias; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-02-01

    The effects of solvent polarity on absorption and fluorescence spectra of biologically active compounds (chlorogenic acid (CGA) and caffeic acids (CA)) have been investigated. In both spectra pronounced solvatochromic effects were observed with shift of emission peaks larger than the corresponding UV-vis electronic absorption spectra. From solvatochromic theory the ground and excited-state dipole moments were determined experimentally and theoretically. The differences between the excited and ground state dipole moment determined by Bakhshiev, Kawski-Chamma-Viallet and Reichardt equations are quite similar. The ground and excited-state dipole moments were determined by theoretical quantum chemical calculation using density function theory (DFT) method (Gaussian 09) and were also similar to the experimental results. The HOMO-LUMO energy band gaps for CGA and CFA were calculated and found to be 4.1119 and 1.8732 eV respectively. The results also indicated the CGA molecule is more stable than that of CFA. It was also observed that in both compounds the excited state possesses a higher dipole moment than that of the ground state. This confirms that the excited state of the hydroxycinnamic compounds is more polarized than that of the ground state and therefore is more sensitive to the solvent.

  20. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    SciTech Connect

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per -Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-07

    Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the NiL3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the NiL edge which is far from the O K edge.

  1. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  2. Absorption, Fluorescence and Emission Anisotropy Spectra of 4-Cyano-N,N-dimethylaniline in Different Media and at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Piszczek, G.

    1997-05-01

    The effect of temperature on fluorescence and emission anisotropy spectra of 4-cyano-N,N-dimethylaniline (CDMA) was investigated in viscous (glycerol and paraffin oil) and rigid (polyvinyl alcohol) PVA and polyvinyl chloride) PVC) media. A strong effect of temperature on the intensity of a and b emission bands was observed. It was also found that the emission anisotropy, r, does not vary in the longwave emission band a at a fixed temperature but decreases in the emission band b together with the decreasing wavelength. The latter effect is due to the fact that the transition moment in this band is perpendicular to the long axis of the CDMA molecule. For CDMA in paraffin oil, a normal b band with negative emission anisotropy only occurs. In all other media used, the emission anisotropy has lower values, approaching zero, which results from the considerable covering of band b with a broad emission band a.

  3. New narrow infrared absorption features in the spectrum of Io between 3600 and 3100 cm (2.8-3.2 micrometers)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Geballe, Thomas R.; Salama, Farid; Goorvitch, David

    1994-01-01

    We report the discovery of a series of infrared absorption bands between 3600 and 3100/cm (2.8-3.2 micrometers) in the spectrum of Io. Individual narrow bands are detected at 3553, 3514.5, 3438, 3423, 3411.5, and 3401/cm (2.815, 2.845, 2.909, 2.921, 2.931, and 2.940 micrometers, respectively). The positions and relative strengths of these bands, and the difference of their absolute strengths between the leading and trailing faces of Io, indicate that they are due to SO2. The band at 3438/cm (2.909 micrometers) could potentially have a contribution from an additional molecular species. The existence of these bands in the spectrum of Io indicates that a substantial fraction of the SO2 on Io must reside in transparent ices having relatively large crystal sizes. The decrease in the continuum observed at the high frequency ends of the spectra is probably due to the low frequency side of the recently detected, strong 3590/cm (2.79 micrometer) feature. This band is likely due to the combination of a moderately strong SO2 band and an additional absorption from another molecular species, perhaps H2O isolated in SO2 at low concentrations. A broad (FWHM approximately = 40-60/cm), weak band is seen near 3160/cm (3.16 micrometers) and is consistent with the presence of small quantities of H2O isolated in SO2-rich ices. There is no evidence in the spectra for the presence of H2O vapor on Io. Thus, the spectra presented here neither provide unequivocal evidence for the presence of H2O on Io nor preclude it at the low concentrations suggested by past studies.

  4. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  5. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  6. Direct determination of cadmium speciation in municipal solid waste fly ashes by synchrotron radiation induced mu-X-ray fluorescence and mu-X-ray absorption spectroscopy.

    PubMed

    Pinzani, Maria Caterina Camerani; Somogyi, Andrea; Simionovici, Alexandre S; Ansell, Stuart; Steenari, Britt-Marie; Lindqvist, Oliver

    2002-07-15

    Cadmium is a toxic metal that causes environmental concern in connection with utilization and land filling of ash from combustion of municipal solid waste (MSW). Collecting information about the chemical associations of Cd in ash is fundamental since this affects its solubility and leachability from the ash material. In the work presented here, the content, distribution, and chemical forms of toxic metals especially of Cd on/in individual Municipal Solid Waste (MSW) fly ash particles have been investigated in situ by synchrotron radiation induced mu-X-ray fluorescence and absorption spectrometry. The use of an excitation energy of 27 keV made it possible to detect trace metals, such as Cd, present at ppm levels routinely. Changing the excitation energy in the vicinity of the absorption edge of Cd (26.71 keV), the absorption spectra of this element were measured for the first time in this high energy range in micron-sized spots of individual fly ash particles. The measurements indicated Cd to be preferably concentrated in some small areas ("hot-spots") with high concentration (up to 200 ppm) rather than in a homogeneous distribution or as a thin coating on the whole particle surface, making the surface-reaction the most probable mechanism of Cd enrichment during MSW combustion processes. Comparisons of XAS spectra of fly ashes and reference compounds showed that in the particles studied Cd is present in the oxidation state +2. Analyses of linear combinations of standard spectra allowed estimating the Cd presence within fly ash particles as an admixture of primarily CdSO4, CdO, and CdCl2 as well as an unidentified compound not included as a standard.

  7. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  8. Probing Lewis Acid-Base Interactions with Born-Oppenheimer Molecular Dynamics: The Electronic Absorption Spectrum of p-Nitroaniline in Supercritical CO2.

    PubMed

    Cabral, Benedito J Costa; Rivelino, Roberto; Coutinho, Kaline; Canuto, Sylvio

    2015-07-02

    The structure and dynamics of p-nitroaniline (PNA) in supercritical CO2 (scCO2) at T = 315 K and ρ = 0.81 g cm(-3) are investigated by carrying out Born-Oppenheimer molecular dynamics, and the electronic absorption spectrum in scCO2 is determined by time dependent density functional theory. The structure of the PNA-scCO2 solution illustrates the role played by Lewis acid-base (LA-LB) interactions. In comparison with isolated PNA, the ν(N-O) symmetric and asymmetric stretching modes of PNA in scCO2 are red-shifted by -17 and -29 cm(-1), respectively. The maximum of the charge transfer (CT) absorption band of PNA in scSCO2 is at 3.9 eV, and the predicted red-shift of the π → π* electronic transition relative to the isolated gas-phase PNA molecule reproduces the experimental value of -0.35 eV. An analysis of the relationship between geometry distortions and excitation energies of PNA in scCO2 shows that the π → π* CT transition is very sensitive to changes of the N-O bond distance, strongly indicating a correlation between vibrational and electronic solvatochromism driven by LA-LB interactions. Despite the importance of LA-LB interactions to explain the solvation of PNA in scCO2, the red-shift of the CT band is mainly determined by electrostatic interactions.

  9. Fluorescent probes and fluorescence (microscopy) techniques--illuminating biological and biomedical research.

    PubMed

    Drummen, Gregor P C

    2012-11-28

    Fluorescence, the absorption and re-emission of photons with longer wavelengths, is one of those amazing phenomena of Nature. Its discovery and utilization had, and still has, a major impact on biological and biomedical research, since it enables researchers not just to visualize normal physiological processes with high temporal and spatial resolution, to detect multiple signals concomitantly, to track single molecules in vivo, to replace radioactive assays when possible, but also to shed light on many pathobiological processes underpinning disease states, which would otherwise not be possible. Compounds that exhibit fluorescence are commonly called fluorochromes or fluorophores and one of these fluorescent molecules in particular has significantly enabled life science research to gain new insights in virtually all its sub-disciplines: Green Fluorescent Protein. Because fluorescent proteins are synthesized in vivo, integration of fluorescent detection methods into the biological system via genetic techniques now became feasible. Currently fluorescent proteins are available that virtually span the whole electromagnetic spectrum. Concomitantly, fluorescence imaging techniques were developed, and often progress in one field fueled innovation in the other. Impressively, the properties of fluorescence were utilized to develop new assays and imaging modalities, ranging from energy transfer to image molecular interactions to imaging beyond the diffraction limit with super-resolution microscopy. Here, an overview is provided of recent developments in both fluorescence imaging and fluorochrome engineering, which together constitute the “fluorescence toolbox” in life science research.

  10. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  11. A Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in photosystem I: are both phylloquinones involved in electron transfer?

    PubMed

    Hastings, G; Sivakumar, V

    2001-03-27

    Photoaccumulated Fourier transform infrared difference spectra associated with P700(+) and P700(+)A(1)(-) formation have been obtained using purified photosystem I particles from Synechocystis sp. PCC 6803. From these spectra, a difference spectrum associated with phylloquinone reduction (A(1)(-) - A(1)) has been calculated. Infrared absorption changes associated with both the loss of the ground state and formation of the anion radical are observed in the difference spectrum. Fourier transform infrared difference spectra obtained in various spectral regions indicate that two, structurally distinct phylloquinones are photoaccumulated. This could indicate that phylloquinones on both the PsaA and PsaB branches are involved in electron transfer, and that electron transfer is bi-directional in photosystem I. It could also indicate an intrinsic structural heterogeneity in the A(1) binding site of the active branch. Several FTIR difference features taken together indicate that a glutamic acid residue (at position 699 or 702 on PsaA and/or 679 or 682 on PsaB) is perturbed upon A(1) anion formation. It is suggested that the protonation state of the perturbed glutamic acid residue is influenced by hydrogen bonding to a nearby tyrosine residue at position 696/676 on PsaA/PsaB.

  12. A Fluorescence Lecture Demonstration.

    ERIC Educational Resources Information Center

    Bozzelli, Joseph W.; Kemp, Marwin

    1982-01-01

    Describes fluorescence demonstrations related to several aspects of molecular theory and quantitized energy levels. Demonstrations use fluorescent chemical solutions having luminescence properties spanning the visible spectrum. Also describes a demonstration of spontaneous combustion of familiar substances in chlorine. (JN)

  13. A Fluorescent Source NDIR Carbon Monoxide Analyzer

    NASA Technical Reports Server (NTRS)

    Link, W. T.; McClatchie, E. A.; Watson, D. A.; Compher, A. B.

    1971-01-01

    This paper describes a new technique for measuring trace quantities of carbon monoxide by the nondispersive infrared (NDIR) methods. The technique uses the property of infrared fluorescence in a gas to generate a specific source of radiation which is an exact match of the absorption spectrum of the fundamental band of carbon monoxide. This results in an instrument with high sensitivity and specificity for CO. A novel method of referencing using an isotopic species of CO confers great stability on the instrument.

  14. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  15. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline

    PubMed Central

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-01

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts. PMID:26781083

  16. Reverse engineering a spectrum: using fluorescent spectra of molecular hydrogen to recreate the missing Lyman-α line of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Herczeg, G.; Wood, B. E.

    2008-12-01

    The hydrogen Lyman-α (Lyα) line, a major source of ionization of metals in the circumstellar disks of pre-main sequence (PMS) stars, is usually not observed due to absorption by interstellar and circumstellar hydrogen. We have developed a technique to reconstruct the intrinsic Lyα line using the observed emission in the H2 B-X lines that are fluoresced by Lyα. We describe this technique and the subsequent analysis of the ultraviolet (UV) spectra of the TW Hya, RU Lupi and other PMS stars. We find that the reconstructed Lyα lines are indeed far brighter than any other feature in the UV spectra of these stars and therefore play an important role in the ionization and heating of the outer layers of circumstellar disks.

  17. The 5f2-->5f16d1 absorption spectrum of Cs2GeF6:U4+ crystals: A quantum chemical and experimental study.

    PubMed

    Ordejón, Belén; Karbowiak, Miroslaw; Seijo, Luis; Barandiarán, Zoila

    2006-08-21

    Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of

  18. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  19. Simulating a measurement of the 2nd knee in the cosmic ray spectrum with an atmospheric fluorescence telescope tower array.

    PubMed

    Liu, Jiali; Yang, Qunyu; Bai, Yunxiang; Cao, Zhen

    2014-01-01

    A fluorescence telescope tower array has been designed to measure cosmic rays in the energy range of 10(17)-10(18) eV. A full Monte Carlo simulation, including air shower production, light generation and propagation, detector response, electronics, and trigger system, has been developed for that purpose. Using such a simulation tool, the detector configuration, which includes one main tower array and two side-trigger arrays, 24 telescopes in total, has been optimized. The aperture and the event rate have been estimated. Furthermore, the performance of the X max technique in measuring composition has also been studied.

  20. Simulating a Measurement of the 2nd Knee in the Cosmic Ray Spectrum with an Atmospheric Fluorescence Telescope Tower Array

    PubMed Central

    Liu, Jiali; Yang, Qunyu; Bai, Yunxiang; Cao, Zhen

    2014-01-01

    A fluorescence telescope tower array has been designed to measure cosmic rays in the energy range of 1017–1018 eV. A full Monte Carlo simulation, including air shower production, light generation and propagation, detector response, electronics, and trigger system, has been developed for that purpose. Using such a simulation tool, the detector configuration, which includes one main tower array and two side-trigger arrays, 24 telescopes in total, has been optimized. The aperture and the event rate have been estimated. Furthermore, the performance of the Xmax⁡ technique in measuring composition has also been studied. PMID:24737964