Science.gov

Sample records for absorption spectrum reveals

  1. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates. PMID:24016295

  2. Terahertz absorption spectrum of triacetone triperoxide (TATP)

    NASA Astrophysics Data System (ADS)

    Wilkinson, John; Konek, Christopher T.; Moran, Jesse S.; Witko, Ewelina M.; Korter, Timothy M.

    2009-08-01

    We report here, for the first time, the terahertz absorption spectrum of triacetone triperoxide (TATP). The experimental spectra are coupled with solid-state density functional theory, and preliminary assignments are provided to gain physical insight into the experimental spectrum. The calculated absorption coefficients are in excellent agreement with experiment.

  3. Absorption bands in the spectrum of Io

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Jones, T. J.; Pilcher, C. B.

    1978-01-01

    Near-infrared spectra of Io in the region from 2.8 to 4.2 microns are reported which show distinct absorption features, the most notable at 4.1 microns. Frozen volatiles or atmospheric gases cannot account for these absorptions, nor do they resemble those seen in common silicate rocks. Several candidate substances, most notably nitrate and carbonate salts, show absorption features in this spectral region; the deepest band in the spectrum may be a nitrate absorption. The satellite surface is shown to be anhydrous, as indicated by the absence of the 3-micron bound water band.

  4. THE ABSORPTION SPECTRUM OF VISUAL PURPLE

    PubMed Central

    Chase, Aurin M.; Haig, Charles

    1938-01-01

    The absorption spectra of visual purple solutions extracted by various means were measured with a sensitive photoelectric spectrophotometer and compared with the classical visual purple absorption spectrum. Hardening the retinas in alum before extraction yielded visual purple solutions of much higher light transmission in the blue and violet, probably because of the removal of light-dispersing substances. Re-extraction indicated that visual purple is more soluble in the extractive than are the other colored retinal components. However, the concentration of the extractive did not affect the color purity of the extraction but did influence the keeping power. This suggests a chemical combination between the extractive and visual purple. The pH of the extractive affected the color purity of the resulting solution. Over the pH range from 5.5 to 10.0, the visual purple color purity was greatest at the low pH. Temperature during extraction was also effective, the color purity being greater the higher the temperature, up to 40°C. Drying and subsequent re-dissolving of visual purple solutions extracted with digitalin freed the solution of some protein impurities and increased its keeping power. Dialysis against distilled water seemed to precipitate visual purple from solution irreversibly. None of the treatments described improved the symmetry of the unbleached visual purple absorption spectrum sufficiently for it to resemble the classical absorption spectrum. Therefore it is very likely that the classical absorption spectrum is that of the light-sensitive group only and that the absorption spectra of our purest unbleached visual purple solutions represent the molecule as a whole. PMID:19873058

  5. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  6. The Absorption Spectrum of Iodine Vapour

    ERIC Educational Resources Information Center

    Tetlow, K. S.

    1972-01-01

    A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)

  7. The emission/absorption FE 2 spectrum of HD 45677

    NASA Technical Reports Server (NTRS)

    Stalio, R.; Selvelli, P. L.

    1981-01-01

    The complex behavior of the emission/absorption spectrum of Fe II is analyzed. The far UV spectrum is characterized almost solely by absorption lines, while, in the near UV, strong emissions are predominant. Radiative excitation from the ground to the highest levels (chi is approximately 10 eV) with re-emission in the near UV, visible and I.R. seems to be the main mechanism capable of explaining the observed spectral features.

  8. First principles calculation of oxygen K edge absorption spectrum of acetic acid: Relationship between the spectrum and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Matsui, Yoshiki; Mizoguchi, Teruyasu

    2016-04-01

    First principles calculation of the oxygen K-edge absorption near-edge structure of liquid acetic acid was performed to investigate the relationship between the spectrum and the molecular dynamics in a liquid. The single and double bonded oxygens gave strong peaks at different energies. A liquid model constructed using a molecular dynamics simulation reproduced the experimental spectrum. We revealed that the effect of the dynamic behavior of molecules in a liquid clearly appears in the particular peak from a single-bond oxygen. The relationship between the bonding nature and the dynamic information of a molecule in a spectrum was determined and presented.

  9. Quantitative calculation of the absorption spectrum of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Ogilvie, J. F.; Fee, G. J.

    2014-03-01

    With mathematical software (Maple), we have calculated quantitatively the entire absorption spectrum of the hydrogen atom in its electronic ground state for transitions to both discrete and continuum states, within the purview of non-relativistic wave mechanics. We present plots of wave functions in both coordinate and momentum representations and the calculated spectra.

  10. Ultraviolet absorption spectrum of chlorine nitrite, ClONO

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1977-01-01

    The near-ultraviolet absorption spectrum of chlorine nitrite (ClONO) has been quantitatively investigated over the wavelength range 230-400 nm at 231 K. An absorption maximum was observed at 290 nm with a cross section of 1.5 by 10 to the -18th power sq cm. The calculated lifetime against photodissociation for ClONO in the atmosphere is 2 to 3 minutes. The large photolysis rate indicates that ClONO does not play a significant role in the stratosphere as a temporary holding tank for chlorine.

  11. Effect of shock waves on the absorption spectrum of ruby

    SciTech Connect

    Hixson, R.S.; Bellamy, P.M.; Duvall, G.E.; Wilson, C.R.

    1981-01-01

    The effect of shock loading upon the unpolarized absorption spectrum of ruby has been measured. Experiments were performed both above and below the Hugoniot elastic limit (HEL), with the experiment above the elastic limit failing due to extinction of the light upon impact. The experiments below the elastic limit were both done at about the same pressure (approx. 100 kbar), and show a shift of both absorption bands in the visible region toward shorter wavelength, the shifts agreeing well with those measured at a comparable hydrostatic pressure.

  12. The Absorption Spectrum of the η Car Ejecta

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Viera, G.; Gull, T. R.

    2005-09-01

    The ultraviolet spectrum of η Car and the very nearby ejecta is dominated by complex wind profiles of the extended atmosphere. Increasingly from the STIS NUV to FUV, absorption features from the ejecta and the interstellar medium are superimposed. The absorption from the foreground ejecta display a velocity dispersion between -650 > v > -100 km s-1, with two easily separated components at -146 and -513 km s-1. These two velocities components have earlier been determined to be formed at very different distances from the central source (Gull et al. 2004), and seem to be linked to Little Homunculus and the Homunculus, respectively.The -146 and -513 km s-1 components show different ionization structures. While the -146 km s-1 component shows a spectrum from almost exclusively singly ionized iron group elements, the fast -513 km s-1 has a lower excitation temperature and consequently shows lines from both neutral and singly ionized species. H2 has a huge impact on the spectrum between 1200 to 1650 Å{} and can for some regions completely describe the ejecta spectrum. The ejecta vary in absorption throughout the spectroscopic period. The -146 km s-1 component strengthens when the minimum approaches. The fast component is not significantly affected across the minimum, however, the molecular lines show a dramatic decrease in intensity likely caused by the drop of FUV radiation reaching the -513 km s-1 ejecta. In this spectral range interstellar features such as S II, C II, C IV, Si II and Si IV have a significant impact on the spectrum. We used an earlier study by Walborn et al. (2002) to estimate the ISM's influence on the η Car spectrum. Many of the interstellar lines show a large velocity dispersion (-388 to +127 km s-1). Within 0.1 arcsec of the central source, STIS resolves spatial features at the 0.25 arcsec scale. A number of strong emission lines are observable in the spectrum and associable with the Weigelt blobs B and C. During the minimum when the FUV and X

  13. Infrared absorption spectrum of liquid cryogen R-134a

    NASA Astrophysics Data System (ADS)

    Pikkula, Brian M.; Guiwan, Edword; Chao, Edward; Anvari, Bahman

    2004-07-01

    Cryogen spray cooling (CSC) is an effective method to minimize epidermal damage during laser treatment of various cutaneous anomalies such as port wine stains, excess hair, and facial rhytides. Radiometric temperature measurements provide a noninvasive method to estimate the skin surface temperature. Since the infrared absorption spectrum of the cryogen film has remained unknown, assumptions for those values may lead to inaccurate temperature estimations. We have constructed several high-pressure infrared transparent cuvettes to determine the absorption coefficient of room temperature R-134a in liquid phase using Fourier Transform Infrared Spectroscopy (FTIR) in the 2.5 - 14 μm spectral bandwidth. Results demonstrate that liquid R-134a has several absorption bands in the infrared, with those between 7 - 10.5 and 11.5 - 12.5 μm being the most prominent. Additionally, the absorption coefficient at two common radiometric bands, 3 - 5 and 7 - 11 μm differ by four orders of magnitude. Results of this study will lead to further improvements in interpreting radiometric temperature measurements when using CSC.

  14. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  15. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  16. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    SciTech Connect

    Silant’ev, A. V.

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  17. Vertical transition energies vs. absorption maxima: illustration with the UV absorption spectrum of ethylene.

    PubMed

    Lasorne, Benjamin; Jornet-Somoza, Joaquim; Meyer, Hans-Dieter; Lauvergnat, David; Robb, Michael A; Gatti, Fabien

    2014-02-01

    We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared directly to the results of electronic structure calculations for two very different reasons. After validation of our level of theory against experimental data, a new experimental reference of 7.28 eV is suggested for benchmarking the Rydberg state, and the often-cited average transition energy (7.80 eV) is confirmed as a safer estimate for the valence state.

  18. [Decomposition of hemoglobin UV absorption spectrum into absorption spectra of prosthetic group and apoprotein by means of an additive model].

    PubMed

    Lavrinenko, I A; Vashanov, G A; Artyukhov, V G

    2015-01-01

    The decomposition pathways of hemoglobin UV absorption spectrum into the absorption spectra of the protein and non-protein components are proposed and substantiated by means of an additive model. We have established that the heme component has an absorption band with a maximum at λ(max) = 269.2 nm (ε = 97163) and the apoprotein component has an absorption band with a maximum at λ(max) = 278.4 nm (ε = 48669) for the wavelength range from 240.0 to 320.0 nm. An integral relative proportion of absorption for the heme fraction (78.8%) and apoprotein (21.2%) in the investigating wavelength range is defined.

  19. Infrared Absorption Spectrum of Matrix-Isolated Phenanthrene

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Stanley P. Sander

    2016-10-01

    The far-to-mid Infrared absorption spectrum of phenanthrene (C14H10), one of the polycyclic aromatic hydrocarbons (PAHs), has been measured in an argon matrix at 5 K. Thirty two fundamental bands for phenanthrene have been observed; one of them is detected for the first time (v54 = 1398.0 cm-1) and eight of them are detected for the first time at temperatures below room temperature (v43 = 233.8 cm-1, v42 = 425.2 cm-1, v66 = 441.6 cm-1, v65 = 499.0 cm-1, v21 = 546.3 cm-1, v63 = 714.5 cm-1, v18 = 1033.7 cm-1 and v55 = 1362.5 cm-1). The relative intensities of these 32 bands have been measured; three ( v21, v18, v54) of which are measured for the first time and six ( v43, v42, v66, v65, v63, and v55) of which are measured for the first time at temperatures below room temperature. Our low temperature study of the vibrational bands for phenanthrene provides important information for the spectral analysis of the Composite Infrared Spectrometer (CIRS) aboard the Cassini Spacecraft.

  20. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  1. Understanding the two-photon absorption spectrum of PE2 platinum acetylide complex.

    PubMed

    Vivas, Marcelo G; De Boni, Leonardo; Cooper, Thomas M; Mendonca, Cleber R

    2014-07-31

    Herein, we report on the two-absorption cross-section spectrum of trans-Pt(PBu3)2 (C≡C-C6H4-C≡C-C6H5)2 (PE2) platinum acetylide complex employing the femtosecond wavelength-tunable Z-scan technique. The PE2 complex can be visualized as two branches containing two phenylacetylene units, each one linked by a platinum center, completely transparent in the visible region. Because of this structure, large delocalization of π-electrons allied to the strong intramolecular interaction between the branches is expected. The 2PA absorption spectrum was measured using the femtosecond wavelength-tunable Z-scan technique with low repetition rate (1 kHz), in order to obtain the 2PA spectrum without excited-state contributions. Our results reveal that PE2 in dichloromethane solution presents two 2PA allowed bands located at 570 and 710 nm, with cross section of about 320 and 45 GM, respectively. The first one is related to the strong intramolecular interaction between the molecule's branches due to the presence of platinum atom, while the second one is associated with the breaking of symmetry of the chromophore in solution due, most probably to a large twisting angle of the ligand's phenyl rings relative to the Pt core.

  2. Laser excitation spectrum and the long path length absorption spectrum of formyl cyanide, CHOCN

    NASA Astrophysics Data System (ADS)

    Judge, R. H.; Moule, D. C.; Biernacki, A.; Benkel, M.; Ross, J. M.; Rustenburg, J.

    1986-04-01

    Formyl cyanide has been prepared for the first time by the flash pyrolysis of methoxyacetonitrile. The compound was found to be unstable and had a half-life of about 8 min in the vapor phase in the laser experiments. The near-UV absorption spectrum was photographed under conditions of long path length (56 m) at modest dispersion (1.5 nm/mm between 368 and 390 nm, and 0.75 nm/mm between 368 and 350 nm). Excitation spectra were recorded over the 386- to 360-nm region with a N 2 pumped dye laser. The observed spectrum proved to have an open vibrational and rotational fine structure and was assigned to the n → π ∗Ã1A″ ← X˜1A' electronic transition. Vibrational assignments were made in terms of ν' 3 (CO), ν' 4 (CHO), ν' 5 (CC), ν' 6 (CCO), ν' 7 (CCN), ν' 8 (H wag), ν' 9 (CCN), ν″ 7 (CCN), and ν″ 9 (CCN). The vibrational frequencies in both states were found to correlate closely to those of the propynal molecule.

  3. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  4. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  5. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    PubMed

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide. PMID:19811399

  6. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. PMID:24529777

  7. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  8. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  9. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  10. Absorption spectrum of an atom strongly coupled to a high-temperature reservoir

    NASA Astrophysics Data System (ADS)

    Kofman, A. G.

    2005-03-01

    We study the absorption spectrum of a weak probe field near resonant to an atomic transition, the upper level of which is strongly coupled to a third level by the interaction with a Lorentzian bosonic reservoir, such as, e.g., a mode of a high- Q cavity or a local vibration in a solid. The reservoir coupling is approximated by the interaction with a classical complex Gaussian-Markovian random process (control field), which is justified when the reservoir temperature exceeds significantly the mode frequency or when the high- Q cavity is pumped by broadband incoherent radiation. The present theory is applicable also when the control field is chaotic laser light. We assume that the rms control-field Rabi frequency V0 is much greater than the field detuning Δc , which, in turn, is much greater than the material relaxation constants. We reveal and describe analytically all qualitatively different regimes of the spectrum modification and obtain their validity conditions. The analytical results are verified by numerical calculations using the exact continued-fraction solution. The analytical formulas obtained allow one to perform fast computer calculations for arbitrarily small values of the reservoir (control-field) bandwidth ν , in contrast to the known numerical methods, which require sharply increasing computational resources with a decrease of ν . In the most interesting case ν≪V0 , the spectrum consists of two peaks, the nonvanishing bandwidth and material relaxation affecting mainly the dip between the peaks. The results obtained in the static limit (i.e., a very narrow reservoir) are independent of the reservoir band shape. We reveal reservoir-induced transparency (RIT)—i.e., absorption reduction due to the reservoir coupling. Moreover, two unexpected, remarkable features are uncovered in a range of intermediate values of ν and V0 , Γ2∣Δc∣≪V02ν≪∣Δc∣3 ( Γ is the spectral width in the absence of the control field): an extra peak in the dip

  11. The ultraviolet absorption spectrum of the quasar PKS 0405-12 and the local density of Lyman-alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.

    1993-01-01

    A sample of 32 absorption lines has been identified in the ultraviolet spectrum of the z = 0.57 quasar PKS 0405-12. Data cover the wavelength range 1190-3260 A. There are 10 extragalactic Ly-alpha absorption lines in the complete sample, all with observed equivalent widths greater than or equal to 0.40 A; three of the Ly-alpha lines have Ly-beta counterparts. The number of Ly-alpha lines observed in the spectrum of PKS 0405-12 is within 1 sigma of the number predicted on the basis of previous HST observations of 3C 273 and of H1821 + 643. Combining the HST observations of 3C 273, H1821 + 643, and PKS 0405-12, we estimate the local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A to be about 15 +/- 4 Ly-alpha lines per unit redshift. Ground-based images reveal a rich field of galaxies in the direction of PKS 0405-12, including many galaxies with the brightnesses and sizes expected if they belong to a cluster associated with the quasar. The quasar spectrum does not show any evidence for absorption at the redshift of the emission lines, indicating a covering factor of less than unity for the halos of galaxies in the cluster around PKS 0405 - 12.

  12. Absorption spectrum of the firefly luciferin anion isolated in vacuo.

    PubMed

    Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen

    2011-03-24

    The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.

  13. Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2016-03-01

    We investigate the influence of the finite absorption spectrum width on the soliton formation and superluminality phenomenon at a femtosecond pulse propagation in a medium with noble nanoparticles. These effects take place if a positive phase-amplitude grating is induced by laser radiation. We take into account the two-photon absorption (TPA) of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption, and the nanorod absorption spectrum width. On the basis of computer simulation we demonstrate these effects in a medium with positive phase-amplitude grating, induced by laser radiation, if a weak laser energy absorption takes place on the laser pulse dispersion length.

  14. Method for improving terahertz band absorption spectrum measurement accuracy using noncontact sample thickness measurement.

    PubMed

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Yan, Fang; Zhang, Han

    2012-07-10

    The terahertz absorption spectrum has a complex nonlinear relationship with sample thickness, which is normally measured mechanically with limited accuracy. As a result, the terahertz absorption spectrum is usually determined incorrectly. In this paper, an iterative algorithm is proposed to accurately determine sample thickness. This algorithm is independent of the initial value used and results in convergent calculations. Precision in sample thickness can be improved up to 0.1 μm. A more precise absorption spectrum can then be extracted. By comparing the proposed method with the traditional method based on mechanical thickness measurements, quantitative analysis experiments on a three-component amino acid mixture shows that the global error decreased from 0.0338 to 0.0301.

  15. Plane-wave DFT-LDA calculation of the electronic structure and absorption spectrum of copper

    NASA Astrophysics Data System (ADS)

    Marini, Andrea; Onida, Giovanni; del Sole, Rodolfo

    2001-11-01

    We present an accurate, first-principles study of the electronic structure and absorption spectrum of bulk copper within density functional theory in the local density approximation, including the study of intraband transitions. We construct norm-conserving pseudopotentials (PP's) including the 3d shell (and optionally the underlying 3s and 3p shells) in the valence and requiring a relatively small plane-wave basis (60 and 140 Ry cutoff, respectively). As a consequence, these PP's are strongly nonlocal, yielding macroscopically wrong results in the absorption spectrum when momentum matrix elements are computed naively. Our results are compared with experimental photoemission, absorption, and electron energy loss data, and suggest nontrivial self-energy effects in the quasiparticle spectrum of Cu.

  16. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart.

    PubMed

    Dyuba, A V; Vygodina, T V; Konstantinov, A A

    2013-12-01

    This paper presents a new experimental approach for determining the individual optical characteristics of reduced heme a in bovine heart cytochrome c oxidase starting from a small selective shift of the heme a absorption spectrum induced by calcium ions. The difference spectrum induced by Ca2+ corresponds actually to a first derivative (differential) of the heme a(2+) absolute absorption spectrum. Such an absolute spectrum was obtained for the mixed-valence cyanide complex of cytochrome oxidase (a(2+)a3(3+)-CN) and was subsequently used as a basis spectrum for further procession and modeling. The individual absorption spectrum of the reduced heme a in the Soret region was reconstructed as the integral of the difference spectrum induced by addition of Ca2+. The spectrum of heme a(2+) in the Soret region obtained in this way is characterized by a peak with a maximum at 447 nm and half-width of 17 nm and can be decomposed into two Gaussians with maxima at 442 and 451 nm and half-widths of ~10 nm (589 cm(-1)) corresponding to the perpendicularly oriented electronic π→π* transitions B0x and B0y in the porphyrin ring. The reconstructed spectrum in the Soret band differs significantly from the "classical" absorption spectrum of heme a(2+) originally described by Vanneste (Vanneste, W. H. (1966) Biochemistry, 65, 838-848). The differences indicate that the overall γ-band of heme a(2+) in cytochrome oxidase contains in addition to the B0x and B0y transitions extra components that are not sensitive to calcium ions, or, alternatively, that the Vanneste's spectrum of heme a(2+) contains significant contribution from heme a3(2+). The reconstructed absorption band of heme a(2+) in the α-band with maximum at 605 nm and half-width of 18 nm (850 cm(-1)) corresponds most likely to the individual Q0y transition of heme a, whereas the Q0x transition contributes only weakly to the spectrum.

  17. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  18. The absorption spectrum of titanium between 1900 A and 2315 A

    NASA Technical Reports Server (NTRS)

    Forsberg, P.; Johansson, S.; Smith, P. L.

    1986-01-01

    The absorption spectrum of Ti I has been analyzed in the region 1900-2315 A. The list contains 219 lines, of which 64 have been identified as transitions between the ground term and terms of the odd configurations (3d + 4s)3 np (n = 4, 5). Sixteen new energy levels have been found, and three odd level values have been revised. Most of the identified Ti I lines are present in the solar spectrum.

  19. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  20. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  1. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  2. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  3. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  4. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  5. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO.

    PubMed

    Smith, Mica C; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH3CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH3CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10(-17) cm(2) molecule(-1) at 308 nm and (9.7 ± 0.6) × 10(-18) cm(2) molecule(-1) at 352 nm. After scaling the UV spectrum of CH3CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10(-17) cm(2) molecule(-1) at 328 nm. Compared to the simplest Criegee intermediate CH2OO, the UV absorption band of CH3CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH3CHOO in the atmosphere.

  6. Selectivity of the optical-absorption method based on an instrumental pick out of Fourier components in the absorption spectrum

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Yu. V.; Kolesnikov, S. A.; Kolesnikova, E. S.; Turutin, Yu. A.; Konopelko, L. A.; Shor, N. B.

    2016-06-01

    The introduction of interference-polarization filters (IPFs) in the structure of an optical-absorption analyzer makes it possible to pick out a harmonic (a Fourier component of the absorption spectrum) providing measurement with the highest sensitivity. The selectivity of such a method of analysis is determined by overlapping the oscillations of the measured and interfering components. By the example of measurement in benzene in the presence of an interfering component (toluene), the possibility is considered for the optimization of selectivity due to the variation of the path-difference dispersion for ordinary and extraordinary interfering rays. The metrological characteristics of the interference-polarization analyzer of C6H6 confirming the results of calculations are given.

  7. On the Putative Detection ofz>0 X-ray Absorption Featuresin the Spectrum of Mrk 421

    NASA Astrophysics Data System (ADS)

    Rasmussen, Andrew; Kahn, S. M.; Paerels, F.; den Herder, J.; Kaastra, J.; de Vries, C.

    2006-09-01

    In a series of papers, Nicastro et al. have reported the detection of z>0 OVII absorption features in the spectrum of Mrk421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate this result in the context of a high quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955ks of usable exposure time and more than 26000 counts per 50 milliAngstrom at 21.6 Angstroms. We concentrate on the spectrally clean region (21.3 < lambda < 22.5 Angstroms) where sharp features due to the astrophysically abundant OVII may reveal an intervening, warm--hot intergalactic medium (WHIM). We do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the Log(N_i) 14.6 (3 sigma) sensitivity level. Each of the two purported WHIM features is rejected with a statistical confidence that exceeds that reported for its initial detection. While we can not rule out the existence of fainter, WHIM related features in these spectra, we suggest that previous discovery claims were premature. A more recent paper by Williams et al. claims to have demonstrated that the RGS data we analyze here do not have the resolution or statistical quality required to confirm or deny the LETGS detections. We show that our careful analysis resolves the issues encountered by Williams et al. and recovers the full resolution and statistical quality of the RGS data. We highlight the differences between our analysis and those published by Williams et al. as this may explain our disparate conclusions.

  8. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce.

  9. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce. PMID:25095445

  10. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  11. Absorption spectrum of NO in the {gamma}(O, O) band

    SciTech Connect

    Zobnin, A.V.; Korotkov, A.N.

    1995-05-01

    A promising technique for determining the concentration of nitrogen oxide in the air of an industrial zone and in process gases is the measurement of the absorption of UV radiation by this molecule in the {gamma}(O,O) band with the center of {lambda}{sub 0} = 226.5 nm. This band corresponds to the transition X{sup 2}{Pi}{yields}{Alpha}{sup 2}{Sigma} of the NO molecule and is characterized by a complex rotational structure consisting of about 400 lines. This structure cannot be resolved completely by most spectral instruments. However, if the width of the spread function of the device is perceptibly smaller than the width of the given absorption band ({approx_equal}2 nm), but larger than the characteristic space between rotational lines ({approx_equal}0.02 nm), then the recorded transmission spectra of NO are almost insensitive to a change in the form of this function. In the given case, to describe the transmission spectrum it is possible to use the absorption coefficient averaged over rotational lines. And even though the Bouger-Lambert-Beer law is not strictly applicable for this spectrum, the dependence of the transmission spectrum of NO on the optical thickness, temperature, and pressure of the broadening gas can be represented in the form of an empirical dependence that can be useful in practice, for example, when processing the absorption spectra recorded by dispersion gas analyzers. Thus, the need for complex and laborious calculations is avoided, and this simplifies considerably the instrumental implementation of this method of measuring the concentration of NO. The object of the present work is to determine the empirical dependence of the absorption spectrum of NO in the {gamma}(O, O) band on the optical thickness, temperature, and pressure of the broadening gas in the ranges most frequently encountered in operation of dispersion gas analyzers.

  12. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    PubMed Central

    Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  13. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    PubMed

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-04-30

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences.

  14. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  15. The UV absorption spectrum of the simplest Criegee intermediate CH2OO.

    PubMed

    Ting, Wei-Lun; Chen, Ying-Hsuan; Chao, Wen; Smith, Mica C; Lin, Jim Jr-Min

    2014-06-14

    SO2 scavenging and self-reaction of CH2OO were utilized for the decay of CH2OO to extract the absorption spectrum of CH2OO under bulk conditions. Absolute absorption cross sections of CH2OO at 308.4 and 351.8 nm were obtained from laser-depletion measurements in a jet-cooled molecular beam. The peak cross section is (1.23 ± 0.18) × 10(-17) cm(2) at 340 nm.

  16. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  17. Absorption spectrum and analysis of the ND 4 Schüler band

    NASA Astrophysics Data System (ADS)

    Alberti, F.; Huber, K. P.; Watson, J. K. G.

    1984-09-01

    A high-resolution absorption spectrum of the main Schüler band of ND 4, with heads at 6746 and 6749 Å ( ν00 = 14828 cm -1), has been obtained by the flash discharge method, using mixtures of ND 3 and D 2. The spectrum confirms and extends the recent observation of ND 4 absorption in laser frequency modulation spectroscopy by Hunziker and co-workers. The detailed rotational analysis establishes the electronic assignment as 3 p2F2 ← 3 s2A1, and results in molecular constants in moderate agreement with expectations based on ab initio calculations. The 30-μsec lifetime of the 3 s2A1 ground state of ND 4 is consistent with the 20-μsec lower limit estimated by Porter and co-workers on the basis of neutralized-ion-beam spectroscopy.

  18. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion.

  19. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  20. Retrieval of absorptive gas columnar amounts using atmospheric hyper-spectral irradiance measurements within visible spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Zhengqiang; Li, Donghui; Xie, Yisong; Li, Kaitao; Qie, Lili; Zhang, Ying; Chen, Xingfeng; Zheng, Xiaobin; Li, Xin; Zhang, Yanna

    2015-10-01

    A hyper spectral ground-based instrument named Atmosphere-Surface Radiation Automatic Instrument (ASRAI) has been developed for the purpose of in-situ calibration of satellites. The apparatus has both upward and downward looking views, and thus can observe both the atmosphere and land surface. The solar transmitted irradiance can be derived from the measured full spectral irradiance and diffused spectral irradiance of atmosphere within visible spectrum (0.4-1.0μm). A method similar to that of King et al. which originally intended to apply to multi-wavelength measurements, is adopted to determine absorptive gaseous columnar amount from hyper spectrum. The solar irradiance at top of atmosphere and absorption coefficients of water vapor (H2O), ozone (O3), oxygen (O2) and nitrogen dioxide (NO2) are recalculated at an instrumental spectral resolution by convolution method. Based on the gaseous characteristics of absorption, the total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength of 0.934μm and 0.763μm respectively. The total columnar amounts of ozone and nitrogen dioxide, together with aerosol optical depth, are determined by a nonlinear least distance fitting method which minimizes a χ2 statistic to obtain optimal solutions. ASRAI was deployed for observation in Dunhuang site in China in August of 2014. Our results demonstrate that the algorithm is reasonable. Although the validation is preliminary, the hyper spectrum measured by ASRAI exhibits good ability to retrieve the abundance of absorptive gases and aerosols.

  1. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; Genzel, R.; Maiolino, R.; Sturm, E.; Tacconi, L.

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  2. High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase

    NASA Astrophysics Data System (ADS)

    Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali

    2006-09-01

    The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.

  3. H i Absorption in the Steep-Spectrum Superluminal Quasar 3C 216.

    PubMed

    Pihlström; Vermeulen; Taylor; Conway

    1999-11-01

    The search for H i absorption in strong compact steep-spectrum sources is a natural way to probe the neutral gas contents in young radio sources. In turn, this may provide information about the evolution of powerful radio sources. The recently improved capabilities of the Westerbork Synthesis Radio Telescope have made it possible to detect a 0.31% (19 mJy) deep neutral atomic hydrogen absorption line associated with the steep-spectrum superluminal quasar 3C 216. The redshift (z=0.67) of the source shifts the frequency of the 21 cm line down to the ultra-high-frequency (UHF) band (850 MHz). The exact location of the H i-absorbing gas remains to be determined by spectral line VLBI observations at 850 MHz. We cannot exclude that the gas might be extended on galactic scales, but we think it is more likely to be located in the central kiloparsec. Constraints from the lack of X-ray absorption probably rule out obscuration of the core region, and we argue that the most plausible site for the H i absorption is in the jet-cloud interaction observed in this source.

  4. Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations

    SciTech Connect

    Xu, Xuefei; Zheng, Jingjing; Truhlar, Donald G.

    2015-07-01

    Free energy calculations for eight enol isomers of malonaldehyde (MA) and simulation of the ultraviolet (UV) absorption spectrum in both the gas phase and water (pH = 3, where the molecule exists in neutral undeprotonated form) show that in water the two s-trans nonchelated enol conformers of MA become thermodynamically more stable than the internally hydrogen-bonded (“chelated enol”) conformer (CE). The pure CE conformer in water has a slightly red-shifted UV spectrum with respect to that in the gas phase, but the blue-shifted spectrum observed in water at pH 3 is dominated by solvent-stabilized conformations that have negligible populations in the gas phase. Density functional calculations with the solvation model based on density (SMD) and an ensemble-averaged vertical excitation model explain the experimental observations in detail.

  5. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  6. Bulk entanglement spectrum reveals quantum criticality within a topological state.

    PubMed

    Hsieh, Timothy H; Fu, Liang

    2014-09-01

    A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.

  7. UV absorption spectrum of the C2 Criegee intermediate CH{sub 3}CHOO

    SciTech Connect

    Smith, Mica C.; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A.; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH{sub 3}CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH{sub 3}CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10{sup −17} cm{sup 2} molecule{sup −1} at 308 nm and (9.7 ± 0.6) × 10{sup −18} cm{sup 2} molecule{sup −1} at 352 nm. After scaling the UV spectrum of CH{sub 3}CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10{sup −17} cm{sup 2} molecule{sup −1} at 328 nm. Compared to the simplest Criegee intermediate CH{sub 2}OO, the UV absorption band of CH{sub 3}CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH{sub 3}CHOO in the atmosphere.

  8. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  9. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO.

    PubMed

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A; Lee, Yuan-Pern

    2016-07-28

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm(-1) are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm(-1) is blue shifted from the corresponding band of CH2OO at 1286 cm(-1); this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm(-1), observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO. PMID:27475359

  10. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A.; Lee, Yuan-Pern

    2016-07-01

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm-1 are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm-1 is blue shifted from the corresponding band of CH2OO at 1286 cm-1; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm-1, observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.

  11. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  12. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  13. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  14. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  15. UV absorption spectrum and photodissociation channels of the simplest Criegee intermediate (CH2OO).

    PubMed

    Dawes, Richard; Jiang, Bin; Guo, Hua

    2015-01-14

    The lowest-lying singlet states of the simplest Criegee intermediate (CH2OO) have been characterized along the O-O dissociation coordinate using explicitly correlated MRCI-F12 electronic structure theory and large active spaces. It is found that a high-level treatment of dynamic electron-correlation is essential to accurately describe these states. A significant well on the B-state is identified at the MRCI-F12 level with an equilibrium structure that differs substantially from that of the ground X-state. This well is presumably responsible for the apparent vibrational structure in some experimental UV absorption spectra, analogous to the structured Huggins band of the iso-electronic ozone. The B-state potential in the Franck-Condon region is sufficiently accurate that an absorption spectrum calculated with a one-dimensional model agrees remarkably well with experiment.

  16. Atmospheric degradation of pyridine: UV absorption spectrum and reaction with OH radicals and O3

    NASA Astrophysics Data System (ADS)

    Errami, M.; El Dib, G.; Cazaunau, M.; Roth, E.; Salghi, R.; Mellouki, A.; Chakir, A.

    2016-10-01

    The UV absorption spectrum of pyridine and its gas phase reactions with OH radicals and O3 were investigated. UV absorption cross-sections were determined by using a D2-lamp system in the range 200-350 nm. The kinetic studies were carried out at room temperature and atmospheric pressure of purified air. The rate coefficient for the reaction of pyridine with OH was determined relative to that with acetone while that with O3 was measured under pseudo first order conditions. The rate coefficients obtained are (in cm3 molecule-1 s-1): k(OH + pyridine) = (5.40 ± 0.80) × 10-13 and k(O3 + pyridine) = (3.28 ± 1.70) × 10-20.

  17. The absorption spectrum of NH 2 in the region 5300 to 6800 Å

    NASA Astrophysics Data System (ADS)

    Ross, S. C.; Birss, F. W.; Vervloet, M.; Ramsay, D. A.

    1988-06-01

    The detailed analysis of the Ã2A 1- X˜2B 1 spectrum of NH 2 in the region 5300 to 6800 Å is reported. Term values derived from the analysis are also presented. Numerous new vibronic substates have been identified. The assignment of the substates and the perturbations detected are discussed in detail, making reference to the calculations of Jungen, Hallin, and Merer and also drawing on the argon matrix absorption spectrum of Robinson and McCarty. The parameters of a simplified model Hamiltonian are reported for most of the substates. The comparison of these results to the calculations of Jungen, Hallin, and Merer, along with the tendencies in the behavior of the spin-orbit coupling constant detected in their work, facilitated the assignments in the present work.

  18. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  19. Total Absorption Spectroscopy Study of 92Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; ńystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. 92Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied 92Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

  20. [The effect of Doppler effect on ultraviolet absorption spectrum from difference in temperature (UVASDT)].

    PubMed

    Hu, Yao-gai; Zeng, Fan-qing; Li, Wei; Hu, Ji-ming

    2005-06-01

    In this paper, the formation of UV absorption spectrum from difference in temperature (UVASDT) is discussed. Broadening of spectral lines might be one of the reasons for the formation of UVASDT. The effect of temperature on the broadening of spectral lines is analyzed. The Doppler SDT function is deduced, and the SDT of C60 and progesterone can be explained by it. It is indicated that the Doppler effect might be the primary reason for the formation of UVASDT of this kind of substance.

  1. Modelling warm absorption in HST/COS spectrum of Mrk 290 with XSTAR

    NASA Astrophysics Data System (ADS)

    Zhang, S. N.; Ji, L.; Kallman, T. R.; Yao, Y. S.; Froning, C. S.; Gu, Q. S.; Kriss, G. A.

    2015-03-01

    We present a new method to model an HST/COS (Hubble Space Telescope/Cosmic Origins Spectrograph) spectrum, aimed to analyse intrinsic UV absorption from the outflow of Mrk 290, a Seyfert I galaxy. We use newly updated XSTAR to generate photoionization models for the intrinsic absorption from the active galactic nuclei (AGN) outflow, the line emission from the AGN broad- and narrow-line regions, and the local absorption from high-velocity clouds and Galactic interstellar medium. The combination of these physical models accurately fits the COS spectrum. Three intrinsic absorbers outflowing with velocities ˜500 km s- 1 are identified, two of which are found directly from two velocity components of the N V and C IV doublets, while the third is required by the extra absorption in the Lyα. Their outflow velocities, ionization states and column densities are consistent with the lowest and moderate ionization warm absorbers (WAs) in the X-ray domain found by Chandra observations, suggesting a one-to-one correspondence between the absorbing gas in the UV and X-ray bands. The small turbulent velocities of the WAs (vturb ≲ 100 km s- 1) support our previous argument from the X-ray study that the absorbers originate from the inner side of the torus due to thermal evaporation. Given the covering fractions of ˜65 per cent for the three WAs, we deduce that the lengths and the thicknesses of the WAs are comparable, which indicates that the geometry of WAs are more likely clouds rather than flat and thin layers. In addition, the modelling of the broad-line emission suggests a higher covering fraction of clouds when they are very closer to the black hole.

  2. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  3. CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-09-01

    (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than that currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The calculated global annually averaged lifetime was 58.1 ± 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations.

  4. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  5. Dynamic registration of D216O absorption spectrum in silica aerogel

    NASA Astrophysics Data System (ADS)

    Sinitsa, L.; Lavrentieva, N.; Lugovskoi, A.

    2014-09-01

    Absorption spectra of the gas phase and adsorbed D2О in the silica aerogel with nanoscale pores were investigated in 3700-5400 cm-1 range using dynamic registration with Fourier Transform spectrometer IFS-125M. Two types of sample with pores of 60 nm wide - the nitrogen gas-treated and untreated aerogels - were examined. The surface treatment of the sample changes noticeably the broadband absorption of adsorbed water. Spectrum of D2O in the pores differs from the spectrum of bulk water as for bandwidth so for band maximum. It was found that treatment of the pores by dry nitrogen leads to increasing hydrophilic properties of the material and to change water band contour. The D2О line widths in both the aerogels exceed those of free monomer in 1.1-3 times at the same pressure. Calculations of self-broadening coefficients of the D2O lines were performed using semi-empirical method based on the impact theory of broadening and includes the correction factors. The calculated results well agree with experimental data. Greater differences were found for the shift of the line centre. The D2O line shifts in the treated pores significantly exceed line shifts in the untreated pores. For some lines, these shifts have the opposite sign indicating complex nature of the molecule-wall interaction.

  6. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  7. An absorption line in the ultraviolet spectrum of 40 Eridani B

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.

    1980-01-01

    Two excellent low-resolution spectra show an absorption line of equivalent width 3 A, near 1391 A, in the typical DA (hydrogen atmosphere) white dwarf 40 Eri B. The line is confirmed by a high-resolution spectrum and is the first seen in any DA star. Ultraviolet fluxes and the profile of Lyman-alpha confirm an effective temperature near 17,000 K. If the line is Si IV, it requires a temperature near 40,000 K. Unattractive possibilities are a hot circumstellar absorbing envelope dependent on accretion from companions, or formation at large optical depth in a transparent atmosphere with high Si/H. A suggestion that H2 should be considered leads to the possible interpretation as the (0, 5) transition of the Lyman band, formed at small optical depth. The band should be stronger in cooler DAs.

  8. Absorption features in the x-ray spectrum of an ordinary radio pulsar.

    PubMed

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G

    2012-08-24

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.

  9. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin.

    PubMed

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-21

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally.

  10. A combined experimental-computational study on nitrogen doped Cu2O as the wide-spectrum absorption material

    NASA Astrophysics Data System (ADS)

    Ping, Zhang; Yurong, Zhou; Qingbo, Yan; Fengzhen, Liu; Jingwen, Li; Gangqiang, Dong

    2014-10-01

    Highly-oriented Cu2O thin films were prepared by low temperature thermal oxidation of evaporated Cu thin films. The films were doped with different doses of nitrogen by ion implantation. An absorption peak appears below the absorption edge in the absorption spectrum of highly nitrogen doped Cu2O. The effect of nitrogen doping on the crystal structure, electronic structure and optical properties of Cu2O were investigated systematically by first-principles calculations. The calculation results indicate that an intermediate energy band exists in the forbidden gap of highly nitrogen doped Cu2O. The electron transition from the valence band to the intermediate band is consistent with the absorption peak by experimental observation. Experimental and computational results indicate that nitrogen doped Cu2O could be a suitable absorbing material candidate for wide-spectrum detectors or intermediate band solar cells.

  11. Analysis of urinary stone based on a spectrum absorption FTIR-ATR

    NASA Astrophysics Data System (ADS)

    Asyana, V.; Haryanto, F.; Fitri, L. A.; Ridwan, T.; Anwary, F.; Soekersi, H.

    2016-03-01

    This research analysed the urinary stone by measuring samples using Fourier transform infrared-attenuated total reflection spectroscopy and black box analysis. The main objective of this study is to find kinds of urinary stone and determine a total spectrum, which is a simple model of the chemical and mineral composition urinary stone through black box analysis using convolution method. The measurements result showed that kinds of urinary stone were pure calcium oxalate monohydrate, ion amino acid calcium oxalate monohydrate, a mixture of calcium oxalate monohydrate with calcium phosphate, a mixture of ion amino acid calcium oxalate monohydrate and calcium phosphate,pure uric acid, ion amino acid uric acid, and a mixture of calcium oxalate monohydrate with ion amino acid uric acid. The results of analysis of black box showed characteristics as the most accurate and precise to confirm the type of urinary stones based on theregion absorption peak on a graph, the results of the convolution, and the shape of the total spectrum on each urinary stones.

  12. A universal feature in the optical absorption spectrum associated with hydrogenated amorphous silicon: A dimensionless joint density of states analysis

    NASA Astrophysics Data System (ADS)

    Thevaril, Jasmin J.; O'Leary, Stephen K.

    2016-10-01

    Using a dimensionless joint density of states formalism for the quantitative characterization of the optical response associated with hydrogenated amorphous silicon, a critical comparative analysis of a large number of different optical absorption data sets is considered. When these data sets are cast into this dimensionless framework, we observe a trend that is almost completely coincident for all of the data sets considered. This suggests that there is a universal feature associated with the optical absorption spectrum of hydrogenated amorphous silicon.

  13. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore. PMID:24323922

  14. The photochemical determinants of color vision: revealing how opsins tune their chromophore's absorption wavelength.

    PubMed

    Wang, Wenjing; Geiger, James H; Borhan, Babak

    2014-01-01

    The evolution of a variety of important chromophore-dependent biological processes, including microbial light sensing and mammalian color vision, relies on protein modifications that alter the spectral characteristics of a bound chromophore. Three different color opsins share the same chromophore, but have three distinct absorptions that together cover the entire visible spectrum, giving rise to trichromatic vision. The influence of opsins on the absorbance of the chromophore has been studied through methods such as model compounds, opsin mutagenesis, and computational modeling. The recent development of rhodopsin mimic that uses small soluble proteins to recapitulate the binding and wavelength tuning of the native opsins provides a new platform for studying protein-regulated spectral tuning. The ability to achieve far-red shifted absorption in the rhodopsin mimic system was attributed to a combination of the lack of a counteranion proximal to the iminium, and a uniformly neutral electrostatic environment surrounding the chromophore.

  15. On the Putative Detection of z > 0 X-Ray Absorption Features in the Spectrum of Mrk 421

    NASA Astrophysics Data System (ADS)

    Rasmussen, Andrew P.; Kahn, Steven M.; Paerels, Frits; Herder, Jan Willem den; Kaastra, Jelle; de Vries, Cor

    2007-02-01

    In a series of papers, Nicastro et al. have reported the detection of z>0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate this result in the context of a high-quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955 ks of usable exposure time and more than 2.6×104 counts per 50 mÅ at 21.6 Å. We concentrate on the spectrally clean region (21.3 <λ<22.5 ), where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). We do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the log(Ni)~14.6 (3 σ) sensitivity level. Each of the two purported WHIM features is rejected with a statistical confidence that exceeds that reported for its initial detection. While we cannot rule out the existence of fainter, WHIM related features in these spectra, we suggest that previous discovery claims were premature. A more recent paper by Williams et al. claims to have demonstrated that the RGS data we analyze here do not have the resolution or statistical quality required to confirm or deny the LETGS detections. We show that our analysis resolves the issues encountered by Williams et al. and recovers the full resolution and statistical quality of the RGS data. We highlight the differences between our analysis and those published by Williams et al. as this may explain our disparate conclusions.

  16. A variable absorption feature in the X-ray spectrum of a magnetar.

    PubMed

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss. PMID:23955229

  17. A variable absorption feature in the X-ray spectrum of a magnetar.

    PubMed

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss.

  18. [Methane optic fiber sensor network based on infrared spectrum absorption in coal mine].

    PubMed

    Wu, Xiao-jun; Wang, Peng; Wang, Zhi-bin; Li, Xiao; Tian, Er-ming

    2009-09-01

    Through analyzing the infrared absorption spectrum of methane, a multi-point optic fiber sensor network was designed based on the principle of light absorbing capability of gas which varies with gas concentration at its characteristic wavelength A distributed feedback laser diode (DFB LD) was used as the light source and an InGaAs PIN as the photodetector which features high sensitivity and low noise. Sixteen methane sensors were multiplexed in this system with space division multiple access technology (SDMAT), and the faint signals were processed by the filtering and amplifying circuit. All signals were gathered by the PCI data acquisition card, and finally, the signals were analyzed by the fast Fourier transform with software. The results showed that the sensitivity of every sensor reached 200 ppm (microg x mL(-1)), long-time accuracy and stability of all sensors could meet the practical demands, the response time of each sensor was less than 2 seconds and the detecting period was less than 32 seconds. By theoretical analysis, all sensors could be put in the mine at least 20 km from the ground, and the instruments could be applied to multi-point measurement at real-time in multiple occasions. PMID:19950630

  19. On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis.

    PubMed

    Merzlyak, M N; Naqvi, K R

    2000-11-01

    An integrating sphere is often used for recording the absorption spectrum of a turbid sample. If the sample is placed inside the sphere, scattering losses are eliminated, but the recorded spectrum suffers from other distortions. These distortions can be avoided by positioning the sample outside the sphere; but, since some of the scattered light escapes the detector, the recorded spectrum suffers from residual scattering losses. A method proposed by Latimer and Eubanks more than 30 years ago (Arch. Biochem. Biophys. 98 (1962) 274), is put to a quantitative examination, which has shown that one can obtain, by recording two spectra at different distances from the sphere, not only the true absorption spectrum but also the scattering spectra of the sample. Conditions for the validity of the basic assumption underlying the method are investigated by examining suspensions containing various concentrations of cells of the cyanobacterium Anabaena variabilis, and it is shown that the calculated absorbance is proportional to the number density of the cells. The application of the method for quantitative spectrophotometric analysis of pigments in cell suspensions is discussed.

  20. CFCl3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime Uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, M.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2013-12-01

    CFCl3 (CFC-11) is both a major ozone-depleting substance and a potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using the NASA Goddard Space Flight Center 2-D coupled chemistry-radiation-dynamics model and the spectrum parameterization developed in this work. The modeled global annually averaged lifetime was 58.1 × 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations. CFCl 3 (CFC-11) 2-D model results: Left: Global annually averaged loss rate coefficient (local lifetime) and photolysis and reaction contributions (see legend). Middle: Molecular loss rate and uncertainty limits; the slow and fast profiles were calculated using the 2σ uncertainty estimates in the CFC-11 UV absorption spectrum from this work. Right: CFC-11 concentration profile. CFC-11 loss process contribution to the overall local lifetime uncertainty (2σ) calculated using the 2-D model (see text). Left: Results obtained from this work. Right: Results obtained using model input from Sander et al. [2011] and updates in SPARC [2013].

  1. Effects of color centers absorption on the spectrum of the temperature-dependent radiation-induced attenuation in fiber.

    PubMed

    Jin, Jing; Hou, Yunxia; Liu, Chunjing

    2015-02-01

    Spectra ranging from 800 to 1650 nm of the temperature-dependent radiation-induced attenuation (RIA) in the irradiated and sufficiently annealed fiber with germanium and phosphorous dopant has been measured. These RIA spectra were investigated based on the mechanism of color centers absorption. With the configurational coordinate model, these RIA spectra were decomposed by the absorption bands of three kinds of color centers. The effects of color centers absorption on the spectrum of temperature-dependent RIA is discussed by comparing the absorption intensity of different color centers at a same wavelength. Moreover, the temperature-dependent RIA of the fiber has been measured separately at 850, 1310, and 1550 nm. The measured results agreed well with the analysis of RIA spectra.

  2. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  3. The role of solvent structure in the absorption spectrum of solvated electrons: Mixed quantum/classical simulations in tetrahydrofuran

    NASA Astrophysics Data System (ADS)

    Bedard-Hearn, Michael J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2005-04-01

    In polar fluids such as water and methanol, the peak of the solvated electron's absorption spectrum in the red has been assigned as a sum of transitions between an s-like ground state and three nearly degenerate p-like excited states bound in a quasispherical cavity. In contrast, in weakly polar solvents such as tetrahydrofuran (THF), the solvated electron has an absorption spectrum that peaks in the mid-infrared, but no definitive assignment has been offered about the origins of the spectrum or the underlying structure. In this paper, we present the results of adiabatic mixed quantum/classical molecular dynamic simulations of the solvated electron in THF, and provide a detailed explanation of the THF-solvated electron's absorption spectrum and electronic structure. Using a classical solvent model and a fully quantum mechanical excess electron, our simulations show that although the ground and first excited states are bound in a quasispherical cavity, a multitude of other, nearby solvent cavities support numerous, nearly degenerate, bound excited states that have little Franck-Condon overlap with the ground state. We show that these solvent cavities, which are partially polarized so that they act as electron trapping sites, are an inherent property of the way THF molecules pack in the liquid. The absorption spectrum is thus assigned to a sum of bound-to-bound transitions between a localized ground state and multiple disjoint excited states scattered throughout the fluid. Furthermore, we find that the usual spherical harmonic labels (e.g., s-like, p-like) are not good descriptors of the excited-state wave functions of the solvated electron in THF. Our observation of multiple disjoint excited states is consistent with femtosecond pump-probe experiments in the literature that suggest that photoexcitation of solvated electrons in THF causes them to relocalize into solvent cavities far from where they originated.

  4. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  5. Intracavity Multi-Photon-Absorption and the Quantum Noise Spectrum of Light

    NASA Astrophysics Data System (ADS)

    Herzog, Ulrike

    The intensity noise spectrum is investigated quantum-mechanically for incident coherent light passing through a resonator which is filled with a k-photon-absorber. For k 2 the noise of the outgoing light is reduced below the shot noise level the reduction being maximal for frequencies that are small in comparison to the cavity bandwidth. It turns out that the highest possible value of this low-frequency noise reduction is obtained when the resonator losses due to transmission through the outcoupling mirror are 2k - 1 times as large as the k-photon absorption losses. In this case the noise at zero frequency is reduced with respect to the shot noise level by a factor of k/(2k - 1).Translated AbstractQuantenrauschen bei Mehrphotonenabsorption im ResonatorFür kohärent eingestrahltes Licht, das einen mit einem k-Photon-Absorber gefüllten Resonator durchläuft, wird das Intensitäts-Rauschspektrum quantenmechanisch unter-sucht. Für k 2 liegt das Rauschen des austretenden Lichtes unterhalb des Schrotrauschens, wobei die Rauschreduktion für Frequenzen, die klein im Vergleich zur Resonatorbandbreite sind, am größten ist. Es stellt sich heraus, daß diese niederfrequente Rauschunterdrückung ihren höchsten Wert erreicht, wenn die Resonatorverluste, die infolge der Transmission durch den Auskoppelspiegel entstehen, 2k - 1 mal so groß sind wie die k-Photonen-Absorptionsverluste. In diesem Fall reduziert sich das Rauschen bei der Frequenz Null im Vergleich zum Schrotrauschen um den Faktor k/2k - 1.

  6. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  7. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  8. Investigation of the ammonia absorption band near 6450 A in the spectrum of Saturn. I - Observations

    NASA Astrophysics Data System (ADS)

    Avramchuk, V. V.; Karmeliuk, A. I.

    Forty-three lines in the vibrational-rotational absorption band of ammonia near 6450 A were found in coudespectrograms of Saturn obtained with the 2-m telescope of the Shemakha Astrophysical Observatory during 1969-1971. Equivalent widths and half-widths were determined and the J and K quantum numbers were defined for some of these lines. The intensity of the integral absorption of the ammonia band was also measured.

  9. Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: Confounding effects of photo-degradation

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Crowell, Robert A.; Polyanskiy, Dmitriy E.; Thomas, Marie F.; Wishart, James F.; Katsumura, Yosuke; Takahashi, Kenji

    2015-12-01

    The photochemistry of the charge transfer (CT) band of the room temperature ionic liquid (RTIL) 1-hexyl-3-methylimidazolium bromide (HMIm+/Br-) is investigated using near-IR to vis ultrafast transient absorption (TA) and steady-state UV absorption spectroscopies. Continuous irradiation of the CT band at 266 nm results in the formation of photo-products that absorb strongly at 266 nm. It is shown that these photo-products, which are apparently very stable, adversely affect ultrafast TA measurements. Elimination of these effects reveals at least two transient species that exist within the TA detection window of 100 fs to 3 ns and 500-1250 nm. One of the components is a short-lived (<1 ps) species that absorbs at 1080 nm. The second band exhibits a multicomponent spectrum that is very broad with an absorption maximum around 600 nm and a lifetime that is longer than the 3 ns window of our TA spectrometer. Within the signal to noise ratio of the TA spectrometer little to no solvated electron is generated by the CT mechanism.

  10. Detection of the 1400 A absorption in the ultraviolet spectrum of the DA white dwarf LB 3303

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1982-01-01

    Low-resolution ultraviolet International Ultraviolet Explorer spectra of the southern white dwarf LB 3303 show the presence of the wavelength 1400 absorption feature reported by Greenstein in the spectrum of 40 Eri B. The equivalent width is 5.7 A, and the measured wavelength is 1394 A. A comparison of the ultraviolet fluxes with model atmospheres confirms that LB 3303 has an effective temperature near 16,000 K, as found earlier from visual wavelength data. There are still problems with the identification of this line. The star is not hot enough to explain the presence of Si IV, and the agreement with the spectrum of the H2 molecule is not convincing.

  11. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    SciTech Connect

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    2012-04-14

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  12. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons. PMID:27610321

  13. [Study on transient absorption spectrum of tungsten nanoparticle with HepG2 tumor cell].

    PubMed

    Cao, Lin; Shu, Xiao-Ning; Liang, Dong; Wang, Cong

    2014-07-01

    Significance of this study lies in tungsten nano materials can be used as a preliminary innovative medicines applied basic research. This paper investigated the inhibition of tungsten nanoparticles which effected on human hepatoma HepG2 cells by MTT. The authors use transient absorption spectroscopy (TAS) technology absorption and emission spectra characterization of charge transfer between nanoparticles and tumor cell. The authors discussed the role of the tungsten nanoparticles in the tumor early detection of the disease and its anti-tumor properties. In the HepG2 experiments system, 100-150 microg x mL(-1) is the best drug concentration of anti-tumor activity which recact violently within 6 hours and basically completed in 24 hours. The results showed that transient absorption spectroscopy can be used as tumor detection methods and characterization of charge transfer between nano-biosensors and tumor cells. Tungsten nanoparticles have potential applications as anticancer drugs.

  14. Molecular level all-optical logic with chlorophyll absorption spectrum and polarization sensitivity

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, B.; Bhattacharyya (Bhaumik), S.

    2008-06-01

    Chlorophyll is suggested as a suitable medium for realizing optical Boolean logic at the molecular level in view of its wavelength-selective property and polarization sensitivity in the visible region. Spectrophotometric studies are made with solutions of total chlorophyll and chromatographically isolated components, viz. chlorophyll a and b and carotenoids extracted from pumpkin leaves of different maturity stages. The absorption features of matured chlorophyll with two characteristic absorption peaks and one transmission band are molecular properties and independent of concentration. A qualitative explanation of such an absorption property is presented in terms of a ‘particle in a box’ model and the property is employed to simulate two-input optical logic operations. If both of the inputs are either red or blue, absorption is high. If either one is absent and replaced by a wavelength of the transmission band, e.g. green, absorption is low. Assigning these values as 0 s or 1 s, AND and OR operations can be performed. A NOT operation can be simulated with the transmittance instead of the absorbance. Also, the shift in absorbance values for two different polarizations of the same monochromatic light can simulate two logical states with a single wavelength. Cyclic change in absorbance is noted over a rotation of 360° for both red and blue peaks, although the difference is not very large. Red monochromatic light with polarizations apart by 90°, corresponding to maximum and minimum absorption, respectively, may be assigned as the two logical states. The fluorescence emissions for different pigment components are measured at different excitation wavelengths and the effect of fluorescence on the red absorbance is concluded to be negligible.

  15. Oxidation Induced Doping of Nanoparticles Revealed by in Situ X-ray Absorption Studies.

    PubMed

    Kwon, Soon Gu; Chattopadhyay, Soma; Koo, Bonil; Dos Santos Claro, Paula Cecilia; Shibata, Tomohiro; Requejo, Félix G; Giovanetti, Lisandro J; Liu, Yuzi; Johnson, Christopher; Prakapenka, Vitali; Lee, Byeongdu; Shevchenko, Elena V

    2016-06-01

    Doping is a well-known approach to modulate the electronic and optical properties of nanoparticles (NPs). However, doping at nanoscale is still very challenging, and the reasons for that are not well understood. We studied the formation and doping process of iron and iron oxide NPs in real time by in situ synchrotron X-ray absorption spectroscopy. Our study revealed that the mass flow of the iron triggered by oxidation is responsible for the internalization of the dopant (molybdenum) adsorbed at the surface of the host iron NPs. The oxidation induced doping allows controlling the doping levels by varying the amount of dopant precursor. Our in situ studies also revealed that the dopant precursor substantially changes the reaction kinetics of formation of iron and iron oxide NPs. Thus, in the presence of dopant precursor we observed significantly faster decomposition rate of iron precursors and substantially higher stability of iron NPs against oxidation. The same doping mechanism and higher stability of host metal NPs against oxidation was observed for cobalt-based systems. Since the internalization of the adsorbed dopant at the surface of the host NPs is driven by the mass transport of the host, this mechanism can be potentially applied to introduce dopants into different oxidized forms of metal and metal alloy NPs providing the extra degree of compositional control in material design. PMID:27152970

  16. Relative amplitudes of external satellites of superfine-structure multiplets in the saturated absorption spectrum of SiF4

    NASA Astrophysics Data System (ADS)

    Krylov, I. R.; Akulinin, D. A.; Chubykin, A. D.

    2015-08-01

    Variation of amplitudes of Doppler-free saturated absorption resonances as a result of changes in the gas pressure and power of light waves is studied theoretically and experimentally. The results of the investigation are used for the interpretation of weak satellites of superfine-structure multiplets in the spectrum related to tunnel transitions between energy states of a molecule corresponding to its rotation about equivalent symmetry axes. Relative amplitudes of satellites of the AFE and FEF multiplets of the superfine structure of the SiF4 molecule in the frequency tuning interval of a CO2 laser operating at the P(38) line of the 9.7-µm band are studied experimentally. It is confirmed that the variation of relative amplitudes of the satellites is caused mainly by the fact that the magnitudes of the self-induced transparency of the medium that are created by each light wave for itself are different for the main resonances of the multiplet and for their satellites. The discrepancy between the experimental and theoretical dependences of the relative amplitudes of the satellites upon variation of the gas pressure and power of light waves is analyzed. Based on the discovered discrepancy, it is suggested that molecular collisions with Bennett dip or peak transfer contribute to the formation of satellites of the FEF multiplet. Multiphoton processes participate in the formation of one of the multiplets of the FEF multiplet. It is suggested that the power of the light field partially lifts the ban on transitions participating in the formation of satellites of both studied multiplets. Processing of the experimental curves by the leastsquares method revealed spectrally unresolved satellites within the FEF multiplet, which represent crossover resonances between allowed and forbidden transitions. For these satellites, no additional dependence of the amplitude on the laser power or gas pressure was found. The dependence of the amplitude of these satellites is completely

  17. FUSE Observations of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Dixon, W. Van Dyke

    2004-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX J21362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Ly beta and gamma, C II, CIII, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the active galactic nucleus. We use photoionization models to derive constraints on the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, wherein the absorbing gas is associated with an intervening galaxy cluster.

  18. FUSE Detection of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; VanDykeDixon, W.

    2003-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX 521362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Lyman beta and gamma, C II, C III, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the AGN. We use photoionization models to derive the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, whereby the absorbing gas is associated with an intervening galaxy cluster.

  19. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  20. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus. PMID:27493545

  1. Synthesis and two-photon absorption spectrum of fluorenone-based molecules

    NASA Astrophysics Data System (ADS)

    Dipold, J.; Batista, R. J. M. B.; Fonseca, R. D.; Silva, D. L.; Moura, G. L. C.; dos Anjos, J. V.; Simas, A. M.; De Boni, L.; Mendonca, C. R.

    2016-09-01

    The two-photon absorption (2PA) of five symmetrical fluorenone-based molecules is studied by femtosecond wavelength-tunable Z-scan, as well as quantum-chemical calculations. The molecules are transparent for wavelengths greater than 500 nm and two main one-photon absorption bands are observed in the blue region; one weak, centered at 450 nm, and a stronger one at approximately 360 nm. We observed a strong 2PA band located around 720 nm with maxima 2PA cross-sections between 100 and 230 GM. Quantum chemical calculations employing the response function formalism were performed at the Density Function Theory level to support the interpretation of the experimental nonlinear spectra.

  2. A plethora of diffuse steep spectrum radio sources in Abell 2034 revealed by LOFAR

    NASA Astrophysics Data System (ADS)

    Shimwell, T. W.; Luckin, J.; Brüggen, M.; Brunetti, G.; Intema, H. T.; Owers, M. S.; Röttgering, H. J. A.; Stroe, A.; van Weeren, R. J.; Williams, W. L.; Cassano, R.; de Gasperin, F.; Heald, G. H.; Hoang, D. N.; Hardcastle, M. J.; Sridhar, S. S.; Sabater, J.; Best, P. N.; Bonafede, A.; Chyży, K. T.; Enßlin, T. A.; Ferrari, C.; Haverkorn, M.; Hoeft, M.; Horellou, C.; McKean, J. P.; Morabito, L. K.; Orrù, E.; Pizzo, R.; Retana-Montenegro, E.; White, G. J.

    2016-06-01

    With Low-Frequency Array (LOFAR) observations, we have discovered a diverse assembly of steep spectrum emission that is apparently associated with the intracluster medium (ICM) of the merging galaxy cluster Abell 2034. Such a rich variety of complex emission associated with the ICM has been observed in few other clusters. This not only indicates that Abell 2034 is a more interesting and complex system than previously thought but it also demonstrates the importance of sensitive and high-resolution, low-frequency observations. These observations can reveal emission from relativistic particles which have been accelerated to sufficient energy to produce observable emission or have had their high energy maintained by mechanisms in the ICM. The most prominent feature in our maps is a bright bulb of emission connected to two steep spectrum filamentary structures, the longest of which extends perpendicular to the merger axis for 0.5 Mpc across the south of the cluster. The origin of these objects is unclear, with no shock detected in the X-ray images and no obvious connection with cluster galaxies or AGNs. We also find that the X-ray bright region of the cluster coincides with a giant radio halo with an irregular morphology and a very steep spectrum. In addition, the cluster hosts up to three possible radio relics, which are misaligned with the cluster X-ray emission. Finally, we have identified multiple regions of emission with a very steep spectral index that seem to be associated with either tailed radio galaxies or a shock.

  3. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  4. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    SciTech Connect

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.; Sprague, Matthew K.; Irikura, Karl K.; Beasten, Amy; McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Clark, Charles W.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

  5. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  6. Absorption spectrum of neat liquid benzene and its concentrated solutions in n-hexane from 220 to 170 nm

    SciTech Connect

    Saik, V.O.; Lipsky, S.

    1995-03-30

    The electronic absorption spectrum of benzene has been obtained by phototransmission measurements over a concentration range from 0.005 M in n-hexane to the neat liquid at 11.2 M and over a spectral range that extends down to 170 nm. Good agreement is obtained with previously reported measurements on the neat liquid. The oscillator strength of the strongly allowed A{sub 1g} {yields} E{sub 1u} transition is maintained at ca. 1.0 as the benzene concentration increases but is accompanied by extensive redistribution of the intensity such that the optical cross section at the position of the absorption maximum (which shifts from 184{sub .2} nm in dilute solution to 189{sub .5} nm in the neat liquid) reduces by a factor of 2.7. An explanation for these changes in terms of Lorentz field corrections to the complex dielectric constant is developed, and its implication to the assignment of the neat liquid absorption as a collective excitation is considered. 43 refs., 5 figs., 1 tab.

  7. Analysis of the Contribution of Chromophores in Side Groups of Amino Acids to the Absorption Spectrum of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Lavrinenko, I. A.; Vashanov, G. A.; Ruban, M. K.

    2014-01-01

    Based on spectral analysis of solutions of aromatic, heterocyclic, and sulfur-containing amino acids, we propose an additive model and assess the roles of the studied types of amino acid residues in formation of the overall absorption spectrum of hemoglobin. We have established that the identified absorption maxima (transitions) at 243.4, 248.4, 253.2, 258.8, 261.6, 264.8, and 268.4 nm belong to phenylalanine amino acid residues. Probably the latter also form the unassigned transition at 241.0 nm. The transitions at 272.8, 274.6, 280.0, and 284.4 nm are a superposition of the absorption by the side groups of tyrosine and tryptophan; the transition at 278.2 nm is associated with tyrosine, masked by adjacent transitions of tryptophan, and the transition at 291.2 nm belongs to tryptophan. We consider the possibility of estimating the changes in the spectral properties of proteins under the influence of various physical and chemical factors using data from additive spectra.

  8. The effect of surface irradiance on the absorption spectrum of chromophoric dissolved organic matter in the global ocean

    NASA Astrophysics Data System (ADS)

    Swan, Chantal M.; Nelson, Norman B.; Siegel, David A.; Kostadinov, Tihomir S.

    2012-05-01

    The cycling pathways of chromophoric dissolved organic matter (CDOM) within marine systems must be constrained to better assess the impact of CDOM on surface ocean photochemistry and remote sensing of ocean color. Photobleaching, the loss of absorption by CDOM due to light exposure, is the primary sink for marine CDOM. Herein the susceptibility of CDOM to photobleaching by sea surface-level solar radiation was examined in 15 samples collected from wide-ranging open ocean regimes. Samples from the Pacific, Atlantic, Indian and Southern Oceans were irradiated over several days with full-spectrum light under a solar simulator at in situ temperature in order to measure photobleaching rate and derive an empirical matrix, ɛsurf (m-1 μEin-1), which quantifies the effect of surface irradiance on the spectral absorption of CDOM. Irradiation responses among the ocean samples were similar within the ultraviolet (UV) region of the spectrum spanning 300-360 nm, generally exhibiting a decrease in the CDOM absorption coefficient (m-1) and concomitant increase in the CDOM spectral slope parameter, S (nm-1). However, an unexpected irradiation-induced increase in CDOM absorption between approximately 360 and 500 nm was observed for samples from high-nutrient low-chlorophyll (HNLC) environments. This finding was linked to the presence of dissolved nitrate and may explain discrepancies in action spectra for dimethylsulfide (DMS) photobleaching observed between the Equatorial Pacific and Subtropical North Atlantic Oceans. The nitrate-to-phosphate ratio explained 27-70% of observed variability in ɛsurf at observation wavelengths of 330-440 nm, while the initial spectral slope of the samples explained up to 52% of variability in ɛsurf at observation wavelengths of 310-330 nm. These results suggest that the biogeochemical and solar exposure history of the water column, each of which influence the chemical character and thus the spectral quality of CDOM and its photoreactivity, are the

  9. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  10. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  11. Detection of a Deep 3-μm Absorption Feature in the Spectrum of Amalthea (JV)

    NASA Astrophysics Data System (ADS)

    Takato, Naruhisa; Bus, Schelte J.; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-01

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  12. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula. PMID:15618511

  13. Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum.

    PubMed

    Speirs, M J; Groeneveld, B G H M; Protesescu, L; Piliego, C; Kovalenko, M V; Loi, M A

    2014-05-01

    We report the first hybrid tandem solar cell with solution processable active layers using colloidal PbS quantum dots (QDs) as the front subcell in combination with a polymer-fullerene rear subcell. Al/WO3 is introduced as an interlayer, yielding an open circuit voltage (VOC) equal to about 92% of the sum of the VOC of the subcells. The device exhibits a power conversion efficiency of 1.8%. Optical simulations of various tandem configurations show that combining PbS QDs with small-bandgap polymers is a promising strategy to obtain tandem solar cells with a very broad absorption range and a high short circuit current. PMID:24652186

  14. Aerosol absorption retrievals from the PACE broad spectrum Ocean Color Instrument (OCI)

    NASA Astrophysics Data System (ADS)

    Mattoo, S.; Remer, L. A.; Levy, R. C.; Torres, O.; Gupta, P.; Ahmad, Z.

    2015-12-01

    The PACE (Pre- Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s is designed to characterize oceanic and atmospheric properties. The primary instrument on-board will be a moderate resolution (~1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI's main purpose will be to enhance current science in aquatic biogeochemistry by offering greater capability than either MODIS or SeaWiFS. To do so, OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR to support atmospheric correction. Supplementary instruments, such as a multi-angle imaging polarimeter are also being discussed, and these supplementary instruments are associated with the atmospheric objectives of the mission, although they may also offer important new measurements for oceanic objectives. However, the OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. In preparation for the PACE mission we have begun the theoretical work necessary to create a robust, operational aerosol retrieval for OCI. This retrieval is based on the MODIS Dark Target aerosol retrieval over ocean that returns aerosol optical depth and an estimate of aerosol size distribution. It then uses these retrieved parameters to constrain a retrieval of aerosol absorption in the UV, using the OCI UV channels. The algorithm is described and its sensitivity to retrieval assumptions is tested. The goal is to understand the limitations of such an algorithm and under what conditions could we expect to obtain quantitative aerosol absorption information from OCI on PACE.

  15. Vibrational structure of n-π* transition of the UV absorption spectrum of acryloyl fluoride in the gas phase.

    PubMed

    Koroleva, Lidiya A; Tyulin, Vladimir I; Matveev, Vladimir K; Pentin, Yuriy A

    2014-03-25

    UV absorption spectrum of acryloyl fluoride molecule in the gas phase has been obtained in the region at 32600-35500 cm(-1) with the purpose of the investigation of the hindered internal rotation. The resolved vibrational structure of this spectrum consists of 92 absorption bands, each of which corresponds to a certain transition from the ground (S0) to excited (S1) electronic state. The assignment of all bands has been made. The values ν00trans=34831.8 cm(-1) and ν00cis=34679.2 cm(-1) have been determined. Several Deslandres Tables (DTs) have been constructed for torsional vibration of s-trans- and s-cis-isomers of investigated molecule. The origins in these DTs correspond to bands assigned to ν00 and to fundamental frequencies of each isomer in the S0 and S1 states. These DTs have been used to determine the harmonic frequencies ωe, anharmonicity coefficients x11, and frequencies of the torsional vibration transitions (0-υ) up to high values of the vibrational quantum number υ of s-trans- and s-cis-isomers in the both electronic states. The frequencies of torsional vibrations are ν1(″)=116.5cm(-1) for s-trans-isomer and ν1(″)=101.2 cm(-1) for s-cis-isomer in the S0 state. The frequencies of ones are ν1(')=170.4 cm(-1) for s-trans-isomer and ν1(')=139.7 cm(-1) for s-cis-isomer in the S1 state. The fundamental vibrational frequencies set has been found for isomers in the S0 and S1 states.

  16. Substituent and solvent effects on the UV-vis absorption spectrum of the photoactive yellow protein chromophore.

    PubMed

    García-Prieto, F Fernández; Aguilar, M A; Galván, I Fdez; Muñoz-Losa, A; Olivares del Valle, F J; Sánchez, M L; Martín, M E

    2015-05-28

    Solvent effects on the UV-vis absorption spectra and molecular properties of four models of the photoactive yellow protein (PYP) chromophore have been studied with ASEP/MD, a sequential quantum mechanics/molecular mechanics method. The anionic trans-p-coumaric acid (pCA(-)), thioacid (pCTA(-)), methyl ester (pCMe(-)), and methyl thioester (pCTMe(-)) derivatives have been studied in gas phase and in water solution. We analyze the modifications introduced by the substitution of sulfur by oxygen atoms and hydrogen by methyl in the coumaryl tail. We have found some differences in the absorption spectra of oxy and thio derivatives that could shed light on the different photoisomerization paths followed by these compounds. In solution, the spectrum substantially changes with respect to that obtained in the gas phase. The n → π1* state is destabilized by a polar solvent like water, and it becomes the third excited state in solution displaying an important blue shift. Now, the π → π1* and π → π2* states mix, and we find contributions from both transitions in S1 and S2. The presence of the sulfur atom modulates the solvent effect and the first two excited states become practically degenerate for pCA(-) and pCMe(-) but moderately well-separated for pCTA(-) and pCTMe(-).

  17. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  18. Time variations of an absorption feature in the spectrum of the gamma-ray burst on 1980 April 19

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Frost, K. J.; Kiplinger, A. L.; Orwig, L. E.; Desai, U.; Cline, T. L.

    1982-01-01

    The photon number spectrum integrated over the impulsive part of the event is shown to fit a thermal bremsstrahlung function with a temperature of 330 + or - 70 keV at energies between 151 and 487 keV. At lower energies, the data points lie considerably below this function, indicating a broad absorption feature extending down to values less than or equal to 28 keV, the lowest energy measured. The upper energy of this absorption feature varies from 100 to 150 keV on a time scale less than or equal to 0.5 s. This event is interpreted as a typical gamma ray burst, even though it is still considered remotely possible that it is of solar origin. The spectral features, together with their variability, are interpreted in terms of electron interactions at the cyclotron resonance frequency in magnetic fields of 10 to the 12th - 10 to the 13th gauss close to the surface of a neutron star.

  19. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite. PMID:25970914

  20. Theory of the electronic states and absorption spectrum of the LiCl:Ag+ impurity system

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar A.; Lin, Chun C.

    1990-01-01

    The impurity absorption spectra of Ag+ and Cu+ impurities in alkali halide hosts show characteristically different features, despite the similar nature of the corresponding free ions. We use the self-interaction-corrected local-spin-density (SIC-LSD) theory to calculate the electronic structure of the ground state (4d) and the 5s and 5p excited states of the LiCl:Ag+ impurity ion. The method of linear combinations of atomic orbitals is used to determine the wave functions and energy levels. By comparing with previous calculations for LiCl:Cu+, we are able to attribute the differences in the d-->s and d-->p transitions in the ultraviolet spectra of these systems to the increased bonding between host crystal and impurity orbitals in LiCl:Ag+, due to the more extensive nature of the Ag+ 4d orbitals. A modification of the earlier SIC-LSD impurity-crystal procedure is introduced to treat the strongly mixed impurity states.

  1. The Fourier transform absorption spectrum of acetylene between 8280 and 8700 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Vander Auwera, J.; Campargue, A.

    2016-07-01

    High resolution (0.011 cm-1) room temperature (295 K) Fourier transform absorption spectra (FTS) of acetylene have been analyzed in the 8280-8700 cm-1 range dominated by the ν1+ν2+ν3 band at 8512 cm-1. Line positions and intensities were retrieved from FTS spectra recorded at 3.84 and 56.6 hPa. As a result, a list of 1001 lines was constructed with intensities ranging between about 2×10-26 and 10-22 cm/molecule. Comparison with accurate predictions provided by a global effective operator model led to the assignment of 629 12C2H2 lines. In addition, 114 lines of the 13C12CH2 isotopologue were assigned using information available in the literature. The 12C2H2 lines belong to thirteen bands, nine of which being newly reported. The 13C12CH2 lines belong to three bands, the intensities of which being reported for the first time. Spectroscopic parameters of the 12C2H2 upper vibrational levels were derived from band-by-band analyses of the line positions (typical rms are on the order of 0.002 cm-1). Three of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed in the frame of a global effective Hamiltonian. The obtained line parameters are compared with those of the two bands included in the HITRAN 2012 database.

  2. Optoelectronic set for measuring the absorption spectrum of the thin biological media

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian

    2013-10-01

    In the paper the authors present the developed optoelectronic system for controlled, repetitive exposure by electromagnetic radiation of biological structures in the Low Level Laser (LED) Therapy procedures. The set allows for objective selection and control of the irradiation parameters by light from spectral range of the tissues transmission window. Measurements of optical parameters of thin biological medium - spectral absorption coefficient and the amount of absorbed energy - can be implemented in the measuring chamber during irradiation treatment. The radiation source is the broadband illuminator consists of set of selected high power LEDs. The maximum optical power of single source is from 80 mW to 800 mW. Illuminator is controlled and powered by the multi-channel prototype control system, which allows independently control a current of each emitter. This control allows shaping spectral emission characteristic of broadband source in range 600-1000 nm. Illuminator allows providing in the working area of 700 cm2 a uniform distribution of optical power density, of 10 mW/cm2 for maximum. Set ensure uniform distribution of the spectral power density of up to 40 mW/nm.

  3. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGES

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  4. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  5. A method to obtain the absorption coefficient spectrum of single grain coal in the aliphatic C-H stretching region using infrared transflection microspectroscopy.

    PubMed

    Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru

    2014-01-01

    A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.

  6. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Fillion, J.-H.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Jochims, H. W.; Leach, S.

    2003-07-01

    The absorption cross section and the ionization quantum yield of H2O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first tilde A 2A 1 and to the second tilde B 2B 2 excited states of H2O+. Comparison with D2O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  7. Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints

    PubMed Central

    David, Maude M.; Enard, David; Ozturk, Alp; Daniels, Jena; Jung, Jae-Yoon; Diaz-Beltran, Leticia; Wall, Dennis. P.

    2016-01-01

    The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders. PMID:27414027

  8. Using Multimedia to Reveal the Hidden Code of Everyday Behaviour to Children with Autistic Spectrum Disorders (ASDs)

    ERIC Educational Resources Information Center

    Doyle, Theresa; Arnedillo-Sanchez, Inmaculada

    2011-01-01

    This paper describes a framework which was developed for carers (teachers and parents) to help them create personalised social stories for children with autistic spectrum disorders (ASDs). It explores the social challenges experienced by individuals with ASDs and outlines an intervention aimed at revealing the hidden code that underpins social…

  9. Bayesian Analysis of an Excitonic Absorption Spectrum in a Cu2O Thin Film Sandwiched by Paired MgO Plates

    NASA Astrophysics Data System (ADS)

    Iwamitsu, Kazunori; Aihara, Shingo; Okada, Masato; Akai, Ichiro

    2016-09-01

    We analyzed the absorption spectrum of a Cu2O thin film sandwiched by paired MgO plates with the Metropolis algorithm of Bayesian estimation to estimate the energy shift of a yellow excitonic band gap. In the absorption spectrum, discrete excitonic resonant transitions with homogeneous and inhomogeneous widths are superimposed upon the tail parts of excitonic continuum and band-to-band absorption bands. On the basis of the Metropolis samplings with 2.5 million steps after sufficient burn-in steps, the spectral parameters of the excitonic resonant transitions can be estimated satisfactorily with a high degree of accuracy. In particular, we demonstrated that the yellow excitonic band gap in the Cu2O thin film shifts to the lower energy side than that of Cu2O bulk crystals. This result is consistent with the stress relaxation model for such Cu2O thin films, which was reported in Eur. Phys. J. B 86, 194 (2013).

  10. Accurate calculation of the x-ray absorption spectrum of water via the GW/Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Gilmore, Keith; Vinson, John; Kas, Josh; Vila, Fernando; Rehr, John

    2014-03-01

    We calculate x-ray absorption spectra (XAS) of water within the OCEAN code, which combines plane-wave, pseudopotential electronic structure, PAW transition elements, GW self-energy corrections, and the NIST BSE solver. Due to the computational demands of this approach, our initial XAS calculations were limited to 17 molecule super cells. This lead to unphysical, size dependent effects in the calculated spectra. To treat larger systems, we extended the OCEAN interface to support well-parallelized codes such as QuantumESPRESSO. We also implemented an efficient interpolation scheme of Shirley. We applied this large-scale GW/BSE approach to 64 molecule unit cell structures of water obtained from classical DFT/MD and PIMD simulations. In concurrence with previous work, we find the calculated spectrum both qualitatively and quantitatively reproduces the experimental features. The agreement implies that structures based on PIMD, which are similar to the traditional distorted tetrahedral view, are consistent with experimental observations. Supported by the DOE CMCSN through DOE award DE-SC0005180 (Princeton University) and in part by DOE Grant No. DE-FG03-97ER45623 (JJR) with computer support from NERSC.

  11. Communication: Does a single CH3CN molecule attached to Ru(bipy)3(2+) affect its absorption spectrum?

    PubMed

    Stockett, M H; Brøndsted Nielsen, S

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)3 (2+)) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics. PMID:25956080

  12. Communication: Does a single CH3CN molecule attached to Ru(bipy)32+ affect its absorption spectrum?

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)32+) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  13. Planetary gamma-ray spectroscopy: the effects of hydrogen absorption cross-section of the gamma-ray spectrum

    SciTech Connect

    Lapides, J.R.

    1981-01-01

    The gamma-ray spectroscopy of planet surfaces is one of several possible methods that are useful in determining the elemental composition of planet surfaces from orbiting spacecraft. This has been demonstrated on the Apollos 15 and 16 missions as well as the Soviet Mars-5 mission. Planetary gamma-ray emission is primarily the result of natural radioactive decay and cosmic-ray and solar-flare-induced nuclear reactions. Secondary neutron reactions play a large role in the more intense gamma-ray emission. The technique provides information on the elemental composition of the top few tens of centimeters of the planet surface. Varying concentrations of hydrogen and compositional variations that alter the macroscopic thermal-neutron absorption cross section have a significant effect on the neutron flux in the planet surface and therefore also on the gamma-ray emission from the surface. These effects have been systematically studied for a wide range of possible planetary compositions that include Mercury, the moon, Mars, the comets, and the asteroids. The problem of the Martian atmosphere was also investigated. The results of these calculations, in which both surface neutron fluxes and gamma-ray emission fluxes were determined, were used to develop general procedures for obtaining planet compositions from the gamma-ray spectrum. Several changes have been suggested for reanalyzing the Apollos 15 and 16 gamma-ray results. In addition, procedures have been suggested that can be applied to neutron-gamma techniques in mineral and oil exploration.

  14. Infrared Attenuation Spectrum of Bulk High-Resistivity CdZnTe Single Crystal in Transparent Wavelength Region Between Electronic and Lattice Absorptions

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Kaji, Sayumi; Ikeda, Yuji; Kobayashi, Naoto; Sukegawa, Takashi; Nakagawa, Takao; Kataza, Hirokazu; Kondo, Sohei; Yasui, Chikako; Nakanishi, Kenshi; Kawakita, Hideyo

    2016-09-01

    We report measurement of the internal attenuation coefficient, α _{att} , of a bulk high-resistivity cadmium zinc telluride (CdZnTe) single crystal at wavelength, λ = 0.84-26 μ m, to the unprecedentedly low level of α _{att} ˜ 0.001 cm^{-1} . This measurement reveals the spectral behavior for small attenuation in the infrared transparent region between the electronic and lattice absorptions. This result is essential for application of CdZnTe as an infrared transmitting material. Comparing the attenuation spectrum with model spectra obtained on the basis of Mie theory, we find that sub-micrometer-sized Te particles (inclusions) with a number density of approximately 10^{7.5-9} cm^{-3} are the principal source of the small attenuation observed at λ = 0.9-13 μ m. In addition, we determine α _{att} = (7.7 ± 1.9) × 10^{-4} cm^{-1} at λ = 10.6 μ m, which is valuable for CO_2 laser applications. Higher transparency can be achieved by reducing the number of inclusions rather than the number of precipitates. This study also demonstrates that high-accuracy measurement of CdZnTe infrared transmittance is a useful approach to investigating the number density of sub-micrometer-sized Te particles that cannot be identified via infrared microscopy.

  15. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  16. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  17. UV-vis absorption spectrum of a novel Ru(II) complex intercalated in DNA: [Ru(2,2'-bipy)(dppz)(2,2'-ArPy)]⁺.

    PubMed

    Chantzis, Agisilaos; Very, Thibaut; Despax, Stéphane; Issenhuth, Jean-Thomas; Boeglin, Alex; Hébraud, Pascal; Pfeffer, Michel; Monari, Antonio; Assfeld, Xavier

    2014-03-01

    The synthesis of a new Ru(II) complex is reported. Its absorption spectrum when interacting with DNA in water was calculated at the hybrid quantum mechanics molecular mechanics level of theory and compared with experimental data. The vertical transitions were computed using time-dependent density functional theory in the linear response approximation. The complex and its environment were treated at the quantum mechanical and molecular mechanical levels, respectively. The effects of the environment were investigated in detail and conveniently classified into electrostatic and polarization effects. The latter were modeled using the computationally inexpensive "electronic response of the surroundings" method. It was found that the main features of the experimental spectrum are nicely reproduced by the theoretical calculations. Moreover, analysis of the most intense transitions utilizing the natural transition orbital formalism revealed important insights into their nature and their potential role in the irreversible oxidation of DNA, a phenomenon that could be relevant in the field of cancer therapy.

  18. The Rubber Hand Illusion Reveals Proprioceptive and Sensorimotor Differences in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Paton, Bryan; Hohwy, Jakob; Enticott, Peter G.

    2012-01-01

    Autism spectrum disorder (ASD) is characterised by differences in unimodal and multimodal sensory and proprioceptive processing, with complex biases towards local over global processing. Many of these elements are implicated in versions of the rubber hand illusion (RHI), which were therefore studied in high-functioning individuals with ASD and a…

  19. JUPITER AS AN EXOPLANET: UV TO NIR TRANSMISSION SPECTRUM REVEALS HAZES, A Na LAYER, AND POSSIBLY STRATOSPHERIC H{sub 2}O-ICE CLOUDS

    SciTech Connect

    Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.

    2015-03-01

    Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, the comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.

  20. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    SciTech Connect

    Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Prendergast, David; Saykally, Richard J

    2009-05-29

    Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.

  1. Galactic Soft X-ray Emission Revealed with Spectroscopic Study of Absorption and Emission Spectra

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Mitsuda, K.; Takei, Y.; Hagihara, T.; Yoshino, T.; Wang, Q. D.; Yao, Y.; McCammon, D.

    2010-03-01

    Spectroscopic study of Oxygen emission/absorption lines is a new tool to investigate the nature of the soft X-ray background. We investigated the emission spectra of 14 fields obtained by Suzaku, and detected OVII and OVIII lines separately. There is an almost isotropic OVII line emission with 2 LU intensity. As the attenuation length in the Galactic plane for that energy is short, that OVII emission should arise within 300 pc of our neighborhood. In comparison with the estimated emission measure for the local bubble, the most plausible origin of this component is the solar wind charge exchange with local interstellar materials. Another component presented from the correlation between the OVII and OVIII line intensity is a thermal emission with an apparent temperature of 0.2 keV with a field-to-field fluctuation of 10% in temperature, while the intensity varies about a factor of 4. By the combination analysis of the emission and the absorption spectra, we can investigate the density and the scale length of intervening plasma separately. We analyzed the Chanrdra grating spectra of LMC X-3 and PKS 2155-304, and emission spectra toward the line of sight by Suzaku. In both cases, the combined analysis showed that the hot plasma is not iso-thermal nor uniform. Assuming an exponential disk distribution, the thickness of the disk is as large as a few kpc. It suggests that there is a thick hot disk or hot halo surrounding our Galaxy, which is similar to X-ray hot haloes around several spiral galaxies.

  2. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy.

    PubMed

    Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik T; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong; Chen, Lin X

    2016-07-20

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance.

  3. Whole Genome Sequencing Reveals a De Novo SHANK3 Mutation in Familial Autism Spectrum Disorder

    PubMed Central

    Nemirovsky, Sergio I.; Córdoba, Marta; Zaiat, Jonathan J.; Completa, Sabrina P.; Vega, Patricia A.; González-Morón, Dolores; Medina, Nancy M.; Fabbro, Mónica; Romero, Soledad; Brun, Bianca; Revale, Santiago; Ogara, María Florencia; Pecci, Adali; Marti, Marcelo; Vazquez, Martin; Turjanski, Adrián; Kauffman, Marcelo A.

    2015-01-01

    Introduction Clinical genomics promise to be especially suitable for the study of etiologically heterogeneous conditions such as Autism Spectrum Disorder (ASD). Here we present three siblings with ASD where we evaluated the usefulness of Whole Genome Sequencing (WGS) for the diagnostic approach to ASD. Methods We identified a family segregating ASD in three siblings with an unidentified cause. We performed WGS in the three probands and used a state-of-the-art comprehensive bioinformatic analysis pipeline and prioritized the identified variants located in genes likely to be related to ASD. We validated the finding by Sanger sequencing in the probands and their parents. Results Three male siblings presented a syndrome characterized by severe intellectual disability, absence of language, autism spectrum symptoms and epilepsy with negative family history for mental retardation, language disorders, ASD or other psychiatric disorders. We found germline mosaicism for a heterozygous deletion of a cytosine in the exon 21 of the SHANK3 gene, resulting in a missense sequence of 5 codons followed by a premature stop codon (NM_033517:c.3259_3259delC, p.Ser1088Profs*6). Conclusions We reported an infrequent form of familial ASD where WGS proved useful in the clinic. We identified a mutation in SHANK3 that underscores its relevance in Autism Spectrum Disorder. PMID:25646853

  4. The Q(y) absorption spectrum of the light-harvesting complex II as determined by structure-based analysis of chlorophyll macrocycle deformations.

    PubMed

    Zucchelli, Giuseppe; Santabarbara, Stefano; Jennings, Robert C

    2012-04-01

    The absorption spectrum of the main antenna complex of photosystem II, LHCII, has been modeled using, as starting points, the chlorophyll (chl) atomic coordinates as obtained by the LHCII crystal analysis [Liu, Z., Yan, H., Wang, K., Kuang, T., Zhang, J., Gui, L., An, X., and Chang, W. (2004) Nature 428, 287-292] of three different trimers. The chl site Q(y) transition energies have been obtained in terms of the chl macrocycle deformations influencing the energy level of the chl frontier orbitals. Using these chl site transition energy values and the entire set of interaction energies, calculated in the ideal dipole approximation, the complete Hamiltonians for the three LHCII trimers have been written and the full set of 42 eigenstates of each LHCII trimer have been calculated. With the 42 transition energies and transition dipole strengths, either unperturbed or associated to the eigenstates, the LHCII Q(y) absorption spectrum has been calculated using a chl absorption band shape. These calculations have been performed both in vacuo and in the presence of a medium. Despite the number of approximations, a good correlation with the measured absorption spectrum of a LHCII preparation is obtained. This analysis shows that, although a substantial C3 symmetry of the LHCII trimer in terms of both chl-chl distances and interaction energies is present, a marked variation among monomer subsets of site transition energies is estimated. This leads to a C3 symmetry breaking in the unperturbed chl site transition energies set and, consequently, in the trimer eigenstates. It is also concluded that interactions among chlorophylls do not significantly modify the light absorption role of LHCII in plant leaves.

  5. Absorption Reveals and Hydrogen Addition Explains New Interstellar Aldehydes: Propenal and Propanal

    NASA Technical Reports Server (NTRS)

    Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.; Mollendal, H.

    2004-01-01

    New interstellar molecules propenal (CH2CHCHO) and propanal (CH3CH2CHO) have been detected largely in absorption toward the star-forming region Sagittarius B2(N) by means of rotational transitions observed with the 100-m Green Bank Telescope (GBT) operating in the range of 18 GHz (lambda approximately 1.7 cm) to 26 GHz (lambda approximately 1.2 cm). The GBT was also used to observe the previously reported interstellar aldehyde propynal (HC2CHO) in Sagittarius B2(N) which is known for large molecules believed to form on interstellar grains. The presence of these three interstellar aldehydes toward Sagittarius B2(N) strongly suggests that simple hydrogen addition on interstellar grains accounts for successively larger molecular species: from propynal to propenal and from propenal to propanal. Energy sources within Sagittarius B2(N) likely permit the hydrogen addition reactions on grain surfaces to proceed. This work demonstrates that successive hydrogen addition is probably an important chemistry route in the formation of a number of complex interstellar molecules. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

  6. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline.

    PubMed

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-19

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts.

  7. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline

    PubMed Central

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-01

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts. PMID:26781083

  8. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.

    PubMed

    Adriano Junior, L; Fonseca, T L; Castro, M A

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  9. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    NASA Astrophysics Data System (ADS)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.

    2016-06-01

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  10. The asymmetry of (-)α-pinene as revealed from its raman optical activity spectrum.

    PubMed

    Wang, Peijie; Fang, Yan; Wu, Guozhen

    2013-10-01

    An algorithm is employed to retrieve the differential bond polarizabilities of the C-C bonds from the Raman optical activity (ROA) spectrum of (-)α-pinene. (-)α-pinene possesses two asymmetric centers (carbon atoms) and a local mirror symmetry. These differential bond polarizabilities show the characteristics of the asymmetry around the asymmetric carbons with respect to the mirror reflection. This analysis is accompanied along with the ROA mode signatures and the calculated β(G ')(2) and β(A)(2) which show the ROA coupling mechanisms involving the electric/magnetic dipoles and the electric dipole/quadrupole, respectively.

  11. Phylogenetic structural equation modelling reveals no need for an 'origin' of the leaf economics spectrum.

    PubMed

    Mason, Chase M; Goolsby, Eric W; Humphreys, Devon P; Donovan, Lisa A

    2016-01-01

    The leaf economics spectrum (LES) is a prominent ecophysiological paradigm that describes global variation in leaf physiology across plant ecological strategies using a handful of key traits. Nearly a decade ago, Shipley et al. (2006) used structural equation modelling to explore the causal functional relationships among LES traits that give rise to their strong global covariation. They concluded that an unmeasured trait drives LES covariation, sparking efforts to identify the latent physiological trait underlying the 'origin' of the LES. Here, we use newly developed phylogenetic structural equation modelling approaches to reassess these conclusions using both global LES data as well as data collected across scales in the genus Helianthus. For global LES data, accounting for phylogenetic non-independence indicates that no additional unmeasured traits are required to explain LES covariation. Across datasets in Helianthus, trait relationships are highly variable, indicating that global-scale models may poorly describe LES covariation at non-global scales. PMID:26563777

  12. Semantic mapping reveals distinct patterns in descriptions of social relations in adults with autism spectrum disorder.

    PubMed

    Luo, Sean X; Shinall, Jacqueline A; Peterson, Bradley S; Gerber, Andrew J

    2016-08-01

    Adults with autism spectrum disorder (ASD) may describe other individuals differently compared with typical adults. In this study, we first asked participants to describe closely related individuals such as parents and close friends with 10 positive and 10 negative characteristics. We then used standard natural language processing methods to digitize and visualize these descriptions. The complex patterns of these descriptive sentences exhibited a difference in semantic space between individuals with ASD and control participants. Machine learning algorithms were able to automatically detect and discriminate between these two groups. Furthermore, we showed that these descriptive sentences from adults with ASD exhibited fewer connections as defined by word-word co-occurrences in descriptions, and these connections in words formed a less "small-world" like network. Autism Res 2016, 9: 846-853. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26613541

  13. The HD spectrum near 2.3 μm by CRDS-VECSEL: Electric quadrupole transition and collision-induced absorption

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Mondelain, D.; Kassi, S.; Čermák, P.; Chomet, B.; Garnache, A.; Denet, S.; Lecocq, V.; Campargue, A.

    2016-08-01

    The HD absorption spectrum is investigated near 2.3 μm with the help of a newly developed Cavity Ring Down Spectrometer (CRDS) using a VECSEL (Vertical External Cavity Surface Emitting Laser) as light source. The HD CRDS spectra were recorded for a series of ten pressure values in the range 50-650 Torr. The sensitivity of the recordings - noise equivalent absorption of the spectra on the order of αmin ≈ 5 × 10-10 cm-1 - has allowed for the first detection of the S(3) quadrupole electric transition of the HD fundamental band, at 4359.940 cm-1. The line center determined with an uncertainty of 0.002 cm-1 agrees with the most recent theoretical calculations. The retrieved value of the line intensity (2.5 × 10-27 cm/molecule at 296 K) agrees within 12% with the ab initio values included in the HITRAN spectroscopic database. We take the opportunity of this contribution to provide an exhaustive review of seventy-three HD absorption lines previously detected up to 20,000 cm-1. From the pressure dependence of the baseline of the CRDS spectra, the binary absorption coefficient of the HD collision induced absorption band is determined to be 1.17(4) × 10-6 cm-1amagat-2 at 4360 cm-1.

  14. Electronic defect states at the LaAlO3/SrTiO3 heterointerface revealed by O K-edge X-ray absorption spectroscopy.

    PubMed

    Palina, Natalia; Annadi, Anil; Asmara, Teguh Citra; Diao, Caozheng; Yu, Xiaojiang; Breese, Mark B H; Venkatesan, T; Ariando; Rusydi, Andrivo

    2016-05-18

    Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces.

  15. Olfactory stem cells reveal MOCOS as a new player in autism spectrum disorders

    PubMed Central

    Féron, F; Gepner, B; Lacassagne, E; Stephan, D; Mesnage, B; Blanchard, M-P; Boulanger, N; Tardif, C; Devèze, A; Rousseau, S; Suzuki, K; Izpisua Belmonte, J C; Khrestchatisky, M; Nivet, E; Erard-Garcia, M

    2016-01-01

    With an onset under the age of 3 years, autism spectrum disorders (ASDs) are now understood as diseases arising from pre- and/or early postnatal brain developmental anomalies and/or early brain insults. To unveil the molecular mechanisms taking place during the misshaping of the developing brain, we chose to study cells that are representative of the very early stages of ontogenesis, namely stem cells. Here we report on MOlybdenum COfactor Sulfurase (MOCOS), an enzyme involved in purine metabolism, as a newly identified player in ASD. We found in adult nasal olfactory stem cells of 11 adults with ASD that MOCOS is downregulated in most of them when compared with 11 age- and gender-matched control adults without any neuropsychiatric disorders. Genetic approaches using in vivo and in vitro engineered models converge to indicate that altered expression of MOCOS results in neurotransmission and synaptic defects. Furthermore, we found that MOCOS misexpression induces increased oxidative-stress sensitivity. Our results demonstrate that altered MOCOS expression is likely to have an impact on neurodevelopment and neurotransmission, and may explain comorbid conditions, including gastrointestinal disorders. We anticipate our discovery to be a fresh starting point for the study on the roles of MOCOS in brain development and its functional implications in ASD clinical symptoms. Moreover, our study suggests the possible development of new diagnostic tests based on MOCOS expression, and paves the way for drug screening targeting MOCOS and/or the purine metabolism to ultimately develop novel treatments in ASD. PMID:26239292

  16. PRICKLE1 Interaction with SYNAPSIN I Reveals a Role in Autism Spectrum Disorders

    PubMed Central

    Paemka, Lily; Mahajan, Vinit B.; Skeie, Jessica M.; Sowers, Levi P.; Ehaideb, Salleh N.; Gonzalez-Alegre, Pedro; Sasaoka, Toshikuni; Tao, Hirotaka; Miyagi, Asuka; Ueno, Naoto; Takao, Keizo; Miyakawa, Tsuyoshi; Wu, Shu; Darbro, Benjamin W.; Ferguson, Polly J.; Pieper, Andrew A.; Britt, Jeremiah K.; Wemmie, John A.; Rudd, Danielle S.; Wassink, Thomas; El-Shanti, Hatem; Mefford, Heather C.; Carvill, Gemma L.; Manak, J. Robert; Bassuk, Alexander G.

    2013-01-01

    The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1+/− mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles. PMID:24312498

  17. Pinning effects in ceramic SmO1-xFxFeAs as revealed by microwave absorption

    NASA Astrophysics Data System (ADS)

    Panarina, Nadezda Yu.; Talanov, Yurii I.; Shaposhnikova, Tatyana S.; Beysengulov, Niyaz R.; Vavilova, Evgenia; Behr, Günter; Kondrat, Agnieszka; Hess, Christian; Leps, Norman; Wurmehl, Sabine; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd

    2010-06-01

    Modulated microwave absorption (MMA) measurements have revealed strong pinning of vortices in ceramic superconducting SmO1-xFxFeAs compounds with x=0.06 , 0.08, and 0.1. Different behavior of MMA in small and strong fields enables to discriminate between intergranular and intragranular effects. Irreversibility lines due to the intragranular pinning exhibit a steep ascent comparable with that of the YBa2Cu3O7 ceramics which is known to possess the highest pinning strength among cuprate high-temperature superconductors. A weak dependence of the critical current density on the magnetic field in the underdoped samples (x=0.06,0.08) indicates the presence of additional pinning centers. The analysis of the data together with the theoretical modeling yields a conclusion that strong pinning in SmO1-xFxFeAs is due to nonsuperconducting regions intermixed on a nanoscale with the superconducting phase.

  18. Multi-mode interference revealed by two photon absorption in silicon rich SiO{sub 2} waveguides

    SciTech Connect

    Manna, S. E-mail: mattia.mancinelli@unitn.it; Ramiro-Manzano, F.; Mancinelli, M. E-mail: mattia.mancinelli@unitn.it; Turri, F.; Pavesi, L.; Ghulinyan, M.; Pucker, G.

    2015-02-16

    Photoluminescence (PL) from Si nanocrystals (NCs) excited by two-photon absorption (TPA) has been observed in Si nanocrystal-based waveguides fabricated by plasma enhanced chemical vapor deposition. The TPA excited photoluminescence emission resembles the one-photon excited photoluminescence arising from inter-band transitions in the quantum confined Si nanocrystals. By measuring the non-linear transmission of waveguides, a large TPA coefficient of β up to 10{sup −8 }cm/W has been measured at 1550 nm. These values of β depend on the Si NCs size and are two orders of magnitude larger than the bulk silicon value. Here, we propose to use the TPA excited visible PL emission as a tool to map the spatial intensity profile of the 1550 nm propagating optical modes in multimode waveguides. In this way, multimode interference has been revealed experimentally and confirmed through a finite element simulation.

  19. A continuous false belief task reveals egocentric biases in children and adolescents with autism spectrum disorders.

    PubMed

    Begeer, Sander; Bernstein, Daniel M; van Wijhe, Jonas; Scheeren, Anke M; Koot, Hans M

    2012-07-01

    This study reports on a new false belief measure in a sample of 124 children and adolescents with or without high functioning autism (HFASD). In the classic paradigm, a participant predicts in which of two discrete locations a deceived protagonist will look for an object. In the current Sandbox task, the object is buried and reburied in a sandbox, thus creating a continuum between locations. Compared to typically developing individuals (n=62), those with HFASD (n=62) showed a larger egocentric bias on the Sandbox task. They failed to take the protagonist's false belief into account, despite their adequate ability to infer advanced mental states. This indicates that sensitive measures can reveal subtle first order Theory of Mind impairments in HFASD individuals.

  20. Whole exome sequencing reveals the mutational spectrum of testicular germ cell tumours

    PubMed Central

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C.; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2014-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole exome sequencing of 42 TGCTs to comprehensively study the mutational profile of TGCT. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per megabase [Mb]) as compared to the common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT. PMID:25609015

  1. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours.

    PubMed

    Litchfield, Kevin; Summersgill, Brenda; Yost, Shawn; Sultana, Razvan; Labreche, Karim; Dudakia, Darshna; Renwick, Anthony; Seal, Sheila; Al-Saadi, Reem; Broderick, Peter; Turner, Nicholas C; Houlston, Richard S; Huddart, Robert; Shipley, Janet; Turnbull, Clare

    2015-01-01

    Testicular germ cell tumours (TGCTs) are the most common cancer in young men. Here we perform whole-exome sequencing (WES) of 42 TGCTs to comprehensively study the cancer's mutational profile. The mutation rate is uniformly low in all of the tumours (mean 0.5 mutations per Mb) as compared with common cancers, consistent with the embryological origin of TGCT. In addition to expected copy number gain of chromosome 12p and mutation of KIT, we identify recurrent mutations in the tumour suppressor gene CDC27 (11.9%). Copy number analysis reveals recurring amplification of the spermatocyte development gene FSIP2 (15.3%) and a 0.4 Mb region at Xq28 (15.3%). Two treatment-refractory patients are shown to harbour XRCC2 mutations, a gene strongly implicated in defining cisplatin resistance. Our findings provide further insights into genes involved in the development and progression of TGCT.

  2. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    PubMed Central

    Macaulay, Iain C.; Svensson, Valentine; Labalette, Charlotte; Ferreira, Lauren; Hamey, Fiona; Voet, Thierry; Teichmann, Sarah A.; Cvejic, Ana

    2016-01-01

    Summary The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment. PMID:26804912

  3. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  4. Measurement and theoretical characterization of electronic absorption spectrum of neutral chrysene (C 18H 12) and its positive ion in H 3BO 3 matrix

    NASA Astrophysics Data System (ADS)

    Husain, Mudassir M.

    2007-09-01

    The ultraviolet and visible spectrum of chrysene and its radical cation formed by ultraviolet irradiation were measured in boric acid glass at room temperature. The theoretical electronic absorption spectrum of any polycyclic aromatic hydrocarbon (PAH) in boric acid matrix is calculated for the first time using semi empirical methods. Earlier reported theoretical results of electronic spectrum are calculated in free state and the results are compared with the spectrum of aromatic systems in glassy or other matrices. The interaction between the trapped PAHs (neutral and ions) and its environment induces strong perturbations of the energy levels which results in large shifts of the electronic transitions as compared to the ideal case of a free, isolated PAH molecule. This shifting due to perturbation has largely been ignored in earlier calculations, while comparing the calculations with the experimentally measured spectrum, in other matrices. The spectrum of singlet and doublet state of chrysene are computed in aqueous medium and also in free state to estimate the spectral shift. Several other geometric (bond length and bond angles) and spectroscopic parameters of chrysene like difference of HOMO-LUMO, ionization potential, dipole moment and polarizability are calculated using semi empirical methods, namely Austin Model 1 (AM1) and Parametric Method 3 (PM3). To get an idea about how the symmetry of chrysene molecule varies upon ionization, the mean polarizability ( α) as well as its tensor components αxx, αyy and αzz are calculated within a field of 0.005 a.u. The lasing action in neutral chrysene and in its cationic form is also discussed for the first time.

  5. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  6. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders

    PubMed Central

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-01-01

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology. PMID:25549968

  7. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; Fabian, A. C.; Farrah, D.; Fiore, F.; Gandhi, P.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R. C.; Madsen, K. K.; Ptak, A. F.; Rigby, Jane Rebecca; Risaliti, G.; Saz, C.; Stern, D.; Veilleux, S.; Walton, D. J.; Wik, D. R.; Zhang, W. W.

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  8. The C ∼ 2B3u ← X ∼ 2B2g electronic absorption spectrum of butatriene cation in a neon matrix

    NASA Astrophysics Data System (ADS)

    Filipkowski, Karol; Fulara, Jan; Maier, John P.

    2015-04-01

    The C ∼ 2B3u ← X ∼ 2B2g electronic absorption of butatriene cation (BT+) has been observed in a 6 K neon matrix. The origin band lies at 511.9 nm. The electronic transition assignment is based on comparison with the photoelectron spectrum of butatriene and the vibrational frequencies of BT+ calculated with the CASPT2 (5, 6) method. Three vibrational modes of energy 207, 511 and 813 cm-1, with their overtones and combinations, are active in the C ∼ 2B3u state of BT+. It is shown that the emission observed from a glow discharge of 2-butyne at 491 nm and attributed to the origin band of this electronic transition [1] of BT+ is due to another species, because the difference of 850 cm-1 to the absorption spectrum is too large. No fluorescence of BT+ was detected in the matrix and it is expected that the C ∼ 2B3u electronic state relaxes non-radiatively on a fs time scale.

  9. The soft gamma-ray spectrum of A0535+26: Detection of an absorption feature at 110 keV by OSSE

    NASA Technical Reports Server (NTRS)

    Grove, J. E.; Strickman, M. S.; Johnson, W. N.; Kurfess, J. D.; Kinzer, R. L.; Starr, C. H.; Jung, G. V.; Kendziorra, E.; Maisack, M.; Staubert, R.

    1995-01-01

    We present soft gamma-ray observations by the Oriented Scintillation Spectrometer Experiment (OSSE) on the Compton Gamma Ray Observatory (GRO) of the transient X-ray binary pulsar A0535+26. The observations were made 1994 February 8-17, immediately prior to the peak of a giant outburst. The phase averaged spectrum is complex and cannot be described by a single-component model. We find that structure in the spectrum above 100 keV can best be modeled by an absorption feature near 110 keV, which we interepret as the signature of cyclotron resonant scattering. Because of OSSE's 45 keV threshold, we are unable to make a definitive statement on the presence of a 55 keV absorption line; however, we can conclude that if this line does exist, it must have a smaller optical depth than the line at 110 keV. A first harmonic (=fundamental) cyclotron resonance at 110 keV corresponds to a magnetic field strength at the surface of the neutron star of approximately 1 x 10(exp 13) G (approximately 5 x 10(exp 12) G if the first harmonic is at 55 keV).

  10. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  11. The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (I) Rovibrational lines

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Konefal, M.; Mondelain, D.; Kassi, S.; Čermák, P.; Tashkun, S. A.; Perevalov, V. I.; Campargue, A.

    2016-11-01

    The absorption of carbon dioxide is very weak near 2.3 μm which makes this transparency window of particular interest for the study of Venus' lower atmosphere. As a consequence of the weakness of the transitions located in this region, previous experimental data are very scarce and spectroscopic databases provide calculated line lists which should be tested and validated by experiment. In this work, we use the Cavity Ring Down Spectroscopy (CRDS) technique for a high sensitivity characterization of the CO2 absorption spectrum in two spectral intervals of the 2.3 μm window: 4248-4257 and 4295-4380 cm-1 which were accessed using a Distributed Feed Back (DFB) diode laser and a Vertical External Cavity Surface Emitting Laser (VECSEL) as light sources, respectively. The achieved sensitivity (noise equivalent absorption, αmin, on the order of 5×10-10 cm-1) allowed detecting numerous new transitions with intensity values down to 5×10-30 cm/molecule. The rovibrational assignments were performed by comparison with available theoretical line lists in particular those obtained at IAO Tomsk using the global effective operator approach. Hot bands of the main isotopologue and 16O12C18O bands were found to be missing in the HITRAN database while they contribute importantly to the absorption in the region. Additional CRDS spectra of a CO2 sample highly enriched in 18O were recorded in order to improve the spectroscopy of this isotopologue. As a result about 700 lines of 16O12C18O, 16O12C17O, 17O12C18O, 12C18O2 and 13C18O2 were newly measured. The status of the different databases (HITRAN, CDSD, variational calculations) in the important 2.3 μm transparency window is discussed. Possible improvements to correct evidenced deficiencies are suggested.

  12. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  13. Longitudinal MRI reveals altered trajectory of brain development during childhood and adolescence in fetal alcohol spectrum disorders.

    PubMed

    Treit, Sarah; Lebel, Catherine; Baugh, Lauren; Rasmussen, Carmen; Andrew, Gail; Beaulieu, Christian

    2013-06-12

    Diffusion tensor imaging (DTI) of brain development in fetal alcohol spectrum disorders (FASD) has revealed structural abnormalities, but studies have been limited by the use of cross-sectional designs. Longitudinal scans can provide key insights into trajectories of neurodevelopment within individuals with this common developmental disorder. Here we evaluate serial DTI and T1-weighted volumetric MRI in a human sample of 17 participants with FASD and 27 controls aged 5-15 years who underwent 2-3 scans each, ∼2-4 years apart (92 scans total). Increases of fractional anisotropy and decreases of mean diffusivity (MD) were observed between scans for both groups, in keeping with changes expected of typical development, but mixed-models analysis revealed significant age-by-group interactions for three major white matter tracts: superior longitudinal fasciculus and superior and inferior fronto-occipital fasciculus. These findings indicate altered developmental progression in these frontal-association tracts, with the FASD group notably showing greater reduction of MD between scans. ΔMD is shown to correlate with reading and receptive vocabulary in the FASD group, with steeper decreases of MD in the superior fronto-occipital fasciculus and superior longitudinal fasciculus between scans correlating with greater improvement in language scores. Volumetric analysis revealed reduced total brain, white, cortical gray, and deep gray matter volumes and fewer significant age-related volume increases in the FASD group, although age-by-group interactions were not significant. Longitudinal DTI indicates delayed white matter development during childhood and adolescence in FASD, which may underlie persistent or worsening behavioral and cognitive deficits during this critical period.

  14. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  15. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells.

    PubMed

    Hao, Feng; Stoumpos, Constantinos C; Chang, Robert P H; Kanatzidis, Mercouri G

    2014-06-01

    Perovskite-based solar cells have recently been catapulted to the cutting edge of thin-film photovoltaic research and development because of their promise for high-power conversion efficiencies and ease of fabrication. Two types of generic perovskites compounds have been used in cell fabrication: either Pb- or Sn-based. Here, we describe the performance of perovskite solar cells based on alloyed perovskite solid solutions of methylammonium tin iodide and its lead analogue (CH3NH3Sn(1-x)Pb(x)I3). We exploit the fact that, the energy band gaps of the mixed Pb/Sn compounds do not follow a linear trend (the Vegard's law) in between these two extremes of 1.55 and 1.35 eV, respectively, but have narrower bandgap (<1.3 eV), thus extending the light absorption into the near-infrared (~1,050 nm). A series of solution-processed solid-state photovoltaic devices using a mixture of organic spiro-OMeTAD/lithium bis(trifluoromethylsulfonyl)imide/pyridinium additives as hole transport layer were fabricated and studied as a function of Sn to Pb ratio. Our results show that CH3NH3Sn(0.5)Pb(0.5)I3 has the broadest light absorption and highest short-circuit photocurrent density ~20 mA cm(-2) (obtained under simulated full sunlight of 100 mW cm(-2)).

  16. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  17. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  18. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  19. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  20. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  1. The 5 f r arrow 6 d absorption spectrum of Pa sup 4+ /Cs sub 2 ZrCl sub 6

    SciTech Connect

    Edelstein, N.; Kot, W.K. ); Krupa, J. )

    1992-01-01

    The 5{ital f}{sup 1}{r arrow}6{ital d}{sup 1} absorption spectrum of {sup 231}Pa{sup 4+} diluted in a single crystal of Cs{sub 2}ZrCl{sub 6} has been measured at 4.2 K. Three bands corresponding to the 6{ital d}({Gamma}{sub 8{ital g}}, {Gamma}{sub 7{ital g}}, and {Gamma}{sup {prime}}{sub 8{ital g}} ) levels are assigned. Extensive vibronic structure has been observed for the lowest 5{ital f}{r arrow}6{ital d} transition and this structure is compared to that recently reported for the 6{ital d}{sup 1}{r arrow}5{ital f}{sup 1} emission spectra in the same system.

  2. Ab Initio Calculation of the Ultraviolet-Visible (UV-vis) Absorption Spectrum, Electron-Loss Function, and Reflectivity of Solids.

    PubMed

    Ferrari, Anna Maria; Orlando, Roberto; Rérat, Michel

    2015-07-14

    The field frequency has recently been taken into account in the coupled-perturbed Hartree-Fock or Kohn-Sham method implemented in the CRYSTAL code for calculating the high-frequency dielectric constant of semiconductors up to the first electronic transitions. In this work, we document how the code has been generalized and improved in order to compute the full ultraviolet-visible (UV-vis) absorption spectrum, the electron loss function, and the reflectivity from the real and imaginary parts of the electric response property. We show how spectra are modified when the crystalline orbital relaxation due to the dynamic electric field is taken into account, and how this modification increases with the percentage of Hartree-Fock exchange in the unperturbed hybrid Hamiltonian.

  3. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions.

    PubMed

    Chatterjee, I; Gandhi, O P; Hagmann, M J; Riazi, A

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed.

  4. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    SciTech Connect

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed.

  5. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  6. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide.

    PubMed

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B̃(1)A'←X̃(1)A' UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation. PMID:25273439

  7. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  8. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  9. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853-6201 cm-1)

    NASA Astrophysics Data System (ADS)

    Starikova, E.; Nikitin, A. V.; Rey, M.; Tashkun, S. A.; Mondelain, D.; Kassi, S.; Campargue, A.; Tyuterev, Vl. G.

    2016-07-01

    The absorption spectrum of the 13CH4 methane isotopologue has been recently recorded by Differential Absorption Spectroscopy (DAS) at 80 K in the 5853-6201 cm-1 spectral range. An empirical list of 3717 lines was constructed for this spectral range corresponding to the upper part of the Tetradecad dominated by the 2ν3 band near 5987 cm-1. In this work, we present rovibrational analyses of these spectra obtained via two theoretical approaches. Assignments of strong and medium lines were achieved with variational calculations using ab initio potential energy (PES) and dipole moment surfaces. For further analysis a non-empirical effective Hamiltonian (EH) of the methane polyads constructed by high-order Contact Transformations (CT) from an ab initio PES was employed. Initially predicted values of EH parameters were empirically optimized using 2898 assigned line positions fitted with an rms deviation of 5×10-3 cm-1. More than 1860 measured line intensities were modeled using the effective dipole transition moments approach with the rms deviation of about 10%. These new data were used for the simultaneous fit of the 13CH4 Hamiltonian parameters of the {Ground state/Dyad/Pentad/Octad/Tetradecad} system and the dipole moment parameters of the {Ground state-Tetradecad} system. Overall, 10 vibrational states and 28 vibration sublevels of the 13CH4 Tetradecad are determined. The comparison of their energy values with corresponding theoretical calculations is discussed.

  10. AN Fe XXIV ABSORPTION LINE IN THE PERSISTENT SPECTRUM OF THE DIPPING LOW-MASS X-RAY BINARY 1A 1744-361

    SciTech Connect

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-07-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT {approx} 1.0 keV) plus power law ({Gamma} {approx} 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 {+-} 0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2-1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km s{sup -1}. We find an equivalent width for the line of 27{sup +2}{sub -3} eV, from which we determine a column density of (7 {+-} 1) Multiplication-Sign 10{sup 17} cm{sup -2} via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >10{sup 3.6} erg cm s{sup -1}. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an 'atoll' source.

  11. Cavity Ringdown Absorption Spectrum of the T_1(n,π*) ← S_0 Transition of Acrolein: Analysis of the 0^0_0 Band Rotational Contour

    NASA Astrophysics Data System (ADS)

    Hlavacek, Nikolaus C.; McAnally, Michael O.; Drucker, Stephen

    2012-06-01

    Acrolein (propenal, CH_2=CH---CH=O) is the simplest conjugated enal molecule and serves as a prototype for investigating the photochemical properties of larger enals and enones. Acrolein has a coplanar arrangement of heavy atoms in its ground electronic state. Much of the photochemistry is mediated by the T_1(π,π*) state, which has a CH_2--twisted equilibrium structure. In solution, the T_1(π,π*) state is typically accessed via intersystem crossing from an intially prepared planar S_1(n,π*) state. An intermediate in this photophysical transformation is the lowest ^3 (n,π*) state, a planar species with adiabatic excitation energy below S_1 and above T_1(π,π*). The present work focuses on this ^3 (n,π*) intermediate state; it is designated T_1(n,π*) as the lowest-energy triplet state of acrolein having a planar equilibrium structure. The T_1(n,π*) ← S_0 band system, with origin near 412 nm, was first recorded in the 1970s at medium (0.5 cm-1) resolution using a long-path absorption cell. Here we report the cavity ringdown spectrum of the 0^0_0 band, recorded using a pulsed dye laser with 0.1 cm-1 spectral bandwidth. The spectrum was measured under both bulk-gas (room-temperature) and jet-cooled conditions. The band contour in each spectrum was analyzed by using a computer program developed for simulating and fitting the rotational structure of singlet-triplet transitions. The assignment of several resolved sub-band heads in the room-temperature spectrum permitted approximate fitting of the inertial constants for the T_1(n,π*) state. The determined values (cm-1) are A=1.662, B=0.1485, C=0.1363. For the parameters A and (B+C)/2, estimated uncertainties of ± 0.003 cm-1 and ± 0.0004 cm-1, respectively, correspond to a range of values that produce qualitatively satisfactory global agreement with the observed room-temperature contour. The fitted inertial constants were used to simulate the rotational contour of the 0^0_0 band under jet-cooled conditions

  12. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  13. Diffusion Spectrum MRI Tractography Reveals the Presence of a Complex Network of Residual Myofibers in Infarcted Myocardium

    PubMed Central

    Sosnovik, David E.; Wang, Ruopeng; Dai, Guangping; Wang, Teresa; Aikawa, Elena; Novikov, Mikhael; Rosenzweig, Anthony; Gilbert, Richard J.; Wedeen, Van J.

    2009-01-01

    Background Changes in myocardial microstructure are important components of the tissue response to infarction but are difficult to resolve with current imaging techniques. A novel technique, diffusion spectrum MRI tractography (DSI-tractography), was thus used to image myofiber architecture in normal and infarcted myocardium. Unlike diffusion tensor imaging, DSI-tractography resolves multiple myofiber populations per voxel, thus generating accurate 3D tractograms, which we present in the myocardium for the first time. Methods and Results DSI-tractography was performed at 4.7 Tesla in excised rat hearts 3 weeks following left coronary artery ligation (n=4), and in 4 age-matched controls. Fiber architecture in the control hearts varied smoothly from endocardium to epicardium, producing a symmetric array of crossing helical structures in which orthogonal myofibers were separated by fibers with intermediate helix angles. Fiber architecture in the infarcted hearts was severely perturbed. The infarct boundary in all cases was highly irregular and punctuated repeatedly by residual myofibers extending from within the infarct to the border zones. In all infarcts longitudinal myofibers extending towards the basal-anterior wall and transversely oriented myofibers extending towards the septum lay in direct contact with each other, forming nodes of orthogonal myofiber intersection or contact. Conclusions DSI-tractography resolves 3D myofiber architecture and reveals a complex network of orthogonal myofibers within infarcted myocardium. Mesh-like networks of orthogonal myofibers in infarcted myocardium may resist mechanical remodeling, but likely also increase the risk for lethal re-entrant arrhythmias. DSI-tractography thus provides a new and important readout of tissue injury following myocardial infarction. PMID:19808594

  14. Subcomponents and Connectivity of the Inferior Fronto-Occipital Fasciculus Revealed by Diffusion Spectrum Imaging Fiber Tracking

    PubMed Central

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao

    2016-01-01

    The definitive structure and functional role of the inferior fronto-occipital fasciculus (IFOF) are still controversial. In this study, we aimed to investigate the connectivity, asymmetry, and segmentation patterns of this bundle. High angular diffusion spectrum imaging (DSI) analysis was performed on 10 healthy adults and a 90-subject DSI template (NTU-90 Atlas). In addition, a new tractography approach based on the anatomic subregions and two regions of interest (ROI) was evaluated for the fiber reconstructions. More widespread anterior-posterior connections than previous “standard” definition of the IFOF were found. This distinct pathway demonstrated a greater inter-subjects connective variability with a maximum of 40% overlap in its central part. The statistical results revealed no asymmetry between the left and right hemispheres and no significant differences existed in distributions of the IFOF according to sex. In addition, five subcomponents within the IFOF were identified according to the frontal areas of originations. As the subcomponents passed through the anterior floor of the external capsule, the fibers radiated to the posterior terminations. The most common connection patterns of the subcomponents were as follows: IFOF-I, from frontal polar cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-II, from orbito-frontal cortex to occipital pole, inferior occipital lobe, middle occipital lobe, superior occipital lobe, and pericalcarine; IFOF-III, from inferior frontal gyrus to inferior occipital lobe, middle occipital lobe, superior occipital lobe, occipital pole, and pericalcarine; IFOF-IV, from middle frontal gyrus to occipital pole, and inferior occipital lobe; IFOF-V, from superior frontal gyrus to occipital pole, inferior occipital lobe, and middle occipital lobe. Our work demonstrates the feasibility of high resolution diffusion tensor tractography with sufficient sensitivity

  15. Poster 7: Could PAH or HAC explain the Titan's stratosphere absorption around 3.4 µm revealed by solar occultations?

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Cours, Thibaud; Rey, Michael; Maltagliati, Luca; Seignovert, Benoit; Biennier, Ludovic

    2016-06-01

    In 2006, during Cassini's 10th flyby of Titan (T10), Bellucci et al. (2009) observed a solar occultation by Titan's atmosphere through the solar port of the Cassini/VIMS instrument. These authors noticed the existence of an unexplained additional absorption superimposed to the CH4 3.3 µm band. Because they were unable to model this absorption with gases, they attributed this intriguing feature to the signature of solid state organic components. Kim et al. (2011) revisited the data collected by Bellucci et al. (2009) and they considered the possible contribution of aerosols formed by hydrocarbon ices. They specifically took into account C2H6, CH4, CH3CN, C5H12 and C6H12 ices. More recently, Maltagliati et al. (2015) analyzed a set of four VIMS solar occultations, corresponding to flybys performed between January 2006 and September 2011 at different latitudes. They confirmed the presence of the 3.3 µm absorption in all occultations and underlined the possible importance of gaseous ethane, which has a strong plateau of absorption lines in that wavelength range.In this work, we show that neither hydrocarbon ices nor molecular C2H6 cannot satisfactorily explain the observed absorption. Our simulations speak in favor of an absorption due to the presence of PAH molecules or HAC in the stratosphere of Titan. PAH have been already considered by Lopes-Puertas et al. (2013) at altitudes larger than ˜900 km and tentatively identified in the stratosphere by Maltagliati et al. (2015); PAH and HAC are good candidates for Titan's aerosols precursors.

  16. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy.

    PubMed

    Wan, Liwen F; Wright, Joshua; Perdue, Brian R; Fister, Timothy T; Kim, Soojeong; Apblett, Christopher A; Prendergast, David

    2016-06-29

    Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thöle et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes. PMID:27314253

  17. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 μm spectra

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Lambert, J.; Farzone, M.; Richter, M. J.; Josselin, E.; Harper, G. M.; Eriksson, K.; Greathouse, T. K.

    2015-01-01

    Context. The structures of the outer atmospheres of red giants are very complex. Recent interpretations of a range of different observations have led to contradictory views of these regions. It is clear, however, that classical model photospheres are inadequate to describe the nature of the outer atmospheres. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain spectro-interferometric observations and low- and high-resolution spectra. On the other hand high-resolution spectra in the mid-IR do not easily fit into this picture because they rule out any large sphere of water vapour in LTE surrounding red giants. Aims: In order to approach a unified scenario for these outer regions of red giants, more empirical evidence from different diagnostics are needed. Our aim here is to investigate high-resolution, mid-IR spectra for a range of red giants, spanning spectral types from early K to mid M. We want to study how the pure rotational lines of water vapour change with effective temperature, and whether we can find common properties that can put new constraints on the modelling of these regions, so that we can gain new insights. Methods: We have recorded mid-IR spectra at 12.2 - 12.4 μm at high spectral resolution of ten well-studied bright red giants, with TEXES mounted on the IRTF on Mauna Kea. These stars span effective temperatures from 3450 K to 4850 K. Results: We find that all red giants in our study cooler than 4300 K, spanning a wide range of effective temperatures (down to 3450 K), show water absorption lines stronger than expected and none are detected in emission, in line with what has been previously observed for a few stars. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that are undoubtedly formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperatures, in the

  18. Effects of backlight structure on absorption experiments

    SciTech Connect

    Iglesias, C A

    2004-11-08

    The impact of spectral details in the backlight of absorption spectroscopy experiments is considered. It is shown that experimentally unresolved structure in the backlight spectrum can introduce significant errors in the inferred transmission. Furthermore, it is shown that a valuable experimental procedure previously used to test the accuracy of the data fails to reveal these errors.

  19. The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm

    NASA Astrophysics Data System (ADS)

    Hao, Jing-Yu; Xu, Ying; Zhang, Yu-Pei; Chen, Shu-Fen; Li, Xing-Ao; Wang, Lian-Hui; Huang, Wei

    2015-04-01

    Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and

  20. Local Effects in the X-ray Absorption Spectrum of CaCl2, MgCl2, and NaCl Solutions

    SciTech Connect

    Kulik, H J; Correa Tedesco, A A; Schwegler, E; Prendergast, D; Galli, G

    2010-04-12

    Both first principles molecular dynamics and theoretical X-ray absorption spectroscopy have been used to investigate the aqueous solvation of cations in 0.5 M MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions. We focus here on the species-specific effects that Mg{sup 2+}, Ca{sup 2+}, and Na{sup +}, have on the X-ray absorption spectrum of the respective solutions. For the divalent cations, we find that the hydrogen bonding characteristics of the more rigid magnesium first shell water molecules differ from those in the more flexible solvation shell surrounding calcium. In particular, the first solvation shell water molecules of calcium are accessible to forming acceptor hydrogen bonds, and this results in an enhancement of a post-edge peak near 540 eV. The absence of acceptor hydrogen bonds for magnesium first shell water molecules provides an explanation for the experimental and theoretical observation of a lack of enhancement at the post-main-edge peak. For the sodium monovalent cation we find that the broad tilt angle distribution results in a broadening of post-edge features, despite populations in donor-and-acceptor configurations consistent with calcium. We also present the re-averaged spectra of the MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions and show that trends apparent with increasing concentration (0.5 M, 2.0 M, 4.0 M) are consistent with experiment. Finally, we examine more closely both the effect that cation coordination number has on the hydrogen bonding network and the relative perturbation strength of the cations on lone pair oxygen orbitals.

  1. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  2. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  3. High-Pressure Evolution of Fe2O3 Electronic Structure Revealed by X-ray Absorption

    SciTech Connect

    Kao, Chi-Chang

    2011-08-12

    We report the first high pressure measurement of the Fe K-edge in hematite (Fe{sub 2}O{sub 3}) by X-ray absorption spectroscopy in partial fluorescence yield geometry. The pressure-induced evolution of the electronic structure as Fe{sub 2}O{sub 3} transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorption pre-edge. The crystal field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing good qualitative agreement with the measurements. The mechanism for the pressure-induced phase transitions of Fe{sub 2}O{sub 3} is discussed and it is shown that ligand hybridization significantly reduces the critical high-spin/low-spin gap pressure.

  4. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy.

  5. Communication: Does a single CH{sub 3}CN molecule attached to Ru(bipy){sub 3}{sup 2+} affect its absorption spectrum?

    SciTech Connect

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-07

    Tris(bipyridine)ruthenium(II) (Ru(bipy){sub 3}{sup 2+}) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex’s beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  6. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans123

    PubMed Central

    Jumpertz, Reiner; Le, Duc Son; Turnbaugh, Peter J; Trinidad, Cathy; Bogardus, Clifton; Gordon, Jeffrey I; Krakoff, Jonathan

    2011-01-01

    Background: Studies in mice indicate that the gut microbiome influences both sides of the energy-balance equation by contributing to nutrient absorption and regulating host genes that affect adiposity. However, it remains uncertain as to what extent gut microbiota are an important regulator of nutrient absorption in humans. Objective: With the use of a carefully monitored inpatient study cohort, we tested how gut bacterial community structure is affected by altering the nutrient load in lean and obese individuals and whether their microbiota are correlated with the efficiency of dietary energy harvest. Design: We investigated dynamic changes of gut microbiota during diets that varied in caloric content (2400 compared with 3400 kcal/d) by pyrosequencing bacterial 16S ribosomal RNA (rRNA) genes present in the feces of 12 lean and 9 obese individuals and by measuring ingested and stool calories with the use of bomb calorimetry. Results: The alteration of the nutrient load induced rapid changes in the gut microbiota. These changes were directly correlated with stool energy loss in lean individuals such that a 20% increase in Firmicutes and a corresponding decrease in Bacteroidetes were associated with an increased energy harvest of ≈150 kcal. A high degree of overfeeding in lean individuals was accompanied by a greater fractional decrease in stool energy loss. Conclusions: These results show that the nutrient load is a key variable that can influence the gut (fecal) bacterial community structure over short time scales. Furthermore, the observed associations between gut microbes and nutrient absorption indicate a possible role of the human gut microbiota in the regulation of the nutrient harvest. This trial was registered at clinicaltrials.gov as NCT00414063. PMID:21543530

  7. Displacive phase-transition of cuprite Ag2O revealed by extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Sanson, Andrea

    2016-08-01

    The low-temperature phase-transition of silver oxide (Ag2O) has been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy as a function of temperature. The thermal evolution of the local structure around Ag atoms has been determined. In particular, below the phase-transition temperature at ∼35 K, a progressive splitting of the Ag-Ag next-nearest-neighbor distances is observed. This definitely supports the idea that the phase-transition of Ag2O is due to displacive disorder of the Ag atoms.

  8. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  9. Altered Pre-Reflective Sense of Agency in Autism Spectrum Disorders as Revealed by Reduced Intentional Binding

    ERIC Educational Resources Information Center

    Sperduti, Marco; Pieron, Marie; Leboyer, Marion; Zalla, Tiziana

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental conditions that severely affect social interaction, communication and several behavioural and cognitive functions, such as planning and monitoring motor actions. A renewed interest in intrapersonal cognition has recently emerged suggesting a putative dissociation between impaired declarative…

  10. Altered pre-reflective sense of agency in autism spectrum disorders as revealed by reduced intentional binding.

    PubMed

    Sperduti, Marco; Pieron, Marie; Leboyer, Marion; Zalla, Tiziana

    2014-02-01

    Autism spectrum disorders (ASDs) are neurodevelopmental conditions that severely affect social interaction, communication and several behavioural and cognitive functions, such as planning and monitoring motor actions. A renewed interest in intrapersonal cognition has recently emerged suggesting a putative dissociation between impaired declarative processes, such as autobiographical memory, and spared implicit processes, such as the sense of agency (SoA) in ASDs. However, so far only a few studies have investigated the integrity of SoA using tasks exclusively tapping reflective mechanisms. Since pre-reflective processes of SoA are based on the same predictive internal models that are involved in planning and monitoring actions, we hypothesized that pre-reflective aspects of SoA, as measured by the intentional binding effect, would be altered in adults with high functioning autism spectrum disorders, relative to volunteers with typical development. Here, in accordance with our hypothesis, we report reduced IB in participants with ASDs. PMID:23881092

  11. The mutation spectrum of the phenylalanine hydroxylase (PAH) gene and associated haplotypes reveal ethnic heterogeneity in the Taiwanese population.

    PubMed

    Liang, Ying; Huang, Miao-Zeng; Cheng, Cheng-Yi; Chao, Hung-Kun; Fwu, Victor Tramjay; Chiang, Szu-Hui; Hsiao, Kwang-Jen; Niu, Dau-Ming; Su, Tsung-Sheng

    2014-03-01

    Phenylalanine hydroxylase (PAH) deficiency is responsible for most cases of phenylketonuria (PKU). In this study of the PAH mutation spectrum in the Taiwanese population, 139 alleles were identified including 34 different mutations. The V190G, Q267R and F392I mutations are first reported in this study. The most common mutations, R241C, R408Q and Ex6-96A>G, account for 23.2%, 12.0% and 9.2%, of the mutant alleles, respectively. Haplotype analysis shows that R241C and Ex6-96A>G are exclusively associated with haplotype 4.3 to suggest founder effects. On the other hand, R408Q is found on two distinct haplotypes suggesting recurrent mutations. The spectrum of PAH mutations in Taiwan shows various links to those of other Asian regions, yet remarkable differences exist. Notably, R408Q, E286K and -4173_-407del, accounting for 21% of all mutant alleles in Taiwan, are very rare or are undetected among PKU cohorts of other Asian regions to suggest local founder effects. Moreover, the low homozygosity value of 0.092 hints at a high degree of ethnic heterogeneity within the Taiwanese population. Our study of PAH mutation spectrum and the associated haplotypes is useful for subsequent study on the origin and migration pattern via Taiwan, an island at the historical crossroad of migration of ancient populations.

  12. A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum

    PubMed Central

    Mazza, Carlos A.; Izaguirre, Miriam M.; Curiale, Javier; Ballaré, Carlos L.

    2010-01-01

    Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia. PMID:19846453

  13. Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations.

    PubMed

    Mereshchenko, Andrey S; Olshin, Pavel K; Karabaeva, Kanykey E; Panov, Maxim S; Wilson, R Marshall; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Tveryanovich, Yury S; Tarnovsky, Alexander N

    2015-07-16

    Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 μs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled. PMID:26079181

  14. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    PubMed

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses. PMID:26988449

  15. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    PubMed

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.

  16. Cytochrome P-450 revealed: the effect of the respiratory cytochromes on the spectrum of bacterial cytochrome P-450.

    PubMed

    Stevenson, P M; Ruettinger, R T; Fulco, A J

    1983-05-16

    Soluble extracts of Bacillus megaterium ATCC 14581 prepared by centrifuging a sonicated cell suspension at 40,000 xg for 30 min apparently contained no cytochrome P-450 unless the culture had been grown in the presence of an inducer: a reduced+CO minus reduced spectrum was used to measure cytochrome P-450 concentration. When the 40,000 xg supernatants from the uninduced cultures were recentrifuged at 105,000 xg the respiratory cytochromes, including one like cytochrome a1, were sedimented, and cytochrome P-450 was observed to be 100 nM or 30 +/- 9 p mol cytochrome P-450/mg protein (n=9). Measurements of cytochrome P-450 in cultures induced with phenobarbital were always higher after ultracentrifugation. There was soluble cytochrome o in all extracts. When cytochrome a1 was present a deep trough at 441 nm developed in the reduced +CO minus reduced difference spectrum of the 40,000 xg supernatant of both the uninduced and the induced cultures. The 40,000 xg supernatant obtained after lysing protoplasts of B. megaterium did not contain cytochrome a1 and always gave a good measure of cytochrome P-450. PMID:6405752

  17. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    SciTech Connect

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J.

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  18. Cosmic Electromagnetic Radiation: The sky shine covers an enormous spectrum of frequencies, revealing a cosmic picture in some detail.

    PubMed

    Hafner, E M

    1964-09-18

    Within a few decades astronomy has extended the compass of its observations from the visible spectrum downward to radio waves and upward to the highest energies known to science. The major new accomplishments are in the radio and x-ray bands, and in the associated study of cosmic ray electrons. Synchrotron radiation is known to be a mechanism for radio signals; discrete x-ray sources have been found; the intensity and the charge ratio of galactic electrons are under study. Experimental results at energies above the x-ray region are less firm. The sun surely emits gamma rays at energies of about 1 Mev during flare activity, and instruments in deep space have probably recorded the general galactic glow of similar photons. Upper limits for fluxes have been set at 100 Mev and beyond. To some extent the physical processes which give rise to the extraterrestrial radiation are familiar to workers in the terrestrial laboratory. Synchrotron radiation is an example; the bremsstrahlung of electrons, the production of neutral pions in p-p collisions, and the annihilation of electron and nucleon pairs are others. Some proposed mechanisms are, and perhaps always will be, purely speculative in the sense that they are not directly observable in the laboratory. The inverse Compton effect, possibly one of the sources of a metagalactic sky glow of hard photons, is in this class. There is little chance that spontaneous creation of matter, even if it occurs in nature, can be observed on a terrestrial scale. And the extreme physical conditions proposed for neutron stars are beyond our ability to reproduce. Only through interpretation of astronomical data can we test the validity of these ideas. The many pictures of the universe given by the vast electromagnetic spectrum are essential to the synthesis of our concepts.

  19. Spectrum of Cytogenomic Abnormalities Revealed by Array Comparative Genomic Hybridization on Products of Conception Culture Failure and Normal Karyotype Samples.

    PubMed

    Zhou, Qinghua; Wu, Shen-Yin; Amato, Katherine; DiAdamo, Autumn; Li, Peining

    2016-03-20

    Approximately 30% of pregnancies after implantation end up in spontaneous abortions, and 50% of them are caused by chromosomal abnormalities. However, the spectrum of genomic copy number variants (CNVs) in products of conception (POC) and the underlying gene-dosage-sensitive mechanisms causing spontaneous abortions remain largely unknown. In this study, array comparative genomic hybridization (aCGH) analysis was performed as a salvage procedure for 128 POC culture failure (POC-CF) samples and as a supplemental procedure for 106 POC normal karyotype (POC-NK) samples. Chromosomal abnormalities were detected in 10% of POC-CF and pathogenic CNVs were detected in 3.9% of POC-CF and 5.7% of POC-NK samples. Compiled results from this study and relevant case series through a literature review demonstrated an abnormality detection rate (ADR) of 35% for chromosomal abnormalities in POC-CF samples, 3.7% for pathogenic CNVs in POC-CF samples, and 4.6% for pathogenic CNVs in POC-NK samples. Ingenuity Pathway Analysis (IPA) was performed on the genes from pathogenic CNVs found in POC samples. The denoted primary gene networks suggested that apoptosis and cell proliferation pathways are involved in miscarriage. In summary, a similar spectrum of cytogenomic abnormalities was observed in POC culture success and POC-CF samples. A threshold effect correlating the number of dosage-sensitive genes in a chromosome with the observed frequency of autosomal trisomy is proposed. A rationalized approach using firstly fluorescence in situ hybridization (FISH) testing with probes of chromosomes X/Y/18, 13/21, and 15/16/22 for common aneuploidies and polyploidies and secondly aCGH for other cytogenomic abnormalities is recommended for POC-CF samples. PMID:27020032

  20. Mining the LIPG allelic spectrum reveals the contribution of rare and common regulatory variants to HDL cholesterol.

    PubMed

    Khetarpal, Sumeet A; Edmondson, Andrew C; Raghavan, Avanthi; Neeli, Hemanth; Jin, Weijun; Badellino, Karen O; Demissie, Serkalem; Manning, Alisa K; DerOhannessian, Stephanie L; Wolfe, Megan L; Cupples, L Adrienne; Li, Mingyao; Kathiresan, Sekar; Rader, Daniel J

    2011-12-01

    Genome-wide association studies (GWAS) have successfully identified loci associated with quantitative traits, such as blood lipids. Deep resequencing studies are being utilized to catalogue the allelic spectrum at GWAS loci. The goal of these studies is to identify causative variants and missing heritability, including heritability due to low frequency and rare alleles with large phenotypic impact. Whereas rare variant efforts have primarily focused on nonsynonymous coding variants, we hypothesized that noncoding variants in these loci are also functionally important. Using the HDL-C gene LIPG as an example, we explored the effect of regulatory variants identified through resequencing of subjects at HDL-C extremes on gene expression, protein levels, and phenotype. Resequencing a portion of the LIPG promoter and 5' UTR in human subjects with extreme HDL-C, we identified several rare variants in individuals from both extremes. Luciferase reporter assays were used to measure the effect of these rare variants on LIPG expression. Variants conferring opposing effects on gene expression were enriched in opposite extremes of the phenotypic distribution. Minor alleles of a common regulatory haplotype and noncoding GWAS SNPs were associated with reduced plasma levels of the LIPG gene product endothelial lipase (EL), consistent with its role in HDL-C catabolism. Additionally, we found that a common nonfunctional coding variant associated with HDL-C (rs2000813) is in linkage disequilibrium with a 5' UTR variant (rs34474737) that decreases LIPG promoter activity. We attribute the gene regulatory role of rs34474737 to the observed association of the coding variant with plasma EL levels and HDL-C. Taken together, the findings show that both rare and common noncoding regulatory variants are important contributors to the allelic spectrum in complex trait loci. PMID:22174694

  1. Subtle local structural variations in oxygen deficient niobium germanate thin film glasses as revealed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sahiner, M. A.; Nabizadeh, A.; Rivella, D.; Cerqueira, L.; Hachlica, J.; Morea, R.; Gonzalo, J.; Woicik, J. C.

    2016-05-01

    The local electronic and crystal structure of niobium-lead-germanate, Nb2O5-PbO- GeO2 (NPG), glass thin films on silicon substrates were probed by XANES and EXAFS. NPG glasses are promising candidates for applications in nonlinear optical devices because they exhibit interesting optical characteristics such as high nonlinear third order optical susceptibility. In this work NPG glasses were prepared with pulsed laser deposition method with varying oxygen partial pressure to induce thin films with different oxygen stoichiometry. Previously, it was shown that oxygen stoichiometry has a very important effect to produce unusual high optical susceptibility. Detailed EXAFS and XANES analyses in a series of NPG thin films revealed the subtle variations in the local environment around Nb atoms and the Nb oxidation states caused by oxygen deficiencies.

  2. Study of the H-F stretching band in the absorption spectrum of (CH3)2O...HF in the gas phase.

    PubMed

    Bulychev, V P; Gromova, E I; Tokhadze, K G

    2008-02-14

    The absorption spectra of the (CH3)2O...HF complex in the range of 4200-2800 cm(-1) were recorded in the gas phase at a resolutions of 0.1 cm(-1) at T = 190-340 K. The spectra obtained were used to analyze their structure and to determine the temperature dependencies of the first and second spectral moments. The band shape of the (CH3)2O...HF complex in the region of the nu1(HF) stretching mode was reconstructed nonempirically. The nu1 and nu3 stretching vibrations and four bending vibrations responsible for the formation of the band shape were considered. The equilibrium geometry and the 1D-4D potential energy surfaces were calculated at the MP2 6-311++G(2d,2p) level with the basis set superposition error taken into account. On the basis of these surfaces, a number of one- and multidimensional anharmonic vibrational problems were solved by the variational method. Solutions of auxiliary 1D and 2D vibrational problems showed the strong coupling between the modes. The energy levels, transition frequencies and intensities, and the rotational constants for the combining vibrational states necessary to reconstruct the spectrum were obtained from solutions of the 4D problem (nu1, nu3, nu5(B2), nu6(B2)) and the 2D problem (nu5(B1), nu6(B1)). The theoretical spectra reconstructed for different temperatures as a superposition of rovibrational bands associated with the fundamental, hot, sum, and difference transitions reproduce the shape and separate spectral features of the experimental spectra. The calculated value of the nu1 frequency is 3424 cm(-1). Along with the frequencies and absolute intensities, the calculation yields the vibrationally averaged values of the separation between the centers of mass of the monomers Rc.-of-m., R(O...F), and r(HF) for different states. In particular, upon excitation of the nu1 mode, Rc.-of-m. becomes shorter by 0.0861 A, and r(HF) becomes longer by 0.0474 A.

  3. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  4. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae. PMID:19052622

  5. Tycho Brahe's 1572 supernova as a standard typeIa as revealed by its light-echo spectrum

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    TypeIa supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN1572) is thought to be one of the best candidates for a typeIa supernova in the Milky Way. The proximity of the SN1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of typeIa supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN1572 belongs to the majority class of normal typeIa supernovae.

  6. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae.

  7. Connectivity and tissue microstructural alterations in right and left temporal lobe epilepsy revealed by diffusion spectrum imaging.

    PubMed

    Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge

    2014-01-01

    Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.

  8. XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.

    2016-08-01

    Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a

  9. The immunophenotypic spectrum of primary mediastinal large B-cell lymphoma reveals prognostic biomarkers associated with outcome.

    PubMed

    Bledsoe, Jacob R; Redd, Robert A; Hasserjian, Robert P; Soumerai, Jacob D; Nishino, Ha T; Boyer, Daniel F; Ferry, Judith A; Zukerberg, Lawrence R; Harris, Nancy Lee; Abramson, Jeremy S; Sohani, Aliyah R

    2016-10-01

    Primary mediastinal large B-cell lymphoma (PMBL) is a distinct subtype of diffuse large B-cell lymphoma (DLBCL) that shows overlap with classical Hodgkin lymphoma (CHL) and a favorable prognosis compared to mediastinal gray-zone lymphoma (MGZL). We performed immunohistochemistry on initial diagnostic specimens of 49 cases of uniformly treated PMBL to determine the frequency and clinical significance of expression of antigens commonly seen in CHL and MGZL, along with markers previously shown to be prognostic in DLBCL, not otherwise specified. The median age was 37 years with a female:male ratio of 2.3. After a median follow-up of 78 months, 24% of patients had relapsed or refractory disease and 22% had died; the 5-year PFS was 70%. Variable CD15 expression was seen in 31% of cases, but was not associated with adverse outcome. Hans cell-of-origin, proliferation index, and MYC/BCL2 coexpression were not associated with outcome, while low PDL1 (P = 0.011) and high MUM1 (P = 0.065) staining were each associated with shorter PFS. A biologic risk score (one point each for low PDL1 and high MUM1) stratified patients into three prognostic risk groups for PFS (P = 0.001) and OS (P = 0.032). On separate multivariate models, low PDL1 was independent of R-IPI risk group for PFS (HR 6.0, P = 0.023), as was a biologic risk score of 2 (HR 5.6, P = 0.011). Incorporation of the biologic risk score sub-stratified patients within R-IPI groups for both PFS (P < 0.001) and OS (P < 0.001). In summary, we characterize the immunophenotypic spectrum of PMBL and identify PDL1 and MUM1 as prognostic biomarkers for high-risk disease. Am. J. Hematol. 91:E436-E441, 2016. © 2016 Wiley Periodicals, Inc. PMID:27419920

  10. [Using ultraviolet-visible ( UV-Vis) absorption spectrum to estimate the dissolved organic matter (DOM) concentration in water, soils and sediments of typical water-level fluctuation zones of the Three Gorges Reservoir areas].

    PubMed

    Li, Lu-lu; Jiang, Tao; Lu, Song; Yan, Jin-long; Gao, Jie; Wei, Shi-qiang; Wang, Ding-yong; Guo, Nian; Zhao, Zhena

    2014-09-01

    Dissolved organic matter (DOM) is a very important component in terrestrial ecosystem. Chromophoric dissolved organic matter (CDOM) is a significant constituent of DOM, which can be measured by ultraviolet-visible (UV-Vis) absorption spectrum. Thus the relationship between CDOM and DOM was investigated and established by several types of models including single-wavelength model, double-wavelength model, absorption spectrum slope (S value) model and three-wavelength model, based on the UV-Vis absorption coefficients of soil and sediment samples (sampled in July of 2012) and water samples (sampled in November of 2012) respectively. The results suggested that the three-wavelength model was the best for fitting, and the determination coefficients of water, soil and sediment data were 0. 788, 0. 933 and 0. 856, respectively. Meanwhile, the nominal best model was validated with the UV-Vis data of 32 soil samples and 36 water samples randomly collected in 2013, showing the RRMSE and MRE were 16. 5% and 16. 9% respectively for soil DOM samples, 10. 32% and 9. 06% respectively for water DOM samples, which further suggested the prediction accuracy was higher in water DOM samples as compared with that in soil DOM samples.

  11. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis

    PubMed Central

    2009-01-01

    Background Single genome-wide screens for the effect of altered gene dosage on drug sensitivity in the model organism Saccharomyces cerevisiae provide only a partial picture of the mechanism of action of a drug. Results Using the example of the tumor cell invasion inhibitor dihydromotuporamine C, we show that a more complete picture of drug action can be obtained by combining different chemical genomics approaches – analysis of the sensitivity of ρ0 cells lacking mitochondrial DNA, drug-induced haploinsufficiency, suppression of drug sensitivity by gene overexpression and chemical-genetic synthetic lethality screening using strains deleted of nonessential genes. Killing of yeast by this chemical requires a functional mitochondrial electron-transport chain and cytochrome c heme lyase function. However, we find that it does not require genes associated with programmed cell death in yeast. The chemical also inhibits endocytosis and intracellular vesicle trafficking and interferes with vacuolar acidification in yeast and in human cancer cells. These effects can all be ascribed to inhibition of sphingolipid biosynthesis by dihydromotuporamine C. Conclusion Despite their similar conceptual basis, namely altering drug sensitivity by modifying gene dosage, each of the screening approaches provided a distinct set of information that, when integrated, revealed a more complete picture of the mechanism of action of a drug on cells. PMID:19144191

  12. NuSTAR reveals an intrinsically X-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    SciTech Connect

    Teng, Stacy H.; Rigby, J. R.; Brandt, W. N.; Luo, B.; Harrison, F. A.; Grefenstette, B. W.; Madsen, K. K.; Alexander, D. M.; Gandhi, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Hickox, R. C.; Ptak, A. F.; and others

    2014-04-10

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin (N{sub H}∼1.2{sub −0.3}{sup +0.3}×10{sup 23} cm{sup –2}) column. The intrinsic X-ray luminosity (L {sub 0.5–30} {sub keV} ∼ 1.0 × 10{sup 43} erg s{sup –1}) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is ∼0.03% compared to the typical values of 2%-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope (α{sub OX} ∼ –1.7). It is a local example of a low-ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  13. Peculiar high energy cosmic ray stratospheric event reveals a heavy primary origin particle above the knee region of the cosmic ray spectrum

    SciTech Connect

    Kopenkin, V.; Fujimoto, Y.

    2005-01-15

    We wish to put forward an explanation for a peculiar cosmic ray event with energy {sigma}E{sub {gamma}}{>=}2x10{sup 15} eV detected in 1975 by the balloon borne emulsion chamber experiment performed in the stratosphere, at the altitude {>=}30 km above sea level. For almost 30 years the event has been described as unusual, invoking new exotic mechanisms or models. In our opinion there is no need for an extraordinary explanation. Contrary to the widespread belief, the event gives us an example of 'unrecognized standard physics'. At the same time this event revealed a variety of features which are of considerable interest for cosmic rays, nuclear physics, and astrophysics. Here we show that the observed family is most likely to be a result of a heavy nucleus interaction with an air nucleus. In this case a primary particle would originally have been in the energy region above 'the knee' of the cosmic ray spectrum.

  14. The hot DOA1 degenerate HZ 21 - A search for circumstellar/photospheric metals and peculiar absorption at He II

    NASA Technical Reports Server (NTRS)

    Fritz, M. L.; Leckenby, H.; Sion, E. M.; Vauclair, G.; Liebert, J.

    1990-01-01

    A high-resolution IUE spectrum of the hot DO1 degenerate HZ 21 was obtained by combining US1 + European 2 low-background observing shifts. The SWP image reveals a rich spectrum of interstellar absorption lines with an average velocity in the line of sight to HZ 21 of -30 km/s. However, there is no clear evidence of any highly or lowly ionized metal features which could be attributed to circumstellar, wind, or photospheric absorption. There is, however, a broad absorption trough at He II (1640) which was not unexpected, given the clear presence of He II (4686) absorption in this star's optical spectrum. The velocity width of He II (1640) appears consistent with photospheric absorption wings which appear to flank the geocoronal Ly-alpha emission feature. The He II (1640) feature reveals what appears to be a broad (310 km/s) emission reversal. Evidence is provided that the emission reversal is probably real.

  15. Local electronic states of Fe{sub 4}N films revealed by x-ray absorption spectroscopy and x-ray magnetic circular dichroism

    SciTech Connect

    Ito, Keita; Toko, Kaoru; Suemasu, Takashi; Takeda, Yukiharu; Saitoh, Yuji; Oguchi, Tamio; Kimura, Akio

    2015-05-21

    We performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements at Fe L{sub 2,3} and N K-edges for Fe{sub 4}N epitaxial films grown by molecular beam epitaxy. In order to clarify the element specific local electronic structure of Fe{sub 4}N, we compared experimentally obtained XAS and XMCD spectra with those simulated by a combination of a first-principles calculation and Fermi's golden rule. We revealed that the shoulders observed at Fe L{sub 2,3}-edges in the XAS and XMCD spectra were due to the electric dipole transition from the Fe 2p core-level to the hybridization state generated by σ* anti-bonding between the orbitals of N 2p at the body-centered site and Fe 3d on the face-centered (II) sites. Thus, the observed shoulders were attributed to the local electronic structure of Fe atoms at II sites. As to the N K-edge, the line shape of the obtained spectra was explained by the dipole transition from the N 1s core-level to the hybridization state formed by π* and σ* anti-bondings between the Fe 3d and N 2p orbitals. This hybridization plays an important role in featuring the electronic structures and physical properties of Fe{sub 4}N.

  16. Transcriptional analysis of porcine intestinal mucosa infected with Salmonella Typhimurium revealed a massive inflammatory response and disruption of bile acid absorption in ileum.

    PubMed

    Uribe, Juber Herrera; Collado-Romero, Melania; Zaldívar-López, Sara; Arce, Cristina; Bautista, Rocío; Carvajal, Ana; Cirera, Susanna; Claros, M Gonzalo; Garrido, Juan J

    2016-01-07

    Infected pork meat is an important source of non-typhoidal human salmonellosis. Understanding of molecular mechanisms involved in disease pathogenesis is important for the development of therapeutic and preventive strategies. Thus, hereby we study the transcriptional profiles along the porcine intestine during infection with Salmonella Typhimurium, as well as post-transcriptional gene modulation by microRNAs (miRNA). Sixteen piglets were orally challenged with S. Typhimurium. Samples from jejunum, ileum and colon, collected 1, 2 and 6 days post infection (dpi) were hybridized to mRNA and miRNA expression microarrays and analyzed. Jejunum showed a reduced transcriptional response indicating mild inflammation only at 2 dpi. In ileum inflammatory genes were overexpressed (e.g., IL-1B, IL-6, IL-8, IL1RAP, TNFα), indicating a strong immune response at all times of infection. Infection also down-regulated genes of the FXR pathway (e.g., NR1H4, FABP6, APOA1, SLC10A2), indicating disruption of the bile acid absorption in ileum. This result was confirmed by decreased high-density lipoprotein cholesterol in serum of infected pigs. Ileal inflammatory gene expression changes peaked at 2 dpi and tended to resolve at 6 dpi. Furthermore, miRNA analysis of ileum at 2 dpi revealed 62 miRNAs potentially regulating target genes involved in this inflammatory process (e.g., miR-374 and miR-451). In colon, genes involved in epithelial adherence, proliferation and cellular reorganization were down-regulated at 2 and 6 dpi. In summary, here we show the transcriptional changes occurring at the intestine at different time points of the infection, which are mainly related to inflammation and disruption of the bile acid metabolism.

  17. The Complete Ultraviolet Spectrum of the Archetypal "Wind-dominated" Quasar Mrk 231: Absorption and Emission from a High-speed Dusty Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Meléndez, M.; Tripp, T. M.; Hamann, F.; Rupke, D. S. N.

    2016-07-01

    New near- and far-ultraviolet (NUV and FUV) Hubble Space Telescope spectra of Mrk 231, the nearest quasar known, are combined with ground-based optical spectra to study the remarkable dichotomy between the FUV and NUV-optical spectral regions in this object. The FUV emission-line features are faint, broad, and highly blueshifted (up to ˜7000 km s-1), with no significant accompanying absorption. In contrast, the profiles of the NUV absorption features resemble those of the optical Na i D, He i, and Ca ii H and K lines, exhibiting broad blueshifted troughs that overlap in velocity space with the FUV emission-line features and indicate a dusty, high-density and patchy broad absorption line (BAL) screen covering ˜90% of the observed continuum source at a distance ≲2-20 pc. The FUV continuum emission does not show the presence of any obvious stellar features and is remarkably flat compared with the steeply declining NUV continuum. The NUV (FUV) features and continuum emission have not varied significantly over the past ˜22 (3) years and are unresolved on scales ˜40 (170) pc. These results favor an active galactic nucleus origin for the NUV-FUV line and continuum emission. The observed FUV line emission is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad line region seen through the dusty BAL screen. Our data are inconsistent with the recently proposed binary black hole model. We argue instead that Mrk 231 is the nearest example of weak-lined “wind-dominated” quasars with high Eddington ratios and geometrically thick (“slim”) accretion disks; these quasars are likely more common in the early universe.

  18. Comparative study of the absorption spectrum of Li 2CaSiO 4:Cr 4+: First-principles fully relativistic and crystal field calculations

    NASA Astrophysics Data System (ADS)

    Brik, M. G.; Ogasawara, K.

    2007-11-01

    Systematic analysis of the energy level scheme and ground state absorption of the Cr4+ ion in Li2CaSiO4 crystal was performed using the exchange charge model of the crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33-50] and recently developed first-principles approach to the analysis of the absorption spectra of impurity ions in crystals based on the discrete variational multielectron (DVME) method [K. Ogasawara, T. Iwata, Y. Koyama, T. Ishii, I. Tanaka, H. Adachi, Phys. Rev. B 64 (2001) 115413]. Using the former method, the values of parameters of crystal field acting on the Cr4+ ion valence electrons were calculated using the Li2CaSiO4 crystal structure data. Energy levels of the Cr4+ ion obtained after diagonalizing the crystal field Hamiltonian are in good agreement with those obtained from the experimental spectra. The latter method is based on the numerical solution of the Dirac equation; therefore, all relativistic effects are automatically considered. As a result, energy level scheme of Cr4+ and its absorption spectra in both polarizations were calculated, assigned and compared with experimental data; energy of the lowest charge transfer transition was evaluated and compared with theoretical predictions for the CrO44- complex available in the literature. The main features of the experimental spectra shape are reproduced well by the calculations. By performing analysis of the molecular orbitals (MO) population, it was shown that the covalent effects play an important role in formation of the spectral properties of Cr4+ ion in the considered crystal.

  19. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions.

  20. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions. PMID:24128921

  1. Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants.

    PubMed

    Mitter, Birgit; Petric, Alexandra; Shin, Maria W; Chain, Patrick S G; Hauberg-Lotte, Lena; Reinhold-Hurek, Barbara; Nowak, Jerzy; Sessitsch, Angela

    2013-01-01

    Burkholderia phytofirmans PsJN is a naturally occurring plant-associated bacterial endophyte that effectively colonizes a wide range of plants and stimulates their growth and vitality. Here we analyze whole genomes, of PsJN and of eight other endophytic bacteria. This study illustrates that a wide spectrum of endophytic life styles exists. Although we postulate the existence of typical endophytic traits, no unique gene cluster could be exclusively linked to the endophytic lifestyle. Furthermore, our study revealed a high genetic diversity among bacterial endophytes as reflected in their genotypic and phenotypic features. B. phytofirmans PsJN is in many aspects outstanding among the selected endophytes. It has the biggest genome consisting of two chromosomes and one plasmid, well-equipped with genes for the degradation of complex organic compounds and detoxification, e.g., 24 glutathione-S-transferase (GST) genes. Furthermore, strain PsJN has a high number of cell surface signaling and secretion systems and harbors the 3-OH-PAME quorum-sensing system that coordinates the switch of free-living to the symbiotic lifestyle in the plant-pathogen R. solanacearum. The ability of B. phytofirmans PsJN to successfully colonize such a wide variety of plant species might be based on its large genome harboring a broad range of physiological functions. PMID:23641251

  2. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    PubMed

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-01

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action.

  3. Communication: THz absorption spectrum of the CO{sub 2}–H{sub 2}O complex: Observation and assignment of intermolecular van der Waals vibrations

    SciTech Connect

    Andersen, J.; Mahler, D. W.; Larsen, R. Wugt; Heimdal, J.; Nelander, B.

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO{sub 2}–H{sub 2}O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H{sub 2}O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm{sup −1} from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm{sup −1} for the dissociation energy D{sub 0}.

  4. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Tittor, J.; Varo, G.; Krippahl, G.; Oesterhelt, D.

    1992-01-01

    The consequences of replacing Asp-85 with glutamate in bacteriorhodopsin, as expressed in Halobacterium sp. GRB, were investigated. Similarly to the in vitro mutated and in Escherichia coli expressed protein, the chromophore was found to exist as a mixture of blue (absorption maximum 615 nm) and red (532 nm) forms, depending on the pH. However, we found two widely separated pKa values (about 5.4 and 10.4 without added salt), arguing for two blue and two red forms in separate equilibria. Both blue and red forms of the protein are in the two-dimensional crystalline state. A single pKa, such as in the E. coli expressed protein, was observed only after solubilization with detergent. The photocycle of the blue forms was determined at pH 4.0 with 610 nm photoexcitation, and that of the red forms at pH 10.5 and with 520 nm photoexcitation, in the time-range of 100 ns to 1 s. The blue forms produced no M, but a K- and an L-like intermediate, whose spectra and kinetics resembled those of blue wild-type bacteriorhodopsin below pH 3. The red forms produced a K-like intermediate, as well as M and N. Only the red forms transported protons. Specific perturbation of the neighborhood of the Schiff base by the replacement of Asp-85 with glutamate was suggested by (1) the shift and splitting of the pKa for what is presumably the protonation of residue 85, (2) a 36 nm blue-shift in the absorption of the all-trans red chromophore and a 25 nm red-shift of the 13-cis N chromophore, as compared to wild-type bacteriorhodopsin and its N intermediate, and (3) significant acceleration of the deprotonation of the Schiff base at pH 7, but not of its reprotonation and the following steps in the photocycle.

  5. THE 3-5 {mu}m SPECTRUM OF NGC 1068 AT HIGH ANGULAR RESOLUTION: DISTRIBUTION OF EMISSION AND ABSORPTION FEATURES ACROSS THE NUCLEAR CONTINUUM SOURCE

    SciTech Connect

    Geballe, T. R.; Mason, R. E.; Rodriguez-Ardila, A.; Axon, D. J.

    2009-08-20

    We report moderate resolution 3-5 {mu}m spectroscopy of the nucleus of NGC 1068 obtained at 0.''3 (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the active galactic nucleus. The deconvolved full width at half-maximum of the nuclear continuum source in this direction is 0.''3. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.''3 north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 {mu}m hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 {mu}m silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 {mu}m feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc to the central engine.

  6. Structural and optical study of core-shell InGaN layers of nanorod arrays with multiple stacks of InGaN/GaN superlattices for absorption of longer solar spectrum

    NASA Astrophysics Data System (ADS)

    Bae, Si-Young; Jung, Byung Oh; Lekhal, Kaddour; Lee, Dong-Seon; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    We report on the material and optical properties of core-shell InGaN layers grown on GaN nanorod arrays. The core-shell InGaN layers were well grown on polarization-reduced surfaces such as semipolar pyramids and nonpolar sidewalls. In addition, to compensate the biaxial strain between GaN and InGaN layers, we grew interlayers underneath a thick InGaN layer. Here, the interlayers were composed of multiple superlattice structures. We could observe that the indium composition of core-shell InGaN structures increased with the number of interlayers. This indicates that the absorption energy band of InGaN alloys can be better matched to the spectral irradiance of the solar spectrum in nature. We also implemented a simulation of Ga-polar and nonpolar InGaN-based solar cells based on the indium composition obtained from the experiments. The result showed that nonpolar InGaN solar cells had a much higher efficiency than Ga-polar InGaN solar cells with the same thickness of the absorption layer.

  7. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  8. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  9. Two-photon solvatochromism II: experimental and theoretical study of solvent effects on the two-photon absorption spectrum of Reichardt's dye.

    PubMed

    Wielgus, Małgorzata; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Samoc, Marek; Bartkowiak, Wojciech

    2013-11-11

    In this study, we report on the influence of solvent on the two-photon absorption (2PA) spectra of Reichardt's dye (RD). The measurement of 2PA cross-sections is performed for three solvents (chloroform, dimethyl formamide, and dimethyl sulfoxide) using the Z-scan technique. The key finding of this study is the observation that the cross-section, corresponding to the 2PA of the intramolecular charge-transfer state, diminishes substantially upon increasing the solvent polarity. To unravel the solvent dependence of the 2PA cross-section, the electronic structure of RD is determined using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, in which polarization between the solute and solvent is taken into account by using a self-consistent scheme in the solvent polarization. The two-state approximation proves to be adequate for the studied system, and allowed the observed solvent-polarity-induced decrease of the 2PA cross-section to be related to the decrease of the transition moment and the increase in the excitation energy. PMID:24106066

  10. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm.

    PubMed

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV-vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400-640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  11. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm

    PubMed Central

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV–vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400–640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  12. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm.

    PubMed

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV-vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400-640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect.

  13. [PHOSPHOLIPIDS AND FATTY ACIDS IN ERYTHROCYTES OF THE LAMPREY LAMPETRA FLUVIATILIS DURING AUTUMN PRESPAWNING PERIOD AND THE ABSORPTION SPECTRUM OF THEIR LIPID EXTRACT].

    PubMed

    Zabelinskii, S A; Chebotareva, M A; Shukolyukova, E P; Krivchenko, A I

    2015-01-01

    The content of some classes of phospholipids and their fatty acid composition in erythrocytes of the lamprey Lampetrafluviatilis during the autumn period of its prespawning migration are investigated. It is found that the phospholipid spectrum of erythrocytes of the lamprey, the oldest representative of vertebrates, is similar to that of many mammals. A four-fold prevalence of phosphatidilcholine content over sphingomyelin content as well as prevalence of (ω3-acids over ω6-acids indicates the of lamprey's erythrocyte membranes - an important indicator of deformational ability of lamprey's erythrocytes. Phosphatidilethanol amine and its plasmalogenic form are the most unsaturated phospholipids (their unsaturation indices are 230 and 342, correspondingly). Phosphatidilcholine is the most saturated one (UI is 167). It is found that the basic acid indicators characterizing the fluidity of erythrocyte membranes remain unchanged during the whole period of prespawning migration of lampreys up to spawning. The blood contains several buffer systems, in particular, membrane phospholipids which neutralize acids and alkali incoming into the blood. In the process of organism life a change of pH inside erythrocytes occurs. One can suppose that the base of the system associated with buffer properties of the blood is water dissociation. Inside thin vessels of the circulatory system the hemoglobin attaches and returns molecules of oxygen due to interaction of the buffer systems with water. The property of water to dissociate as well as ion transfer produce in erythrocytes, lying within narrow vessels of the circulatory system, a local pH alteration allowing displacing/attaching the molecule of oxygen from hemoglobin.

  14. The origin of the unusual Qy red shift in LH1-RC complexes from purple bacteria Thermochromatium tepidum as revealed by Stark absorption spectroscopy.

    PubMed

    Ma, Fei; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; van Grondelle, Rienk

    2015-12-01

    Native LH1-RC of photosynthetic purple bacteria Thermochromatium (Tch.) tepidum, B915, has an ultra-red BChl a Qy absorption. Two blue-shifted complexes obtained by chemical modification, B893 and B882, have increasing full widths at half maximum (FWHM) and decreasing transition dipole oscillator strength. 77K Stark absorption spectroscopy studies were employed for the three complexes, trying to understand the origin of the 915 nm absorption. We found that Tr(∆α) and |∆μ| of both Qy and carotenoid (Car) bands are larger than for other purple bacterial LH complexes reported previously. Moreover, the red shifts of the Qy bands are associated with (1) increasing Tr(∆α) and |∆μ| of the Qy band, (2) the red shift of the Car Stark signal and (3) the increasing |∆μ| of the Car band. Based on the results and the crystal structure, a combined effect of exciton-charge transfer (CT) states mixing, and inhomogeneous narrowing of the BChl a site energy is proposed to be the origin of the 915 nm absorption. CT-exciton state mixing has long been found to be the origin of strong Stark signal in LH1 and special pair, and the more extent of the mixing in Tch. tepidum LH1 is mainly the consequence of the shorter BChl-BChl distances. The less flexible protein structure results in a smaller site energy disorder (inhomogeneous narrowing), which was demonstrated to be able to influence |∆μ| and absorption.

  15. Integrative proteomic analysis of the NMDA NR1 knockdown mouse model reveals effects on central and peripheral pathways associated with schizophrenia and autism spectrum disorders

    PubMed Central

    2014-01-01

    Background Over the last decade, the transgenic N-methyl-D-aspartate receptor (NMDAR) NR1-knockdown mouse (NR1neo−/−) has been investigated as a glutamate hypofunction model for schizophrenia. Recent research has now revealed that the model also recapitulates cognitive and negative symptoms in the continuum of other psychiatric diseases, particularly autism spectrum disorders (ASD). As previous studies have mostly focussed on behavioural readouts, a molecular characterisation of this model will help to identify novel biomarkers or potential drug targets. Methods Here, we have used multiplex immunoassay analyses to investigate peripheral analyte alterations in serum of NR1neo−/− mice, as well as a combination of shotgun label-free liquid chromatography mass spectrometry, bioinformatic pathway analyses, and a shotgun-based 40-plex selected reaction monitoring (SRM) assay to investigate altered molecular pathways in the frontal cortex and hippocampus. All findings were cross compared to identify translatable findings between the brain and periphery. Results Multiplex immunoassay profiling led to identification of 29 analytes that were significantly altered in sera of NR1neo−/− mice. The highest magnitude changes were found for neurotrophic factors (VEGFA, EGF, IGF-1), apolipoprotein A1, and fibrinogen. We also found decreased levels of several chemokines. Following this, LC-MSE profiling led to identification of 48 significantly changed proteins in the frontal cortex and 41 in the hippocampus. In particular, MARCS, the mitochondrial pyruvate kinase, and CamKII-alpha were affected. Based on the combination of protein set enrichment and bioinformatic pathway analysis, we designed orthogonal SRM-assays which validated the abnormalities of proteins involved in synaptic long-term potentiation, myelination, and the ERK-signalling pathway in both brain regions. In contrast, increased levels of proteins involved in neurotransmitter metabolism and release were

  16. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES

  17. Two-photon absorption by a quantum dot pair

    NASA Astrophysics Data System (ADS)

    Scheibner, Michael; Economou, Sophia E.; Ponomarev, Ilya V.; Jennings, Cameron; Bracker, Allan S.; Gammon, Daniel

    2015-08-01

    The biexciton absorption spectrum of a pair of InAs/GaAs quantum dots is being studied by photoluminescence excitation spectroscopy. An absorption resonance with the characteristics of an instantaneous two-photon process reveals a coherent interdot two-photon transition. Pauli-selective tunneling is being used to demonstrate the transduction of the two-photon coherence into a nonlocal spin singlet state. The two-photon transition can be tuned spectrally by electric field, enabling amplification of its transition strength.

  18. Absorption mode FTICR mass spectrometry imaging.

    PubMed

    Smith, Donald F; Kilgour, David P A; Konijnenburg, Marco; O'Connor, Peter B; Heeren, Ron M A

    2013-12-01

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here, we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image, and then, these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode "Datacubes" for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  19. Theoretical analysis of gyrotropy and absorption of terahertz electromagnetic waves in layer of DNA molecules

    NASA Astrophysics Data System (ADS)

    Semenova, A.; Vaks, V.

    2016-08-01

    Certain type of low-frequency DNA molecular oscillations was analysed within the self-consistent phonon approximation. There were calculated dispersion relationship, exiting the oscillations by electromagnetic wave and corresponding contribution to the absorption spectrum of ensemble of parallel DNA molecules. The dependence of the DNA spectral characteristics on the length and period of the DNA duplex structure is revealed. The method of experimental check of obtained results is suggested. If the described model is confirmed by experiment, the obtained results available to reconstruct the length and duplex period of the DNA in a sample by its absorption spectrum.

  20. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.

    PubMed

    Richards, Christopher D; Warr, Coral G; Burke, Richard

    2015-12-01

    Dietary zinc is the principal source of zinc in eukaryotes, with its uptake and distribution controlled by a complex network of numerous membrane-spanning transport proteins. Dietary absorption is achieved by members of the SLC39A (ZIP) gene family, which encode proteins that are generally responsible for the movement of zinc into the cytosol. ZIP4 is thought to be the primary mammalian zinc uptake gene in the small intestine, with mutations in this gene causing the zinc deficiency disease Acrodermatitis enteropathica. In Drosophila, dual knockdown of the major dietary zinc uptake genes dZIP42C.1 (dZIP1) and dZIP42C.2 (dZIP2) results in a severe sensitivity to zinc-deficient media. However, the symptoms associated with ZIP4 loss can be reversed by zinc supplementation and dZIP42C.1 and 2 knockdown has minimal effect under normal dietary conditions, suggesting that additional pathways for zinc absorption exist in both mammals and flies. This study provides evidence that dZIP89B is an ideal candidate for this role in Drosophila, encoding a low-affinity zinc uptake transporter active in the posterior midgut. Flies lacking dZIP89B, while viable and apparently healthy, show indications of low midgut zinc levels, including reduced metallothionein B expression and compensatory up-regulation of dZIP42C.1 and 2. Furthermore dZIP89B mutants display a dramatic resistance to toxic dietary zinc levels which is abrogated by midgut-specific restoration of dZIP89B activity. We postulate that dZIP89B works in concert with the closely related dZIP42C.1 and 2 to ensure optimal zinc absorption under a range of dietary conditions.

  1. Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy

    PubMed Central

    Qiao, Ruimin; Chuang, Yi-De; Yan, Shishen; Yang, Wanli

    2012-01-01

    Li2O2, Li2CO3, and Li2O are three critical compounds in lithium-air and lithium-ion energy storage systems. Extensive measurements have been carried out to study the chemical species and their evolutions at difference stages of the device operation. While x-ray spectroscopy has been demonstrated to be one of the most powerful tools for such purpose, no systematic study on the irradiation effects have been reported. Here we carry out extensive time, position, and irradiation dependent Li K-edge soft x-ray absorption spectroscopy on these compounds with so far the best energy resolution. The ultra-high resolution in the current study allows the features in the absorption spectra to be well-resolved. The spectral lineshape thus serves as the fingerprints of these compounds, enabling the tracking of their evolution under x-ray irradiation. We found that both Li2O2 and Li2CO3 evidently evolve towards Li2O under the soft x-ray irradiation with Li2CO3 exhibiting a surprisingly higher sensitivity to x-rays than Li2O2. On the other hand, Li2O remains the most stable compound despite experiencing substantial irradiation dose. We thus conclude that high resolution soft x-ray spectroscopy could unambiguously fingerprint different chemical species, but special cautions on irradiation effects would be needed in performing the experiments and interpreting the data properly. PMID:23145116

  2. Stellar Spectrum Synthesizer

    ERIC Educational Resources Information Center

    Landegren, G. F.

    1975-01-01

    Describes a device which employs two diffraction gratings and three or four simple lenses to produce arbitrary absorption or emission spectra that may be doppler shifted and spectroscopically examined by students some distance away. It may be regarded as a sort of artificial star whose spectrum may be analyzed as an undergraduate laboratory…

  3. Discrepancy between WISC-III and WISC-IV Cognitive Profile in Autism Spectrum: What Does It Reveal about Autistic Cognition?

    PubMed

    Nader, Anne-Marie; Jelenic, Patricia; Soulières, Isabelle

    2015-01-01

    The cognitive profile and measured intellectual level vary according to assessment tools in children on the autism spectrum, much more so than in typically developing children. The recent inclusion of intellectual functioning in the diagnostic process for autism spectrum disorders leads to the crucial question on how to assess intelligence in autism, especially as some tests and subtests seem more sensitive to certain neurodevelopmental conditions. Our first aim was to examine the cognitive profile on the current version of the most widely used test, the Wechsler Intelligence Scales for Children (WISC-IV), for a homogenous subgroup of children on the autism spectrum, i.e. corresponding to DSM-IV diagnosis of "autism". The second aim was to compare cognitive profiles obtained on the third edition versus 4th edition of WISC, in order to verify whether the WISC-IV yields a more distinctive cognitive profile in autistic children. The third aim was to examine the impact of the WISC-IV on the cognitive profile of another subgroup, children with Asperger's Syndrome. 51 autistic, 15 Asperger and 42 typically developing children completed the WISC-IV and were individually matched to children who completed the WISC-III. Divergent WISC-IV profiles were observed despite no significant intelligence quotient difference between groups. Autistic children scored significantly higher on the Perceptual Reasoning Index than on the Verbal Comprehension Index, a discrepancy that nearly tripled in comparison to WISC-III results. Asperger children scored higher on the VCI than on other indexes, with the lowest score found on the Processing Speed Index. WISC-IV cognitive profiles were consistent with, but more pronounced than WISC-III profiles. Cognitive profiles are a valuable diagnostic tool for differential diagnosis, keeping in mind that children on the autism spectrum might be more sensitive to the choice of subtests used to assess intelligence. PMID:26673881

  4. Discrepancy between WISC-III and WISC-IV Cognitive Profile in Autism Spectrum: What Does It Reveal about Autistic Cognition?

    PubMed

    Nader, Anne-Marie; Jelenic, Patricia; Soulières, Isabelle

    2015-01-01

    The cognitive profile and measured intellectual level vary according to assessment tools in children on the autism spectrum, much more so than in typically developing children. The recent inclusion of intellectual functioning in the diagnostic process for autism spectrum disorders leads to the crucial question on how to assess intelligence in autism, especially as some tests and subtests seem more sensitive to certain neurodevelopmental conditions. Our first aim was to examine the cognitive profile on the current version of the most widely used test, the Wechsler Intelligence Scales for Children (WISC-IV), for a homogenous subgroup of children on the autism spectrum, i.e. corresponding to DSM-IV diagnosis of "autism". The second aim was to compare cognitive profiles obtained on the third edition versus 4th edition of WISC, in order to verify whether the WISC-IV yields a more distinctive cognitive profile in autistic children. The third aim was to examine the impact of the WISC-IV on the cognitive profile of another subgroup, children with Asperger's Syndrome. 51 autistic, 15 Asperger and 42 typically developing children completed the WISC-IV and were individually matched to children who completed the WISC-III. Divergent WISC-IV profiles were observed despite no significant intelligence quotient difference between groups. Autistic children scored significantly higher on the Perceptual Reasoning Index than on the Verbal Comprehension Index, a discrepancy that nearly tripled in comparison to WISC-III results. Asperger children scored higher on the VCI than on other indexes, with the lowest score found on the Processing Speed Index. WISC-IV cognitive profiles were consistent with, but more pronounced than WISC-III profiles. Cognitive profiles are a valuable diagnostic tool for differential diagnosis, keeping in mind that children on the autism spectrum might be more sensitive to the choice of subtests used to assess intelligence.

  5. Discrepancy between WISC-III and WISC-IV Cognitive Profile in Autism Spectrum: What Does It Reveal about Autistic Cognition?

    PubMed Central

    Nader, Anne-Marie; Jelenic, Patricia; Soulières, Isabelle

    2015-01-01

    The cognitive profile and measured intellectual level vary according to assessment tools in children on the autism spectrum, much more so than in typically developing children. The recent inclusion of intellectual functioning in the diagnostic process for autism spectrum disorders leads to the crucial question on how to assess intelligence in autism, especially as some tests and subtests seem more sensitive to certain neurodevelopmental conditions. Our first aim was to examine the cognitive profile on the current version of the most widely used test, the Wechsler Intelligence Scales for Children (WISC-IV), for a homogenous subgroup of children on the autism spectrum, i.e. corresponding to DSM-IV diagnosis of “autism”. The second aim was to compare cognitive profiles obtained on the third edition versus 4th edition of WISC, in order to verify whether the WISC-IV yields a more distinctive cognitive profile in autistic children. The third aim was to examine the impact of the WISC-IV on the cognitive profile of another subgroup, children with Asperger’s Syndrome. 51 autistic, 15 Asperger and 42 typically developing children completed the WISC-IV and were individually matched to children who completed the WISC-III. Divergent WISC-IV profiles were observed despite no significant intelligence quotient difference between groups. Autistic children scored significantly higher on the Perceptual Reasoning Index than on the Verbal Comprehension Index, a discrepancy that nearly tripled in comparison to WISC-III results. Asperger children scored higher on the VCI than on other indexes, with the lowest score found on the Processing Speed Index. WISC-IV cognitive profiles were consistent with, but more pronounced than WISC-III profiles. Cognitive profiles are a valuable diagnostic tool for differential diagnosis, keeping in mind that children on the autism spectrum might be more sensitive to the choice of subtests used to assess intelligence. PMID:26673881

  6. Effect of silica capping on the oxidation of Fe3O4 nanoparticles in dispersion revealed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Warland, A.; Antoniak, C.; Darbandi, M.; Weis, C.; Landers, J.; Keune, W.; Wende, H.

    2012-06-01

    Fe3O4 nanoparticles have been investigated as they are biocompatible and their surface can be functionalized. We synthesized iron oxide nanoparticles using a water-in-oil microemulsion method. Bare and silica-coated iron oxide nanoparticles of a core size of 6 nm dispersed in ethanol have been investigated by means of x-ray absorption spectroscopy (XAS). Due to a dedicated experimental setup the particles can be measured directly in dispersion. XAS allows us to disentangle the contributions of the Fe2+ and Fe3+ ions and therefore to estimate the amount of Fe3O4 in the particles. In case of the silica coated particles a high amount of magnetite was obtained. In contrast, the bare nanoparticles showed indications of a further oxidation into γ-Fe2O3 even in dispersion.

  7. Absorption, metabolism and effect of compatibility on absorption of qishenyiqi dropping pill.

    PubMed

    Han, Yan-Qi; Wang, Jing; Cui, Qing-Xin; Wang, Li-Qiang; Cheng, Bin-Feng; Zhao, Hong-Zhi; Jiang, Min; Bai, Gang; Luo, Guo-An

    2014-04-01

    Qishenyiqi dropping pill (QSYQ), is a traditional Chinese medicine (TCM) prescription for treating heart diseases in China. Knowledge concerning the systemic identification of active compounds and metabolic components of QSYQ is generally lacking. Therefore, it is essential to develop a valid method for the analysis of active compounds of the combined prescription and determination of interactions among the herbs. The absorbable compounds and metabolites of QSYQ were profiled using computational chemistry prediction, an improved everted gut sac in vitro experiment, the Caco-2 cell monolayer in vitro test, a rat in vivo experiment and ultra-performance liquid chromatography/diode array detection/quadrupole-time of flight mass spectrum (UPLC/DAD/Q-TOF MS). In total, 42 prototype compounds were recognized as absorbable compounds, and eight metabolites were identified by UPLC/DAD/Q-TOF MS. The absorption rates of phenolic acids and saponins were significantly improved and the absorption of isoflavone was inhibited after compatibility. The volatile oil component had an improved effect on the absorption of other compounds, while its own absorption was inhibited. In conclusion, the present study established a rapid and effective strategy for demonstrating the absorption and metabolism of QSYQ and revealing the compatible relationship among herbs. This investigation can provide a reference for the compatibility of prescriptions and the modernization of TCM.

  8. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  9. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  10. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin.

    PubMed

    Inouye, K

    1992-09-01

    It has been reported that neutral salts such as NaCl activate the thermolysin-catalyzed hydrolysis of substrates containing glycine at the P1 position (carboxylic side of the cleavage bond) [Holmquist, B. & Vallee, B.L. (1976) Biochemistry 15, 101-107]. In this paper, we demonstrate that high concentrations (1-4 M) of neutral salts greatly enhance the thermolysin activity in both hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (ZAPM), a precursor of a peptide sweetener, aspartame, in which the L-aspartyl residue is the P1 residue. The enzyme activity is enhanced with an increase in salt concentration in a pseudo-exponential fashion. The degree of activation by salts was in the order LiCl > NaCl > KCl. The rate of ZAPM hydrolysis in the presence of 3.8 M NaCl was 6-7 times higher than that in its absence, and 50 times or more activation is expected in saturated NaCl solution. The activation is brought about solely through an increase in the catalytic constant (kcat), and the Michaelis constant (Km) is not affected at all by the presence of NaCl. On mixing thermolysin with NaCl, a unique absorption difference spectrum suggesting a conformational change of the enzyme was observed. The intensity increased in a pseudo-exponential fashion with increase of NaCl concentration up to 3 M, and this dependence is similar to that of the enzyme activity.

  11. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  12. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  13. [Effects of long-term fertilization on organic carbon functional groups in black soil as revealed by synchrotron radiation soft X-ray near-edge absorption spectroscopy].

    PubMed

    Wang, Nan; Wang, Shuai; Wang, Qing-He; Dong, Pei-Bo; Li, Cui-Lan; Zhang, Jin-Jing; Gao, Qiang; Zhao, Yi-Dong

    2012-10-01

    A 20 years (1984-2004) stationary field experiment was conducted to evaluate the effects of long-term application of chemical fertilizers (N or NPK) alone or in combination with low (0.125 kg x hm(-2)) or high dose of corn stalk (0.25 kg x hm(-2)) on organic carbon functional groups in black soil using synchrotron radiation soft X-ray near-edge absorption spectroscopy (C-1s NEXAFS). Compared with the control (CK) treatment, the aromatic C and the carboxyl C of soil increased, whereas the aliphatic C, the carbonyl C and the aliphatic C/aromatic C ratio decreased after the application of chemical fertilizer alone. After the application of chemical fertilizations in combined with corn stalk, the aromatic C decreased while the aliphatic C and the aliphatic C/aromatic C ratio increased as compared to N or NPK fertilizer treatment. And the change tendency was more obvious with the increase in the dose of corn stalk applied. Regardless of corn stalk application, the aromatic C, the aliphatic C, and the aliphatic C/aromatic C ratio were all higher for NPK than for N fertilizer treatment. The above results indicated that, compared with the no-fertilizer control treatment, the application of chemical fertilizers alone resulted in the relative proportion of aromatic compounds increased whereas that of aliphatic hydrocarbon compounds decreased. On the other hand, the relative proportion of the aliphatic hydrocarbon compounds was higher after the application of chemical fertilizers with than without corn stalk, with high than with low dose of corn stalk, and with NPK than with N fertilization. C-1s NEXAFS spectroscopy could characterize in situ the changes of organic carbon functional groups in soil under long-term stationary fertilization.

  14. High-energy resolution X-ray absorption and emission spectroscopy reveals insight into unique selectivity of La-based nanoparticles for CO2

    PubMed Central

    Hirsch, Ofer; Kvashnina, Kristina O.; Luo, Li; Süess, Martin J.; Glatzel, Pieter; Koziej, Dorota

    2015-01-01

    The lanthanum-based materials, due to their layered structure and f-electron configuration, are relevant for electrochemical application. Particularly, La2O2CO3 shows a prominent chemoresistive response to CO2. However, surprisingly less is known about its atomic and electronic structure and electrochemically significant sites and therefore, its structure–functions relationships have yet to be established. Here we determine the position of the different constituents within the unit cell of monoclinic La2O2CO3 and use this information to interpret in situ high-energy resolution fluorescence-detected (HERFD) X-ray absorption near-edge structure (XANES) and valence-to-core X-ray emission spectroscopy (vtc XES). Compared with La(OH)3 or previously known hexagonal La2O2CO3 structures, La in the monoclinic unit cell has a much lower number of neighboring oxygen atoms, which is manifested in the whiteline broadening in XANES spectra. Such a superior sensitivity to subtle changes is given by HERFD method, which is essential for in situ studying of the interaction with CO2. Here, we study La2O2CO3-based sensors in real operando conditions at 250 °C in the presence of oxygen and water vapors. We identify that the distribution of unoccupied La d-states and occupied O p- and La d-states changes during CO2 chemoresistive sensing of La2O2CO3. The correlation between these spectroscopic findings with electrical resistance measurements leads to a more comprehensive understanding of the selective adsorption at La site and may enable the design of new materials for CO2 electrochemical applications. PMID:26668362

  15. An eye-tracking method to reveal the link between gazing patterns and pragmatic abilities in high functioning autism spectrum disorders

    PubMed Central

    Grynszpan, Ouriel; Nadel, Jacqueline

    2015-01-01

    The present study illustrates the potential advantages of an eye-tracking method for exploring the association between visual scanning of faces and inferences of mental states. Participants watched short videos involving social interactions and had to explain what they had seen. The number of cognition verbs (e.g., think, believe, know) in their answers were counted. Given the possible use of peripheral vision that could confound eye-tracking measures, we added a condition using a gaze-contingent viewing window: the entire visual display is blurred, expect for an area that moves with the participant’s gaze. Eleven typical adults and eleven high functioning adults with Autism Spectrum Disorders (ASD) were recruited. The condition employing the viewing window yielded strong correlations between the average duration of fixations, the ratio of cognition verbs and standard measures of social disabilities. PMID:25642182

  16. An eye-tracking method to reveal the link between gazing patterns and pragmatic abilities in high functioning autism spectrum disorders.

    PubMed

    Grynszpan, Ouriel; Nadel, Jacqueline

    2014-01-01

    The present study illustrates the potential advantages of an eye-tracking method for exploring the association between visual scanning of faces and inferences of mental states. Participants watched short videos involving social interactions and had to explain what they had seen. The number of cognition verbs (e.g., think, believe, know) in their answers were counted. Given the possible use of peripheral vision that could confound eye-tracking measures, we added a condition using a gaze-contingent viewing window: the entire visual display is blurred, expect for an area that moves with the participant's gaze. Eleven typical adults and eleven high functioning adults with Autism Spectrum Disorders (ASD) were recruited. The condition employing the viewing window yielded strong correlations between the average duration of fixations, the ratio of cognition verbs and standard measures of social disabilities.

  17. Morphing technique reveals intact perception of object motion and disturbed perception of emotional expressions by low-functioning adolescents with Autism Spectrum Disorder.

    PubMed

    Han, Bora; Tijus, Charles; Le Barillier, Florence; Nadel, Jacqueline

    2015-12-01

    A morphing procedure has been designed to compare directly the perception of emotional expressions and of moving objects. Morphing tasks were presented to 12 low-functioning teenagers with Autism Spectrum Disorder (LF ASD) compared to 12 developmental age-matched typical children and a group presenting ceiling performance. In a first study, when presented with morphed stimuli of objects and emotional faces, LF ASD showed an intact perception of object change of state together with an impaired perception of emotional facial change of state. In a second study, an eye-tracker recorded visual exploration of morphed emotional stimuli displayed by a human face and a robotic set-up. Facing the morphed robotic stimuli, LF ASD displayed equal duration of fixations toward emotional regions and toward mechanical sources of motion, while the typical groups tracked the emotional regions only. Altogether the findings of the two studies suggest that individuals with ASD process motion rather than emotional signals when facing facial expressions.

  18. An eye-tracking method to reveal the link between gazing patterns and pragmatic abilities in high functioning autism spectrum disorders.

    PubMed

    Grynszpan, Ouriel; Nadel, Jacqueline

    2014-01-01

    The present study illustrates the potential advantages of an eye-tracking method for exploring the association between visual scanning of faces and inferences of mental states. Participants watched short videos involving social interactions and had to explain what they had seen. The number of cognition verbs (e.g., think, believe, know) in their answers were counted. Given the possible use of peripheral vision that could confound eye-tracking measures, we added a condition using a gaze-contingent viewing window: the entire visual display is blurred, expect for an area that moves with the participant's gaze. Eleven typical adults and eleven high functioning adults with Autism Spectrum Disorders (ASD) were recruited. The condition employing the viewing window yielded strong correlations between the average duration of fixations, the ratio of cognition verbs and standard measures of social disabilities. PMID:25642182

  19. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  20. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  1. The shell spectrum of HD 94509

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.; Przybilla, Norbert; Hubrig, Swetlana

    2015-01-01

    HD 94509 is a 9th magnitude Be star with an unusually rich metallic-lined shell. The absorption spectrum is rich, comparable to that of an A or F supergiant, but Mg II (4481A), and the Si II (4128 and 4130A), are weak, indicating a dilute radiation field, as described by Otto Struve. The H-alpha emission is double with components of equal intensity and an absorption core that dips well below the stellar continuum. H-beta is weaker, but with a similar structure. H-gamma through H-epsilon have virtually black cores, indicating that the shell covers the stellar disk. The stronger metallic absorption lines are wide near the continuum, but taper to very narrow cores. This line shape is unexplained. However, the total absorption can be modeled to reveal an overall particle densities of 10^{10}-10^{12} cm^{-3}. An electron density log(n_e) = 11.2 is obtained from the Paschen-line convergence and the Inglis-Tellar relation. Column densities are obtained with the help of curves of growth by assuming uniform conditions in the cloud. These indicate a nearly solar composition. The CLOUDY code (Ferland, et al. Rev. Mex. Astron. Astroph. 49, 137, 213) is used to produce a model that predicts matching column densities of the dominant ions, the n = 3 level of hydrogen, the H-alpha strength, and the electron density (± 0.5 dex).

  2. Molecular Typing of Enterobacteriaceae from Pig Holdings in North-Western Germany Reveals Extended- Spectrum and AmpC β-Lactamases Producing but no Carbapenem Resistant Ones

    PubMed Central

    Mellmann, Alexander; Frenzel, Julia; Friedrich, Alexander W.; Rossen, John W. A.

    2015-01-01

    The increase of extended- spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in humans and in food-producing animals is of public health concern. The latter could contribute to spreading of these bacteria or their resistance genes to humans. Several studies have reported the isolation of third generation cephalosporin resistant bacteria in livestock animals. However, the number of samples and the methodology used differ considerably between studies limiting comparability and prevalence assessment. In the present study, a total of 564 manure and dust samples were collected from 47 pig farms in Northern Germany and analysed to determine the prevalence of ESBL-E. Molecular typing and characterization of resistance genes was performed for all ESBL-E isolates. ESBL-E isolates were found in 55.3% of the farms. ESBL-Escherichia coli was found in 18.8% of the samples, ESBL-Klebsiella pneumoniae in 0.35%. The most prevalent ESBL genes among E. coli were CTX-M-1 like (68.9%), CTX-M-15 like (16%) and CTX-M-9 group (14.2%). In 20% of the latter two, also the OXA-1 like gene was found resulting in a combination of genes typical for isolates from humans. Genetic relation was found between isolates not only from the same, but also from different farms, with multilocus sequence type (ST) 10 being predominant among the E. coli isolates. In conclusion, we showed possible spread of ESBL-E between farms and the presence of resistance genes and STs previously shown to be associated with human isolates. Follow-up studies are required to monitor the extent and pathways of ESBL-E transmission between farms, animals and humans. PMID:26225428

  3. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

    PubMed Central

    Jalbrzikowski, Maria; Lazaro, Maria T.; Gao, Fuying; Huang, Alden; Chow, Carolyn; Geschwind, Daniel H.

    2015-01-01

    Background 22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes. Methods We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE) and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases. Results Eighty-five percent of 22q11DS individuals (N = 39) carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7). DE analysis and weighted gene co-expression network analysis (WGCNA) identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD. Conclusion These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD. PMID:26201030

  4. The First Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; Faherty, Jacqueline K.; Bjoraker, Gordon L.; Lupu, Roxana

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 μm spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality is high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.

  5. The First Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Morley, Caroline V.; Allers, Katelyn N.; Geballe, Thomas R.; Marley, Mark S.; Fortney, Jonathan J.; Faherty, Jacqueline K.; Bjoraker, Gordon L.; Lupu, Roxana

    2016-08-01

    The recently discovered brown dwarf WISE 0855 presents the first opportunity to directly study an object outside the solar system that is nearly as cold as our own gas giant planets. However, the traditional methodology for characterizing brown dwarfs—near-infrared spectroscopy—is not currently feasible, as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5–5.2 μm spectrum, the same bandpass long used to study Jupiter’s deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter’s. The spectrum quality is high enough to allow for the investigation of dynamical and chemical processes that have long been studied in Jupiter’s atmosphere, but now on an extrasolar world.

  6. Sendai virus-induced alterations in lung structure/function correlate with viral loads and reveal a wide resistance/susceptibility spectrum among mouse strains.

    PubMed

    Faisca, Pedro; Anh, Dao Bui Tran; Desmecht, Daniel J-M

    2005-11-01

    The Paramyxoviridae family includes some of the most important and ubiquitous disease-causing viruses of infants and children, most of which cause significant infections of the respiratory tract. Evidence is accumulating in humans that genetic factors are involved in the severity of clinical presentation. As a first step toward the identification of the genes involved, this study was undertaken to establish whether laboratory mouse strains differ in susceptibility to Sendai virus, the murine counterpart of human type-1 parainfluenza virus which, historically, has been used extensively in studies that have defined the basic biological properties of paramyxoviruses in general. With this purpose in mind, double-chamber plethysmography data were collected daily for 7 days after inoculation of Sendai virus in six inbred strains of mice. In parallel, histological examinations and lung viral titration were carried out from day 5 to day 7 after inoculation. Pulmonary structure/function values closely reflected the success of viral replication in the lungs and revealed a pattern of continuous variation with resistant, intermediate, and susceptible strains. The results unambiguously suggest that BALB/c (resistant) and 129Sv (susceptible) strains should be used in crossing experiments aimed at identifying the genes involved in resistance to Paramyxoviridae by the positional cloning approach.

  7. Apolipoprotein A-I in Labeo rohita: Cloning and functional characterisation reveal its broad spectrum antimicrobial property, and indicate significant role during ectoparasitic infection.

    PubMed

    Mohapatra, Amruta; Karan, Sweta; Kar, Banya; Garg, L C; Dixit, A; Sahoo, P K

    2016-08-01

    Apolipoprotein A-I (ApoA-I) is the most abundant and multifunctional high-density lipoprotein (HDL) having a major role in lipid transport and potent antimicrobial activity against a wide range of microbes. In this study, a complete CDS of 771 bp of Labeo rohita (rohu) ApoA-I (LrApoA-I) encoding a protein of 256 amino acids was amplified, cloned and sequenced. Tissue specific transcription analysis of LrApoA-I revealed its expression in a wide range of tissues, with a very high level of expression in liver and spleen. Ontogenic study of LrApoA-I expression showed presence of transcripts in milt and 3 h post-fertilization onwards in the larvae. The expression kinetics of LrApoA-I was studied upon infection with three different types of pathogens to elucidate its functional significance. Its expression was found to be up-regulated in the anterior kidney of L. rohita post-infection with Aeromonas hydrophila. Similarly following poly I:C (poly inosinic:cytidylic) stimulation, the transcript levels increased in both the anterior kidney and liver tissues. Significant up-regulation of LrApoA-I expression was observed in skin, mucous, liver and anterior kidney of the fish challenged with the ectoparasite Argulus siamensis. Immunomodulatory effect of recombinant LrApoA-I (rApoA-I) produced in Escherichia coli was demonstrated against A. hydrophila challenge in vivo. L. rohita administered with rApoA-I at a dose of 100 μg exhibited significantly higher protection (∼55%) upon challenge with A. hydrophila 12 h post-administration of the protein, in comparison to that observed in control group, along with higher level of expression of immune-related genes. The heightened expression of ApoA-I observed post-infection reflected its involvement in immune responses against a wide range of infections including bacterial, viral as well as parasitic pathogens. Our results also suggest the possibility of using rApoA-I as an immunostimulant, particularly rendering protection

  8. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides

    PubMed Central

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S.; McBee, Megan E.; Dedon, Peter C.

    2015-01-01

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. PMID:25539917

  9. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    PubMed

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria.

  10. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  11. Absorption Mode FT-ICR Mass Spectrometry Imaging

    SciTech Connect

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O'Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  12. Light absorption properties and absorption budget of Southeast Pacific waters

    NASA Astrophysics Data System (ADS)

    Bricaud, Annick; Babin, Marcel; Claustre, Hervé; Ras, JoséPhine; TièChe, Fanny

    2010-08-01

    Absorption coefficients of phytoplankton, nonalgal particles (NAPs), and colored dissolved organic matter (CDOM), and their relative contributions to total light absorption, are essential variables for bio-optical and biogeochemical models. However, their actual variations in the open ocean remain poorly documented, particularly for clear waters because of the difficulty in measuring very low absorption coefficients. The Biogeochemistry and Optics South Pacific Experiment (BIOSOPE) cruise investigated a large range of oceanic regimes, from mesotrophic waters around the Marquesas Islands to hyperoligotrophic waters in the subtropical gyre and eutrophic waters in the upwelling area off Chile. The spectral absorption coefficients of phytoplankton and NAPs were determined using the filter technique, while the CDOM absorption coefficients were measured using a 2 m capillary waveguide. Over the whole transect, the absorption coefficients of both dissolved and particulate components covered approximately two orders of magnitude; in the gyre, they were among the lowest ever reported for open ocean waters. In the oligotrophic and mesotrophic waters, absorption coefficients of phytoplankton and NAPs were notably lower than those measured in other oceanic areas with similar chlorophyll contents, indicating some deviation from the standard chlorophyll-absorption relationships. The contribution of absorption by NAPs to total particulate absorption showed large vertical and horizontal variations. CDOM absorption coefficients covaried with algal biomass, albeit with a high scatter. The spectral slopes of both NAP and CDOM absorption revealed structured spatial variability in relation with the trophic conditions. The relative contributions of each component to total nonwater absorption were (at a given wavelength) weakly variable over the transect, at least within the euphotic layer.

  13. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    PubMed

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  14. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  15. Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts.

    PubMed

    Jávorfi, T; Garab, G; Naqvi, K R

    2000-01-01

    A comparison of the triplet-minus-singlet (TmS) absorption spectrum of spinach chloroplasts, recorded some thirty years ago, with the more recently published TmS spectrum of isolated Chla/b LHCII (light-harvesting complexes associated with photosystem II of higher plants) shows that the two spectra are very similar, which is to be expected, since only the carotenoid pigments contribute to each spectrum. Be that as it may, the comparison also reveals a dissimilarity: photoexcitation of the sample does, or does not, affect the absorbance in the Qy region (650-700 nm), depending on whether the sample is a suspension of chloroplasts or of isolated LHCII. The Qy-signal in the TmS spectrum of LHCII decays, it should be noted, at the same rate as the rest of the difference spectrum, and its most prominent feature is a negative peak. As the carotenoids do not absorb in the Qy region, the presence of a signal in this region calls for an explanation: van der Vos, Carbonera and Hoff, the first to find as well as fathom the phenomenon, attributed the Qy-signal to a change, in the absorption spectrum of a chlorophyll a (Chla) molecule, brought about by the presence of triplet excitation on a neighbouring carotenoid (Car). The difference in the behaviours of chloroplasts and LHCII, if reproducible, would imply that the Car triplets which give rise to the TmS spectrum of chloroplasts do not influence the absorption spectra of their Chla neighbours. With a view to reaching a firm conclusion about this vexed issue, spinach chloroplasts and thylakoids have been examined with the aid of the same kinetic spectrometer as that used for investigating LHCII; the TmS spectra of both chloroplasts and thylakoids contain prominent bleaching signals centred at 680 nm, and the triplet decay time in each case is comparable to that of the Chla/b LHCII triplets. Results pertaining to other closely related systems are recalled, and it is concluded that, so far as the overall appearance of the Tm

  16. Infrared absorption mechanisms of black silicon

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2014-09-01

    Black silicon has a wide spectrum of non-spectral characteristics high absorption from visible to long wave infrared band .Based on semi-empirical impurity band model, free carrier absorption, radiation transitions between the valence band and the impurity band, radiation transitions between the impurity band and the conduction band were calculated, and absorption coefficients for each process were got. The results showed that the transitions from valence band to the impurity band induced absorption in the near-infrared waveband, but it has a rapid decay with wavelength. In the shortwave mid-wave and long-wave IR bands, transitions from the impurity band to the conduction band caused a huge absorption, and the absorption coefficient was slowly decreased with increasing wavelength. The free carrier absorption dominates in long-wave band. The calculation results agreed well with the test results of plant black silicon in magnitude and trends.

  17. Crystallographic and X-ray absorption spectroscopic characterization of Helicobacter pylori UreE bound to Ni²⁺ and Zn²⁺ reveals a role for the disordered C-terminal arm in metal trafficking.

    PubMed

    Banaszak, Katarzyna; Martin-Diaconescu, Vlad; Bellucci, Matteo; Zambelli, Barbara; Rypniewski, Wojciech; Maroney, Michael J; Ciurli, Stefano

    2012-02-01

    The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni²⁺ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni²⁺ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni⁺- and Zn⁺-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni²⁺) and 2.52 Å (Zn²⁺) resolution, show the conserved proximal and solvent-exposed His¹⁰² residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His¹⁵². The analysis of X-ray absorption spectral data obtained using solutions of Ni²⁺- and Zn²⁺-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.

  18. Large-Scale Fusion of Gray Matter and Resting-State Functional MRI Reveals Common and Distinct Biological Markers across the Psychosis Spectrum in the B-SNIP Cohort.

    PubMed

    Wang, Zheng; Meda, Shashwath A; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A; Clementz, Brett A; Schretlen, David J; Calhoun, Vince D; Lui, Su; Pearlson, Godfrey D

    2015-01-01

    To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses [schizophrenia (SZ), schizoaffective disorder (SAD), and bipolar I disorder with psychosis (BP)] and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives, and 242 healthy controls (1). All subjects underwent structural MRI (sMRI) and resting-state functional MRI (rs-fMRI) scanning. Joint-independent component analysis (jICA) was used to fuse sMRI gray matter and rs-fMRI amplitude of low-frequency fluctuations data to identify the relationship between the two modalities. jICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal-striatal-thalamic-cerebellar network and structural abnormalities in the default mode network was found to be common across psychotic diagnoses and correlated with cognitive function, social function, and schizo-bipolar scale scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality). Using a multivariate-fused approach involving two widely used imaging markers, we demonstrate both shared and distinct biological traits across the psychosis spectrum. Furthermore, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes. PMID:26732139

  19. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  20. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  1. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  2. Uncovering the Terahertz Spectrum of Copper Sulfate Pentahydrate.

    PubMed

    Ruggiero, Michael T; Korter, Timothy M

    2016-01-21

    Terahertz vibrational spectroscopy has evolved into a powerful tool for the detection and characterization of transition metal sulfate compounds, specifically for its ability to differentiate between various hydrated forms with high specificity. Copper(II) sulfate is one such system where multiple crystalline hydrates have had their terahertz spectra fully assigned, and the unique spectral fingerprints of the forms allows for characterization of multicomponent systems with relative ease. Yet the most commonly occurring form, copper(II) sulfate pentahydrate (CuSO4·5H2O), has proven elusive due to the presence of a broad absorption across much of the terahertz region, making the unambiguous identification of its spectral signature difficult. Here, it is shown that the sub-100 cm(-1) spectrum of CuSO4·5H2O is obscured by absorption from adsorbed water and that controlled drying reveals sharp underlying features. The crystalline composition of the samples was monitored in parallel by X-ray diffraction as a function of drying time, supporting the spectroscopic results. Finally, the terahertz spectrum of CuSO4·5H2O was fully assigned using solid-state density functional theory simulations, helping attribute the additional absorptions that appear after excessive drying to formation of CuSO4·3H2O. PMID:26730508

  3. Optical absorption and emission properties of Nd3+-doped oxyfluorosilicate glasses for solid state lasers

    NASA Astrophysics Data System (ADS)

    Ramachari, D.; Rama Moorthy, L.; Jayasankar, C. K.

    2014-11-01

    Optical absorption and near-infrared luminescent properties of Nd3+ ions doped oxyfluorosilicate (NKZLSNd) glasses were investigated. Raman spectrum was recorded to investigate the structural properties of NKZLSNd glasses. The Judd-Ofelt theory (JO) has been applied to the absorption spectrum of 1.0 mol% Nd3+-doped oxyfluorosilicate glass to derive the JO intensity parameters (Ωλ), which are in turn used to calculate the radiative properties of Nd3+ ions luminescent levels. The near-infrared emission spectra recorded with 808 nm laser diode excitation revealed the effective bandwidths values around 30-40 nm for the 4F3/2 level of Nd3+-doped oxyfluorosilicate glasses. The measured decay times of 4F3/2 level decreased with increasing Nd3+ ions concentration due to the concentration quenching.

  4. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O’Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013–2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s‑1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  5. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  6. Hydrogen Spectrum

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The series of absorption or emission lines that are characteristic of the hydrogen atom. According to the Bohr theory of the hydrogen atom, devised by Danish physicist Neils Bohr (1885-1962) in 1913, the hydrogen atom can be envisaged as consisting of a central nucleus (a proton) around which a single electron revolves. The electron is located in one of a number of possible permitted orbits, each...

  7. Decays of the Three Top Contributors to the Reactor ν¯e High-Energy Spectrum, 92Rb, Ygs96 , and 142Cs, Studied with Total Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Wolińska-Cichocka, M.; Fijałkowska, A.; Rykaczewski, K. P.; Karny, M.; Grzywacz, R. K.; Goetz, K. C.; Gross, C. J.; Stracener, D. W.; Zganjar, E. F.; Batchelder, J. C.; Blackmon, J. C.; Brewer, N. T.; Go, S.; Heffron, B.; King, T.; Matta, J. T.; Miernik, K.; Nesaraja, C. D.; Paulauskas, S. V.; Rajabali, M. M.; Wang, E. H.; Winger, J. A.; Xiao, Y.; Zachary, C. J.

    2016-08-01

    We report total absorption spectroscopy measurements of 92Rb, Ygs96 , and 142Cs β decays, which are the most important contributors to the high energy ν¯e spectral shape in nuclear reactors. These three β decays contribute 43% of the ν¯e flux near 5.5 MeV emitted by nuclear reactors. This ν¯e energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of 238U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β -decay pattern that is similar to recent measurements of 92Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the Ygs96 ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β -decay feedings of 142Cs, reducing the β feeding to 142Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν¯e flux between 5 and 7 MeV, the maximum excess increases from ˜10 % to ˜12 %.

  8. Decays of the Three Top Contributors to the Reactor ν[over ¯]_{e} High-Energy Spectrum, ^{92}Rb, ^{96gs}Y, and ^{142}Cs, Studied with Total Absorption Spectroscopy.

    PubMed

    Rasco, B C; Wolińska-Cichocka, M; Fijałkowska, A; Rykaczewski, K P; Karny, M; Grzywacz, R K; Goetz, K C; Gross, C J; Stracener, D W; Zganjar, E F; Batchelder, J C; Blackmon, J C; Brewer, N T; Go, S; Heffron, B; King, T; Matta, J T; Miernik, K; Nesaraja, C D; Paulauskas, S V; Rajabali, M M; Wang, E H; Winger, J A; Xiao, Y; Zachary, C J

    2016-08-26

    We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs β decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three β decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of ^{142}Cs, reducing the β feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%. PMID:27610847

  9. Decays of the Three Top Contributors to the Reactor ν[over ¯]_{e} High-Energy Spectrum, ^{92}Rb, ^{96gs}Y, and ^{142}Cs, Studied with Total Absorption Spectroscopy.

    PubMed

    Rasco, B C; Wolińska-Cichocka, M; Fijałkowska, A; Rykaczewski, K P; Karny, M; Grzywacz, R K; Goetz, K C; Gross, C J; Stracener, D W; Zganjar, E F; Batchelder, J C; Blackmon, J C; Brewer, N T; Go, S; Heffron, B; King, T; Matta, J T; Miernik, K; Nesaraja, C D; Paulauskas, S V; Rajabali, M M; Wang, E H; Winger, J A; Xiao, Y; Zachary, C J

    2016-08-26

    We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs β decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three β decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of ^{142}Cs, reducing the β feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.

  10. UV spectrum of Enceladus

    NASA Astrophysics Data System (ADS)

    Zastrow, Mark; Clarke, John T.; Hendrix, Amanda R.; Noll, Keith S.

    2012-07-01

    We present a far ultraviolet (FUV) spectrum of Saturn’s moon Enceladus from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST). We have put upper limits on emission from C, N, and O lines in Enceladus’ atmosphere and column densities for the C lines assuming solar resonance scattering. We find these upper limits to be relatively low-on the order of tens to thousands of Rayleighs and with C column densities on the order of 108-1015 cm-2, depending on the assumed source size. We also present a segment of a reflectance spectrum in the FUV from ∼1900-2130 Å. This region was sensitive to the different ice mixtures in the model spectra reported by Hendrix et al. (Hendrix, A.R., Hansen, C.J., Holsclaw, G.M. [2010]. Icarus, 206, 608). We find the spectrum brightens quickly longward of ∼1900 Å, constraining the absorption band observed by Hendrix et al. from ∼170 to 190 nm. We find our data is consistent with the suggestion of Hendrix et al. of the presence of ammonia ice (or ammonia hydrate) to darken that region, and also possibly tholins to darken the mid-UV, as reported by Verbiscer et al. (Verbiscer, A.J., French, R.G., McGhee, C.A. [2005]. Icarus, 173, 66).

  11. Double photoexcitation involving 2p and 4f electrons in L3 -edge x-ray absorption spectra of protactinium

    NASA Astrophysics Data System (ADS)

    Hennig, Christoph; Le Naour, Claire; Auwer, Christophe Den

    2008-06-01

    The L3 -edge x-ray absorption spectrum of Pa(V) fluoride in aqueous solution show clear evidence for the double photoexcitation involving 2p and 4f electrons. A comparison with the [2p4f] double-electron excitations observed in the L3 -edge x-ray absorption spectra of other actinides (thorium, uranium, neptunium, plutonium, and americium) indicates a monotonic increase in the excitation energy. The sharp edgelike structure of the multielectron excitation reveals the origin of a shake-up channel.

  12. The absorption spectrum of H2: CRDS measurements of the (2-0) band, review of the literature data and accurate ab initio line list up to 35000 cm(-1).

    PubMed

    Campargue, Alain; Kassi, Samir; Pachucki, Krzysztof; Komasa, Jacek

    2012-01-14

    Five very weak transitions-O(2), O(3), O(4), O(5) and Q(5)-of the first overtone band of H(2) are measured by very high sensitivity CW-Cavity Ring Down Spectroscopy (CRDS) between 6900 and 7920 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min)≈ 5 × 10(-11) cm(-1) allowing for the detection of the O(5) transition with an intensity of 1.1 × 10(-30) cm per molecule, the smallest intensity value measured so far for an H(2) absorption line. A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift of the O(2) and O(3) lines was accurately determined from a series of recordings with pressure ranging between 10 and 700 Torr. From an exhaustive review of the literature data, the list of H(2) absorption lines detected so far has been constructed. It includes a total of 39 transitions ranging from the S(0) pure rotational line near 354 cm(-1) up to the S(1) transition of the (5-0) band near 18,908 cm(-1). These experimental values are compared to a highly accurate theoretical line list constructed for pure H(2) at 296 K (0-35,000 cm(-1), intensity cut off of 1 × 10(-34) cm per molecule). The energy levels and transition moments were computed from high level quantum mechanics calculations. The overall agreement between the theoretical and experimental values is found to be very good for the line positions. Some deviations for the intensities of the high overtone bands (V > 2) are discussed in relation with possible pressure effects affecting the retrieved intensity values. We conclude that the hydrogen molecule is probably a unique case in rovibrational spectroscopy for which first principles theory can provide accurate spectroscopic parameters at the level of the performances of the state of the art experimental techniques.

  13. An Accurate Method for Computing the Absorption of Solar Radiation by Water Vapor

    NASA Technical Reports Server (NTRS)

    Chou, M. D.

    1980-01-01

    The method is based upon molecular line parameters and makes use of a far wing scaling approximation and k distribution approach previously applied to the computation of the infrared cooling rate due to water vapor. Taking into account the wave number dependence of the incident solar flux, the solar heating rate is computed for the entire water vapor spectrum and for individual absorption bands. The accuracy of the method is tested against line by line calculations. The method introduces a maximum error of 0.06 C/day. The method has the additional advantage over previous methods in that it can be applied to any portion of the spectral region containing the water vapor bands. The integrated absorptances and line intensities computed from the molecular line parameters were compared with laboratory measurements. The comparison reveals that, among the three different sources, absorptance is the largest for the laboratory measurements.

  14. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  15. [The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence].

    PubMed

    Zhang Li-hua; Iburaim, Arkin

    2016-03-01

    A new method of simultaneously measuring fiber-optic chemical sensor absorption spectrum and fluorescence spectrum is established. Make synchronous absorption-fluorescence cuvette, establish synchronous absorption-fluorescence spectrometry instrumentation combined by fiber optic chemical sensor technology, measure the synchronous absorption-fluorescence spectrums of solutions of rhodamine B, vitamin B2 and vitamin B6, compared by absorption spectroscopy measured by traditional UV-Visible photometric method and fluorescence spectroscopy measured by traditional fluorescence method. Synchronous absorption-fluorescence method measure absorption spectrums and fluorescence spectrums the same to traditional photometric and fluorescence spectroscopy of rhodamine B, vitamin B2 and vitamin B6. The maximum wavelength of fluorescence intensity method has high accuracy relatively compared with fluorescence, but the maximum wavelength of absorption has a slight deviation. Synchronous absorption-fluorescence method means simultaneously measure the absorption spectrums and fluorescence spectrums of the fluorescent substance, making two spectrums to one. The method measured the maximum emission wavelength with high accuracy, though in measuring maximum absorption wavelength there is a slight deviation, but it is worth further studying. PMID:27400519

  16. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  17. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  18. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    SciTech Connect

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridged oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.

  19. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    SciTech Connect

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang; Dowling, Jonathan

    2005-09-15

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.

  20. Electric modulation of optical absorption in nanowires

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  1. Broadband microwave absorption spectrometer for liquid media

    SciTech Connect

    Mukherjee, P.; Gosnell, T.R.; Bigio, I.J.

    1988-12-01

    A broadband, continuous-sweep microwave spectrometer has been constructed for measurements of the absorption coefficient of aqueous solutions and other liquid media. The spectrometer makes use of the phase fluctuation optical heterodyne technique, which provides a direct measure of the microwave power deposited in the sample. Consequently, in contrast to the standard dielectrometric techniques that indirectly determine the absorption coefficient via separate measurements of the real and imaginary parts of the dielectric constant, this spectrometer directly measures the microwave absorption coefficient. Broadband spectra are obtained using a transmission line to couple microwave power into the liquid sample. The absorption spectrum for deionized water in the range 3--20 GHz is presented as an example and shows excellent agreement with calculated values of the absorption coefficient based on previously published dielectric data.

  2. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    PubMed

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core.

  3. Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet.

    PubMed

    Fraine, Jonathan; Deming, Drake; Benneke, Bjorn; Knutson, Heather; Jordán, Andrés; Espinoza, Néstor; Madhusudhan, Nikku; Wilkins, Ashlee; Todorov, Kamen

    2014-09-25

    Transmission spectroscopy has so far detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only featureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain atmospheres with high mean molecular weights (little hydrogen), opaque clouds or scattering hazes, reducing our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of the exoplanet HAT-P-11b (which has a radius about four times that of Earth) from the optical wavelength range to the infrared. We detected water vapour absorption at a wavelength of 1.4 micrometres. The amplitude of the water absorption (approximately 250 parts per million) indicates that the planetary atmosphere is predominantly clear down to an altitude corresponding to about 1 millibar, and sufficiently rich in hydrogen to have a large scale height (over which the atmospheric pressure varies by a factor of e). The spectrum is indicative of a planetary atmosphere in which the abundance of heavy elements is no greater than about 700 times the solar value. This is in good agreement with the core-accretion theory of planet formation, in which a gas giant planet acquires its atmosphere by accreting hydrogen-rich gas directly from the protoplanetary nebula onto a large rocky or icy core. PMID:25254473

  4. The absorption spectrum of D2: ultrasensitive cavity ring down spectroscopy of the (2-0) band near 1.7 μm and accurate ab initio line list up to 24,000 cm(-1).

    PubMed

    Kassi, Samir; Campargue, Alain; Pachucki, Krzysztof; Komasa, Jacek

    2012-05-14

    Eleven very weak electric quadrupole transitions Q(2), Q(1), S(0)-S(8) of the first overtone band of D(2) have been measured by very high sensitivity CW-cavity ring down spectroscopy (CRDS) between 5850 and 6720 cm(-1). The noise equivalent absorption of the recordings is on the order of α(min) ≈ 3 × 10(-11) cm(-1). By averaging a high number of spectra, the noise level was lowered to α(min) ≈ 4 × 10(-12) cm(-1) in order to detect the S(8) transition which is among the weakest transitions ever detected in laboratory experiments (line intensity on the order of 1.8 × 10(-31) cm/molecule at 296 K). A Galatry profile was used to reproduce the measured line shape and derive the line strengths. The pressure shift and position at zero pressure limit were determined from recordings with pressures ranging between 10 and 750 Torr. A highly accurate theoretical line list was constructed for pure D(2) at 296 K. The intensity threshold was fixed to a value of 1 × 10(-34) cm/molecule at 296 K. The obtained line list is provided as supplementary material. It extends up to 24,000 cm(-1) and includes 201 transitions belonging to ten v-0 cold bands (v = 0-9) and three v-1 hot bands (v = 1-3). The energy levels include the relativistic and quantum electrodynamic corrections as well as the effects of the finite nuclear mass. The quadrupole transition moments are calculated using highly accurate adiabatic wave functions. The CRDS line positions and intensities of the first overtone band are compared to the corresponding calculated values and to previous measurements of the S(0)-S(3) lines. The agreement between the CRDS and theoretical results is found within the claimed experimental uncertainties (on the order of 1 × 10(-3) cm(-1) and 2% for the positions and intensities, respectively) while the previous S(0)-S(3) measurements showed important deviations for the line intensities.

  5. A weak diffuse interstellar band in the far-ultraviolet spectrum of zeta Ophiuchi?

    NASA Technical Reports Server (NTRS)

    Tripp, Todd M.; Cardelli, Jason A.; Savage, Blair D.

    1994-01-01

    Goddard High Resolution Spectrograph (GHRS) observations at 3.5 km/s resolution reveal several new weak unidentified interstellar absorption lines in the ultraviolet spectrum of zeta Ophiuchi. The unidentified line at 1369.13 A has the appearance and characteristics of a weak diffuse interstellar band (DIB). The line has a smooth profile similar to many optical diffuse interstellar bands (i.e., a shallow asymmetric profile), it is clearly broader than identified interstellar lines near it in wavelength, and its full width at half maximum in ergs is comparable to the widths of the weak optical DIBs. The asymmetric profile cannot be attributed to blended absorption from diffuse clouds at different velocities; at this resolution the two principal cloud complexes on the sight line at heliocentric velocities of -27 and -15 km/s are clearly separated. We compare this unidentified absorption feature to identified interstellar atomic and molecular absorption lines and optical DIBs observed on the zeta Oph and xi Per sight lines, and we conclude that it is reasonable to suggest that this absorption feature might be a DIB. This is not a unique interpretation however; the unidentified line could alternatively be due to gas in the zeta Oph H II region or a blend of unknown neutral atomic or molecular absorption lines.

  6. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  7. Two-dimensional probe absorption in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-07-01

    We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.

  8. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    NASA Astrophysics Data System (ADS)

    Katahara, John K.; Hillhouse, Hugh W.

    2014-11-01

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) the local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se)2 (CIGSSe) and Cu2ZnSn(S,Se)4 (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or a photon

  9. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region.

    PubMed

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2-6 um) with a resonant TPA cross section of up to 10(11 )GM. The TPA peaks are tuned by the GQDs' size, edge and electron relaxation rate.

  10. Size-dependent two-photon absorption in circular graphene quantum dots.

    PubMed

    Feng, Xiaobo; Li, Xin; Li, Zhisong; Liu, Yingkai

    2016-02-01

    We investigate theoretically the size-dependence of two-photon absorption (TPA) for circular graphene quantum dots (GQDs) on the basis of electronic energy states obtained by solving the Dirac-Weyl equation analytically under infinite-mass boundary condition. The analytical expressions for TPA coefficient are derived with an arbitrary size-distribution and the transition selection rules are obtained. Results reveal that the intraband transitions in conduction band and valence band contribute much more to TPA than interband transitions. The energy spectrum and TPA peaks are tuned by the size of GQDs. PMID:26906856

  11. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    NASA Astrophysics Data System (ADS)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-09-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2-6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate.

  12. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region.

    PubMed

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2-6 um) with a resonant TPA cross section of up to 10(11 )GM. The TPA peaks are tuned by the GQDs' size, edge and electron relaxation rate. PMID:27629800

  13. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    PubMed Central

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  14. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring.

  15. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    PubMed

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  16. Absorption and fluorescence of alexandrite and of titanium in sapphire and glass

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Hess, R. V.; Buoncristiani, A. M.

    1985-01-01

    The fluorescence and absorption data for titanium in crystalline sapphire and titanium doped into two silicate and one phosphate glass structures are analyzed. It is observed that the Ti-doped silicate glass sample exhibits no absorption related to the Ti(III) ion, the Ti-doped phosphate glass is deep blue, the absorption line width of the glass samples are a factor of two larger than that of sapphire, and the absorption peak for the Ti in the glass shifted about 100 nm to the red from the Ti:sapphire absorption peak. This shift reveals that the Ti(III) ion is sensitive to the crystalline environment and not to the glass environment. The photoluminescence spectra for Ti-doped sapphire and alexandrite are compared. It is detected that the Ti:sapphire exhibits a broader spectrum than that for alexandrite with a peak at 750 nm. The three zero phonon transitions of Ti:Al2O3 at liquid nitrogen temperatures are studied.

  17. Optical absorption coefficients of pure water

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.

    2002-10-01

    The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.

  18. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  19. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  20. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  1. Broad spectrum bioactive sunscreens.

    PubMed

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-01

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm. PMID:18662760

  2. Observation of an intermediate band in Sn-doped chalcopyrites with wide-spectrum solar response.

    PubMed

    Yang, Chongyin; Qin, Mingsheng; Wang, Yaoming; Wan, Dongyun; Huang, Fuqiang; Lin, Jianhua

    2013-01-01

    Nanostrcutured particles and polycrystalline thin films of Sn-doped chalcopyrite are synthesized by newly-developed methods. Surprisingly, Sn doping introduces a narrow partially filled intermediate band (IB) located ~1.7 eV (CuGaS(2)) and ~0.8 eV (CuInS(2)) above the valance band maximum in the forbidden band gap. Diffuse reflection spectra and photoluminescence spectra reveal extra absorption and emission spectra induced by the IBs, which are further supported by first-principle calculations. Wide spectrum solar response greatly enhances photocatalysis, photovoltaics, and photo-induced hydrogen production due to the intermediate band.

  3. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  4. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  5. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  6. Toward panchromatic organic functional molecules: density functional theory study on the electronic absorption spectra of substituted tetraanthracenylporphyrins.

    PubMed

    Qi, Dongdong; Jiang, Jianzhuang

    2011-12-01

    To achieve full solar spectrum absorption of organic dyes for organic solar cells and organic solar antenna collectors, a series of tetraanthracenylporphyrin derivatives including H(2)(TAnP), H(2)(α-F(4)TAnP), H(2)(β,β'-F(8)TAnP), H(2)(γ,γ'-F(8)TAnP), H(2)(δ,δ'-F(8)TAnP), H(2)[α-(NH(2))(4)TAnP], H(2)[β,β'-(NH(2))(8)TAnP], H(2)[γ,γ'-(NH(2))(8)TAnP], and H(2)[δ,δ'-(NH(2))(8)TAnP] was designed and their electronic absorption spectra were systematically studied on the basis of TDDFT calculations. The nature of the broad and intense electronic absorptions of H(2)(TAnP) in the range of 500-1700 nm is clearly revealed, and different types of π → π* electronic transitions associated with different absorption bands are revealed to correspond to different electron density moving direction between peripherally fused 14-electron-π-conjugated anthracene units and the central 18-electron-π-conjugated porphyrin core. Introduction of electron-donating groups onto the periphery of the H(2)(TAnP) macrocycle is revealed to be able to lead to novel NIR dyes such as H(2)[α-(NH(2))(4)TAnP] and H(2)[δ,δ'-(NH(2))(8)TAnP] with regulated UV-vis-NIR absorption bands covering the full solar spectrum in the range of 300-2400 nm.

  7. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum

    NASA Astrophysics Data System (ADS)

    Tantau, L. J.; Chantler, C. T.; Bourke, J. D.; Islam, M. T.; Payne, A. T.; Rae, N. A.; Tran, C. Q.

    2015-07-01

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms ({σ\\text{DW}}=0.1413(21) Å), and an uncorrelated bulk value ({σ\\text{DW}}=0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  8. Structure determination from XAFS using high-accuracy measurements of x-ray mass attenuation coefficients of silver, 11 keV-28 keV, and development of an all-energies approach to local dynamical analysis of bond length, revealing variation of effective thermal contributions across the XAFS spectrum.

    PubMed

    Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q

    2015-07-01

    We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.

  9. Localized and mixed valence state of Ce 4 f in superconducting and ferromagnetic CeO1 -xFxBiS2 revealed by x-ray absorption and photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, T.; Ootsuki, D.; Paris, E.; Iadecola, A.; Salome, M.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Asano, T.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y.; Saini, N. L.; Mizokawa, T.

    2016-08-01

    We have performed Ce L3-edge x-ray absorption spectroscopy (XAS) and Ce 4 d -4 f resonant photoemission spectroscopy (PES) on single crystals of CeO1 -xFxBiS2 for x =0.0 and 0.5 in order to investigate the Ce 4 f electronic states. In Ce L3-edge XAS, a mixed valence of Ce was found in the x =0.0 sample, and F doping suppressed it, which is consistent with the results on polycrystalline samples. As for resonant PES, we found that the Ce 4 f electrons in both x =0.0 and 0.5 systems respectively formed a flat band at 1.0 and 1.4 eV below the Fermi level and there was no contribution to the Fermi surfaces. Interestingly, Ce valence in CeOBiS2 deviates from Ce3 + even though Ce 4 f electrons are localized, indicating the Ce valence is not in a typical valence fluctuation regime. We assume that localized Ce 4 f in CeOBiS2 is mixed with unoccupied Bi 6 pz , which is consistent with a previous local structural study. Based on the analysis of the Ce L3-edge XAS spectra using Anderson's impurity model calculation, we found that the transfer integral becomes smaller, increasing the number of Ce 4 f electrons upon the F substitution for O.

  10. Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons

    NASA Astrophysics Data System (ADS)

    Helmes, R. W.; Sindel, M.; Borda, L.; von Delft, J.

    2005-09-01

    Recent experiments measuring the emission of exciton recombination in a self-organized single quantum dot (QD) have revealed that different effects occur when the wetting layer surrounding the QD becomes filled with electrons because the resulting Fermi sea can hybridize with the local electron levels on the dot. Motivated by these experiments, we study an extended Anderson model, which describes a local conduction band level coupled to a Fermi sea, but also includes a local valence band level. We are interested, in particular, in how many-body correlations resulting from the presence of the Fermi sea affect the absorption and emission spectra. Using Wilson’s numerical renormalization group method, we calculate the zero-temperature absorption (emission) spectrum of a QD, which starts from (ends up in) a strongly correlated Kondo ground state. We predict two features: First, we find that the spectrum shows a power-law divergence close to the threshold, with an exponent that can be understood by analogy to the well-known x-ray edge absorption problem. Second, the threshold energy ω0 —below which no photon is absorbed (above which no photon is emitted)—shows a marked, monotonic shift as a function of the exciton binding energy Uexc .

  11. Electronic absorption spectrum of triacetylene cation for astronomical considerations.

    PubMed

    Chakrabarty, S; Rice, C A; Mazzotti, F J; Dietsche, R; Maier, J P

    2013-10-01

    The A(2)Πg ← X(2)Πu electronic transition (4800-6000 Å) of triacetylene cation was measured in an ion trap, where the vibrational and rotational degrees of freedom were equilibrated to 25 K. The rotational profile of the origin band is predicted by a collisional-radiative rate model under conditions expected in diffuse interstellar clouds. Variation in the density of the surrounding gas, rotational temperature, and velocity dispersion are taken into account.

  12. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  13. Triplet absorption spectroscopy and electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  14. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy.

    PubMed

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M H

    2004-02-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn(2+) treatment with and without addition of Cd(2+). Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  15. Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy1[w

    PubMed Central

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.

    2004-01-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn2+ treatment with and without addition of Cd2+. Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  16. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  17. NuSTAR and XMM-Newton observations of NGC 1365: Extreme absorption variability and a constant inner accretion disk

    SciTech Connect

    Walton, D. J.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Risaliti, G.; Fabian, A. C.; Kara, E.; Miller, J. M.; Arevalo, P.; Ballantyne, D. R.; Boggs, S. E.; Craig, W. W.; Brenneman, L. W.; Elvis, M.; Christensen, F. E.; Gandhi, P.; Hailey, C. J.; Luo, B.; Marinucci, A.; and others

    2014-06-10

    We present a spectral analysis of four coordinated NuSTAR+XMM-Newton observations of the Seyfert galaxy NGC 1365. These exhibit an extreme level of spectral variability, which is primarily due to variable line-of-sight absorption, revealing relatively unobscured states in this source for the first time. Despite the diverse range of absorption states, each of the observations displays the same characteristic signatures of relativistic reflection from the inner accretion disk. Through time-resolved spectroscopy, we find that the strength of the relativistic iron line and the Compton reflection hump relative to the intrinsic continuum are well correlated, which is expected if they are two aspects of the same broadband reflection spectrum. We apply self-consistent disk reflection models to these time-resolved spectra in order to constrain the inner disk parameters, allowing for variable, partially covering absorption to account for the vastly different absorption states that were observed. Each of the four observations is treated independently to test the consistency of the results obtained for the black hole spin and the disk inclination, which should not vary on observable timescales. We find both the spin and the inclination determined from the reflection spectrum to be consistent, confirming that NGC 1365 hosts a rapidly rotating black hole; in all cases the dimensionless spin parameter is constrained to be a* > 0.97 (at 90% statistical confidence or better).

  18. Scanning electron microscopy/energy dispersive spectrometry fixedbeam or overscan x-ray microanalysis of particles can miss the real structure: x-ray spectrum image mapping reveals the true nature

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2013-05-01

    The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  19. Fraunhofer effect atomic absorption spectrometry.

    PubMed

    Rust, Jennifer A; Nóbrega, Joaquim A; Calloway, Clifton P; Jones, Bradley T

    2005-02-15

    The dark lines in the solar spectrum were discovered by Wollaston and cataloged by Fraunhofer in the early days of the 19th century. Some years later, Kirchhoff explained the appearance of the dark lines: the sun was acting as a continuum light source and metals in the ground state in its atmosphere were absorbing characteristic narrow regions of the spectrum. This discovery eventually spawned atomic absorption spectrometry, which became a routine technique for chemical analysis in the mid-20th century. Laboratory-based atomic absorption spectrometers differ from the original observation of the Fraunhofer lines because they have always employed a separate light source and atomizer. This article describes a novel atomic absorption device that employs a single source, the tungsten coil, as both the generator of continuum radiation and the atomizer of the analytes. A 25-microL aliquot of sample is placed on the tungsten filament removed from a commercially available 150-W light bulb. The solution is dried and ashed by applying low currents to the coil in a three-step procedure. Full power is then applied to the coil for a brief period. During this time, the coil produces white light, which may be absorbed by any metals present in the atomization cloud produced by the sample. A high-resolution spectrometer with a charge-coupled device detector monitors the emission spectrum of the coil, which includes the dark lines from the metals. Detection limits are reported for seven elements: 5 pg of Ca (422.7 nm); 2 ng of Co (352.7 nm); 200 pg of Cr (425.4 nm); 7 pg of Sr (460.7 nm); 100 pg of Yb (398.8 nm); 500 pg of Mn (403.1 nm); and 500 pg of K (404.4 nm). Simultaneous multielement analyses are possible within a 4-nm spectral window. The relative standard deviations for the seven metals are below 8% for all metals except for Ca (10.7%), which was present in the blank at measurable levels. Analysis of a standard reference material (drinking water) resulted in a mean percent

  20. The infrared spectrum of Rhea

    NASA Technical Reports Server (NTRS)

    Clark, R. N.; Owensby, P. D.

    1981-01-01

    The reflectance spectrum of the leading side of the Saturnian satellite Rhea in the 0.65 to 2.5 micron range is reported and used to quantify the amount of water and other materials present on the surface. Data were obtained with 1.5% spectral resolution and 3 to 5% precision by the 3.0-m Infrared Telescope Facility at Mauna Kea Observatory with a continuously scanning circular variable filter spectrometer. Water ice absorptions previously identified at 2.02, 1.65 and 1.55 microns are confirmed, and additional absorptions at 1.25 and probably 1.04 microns are identified. The spectrum of Rhea is noted to be very similar to that of the leading side of Ganymede in the 0.6 to 2.5 micron region and to laboratory spectra of water frost on ice blocks rather than an optically thick frost. Results indicate that the leading side of Rhea is at least 90 wt % water ice, and may be as much as 98 wt %. Of the remaining material, neither clathrates nor minerals is excluded.

  1. Nonlinear absorption, optical limiting behavior and structural study of a new chalcone derivative-1-(3, 4-dimethylphenyl)-3-[4(methylsulfanyl) phenyl] prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Chandra Shekhara Shetty, T.; Raghavendra, S.; Chidan Kumar, C. S.; Dharmaprakash, S. M.

    2016-03-01

    A new third order nonlinear optical (NLO) organic material-1-(3, 4-dimethylphenyl)-3-[4(methylsulfanyl) phenyl] prop-2-en-1-one (4DPMS) belonging to chalcone family has been crystallized in acetone solution. The 4DPMS crystals are characterized by CHNS analysis, FTIR, UV-visible spectral and thermal techniques. The single crystal X-ray diffraction study reveals that 4DPMS crystallizes in monoclinic system with P21/n space group. The linear optical absorption spectrum revealed that the 4DPMS crystals are transparent in the entire visible region. Thermogravimetric data shows absence of phase transition before melting point and from differential scanning calorimetry analysis the melting point of the crystal is found to be 106 °C. Third order nonlinear absorption and optical limiting experiment on 4DPMS was carried out using open aperture Z-scan technique with Nd: YAG laser operating at 532 nm. It was found that the calculated values of excited state absorption cross section for 4DPMS molecules is much greater than the ground state absorption cross section. A decrease in effective nonlinear absorption coefficient was observed with increase in the input irradiance of laser. The observed optical limiting property in 4DPMS is attributed to reverse saturable absorption.

  2. Dust in MG II Absorption Systems

    NASA Astrophysics Data System (ADS)

    Malhotra, S.

    The dust absorption feature at 2175 AA is detected in a composite spectrum of Mg II absorbers. The composite absorber spectrum is obtained by taking the geometric mean of 92 quasar spectra after aligning them in the rest-frame of 96 absorbers. By aligning the spectra according to absorber redshifts we reinforce the spectral features of the absorbers, and smooth over possible bumps and wiggles in the emission spectra. The width of the observed absorption feature is 200-300 AA (FWHM), or 0.4-0.6 microns^{-1} and the central wavelength is 2240 AA. The Galactic dust feature has a central wavelength of 2176 AA and FWHM = 0.8-1.25 microns^{-1}. Simulations show that this discrepancy between the properties of the 2175 AA feature in Mg II absorbers and Galactic ISM can be mostly explained by the different methods used to measure them (cf. Malhotra 1997).

  3. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  4. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  5. The role of deuterium in optical activity: The CD spectrum of (S,S)-dideuteriooxirane

    SciTech Connect

    Ben-Tzur, S.; Basil, A.; Gedanken, A.

    1992-07-01

    The circular dichroism of (S,S)-[2,3-{sup 2}H{sub 2}]oxirane has been investigated in the gas phase over the 1800-1500-{angstrom} region. While the absorption spectrum reveals only two allowed transitions, the circular dichroism (CD) spectrum shows a third transition which is magnetic dipole allowed and electric dipole forbidden. The CD sign of the first excited state complies with a quadrant rule which was formulated for the oxirane chromophore. This consignate behavior is contrary to the role of deuterium in carbonyl compounds, where an antioctant behavior is observed. The signs of the CD signals of the first excited state for oxiranes with methyl or deuterium substituents located in the same quadrant are the same, in contrast to the antioctant behavior of deuterium in carbonyls. This leaves the chirality rule formulated for substituted oxiranes without any exceptions. 33 refs., 1 fig.

  6. Changes in the ultraviolet spectrum of the mass-losing Be star 59 Cygni

    NASA Technical Reports Server (NTRS)

    Marlborough, J. M.; Snow, T. P., Jr.

    1980-01-01

    Observations of a few selected wavelength regions in the ultraviolet spectrum of the Be star 59 Cyg, obtained in 1975 November, are compared with the complete low-resolution Copernicus scan of the same star obtained in 1972 October. Changes in the spectrum between the two times are discussed and interpreted in terms of the two distinct shell episodes revealed by optical data. A wide range of ionization exists from Fe III to N V, with a range in radial velocity of approximately 1000 km/s. Changes in the Si III, Si IV, and N V absorption arising in the stellar wind show that the velocity structure of the wind may have changed, and that the ionization balance also was altered over the 3 year interim.

  7. Supercontinuum of a 3.9 -μ m filament in air: Formation of a two-octave plateau and nonlinearly enhanced linear absorption

    NASA Astrophysics Data System (ADS)

    Panov, Nikolay A.; Shipilo, Daniil E.; Andreeva, Vera A.; Kosareva, Olga G.; Saletsky, Alexander M.; Xu, Huailiang; Polynkin, Pavel

    2016-10-01

    Through numerical simulations we reveal the scenario of 3.9 -μ m filament spectrum enrichment in the atmosphere in the cases of linear and circular polarization of the incident pulse. The discrete spectrum of odd harmonics transforms into the two-octave plateau in the case of linear polarization. In contrast, in the case of circular polarization of the incident pulse, the harmonic-free flat supercontinuum appears with the plasma onset, reaching the tenth harmonic of the input radiation. We identify the energy balance specific to the filamentation near 4 μ m : the absorption on CO2 lines in the atmosphere is accelerated by the self-phase modulation in the Kerr nonlinearity early before the plasma channel is formed. This nonlinearly enhanced linear absorption overwhelms the plasma losses and conversion of the input pulse energy to the higher harmonics as well as the plateau.

  8. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    SciTech Connect

    Stern, S. A.; Spencer, J. R.; Shinn, A.; Cunningham, N. J.; Hain, M. J.

    2012-01-15

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  9. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  10. Stability of widely tuneable, continuous wave external-cavity quantum cascade laser for absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasyutich, Vasili L.; Raja Ibrahim, R. K.; Martin, Philip A.

    2010-09-01

    The performance of widely tuneable, continuous wave (cw) external-cavity quantum cascade laser (EC-QCL) has been evaluated for direct absorption spectroscopy measurements of nitric oxide (NO) in the wavenumber range 1872-1958 cm -1 and with a 13.5 cm long optical cell. In order to reduce the absorption measurement errors due to the large variations of laser intensity, normalisation with a reference channel was used. Wavelength stability within the scans was analysed using the Allan plot technique for the reduced wavenumber range of 1892.4-1914.5 cm -1. The Allan variances of the NO absorption peak centres and areas were observed to increase with successive scan averaging for all absorption peaks across the wavelength scan, thus revealing short- and long-term drifts of the cw EC-QCL wavelength between successive scans. As an example application, the cw EC-QCL was used for NO measurements in the exhaust of an atmospheric pressure packed-bed plasma reactor applied to the decomposition of dichloromethane in waste gas streams. Etalon noise was reduced by subtracting a reference spectrum recorded when the plasma was off. The NO limit of detection (SNR = 1) was estimated to be ˜2 ppm at atmospheric pressure in a 20.5 cm long optical cell with a double pass and a single 7 s scan over 1892.4-1914.5 cm -1.

  11. UV nebular absorption in Eta Car and Weigelt D

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.; Eta Car HST Treasury Team

    2003-12-01

    The high angular and high spectral resolution of the HST/STIS MAMA echelle mode, provide an unique means to distinguish the physical structures surrounding Eta Car. Observations are parts of the HST treasury program (K. Davidson P.I.) for monitoring variations over Eta Car's spectroscopic minimum. Nebular emission is present above and below the stellar spectrum which is about 0.03'' wide. We have extracted the nebular part of the central source spectrum and compared it with the spectrum of Weigelt D, located approximately 0.2'' Northwest of the central source. The spectra show significant similarities and our conclusions are two-fold. First, the radiation from the Wiegelt blobs give an unwanted contribution to the spectrum of the central source, which emphasizes the importance of using an extracted spectrum in a spectral analysis. Second, the Weigelt blobs have so far been assumed to produce a pure emission line spectrum. However, this comparison shows the presence of similar absorption structures previously observed in the spectrum of the central star (Gull et al., 2003, submitted ApJL). Two velocity structures at approximately -50 and -500 km/s, respectively, have been observed in the Weigelt D spectrum. We present identifications of the absorption structures to supplement the emission line work performed by T. Zethson (2000, PhD Thesis) and provide additional information regarding the geometry of the inner parts of the Eta Car nebula. The -50 km/s velocity component is similar to the absorption structure at -146 km/s observed in the spectrum of the central object. If these velocity systems are related, this implies that the absorption component is located close to the central parts of the nebular system.

  12. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  13. Systematic determination of absolute absorption cross-section of individual carbon nanotubes.

    PubMed

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G; Wang, Enge; Wang, Feng

    2014-05-27

    Optical absorption is the most fundamental optical property characterizing light-matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  14. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  15. Wideband digital spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Morris, G. A., Jr.; Wilck, H. C.

    1979-01-01

    Modular spectrum analyzer consisting of RF receiver, fast fourier transform spectrum analyzer, and data processor samples stochastic signals in 220 channels. Construction reduces design and fabrication costs of assembled unit.

  16. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral ... for autism spectrum disorder (ASD) and other developmental disabilities. More E-mail Your Friends "Children with autism ...

  17. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  18. Visible-absorption spectroscopy as a biomarker to predict treatment response and prognosis of surgically resected esophageal cancer.

    PubMed

    Yang, Pei-Wen; Hsu, I-Jen; Chang, Chun-Wei; Wang, Yu-Chia; Hsieh, Ching-Yueh; Shih, Kuan-Hui; Wong, Li-Fan; Shih, Nai-Yu; Hsieh, Min-Shu; Hou, Max Ti-Kuang; Lee, Jang-Ming

    2016-01-01

    The application of optical absorption spectra in prognostic prediction has hardly been investigated. We developed and evaluated a novel two dimensional absorption spectrum measurement system (TDAS) for use in early diagnosis, evaluating response to chemoradiation, and making prognostic prediction. The absorption spectra of 120 sets of normal and tumor tissues from esophageal cancer patients were analyzed with TDAS ex-vivo. We demonstrated the cancerous tissue, the tissue from patients with a poor concurrent chemoradiotherapy (CCRT) response, and the tissue from patients with an early disease progression each had a readily identifiable common spectral signature. Principal component analysis (PCA) classified tissue spectra into distinct groups, demonstrating the feasibility of using absorption spectra in differentiating normal and tumor tissues, and in predicting CCRT response, poor survival and tumor recurrence (efficiencies of 75%, 100% and 85.7% respectively). Multivariate analysis revealed that patients identified as having poor-response, poor-survival and recurrence spectral signatures were correlated with increased risk of poor response to CCRT (P = 0.012), increased risk of death (P = 0.111) and increased risk of recurrence (P = 0.030) respectively. Our findings suggest that optical absorption microscopy has great potential to be a useful tool for pre-operative diagnosis and prognostic prediction of esophageal cancer. PMID:27624872

  19. Visible-absorption spectroscopy as a biomarker to predict treatment response and prognosis of surgically resected esophageal cancer

    PubMed Central

    Yang, Pei-Wen; Hsu, I-Jen; Chang, Chun-Wei; Wang, Yu-Chia; Hsieh, Ching-Yueh; Shih, Kuan-Hui; Wong, Li-Fan; Shih, Nai-Yu; Hsieh, Min-Shu; Hou, Max Ti-Kuang; Lee, Jang-Ming

    2016-01-01

    The application of optical absorption spectra in prognostic prediction has hardly been investigated. We developed and evaluated a novel two dimensional absorption spectrum measurement system (TDAS) for use in early diagnosis, evaluating response to chemoradiation, and making prognostic prediction. The absorption spectra of 120 sets of normal and tumor tissues from esophageal cancer patients were analyzed with TDAS ex-vivo. We demonstrated the cancerous tissue, the tissue from patients with a poor concurrent chemoradiotherapy (CCRT) response, and the tissue from patients with an early disease progression each had a readily identifiable common spectral signature. Principal component analysis (PCA) classified tissue spectra into distinct groups, demonstrating the feasibility of using absorption spectra in differentiating normal and tumor tissues, and in predicting CCRT response, poor survival and tumor recurrence (efficiencies of 75%, 100% and 85.7% respectively). Multivariate analysis revealed that patients identified as having poor-response, poor-survival and recurrence spectral signatures were correlated with increased risk of poor response to CCRT (P = 0.012), increased risk of death (P = 0.111) and increased risk of recurrence (P = 0.030) respectively. Our findings suggest that optical absorption microscopy has great potential to be a useful tool for pre-operative diagnosis and prognostic prediction of esophageal cancer. PMID:27624872

  20. Simplified Digital Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1992-01-01

    Spectrum analyzer computes approximate cross-correlations between noisy input signal and reference signal of known frequency, yielding measure of amplitude of sinusoidal component of input. Complexity and power consumed less than other digital spectrum analyzers. Performs no multiplications, and because processes data on each frequency independently, focuses on narrow spectral range without processing data on rest of spectrum.

  1. [Transient UV absorption spectra of artemisinin reacting with sodium hydroxide].

    PubMed

    Gao, Yan-Jun; Ping, Li; Yang, Li-Jun; Wang, Qi-Ming; Xue, Jun-Peng; Wu, Da-Cheng; Li, Rui-Xia

    2009-03-01

    UV absorption spectrum of artemisinin and transient absorption spectra of various concentrations of artemisinin reacting with sodium hydroxide were measured by using an intensified spectroscopic detector ICCD. The exposure time of each spectrum was 0.1 ms. Results indicate that artemisinin has an obvious UV absorption band centered at 212.52 nm and can react with sodium hydroxide easily. All absorption spectra of different concentrations of artemisinin reacting with sodium hydroxide have the similar changes, but the moment at which the changes happened is different. After adding sodium hydroxide into artemisinin in ethanol solution, there was a new absorption band centered at 288 nm appearing firstly. As reaction went on, the intensity of another absorption band centered at 260 nm increased gradually. At the end of the reaction, a continuous absorption band from 200 to 350 nm with the peak at 245 nm formed finally. No other transient absorption spectral data are available on the reaction of artemisinin with sodium hydroxide currently. The new spectral information obtained in this experiment provides very important experimental basis for understanding the properties of artemisinin reacting with alkaline medium and is useful for correctly using of artemisinin as a potential anticancer drug.

  2. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  3. A Revised LRSPR Sensor with Sharp Reflection Spectrum

    PubMed Central

    Yuan, Yinquan; Dai, Yutang

    2014-01-01

    In this work, we have proposed a novel long-range surface plasmon resonance (LRSPR) sensor with sharp reflection spectrum, which consists of a glass prism, a (A/B)4-type waveguide-coupled layer and a metal layer. To reveal its sharp reflection spectrum perfectly, we have simulated the effects of all factors of this LRSPR sensor on the reflection spectrum, and finally presented the optimal parameters of the LRSPR sensor with sharp reflection spectrum. PMID:25198008

  4. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  5. Manifestation of Nonadiabatic Effects in the IR Spectrum of Para-Benzoquinone Radical Cation

    NASA Astrophysics Data System (ADS)

    Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John F.

    2013-06-01

    X-irradiation of an Ar matrix doped with p-benzoquinone (PBQ) at 10 K leads to formation of the PBQ radical cation (PBQ^{bullet +}) and radical anion (PBQ^{bullet -}). The IR spectrum of PBQ^{bullet +} exhibits broad and dense absorption bands in the 2000 cm^{-1} and higher energy region. Another characteristic of the spectrum is the presence of three intense peaks in the lower energy region. Equation-of-motion coupled-cluster calculations have been performed to analyze the spectrum with the quasi-diabatic model Hamiltonian technique. A spectral simulation based on the model Hamiltonian reproduces the observed IR spectrum very well, revealing that the electronic transition to the low-lying excited state, {˜ A} ^2B_{2u} ← {˜ X} ^2B_{3g}, is severely affected by nonadiabatic interaction of the two states, to which the aforementioned features are attributed. In particular, three b_{1u} fundamental peaks for {˜ X} ^2B_{3g} PBQ^{bullet +} gain large intensities from the electronic transition through the vibronic coupling. On the other hand, transition to another b_{1u} fundamental level (anti-symmetric CO stretch) in the {˜ X} state has a diminished intensity due to cancellation of the electronic contribution and the usual dipole derivative contribution. Furthermore, this b_{1u} level is significantly scrambled with nearby vibronic states of b_{2u} symmetry, which accounts for the weak broad band experimentally observed in the 1560-1600 cm^{-1} region.

  6. The high-resolution spectrum of the pulsating, pre-white dwarf star PG 1159-035 (GW VIR)

    NASA Technical Reports Server (NTRS)

    Liebert, James; Wesemael, F.; Husfeld, D.; Wehrse, R.; Starrfield, S. G.

    1989-01-01

    High-resolution and low-resolution UV spectra and a high-resolution optical spectrum were obtained for PG 1159-035, revealing apparent photospheric absorption features with defined cores from N V 1240 A, N IV 1270 A, O V 1371 A, and C IV 1550 A. The photospheric velocity derived using all of these lines except for C IV is about +35 km/s. Equivalent-width measurements determined for all of the features may provide a tighter constraint on the photospheric temperature in a detailed model atmosphere analysis treating the CNO ions.

  7. Absorption of ultraviolet radiation by antarctic phytoplankton

    SciTech Connect

    Vernet, M.; Mitchell, B.G. )

    1990-01-09

    Antarctic phytoplankton contain UV-absorbing compounds that may block damaging radiation. Compounds that absorb from 320-340 nm were observed in spectral absorption of both particulates and in methanol extracts of the particulates. The decrease in the total concentration of these UV compounds with respect to chlorophyll a, as measured by the ratio of in vitro absorption at 335 nm to absorption at 665 nm is variable and decreases with depth. We observed up to 5-fold decrease in this ratio for samples within the physically mixes surface layer. The absorption of UV radiation in methanol extracts, which peaks from 320 to 340 nm, may be composed of several compounds. Shifts in peak absorption with depth (for example, from 331 nm at surface to 321 nm at 75 m), may be interpreted as a change in composition. Ratios of protective yellow xanthophylls (diadinoxanthin + diatoxanthin) to photosynthetic fucoxanthin-like pigments have highest values in surface waters. As these pigments also absorb in the near UV, their function might extend to protection as well as utilization of UV radiation for photosynthesis. We document strong absorption in the UV from 320-330 nm for Antarctic marine particulates. Below this region of the solar energy spectrum, absolute energy levels of incident radiation drop off dramatically. Only wavelengths shorter than about 320 nm will be significantly enhanced due to ozone depletion. If the absorption we observed serves a protective role for phytoplankton photosynthesis, it appears the peak band is in the region where solar energy increases rapidly, and not in the region where depletion would cause significant variations in absolute flux.

  8. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    SciTech Connect

    Hendrickson, Joshua R. Leedy, Kevin; Cleary, Justin W.; Vangala, Shivashankar; Nader, Nima; Guo, Junpeng

    2015-11-09

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  9. Plasmon resonance and perfect light absorption in subwavelength trench arrays etched in gallium-doped zinc oxide film

    NASA Astrophysics Data System (ADS)

    Hendrickson, Joshua R.; Vangala, Shivashankar; Nader, Nima; Leedy, Kevin; Guo, Junpeng; Cleary, Justin W.

    2015-11-01

    Near-perfect light absorption in subwavelength trench arrays etched in highly conductive gallium-doped zinc oxide films was experimentally observed in the mid infrared regime. At wavelengths corresponding to the resonant excitation of surface plasmons, up to 99% of impinging light is efficiently trapped and absorbed in the periodic trenches. Scattering cross sectional calculations reveal that each individual trench acts like a vertical split ring resonator with a broad plasmon resonance spectrum. The coupling of these individual plasmon resonators in the grating structure leads to enhanced photon absorption and significant resonant spectral linewidth narrowing. Ellipsometry measurements taken before and after device fabrication result in different permittivity values for the doped zinc oxide material, indicating that localized annealing occurred during the plasma etching process due to surface heating. Simulations, which incorporate a 50 nm annealed region at the zinc oxide surface, are in a good agreement with the experimental results.

  10. The Optical Spectrum of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Schiminovich, David; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained an optical spectrum of the isolated pulsar Geminga at the Keck Observatory. The optical object is at the limit of spectroscopic capability of any telescope, with a continuum flux that is approx. 0.5% of the dark sky on Mauna Kea. With particular attention paid to the dominant systematics of sky subtraction in our observing and analysis methods, we attained approx. 0.1% systematics in heavily binned spectra. The resulting spectrum spanning 3700 - 8000 A has a flat power-law shape f(sub nu) proportional to nu(exp -0.8) and a broad dip over 6300 - 6500 A. Thermal radiation cannot explain the optical spectrum of Geminga. The dominant component can be modeled as either electron synchrotron emission and ion (proton) cyclotron absorption, or ion cyclotron emission, the latter in a 10(exp 11) G magnetic field.

  11. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  14. Visibly transparent organic photovoltaic with improved transparency and absorption based on tandem photonic crystal for greenhouse application.

    PubMed

    Yang, Fan; Zhang, Ye; Hao, Yuying; Cui, Yanxia; Wang, Wenyan; Ji, Ting; Shi, Fang; Wei, Bin

    2015-12-01

    We demonstrate a visible transparent organic photovoltaic (OPV) with improved transmission and absorption based on tandem photonic crystals (TPCs) for greenhouse applications. The proposed device has an average transmittance of 40.3% in the visible range of 400-700 nm and a high quality transparency spectrum for plant growth with a crop growth factor of 41.9%, considering the weight of the AM 1.5G solar spectrum. Compared with the corresponding transparent OPV without photonic crystals, an enhancement of 20.7% in the average transmittance and of 24.5% in the crop growth factor are achieved. Detailed investigations reveal that the improved transmittance is attributed to the excitation of the optical Tamm state and the light interference effect in TPC. Concomitantly, the total absorption efficiency in the active layer of the designed TPC based transparent OPV reaches 51.5%, being 1.78% higher than that of the transparent OPV without PC and 76% of that of the opaque counterpart. The improved absorption originates from the Bragg forbidden reflectance of TPC. Overall, our proposal achieves the optimized utilization of sunlight by light manipulation of TPC. PMID:26836682

  15. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus.

  16. Fetal Alcohol Spectrum Disorders.

    PubMed

    Williams, Janet F; Smith, Vincent C

    2015-11-01

    Prenatal exposure to alcohol can damage the developing fetus and is the leading preventable cause of birth defects and intellectual and neurodevelopmental disabilities. In 1973, fetal alcohol syndrome was first described as a specific cluster of birth defects resulting from alcohol exposure in utero. Subsequently, research unequivocally revealed that prenatal alcohol exposure causes a broad range of adverse developmental effects. Fetal alcohol spectrum disorder (FASD) is the general term that encompasses the range of adverse effects associated with prenatal alcohol exposure. The diagnostic criteria for fetal alcohol syndrome are specific, and comprehensive efforts are ongoing to establish definitive criteria for diagnosing the other FASDs. A large and growing body of research has led to evidence-based FASD education of professionals and the public, broader prevention initiatives, and recommended treatment approaches based on the following premises:▪ Alcohol-related birth defects and developmental disabilities are completely preventable when pregnant women abstain from alcohol use.▪ Neurocognitive and behavioral problems resulting from prenatal alcohol exposure are lifelong.▪ Early recognition, diagnosis, and therapy for any condition along the FASD continuum can result in improved outcomes.▪ During pregnancy:◦no amount of alcohol intake should be considered safe;◦there is no safe trimester to drink alcohol;◦all forms of alcohol, such as beer, wine, and liquor, pose similar risk; and◦binge drinking poses dose-related risk to the developing fetus. PMID:26482673

  17. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  18. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  19. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  20. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  1. Terahertz spectrum of gallic acid

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Zhao, Guozhong; Wang, Haiyan; Liang, Chengshen

    2009-11-01

    Gallic acid is natural polyphenol compound found in many green plants. More and more experiments have demonstrated that the gallic acid has comprehensive applications. In the field of medicine, the gallic acid plays an important role in antianaphylaxis, antineoplastic, antimycotic, anti-inflammatory, antivirotic, antiasthmatic and inhibiting the degradation of insulin. It also has a lot of applications in chemical industry, food industry and light industry. So it is important to study the terahertz time-domain spectroscopy of gallic acid. Terahertz time-domain spectroscopy (THz-TDS) is a new coherent spectral technology based on the femtosecond laser. In this work, the spectral characteristics of gallic acid in the range of 0.4 THz to 2.6 THz have been measured by THz-TDS. We obtained its absorption and refraction spectra at room temperature. The vibration absorption spectrum of the single molecule between 0.4 THz and 2.6 THz is simulated based on the Density Functional Theory (DFT). It is found that the gallic acid has the spectral response to THz wave in this frequency range. The results show the abnormal dispersion at 1.51 THz and 2.05 THz. These results can be used in the qualitative analysis of gallic acid and the medicine and food inspection.

  2. ABSORPTION MEASURE DISTRIBUTION IN Mrk 509

    SciTech Connect

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-20

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free–free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 10{sup 8} cm{sup −3}.

  3. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  4. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  5. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  6. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2011-01-01

    We show that communication of single-photon quantum states in a multi-user environment is improved by using spread spectrum communication techniques. We describe a framework for spreading, transmitting, despreading, and detecting single-photon spectral states that mimics conventional spread spectrum techniques. We show in the cases of inadvertent detection, unintentional interference, and multi-user management, that quantum spread spectrum communications may minimize receiver errors by managing quantum channel access.

  9. UV Scanner DOAS Data Retrieved Using A Modelled Reference Spectrum

    NASA Astrophysics Data System (ADS)

    Salerno, G. G.; Burton, M.; Caltabiano, T.; Randazzo, D.; Bruno, N.; Longo, V.; Oppenheimer, C.

    2007-12-01

    The difficulty of applying a real-time measured reference spectrum represents the main issue while using automatic Differential Optical Absorption Spectroscopy (DOAS) UV-Scanner networks for monitoring active volcanoes. Here we present the performance of a DOAS retrieval using a modelled reference spectrum derived from a high- resolution solar spectrum. Data analyzed were collected by the five UV scanners installed on Mt. Etna using three calibration cells (LC: low cell 3.2 e17; MC: middle cell 8.46 e17; and HC: high cell 9.98 e17 molecules/cm2) in order to collect calibrated clear-sky spectra (CCSS). We evaluated the errors affecting the CCSS retrievals examining the effects of seasonal variations, time of the day, changes of the telescope-viewing angle, and the modelled and real-measured instrumental line-shape function (ILS). For these purposes, between July 2006 and July 2007, 51 CCSS were recorded in different times of the day and different weather conditions using the LC and the MC, whereas the error associated with the variations of the telescope-viewing angle was evaluated on data collected in May 2007 using the LC and HC. This was estimated as the mean of each of 100 CCSS collected for every scanning angle. The modelled ILS function resolution was found empirically, while the real was measured experimentally using a mercury lamp. The absolute difference retrieved for the CCSS recorded in 12 months respect the true amounts of the calibration cells varied between ~ 1.15 e15 - 8.39 e16 molecules/cm2 for the LC and ~ 2.78 e15 - 1.75 e17 molecules/cm2 for the MC. These results revealed that the modelled reference spectrum did not affect significantly the DOAS performance. This was consistent with the absolute differences estimated for each scanning-angle variations (~ 1.15 e15 - 8.39 e16 molecules/cm2 for the LC and ~ 1.44 e15 - 2.52 e17 molecules/cm2 for the HC) respect to the true amounts. These results prove that UV-Scanner DOAS networks can work efficiently

  10. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  11. Spectral fingerprinting of individual cells visualized by cavity-reflection-enhanced light-absorption microscopy.

    PubMed

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a "molecular fingerprint" that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells.

  12. Autism spectrum disorder

    MedlinePlus

    Autism; Autistic disorder; Asperger syndrome; Childhood disintegrative disorder; Pervasive developmental disorder ... to better diagnosis and newer definitions of ASD. Autism spectrum disorder now includes syndromes that used to ...

  13. Ionospheric wave spectrum measurements

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Ilic, D. B.; Crawford, F. W.

    1979-01-01

    The local spectrum S(k, omega) of either potential or electron-density fluctuations can be used to determine macroscopic-plasma characteristics such as the local density and temperature, transport coefficients, and drift current. This local spectrum can be determined by measuring the cross-power spectrum. The paper examines the practicality of using the cross-power spectrum analyzer on the Space Shuttle to measure ionospheric parameters. Particular attention is given to investigating the integration time required to measure the cross-power spectral density to a desired accuracy.

  14. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method.

  15. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  16. Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.

    PubMed

    Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei

    2015-09-01

    Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM

  17. Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.

    PubMed

    Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei

    2015-09-01

    Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM

  18. Imprints of a high-velocity wind on the soft X-ray spectrum of PG1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, K. A.; Lobban, A.; Reeves, J. N.; Vaughan, S.; Costa, M.

    2016-07-01

    An extended XMM-Newton observation of the luminous narrow-line Seyfert galaxy PG1211+143 in 2014 has revealed a more complex high-velocity wind, with components distinguished in velocity, ionization level, and column density. Here we report soft X-ray emission and absorption features from the ionized outflow, finding counterparts of both high-velocity components, v ˜ 0.129c and v ˜ 0.066c, recently identified in the highly ionized Fe K absorption spectrum. The lower ionization of the comoving soft X-ray absorbers imply a distribution of higher density clouds embedded in the main outflow, while much higher column densities for the same flow component in the hard X-ray spectra suggest differing sightlines to the continuum X-ray source.

  19. Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-09-01

    We study the directional dependence of the absorption spectrum of ballistic nanowires in the presence of gate-controlled Rashba spin-orbit interaction and an in-plane magnetic field. In the weak Rashba regime, our analytical and numerical results show that the absorption peaks associated with the first and third intersubband transitions exhibit frequency shifts and strong amplitude modulations as the direction of the magnetic field changes. If the field is parallel to the nanowire axis, these peaks disappear and the resonance frequencies of the whole absorption spectrum are given merely in terms of the Zeeman splitting and the energy scale characterizing the confinement potential. The second transition has an absorption peak that suffers an opposite frequency shift with amplitude that is largely direction independent. The amplitude modulation and frequency shift of the absorption spectrum is periodic in the angle that the magnetic field makes with the nanowire axis.

  20. Direct Spectrum of the Benchmark T Dwarf HD 19467 B

    NASA Astrophysics Data System (ADS)

    Crepp, Justin R.; Rice, Emily L.; Veicht, Aaron; Aguilar, Jonathan; Pueyo, Laurent; Giorla, Paige; Nilsson, Ricky; Luszcz-Cook, Statia H.; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne A.; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C., Jr.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing

    2015-01-01

    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T_eff=978+20-43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

  1. Study of interstellar molecular clouds using formaldehyde absorption toward extragalactic radio sources

    SciTech Connect

    Araya, E. D.; Andreev, N.; Dieter-Conklin, N.; Goss, W. M.

    2014-04-01

    We present new Very Large Array 6 cm H{sub 2}CO observations toward four extragalactic radio continuum sources (B0212+735, 3C 111, NRAO 150, and BL Lac) to explore the structure of foreground Galactic clouds as revealed by absorption variability. This project adds a new epoch in the monitoring observations of the sources reported by Marscher and collaborators in the mid-1990s. Our new observations confirm the monotonic increase in H{sub 2}CO absorption strength toward NRAO 150. We do not detect significant variability of our 2009 spectra with respect to the 1994 spectra of 3C111, B0212+735, and BL Lac; however, we find significant variability of the 3C111 2009 spectrum with respect to archive observations conducted in 1991 and 1992. Our analysis supports that changes in absorption lines could be caused by chemical and/or geometrical gradients in the foreground clouds and not necessarily by small-scale (∼10 AU) high-density molecular clumps within the clouds.

  2. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  3. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  4. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  5. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  6. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  7. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  8. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  9. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  10. Light absorption in conical silicon particles.

    PubMed

    Bogdanowicz, J; Gilbert, M; Innocenti, N; Koelling, S; Vanderheyden, B; Vandervorst, W

    2013-02-11

    The problem of the absorption of light by a nanoscale dielectric cone is discussed. A simplified solution based on the analytical Mie theory of scattering and absorption by cylindrical objects is proposed and supported by the experimental observation of sharply localized holes in conical silicon tips after high-fluence irradiation. This study reveals that light couples with tapered objects dominantly at specific locations, where the local radius corresponds to one of the resonant radii of a cylindrical object, as predicted by Mie theory.

  11. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  12. Autism cornered: network analyses reveal mechanisms of autism spectrum disorders

    PubMed Central

    Auffray, Charles

    2014-01-01

    Despite a wealth of behavioral, cognitive, biological, and genetic studies, the causes of autism have remained largely unknown. In their recent work, Snyder and colleagues (Li et al, 2014) use a systems biology approach and shed light on the molecular and cellular mechanisms underlying autism, thus opening novel avenues for understanding the disease and developing potential treatments. PMID:25549969

  13. Optimized wavelength selection for molecular absorption thermometry.

    PubMed

    An, Xinliang; Caswell, Andrew W; Lipor, John J; Sanders, Scott T

    2015-04-01

    A differential evolution (DE) algorithm is applied to a recently developed spectroscopic objective function to select wavelengths that optimize the temperature precision of water absorption thermometry. DE reliably finds optima even when many-wavelength sets are chosen from large populations of wavelengths (here 120 000 wavelengths from a spectrum with 0.002 cm(-1) resolution calculated by 16 856 transitions). Here, we study sets of fixed wavelengths in the 7280-7520 cm(-1) range. When optimizing the thermometer for performance within a narrow temperature range, the results confirm that the best temperature precision is obtained if all the available measurement time is split judiciously between the two most temperature-sensitive wavelengths. In the wide temperature range case (thermometer must perform throughout 280-2800 K), we find (1) the best four-wavelength set outperforms the best two-wavelength set by an average factor of 2, and (2) a complete spectrum (all 120 000 wavelengths from 16 856 transitions) is 4.3 times worse than the best two-wavelength set. Key implications for sensor designers include: (1) from the perspective of spectroscopic temperature sensitivity, it is usually sufficient to monitor two or three wavelengths, depending on the sensor's anticipated operating temperature range; and (2) although there is a temperature precision penalty to monitoring a complete spectrum, that penalty may be small enough, particularly at elevated pressure, to justify the complete-spectrum approach in many applications.

  14. Aerosol Absorption Near Beijing During EAST-AIRE

    NASA Astrophysics Data System (ADS)

    Yang, M.; Howell, S.; Huebert, B.; Zhuang, J.

    2006-12-01

    To understand the aerosol absorption that had been observed offshore during ACE-Asia, we took a suite of instruments (including a 7 wavelength aethalometer) to a site 70 km ESE of Beijing in March of 2005 to measure the wavelength dependence of aerosol absorption as a part of the EAST-AIRE program. Confidence in filter methods suffers a bit because several corrections are required to estimate ambient absorption from particles on a filter: there is enhancement by multiple scatter from the filter's matrix, shadowing by thick cakes of collected particles, and scattering by co-collected aerosols, to name a few. We encountered mild dust, heavy pollution, relatively clean air, coal-burning chimney plumes, industrial plumes, and biomass burning, often at separate times. The absorption Angstrom exponent was always greater than 1, averaging 1.5: in the UV and violet there is an enhanced absorption over what one would expect of black carbon. If we assume that BC is responsible for all the absorption at 950 nm and that it has an Angstrom coefficient of 1.0 (yielding a specific absorbance of about 9 m2g-1 at 550 nm), the remaining absorption Angstrom exponent in the visible averaged 3.2. However, the 370-950 nm absorption spectrum of the remainder looked very much like the clay and hematite absorption spectra published by Sokolik and Toon, including a striking UV absorption and a characteristic dip around 660 nm (e.g., not a power law shape). This is not surprising, since clay is both a frequent component of dust and is used as a binder in the charcoal briquettes that are widely used in China for heating and cooking. We found single-scatter albedos virtually always less than 0.9, averaging 0.82. In the presence of dust, the SSA increased toward the IR. We also find that the clay spectrum explains virtually all the non-BC absorption, so there must not be much brown carbon present. Our confidence in these on-filter absorption measurements is increased by the fact that we

  15. Absorption variability as a probe of the multiphase interstellar media surrounding active galaxies

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre; Tingay, Steven

    2016-08-01

    We examine a model for the variable free-free and neutral hydrogen absorption inferred towards the cores of some compact radio galaxies in which a spatially fluctuating medium drifts in front of the source. We relate the absorption-induced intensity fluctuations to the statistics of the underlying opacity fluctuations. We investigate models in which the absorbing medium consists of either discrete clouds or a power-law spectrum of opacity fluctuations. We examine the variability characteristics of a medium comprised of Gaussian-shaped clouds in which the neutral and ionized matter are co-located, and in which the clouds comprise spherical constant-density neutral cores enveloped by ionized sheaths. The cross-power spectrum indicates the spatial relationship between neutral and ionized matter, and distinguishes the two models, with power in the Gaussian model declining as a featureless power-law, but that in the ionized sheath model oscillating between positive and negative values. We show how comparison of the H I and free-free power spectra reveals information on the ionization and neutral fractions of the medium. The background source acts as a low-pass filter of the underlying opacity power spectrum, which limits temporal fluctuations to frequencies ω ≲ dot{θ }_v/θ _src, where dot{θ }_v is the angular drift speed of the matter in front of the source, and it quenches the observability of opacity structures on scales smaller than the source size θsrc. For drift speeds of ˜103 km s-1 and source brightness temperatures ˜1012 K, this limitation confines temporal opacity fluctuations to time-scales of order several months to decades.

  16. Absorption-polarization characteristics of rhodamine 6G and its base in poly(methyl methacrylate)

    SciTech Connect

    Prishchepov, A.S.; Nizamou, N.

    1986-01-01

    Results are presented of the measurement and analysis of the absorption-polarization characteristics of rhodamine 6G and the base of rhodamine 6G (BR6G) in polymeric films of poly(methylmethacrylate) (PMMA). The absorption spectrum of a PMMA film containing BR6G and the cationic dye in the monomeric and associated states are shown.

  17. Disorder-induced absorption of far-infrared waves by acoustic modes in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Nenashev, A. V.; Wiemer, M.; Koch, M.; Dvurechenskii, A. V.; Gebhard, F.; Baranovskii, S. D.

    2016-08-01

    A mechanism of light absorption at THz frequencies in nematic liquid crystals based on intermolecular dynamics is proposed. In this mechanism, the energy conservation is supplied by acoustic phonons, whereas momentum conservation is provided by static spatial fluctuations of the director field. The mechanism predicts a continuous absorption spectrum in a broad frequency range.

  18. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  19. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  20. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  1. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  2. Absorption mode Fourier transform electrostatic linear ion trap mass spectrometry.

    PubMed

    Hilger, Ryan T; Wyss, Phillip J; Santini, Robert E; McLuckey, Scott A

    2013-09-01

    In Fourier transform mass spectrometry, it is well-known that plotting the spectrum in absorption mode rather than magnitude mode has several advantages. However, magnitude spectra remain commonplace due to difficulties associated with determining the phase of each frequency at the onset of data acquisition, which is required for generating absorption spectra. The phasing problem for electrostatic traps is much simpler than for Fourier transform ion cyclotron resonance (FTICR) instruments, which greatly simplifies the generation of absorption spectra. Here, we present a simple method for generating absorption spectra from a Fourier transform electrostatic linear ion trap mass spectrometer. The method involves time shifting the data prior to Fourier transformation in order to synchronize the onset of data acquisition with the moment of ion acceleration into the electrostatic trap. Under these conditions, the initial phase of each frequency at the onset of data acquisition is zero. We demonstrate that absorption mode provides a 1.7-fold increase in resolution (full width at half maximum, fwhm) as well as reduced peak tailing. We also discuss methodology that may be applied to unsynchronized data in order to determine the time shift required to generate an absorption spectrum.

  3. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    PubMed

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  4. Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Komatsu, Marina; Hosobuchi, Masashi; Xie, Xiaojun; Cheng, Yonghong; Furukawa, Yukio; Mizuno, Maya; Fukunaga, Kaori; Ohki, Yoshimichi

    2014-09-01

    Low-density polyethylene, either cross-linked or not, was oxidized and its absorption spectra were measured in the terahertz (THz) range and infrared range. The absorption was increased by the oxidation in the whole THz range. In accord with this, infrared absorption due to carbonyl groups appears. Although these results indicate that the increase in absorption is induced by oxidation, its attribution to resonance or relaxation is unclear. To clarify this point, the vibrational frequencies of three-dimensional polyethylene models with and without carbonyl groups were quantum chemically calculated. As a result, it was clarified that optically inactive skeletal vibrations in polyethylene become active upon oxidation. Furthermore, several absorption peaks due to vibrational resonances are induced by oxidation at wavenumbers from 20 to 100 cm-1. If these absorption peaks are broadened and are superimposed on each other, the absorption spectrum observed experimentally can be reproduced. Therefore, the absorption is ascribable to resonance.

  5. Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence

    SciTech Connect

    Katahara, John K.; Hillhouse, Hugh W.

    2014-11-07

    A unified model for the direct gap absorption coefficient (band-edge and sub-bandgap) is developed that encompasses the functional forms of the Urbach, Thomas-Fermi, screened Thomas-Fermi, and Franz-Keldysh models of sub-bandgap absorption as specific cases. We combine this model of absorption with an occupation-corrected non-equilibrium Planck law for the spontaneous emission of photons to yield a model of photoluminescence (PL) with broad applicability to band-band photoluminescence from intrinsic, heavily doped, and strongly compensated semiconductors. The utility of the model is that it is amenable to full-spectrum fitting of absolute intensity PL data and yields: (1) the quasi-Fermi level splitting, (2) the local lattice temperature, (3) the direct bandgap, (4) the functional form of the sub-bandgap absorption, and (5) the energy broadening parameter (Urbach energy, magnitude of potential fluctuations, etc.). The accuracy of the model is demonstrated by fitting the room temperature PL spectrum of GaAs. It is then applied to Cu(In,Ga)(S,Se){sub 2} (CIGSSe) and Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) to reveal the nature of their tail states. For GaAs, the model fit is excellent, and fitted parameters match literature values for the bandgap (1.42 eV), functional form of the sub-bandgap states (purely Urbach in nature), and energy broadening parameter (Urbach energy of 9.4 meV). For CIGSSe and CZTSSe, the model fits yield quasi-Fermi leveling splittings that match well with the open circuit voltages measured on devices made from the same materials and bandgaps that match well with those extracted from EQE measurements on the devices. The power of the exponential decay of the absorption coefficient into the bandgap is found to be in the range of 1.2 to 1.6, suggesting that tunneling in the presence of local electrostatic potential fluctuations is a dominant factor contributing to the sub-bandgap absorption by either purely electrostatic (screened Thomas-Fermi) or

  6. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  7. Fetal Alcohol Spectrum Disorders

    MedlinePlus

    ... alcohol can cause a group of conditions called fetal alcohol spectrum disorders (FASDs). Effects can include physical and behavioral problems such ... alcohol syndrome is the most serious type of FASD. People with fetal alcohol syndrome have facial abnormalities, ...

  8. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  9. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  10. Spectrum (pl: spectra)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    In general terms, the distribution of intensity of electromagnetic radiation with wavelength. Thus when we examine the spectrum of star we are looking at a map of this brightness distribution. In the context of visible light, the visible spectrum is the band of colors produced when white light is passed through a glass prism, which has the effect of spreading out light according to wavelength. Fr...

  11. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  12. The Electronic Spectrum of the Fulvenallenyl Radical.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Maier, John P

    2016-01-01

    The fulvenallenyl radical was produced in 6 K neon matrices after mass-selective deposition of C7H5(-) and C7H5(+) generated from organic precursors in a hot cathode ion source. Absorption bands commencing at λ=401.3 nm were detected as a result of photodetachment of electrons from the deposited C7H5(-) and also by neutralization of C7H5(+) in the matrix. The absorption system is assigned to the 1 (2)B1 ←X (2)B1 transition of the fulvenallenyl radical on the basis of electronic excitation energies calculated with the MS-CASPT2 method. The vibrational excitation bands detected in the spectrum concur with the structure of the fulvenallenyl radical. Employing DFT calculations, it is found that the fulvenallenyl anion and its radical are the global minima on the potential energy surface among plausible structures of C7H5. PMID:26593635

  13. Spectral properties of microwave graphs with local absorption.

    PubMed

    Allgaier, Markus; Gehler, Stefan; Barkhofen, Sonja; Stöckmann, H-J; Kuhl, Ulrich

    2014-02-01

    The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50Ω load to an additional vertex for graphs with and without time-reversal symmetry. The resulting level-spacing distributions were compared with a generalization of the Wigner surmise in the presence of open channels proposed recently by Poli et al. [Phys. Rev. Lett. 108, 174101 (2012)]. Good agreement was found using an effective coupling parameter. Second, absorption was introduced along one individual bond via a variable microwave attenuator, and the influence of absorption on the length spectrum was studied. The peak heights in the length spectra corresponding to orbits avoiding the absorber were found to be independent of the attenuation, whereas, the heights of the peaks belonging to orbits passing the absorber once or twice showed the expected decrease with increasing attenuation.

  14. Absorption and emission by atmospheric gases - The physical processes

    NASA Astrophysics Data System (ADS)

    McCartney, E. J.

    This book has been written for those who wish to understand better the processes of absorption and emission and their manifold effects. Persons having such interests or needs are the workers in meteorology, atmospheric physics, aerospace surveillance, and air-pollution control. Introductory ideas and useful facts are presented, taking into account an overview of absorption and emission, the electromagnetic spectrum and its parameters, the quantization of energy, the molecular origins of spectra, and the laws of blackbody radiation. Gas properties are considered along with thermodynamics, molecular kinetics, quantized energy states and population, molecular internal energies, spectra of energy transitions, and parameters of line and band absorption. Attention is given to molecular dipole moments, rotational energy and transitions, vibrational energy and transitions, and absorption and emission data.

  15. Collision--induced absorption in dense atmospheres of cool stars

    SciTech Connect

    Borysow, Aleksandra; Joergensen, Uffe Graae

    1999-04-01

    In the atmosphere of the Sun the major interaction between the matter and the radiation is through light absorption by ions (predominantly the negative ion of hydrogen atoms), neutral atoms and a small amount of polar molecules. The majority of stars in the universe are, however, cooler and denser than our Sun, and for a large fraction of these, the above absorption processes are very weak. Here, collision-induced absorption (CIA) becomes the dominant opacity source. The radiation is absorbed during very short mutual passages ('collisions') of two non-polar molecules (and/or atoms), while their electric charge distributions are temporarily distorted which gives rise to a transient dipole moment. We present here a review of the present-day knowledge about the impact of collision-induced absorption processes on the structure and the spectrum of such stars.

  16. Vaginal Absorption of Penicillin.

    PubMed

    Rock, J; Barker, R H; Bacon, W B

    1947-01-01

    Except during the last two months of pregnancy, penicillin is easily absorbed from cocoa butter suppositories in the vagina, ordinarily to give therapeutic blood levels for from 4 to 6 hours. Penicillin in the dosage used seems to have a good effect on vaginal infections. In nonpregnant women, during the ovulation phase, considered as including days 14 +/- 2 in the ordinary menstrual cycle of about 28 days, absorption seemed to be somewhat diminished. Higher levels were found in patients who were near the end of their menstrual cycles and in two patients who were menopausal. Patients who were very near term absorbed little or no penicillin, whereas patients 10 days post partum showed excellent absorption.

  17. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  18. THE ABSORPTION OF ADRENALIN

    PubMed Central

    Lyon, D. Murray

    1923-01-01

    1. Adrenalin solution given subcutaneously is usually rapidly absorbed, probably by lymphatic channels. 2. The speed of this process may be influenced by the circulation rate. 3. The relative amounts of adrenalin at any moment unabsorbed at the site of inoculation, carried in the circulating fluids, and taken up by the reacting tissues can be calculated from figures extracted from the curve of the blood pressure changes. The relative rates of transference of adrenalin into the blood and from the circulation into the tissues can also be estimated. 4. When absorption takes place rapidly a large quantity of the drug comes into action at once and the maximum occurs early, the curve of blood pressure reaches a considerable height, and subsides quickly. When absorption is slow the apex appears later and does not reach so high a level. 5. The response to adrenalin bears a logarithmic relationship to the dose employed and a method of allowing for this is indicated. PMID:19868816

  19. Mercury: surface composition from the reflection spectrum.

    PubMed

    McCord, T B; Adams, J B

    1972-11-17

    The reflection spectrum for the integral disk of the planet Mercury was measured and was found to have a constant positive slope from 0.32 to 1.05 micrometers, except for absorption features in the infrared. The reflectivity curve matches closely the curve for the lunar upland and mare regions. Thus, the surface of Mercury is probably covered with a lunar-like soil rich in dark glasses of high iron and titanium content. Pyroxene is probably the dominant mafic mineral. PMID:17798540

  20. Time variation in the low-frequency spectrum of Vela-like pulsar B1800-21

    NASA Astrophysics Data System (ADS)

    Basu, Rahul; Rożko, Karolina; Lewandowski, Wojciech; Kijak, Jarosław; Dembska, Marta

    2016-05-01

    We report the flux measurement of the Vela-like pulsar B1800-21 at the low radio frequency regime over multiple epochs spanning several years. The spectrum shows a turnover around the GHz frequency range and represents a typical example of gigahertz-peaked spectrum (GPS) pulsar. Our observations revealed that the pulsar spectrum show a significant evolution during the observing period with the low-frequency part of the spectrum becoming steeper, with a higher turnover frequency, for a period of several years before reverting back to the initial shape during the latest measurements. The spectral change over times spanning several years requires dense structures, with free electron densities around 1000-20 000 cm-3 and physical dimensions ˜220 au, in the interstellar medium (ISM) traversing across the pulsar line of sight. We look into the possible sites of such structures in the ISM and likely mechanisms particularly the thermal free-free absorption as possible explanations for the change.

  1. Reflection hologram solar spectrum-splitting filters

    NASA Astrophysics Data System (ADS)

    Zhang, Deming; Gordon, Michael; Russo, Juan M.; Vorndran, Shelby; Escarra, Matthew; Atwater, Harry; Kostuk, Raymond K.

    2012-10-01

    In this paper we investigate the use of holographic filters in solar spectrum splitting applications. Photovoltaic (PV) systems utilizing spectrum splitting have higher theoretical conversion efficiency than single bandgap cell modules. Dichroic band-rejection filters have been used for spectrum splitting applications with some success however these filters are limited to spectral control at fixed reflection angles. Reflection holographic filters are fabricated by recording interference pattern of two coherent beams at arbitrary construction angles. This feature can be used to control the angles over which spectral selectivity is obtained. In addition focusing wavefronts can also be used to increase functionality in the filter. Holograms fabricated in dichromated gelatin (DCG) have the benefit of light weight, low scattering and absorption losses. In addition, reflection holograms recorded in the Lippmann configuration have been shown to produce strong chirping as a result of wet processing. Chirping broadens the filter rejection bandwidth both spectrally and angularly. It can be tuned to achieve spectral bandwidth suitable for spectrum splitting applications. We explore different DCG film fabrication and processing parameters to improve the optical performance of the filter. The diffraction efficiency bandwidth and scattering losses are optimized by changing the exposure energy, isopropanol dehydration bath temperature and hardening bath duration. A holographic spectrum-splitting PV module is proposed with Gallium Arsenide (GaAs) and silicon (Si) PV cells with efficiency of 25.1% and 19.7% respectively. The calculated conversion efficiency with a prototype hologram is 27.94% which is 93.94% compared to the ideal spectrum-splitting efficiency of 29.74%.

  2. The Ultraviolet Spectrum of the Jovian Dayglow

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Dalgarno, A.

    1995-01-01

    The ultraviolet spectra of molecular hydrogen H2 and HD due to solar fluorescence and photoelectron excitation are calculated and compared with the Jovian equatorial dayglow spectrum measured at 3 A resolution at solar maximum. The dayglow emission is accounted for in both brightness and spectral shape by the solar fluorescence and photoelectron excitation and requires no additional energy source. The emission is characterized by an atmospheric temperature of 530 K and an H2 column density of 10(exp 20) cm(exp -2). The dayglow spectrum contains a cascade contribution to the Lyman band emission from high-lying E and F states. Its relative weakness at short wavelengths is due to both self-absorption by H2 and absorption by CH4. Strong wavelength coincidences of solar emission lines and absorption lines of H2 and HD produce unique line spectra which can be identified in the dayglow spectrum. The strongest fluorescence is due to absorption of the solar Lyman-beta line at 1025.72 A by the P(1) line of the (6, 0) Lyman band of H2 at 1025.93 A. The fluorescence lines due to absorption of the solar O 6 line at 1031.91 A by vibrationally excited H2 via the Q(3) line of the (1, 1) Werner band at 1031.86 A are identified. The fluorescence lines provide a sensitive measure of the atmospheric temperature. There occurs an exact coincidence of the solar O 6 line at 1031.91 A and the R(0) line of the (6, 0) Lyman band of HD at 1031-91 A, but HD on Jupiter is difficult to detect due to the dominance of the H2 emission where the HD emission is particularly strong. Higher spectral resolution and higher sensitivity may make possible such a detection. The high resolution (0.3 A) spectra of H2 and HD are presented to stimulate search for the HD on Jupiter with the Hubble Space Telescope.

  3. Sensitive detection of weak absorption signals in photoacoustic spectroscopy by using derivative spectroscopy and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zheng, Jincun; Tang, Zhilie; He, Yongheng; Guo, Lina

    2008-05-01

    This report presents a practical analytical method of photoacoustic (PA) spectroscopy that is based on wavelet transform (WT) and the first-derivative PA spectrum. An experimental setup is specially designed to obtain the first-derivative spectrum, which aims to identify some unnoticeable absorption peaks in the normal PA spectrum. To enhance the detectability of overlapping spectral bands, the WT is used to decompose the PA spectrum signals into a series of localized contributions (details and approximation) on the basis of the frequency. For the decomposed contributions do not change the absorption peak position of PA spectrum, one can retrieve the weak absorption signals by the decomposed result of WT. Because of the use of derivative spectroscopy and WT, three unnoticeable absorption peaks that are hidden in the PA spectrum of carbon absorption are precisely retrieved, the wavelengths of which are 699.7, 752.7, and 775.5nm, respectively. This analytical method, which has the virtue of using a physical method and using a computer software method, can achieve great sensitivity and accuracy for PA spectral analysis.

  4. Molecular emission bands in the ultraviolet spectrum of the red rectangle star HD 44179

    NASA Technical Reports Server (NTRS)

    Sitko, M. L.

    1981-01-01

    New observations of the ultraviolet spectrum of HD 44179 are reported. Absorption due to the CO molecule is present in the spectrum with NCO approximately 10 to the 18th power per sq cm. Emission due to either CO or a molecule containing C=C, C=N, C-C, and C-H bonds (or both) is also present.

  5. Collision-induced absorption in the O2 B-band region near 670 nm.

    PubMed

    Spiering, Frans R; Kiseleva, Maria B; Filippov, Nikolay N; van Kesteren, Line; van der Zande, Wim J

    2011-05-28

    We have determined the collision-induced absorption (CIA) spectrum in the O(2) B-band in pure oxygen. We present absolute extinction coefficients of the minimums in between rotational lines using cavity ring-down spectroscopy. The measured extinction is corrected for the B-band magnetic dipole absorption using a model which includes line-mixing. The remaining extinction consists of collision-induced absorption and Rayleigh scattering. We retrieve the magnitude of the Rayleigh scattering and the CIA spectrum based on their individual different behavior with density. The CIA spectrum of the B-band resembles that of the oxygen A-band in shape but not in magnitude. The contribution of CIA to the total B-band absorption is 40% higher in comparison to that of the A-band.

  6. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  7. VARIATIONS OF ABSORPTION TROUGHS IN THE QUASAR SDSS J125216.58+052737.7

    SciTech Connect

    Chen, Zhi-Fu; Qin, Yi-Ping

    2015-01-20

    In this work, we analyze the spectra of quasar J125216.58+052737.7 (z {sub em} = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 C IV λλ1548,1551 absorption systems, which are detected at z {sub abs} = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one Mg II λλ2796,2803 absorption system at z {sub abs} = 0.9912. Among these absorption systems, two C IV λλ1548,1551 absorption systems at z {sub abs} = 1.9098 and 1.7359 and the Mg II λλ2796,2803 absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three C IV λλ1548,1551 absorption systems at z {sub abs} = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at z {sub abs} = 1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms{sup –1}, 4161 km s{sup –1}, and 9241 km s{sup –1}, while the absorption systems that weakened would have separation velocities of 900 km s{sup –1}, 2011 km s{sup –1}, and 2751 km s{sup –1}. Well-coordinated variations of the six C IV λλ1548,1551 absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.

  8. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  9. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices.

  10. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  11. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  12. A new detection of LYα absorption from the heliotail

    SciTech Connect

    Wood, Brian E.; Izmodenov, Vladislav V.; Alexashov, Dmitry B.; Redfield, Seth; Edelman, Eric

    2014-01-01

    We present new Hubble Space Telescope observations of H I Lyα absorption toward the F8 V star HD 35296. This line of sight is only a few degrees from the downwind direction of the local interstellar medium flow vector. As a consequence, Lyα absorption from the heliotail is detected in the spectrum, consistent with three previous downwind detections of heliotail absorption. The clustering of the heliotail absorption detections around the downwind direction demonstrates that the heliotail is pointed close to that direction, limiting the extent to which the interstellar magnetic field might be distorting and deflecting the heliotail. We explore this issue further using three-dimensional MHD models of the global heliosphere. The three computed models represent the first three-dimensional MHD models with both a kinetic treatment of neutrals and an extended grid in the tail direction, both of which are necessary to model Lyα absorption downwind. The models indicate only modest heliotail asymmetries and deflections, which are not large enough to be inconsistent with the clustering of heliotail absorption detections around the downwind direction. The models are reasonably successful at reproducing the observed absorption, but they do overpredict the Lyα opacity by a factor of 2-3. We discuss implications of these results in light of observations of the heliotail region from the Interstellar Boundary Explorer mission.

  13. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  14. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  15. New SCIAMACHY Solar Reference Spectrum

    NASA Astrophysics Data System (ADS)

    Hilbig, Tina; Bramstedt, Klaus; Weber, Mark; Burrows, John P.

    2016-04-01

    The Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard ESA's ENVISAT satellite platform was operating from 2002 until 2012. It was designed to measure the radiance backscattered from the Earth and hence determine total columns and vertical profiles of atmospheric trace gas species. Furthermore SCIAMACHY performed daily sun observations via a diffuser. Solar spectra in the wavelength range from 212 nm to 1760 nm and two narrow bands from 1930 to 2040 nm and 2260 to 2380 nm are measured with a spectral resolution of 0,2 to 1,5 nm in the different channels. Recent developments in the SCIAMACHY calibration (e.g. a physical model of the scanner unit including degradation effects, and an on-ground to in-flight correction using the on-board white light source (WLS)) are used for the generation of a new SCIAMACHY solar reference spectrum as a first step towards a 10 years time series of solar spectral irradiance (SSI) data. For validation comparisons with other solar reference spectra are performed.

  16. Absorption Changes in Bacterial Chromatophores

    PubMed Central

    Kuntz, Irwin D.; Loach, Paul A.; Calvin, Melvin

    1964-01-01

    The magnitude and kinetics of photo-induced absorption changes in bacterial chromatophores (R. rubrum, R. spheroides and Chromatium) have been studied as a function of potential, established by added redox couples. No photochanges can be observed above +0.55 v or below -0.15 v. The loss of signal at the higher potential is centered at +0.439 v and follows a one-electron change. The loss of signal at the lower potential is centered at -0.044 v and is also consistent with a one-electron change. Both losses are reversible. A quantitative relationship exists between light-minus-dark and oxidized-minus-reduced spectra in the near infrared from +0.30 to +0.55 v. Selective treatment of the chromatophores with strong oxidants irreversibly bleaches the bulk pigments but appears to leave intact those pigments responsible for the photo- and chemically-induced absorption changes. Kinetic studies of the photochanges in deaerated samples of R. rubrum chromatophores revealed the same rise time for bands at 433, 792, and 865 mμ (t½ = 50 msec.). However, these bands had different decay rates (t½ = 1.5, 0.5, 0.15 sec., respectively), indicating that they belong to different pigments. Analysis of the data indicates, as the simplest interpretation, a first-order (or pseudo first-order) forward reaction and two parallel first-order (or pseudo first-order) decay reactions at each wavelength. These results imply that all pigments whose kinetics are given are photooxidized and the decay processes are dark reductions. These experiments are viewed as supporting and extending the concept of a bacterial photosynthetic unit, with energy migration within it to specific sites of electron transfer. PMID:14185583

  17. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  18. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  19. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications. PMID:27045783

  20. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.