Science.gov

Sample records for absorption spectrum shows

  1. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  2. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  3. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  4. Ultraviolet absorption spectrum of gaseous HOCl

    SciTech Connect

    Mishalanie, E.A; Rutkowski, C.J.; Hutte, R.S.; Birks, J.W.

    1986-10-23

    The UV absorption spectrum of gaseous HOCl was investigated in the wavelength region 240 to 390 nm by using a dynamic HOCl source. Substantial quantities of HOCl were produced compared to two species (Cl/sub 2/O, ClO/sub 2/) that are spectral interferences in the wavelength region of interest. Thirteen experimental absorption spectra were analyzed by the statistical method of factor analysis. This analysis revealed that two major components were contributing to the total absorbance in each spectrum and that these two components accounted for 99.97% of all variance in the data. Mass spectra were simultaneously recorded with the absorption spectra by a quadrupole mass spectrometer that was calibrated for HOCl, Cl/sub 2/, Cl/sub 2/O, ClO/sub 2/, and other species. The two components in the absorption spectra were identified as Cl/sub 2/ and HOCl containing trace levels of ClO/sub 2/. The isolated Cl/sub 2/ and HOCl/ClO/sub 2/ spectral curves were obtained from a spectral-isolation factor analysis and quantified by using the Cl/sub 2/ spectrum as an internal standard. Atmospheric photolysis constants averaged over 24 h were calculated as a function of altitude from these cross sections and those currently recommended for atmospheric modeling. The calculated j values from the cross sections generated in this work predict a shorter photolysis lifetime for HOCl above 28 km. This results in a 6 to 19% decrease in the predicted HOCl diurnal average concentration in the altitude region 28 to 34 km, respectively, compared to the concentrations predicted by the currently recommended cross sections.

  5. 25. View down launch tube, showing shock absorption system. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. View down launch tube, showing shock absorption system. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  6. The Absorption Spectrum of the η Car Ejecta

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Viera, G.; Gull, T. R.

    2005-09-01

    The ultraviolet spectrum of η Car and the very nearby ejecta is dominated by complex wind profiles of the extended atmosphere. Increasingly from the STIS NUV to FUV, absorption features from the ejecta and the interstellar medium are superimposed. The absorption from the foreground ejecta display a velocity dispersion between -650 > v > -100 km s-1, with two easily separated components at -146 and -513 km s-1. These two velocities components have earlier been determined to be formed at very different distances from the central source (Gull et al. 2004), and seem to be linked to Little Homunculus and the Homunculus, respectively.The -146 and -513 km s-1 components show different ionization structures. While the -146 km s-1 component shows a spectrum from almost exclusively singly ionized iron group elements, the fast -513 km s-1 has a lower excitation temperature and consequently shows lines from both neutral and singly ionized species. H2 has a huge impact on the spectrum between 1200 to 1650 Å{} and can for some regions completely describe the ejecta spectrum. The ejecta vary in absorption throughout the spectroscopic period. The -146 km s-1 component strengthens when the minimum approaches. The fast component is not significantly affected across the minimum, however, the molecular lines show a dramatic decrease in intensity likely caused by the drop of FUV radiation reaching the -513 km s-1 ejecta. In this spectral range interstellar features such as S II, C II, C IV, Si II and Si IV have a significant impact on the spectrum. We used an earlier study by Walborn et al. (2002) to estimate the ISM's influence on the η Car spectrum. Many of the interstellar lines show a large velocity dispersion (-388 to +127 km s-1). Within 0.1 arcsec of the central source, STIS resolves spatial features at the 0.25 arcsec scale. A number of strong emission lines are observable in the spectrum and associable with the Weigelt blobs B and C. During the minimum when the FUV and X

  7. The Absorption Spectrum of Iodine Vapour

    ERIC Educational Resources Information Center

    Tetlow, K. S.

    1972-01-01

    A laboratory experiment is described which presents some molecular parameters of iodine molecule by studying iodine spectrum. Points out this experiment can be conducted by sixth form students in high school laboratories. (PS)

  8. Excitonic Effects and Optical Absorption Spectrum of Doped Graphene

    NASA Astrophysics Data System (ADS)

    Jornada, Felipe; Deslippe, Jack; Louie, Steven

    2012-02-01

    First-principles calculations based on the GW-Bethe-Salpeter Equation (GW-BSE) approach and subsequent experiments have shown large excitonic effects in the optical absorbance of graphene. Here we employ the GW-BSE formalism to probe the effects of charge carrier doping and of having an external electric field on the absorption spectrum of graphene. We show that the absorbance peak due to the resonant exciton exhibits systematic changes in both its position and profile when graphene is gate doped by carriers, in excellent agreement to very recent measurementsootnotetextTony F. Heinz, private communications.. We analyze the various contributions to these changes in the absorption spectrum, such as the effects of screening by carriers to the quasiparticle energies and electron-hole interactions. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the U.S. DOD - Office of Naval Research under RTC Grant No. N00014-09-1-1066. Computer time was provided by NERSC.

  9. [The measurement and analysis of visible-absorption spectrum and fluorescence spectrum of lycopene].

    PubMed

    Yang, Xiao-zhan; Li, Ping; Dai, Song-hui; Wu, Da-cheng; Li, Rui-xia; Yang, Jian-hui; Xiao, Hai-bo

    2005-11-01

    Using ICCD spectral detection system, the absorbency of lycopene-carbon bisulfide solution with different concentration was measured, and the result shows that in a specified range the absorption rule of lycopene solution agrees with Lambert-Beer Law. Absorption spectral wavelength shifts were measured respectively when lycopene was dissolved in acetone, normal hexane, petroleum ether, benzene, ethyl acetate, and carbon bisulfide, and comparing to acetone, different red-shift appeared when lycopene was dissolved in benzene, ethyl acetate, and carbon bisulfide when water was added in lycopene-acetone solution, t he absorbency of lycopene dropped, the fine structure of absorption spectrum became indistinct, and a new absorption peak appeared in UV. The reason for these phenomena is that the solvent molecule had different effect on lycopene molecule when lycopene was dissolved in different solvent. Using fluorecence spectrophotometer, fluorescence spectra of lycopene in different concentrations were collected, and the results show that the fluorescence spectra of lycopene were mainly in 500-680 nm. When concentration was lower than 50 microg x mL(-1), the fluorescence intensity linearly increased with increasing concentration, and when concentration was higher than 60 microg x mL(-1), the fluorescence intensity dropped because of the interaction between lycopene molecules. PMID:16499057

  10. Extreme-ultraviolet absorption spectrum of Ga+

    NASA Astrophysics Data System (ADS)

    Dunne, P.; O'sullivan, G.; Ivanov, V. K.

    1993-12-01

    Time-resolved photoabsorption spectra of gallium plasmas have been photographed in the 50-450-Å region using the dual-laser-produced-plasma technique. The absorbing plasmas were produced by focusing the output of a Q-switched ruby laser onto slab targets while the background continuum was produced by focusing the output of a Nd:YAG oscillator-amplifier system (where Nd:YAG denotes neodymium-doped yttrium-aluminum-garnet) onto a samarium or hafnium target. At 130-ns delay between the two pulses the spectrum recorded was due almost exclusively to Ga+. We have observed transitions due to both 3d and 3p excitation. In the former case we identified 3d104s2-3d94s2nf and 3d94s2np series converging on the 2D3/2 and 2D5/2 limits of Ga2+. In the 3p case no strong transitions were observed because of line broadening by super-Coster-Kronig decay of the 3p hole. The identifications were made by comparison with the predictions of Hartree-Fock and Dirac-Fock atomic-structure codes. Many-body calculations were also performed which proved invaluable in estimating the effects of different decay processes. The theoretical predictions are compared with the experimental data.

  11. On the Absorption Spectrum of Noble Gases at the Arc Spectrum Limit

    PubMed Central

    Fano, Ugo; Pupillo, Guido; Zannoni, Alberto; Clark, Charles W.

    2005-01-01

    Rydberg spectral lines of an atom are sometimes superimposed on the continuous spectrum of a different configuration. Effects of interaction among different configurations in one of these cases are theoretically investigated, and a formula is obtained that describes the behavior of absorption spectrum intensity. This offers qualitative justification of some experimental results obtained by BEUTLER in studies of absorption arc spectra of noble gases and Ib spectra of some metal vapors. PMID:27308180

  12. Optical absorption spectrum of Cu 2+ in calcium tartrate tetrahydrate

    NASA Astrophysics Data System (ADS)

    Swamy, Y. K. R.; Reddy, P. P.; Reddy, Y. P.

    1980-02-01

    Copper doped single crystals of calcium tartrate tetrahydrate are grown from silica gel. The optical absorption spectrum is investigated with polarised and unpolarised beams of incident light. The spectrum is attributed to the Cu 2+ ion in C 4V symmetry associated with spin-orbit coupling. The following crystal field parameters are evaluated: Dq = 1000 cm -1; λ = -830 cm -1; Ds = 1540 cm -1; Dt = 470 cm -1.

  13. Absorption spectrum of DNA for wavelengths greater than 300 nm

    SciTech Connect

    Sutherland, J.C.; Griffin, K.P.

    1981-06-01

    Although DNA absorption at wavelengths greater than 300 nm is much weaker than that at shorter wavelengths, this absorption seems to be responsible for much of the biological damage caused by solar radiation of wavelengths less than 320 nm. Accurate measurement of the absorption spectrum of DNA above 300 nm is complicated by turbidity characteristic of concentrated solutions of DNA. We have measured the absorption spectra of DNA from calf thymus, Clostridium perfringens, Escherichia coli, Micrococcus luteus, salmon testis, and human placenta using procedures which separate optical density due to true absorption from that due to turbidity. Above 300 nm, the relative absorption of DNA increases as a function of guanine-cytosine content, presumably because the absorption of guanine is much greater than the absorption of adenine at these wavelengths. This result suggests that the photophysical processes which follow absorption of a long-wavelength photon may, on the average, differ from those induced by shorter-wavelength photons. It may also explain the lower quantum yield for the killing of cells by wavelengths above 300 nm compared to that by shorter wavelengths.

  14. Ultraviolet absorption spectrum of chlorine nitrite, ClONO

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1977-01-01

    The near-ultraviolet absorption spectrum of chlorine nitrite (ClONO) has been quantitatively investigated over the wavelength range 230-400 nm at 231 K. An absorption maximum was observed at 290 nm with a cross section of 1.5 by 10 to the -18th power sq cm. The calculated lifetime against photodissociation for ClONO in the atmosphere is 2 to 3 minutes. The large photolysis rate indicates that ClONO does not play a significant role in the stratosphere as a temporary holding tank for chlorine.

  15. Photoionization and absorption spectrum of formaldehyde in the vacuum ultraviolet.

    NASA Technical Reports Server (NTRS)

    Mentall, J. E.; Gentieu, E. P.; Krauss, M.; Neumann, D.

    1971-01-01

    The measurements have been conducted in the spectral range from 600 to 2000 A. Integrated oscillator strengths were determined for a number of strong Rydberg transitions above 1200 A. From the photoionization curve the first adiabatic ionization potential was found to be 10.87 plus or minus 0.01 eV. As an aid in interpreting the absorption spectrum, theoretical calculations were made using a single-configuration self-consistent field procedure for the Rydberg states and a model which included mixing between the Rydberg and valence states.

  16. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  17. ULTRAVIOLET ABSORPTION SPECTRUM OF NITROUS OXIDE AS FUNCTION OF TEMPERATURE AND ISOTOPIC SUBSTITUTION

    SciTech Connect

    Selwyn, G.S.; Johnston, H.S.

    1980-07-01

    The ultraviolet absorption spectra of nitrous oxide and its {sup 15}N isotopes over the wavelength range 197 to 172 nm and between 150 and 500 K show a weak continuous absorption and a pattern of diffuse banding that became pronounced at higher temperatures. The temperature dependence of the absorption spectrum results from the activation of the n{sub 2}{double_prime} bending mode. Deconvolution of the data shows that absorption by molecules in the (010) vibrational mode results in a spectrum of vibrational bands superimposed on a continuum. A weaker and nearly continuous spectrum results from the ultraviolet absorption by molecules in the (000) vibrational mode. Analysis of the structuring indicates n{sub 2}{double_prime} = (490 {+-} 10) cm{sup -1}. No rotational structure can be observed. Measurement of the n{sub 2}{double_prime} isotope shift is used to identify the quantum number of the upper state vibrational levels. Normal coordinate analysis of the excited state is used to determine a self-consistent set of molecular parameters: bond angle (115{sup o}), the values of n{sub 1}{prime} and n{sub 3}{prime} (1372 and 1761 cm{sup -1}, respectively), and the force constants of the upper state. It is suggested that the transitions observed are {sup 1}S{sup -}({sup 1}A{sup -}) {l_arrow} X- {sup 1}{sup +} and {sup 1}D {l_arrow} {tilde X} {sup 1}S{sup +}.

  18. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    SciTech Connect

    Silant’ev, A. V.

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  19. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  20. Vertical transition energies vs. absorption maxima: illustration with the UV absorption spectrum of ethylene.

    PubMed

    Lasorne, Benjamin; Jornet-Somoza, Joaquim; Meyer, Hans-Dieter; Lauvergnat, David; Robb, Michael A; Gatti, Fabien

    2014-02-01

    We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared directly to the results of electronic structure calculations for two very different reasons. After validation of our level of theory against experimental data, a new experimental reference of 7.28 eV is suggested for benchmarking the Rydberg state, and the often-cited average transition energy (7.80 eV) is confirmed as a safer estimate for the valence state. PMID:23711543

  1. [Effects of LED spectrum combinations on the absorption of mineral elements of hydroponic lettuce].

    PubMed

    Chen, Xiao-Li; Guo, Wen-Zhong; Xue, Xu-Zhang; Mmanake Beauty, Morewane

    2014-05-01

    Lettuce (Lactuca sativa) was hydroponically cultured in a completely enclosed plant factory, in which spectrum proportion-adjustable LED panels were used as sole light source for plant growth. Absorption and content of eleven mineral elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu, B and Mo in Lactuca sativa under different spectral component conditions were studied by ICP -AES technology. The results showed that: (1) Single or combined spectrums corresponding to the absorbing peaks of chlorophyll a and b (450, 660 nm) could enhance the absorbing ability of roots especially for mineral elements Na, Fe, Mn, Cu and Mo, the single red spectrum had the most significant promoting effect under which contents of those four elements were respectively 7. 8, 4. 2, 4. 0 and 3. 7 times more than that under FL; (2) Absorption of K and B was the highest under FL which was 10. 309 mg g-1 and 32. 6 microg g-1 while the values decreased significantly under single or combined spectrum of red and blue; (3) Plants grown under single blue spectrum had the lowest absorption of Ca and Mg which respectively decreased by 35% and 33% than FL; (4) Lettuce grown under the spectrum combination of 30% blue and 70% red had the highest accumulations of biomass while those grown under 20% blue and 80% red had the highest accumulations of the following seven elements Ca, Mg, Na, Fe, Mn, Zn and B. The results provided theoretical basis for adjusting nutrient solution formula and selecting light spectrum of hydroponic lettuce. PMID:25095445

  2. THE SURPRISING ABSENCE OF ABSORPTION IN THE FAR-ULTRAVIOLET SPECTRUM OF Mrk 231

    SciTech Connect

    Veilleux, S.; Trippe, M.; Krug, H.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Genzel, R.; Sturm, E.; Tacconi, L.; Sembach, K. R.; Teng, S. H.; Maiolino, R. E-mail: veilleux@astro.umd.edu

    2013-02-10

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering {approx}1150-1470 A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint ({approx}<2% of predictions based on H{alpha}), broad ({approx}>10,000 km s{sup -1} at the base), and highly blueshifted (centroid at {approx} -3500 km s{sup -1}) Ly{alpha} emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F {sub {lambda}}{proportional_to}{lambda}{sup 1.7}) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly{alpha} emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (A{sub V} {approx} 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  3. The Surprising Absence of Absorption in the Far-ultraviolet Spectrum of Mrk 231

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Trippe, M.; Hamann, F.; Rupke, D. S. N.; Tripp, T. M.; Netzer, H.; Lutz, D.; Sembach, K. R.; Krug, H.; Teng, Stacy H.; Genzel, R.; Maiolino, R.; Sturm, E.; Tacconi, L.

    2013-01-01

    Mrk 231, the nearest (z = 0.0422) quasar, hosts both a galactic-scale wind and a nuclear-scale iron low-ionization broad absorption line (FeLoBAL) outflow. We recently obtained a far-ultraviolet (FUV) spectrum of this object covering approx. 1150-1470A with the Cosmic Origins Spectrograph on board the Hubble Space Telescope. This spectrum is highly peculiar, highlighted by the presence of faint (< or approx.2% of predictions based on H(alpha)), broad (> or approx.10,000 km/s at the base), and highly blueshifted (centroid at approx. 3500 km/s) Ly(aplpha) emission. The FUV continuum emission is slightly declining at shorter wavelengths (consistent with F(sub lambda) Alpha Lambda(sup 1.7)) and does not show the presence of any obvious photospheric or wind stellar features. Surprisingly, the FUV spectrum also does not show any unambiguous broad absorption features. It thus appears to be dominated by the AGN, rather than hot stars, and virtually unfiltered by the dusty FeLoBAL screen. The observed Ly(alpha) emission is best explained if it is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad emission line region seen through the dusty (Av approx. 7 mag) broad absorption line region. Two possible geometric models are discussed in the context of these new results.

  4. Temperature dependence of the far-infrared absorption spectrum of gaseous methane.

    NASA Astrophysics Data System (ADS)

    Codastefano, P.; Dore, P.; Nencini, L.

    The rototranslational absorption spectrum of gaseous methane has been measured at seven different temperatures from 296 to 140 K. The authors have analyzed both the spectral moments and the experimental absorption shapes, assuming that only octupolar and hexadecapolar induction mechanisms contribute to the absorption. This assumption allows to parameterize the temperature dependence of both the intensity and the shape of the absorption band. The results obtained indicate that other contributions to absorption are not negligible.

  5. Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations

    SciTech Connect

    Xu, Xuefei; Zheng, Jingjing; Truhlar, Donald G.

    2015-07-01

    Free energy calculations for eight enol isomers of malonaldehyde (MA) and simulation of the ultraviolet (UV) absorption spectrum in both the gas phase and water (pH = 3, where the molecule exists in neutral undeprotonated form) show that in water the two s-trans nonchelated enol conformers of MA become thermodynamically more stable than the internally hydrogen-bonded (“chelated enol”) conformer (CE). The pure CE conformer in water has a slightly red-shifted UV spectrum with respect to that in the gas phase, but the blue-shifted spectrum observed in water at pH 3 is dominated by solvent-stabilized conformations that have negligible populations in the gas phase. Density functional calculations with the solvation model based on density (SMD) and an ensemble-averaged vertical excitation model explain the experimental observations in detail.

  6. Mg I absorption features in the solar spectrum near 9 and 12 microns

    NASA Technical Reports Server (NTRS)

    Glenar, David A.; Reuter, Dennis C.; Deming, Drake; Chang, Edward S.

    1988-01-01

    High-resolution FTS observations from the Kitt Peak National Solar Observatory and the Spacelab 3 ATMOS experiment have revealed additional infrared transitions due to Mg I in the spectra of both quiet sun and sunspot penumbra. In contrast to previous observations, these transitions are seen in absorption, not emission. Absorption intensities range from 1 to 7 percent of the continuum in the quiet sun. In the penumbra, the same features appear to show Zeeman splitting. Modeling of the line profiles in the photospheric spectrum shows evidence for a factor of three overabundance in the n = 5 or more levels of Mg I in the upper photosphere, but with no deviations from a Planck source function. It is concluded that whatever the process that produces the emission (including the Lemke and Holweger mechanism), it must occur well above the tau(5000) = 0.01 level.

  7. Electronic structure and absorption spectrum of biexciton obtained by using exciton basis

    SciTech Connect

    Shiau, Shiue-Yuan; Combescot, Monique; Chang, Yia-Chung

    2013-09-15

    We approach the biexciton Schrödinger equation not through the free-carrier basis as usually done, but through the free-exciton basis, exciton–exciton interactions being treated according to the recently developed composite boson many-body formalism which allows an exact handling of carrier exchange between excitons, as induced by the Pauli exclusion principle. We numerically solve the resulting biexciton Schrödinger equation with the exciton levels restricted to the ground state and we derive the biexciton ground state as well as the bound and unbound excited states as a function of hole-to-electron mass ratio. The biexciton ground-state energy we find, agrees reasonably well with variational results. Next, we use the obtained biexciton wave functions to calculate optical absorption in the presence of a dilute exciton gas in quantum well. We find an asymmetric peak with a characteristic low-energy tail, identified with the biexciton ground state, and a set of Lorentzian-like peaks associated with biexciton unbound states, i.e., exciton–exciton scattering states. Last, we propose a pump–probe experiment to probe the momentum distribution of the exciton condensate. -- Highlights: •New composite boson many-body theory is used to derive exactly the biexciton Schrödinger equation using the exciton basis. •We solved the 2D and 3D biexciton ground- and excited-state binding energies for various electron-to-hole mass ratios. •The absorption spectrum shows an asymmetric low-energy peak identified with the biexciton ground state. •High-energy Lorentzian-like peaks in the absorption spectrum are associated with the exciton–exciton scattering states. •The exciton gas momentum distribution can be determined by the absorption spectrum via the biexciton wave functions.

  8. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  9. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A.; Lee, Yuan-Pern

    2016-07-01

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm-1 are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm-1 is blue shifted from the corresponding band of CH2OO at 1286 cm-1; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm-1, observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.

  10. Infrared absorption spectrum of the simplest deuterated Criegee intermediate CD2OO.

    PubMed

    Huang, Yu-Hsuan; Nishimura, Yoshifumi; Witek, Henryk A; Lee, Yuan-Pern

    2016-07-28

    We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm(-1) are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm(-1) is blue shifted from the corresponding band of CH2OO at 1286 cm(-1); this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm(-1), observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO. PMID:27475359

  11. [Detection technology of methane gas concentration based on infrared absorption spectrum].

    PubMed

    Luo, Da-Feng; Yang, Jian-Hua; Zhong, Chong-Gui

    2011-02-01

    According to the disadvantages of current methane sensor in coal mine, the infrared methane concentration detection system based on the principle of infrared spectrum absorption was designed using differential absorption technology. In the system single light beam absorbing cell and single light beam and double wavelengths technology are adopted. Differential amplifier circuit serves as the core of faint signal processing circuit that detects the output signal of methane concentration, and linear formula fits the curve of methane concentration and output voltage, which realizes accurate and full range detection of gas concentration. Experiment shows that measurement error is less than 2%, and the system has very high measurement precision and possesses the basis of industrial applications. PMID:21510386

  12. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  13. INCIDENCE OF Mg II ABSORPTION SYSTEMS TOWARD FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Chand, Hum; Gopal-Krishna E-mail: krishna@ncra.tifr.res.in

    2012-07-20

    The conventional wisdom that the rate of incidence of Mg II absorption systems, dN/dz (excluding 'associated systems' having a velocity {beta}c relative to the active galactic nucleus (AGN) of less than {approx}5000 km s{sup -1}), is totally independent of the background AGNs has been challenged by a recent finding that dN/dz for strong Mg II absorption systems toward distant blazars is 2.2 {+-} {sup 0.8}{sub 0.6} times the value known for normal optically selected quasars (QSOs). This has led to the suggestion that a significant fraction of even the absorption systems with {beta} as high as {approx}0.1 may have been ejected by the relativistic jets in the blazars, which are expected to be pointed close to our direction. Here, we investigate this scenario using a large sample of 115 flat-spectrum radio-loud quasars (FSRQs) that also possess powerful jets, but are only weakly polarized. We show, for the first time, that dN/dz toward FSRQs is, on the whole, quite similar to that known for QSOs and that the comparative excess of strong Mg II absorption systems seen toward blazars is mainly confined to {beta} < 0.15. The excess relative to FSRQs probably results from a likely closer alignment of blazar jets with our direction; hence, any gas clouds accelerated by them are more likely to be on the line of sight to the active quasar nucleus.

  14. The Far-Infrared Absorption Spectrum of Low Temperature Hydrogen Gas.

    NASA Astrophysics Data System (ADS)

    Wishnow, Edward Hyman

    The far-infrared absorption spectrum of normal hydrogen gas has been measured from 20-320 cm^ {-1} (lambda = 500-31 mu M), over the temperature range 21-38 K, and the pressure range 0.6-3 atmospheres. The spectra cover the very weak and broad collision-induced translational absorption band of H_2 which at these low temperatures is observed well isolated from the H_2 rotational lines. Translational absorption occurs when two molecules collide and absorb a photon via a transient induced dipole moment. The molecules emerge from the collision with altered translational energies, and the rotational, vibrational, and electronic energy states remain unaffected. The present spectra are the lowest temperature, lowest pressure, and highest resolution studies of the H_2 translational spectrum. In order to observe the weak translational absorption band, a long pathlength multireflection absorption cell ('White cell'), cooled by the continuous flow of helium vapour, has been designed and constructed. The cell has an f/10 optical beam that allows long wavelength radiation to be transmitted, with low diffraction losses, over an optical path of up to 60 m. The cell is coupled to a Fourier transform interferometer and H_2^ectra are obtained at a spectral resolution of 0.24 cm ^{-1}, 10 times higher than previous experiments. Low temperature absorption spectra are due to not only transitions between molecular translational energy states, but also rotational transitions between the bound states of the van der Waals complex formed by two hydrogen molecules. The integrated absorption of the measured H _2 translational spectrum is consistent with the binary absorption coefficient calculated using the Poll and Van Kranendonk theory of collison-induced absorption. The calculation is based on the quantum mechanical pair distribution function derived from the Lennard-Jones intermolecular potential, and it includes contributions from H_2 dimer bound states. Although dimer transitions

  15. Methane absorption variations in the spectrum of Pluto

    SciTech Connect

    Buie, M.W.; Fink, U.

    1987-06-01

    The lightcurve phases of 0.18, 0.35, 0.49, and 0.98 covered by 5600-10,500 A absolute spectrophotometry of Pluto during four nights include minimum (0.98) light and one near-maximum (0.49) light. The spectra are noted to exhibit significant methane band absorption depth variations at 6200, 7200, 7900, 8400, 8600, 8900, and 10,000 A, with the minimum absorption occurring at minimum light and thereby indicating a 30-percent change in the methane column abundance in the course of three days. An attempt is made to model this absorption strength variation with rotational phase terms of an isotropic surface distribution of methane frost and a clear layer of CH4 gas. 34 references.

  16. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    SciTech Connect

    Brabec, Jiri; Lin, Lin; Shao, Meiyue; Govind, Niranjan; Yang, Chao; Saad, Yousef; Ng, Esmond

    2015-10-06

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate the density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.

  17. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  18. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. PMID:24529777

  19. Adolescents with Autism Spectrum Disorder Show a Circumspect Reasoning Bias Rather than "Jumping-to-Conclusions"

    ERIC Educational Resources Information Center

    Brosnan, Mark; Chapman, Emma; Ashwin, Chris

    2014-01-01

    People with autism spectrum disorders (ASD) often take longer to make decisions. The Autism-Psychosis Model proposes that people with autism and psychosis show the opposite pattern of results on cognitive tasks. As those with psychosis show a jump-to-conclusions reasoning bias, those with ASD should show a circumspect reasoning bias.…

  20. The interstellar absorption-line spectrum of Mu Ophiuchi

    NASA Technical Reports Server (NTRS)

    Cardelli, J.; Boehm-Vitense, E.

    1982-01-01

    UV interstellar lines have been measured on high-resolution, long- and short-wavelength IUE spectra of the B8 V star Mu Oph. Column densities for the observed atoms and ions have been determined as well as turbulent velocities. The interstellar spectrum of Mu Oph is similar to the ones for Rho Oph and Zeta Oph. The ionization equilibria of several elements give consistent limits for the electron density. The C I line arising from different fine-structure levels are studied to yield estimates on the physical conditions in the cloud. Relative depletion of elements in the cloud seen in the interstellar spectrum of Mu Oph follows the same pattern as seen in the interstellar spectra of Zeta Oph and six other stars in the Rho Oph cloud complex.

  1. Influence of nanorod absorption spectrum width on superluminality effect for laser pulse propagation

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2016-03-01

    We investigate the influence of the finite absorption spectrum width on the soliton formation and superluminality phenomenon at a femtosecond pulse propagation in a medium with noble nanoparticles. These effects take place if a positive phase-amplitude grating is induced by laser radiation. We take into account the two-photon absorption (TPA) of laser radiation by nanorods, and time-dependent nanorod aspect ratio changing due to their melting or reshaping because of laser energy absorption, and the nanorod absorption spectrum width. On the basis of computer simulation we demonstrate these effects in a medium with positive phase-amplitude grating, induced by laser radiation, if a weak laser energy absorption takes place on the laser pulse dispersion length.

  2. Phenolic acids from wheat show different absorption profiles in plasma: a model experiment with catheterized pigs.

    PubMed

    Nørskov, Natalja P; Hedemann, Mette S; Theil, Peter K; Fomsgaard, Inge S; Laursen, Bente B; Knudsen, Knud Erik Bach

    2013-09-18

    The concentration and absorption of the nine phenolic acids of wheat were measured in a model experiment with catheterized pigs fed whole grain wheat and wheat aleurone diets. Six pigs in a repeated crossover design were fitted with catheters in the portal vein and mesenteric artery to study the absorption of phenolic acids. The difference between the artery and the vein for all phenolic acids was small, indicating that the release of phenolic acids in the large intestine was not sufficient to create a porto-arterial concentration difference. Although, the porto-arterial difference was small, their concentrations in the plasma and the absorption profiles differed between cinnamic and benzoic acid derivatives. Cinnamic acids derivatives such as ferulic acid and caffeic acid had maximum plasma concentration of 82 ± 20 and 200 ± 7 nM, respectively, and their absorption profiles differed depending on the diet consumed. Benzoic acid derivatives showed low concentration in the plasma (<30 nM) and in the diets. The exception was p-hydroxybenzoic acid, with a plasma concentration (4 ± 0.4 μM), much higher than the other plant phenolic acids, likely because it is an intermediate in the phenolic acid metabolism. It was concluded that plant phenolic acids undergo extensive interconversion in the colon and that their absorption profiles reflected their low bioavailability in the plant matrix. PMID:23971623

  3. An absorption line in the ultraviolet spectrum of 40 Eridani B

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.

    1980-01-01

    Two excellent low-resolution spectra show an absorption line of equivalent width 3 A, near 1391 A, in the typical DA (hydrogen atmosphere) white dwarf 40 Eri B. The line is confirmed by a high-resolution spectrum and is the first seen in any DA star. Ultraviolet fluxes and the profile of Lyman-alpha confirm an effective temperature near 17,000 K. If the line is Si IV, it requires a temperature near 40,000 K. Unattractive possibilities are a hot circumstellar absorbing envelope dependent on accretion from companions, or formation at large optical depth in a transparent atmosphere with high Si/H. A suggestion that H2 should be considered leads to the possible interpretation as the (0, 5) transition of the Lyman band, formed at small optical depth. The band should be stronger in cooler DAs.

  4. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  5. The UV/Vis absorption spectrum of matrix-isolated dichlorine peroxide, ClOOCl.

    PubMed

    von Hobe, Marc; Stroh, Fred; Beckers, Helmut; Benter, Thorsten; Willner, Helge

    2009-03-14

    UV/Vis absorption spectra of ClOOCl isolated in neon matrices were measured in the wavelength range 220-400 nm. The purity of the trapped samples was checked by infrared and UV/Vis matrix spectroscopy as well as low-temperature Raman spectroscopy. At wavelengths below 290 nm, the results agree with the UV spectrum recently published by Pope et al. [J. Phys. Chem. A, 2007, 111, 4322-4332]. However, the observed absorption in the long wavelength tail of the spectrum-relevant for polar stratospheric ozone loss-is substantially higher than reported by Pope et al. Our results suggest the existence of a ClOOCl electronic state manifold leading to an absorption band similar to those of the near UV spectrum of Cl(2). The differences to previous studies can be accounted for quantitatively by contributions to the reported absorption spectra caused by impurities. The observed band in the long wavelength tail is supported by several high-level ab initio calculations. However, questions arise concerning absolute values of the ClOOCl cross sections, an issue that needs to be revisited in future studies. With calculated photolysis rates based on our spectrum scaled to previous cross sections at the peak absorption, the known polar catalytic ozone-destruction cycles to a large extent account for the observed ozone depletion in the spring polar stratosphere. PMID:19240934

  6. The ultraviolet absorption spectrum of the quasar PKS 0405-12 and the local density of Lyman-alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.

    1993-01-01

    A sample of 32 absorption lines has been identified in the ultraviolet spectrum of the z = 0.57 quasar PKS 0405-12. Data cover the wavelength range 1190-3260 A. There are 10 extragalactic Ly-alpha absorption lines in the complete sample, all with observed equivalent widths greater than or equal to 0.40 A; three of the Ly-alpha lines have Ly-beta counterparts. The number of Ly-alpha lines observed in the spectrum of PKS 0405-12 is within 1 sigma of the number predicted on the basis of previous HST observations of 3C 273 and of H1821 + 643. Combining the HST observations of 3C 273, H1821 + 643, and PKS 0405-12, we estimate the local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A to be about 15 +/- 4 Ly-alpha lines per unit redshift. Ground-based images reveal a rich field of galaxies in the direction of PKS 0405-12, including many galaxies with the brightnesses and sizes expected if they belong to a cluster associated with the quasar. The quasar spectrum does not show any evidence for absorption at the redshift of the emission lines, indicating a covering factor of less than unity for the halos of galaxies in the cluster around PKS 0405 - 12.

  7. Analysis of urinary stone based on a spectrum absorption FTIR-ATR

    NASA Astrophysics Data System (ADS)

    Asyana, V.; Haryanto, F.; Fitri, L. A.; Ridwan, T.; Anwary, F.; Soekersi, H.

    2016-03-01

    This research analysed the urinary stone by measuring samples using Fourier transform infrared-attenuated total reflection spectroscopy and black box analysis. The main objective of this study is to find kinds of urinary stone and determine a total spectrum, which is a simple model of the chemical and mineral composition urinary stone through black box analysis using convolution method. The measurements result showed that kinds of urinary stone were pure calcium oxalate monohydrate, ion amino acid calcium oxalate monohydrate, a mixture of calcium oxalate monohydrate with calcium phosphate, a mixture of ion amino acid calcium oxalate monohydrate and calcium phosphate,pure uric acid, ion amino acid uric acid, and a mixture of calcium oxalate monohydrate with ion amino acid uric acid. The results of analysis of black box showed characteristics as the most accurate and precise to confirm the type of urinary stones based on theregion absorption peak on a graph, the results of the convolution, and the shape of the total spectrum on each urinary stones.

  8. Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

    NASA Astrophysics Data System (ADS)

    Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.

    2008-03-01

    Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

  9. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  10. Ab initio calculation of the electronic absorption spectrum of liquid water

    SciTech Connect

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  11. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  12. Research on filling process of fuel and oxidant during detonation based on absorption spectrum technology

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-12-01

    Research on detonation process is of great significance for the control optimization of pulse detonation engine. Based on absorption spectrum technology, the filling process of fresh fuel and oxidant during detonation is researched. As one of the most important products, H2O is selected as the target of detonation diagnosis. Fiber distributed detonation test system is designed to enable the detonation diagnosis under adverse conditions in detonation process. The test system is verified to be reliable. Laser signals at different working frequency (5Hz, 10Hz and 20Hz) are detected. Change of relative laser intensity in one detonation circle is analyzed. The duration of filling process is inferred from the change of laser intensity, which is about 100~110ms. The peak of absorption spectrum is used to present the concentration of H2O during the filling process of fresh fuel and oxidant. Absorption spectrum is calculated, and the change of absorption peak is analyzed. Duration of filling process calculated with absorption peak consisted with the result inferred from the change of relative laser intensity. The pulse detonation engine worked normally and obtained the maximum thrust at 10Hz under experiment conditions. The results are verified through H2O gas concentration monitoring during detonation.

  13. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  14. Selectivity of the optical-absorption method based on an instrumental pick out of Fourier components in the absorption spectrum

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Yu. V.; Kolesnikov, S. A.; Kolesnikova, E. S.; Turutin, Yu. A.; Konopelko, L. A.; Shor, N. B.

    2016-06-01

    The introduction of interference-polarization filters (IPFs) in the structure of an optical-absorption analyzer makes it possible to pick out a harmonic (a Fourier component of the absorption spectrum) providing measurement with the highest sensitivity. The selectivity of such a method of analysis is determined by overlapping the oscillations of the measured and interfering components. By the example of measurement in benzene in the presence of an interfering component (toluene), the possibility is considered for the optimization of selectivity due to the variation of the path-difference dispersion for ordinary and extraordinary interfering rays. The metrological characteristics of the interference-polarization analyzer of C6H6 confirming the results of calculations are given.

  15. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  16. Absorption spectrum of NO in the {gamma}(O, O) band

    SciTech Connect

    Zobnin, A.V.; Korotkov, A.N.

    1995-05-01

    A promising technique for determining the concentration of nitrogen oxide in the air of an industrial zone and in process gases is the measurement of the absorption of UV radiation by this molecule in the {gamma}(O,O) band with the center of {lambda}{sub 0} = 226.5 nm. This band corresponds to the transition X{sup 2}{Pi}{yields}{Alpha}{sup 2}{Sigma} of the NO molecule and is characterized by a complex rotational structure consisting of about 400 lines. This structure cannot be resolved completely by most spectral instruments. However, if the width of the spread function of the device is perceptibly smaller than the width of the given absorption band ({approx_equal}2 nm), but larger than the characteristic space between rotational lines ({approx_equal}0.02 nm), then the recorded transmission spectra of NO are almost insensitive to a change in the form of this function. In the given case, to describe the transmission spectrum it is possible to use the absorption coefficient averaged over rotational lines. And even though the Bouger-Lambert-Beer law is not strictly applicable for this spectrum, the dependence of the transmission spectrum of NO on the optical thickness, temperature, and pressure of the broadening gas can be represented in the form of an empirical dependence that can be useful in practice, for example, when processing the absorption spectra recorded by dispersion gas analyzers. Thus, the need for complex and laborious calculations is avoided, and this simplifies considerably the instrumental implementation of this method of measuring the concentration of NO. The object of the present work is to determine the empirical dependence of the absorption spectrum of NO in the {gamma}(O, O) band on the optical thickness, temperature, and pressure of the broadening gas in the ranges most frequently encountered in operation of dispersion gas analyzers.

  17. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  18. Absorption spectrum and ultrafast response of monolayer and bilayer transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Turkowski, Volodymyr; Ramirez-Torres, Alfredo; Rahman, Talat S.

    2015-03-01

    We apply a combined time-dependent density functional theory and many-body theory approach to examine the absorption spectrum and nonequilibrium response of monolayer and bilayer MoS2, MoSe2, WS2 and WSe2 systems. In particular, we evaluate the possibility of existence of bound states - excitons and trions in the undoped systems. In a previous work we have already demonstrated that the binding energies of these states in the monolayer systems are large which makes them available for room temperature applications. We analyze the possibility of ultrafast electron-hole separation in bilayer systems through inter-layer hole transfer, and show that such a possibility exists, in agreement with experimental observations. For doped systems we consider the possibility of Mahan excitonic states in monolayers and show that the binding energy for these states is of the order of 10 meV. We perform a detailed analysis of the relaxation of doped monolayers excited by ultrafast laser pulse by taking into account electron-phonon scattering effects, and demonstrate that ultrafast (10-100fs) processes, including luminescence, may be relevant for these materials. Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354.

  19. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  20. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  1. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. PMID:27062543

  2. Collision-induced absorption in the far infrared spectrum of Titan

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Poll, J. D.; Goorvitch, D.; Tipping, R. H.

    1983-01-01

    The effects of collision-induced absorption on the far infrared spectrum of Titan have been investigated. After a review of the procedure for the theoretical calculation of the N2 translation-rotational spectrum, new results for the temperature range o 70 to 120 K are reported. These are used as input data for a simple atmospheric model in order to compute the far infrared radiance, brightness temperature, and specral limb function. This source of opacity alone is not capable of explaining the Voyager results. When the collision-induced methane is included, the results are in closer agreement in the range between 200 and 300/cm, suggesting that a more complete treatment of collision-induced absorption including particularly CH4-N2, N2-H2, and H2-H2 results, may provide sufficient opacity to reduce or obviate the need for opacities due to clouds or aerosols in order to explain the observed spectra.

  3. Light-induced changes in the absorption spectrum of bacteriorhodopsin under two-wavelength excitation

    NASA Astrophysics Data System (ADS)

    Koklyushkin, A. V.; Korolev, A. E.

    2004-09-01

    The results of spectrophotometric measurements of nonlinear light-induced changes in the absorption spectrum of bacteriorhodopsin D96N occurring upon simultaneous excitation at the wavelengths 633 and 441 nm in the excitation intensity range typical for recording of dynamic holograms are presented. The quantitative conditions under which the action of the radiation at one wavelength reduces the change in the optical density caused by the radiation at the other wavelength are determined.

  4. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel.

    PubMed

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Chen, An-Tao; Li, Feng-Hua; Wang, Wei-Hong; Zheng, Han-Feng; Gan, Ming-Yuan; Li, Chun-Qiu; Shum, David H K; Chan, Raymond C K

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  5. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel

    PubMed Central

    Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  6. A variable absorption feature in the X-ray spectrum of a magnetar.

    PubMed

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss. PMID:23955229

  7. Do people with autistic spectrum disorder show normal selection for attention? Evidence from change blindness.

    PubMed

    Fletcher-Watson, S; Leekam, S R; Turner, M A; Moxon, L

    2006-11-01

    People in the general population are typically very poor at detecting changes in pictures of complex scenes. The degree of this 'change blindness', however, varies with the content of the scene: when an object is semantically important or contextually inappropriate, people may be more effective at detecting changes. Two experiments investigated change blindness in people with autism, who are known from previous research to be efficient in detecting features yet poor at processing stimuli for meaning and context. The first experiment measured the effect of semantic information while the second investigated the role of context in directing attention. In each task, participants detected the dissimilarity between pairs of images. Both groups showed a main effect of image type in both experimental tasks, showing that their attention was directed to semantically meaningful and contextually inappropriate items. However, the autistic group also showed a greater difficulty detecting changes to semantically marginal items in the first experiment. Conclusions point to a normal selection of items for attention in people with autism spectrum disorders, although this may be combined with difficulty switching or disengaging attention. PMID:17018188

  8. Native and recombinant Pg-AMP1 show different antibacterial activity spectrum but similar folding behavior.

    PubMed

    Porto, William F; Nolasco, Diego O; Franco, Octavio L

    2014-05-01

    Glycine-rich proteins (GRPs) derived from plants compose a family of proteins and peptides that share a glycine repeat domain and they can perform diverse functions. Two structural conformations have been proposed for GRPs: glycine loops arranged as a Velcro and an anti-parallel β-sheet with several β-strands. The antimicrobial peptide Pg-AMP1 is the only plant GRP with antibacterial activity reported so far and its structure remains unclear. Recently, its recombinant expression was reported, where the recombinant peptide had an additional methionine residue at the N-terminal and a histidine tag at the C-terminal (His6-tag). These changes seem to change the peptide's activity, generating a broader spectrum of antibacterial activity. In this report, through ab initio molecular modelling and molecular dynamics, it was observed that both native and recombinant peptide structures were composed of an N-terminal α-helix and a dynamic loop that represents two-thirds of the protein. In contrast to previous reports, it was observed that there is a tendency to adopt a globular fold instead of an extended one, which could be in both, glycine loops or anti-parallel β-sheet conformation. The recombinant peptide showed a slightly higher solvated potential energy compared to the native form, which could be related to the His6-tag exposition. In fact, the His6-tag could be mainly responsible for the broader spectrum of activity, but it does not seem to cause great structural changes. However, novel studies are needed for a better characterization of its pharmacological properties so that in the future novel drugs may be produced based on this peptide. PMID:24582624

  9. Detection of the 1400 A absorption in the ultraviolet spectrum of the DA white dwarf LB 3303

    NASA Technical Reports Server (NTRS)

    Wegner, G.

    1982-01-01

    Low-resolution ultraviolet International Ultraviolet Explorer spectra of the southern white dwarf LB 3303 show the presence of the wavelength 1400 absorption feature reported by Greenstein in the spectrum of 40 Eri B. The equivalent width is 5.7 A, and the measured wavelength is 1394 A. A comparison of the ultraviolet fluxes with model atmospheres confirms that LB 3303 has an effective temperature near 16,000 K, as found earlier from visual wavelength data. There are still problems with the identification of this line. The star is not hot enough to explain the presence of Si IV, and the agreement with the spectrum of the H2 molecule is not convincing.

  10. Hydrogen sulfide absorption spectrum in the 5700-6600 cm-1 spectral region

    NASA Astrophysics Data System (ADS)

    Brown, L. R.; Naumenko, O. V.; Polovtseva, E. R.; Sinitsa, Leonid N.

    2004-01-01

    High resolution FT absorption spectrum of H2S from 5700 to 6600 cm-1 was experimentally recorded and theoretically treated. As a result of the spectrum assignment 1100 precise energy levels were derived for the 2nd hexad interacting states of H232S, H233S, and H234S isotope species including the highly excited (050) state. These energy levels were modeled using Watson-type rotational Hamiltonian and taking into account Coriolis, Darling-Dennison and weak Fermi-resonance interactions inside polyad of interacting states. An average accuracy of the energy levels fitting is of 0.0019 cm-1 for the main isotope species. New evaluation of the band origin of the dark (012) state Ev = 6385.299cm-1 is obtained from the fitting process which agrees well with recent prediction by Naumenko et al. (J. Mol. Spectrosc. 50, 100-110 (2001)). Precise line intensity measurements were performed for more than 1200 absorption lines with accuracy varying from 1 to 7%. These intensities were modeled within 3.3% using wavefunctions derived in the process of the energy levels fitting. The transformed transition moment expansion with 29 terms for 1088 intensities was used. Detailed and accurate H2S absorption line list was generated in the HITRAN format for the analyzed spectral region.

  11. UV absorption spectrum of the C2 Criegee intermediate CH{sub 3}CHOO

    SciTech Connect

    Smith, Mica C.; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A.; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH{sub 3}CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH{sub 3}CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10{sup −17} cm{sup 2} molecule{sup −1} at 308 nm and (9.7 ± 0.6) × 10{sup −18} cm{sup 2} molecule{sup −1} at 352 nm. After scaling the UV spectrum of CH{sub 3}CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10{sup −17} cm{sup 2} molecule{sup −1} at 328 nm. Compared to the simplest Criegee intermediate CH{sub 2}OO, the UV absorption band of CH{sub 3}CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH{sub 3}CHOO in the atmosphere.

  12. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO.

    PubMed

    Smith, Mica C; Ting, Wei-Lun; Chang, Chun-Hung; Takahashi, Kaito; Boering, Kristie A; Lin, Jim Jr-Min

    2014-08-21

    The UV spectrum of CH3CHOO was measured by transient absorption in a flow cell at 295 K. The absolute absorption cross sections of CH3CHOO were measured by laser depletion in a molecular beam to be (1.06 ± 0.09) × 10(-17) cm(2) molecule(-1) at 308 nm and (9.7 ± 0.6) × 10(-18) cm(2) molecule(-1) at 352 nm. After scaling the UV spectrum of CH3CHOO to the absolute cross section at 308 nm, the peak UV cross section is (1.27 ± 0.11) × 10(-17) cm(2) molecule(-1) at 328 nm. Compared to the simplest Criegee intermediate CH2OO, the UV absorption band of CH3CHOO is similar in intensity but blue shifted by 14 nm, resulting in a 20% slower photolysis rate estimated for CH3CHOO in the atmosphere. PMID:25149781

  13. Surprises from a Deep ASCA Spectrum of the Broad Absorption Line Quasar PHL 5200

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Matt, G.; Green, P. J.; Elvis, M.; Singh, K. P.

    2002-01-01

    We present a deep (approx. 85 ks) ASCA observation of the prototype broad absorption line quasar (BALQSO) PHL 5200. This is the best X-ray spectrum of a BALQSO yet. We find the following: (1) The source is not intrinsically X-ray weak. (2) The line-of-sight absorption is very strong, with N(sub H) = 5 x 10(exp 23)/sq cm. (3) The absorber does not cover the source completely; the covering fraction is approx. 90%. This is consistent with the large optical polarization observed in this source, implying multiple lines of sight. The most surprising result of this observation is that (4) the spectrum of this BALQSO is not exactly similar to other radio-quiet quasars. The hard X-ray spectrum of PHL 5200 is steep, with the power-law spectral index alpha approx. 1.5. This is similar to the steepest hard X-ray slopes observed so far. At low redshifts, such steep slopes are observed in narrow-line Seyfert 1 (NLS1) galaxies, believed to be accreting at a high Eddington rate. This observation strengthens the analogy between BALQSOs and NLS1 galaxies and supports the hypothesis that BALQSOs represent an early evolutionary state of quasars. It is well accepted that the orientation to the line of sight determines the appearance of a quasar: age seems to play a significant role as well.

  14. [Application of near-infrared absorption spectrum scanning techniques in gas quantitative measurement].

    PubMed

    Ding, Hui; Liang, Jian-Qi; Cui, Jun-Hong; Wu, Xiang-Nan; Li, Xian-Li

    2010-03-01

    A practical gas sensing system utilizing absorption spectrum scanning techniques was developed. Using the narrow-band transmission of a fiber tunable filter (TOF) and wavelength modulation technique, the so-called cross-sensing effects of the traditional spectrum absorption based gas sensor were reduced effectively and thus the target gas was detected sensitively and selectively. In order to reduce the effects of nonlinearity of TOF on the measurement results and improve the system stability in operation, the reflection spectrum of a reference FBG was monitored and employed to control the modulation region and center of TOF wavelength precisely. Moreover, a kind of weak signal detecting circuits was developed to detect the weak response signal of the system with high sensitivity. The properties of the proposed system were demonstrated experimentally by detection of acetylene. Approximate linear relationships between the system responses and the input acetylene concentrations were demonstrated by experiments. The minimum detectable acetylene of 5 x 10(-6), with signal-noise ratio of 3, was also achieved by experiments. PMID:20496683

  15. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  16. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  17. New transient absorption observed in the spectrum of colloidal CdSe nanoparticles pumped with high-power femtosecond pulses

    SciTech Connect

    Burda, C.; Link, S.; Green, T.C.; El-Sayed, M.A.

    1999-12-09

    The power dependence of the transient absorption spectrum of CdSe nanoparticle colloids with size distribution of 4.0 {+-} 0.4 nm diameter is studied with femtosecond pump-probe techniques. At the lowest pump laser power, the absorption bleaching (negative spectrum) characteristic of the exciton spectrum is observed with maxima at 560 and 480 nm. As the pump laser power increases, two new transient absorptions at 510 and 590 nm with unresolved fast rise (<100 fs) and long decay times ({much{underscore}gt}150 ps) are observed. The energy of each of the positive absorption is red shifted from that of the bleach bands by {approximately}120 MeV. The origin of this shift is discussed in terms of the effect of the internal electric field of the many electron-hole pairs formed within the quantum dot at the high pump intensity, absorption from a metastable excited state or the formation of biexcitons.

  18. Vibronic and Rydberg series assignments in the vacuum ultraviolet absorption spectrum of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Shastri, Aparna; Singh, Param Jeet; Krishnakumar, Sunanda; Mandal, Anuvab; Raja Sekhar, B. N.; D'Souza, R.; Jagatap, B. N.

    2014-11-01

    We report a comprehensive photoabsorption study of nitrous oxide (N2O) in the vacuum ultraviolet (45,000-95,000 cm-1) region using synchrotron radiation. The observed spectrum comprises of a few valence transitions and low lying Rydberg series converging to the two spin-orbit components (2П1/2,3/2) of the ground state of N2O+. Spectral analysis is aided by extensive quantum chemical calculations of vertical excited states, oscillator strengths and potential energy curves using the time dependent density functional theory. Vibronic bands observed in the first absorption system (45,000-60,000 cm-1) are assigned to hot band progressions in υ2‧ originating from v″=1 or 2. New insights into the assignment of the well-formed progression of bands in the X1Σ+→C1П system (60,000-72,000 cm-1) are afforded by consideration of the Renner-Teller interaction. A set of molecular vibrational parameters (ω2=467 cm-1, x22=-2.9, ε=-0.24) for the C1П state are derived from a fitting of the experimental data. The 3pπ1Σ+ state at ~77,600 cm-1 shows a large quantum defect (0.96) which is explained as arising due to mixed valence-Rydberg character. In the 85,000-95,000 cm-1 region, a number of absorption features are observed with greater clarity than in earlier photoabsorption studies and assigned to Rydberg series of type nlλ (n=3,4; l=s,p,d; λ=σ,π,δ) and accompanying vibronic bands. This work has resulted in clarification of several discrepancies in earlier Rydberg series assignments. Additionally, the 3pπ 3Σ- Rydberg state at 85,788 cm-1, the valence transition 7σ→3π (1П) at 87,433 cm-1 and the 3dλ Rydberg series in the 91,700-92,600 cm-1 region are assigned for the first time.

  19. Blue satellites of absorption spectrum study of sodium based excimer-pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Hu, Shu; Gai, Baodong; Guo, Jingwei; Tan, Yannan; Liu, Jinbo; Li, Hui; Cai, Xianglong; Shi, Zhe; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Sodium based excimer-pump alkali laser (Na-XPAL) is expected to be an efficient method to generate sodium beacon light, but the information about the spectroscopic characters of Na-XPAL remains sparse so far. In this work, we utilized the relative fluorescence intensity to study the absorption spectrum of blue satellites of complexes of sodium with different collision partners. The yellow fluorescence of Na D1 and D2 line was clearly visible. After processing the fluorescence intensity and the input pumping laser relative intensity, we obtained the Na-CH4 system's blue satellites was from 553nm to 556nm. Meanwhile, we experimentally demonstrated the Na-Ar and Na-Xe system's wavelength range of blue satellites. Also, it was observed that the Na-Xe system's absorption was stronger than the other two systems.

  20. Theoretical Study of the Absorption Spectrum and the Thermochemistry of the CF3OSO3 Radical

    NASA Astrophysics Data System (ADS)

    Cobos, Carlos J.; Croce, Adela E.

    2010-09-01

    The UV-visible absorption spectrum of the recently reported CF3OSO3 radical has been studied by using the time-dependent generalization of the density functional theory (TDDFT). For this a set of eleven hybrid functionals combined with the 6-311+G(3df) basis set were employed. The main features of the three experimental absorption bands of CF3OSO3 recorded over the 220 - 530 nm range are well reproduced by the calculations. A dissociation enthalpy for the CF3O-SO3 bond of 19.1 kcal mol-1 is predicted at the BAC-G3MP2//B3LYP/6-311+G(3df) level of theory

  1. Investigations on the 1.7 micron residual absorption feature in the vegetation reflection spectrum

    NASA Technical Reports Server (NTRS)

    Verdebout, J.; Jacquemoud, S.; Andreoli, G.; Hosgood, B.; Sieber, A.

    1993-01-01

    The detection and interpretation of the weak absorption features associated with the biochemical components of vegetation is of great potential interest to a variety of applications ranging from classification to global change studies. This recent subject is also challenging because the spectral signature of the biochemicals is only detectable as a small distortion of the infrared spectrum which is mainly governed by water. Furthermore, the interpretation is complicated by complexity of the molecules (lignin, cellulose, starch, proteins) which contain a large number of different and common chemical bonds. In this paper, we present investigations on the absorption feature centered at 1.7 micron; these were conducted both on AVIRIS data and laboratory reflectance spectra of leaves.

  2. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    SciTech Connect

    Heera, Pawan; Kumar, Anup; Sharma, Raman

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  3. Discovery of a second narrow absorption feature in the near-infrared spectrum of Io

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Trafton, L. M.; Ramseyer, T. F.; Gaffney, N. I.

    1992-01-01

    A high resolution survey of the near-IR reflectance spectrum of Io has shown a sharp absorption feature centered at 5045 +/- 1/cm; this feature is not present in laboratory spectra of dilute CO2 in a matrix. Since the spectrum of cold H2S ice crystals exhibits structure near this wavelength, it is suggested that either (1) the difference in width between this feature and that of the much broader Ionian H2S ice may be due to the presence of different phases of ice at different temperatures, so that these are emphasized in the different spectral regions, or (2) H2S is trapped in an SO2 matrix.

  4. The absorption spectrum of NH 2 in the region 5300 to 6800 Å

    NASA Astrophysics Data System (ADS)

    Ross, S. C.; Birss, F. W.; Vervloet, M.; Ramsay, D. A.

    1988-06-01

    The detailed analysis of the Ã2A 1- X˜2B 1 spectrum of NH 2 in the region 5300 to 6800 Å is reported. Term values derived from the analysis are also presented. Numerous new vibronic substates have been identified. The assignment of the substates and the perturbations detected are discussed in detail, making reference to the calculations of Jungen, Hallin, and Merer and also drawing on the argon matrix absorption spectrum of Robinson and McCarty. The parameters of a simplified model Hamiltonian are reported for most of the substates. The comparison of these results to the calculations of Jungen, Hallin, and Merer, along with the tendencies in the behavior of the spin-orbit coupling constant detected in their work, facilitated the assignments in the present work.

  5. Total Absorption Spectroscopy Study of (92)Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape.

    PubMed

    Zakari-Issoufou, A-A; Fallot, M; Porta, A; Algora, A; Tain, J L; Valencia, E; Rice, S; Bui, V M; Cormon, S; Estienne, M; Agramunt, J; Äystö, J; Bowry, M; Briz, J A; Caballero-Folch, R; Cano-Ott, D; Cucoanes, A; Elomaa, V-V; Eronen, T; Estévez, E; Farrelly, G F; Garcia, A R; Gelletly, W; Gomez-Hornillos, M B; Gorlychev, V; Hakala, J; Jokinen, A; Jordan, M D; Kankainen, A; Karvonen, P; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Molina, F; Moore, I; Perez-Cerdán, A B; Podolyák, Zs; Penttilä, H; Regan, P H; Reponen, M; Rissanen, J; Rubio, B; Shiba, T; Sonzogni, A A; Weber, C

    2015-09-01

    The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed. PMID:26382674

  6. Absorption spectrum of the laser-populated 3D metastable levels in barium

    NASA Technical Reports Server (NTRS)

    Carlsten, J. L.; Mcilrath, T. J.; Parkinson, W. H.

    1975-01-01

    This paper deals with the details of the absorption spectrum of the 3D metastable term in barium. The 3D term was selectively populated with a tuneable dye laser. The fundamental triplet series (6s5d 3D-6snf 3F) is identified and extended out to n = 32. In addition, the absolute photoionization cross section was measured at 303 nm. The relative cross section from 303 to 250 nm was also measured with the absolute scale set by the measurement at 303 nm and was found to be nearly constant in the wavelength region measured.

  7. Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping.

    PubMed

    Wang, Zheng; Magnon, Grant C; White, Stormi P; Greene, Rachel K; Vaillancourt, David E; Mosconi, Matthew W

    2015-04-01

    Sensorimotor impairments are common in autism spectrum disorder (ASD), but they are not well understood. Here we examined force control during initial pulses and the subsequent rise, sustained, and relaxation phases of precision gripping in 34 individuals with ASD and 25 healthy control subjects. Participants pressed on opposing load cells with their thumb and index finger while receiving visual feedback regarding their performance. They completed 2- and 8-s trials during which they pressed at 15%, 45%, or 85% of their maximum force. Initial pulses guided by feedforward control mechanisms, sustained force output controlled by visual feedback processes, and force relaxation rates all were examined. Control subjects favored an initial pulse strategy characterized by a rapid increase in and then relaxation of force when the target force was low (Type 1). When the target force level or duration of trials was increased, control subjects transitioned to a strategy in which they more gradually increased their force, paused, and then increased their force again. Individuals with ASD showed a more persistent bias toward the Type 1 strategy at higher force levels and during longer trials, and their initial force output was less accurate than that of control subjects. Patients showed increased force variability compared with control subjects when attempting to sustain a constant force level. During the relaxation phase, they showed reduced rates of force decrease. These findings suggest that both feedforward and feedback motor control mechanisms are compromised in ASD and these deficits may contribute to the dyspraxia and sensorimotor abnormalities often seen in this disorder. PMID:25552638

  8. Individuals with autism spectrum disorder show abnormalities during initial and subsequent phases of precision gripping

    PubMed Central

    Magnon, Grant C.; White, Stormi P.; Greene, Rachel K.; Vaillancourt, David E.

    2014-01-01

    Sensorimotor impairments are common in autism spectrum disorder (ASD), but they are not well understood. Here we examined force control during initial pulses and the subsequent rise, sustained, and relaxation phases of precision gripping in 34 individuals with ASD and 25 healthy control subjects. Participants pressed on opposing load cells with their thumb and index finger while receiving visual feedback regarding their performance. They completed 2- and 8-s trials during which they pressed at 15%, 45%, or 85% of their maximum force. Initial pulses guided by feedforward control mechanisms, sustained force output controlled by visual feedback processes, and force relaxation rates all were examined. Control subjects favored an initial pulse strategy characterized by a rapid increase in and then relaxation of force when the target force was low (Type 1). When the target force level or duration of trials was increased, control subjects transitioned to a strategy in which they more gradually increased their force, paused, and then increased their force again. Individuals with ASD showed a more persistent bias toward the Type 1 strategy at higher force levels and during longer trials, and their initial force output was less accurate than that of control subjects. Patients showed increased force variability compared with control subjects when attempting to sustain a constant force level. During the relaxation phase, they showed reduced rates of force decrease. These findings suggest that both feedforward and feedback motor control mechanisms are compromised in ASD and these deficits may contribute to the dyspraxia and sensorimotor abnormalities often seen in this disorder. PMID:25552638

  9. Magnetoencephalography shows atypical sensitivity to linguistic sound sequences in autism spectrum disorder.

    PubMed

    Brennan, Jonathan R; Wagley, Neelima; Kovelman, Ioulia; Bowyer, Susan M; Richard, Annette E; Lajiness-O'Neill, Renee

    2016-09-01

    Neuroscientific evidence points toward atypical auditory processing in individuals with autism spectrum disorders (ASD), and yet, the consequences of this for receptive language remain unclear. Using magnetoencephalography and a passive listening task, we test for cascading effects on speech sound processing. Children with ASD and age-matched control participants (8-12 years old) listened to nonce linguistic stimuli that either did or did not conform to the phonological rules that govern consonant sequences in English (e.g. legal 'vimp' vs. illegal 'vimk'). Beamformer source analysis was used to isolate evoked responses (0.1-30 Hz) to these stimuli in the left and the right auditory cortex. Right auditory responses from participants with ASD, but not control participants, showed an attenuated response to illegal sequences relative to legal sequences that emerged around 330 ms after the onset of the critical phoneme. These results suggest that phonological processing is impacted in ASD, perhaps because of cascading effects from disrupted initial acoustic processing. PMID:27468112

  10. CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-09-01

    (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than that currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The calculated global annually averaged lifetime was 58.1 ± 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations.

  11. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  12. Dynamic registration of D216O absorption spectrum in silica aerogel

    NASA Astrophysics Data System (ADS)

    Sinitsa, L.; Lavrentieva, N.; Lugovskoi, A.

    2014-09-01

    Absorption spectra of the gas phase and adsorbed D2О in the silica aerogel with nanoscale pores were investigated in 3700-5400 cm-1 range using dynamic registration with Fourier Transform spectrometer IFS-125M. Two types of sample with pores of 60 nm wide - the nitrogen gas-treated and untreated aerogels - were examined. The surface treatment of the sample changes noticeably the broadband absorption of adsorbed water. Spectrum of D2O in the pores differs from the spectrum of bulk water as for bandwidth so for band maximum. It was found that treatment of the pores by dry nitrogen leads to increasing hydrophilic properties of the material and to change water band contour. The D2О line widths in both the aerogels exceed those of free monomer in 1.1-3 times at the same pressure. Calculations of self-broadening coefficients of the D2O lines were performed using semi-empirical method based on the impact theory of broadening and includes the correction factors. The calculated results well agree with experimental data. Greater differences were found for the shift of the line centre. The D2O line shifts in the treated pores significantly exceed line shifts in the untreated pores. For some lines, these shifts have the opposite sign indicating complex nature of the molecule-wall interaction.

  13. The structure of the aggregate form of bacteriochlorophyll c showing the Q y absorption above 740 nm: a 1H-NMR study

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tadashi; Matsuura, Katsumi; Shimada, Keizo; Koyama, Yasushi

    1996-09-01

    Bacteriochlorophyll c (3 1S, 8-isobutyl-12-ethyl, farnesyl) was dissolved in a mixture of methylene chloride and carbon tetrachloride (1 : 3), and changes in the 1H-NMR spectrum caused by the titration of methanol were traced. On the basis of the changes in chemical shift due to the ring-current effect of the neighboring macrocycles and in peak intensity (broadening) due to their stacking, the structure of the aggregate form showing the Q y absorption band above 740 nm is proposed: the macrocycles are stacked to form a one-dimensional inclined column, the y axis of each macrocycle being parallel to the long axis of the column.

  14. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates. PMID:24016295

  15. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  16. Quick measurement of continuous absorption spectrum in ion beam pulse radiolysis: Application of optical multi-channel detector into transient species observation

    NASA Astrophysics Data System (ADS)

    Iwamatsu, Kazuhiro; Muroya, Yusa; Yamashita, Shinichi; Kimura, Atsushi; Taguchi, Mitsumasa; Katsumura, Yosuke

    2016-02-01

    A quick measurement system of a continuous absorption spectrum covering a wide range from 200 to 950 nm was constructed by employing an optical multi-channel detector. Ion beam pulse radiolysis with 12.5 MeV/u He, 18.3 MeV/u C and 17.5 MeV/u Ne ions were performed with the measurement system. Transient absorption spectrum of (S C N) 2 • - was clearly observed in KSCN aqueous solutions within a few minutes in spite of their very small absorbance, demonstrating high sensitivity of 0.001-0.003 in absorbance in the range from 260 to 660 nm as well as short measurement time of a few minutes. Two different absorption peaks attributed to Br2 • - and Br3 - were observed simultaneously in NaBr aqueous solutions, showing powerfulness of the measurement system in overviewing chemical kinetics under ion beam irradiation especially in not well investigated chemical systems.

  17. What kinds of substrates show P-glycoprotein-dependent intestinal absorption? Comparison of verapamil with vinblastine.

    PubMed

    Ogihara, Takuo; Kamiya, Masatsugu; Ozawa, Makoto; Fujita, Takuya; Yamamoto, Akira; Yamashita, Shinji; Ohnishi, Shuhei; Isomura, Yasuo

    2006-06-01

    The influence of P-glycoprotein (P-gp) on intestinal absorption of drugs was investigated by comparison of the uptakes of two P-gp substrates, verapamil and vinblastine, using intestinal segments of wild-type and mdr1a/1b gene-deficient (mdr1a/1b(-/-)) mice, and Caco-2 cells. When [(3)H]vinblastine was injected into intestinal segments of wild-type mice, vinblastine was absorbed from duodenum and ileum, but not from jejunum. This difference among intestinal regions could not be explained by segmental differences of mdr1a mRNA expression. In Caco-2 cells, it was found that vinblastine had a high value of efflux/influx ratio (an index of affinity for P-gp) of 12.1, and a low permeability of less than 1 x 10(-6) cm/sec. The corresponding values for verapamil were 4.9 and 10.6 x 10(-6) cm/sec, respectively. After oral administration of [(3)H]vinblastine to mice, the maximum concentration (C(max)) and the area under the plasma concentration time-curve from time 0 to 24 hr (AUC(0-24 hr)) for mdr1a/1b(-/-) mice were 1.5 times greater than those for wild-type mice, while these parameters were not significantly different between the two strains in the case of [(3)H]verapamil. Therefore, P-gp substrates may be classified into at least two types, i.e., verapamil-type, for which the intestinal absorption is unaffected by P-gp, and vinblastine-type, for which the intestinal absorption is influenced by P-gp. Vinblastine-type P-gp substrates, with low permeability and high affinity for P-gp, would be unfavorable candidates for oral drugs. PMID:16858128

  18. Absorption spectrum of the PbS-doped silica fibers fabricated by ALD and MCVD

    NASA Astrophysics Data System (ADS)

    Ye, Tang; Wen, Jianxiang; Dong, Yanhua; Wang, Tingyun

    2012-11-01

    The technique of atomic layer deposition (ALD) has been introduced to fabricate PbS-doped silica fibers, whose absorption peaks are discovered to be shifted from 1230 nm to 920 nm when the number of ALD deposition cycles varies from 80 to 30 during optical fiber preform fabrication. This is explained by suggesting that the PbS doped in fiber are under the 3D quantum confinement, i.e., quantum dots (QDs). An effective-mass approximat ion of the PbS QDs ' sizes is then made to show the shift of absorption peaks can be attributed to the change of size distribution of these dots.

  19. Matrix-Isolated Infrared Absorption Spectrum of CH2IOO Radical.

    PubMed

    Zhang, Xu; Sander, Stanley P; Cheng, Lan; Thimmakondu, Venkatesan S; Stanton, John F

    2016-01-21

    The peroxyiodomethyl radical, CH2IOO, was generated in cryogenic matrices using tandem supersonic nozzles. One hyperthermal nozzle decomposes diiodomethane (CH2I2) to generate intense beams of CH2I radicals, while the second nozzle continuously deposits O2/argon (Ar) on the matrix at 10 K. The CH2I and O2 in the Ar matrix react to produce the target peroxy radical (CH2IOO). The absorption spectra of the products are monitored with a Fourier transform infrared spectrometer. Eight of the 12 fundamental infrared bands for CH2IOO were observed in an argon matrix at 5 K. The experimental frequencies (cm(-1)) are ν3 = 1407.3, ν4 = 1230.4, ν5 = 1223.2, ν6 = 1085.3, ν7 = 919.9, ν8 = 839.9, ν9 = 567.5, and ν10 = 496.2. Additional confirmation for the vibrational assignment comes from a study of the CH2I(18)O(18)O isotopic species. The six observed frequencies (cm(-1)) for CH2I(18)O(18)O are ν3 = 1407.8, ν4 = 1228.0, ν6 = 1030.8, ν7 = 899.6, ν8 = 836.0, and ν10 = 494.6. Unlike CH2I(16)O(16)O, the ν5 and ν9 bands were not observed for CH2I(18)O(18)O. To guide the experimental analysis, ab initio calculations of the infrared spectrum based on second-order vibrational perturbation theory were performed using force fields computed with relativistic coupled-cluster methods. The experimental frequencies are shown to be in good agreement with the computed fundamental frequencies except for ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O). Our findings were compared with the study by Lee and Lee conducted in a para-H2 matrix. The fundamental frequencies are in good agreement (within 6 cm(-1)) except for the two low-frequency modes, ν9 (for CH2IOO) and ν10 (for CH2I(18)O(18)O) likely due to different matrix shifts for para-H2 and Ar matrices. In addition, our calculations are in somewhat better agreement with the experiment values than the calculations by Lee and Lee. Our study also shows that reaction CH2I + O2 produces the peroxy radical CH2IOO in cold matrices (10

  20. The Electronic Absorption Spectrum of Molecular Iodine: A New Fitting Procedure for the Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Pursell, Christopher J.; Doezema, Lambert

    1999-06-01

    This paper presents a different approach to the data treatment for the electronic absorption spectrum of molecular iodine, a standard experiment in the undergraduate physical chemistry laboratory. Traditionally, students analyze the transitions originating from the u'' = 0 level using a Birge-Sponer plot and thereby determine the various molecular constants and energies. Our treatment involves simply fitting the transition frequencies to a second-order polynomial. This fit then yields a direct determination of the important molecular constants along with the various energy terms. With the availability of common graphing programs such as Excel, Kaleidagraph, and SigmaPlot, students can take advantage of more advanced fitting techniques and no longer have to rely on simple linear plots. Additionally, students find this new approach more satisfying and we believe it has pedagogical advantages over the Birge-Sponer treatment.

  1. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin

    NASA Astrophysics Data System (ADS)

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-01

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally.

  2. Theoretical reproduction of the Q-band absorption spectrum of free-base chlorin.

    PubMed

    Wójcik, Justyna; Ratuszna, Alicja; Peszke, Jerzy; Wrzalik, Roman

    2015-01-21

    The computational results of the features observed in the room-temperature Q-band absorption spectrum of free-base chlorin (H2Ch) are presented. The vibrational structures of the first and second excited singlet states were calculated based on a harmonic approximation using density functional theory and its time dependent extension within the Franck-Condon and Herzberg-Teller approaches. The outcome allowed to identify the experimental bands and to assign them to the specific vibrational transitions. A very good agreement between the simulated and measured wavelengths and their relative intensities provided the opportunity to predict the origin of the S0 → S2 transition which could not be determined experimentally. PMID:25612704

  3. The UV-vis absorption spectrum of the flavonol quercetin in methanolic solution: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Andrade-Filho, T.; Ribeiro, T. C. S.; Del Nero, J.

    2009-07-01

    The UV-vis absorption spectrum of the solvated quercetin molecule in methanol was investigated theoretically by means of an elegant type of QM/MM scheme better known as sequential Monte Carlo/quantum mechanics (S-MC/QM) methodology. A set of 125 uncorrelated Monte Carlo molecular liquid structures were properly selected through the autocorrelation function of the energy in order to be used in the quantum mechanical calculations. These molecular liquid structures were obtained by means of the radial and minimum distance distribution functions. A detailed account of the pattern of hydrogen bond structures obtained in this study is also available. The computed results obtained here were directly compared with the available experimental data in order to validate our theoretical model and through this comparison a very good conformity between theoretical and available experimental results was found.

  4. Absorption features in the x-ray spectrum of an ordinary radio pulsar.

    PubMed

    Kargaltsev, Oleg; Durant, Martin; Misanovic, Zdenka; Pavlov, George G

    2012-08-24

    The vast majority of known nonaccreting neutron stars (NSs) are rotation-powered radio and/or γ-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and nonthermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and were thought to be a manifestation of their unique traits. Here, we report the detection of absorption features in the x-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far. PMID:22923576

  5. Analysis of ultraviolet absorption spectrum of Chinese herbal medicine-Cortex Fraxini by double ANN

    NASA Astrophysics Data System (ADS)

    Bai, Lifei; Zhang, Haitao; Wang, Hongxia; Li, Junfeng; Lu, Lei; Zhang, Hanqi; Wang, Hongyan

    2006-11-01

    A fast, accurate and convenient method for the simultaneous determination of multi-component in the Chinese herbal medicine was proposed by using ultraviolet absorption spectrum. In this method, dummy components were added to training sample, and a double artificial neural network (DANN) that has the function of high self-revision and self-simulation was used. Effect of other interference components could be eliminated by adjusting concentration of dummy components. Therefore, the accuracy of concentration prediction for multi-component in the complicated Chinese herbal medicine was improved. It has been realized that two effective components of Cortex Fraxini, aesculin and aesculetin, were simultaneously determined, without any separation. The predicted accuracy was 92% within the permitted relative errors. The measurement precisions of the aesculin and aesculetin were 0.37% and 1.5%, respectively.

  6. The soft X-ray absorption spectrum of the allyl free radical.

    PubMed

    Alagia, M; Bodo, E; Decleva, P; Falcinelli, S; Ponzi, A; Richter, R; Stranges, S

    2013-01-28

    The first experimental study of the X-ray absorption spectrum (XAS) of the allyl free radical, CH(2)CHCH(2), is reported. A supersonic He seeded beam of hyperthermal allyl radicals was crossed by a high resolution synchrotron radiation (SR) in the focus of a 3D ion momentum imaging time-of-flight (TOF) spectrometer to investigate the soft X-ray absorption and fragmentation processes. The XAS, recorded as Total-Ion-Yield (TIY), is dominated by C1s electron excitations from either the central carbon atom, C(C), or the two terminal carbon atoms, C(T), to the frontier orbitals, the semi-occupied-molecular-orbital (SOMO) and the lowest-unoccupied-molecular-orbital (LUMO). All of the intense features in the XAS could only be assigned with the aid of ab initio spectral simulation at the Multi-Configuration Self-Consistent-Field (MCSCF) level of theory, this level being required because of the multi-reference nature of the core-excited state wavefunctions of the open shell molecule. The ionization energies (IEs) of the singlet and triplet states of the C1s ionized allyl radical (XPS) were also calculated at the MCSCF level. PMID:23232557

  7. Tight binding model of conformational disorder effects on the optical absorption spectrum of polythiophenes.

    PubMed

    Bombile, Joel H; Janik, Michael J; Milner, Scott T

    2016-05-14

    Semiconducting polymers are soft materials with many conformational degrees of freedom. The limited understanding of how conformational disorder affects their optoelectronic properties is a key source of difficulties that limits their widespread usage in electronic devices. We develop a coarse-grained approach based on the tight binding approximation to model the electronic degrees of freedom of polythiophene chains, taking into account conformational degrees of freedom. Particularly important is dihedral disorder, which disrupts extended electronic states. Our tight binding model is parameterized using density functional theory (DFT) calculations of the one-dimensional band structures for chains with imposed periodic variations in dihedral angles. The model predicts valence and conduction bands for these chain conformations that compare well to DFT results. As an initial application of our model, we compute the optical absorption spectrum of poly(3-hexylthiophene) chains in solution. We observe a broadening of the absorption edge resulting from dihedral disorder, just shy of the experimental broadening. We conclude that the effects of molecular disorder on the optoelectronic properties of conjugated polymer single chains can be mostly accounted for by torsional disorder alone. PMID:27087455

  8. A Giant Metrewave Radio Telescope search for associated H I 21 cm absorption in high-redshift flat-spectrum sources

    NASA Astrophysics Data System (ADS)

    Aditya, J. N. H. S.; Kanekar, Nissim; Kurapati, Sushma

    2016-02-01

    We report results from a Giant Metrewave Radio Telescope search for `associated' redshifted H I 21 cm absorption from 24 active galactic nuclei (AGNs), at 1.1 < z < 3.6, selected from the Caltech-Jodrell Bank Flat-spectrum (CJF) sample. 22 out of 23 sources with usable data showed no evidence of absorption, with typical 3σ optical depth detection limits of ≈0.01 at a velocity resolution of ≈30 km s-1. A single tentative absorption detection was obtained at z ≈ 3.530 towards TXS 0604+728. If confirmed, this would be the highest redshift at which H I 21 cm absorption has ever been detected. Including 29 CJF sources with searches for redshifted H I 21 cm absorption in the literature, mostly at z < 1, we construct a sample of 52 uniformly selected flat-spectrum sources. A Peto-Prentice two-sample test for censored data finds (at ≈3σ significance) that the strength of H I 21 cm absorption is weaker in the high-z sample than in the low-z sample; this is the first statistically significant evidence for redshift evolution in the strength of H I 21 cm absorption in a uniformly selected AGN sample. However, the two-sample test also finds that the H I 21 cm absorption strength is higher in AGNs with low ultraviolet or radio luminosities, at ≈3.4σ significance. The fact that the higher luminosity AGNs of the sample typically lie at high redshifts implies that it is currently not possible to break the degeneracy between AGN luminosity and redshift evolution as the primary cause of the low H I 21 cm opacities in high-redshift, high-luminosity AGNs.

  9. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    NASA Technical Reports Server (NTRS)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  10. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    DOE PAGESBeta

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; et al

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted aftermore » the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered« less

  11. Total Absorption Spectroscopy Study of ⁹²Rb Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

    SciTech Connect

    Sonzogni, A.; Zakari-Issoufou, A. -A.; Fallot, M.; Porta, A.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Aysto, J.; Bowry, M.; Briz Monago, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucoanes, A.; Eloma, V.; Estvez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttil, H.; Regan, P. H.; Shiba, T.; Rissanen, J.; Rubio, B.; Weber, C.

    2015-03-09

    The accurate determination of the emitted reactor antineutrino flux is still a major challenge for actual and future neutrino experiments at reactors, especially after the evidence of a disagreement between the measured antineutrino energy spectrum by Double Chooz, Daya Bay, and Reno and calculated antineutrino spectra obtained from the conversion of the unique integral beta spectra measured at the ILL reactor. Using nuclear data to compute reactor antineutrino spectra may help understanding this bias, with the study of the underlying nuclear physics. Summation calculations allow identifying a list of nuclei that contribute importantly to the antineutrino energy spectra emitted after the fission of ²³⁹,²⁴¹Pu and ²³⁵,²³⁸U, and whose beta decay properties might deserve new measurements. Among these nuclei, ⁹²Rb exhausts by itself about 16% of of the antineutrino energy spectrum emitted by Pressurized Water Reactors in the 5 to 8 MeV range. In this Letter, we report new Total Absorption Spectroscopy (TAS) results for this important contributor. The obtained beta feeding from ⁹²Rb shows beta intensity unobserved before in the 4.5 to 5.5 MeV energy region and gives a ground state to ground state branch of 87.5 % ± 3%. These new data induce a dramatic change in recent summation calculations where a 51% GS to GS branch was considered for ⁹²Rb, increasing the summation antineutrino spectrum in the region nearby the observed bias.The new data still have an important impact on other summation calculations in which more recent data were considered

  12. Temperature sounding from the absorption spectrum of CO2 at 4.3 microns. [in stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Toth, R. A.

    1977-01-01

    A new method is described for obtaining the temperature profile in the stratosphere and lower mesosphere from observations of the absorption spectrum of the high J lines of carbon dioxide at 4.3 microns. This concept is based upon the measurement of the integrated absorption of individual CO2 lines whose strengths depend strongly on temperature and that the absorption of these lines are obtained from measurements of the solar or stellar spectrum through an atmospheric path. The technique involves a rapidly converging iterative process in which the equivalent widths of the individual vibration-rotation lines of CO2 are used. Theoretical calculations are presented for balloon and satellite observations using a model atmosphere. Experimental results are given from spectra obtained with a balloon-borne Fourier interferometer spectrometer in which the sun was observed at low zenith angles. The experimental results are compared to rocketsonde data.

  13. Development of nanostructured luminophor coating for broadening of solar cell absorption spectrum

    NASA Astrophysics Data System (ADS)

    Kryuchyn, A. A.; Beliak, Ie. V.

    2014-10-01

    One of the major concerns in the area of high efficient solar cell production is a substantial shift between the solar radiation spectra and optical absorption spectra of a photoelectric transducer that significantly reduces solar cell efficiency. We propose a concept which based on coating of conventional and cheap photoelectric transducer with a luminophor that transmits longer wavelengths of the sunlight, absorbs shorter wavelengths and converts them into longer ones by the value of the Stocks shift. While photoluminescent light is not collimated and thus losses may reach up to 50% of converted light, it was also proposed to make micropattern formation at photoelectric transducer surface. We propose synthesizing of specific materials based on composite pyrazoline dyes with addition of polymethylmethacrylate, polystyrene and UV-laquers. It was revealed that synthesized luminophor coating are characterized by sufficiently enough Stocks shift (200-400 nm), high quantum yield (near 80%) and stability under circumstances of long term radiation. Further research demonstrated potential of the significant characteristic's improvement by introducing of organic dye molecules in the white zeolite matrix with additional laser annealing at low intensity. Experimental results have shown that photoluminescent spectrum of pyrazoline dye didn't change shape, bandwidth and amplitude for last 10 years. It was decided that obtained stability is being caused by porous matrix of white zeolite. Simulation of the solar cell functioning helped to understand physics of the process and simplify problem of microrelief and luminophor optimal parameters search.

  14. CFCl3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime Uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, M.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2013-12-01

    CFCl3 (CFC-11) is both a major ozone-depleting substance and a potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using the NASA Goddard Space Flight Center 2-D coupled chemistry-radiation-dynamics model and the spectrum parameterization developed in this work. The modeled global annually averaged lifetime was 58.1 × 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations. CFCl 3 (CFC-11) 2-D model results: Left: Global annually averaged loss rate coefficient (local lifetime) and photolysis and reaction contributions (see legend). Middle: Molecular loss rate and uncertainty limits; the slow and fast profiles were calculated using the 2σ uncertainty estimates in the CFC-11 UV absorption spectrum from this work. Right: CFC-11 concentration profile. CFC-11 loss process contribution to the overall local lifetime uncertainty (2σ) calculated using the 2-D model (see text). Left: Results obtained from this work. Right: Results obtained using model input from Sander et al. [2011] and updates in SPARC [2013].

  15. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  16. Novel Peptides from Skins of Amphibians Showed Broad-Spectrum Antimicrobial Activities.

    PubMed

    Wang, Ying; Zhang, Yue; Lee, Wen-Hui; Yang, Xinwang; Zhang, Yun

    2016-03-01

    Peptide agents are often considered as potential biomaterials for developing new drugs that can overcome the rising resistance of pathogenic micro-organisms to classic antibiotic treatments. One key source of peptide agents is amphibian skin, as they provide a great deal of naturally occurring antimicrobial peptide (AMP) templates awaiting further exploitation and utilization. In this study, 12 novel AMPs from the skins of 3 ranid frogs, Rana limnocharis, R. exilispinosa, and Amolops afghanus, were identified using a 5' PCR primer. A total of 11 AMPs exhibited similarities with currently known AMP families, including brevinin-1, brevinin-2, esculentin-1, and nigrocin, besides, one AMP, named as Limnochariin, represented a novel AMP family. All 12 AMPs contain a C-terminus cyclic motif and most of them show obvious antimicrobial activities against 18 standard and clinically isolated strains of bacteria, including 4 Gram-positive bacteria, 11 Gram-negative bacteria, and 3 fungus. These findings provide helpful insight that will be useful in the design of anti-infective peptide agents. PMID:26452973

  17. Interpretation of the optical absorption spectrum of Co3O4 with normal spinel structure from first principles calculations

    NASA Astrophysics Data System (ADS)

    Lima, A. F.

    2014-01-01

    First principles calculations based on density functional theory have been employed to study the electronic, magnetic and optical properties of Co3O4 in a cubic normal spinel structure. Exchange and correlation effects between electrons were treated by a B3PW91 hybrid functional, which produced better results than others scheme, such as GGA+U or PBE0 hybrid functionals or mBJ semilocal potential. The work focuses on clarifying the nature of the optical absorption bands, which have motivated various theoretical and experimental works in the literature. The calculated optical absorption spectrum was compared with available experimental data. On the basis of this calculated electronic and magnetic structure, the optical absorption peaks (theoretical and experimental) could be satisfactorily explained in terms of d3d charge transfer transitions between both CO2+→CO2+ and CO3+→CO3+ ions. The calculations also predicted that the crystal field splittings at both octahedral and tetrahedral sites in the Co3O4 compound are of the same magnitude. First principles calculations were used to predict optical properties of Co3O4. Exchange-correlation electronic effects were treated by a B3PW91 hybrid functional. Calculated optical absorption spectrum was compared with experimental data. Optical absorption peaks could be satisfactorily explained.

  18. Failure of Energy Transfer between Identical Aromatic Molecules on Excitation at the Long Wave Edge of the Absorption Spectrum

    PubMed Central

    Weber, Gregorio; Shinitzky, Meir

    1970-01-01

    Electronic energy transfer among identical molecules has been followed by the depolarization of the fluorescence in concentrated solutions as well as in dimers, polymers, and micelle systems. In the many aromatic fluorophores examined, unlike a few nonaromatic ones, transfer is much decreased or altogether undetectable on excitation at the red edge of the absorption spectrum. The phenomenon is not due to the transfer taking place during a small fraction of the total fluorescence lifetime, nor is it explainable by a decrease in overlap of absorption and emission upon edge excitation. PMID:16591825

  19. Communication: Does a single CH3CN molecule attached to Ru(bipy)3(2+) affect its absorption spectrum?

    PubMed

    Stockett, M H; Brøndsted Nielsen, S

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)3 (2+)) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics. PMID:25956080

  20. Communication: Does a single CH3CN molecule attached to Ru(bipy)32+ affect its absorption spectrum?

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-01

    Tris(bipyridine)ruthenium(II) (Ru(bipy)32+) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex's beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  1. On the Putative Detection of Z>0 X-Ray Absorption Features in the Spectrum of Mrk 421

    SciTech Connect

    Rasmussen, Andrew P.; Kahn, Steven M.; Paerels, Frits; Herder, Jan Willem den; Kaastra, Jelle; de Vries, Cor; /SRON, Utrecht

    2006-04-28

    In a series of papers, Nicastro et al. have claimed the detection of z > 0 O VII absorption features in the spectrum of Mrk 421 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS). We evaluate those claims in the context of a high quality spectrum of the same source obtained with the Reflection Grating Spectrometer (RGS) on XMM-Newton. The data comprise over 955 ksec of usable exposure time and more than 2.6 x 10{sup 4} counts per 50 m{angstrom} at 21.6 {angstrom}. We concentrate on the spectrally clean region (21.3 < {lambda} < 22.5 {angstrom}) where sharp features due to the astrophysically abundant O VII may reveal an intervening, warm-hot intergalactic medium (WHIM). In spite of the fact that the sensitivity of the RGS data is higher than that of the original LETGS data presented by Nicastro et al., we do not confirm detection of any of the intervening systems claimed to date. Rather, we detect only three unsurprising, astrophysically expected features down to the log (N{sub i}) {approx} 14.6 (3{sigma}) sensitivity level. Each of the two purported WHIM features is rejected with a statistical confidence that exceeds that reported for its initial detection. While we can not rule out the existence of fainter, WHIM related features in these spectra, we suggest that previous discovery claims were premature. A more recent paper by Williams et al. claims to have demonstrated that the RGS data we analyze here do not have the resolution or statistical quality required to confirm or deny the LETGS detections. We show that the Williams et al. reduction of the RGS data was highly flawed, leading to an artificial and spurious degradation of the instrument response. We carefully highlight the differences between our analysis presented here and those published by Williams et al.

  2. Anomalously Broad Diffuse Interstellar Bands and Excited CH+ Absorption in the Spectrum of Herschel 36

    NASA Astrophysics Data System (ADS)

    York, D. G.; Dahlstrom, J.; Welty, D. E.; Oka, T.; Hobbs, L. M.; Johnson, S.; Friedman, S. D.; Jiang, Z.; Rachford, B. L.; Snow, T. P.; Sherman, R.; Sonnentrucker, P.

    2014-02-01

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 Å are found in absorption along the line of sight to Herschel 36, an O star system next to the bright Hourglass nebula of the Hii region Messier 8. Excited lines of CH and CH+ are seen as well. We show that the region is very compact and itemize other anomalies of the gas. An infrared-bright star within 400 AU is noted. The combination of these effects produces anomalous DIBs, interpreted by Oka et al. (2013, see also this volume) as being caused predominantly by infrared pumping of rotational levels of relatively small molecules.

  3. Trifluoro methyl peroxynitrate (CF 3OONO 2): Temperature dependence of the UV absorption spectrum and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Malanca, Fabio E.; Chiappero, Malisa S.; Argüello, Gustavo A.; Wallington, Timothy J.

    The ultraviolet absorption spectrum of gas phase CF 3OONO 2 has been measured over the wavelength range 200-340 nm at 233-300 K. Absorption cross-sections at wavelengths of 290-340 nm were found to increase significantly with increasing temperature. The UV spectra of CF 3C(O)Cl and CF 3C(O)F were measured and were consistent with previous work [Rattigan et al., 1993. Temperature-dependent absorption cross-sections of CF 3COCl, CF 3COF, CH 3COF, CCl 3CHO and CF 3COOH. Journal of Photochemistry and Photobiology A: Chemistry 73, 1-9]. Implications for the atmospheric chemistry of CF 3OONO 2 are discussed.

  4. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  5. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  6. Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature

    NASA Astrophysics Data System (ADS)

    Xin, X.; Altan, H.; Saint, A.; Matten, D.; Alfano, R. R.

    2006-11-01

    Terahertz time-domain spectroscopy has been used to measure the absorption of water vapor in 0.2-2.4THz range from low to high humidity at room temperature. The observed absorption lines are due to the water molecular rotations in the ground vibrational state. We find that the absorption strength of para transitions increases as humidity increases, while the absorption strength of ortho transitions increases and then decreases in intensity with increasing humidity. We explain this difference based on the nuclear spin statistics based ratio of ortho to para water monomer populations at room temperature. The preferential adsorption on the solid surfaces of para water leads to an ortho dominated vapor cloud whose monomer rotational absorption intensity decreases due to the effects of dimerization, molecular collisions, clustering, and interactions with liquid droplets at high concentrations.

  7. [Measurements of IR absorption across section and spectrum simulation of lewisite].

    PubMed

    Zhang, Yuan-peng; Wang, Hai-tao; Zhang, Lin; Yang, Liu; Guo, Xiao-di; Bai, Yun; Sun, Hao

    2015-02-01

    The vapor infrared transmission spectra of varied concentration of lewisite-1 were measured by a long-path FT-IR spectrometer, and its characteristic frequencies are 814, 930, 1563 cm(-1); their infrared absorption cross section (a) were determined using Beer-Lambert law. The corresponding sigma values are 3.89 +/- 0.01, 1.43 +/- 0.06, 4.47 +/- 0.05 ( X 10(-20) cm2 x molecule(-1)). Two little teeny peaks, 1158, 1288 cm(-1) were found in the measured spectra. Density Functional Theory (DFT) was applied to calculated the infrared spectra of lewisite-1, -2, -3 on a b3lyp/6-311+g(d, p) level by Gauss09 package. The vibration modes were assigned by Gaussview5. 08. The calculated spectra and experimental spectra are in good agreement with each other in 600-1600 cm(-1) range, for the Person's r is 0.9991. The calculated spectra also showed three characteristic frequencies (293, 360, 374 cm(-1)) related to As atom. 0.977 was a scaling factor we determined for lewisite-1 through least-square error and its performance to scale lewisite-1, -2, -3 was acceptable. The results of this work are useful for monitoring environmental atmospheric concentrations of lewisite. PMID:25970914

  8. Theory of the electronic states and absorption spectrum of the LiCl:Ag+ impurity system

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar A.; Lin, Chun C.

    1990-01-01

    The impurity absorption spectra of Ag+ and Cu+ impurities in alkali halide hosts show characteristically different features, despite the similar nature of the corresponding free ions. We use the self-interaction-corrected local-spin-density (SIC-LSD) theory to calculate the electronic structure of the ground state (4d) and the 5s and 5p excited states of the LiCl:Ag+ impurity ion. The method of linear combinations of atomic orbitals is used to determine the wave functions and energy levels. By comparing with previous calculations for LiCl:Cu+, we are able to attribute the differences in the d-->s and d-->p transitions in the ultraviolet spectra of these systems to the increased bonding between host crystal and impurity orbitals in LiCl:Ag+, due to the more extensive nature of the Ag+ 4d orbitals. A modification of the earlier SIC-LSD impurity-crystal procedure is introduced to treat the strongly mixed impurity states.

  9. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  10. Surface vs. atmospheric origin of 2.1-2.5 micron absorption features in the Martian spectrum

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Crisp, David

    1992-01-01

    For 20 years the origin of subtle absorption features in the spectrum of Mars near 2.3 micro-m ('K' band: 1.9-2.5 micro-m) has been debated. This spectral region contains gaseous absorption features predominantly from CO2 and CO on Mars and from telluric H2O and CO2. The authors have obtained new higher spectral resolution telescopic K band spectra of 10 surface regions using the Infrared Telescope Facility (IRTF) at Mauna Kea during 1990. The goals were to confirm the existence of broad features seen at lower spectral resolution and to determine whether these bands are caused by atmospheric gases, surface (or airborne dust) minerals, or a combination of both.

  11. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    SciTech Connect

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    2012-04-14

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  12. A photon counting and a squeezing measurement method by the exact absorption and dispersion spectrum of Λ-type Atoms.

    PubMed

    Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak

    2016-01-01

    Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons. PMID:27610321

  13. H216O absorption spectrum between 22250 and 22800 cm-1: Fourier transform spectroscopy with bright light source

    NASA Astrophysics Data System (ADS)

    Serduykov, V. I.; Sinitsa, L. N.; Vasil'chenko, S. S.; Bykov, A. D.; Kruglova, T. V.; Polovtseva, E. R.; Scherbakov, A. P.

    2014-11-01

    Measurements of water vapor absorption spectra in the visible spectral region near 0.44 mkm are performed using FTspectrometer IFS-125M and Light-emitting diode (LED) as source of radiation. Water vapor spectrum has been obtained by averaging over 17136 scans recorded at 34,8 m optical path length, temperature 24 ± 1 C and pressure of sample 24,8 mBar. Due to strong emission of LED source it was possible to achieve signal-to-noise ratio about 104 and to record weak lines with intensities of 6 10-27 cm/molecule. Comparisons with results of early works are made.

  14. Molecular level all-optical logic with chlorophyll absorption spectrum and polarization sensitivity

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, B.; Bhattacharyya (Bhaumik), S.

    2008-06-01

    Chlorophyll is suggested as a suitable medium for realizing optical Boolean logic at the molecular level in view of its wavelength-selective property and polarization sensitivity in the visible region. Spectrophotometric studies are made with solutions of total chlorophyll and chromatographically isolated components, viz. chlorophyll a and b and carotenoids extracted from pumpkin leaves of different maturity stages. The absorption features of matured chlorophyll with two characteristic absorption peaks and one transmission band are molecular properties and independent of concentration. A qualitative explanation of such an absorption property is presented in terms of a ‘particle in a box’ model and the property is employed to simulate two-input optical logic operations. If both of the inputs are either red or blue, absorption is high. If either one is absent and replaced by a wavelength of the transmission band, e.g. green, absorption is low. Assigning these values as 0 s or 1 s, AND and OR operations can be performed. A NOT operation can be simulated with the transmittance instead of the absorbance. Also, the shift in absorbance values for two different polarizations of the same monochromatic light can simulate two logical states with a single wavelength. Cyclic change in absorbance is noted over a rotation of 360° for both red and blue peaks, although the difference is not very large. Red monochromatic light with polarizations apart by 90°, corresponding to maximum and minimum absorption, respectively, may be assigned as the two logical states. The fluorescence emissions for different pigment components are measured at different excitation wavelengths and the effect of fluorescence on the red absorbance is concluded to be negligible.

  15. FUSE Detection of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; VanDykeDixon, W.

    2003-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX 521362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Lyman beta and gamma, C II, C III, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the AGN. We use photoionization models to derive the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, whereby the absorbing gas is associated with an intervening galaxy cluster.

  16. FUSE Observations of Galactic and Intrinsic Absorption in the Spectrum of the Seyfert 1 Galaxy 2MASX J21362313-6224008

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Dixon, W. Van Dyke

    2004-01-01

    We present the far-ultraviolet spectrum of the Seyfert 1 galaxy 2MASX J21362313-6224008 obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). The spectrum features absorption from Galactic O VI at two velocities and redshifted H I Ly beta and gamma, C II, CIII, and O VI. The redshifted absorption features represent a single kinematic component blueshifted by approx. 310 km/s relative to the active galactic nucleus. We use photoionization models to derive constraints on the physical parameters of the absorbing gas. An alternative interpretation for the absorption lines is also proposed, wherein the absorbing gas is associated with an intervening galaxy cluster.

  17. Photodissociation of carbon dioxide in singlet valence electronic states. II. Five state absorption spectrum and vibronic assignment

    NASA Astrophysics Data System (ADS)

    Grebenshchikov, Sergy Yu.

    2013-06-01

    The absorption spectrum of CO2 in the wavelength range 120-160 nm is analyzed by means of quantum mechanical calculations performed using vibronically coupled potential energy surfaces of five singlet valence electronic states and the coordinate dependent transition dipole moment vectors. The thermally averaged spectrum, calculated for T = 190 K via Boltzmann averaging of optical transitions from many initial rotational states, accurately reproduces the experimental spectral envelope, consisting of a low and a high energy band, the positions of the absorption maxima, their FWHMs, peak intensities, and frequencies of diffuse structures in each band. Contributions of the vibronic interactions due to Renner-Teller coupling, conical intersections, and the Herzberg-Teller effect are isolated and the calculated bands are assigned in terms of adiabatic electronic states. Finally, diffuse structures in the calculated bands are vibronically assigned using wave functions of the underlying resonance states. It is demonstrated that the main progressions in the high energy band correspond to consecutive excitations of the pseudorotational motion along the closed loop of the CI seam, and progressions differ in the number of nodes along the radial mode perpendicular to the closed seam. Irregularity of the diffuse peaks in the low energy band is interpreted as a manifestation of the carbene-type "cyclic" OCO minimum.

  18. Two-photon-absorption spectrum of poly(di- n -hexylsilane) films

    SciTech Connect

    Soos, Z.G. ); Kepler, R.G. )

    1991-05-15

    Two-photon-absorption (TPA) spectra of poly(di-{ital n}-hexylsilane) (PDHS) films are obtained from 605 to 410 nm at 295 and 11 K, where the intensity is an order of magnitude higher. A strong TPA band is found above 5 eV and interpreted in terms of interacting {sigma} electrons in a Pariser-Parr-Pople (PPP) model. PPP models for (Si){sub {ital n}} chains relate the excitonic (one-photon) absorption at {ital E}{sub {ital g}}=3.4 in PDHS to the 4.2-eV TPA at the alternation gap and the high-energy TPA derived from two-electron excitations at {ital E}{sub {ital g}}. The smaller alternation gap in {pi}-conjugated polymers and their intense TPA above {ital E}{sub {ital g}} also indicate correlated states and differ qualitatively from single-particle descriptions.

  19. Near-infrared spectrum of ZrF by intracavity laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Harms, Jack C.; O'Brien, Leah C.; Ni, Ann; Mahkdoom, Bilal; O'Brien, James J.

    2015-04-01

    The (1, 1) band of the CΩ = 3/2 - X2Δ3/2 transition of ZrF has been recorded at high resolution using intracavity laser absorption spectroscopy. The ZrF molecules were produced using a Zr-lined copper hollow cathode sputter source with a trace amount of SF6 as a fluoride source. Molecular constants from the analysis are presented and compared with previous work.

  20. High-resolution, vacuum-ultraviolet absorption spectrum of boron trifluoride

    SciTech Connect

    Hughes, Patrick P.; Thompson, Alan K.; Vest, Robert E.; Sprague, Matthew K.; Irikura, Karl K.; Beasten, Amy; McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Clark, Charles W.

    2014-11-21

    In the course of investigations of thermal neutron detection based on mixtures of {sup 10}BF{sub 3} with other gases, knowledge was required of the photoabsorption cross sections of {sup 10}BF{sub 3} for wavelengths between 135 and 205 nm. Large discrepancies in the values reported in existing literature led to the absolute measurements reported in this communication. The measurements were made at the SURF III Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The measured absorption cross sections vary from 10{sup −20} cm{sup 2} at 135 nm to less than 10{sup −21} cm{sup 2} in the region from 165 to 205 nm. Three previously unreported absorption features with resolvable structure were found in the regions 135–145 nm, 150–165 nm, and 190–205 nm. Quantum mechanical calculations, using the TD-B3LYP/aug-cc-pVDZ variant of time-dependent density functional theory implemented in Gaussian 09, suggest that the observed absorption features arise from symmetry-changing adiabatic transitions.

  1. Visible-band (390-940nm) monitoring of the Pluto absorption spectrum during the New Horizons encounter

    NASA Astrophysics Data System (ADS)

    Smith, Robert J.; Marchant, Jonathan M.

    2015-11-01

    Whilst Earth-based observations obviously cannot compete with New Horizons’ on-board instrumentation in most regards, the New Horizons data set is essentially a snapshot of Pluto in July 2015. The New Horizons project team therefore coordinated a broad international observing campaign to provide temporal context and to take advantage of the once-in-a-lifetime opportunity to directly link our Earth-based view of Pluto with “ground truth” provided by in situ measurements. This both adds value to existing archival data sets and forms the basis of long term, monitoring as we watch Pluto recede from the Sun over the coming years. We present visible-band (390-940nm) monitoring of the Pluto absorption spectrum over the period July - October 2015 from the Liverpool Telescope (LT). In particular we wished to understand the well-known 6-day fluctuation in the methane ice absorption spectrum which is observable from Earth in relation to the never-before-available high resolution maps of the Pluto surface. The LT is a fully robotic 2.0m optical telescope that automatically and dynamically schedules observations across 30+ observing programmes with a broad instrument suite. It is ideal for both reactive response to dynamic events (such as the fly-by) and long term, stable monitoring with timing constraints individually optimised to the science requirements of each programme. For example past studies of the observed CH4 absorption variability have yielded ambiguity of whether they were caused by real physical changes or geometric observation constraints, in large part because of the uneven time sampling imposed by traditional telescope scheduling.

  2. Fourier-analytic technique for the separation of the signature of atmospheric ClO absorption from the solar background spectrum in the near ultraviolet

    SciTech Connect

    Burnett, E.B.

    1989-02-01

    The high-resolution ClO absorption signature in the region of 308.1 nm has a very low absorption fraction, of the order of 6 x 10/sup -5/, and linewidths comparable with those of the solar background spectrum. Because of the need for reliable absorption measurements of the abundance of this species, which is important in ozone photochemistry, a Fourier-analysis-based technique for the deconvolution of atmospheric solar absorption spectra in this region has been developed. The technique utilizes the regularity of the ClO spectrum and results in a significant reduction in the minimum signal-to-noise required for the retrieval of ClO abundances from absorption spectra.

  3. Research of fiber carbon dioxide sensing system based laser absorption spectrum

    NASA Astrophysics Data System (ADS)

    Wei, Yubin; Zhang, Tingting; Li, Yanfang; Zhao, Yanjie; Wang, Chang; Liu, Tongyu

    2012-02-01

    Carbon dioxide is one of the important gas need to be detected in coal mine safety. In the mine limited ventilation environment, Concentration of carbon dioxide directly affects the health of coal miners. Carbon dioxide is also one of important signature Gas in spontaneous combustion forecasting of coal goaf area, it is important to accurately detect concentration of carbon dioxide in coal goaf area. This paper proposed a fiber carbon dioxide online sensing system based on tunable diode laser spectroscopy. The system used laser absorption spectroscopy and optical fiber sensors combined, and a near-infrared wavelength 1608nm fiber-coupled distributed feedback laser (DFB) as a light source and a 7cm length gas cell, to achieve a high sensitivity concentration detection of carbon dioxide gas. The technical specifications of sensing system can basically meet the need of mine safety.

  4. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  5. Detection of a Deep 3-μm Absorption Feature in the Spectrum of Amalthea (JV)

    NASA Astrophysics Data System (ADS)

    Takato, Naruhisa; Bus, Schelte J.; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-01

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula.

  6. Detection of a deep 3-microm absorption feature in the spectrum of Amalthea (JV).

    PubMed

    Takato, Naruhisa; Bus, Schelte J; Terada, Hiroshi; Pyo, Tae-Soo; Kobayashi, Naoto

    2004-12-24

    Near-infrared spectra of Jupiter's small inner satellites Amalthea and Thebe are similar to those of D-type asteroids in the 0.8- to 2.5-micrometer wavelength range. A deep absorption feature is detected at 3 micrometers in the spectra of the trailing side of Amalthea, which is similar to that of the non-ice components of Callisto and can be attributed to hydrous minerals. These surface materials cannot be explained if the satellite formed at its present orbit by accreting from a circumjovian nebula. Amalthea and Thebe may be the remnants of Jupiter's inflowing building blocks that formed in the outer part or outside of the circumjovian nebula. PMID:15618511

  7. Theory and experiment of coherent wave packet dynamics in rare earth solids: Absorption spectrum vs femtosecond fringe-resolved interferogram

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Dai, D. C.; Wang, G. Q.; Ninulescu, V.; Yu, X. Y.; Luo, L.; Zhou, J. Y.; Yan, YiJing

    2001-01-01

    Coherent dynamic property of neodymium yttrium aluminum garnet (Nd:YAG) crystal at 77 K is studied via the conventional absorption, the femtosecond fringe-resolved wave packet interferometry, and the related difference-phase spectrum. The recorded interferogram exhibits beatings in subpicosecond time scale arising from the interferences among various weakly split 4f-electronic states and the coupled vibronic optical phonon sidebands. The electron-phonon coupling in Nd:YAG can be well described by multiple Brownian oscillators model involving in each individual electronic transition. The parameters for characterizing material coherence and relaxation are determined via the theoretical modelings of both the frequency and the time-domain experimental signals.

  8. Tract-Specific Analyses of Diffusion Tensor Imaging Show Widespread White Matter Compromise in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel

    2011-01-01

    Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…

  9. Signature OH Absorption Spectrum from cluster Models of Solvation: a solvent-to-solute charge transfer state

    SciTech Connect

    Tsai, Ming Kang; Kowalski, Karol; Valiev, Marat; Dupuis, Michel

    2007-10-25

    ab initio electronic structure theories applied to cluster models support the characterization of the signature of the OH absorption spectrum to be a solvent-to-solute charge transfer state affected by the hydrogen bonding environment in the region of 250 nm (calculated). The vertical excited states were calculated at the TDDFT level of theory with using OH(H2O)n clusters (n = 0-7, 16) with companion calculations at the EOM-CCSD level of theory for n ≤ 7. An intense solvent-to-solute charge transfer transition was calculated for n = 16 cluster where the donor and acceptor molecular orbitals are in favorable alignment. In the other smaller clusters the transitions in this region were found to be weak. The present findings are consistent with the experimental absorption at 230 nm suggested to be a solvent-to-solute charge transfer and provide insight into the electronic states and orbitals that give rise to the intensity of the band. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program, and was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.

  10. Highly Ionized Iron Absorption Lines from Outflowing Gases in the X-ray Spectrum of NGC 1365

    NASA Technical Reports Server (NTRS)

    Risaliti, G.; Bianchi, S.; Matt, G.; Baldi, A.; Elvis, M.; Fabbiano, G.; Zezas, A.

    2006-01-01

    We present the discovery of four absorption lines in the X-ray spectrum of the Seyfert galaxy NGC 1365, at energies between 6.7 and 8.3 keV. The lines are detected with high statistical confidence (from >20 sigma for the strongest to -4 sigma for the weakest) in two XMM-Newton observations 60 ks long. We also detect the same lines, with a lower signal-to-noise ratio (but still >2 sigma for each line), in two previous shorter (-10 ks) XMM-Newton observations. The spectral analysis identifies these features as Fe XXV and Fe XXVI Kalpha and Kbeta lines, outflowing with velocities varying between -1000 and -5000 km/s among the observations. These are the highest quality detections of such lines so far. The high equivalent widths [EW (Kalpha) approximately 100 eV] and the Kalpha/Kbeta ratios imply that the lines are due to absorption of the AGN continuum by a highly ionized gas with column density NH-5?1023 cm(exp -2) at a distance of -(50-100)RS from the continuum source.

  11. The Fourier transform absorption spectrum of acetylene between 8280 and 8700 cm-1

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Vander Auwera, J.; Campargue, A.

    2016-07-01

    High resolution (0.011 cm-1) room temperature (295 K) Fourier transform absorption spectra (FTS) of acetylene have been analyzed in the 8280-8700 cm-1 range dominated by the ν1+ν2+ν3 band at 8512 cm-1. Line positions and intensities were retrieved from FTS spectra recorded at 3.84 and 56.6 hPa. As a result, a list of 1001 lines was constructed with intensities ranging between about 2×10-26 and 10-22 cm/molecule. Comparison with accurate predictions provided by a global effective operator model led to the assignment of 629 12C2H2 lines. In addition, 114 lines of the 13C12CH2 isotopologue were assigned using information available in the literature. The 12C2H2 lines belong to thirteen bands, nine of which being newly reported. The 13C12CH2 lines belong to three bands, the intensities of which being reported for the first time. Spectroscopic parameters of the 12C2H2 upper vibrational levels were derived from band-by-band analyses of the line positions (typical rms are on the order of 0.002 cm-1). Three of the analyzed bands were found to be affected by rovibrational perturbations, which are discussed in the frame of a global effective Hamiltonian. The obtained line parameters are compared with those of the two bands included in the HITRAN 2012 database.

  12. Optoelectronic set for measuring the absorption spectrum of the thin biological media

    NASA Astrophysics Data System (ADS)

    Gryko, Lukasz; Zajac, Andrzej; Gilewski, Marian

    2013-10-01

    In the paper the authors present the developed optoelectronic system for controlled, repetitive exposure by electromagnetic radiation of biological structures in the Low Level Laser (LED) Therapy procedures. The set allows for objective selection and control of the irradiation parameters by light from spectral range of the tissues transmission window. Measurements of optical parameters of thin biological medium - spectral absorption coefficient and the amount of absorbed energy - can be implemented in the measuring chamber during irradiation treatment. The radiation source is the broadband illuminator consists of set of selected high power LEDs. The maximum optical power of single source is from 80 mW to 800 mW. Illuminator is controlled and powered by the multi-channel prototype control system, which allows independently control a current of each emitter. This control allows shaping spectral emission characteristic of broadband source in range 600-1000 nm. Illuminator allows providing in the working area of 700 cm2 a uniform distribution of optical power density, of 10 mW/cm2 for maximum. Set ensure uniform distribution of the spectral power density of up to 40 mW/nm.

  13. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  14. Global Properties of the Ejecta Absorptions in the Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Gull, T. R.; Vieira, G. L.; Danks, A. C.

    2002-12-01

    Between 2400A to 3160A, we have identified approximately 500 absorption line complexes, each with up to 20 velocity components. Lines of Fe I, Fe II, Ti II, V II, Ni II, Co II, Mn II, Mg I, Mg II and Na I have been identified. Surprisingly, most of the lines originate from energy levels significantly above the ground level. This is indicative of optical pumping from the Central Source. Line widths and population of various levels are non-thermal. The relative column densities change with velocity. For example, Fe II column densities for one transition arising from 0.1eV increase with ejecta velocity while Fe II column densities for another transition decreases with velocity. This may be due to softening of the ultraviolet radiation that pumps the various ions (neutrals) with velocity. If we assume that the distance of each system scales with distance from the Central Source, only a thirty percent change in distance is noted; yet the ratio of column densities for the Fe II examples given above changes by nearly thirty-fold. If the ejecta distance scales with distance from Eta Carinae, then it is likely that this ejecta originated at nearly the same time. The geometry of the Homunculus has been determined to be a double-lobed structure tilted out of the plane of the sky. We interpret the ejecta as being in the wall of the Southwest lobe, and that this wall just happens to be in line of sight from Eta Carinae to the observer. As Eta Carinae enters into the upcoming minimum, we are already seeing some evidence for changes in column densities due to changes in ultraviolet fluxes. This is reinforced by IUE observations that we have recently re-analyzed with respect to the 5.52 year (2020+/-10 days) spectroscopic period. Observations were done through STScI and funding was through the STIS GTO resources.

  15. Global Properties of the Ejecta Absorptions in the Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, T. R.; Vieira, G.; Danks, A.

    2003-01-01

    Between 2400A to 3160A, we have identified approximately 500 absorption line complexes, each with up to 20 velocity components. Lines of Fe I, Fe II, Ti II, V II, Ni II, Co II, Mn II, Mg I, Mg II and Na I have been identified. Surprisingly, most of the lines originate from energy levels significantly above the ground level. This is indcative of optical pumping from the Central Source. Line widths and population of various levels are non-thermal. The relative column densities change with velocity. For example, Fe 11 column densities for one transition arising from approx. 0.l ev increase with ejecta velocity while Fe 11 column densities for another transition decreases with velocity. This may be due to softening of the ultraviolet radiation that pumps the various ions (neutrals) with velocity. If we assume that the distance of each system scales with distance from the Central Source, only a thirty percent change in distance is noted; yet the ratio of column densities for the Fe I1 examples given above changes by nearly thirty-fold. If the ejecta distance scales with distance from Eta Carinae, then it is likely that this ejecta originated at nearly the same time. The geometry of the Homunculus has been determined to be a double-lobed structure tilted out of the plane of the sky. We interpret the ejecta as being in the wall of the Southwest lobe, and that this wall just happens to be in line of sight from Eta Carinae to the observer. As Eta Carinae enters into the upcoming minimum, we are already seeing some evidence for changes in column densities due to changes in ultraviolet fluxes. This is reinforced by IUE observations that we have recently re-analyzed with respect to the 5.52 year (2020 +/- 10 days) spectroscopic period. Observations were done through STScI and funding was through the STIS GTO resources.

  16. A HIRES Detection of NA I D Absorption in the Spectrum of the QSO PKS 2020-370 Due to the Galaxy Klemola 31A

    NASA Astrophysics Data System (ADS)

    Junkkarinen, V. T.; Barlow, T. A.

    1994-12-01

    By using the Keck telescope and HIRES spectrograph we have detected Na I D absorption lines in the spectrum of the QSO PKS 2020-370 (V = 17.5, z = 1.048) due to the galaxy Klemola 31A (z = 0.0288). The PKS 2020-370 line of sight is near an apparent spiral arm only 20" from the nucleus of Klemola 31A which corresponds to 17 kpc (H_o = 50 km s(-1) Mpc(-1) ). The spectrum of PKS 2020-370 has strong Ca II absorption lines (W_λ ~ 350 m Angstroms \\ for the K line) at the galaxy redshift (Boksenberg et al, 1980, ApJ, 242, L145), but previous attempts to detect Na I have resulted in upper limits (Boisse et al. 1988, A&A, 191, 193, Womble, 1992, thesis UCSD). We observed PKS 2020-370 with HIRES in May 1994 at a resolution of 8 km s(-1) FWHM for a total of 90 minutes. The Na I D doublet is detected with a total W_λ for the Na I 5891.6 Angstroms \\ (vac) absorption line of about 160 m Angstroms . The absorption appears as two main velocity components separated by 23 km s(-1) . The optically thin estimate for N(Na I) = 1.0 times 10(12) cm(-2) gives an estimated N(Ca II)/N(Na I) = 5. This value suggests that the gas in Klemola 31A along the QSO line of sight is ``halo like''. Along ``disk like'' lines of sight where Ca is thought to be depleted onto grains in our Galaxy, the N(Ca II)/N(Na I) ratio is usually small (<= 1). Other QSO--galaxy pairs often show disk like N(Ca II)/N(Na I) ratios when the line of sight intersects starlight at 25 mag per sq. arcsec (Womble, 1992 thesis UCSD). The PKS 2020-370 sightline is near the optical extent of Klemola 31A but the N(Ca II)/N(Na I) is consistent with the sightline passing through two clouds in the halo. This research has been supported in part by NASA NAS5--29293 and NAG5--1630.

  17. AN Fe XXIV ABSORPTION LINE IN THE PERSISTENT SPECTRUM OF THE DIPPING LOW-MASS X-RAY BINARY 1A 1744-361

    SciTech Connect

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-07-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT {approx} 1.0 keV) plus power law ({Gamma} {approx} 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 {+-} 0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2-1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km s{sup -1}. We find an equivalent width for the line of 27{sup +2}{sub -3} eV, from which we determine a column density of (7 {+-} 1) Multiplication-Sign 10{sup 17} cm{sup -2} via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >10{sup 3.6} erg cm s{sup -1}. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an 'atoll' source.

  18. An Fe XXIV Absorption Line in the Persistent Spectrum of the Dipping Low-Mass X-Ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2012-01-01

    We report on Chandra X-ray Observatory (Chandra) High Energy Transmission Grating spectra of the dipping low-mass X-ray binary 1A 1744-361 during its 2008 July outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power law (Gamma approx. 1.7) with an absorption edge. In the residuals of the combined spectrum, we find a significant absorption line at 6.961 +/- 0.002 keV, consistent with the Fe xxvi (hydrogen-like Fe) 2-1 transition.We place an upper limit on the velocity of a redshifted flow of nu < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of (7 +/- 1)×10(exp 17) /sq. cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of >103.6 erg cm/s. We discuss what implications the feature has on the system and its geometry. We also present Rossi X-ray Timing Explorer data accumulated during this latest outburst and, via an updated color-color diagram, clearly show that 1A 1744-361 is an "atoll" source

  19. Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein

    PubMed Central

    Isborn, Christine M.; Götz, Andreas W.; Clark, Matthew A.; Walker, Ross C.; Martínez, Todd J.

    2012-01-01

    We describe a new interface of the GPU parallelized TeraChem electronic structure package and the Amber molecular dynamics package for quantum mechanical (QM) and mixed QM and molecular mechanical (MM) molecular dynamics simulations. This QM/MM interface is used for computation of the absorption spectra of the photoactive yellow protein (PYP) chromophore in vacuum, aqueous solution, and protein environments. The computed excitation energies of PYP require a very large QM region (hundreds of atoms) covalently bonded to the chromophore in order to achieve agreement with calculations that treat the entire protein quantum mechanically. We also show that 40 or more surrounding water molecules must be included in the QM region in order to obtain converged excitation energies of the solvated PYP chromophore. These results indicate that large QM regions (with hundreds of atoms) are a necessity in QM/MM calculations. PMID:23476156

  20. Reconstruction of a 6-MeV bremsstrahlung spectrum by multi-layer absorption based on LiF:Mg, Cu, P

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Wei; Wang, Nai-Yan

    2014-10-01

    In this paper, TLD (LiF: Mg, Cu, P) is used as detector. A multi-layer absorption (MLA) model is designed. Combined with Monte-Carlo processes, a bremsstrahlung X-ray spectrum is reconstructed by an iterative method; the reconstructed results agree with the results of simulations by the MCNP process essentially, especially in middle energy region.

  1. The 5f2-->5f16d1 absorption spectrum of Cs2GeF6:U4+ crystals: A quantum chemical and experimental study.

    PubMed

    Ordejón, Belén; Karbowiak, Miroslaw; Seijo, Luis; Barandiarán, Zoila

    2006-08-21

    Single crystals of U(4+)-doped Cs2GeF6 with 1% U4+ concentration have been obtained by the modified Bridgman-Stockbarger method in spite of the large difference in ionic radii between Ge4+ and U4+ in octahedral coordination. Their UV absorption spectrum has been recorded at 7 K, between 190 and 350 nm; it consists of a first broad and intense band peaking at about 38,000 cm(-1) followed by a number of broad bands of lower intensity from 39,000 to 45,000 cm(-1). None of the bands observed shows appreciable fine vibronic structure, so that the energies of experimental electronic origins cannot be deduced and the assignment of the experimental spectrum using empirical methods based on crystal field theory cannot be attempted. Alternatively, the profile of the absorption spectrum has been obtained theoretically using the U-F bond lengths and totally symmetric vibrational frequencies of the ground 5f2 - 1A(1g) and 5f16d(t(2g))1 - iT(1u) excited states, their energy differences, and their corresponding electric dipole transition moments calculated using the relativistic ab initio model potential embedded cluster method. The calculations suggest that the observed bands are associated with the lowest five 5f2 - 1A(1g)-->5f16d(t(2g))1 - iT(1u) (i = 1-5) dipole allowed electronic origins and their vibrational progressions. In particular, the first broad and intense band peaking at about 38,000 cm(-1) can be safely assigned to the 0-0 and 0-1 members of the a(1g) progression of the 5f2 - 1A(1g)-->5f16d(t(2g))1 - 1T(1u) electronic origin. The electronic structure of all the states with main configurational character 5f16d(t(2g))1 has been calculated as well. The results show that the lowest crystal level of this manifold is 5f16d(t(2g))1 - 1E(u) and lies about 6200 cm(-1) above the 5f2 level closest in energy, which amounts to some 11 vibrational quanta. This large energy gap could result in low nonradiative decay and efficient UV emission, which suggest the interest of

  2. Accurate calculation of the x-ray absorption spectrum of water via the GW/Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Gilmore, Keith; Vinson, John; Kas, Josh; Vila, Fernando; Rehr, John

    2014-03-01

    We calculate x-ray absorption spectra (XAS) of water within the OCEAN code, which combines plane-wave, pseudopotential electronic structure, PAW transition elements, GW self-energy corrections, and the NIST BSE solver. Due to the computational demands of this approach, our initial XAS calculations were limited to 17 molecule super cells. This lead to unphysical, size dependent effects in the calculated spectra. To treat larger systems, we extended the OCEAN interface to support well-parallelized codes such as QuantumESPRESSO. We also implemented an efficient interpolation scheme of Shirley. We applied this large-scale GW/BSE approach to 64 molecule unit cell structures of water obtained from classical DFT/MD and PIMD simulations. In concurrence with previous work, we find the calculated spectrum both qualitatively and quantitatively reproduces the experimental features. The agreement implies that structures based on PIMD, which are similar to the traditional distorted tetrahedral view, are consistent with experimental observations. Supported by the DOE CMCSN through DOE award DE-SC0005180 (Princeton University) and in part by DOE Grant No. DE-FG03-97ER45623 (JJR) with computer support from NERSC.

  3. Children with autism spectrum disorders show abnormal conditioned response timing on delay, but not trace, eyeblink conditioning

    PubMed Central

    Oristaglio, Jeff; West, Susan Hyman; Ghaffari, Manely; Lech, Melissa S.; Verma, Beeta R.; Harvey, John A.; Welsh, John P.; Malone, Richard P.

    2013-01-01

    Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals. PMID:23769889

  4. 5f3 --> 5f 26d1 absorption spectrum analysis of U3+-SrCl2.

    PubMed

    Karbowiak, Mirosław

    2005-04-28

    The 5f3--> 5f26d1 absorption spectra of the U3+ ions incorporated in SrCl2 single crystals were recorded at 4.2 K in the 15,000-50,000 cm(-1) spectral range. From an analysis of the vibronic structure, 32 zero-phonon lines corresponding to transitions from the 4I9/2 ground multiplet of the 5f3 configuration to the 5f26d(eg)1 excited levels were assigned. A theoretical model proposed by Reid et al. (Reid, H. F.; van Pieterson, L.; Wegh, R. T.; Meijerink, A. Phys. Rev. B 2000, 62, 14744) that extends the established model for energy-level calculations of nf N states has been applied for analysis of the spectrum. The Fk(ff) (k = 2, 4), zeta(5f)(ff), B0(4)(ff), B0(6)(ff), Fk(fd) (k = 2, 4), and Gj(fd) (j = 1, 3) Hamiltonian parameters were determined by a least-squares fitting of the calculated energies to the experimental data. A good overall agreement between the calculated and experimentally observed energy levels has been achieved, with the root-mean-square (rms) deviation equal to 95 cm(-1) for 32 fitted levels and 9 varied parameters. Adjusted values of Fk(ff) and zeta(5f)(ff) parameters for the 5f2 core electrons are closer to the values characteristic of the 5f2 (U4+) configuration than to those of the 5f3 (U3+) configuration. For the U3+ ion, the f-d Coulomb interaction parameters are significantly more reduced from the values calculated using Cowan's computer code than they are for lanthanide ions. Moreover, because of weaker f-d Coulomb interactions for the U3+ ion than for the isoelectronic Nd3+ lanthanide ion, the very simple model assuming the coupling of crystal-field levels of the 6d1 electron with the lattice and the multiplet structure of the 5f2 configuration may be employed for the qualitative description of the general structure of the U3+ ion f-d spectrum. PMID:16839023

  5. Cavity Ringdown Absorption Spectrum of the T_1 (n,π^{*}) ← S_0 Transition of 2-CYCLOHEXEN-1-ONE

    NASA Astrophysics Data System (ADS)

    Zabronsky, Katherine L.; McAnally, Michael O.; Stupca, Daniel J.; Pillsbury, Nathan R.; Drucker, Stephen

    2013-06-01

    The cavity ringdown (CRD) absorption spectrum of 2-cyclohexen-1-one (CHO) was recorded over the range 401.5-410.5 nm in a room-temperature gas cell. The very weak band system (ɛ ≤ 0.02 dm^3 mol^{-1} {cm}^{-1}) in this region is due to the T_1(n, π*) ← S_0 electronic transition. The 0^0_0 origin band was assigned to the feature observed at {24,558.6 ± 0.3 {cm}^{-1}}. We have assigned about 25 vibronic transitions in a region extending from {-200 to +350 cm^{-1}} relative to the origin band. From these assignments we determined fundamental frequencies for several vibrational modes in the T_1 excited state. The table below compares their frequencies to corresponding values measured for CHO vapor in the S_0 electronic ground state (via far-IR spectroscopy) and the S_1(n, π*) excited state (via near-UV CRD spectroscopy). Low-frequency fundamentals (cm^{-1}) of CHO vapor Mode Description S_0 S_1(n,π^*) T_1(n,π^*) 39 ring twist 99.2 122.1 99.5 38 bend (inversion of C-5) 247 251.9 253.2 37 C=C twist 304.1 303.3 247.8 36 C=O wag 485 343.9 345.5 For ν_{39} and ν_{37}, the differences between S_1 and T_1 frequencies are noteworthy. These differences suggest that the electron delocalization associated with the π^* ← n chromophore in CHO is substantially different for singlet vs. triplet excitation. T. L. Smithson and H. Wieser, J. Chem. Phys. {73}, 2518 (1980) M. Z. M. Rishard and J. Laane, J. Molec. Struct. {976}, 56 (2010). M. Z. M. Rishard, E. A. Brown, L. K. Ausman, S. Drucker and J. Laane, J. Phys. Chem. A {112}, 38 (2008).

  6. Communication: Does a single CH{sub 3}CN molecule attached to Ru(bipy){sub 3}{sup 2+} affect its absorption spectrum?

    SciTech Connect

    Stockett, M. H.; Brøndsted Nielsen, S.

    2015-05-07

    Tris(bipyridine)ruthenium(II) (Ru(bipy){sub 3}{sup 2+}) is a prototypical transition metal coordination complex whose photophysical properties have attracted considerable attention. A much debated issue is whether the metal-to-ligand charge transfer (MLCT) transition that accounts for the complex’s beautiful red color is fully delocalized across all three bipyridine ligands or located on just one ligand. Here, we show based on gas-phase action spectroscopy that attachment of a single acetonitrile molecule does not change the absorption spectrum from that of the bare ions, which is indicative of a delocalized state. However, the gas-phase spectra of the bare and one solvent molecule complexes are significantly blueshifted relative to that obtained in bulk acetonitrile, which suggests that in solution the polarizability of many solvent molecules working together can localize the MLCT state. Our data clearly show that more than one solvent molecule is needed to break the symmetry of the MLCT excited state and reproduce its solution-phase characteristics.

  7. Membrane Active Small Molecules Show Selective Broad Spectrum Antibacterial Activity with No Detectable Resistance and Eradicate Biofilms.

    PubMed

    Hoque, Jiaul; Konai, Mohini M; Gonuguntla, Spandhana; Manjunath, Goutham B; Samaddar, Sandip; Yarlagadda, Venkateswarlu; Haldar, Jayanta

    2015-07-23

    Treating bacterial biofilms with conventional antibiotics is limited due to ineffectiveness of the drugs and higher propensity to develop bacterial resistance. Development of new classes of antibacterial therapeutics with alternative mechanisms of action has become imperative. Herein, we report the design, synthesis, and biological evaluations of novel membrane-active small molecules featuring two positive charges, four nonpeptidic amide groups, and variable hydrophobic/hydrophilic (amphiphilic) character. The biocides synthesized via a facile methodology not only displayed good antibacterial activity against wild-type bacteria but also showed high activity against various drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), and β-lactam-resistant Klebsiella pneumoniae. Further, these biocides not only inhibited the formation of biofilms but also disrupted the established S. aureus and E. coli biofilms. The membrane-active biocides hindered the propensity to develop bacterial resistance. Moreover, the biocides showed negligible toxicity against mammalian cells and thus bear potential to be used as therapeutic agents. PMID:26102297

  8. Local Effects in the X-ray Absorption Spectrum of CaCl2, MgCl2, and NaCl Solutions

    SciTech Connect

    Kulik, H J; Correa Tedesco, A A; Schwegler, E; Prendergast, D; Galli, G

    2010-04-12

    Both first principles molecular dynamics and theoretical X-ray absorption spectroscopy have been used to investigate the aqueous solvation of cations in 0.5 M MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions. We focus here on the species-specific effects that Mg{sup 2+}, Ca{sup 2+}, and Na{sup +}, have on the X-ray absorption spectrum of the respective solutions. For the divalent cations, we find that the hydrogen bonding characteristics of the more rigid magnesium first shell water molecules differ from those in the more flexible solvation shell surrounding calcium. In particular, the first solvation shell water molecules of calcium are accessible to forming acceptor hydrogen bonds, and this results in an enhancement of a post-edge peak near 540 eV. The absence of acceptor hydrogen bonds for magnesium first shell water molecules provides an explanation for the experimental and theoretical observation of a lack of enhancement at the post-main-edge peak. For the sodium monovalent cation we find that the broad tilt angle distribution results in a broadening of post-edge features, despite populations in donor-and-acceptor configurations consistent with calcium. We also present the re-averaged spectra of the MgCl{sub 2}, CaCl{sub 2}, and NaCl solutions and show that trends apparent with increasing concentration (0.5 M, 2.0 M, 4.0 M) are consistent with experiment. Finally, we examine more closely both the effect that cation coordination number has on the hydrogen bonding network and the relative perturbation strength of the cations on lone pair oxygen orbitals.

  9. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  10. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    NASA Astrophysics Data System (ADS)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.

    2016-06-01

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  11. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.

    PubMed

    Adriano Junior, L; Fonseca, T L; Castro, M A

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results. PMID:27334183

  12. Relative amplitudes of external satellites of superfine-structure multiplets in the saturated absorption spectrum of SiF4

    NASA Astrophysics Data System (ADS)

    Krylov, I. R.; Akulinin, D. A.; Chubykin, A. D.

    2015-08-01

    Variation of amplitudes of Doppler-free saturated absorption resonances as a result of changes in the gas pressure and power of light waves is studied theoretically and experimentally. The results of the investigation are used for the interpretation of weak satellites of superfine-structure multiplets in the spectrum related to tunnel transitions between energy states of a molecule corresponding to its rotation about equivalent symmetry axes. Relative amplitudes of satellites of the AFE and FEF multiplets of the superfine structure of the SiF4 molecule in the frequency tuning interval of a CO2 laser operating at the P(38) line of the 9.7-µm band are studied experimentally. It is confirmed that the variation of relative amplitudes of the satellites is caused mainly by the fact that the magnitudes of the self-induced transparency of the medium that are created by each light wave for itself are different for the main resonances of the multiplet and for their satellites. The discrepancy between the experimental and theoretical dependences of the relative amplitudes of the satellites upon variation of the gas pressure and power of light waves is analyzed. Based on the discovered discrepancy, it is suggested that molecular collisions with Bennett dip or peak transfer contribute to the formation of satellites of the FEF multiplet. Multiphoton processes participate in the formation of one of the multiplets of the FEF multiplet. It is suggested that the power of the light field partially lifts the ban on transitions participating in the formation of satellites of both studied multiplets. Processing of the experimental curves by the leastsquares method revealed spectrally unresolved satellites within the FEF multiplet, which represent crossover resonances between allowed and forbidden transitions. For these satellites, no additional dependence of the amplitude on the laser power or gas pressure was found. The dependence of the amplitude of these satellites is completely

  13. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide.

    PubMed

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B̃(1)A'←X̃(1)A' UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation. PMID:25273439

  14. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  15. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  16. The effect of deformation and intermolecular interaction on the absorption spectrum of 5-aminotetrazole and hydrazine: A computational molecular spectroscopy study on hydrazinium 5-aminotetrazolate

    NASA Astrophysics Data System (ADS)

    Farrokhpour, H.; Dehbozorgi, A.; Manassir, M.; Najafi Chermahini, A.

    2016-03-01

    In the present work, the UV absorption spectra of seven complexes of hydrazinium 5-aminotetrazolate (HY-5AT), in the range of 4-12 eV, were calculated in both gas and water. The UV absorption spectra of the selected HY-5AT complexes were also calculated in the absence of the intermolecular interaction between 5-aminotetrazole (5AT) and hydrazine (HY) and compared with the calculated UV absorption spectra of isolated HY and 5AT in the gas phase to see the effect of deformation on the electronic structures of the fragments. In addition, the calculated spectra of HY-5AT complexes were compared with the corresponding calculated spectra of HY-5AT complexes in the absence of the interaction between HY and 5AT to see the effect of interaction between two fragments on the absorption spectra of the complexes. Similar studies were performed on the most stable structure of HY-5AT complex in water and different trend was observed for the effect of deformation and interaction on the absorption spectrum of complex compared to the gas phase.

  17. The HD spectrum near 2.3 μm by CRDS-VECSEL: Electric quadrupole transition and collision-induced absorption

    NASA Astrophysics Data System (ADS)

    Vasilchenko, S.; Mondelain, D.; Kassi, S.; Čermák, P.; Chomet, B.; Garnache, A.; Denet, S.; Lecocq, V.; Campargue, A.

    2016-08-01

    The HD absorption spectrum is investigated near 2.3 μm with the help of a newly developed Cavity Ring Down Spectrometer (CRDS) using a VECSEL (Vertical External Cavity Surface Emitting Laser) as light source. The HD CRDS spectra were recorded for a series of ten pressure values in the range 50-650 Torr. The sensitivity of the recordings - noise equivalent absorption of the spectra on the order of αmin ≈ 5 × 10-10 cm-1 - has allowed for the first detection of the S(3) quadrupole electric transition of the HD fundamental band, at 4359.940 cm-1. The line center determined with an uncertainty of 0.002 cm-1 agrees with the most recent theoretical calculations. The retrieved value of the line intensity (2.5 × 10-27 cm/molecule at 296 K) agrees within 12% with the ab initio values included in the HITRAN spectroscopic database. We take the opportunity of this contribution to provide an exhaustive review of seventy-three HD absorption lines previously detected up to 20,000 cm-1. From the pressure dependence of the baseline of the CRDS spectra, the binary absorption coefficient of the HD collision induced absorption band is determined to be 1.17(4) × 10-6 cm-1amagat-2 at 4360 cm-1.

  18. Theoretical analysis of the two-photon absorption spectrum of Tb3+ in Cs2NaTbCl6

    NASA Astrophysics Data System (ADS)

    Wang, Dianyuan; Ning, Lixin; Xia, Shangda; Tanner, Peter A.

    2003-05-01

    Eighteen selected two-photon absorption (TPA) transition line strengths with polarization angles theta = 0° and 45°, spanning several orders of magnitude, have been calculated for the Tb3+ ion in the cubic host Cs2NaTbCl6. The results are in reasonable agreement with experimental results in the literature. The calculation utilized the crystal field (CF) wavefunctions for the initial and final states of the 4f8 configuration, and utilized free ion or CF wavefunctions (with the corresponding energies) for 4f7 core states of the whole intermediate 4f7 5d configuration comprising 34 320 states. The intensities of certain transitions were found to be very sensitive to the inclusion of the CF interaction within the 4f7 core. In contrast to previous fourth- or third-order calculations of the TPA transition line strength of the strong transition (7F 6)A1g rightarrow (5D 4)A1g using pure Russell-Saunders (RS) wavefunctions for the |7F 6 rangle initial and langle5D 4 | final states, our second-order direct calculation shows that the admixed RS wavefunctions |[7F 6 ]rangle and langle[5D 4 ]| must be used to account for its high intensity. The effects of CF interactions within the 4f7 core, i.e. J-mixing and CF energy level splitting, upon the (7F 6)A1g rightarrow (5D 4)Eg TPA transition line strength have been separated, and the latter effect is shown to be more important for the transition investigated.

  19. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  20. Gas cell based on optical contacting for fundamental spectroscopy studies with initial reference absorption spectrum of H2O vapor at 1723 K and 0.0235 bar

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Sanders, Scott T.

    2016-09-01

    A gas cell, using optically contacted sapphire windows to form a hot vapor seal, has been created for high temperature fundamental spectroscopy studies. It is designed to operate at temperatures from 280-2273 K and pressures from vacuum to 1.3 bar. Using the cell in conjunction with an external cavity diode laser spectrometer, a reference H2O vapor absorption spectrum at P=0.0235±0.0036 bar and T=1723±6 K was measured with 0.0001 cm-1 resolution over the 7326-7598 cm-1 range. Comparison of the measured spectrum to simulations reveals errors in both the HITEMP and BT2 databases. This work establishes heated static cell capabilities at temperatures well above the typical limit of approximately 1300 K set by quartz material properties. This paper addresses the design of the cell as well as the cell's limitations.

  1. Rotationally resolved à 2Πg←X˜2Πu electronic spectrum of triacetylene cation by frequency modulation absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Sinclair, Wayne E.; Pfluger, David; Linnartz, Harold; Maier, John P.

    1999-01-01

    The spectrum of the à 2Πg←X˜2Πu 000 band system of the triacetylene cation and isotopic derivatives DC6H+ and C6D2+ have been studied at Doppler-limited resolution using frequency modulation absorption spectroscopy. The ions were generated in a liquid-nitrogen-cooled hollow cathode discharge incorporated in a White cell. A discharge modulation in combination with the frequency modulation technique was used to enhance the detection sensitivity. Analyses of the rotational structure yield accurate rotational and spin-orbit interaction constants of triacetylene cation in the two electronic states and information on its geometry.

  2. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider

    PubMed Central

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  3. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  4. Ultrafast transient absorption spectrum of the room temperature Ionic liquid 1-hexyl-3-methylimidazolium bromide: Confounding effects of photo-degradation

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Crowell, Robert A.; Polyanskiy, Dmitriy E.; Thomas, Marie F.; Wishart, James F.; Katsumura, Yosuke; Takahashi, Kenji

    2015-12-01

    The photochemistry of the charge transfer (CT) band of the room temperature ionic liquid (RTIL) 1-hexyl-3-methylimidazolium bromide (HMIm+/Br-) is investigated using near-IR to vis ultrafast transient absorption (TA) and steady-state UV absorption spectroscopies. Continuous irradiation of the CT band at 266 nm results in the formation of photo-products that absorb strongly at 266 nm. It is shown that these photo-products, which are apparently very stable, adversely affect ultrafast TA measurements. Elimination of these effects reveals at least two transient species that exist within the TA detection window of 100 fs to 3 ns and 500-1250 nm. One of the components is a short-lived (<1 ps) species that absorbs at 1080 nm. The second band exhibits a multicomponent spectrum that is very broad with an absorption maximum around 600 nm and a lifetime that is longer than the 3 ns window of our TA spectrometer. Within the signal to noise ratio of the TA spectrometer little to no solvated electron is generated by the CT mechanism.

  5. Low-temperature high-resolution absorption spectrum of 14NH3 in the ν1+ν3 band region (1.51 μm)

    NASA Astrophysics Data System (ADS)

    Földes, T.; Golebiowski, D.; Herman, M.; Softley, T. P.; Di Lonardo, G.; Fusina, L.

    2014-09-01

    Jet-cooled spectra of 14NH3 and 15NH3 in natural abundance were recorded using cavity ring-down (CRDS, 6584-6670 cm-1) and cavity enhanced absorption (CEAS, 6530-6700 cm-1) spectroscopy. Line broadening effects in the CRDS spectrum allowed lines with J″-values between 0 and 3 to be identified. Intensity ratios in 14NH3 between the jet-cooled CRDS and literature room-temperature data from Sung et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1066) further assisted the line assignments. Ground state combination differences were extensively used to support the assignments, providing reliable values for J, K and inversion symmetry of the ground state vibrational levels. CEAS data helped in this respect for the lowest J lines, some of which are saturated in the CRDS spectrum. Further information on a/s doublets arose from the observed spectral structures. Thirty-two transitions of 14NH3 were assigned in this way and a limited but significant number (19) of changes in the assignments results, compared to Sung et al. or to Cacciani et al. (J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1084). Sixteen known and 25 new low-J transitions were identified for 15NH3 in the CRDS spectrum but the much scarcer literature information did not allow for any more refined assignment. The present line position measurements improve on literature values published for 15NH3 and on some line positions for 14NH3.

  6. X-ray Absorption Spectroscopy of Zinc in Airborne Particulate Matter Shows Tire Debris Concentrated in > 0.5 μm Fraction

    NASA Astrophysics Data System (ADS)

    Pingitore, N. E.; Clague, J. W.; Gill, T. E.; Amaya, M. A.; Cahill, T. A.

    2009-12-01

    Using X-ray absorption spectroscopy (XAS), we speciated Zn in size-resolved fractions of particulate matter (PM) from El Paso, Texas. Spectral patterns indicated that Zn in tire debris is the dominant form of Zn in PM coarser than 0.5 μm in aerodynamic diameter. Although concentrated in the > 0.5 μm fraction, a large portion of the tire debris in PM is small enough to penetrate and deposit in the lower respiratory tract. We collected 3 sets of size-resolved samples of airborne particulate matter (PM) over periods of several days to several weeks in November 2008, and April and May 2009. Local PM compositions typically are dominated by anthropogenic input in November and geologic sources in April, and a mixture in May. The collection site is in the urban core of El Paso, TX, contiguous to the University of Texas at El Paso, 0.6 km from Interstate Highway 10, 0.4 km from State Highway 20, and 1 km from Cd. Juarez, Chihuahua, Mexico. The DRUM sampler (Davis Rotating Uniform size-cut Monitor) employs a rotating Lundgren-type impactor, draws 10 l per minute, and deposits PM on plastic strips mounted on rotating drums. The sampler collected and segregated ambient PM into 8 size cuts: 12-5 μm, 5-2.5, 2.5-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-0.26, and 0.26-0.09. We conducted the X-ray absorption spectroscopy (XAS) experiments at the Stanford Synchrotron Radiation Lightsource on beam line 7-3. Spectra of the 24 samples of PM and numerous model compounds were collected at the Zn K absorption edge in fluorescence mode using a 30-element Ge solid-state detector. The overall spectral patterns from the 3 seasons were similar to one another. But strikingly, each set of 8 XAS spectra displayed an obvious change in the Zn speciation at the 0.56-0.75 μm size cut. We compared the PM spectra to those of our suite of known model compounds and materials. The spectral pattern of the coarser size cuts was quite similar to those of the tires we tested. The Zn in the tires

  7. Nosocomial outbreak of septicaemia in neonatal intensive care unit due to extended spectrum β-lactamase producing Klebsiella pneumoniae showing multiple mechanisms of drug resistance.

    PubMed

    Rastogi, V; Nirwan, P S; Jain, S; Kapil, A

    2010-01-01

    A total of 14 phenotypically similar clinical isolates of Klebsiella pneumoniae, resistant to multiple drugs including cefotaxime and ceftazidime, were isolated from blood of neonates admitted to neonatal intensive care unit (NICU) within a short span of 10 days. Alarmed at the possibility of occurrence of outbreak, a thorough investigation was done. Microbiological sampling of the NICU and labour room (LR) environment yielded 12 K. pneumoniae isolates. The presence of extended spectrum β-lactamase (ESBL) in the clinical and environmental strains was detected by double-disk synergy test (DDST), CLSI phenotypic confirmatory disk diffusion test (PCDDT) and E-test ESBL strips. Amp-C screen (disk) test was done to determine Amp-C β-lactamase production. 100% clinical strains, 57% NICU strains and 80% LR strains were ESBL positive. 57% clinical, 43% NICU and 20% LR strains were Amp-C screen positive. Polymerase chain reaction (PCR) of representative ESBL positive (10 clinical and 5 environmental) strains showed CTX gene and TEM and/or SHV gene in all. K. pneumoniae showing multiple mechanisms of drug resistance was responsible for the outbreak. PMID:20966575

  8. VizieR Online Data Catalog: Absorption spectrum of the QSO PKS2126-158 (D'Odorico+ 1998)

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1997-10-01

    Spectra of the zem=3.268 quasar PKS 2126-158 have been obtai the wavelength range 430-662nm with a resolution R=27000 and an average signal to noise ratio s/n=25 per resolution element. 12 metal absorption systems have been identified, two of which were previously unknown. All the lines shortward of the Lymanα emission not identified as due to metals have been fitted as Lymanα and Lymanβ. We reported statistical analysis of this sample of lines. In particular, the two-point correlation function for metal systems has been computed. (1 data file).

  9. UV and VUV spectrum of matrix-isolated In: an investigation by absorption, magnetic circular dichroism and emission yield spectroscopy

    NASA Astrophysics Data System (ADS)

    Schroeder, W.; Rotermund, H.-H.; Wiggenhauser, H.; Schrittenlacher, W.; Hormes, J.; Krebs, W.; Laaser, W.

    1986-05-01

    The electronic absorption spectra of In atoms isolated in neon, argon, krypton and xenon matrices have been measured in the energy range between 2.5 and 9.0 eV. This region includes the 5s 25p → 5s 26s and 5s 25p → 5s 25d resonance transitions, higher members of the corresponding s- and d-Rydberg series and the inner shell 5s 25p → 5s5p 2 transitions. A correlation of the absorption spectra with results obtained from magnetic circular dichroism and fluorescence measurements has made it possible to provide a detailed assignment of most of the features in the spectra in spite of the complexities associated with their behavior. For example, the transition to 5s 26s could not be detected in any of the matrices and the 5s 25d configuration was found to be strongly quenched in intensity as compared to the other transitions. In contrast, several Rydberg transitions could be observed for In in Ne. These were satisfactorily interpreted within the Frenkel formalism. Some of these observations have been rationalized by assuming that the average radius of the wavefunction for the excited state is the dominant parameter for the matrix interaction.

  10. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  11. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  12. Cl{sub 2}O photochemistry: Ultraviolet/vis absorption spectrum temperature dependence and O({sup 3}P) quantum yield at 193 and 248 nm

    SciTech Connect

    Papanastasiou, Dimitrios K.; Feierabend, Karl J.; Burkholder, James B.

    2011-05-28

    The photochemistry of Cl{sub 2}O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O({sup 3}P) atom quantum yield, {Phi}{sub Cl{sub 2}O}{sup O}({lambda}), in its photolysis at 193 and 248 nm. The Cl{sub 2}O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl{sub 2}O absorption cross sections, {sigma}{sub Cl{sub 2}O}({lambda},T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl{sub 2}O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground {sup 1}A{sub 1} electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O({sup 3}P) quantum yields in the photolysis of Cl{sub 2}O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O({sup 3}P) atoms. O({sup 3}P) quantum yields were measured to be 0.85 {+-} 0.15 for 193 nm photolysis at 296 K and 0.20 {+-} 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N{sub 2}). The quoted uncertainties are at the 2{sigma} (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl{sub 2}O at 248 nm, as reported previously in Feierabend et al.[J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl{sub 2} photodissociation channel, which indicates that O({sup 3}P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 {+-} 0.1 at 248 nm. The results from this work are compared

  13. FE K EMISSION AND ABSORPTION FEATURES IN THE XMM-EPIC SPECTRUM OF THE SEYFERT GALAXY IC 4329A

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Reeves, J. N.; Braito, V.

    2001-01-01

    We present a re-analysis of the XMM-Newton long-look of the X-ray bright Seyfert galaxy IC 4329a. The Fe K bandpass is dominated by two peaks, consistent with emission from neutral or near-neutral Fe Ka and KP. A relativistic diskline model whereby both peaks are the result of one doubly-peaked diskline profile is found to be a poor description of the data. Models using two relativistic disklines are found to describe the emission profile well. A low-inclination, moderately-relativistic dual-diskline model is possible if the contribution from narrow components, due to distant material, is small or absent. A high-inclination, moderately relativistic profile for each peak is possible if there are roughly equal contributions from both the broad and narrow components. Upper limits on Fe XXV and Fe XXVI emission and absorption at the systemic velocity of IC 4329a are obtained. We also present the results of RXTE monitoring of this source obtained so far; the combined XMM-Newton and RXTE data sets allow us to explore the time-resolved spectral behavior of this source on time scales ranging from hours to 2 years. We find no strong evidence for variability of the Fe Ka emission line on any time scale probed, likely due to the minimal level of continuum variability. We detect a narrow absorption line, at a energy of 7.68 keV in the rest frame of the source; its significance has been confirmed using Monte Carlo simulations. This feature is most likely due to absorption from Fe XXVI blueshifted to approximately 0.1c relative to the systemic velocity, making IC 4329a the lowest-redshift AGN known with a high-velocity, highly-ionized outflow component. As is often the case with similar outflows seen in high-luminosity quasars, the estimated mass outflow rate is larger than the inflow accretion rate, signaling that the outflow represents a substantial portion of the total energy budget of the AGN. The outflow could arise from a radiatively-driven disk wind, or it may be in the

  14. A New Search for Carbon Monoxide Absorption in the Transmission Spectrum of the Extrasolar Planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Brown, Timothy M.; Charbonneau, David; Harrington, Joseph; Richardson, L. Jeremy

    2005-04-01

    We have revisited the search for carbon monoxide absorption features in transmission during the transit of the extrasolar planet HD 209458b. In 2002 August-September we acquired a total of 1077 high-resolution spectra (λ/δλ~25,000) in the K-band (2 μm) wavelength region using NIRSPEC on the Keck II telescope during three transits. These data are more numerous and of better quality than the data analyzed in an initial search by Brown et al. Our analysis achieves a sensitivity sufficient to test the degree of CO absorption in the first-overtone bands during transit on the basis of plausible models of the planetary atmosphere. We analyze our observations by comparison with theoretical tangent geometry absorption spectra, computed by adding height-invariant ad hoc temperature perturbations to the model atmosphere of Sudarsky et al. and by treating cloud height as an adjustable parameter. We do not detect CO absorption. The strong 2-0 R-branch lines between 4320 and 4330 cm-1 have depths during transit less than 1.6 parts in 104 in units of the stellar continuum (3 σ limit) at a spectral resolving power of 25,000. Our analysis indicates a weakening similar to that found in the case of sodium, suggesting that a general masking mechanism is at work in the planetary atmosphere. Under the interpretation that this masking is provided by high clouds, our analysis defines the maximum cloud-top pressure (i.e., minimum height) as a function of the model atmospheric temperature. For the relatively hot model used by Charbonneau et al. to interpret their sodium detection, our CO limit requires cloud tops at or above 3.3 mbar, and these clouds must be opaque at a wavelength of 2 μm. High clouds comprised of submicron-sized particles are already present in some models but may not provide sufficient opacity to account for our CO result. Cooler model atmospheres, having smaller atmospheric scale heights and lower CO mixing ratios, may alleviate this problem to some extent

  15. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  16. The 5 f r arrow 6 d absorption spectrum of Pa sup 4+ /Cs sub 2 ZrCl sub 6

    SciTech Connect

    Edelstein, N.; Kot, W.K. ); Krupa, J. )

    1992-01-01

    The 5{ital f}{sup 1}{r arrow}6{ital d}{sup 1} absorption spectrum of {sup 231}Pa{sup 4+} diluted in a single crystal of Cs{sub 2}ZrCl{sub 6} has been measured at 4.2 K. Three bands corresponding to the 6{ital d}({Gamma}{sub 8{ital g}}, {Gamma}{sub 7{ital g}}, and {Gamma}{sup {prime}}{sub 8{ital g}} ) levels are assigned. Extensive vibronic structure has been observed for the lowest 5{ital f}{r arrow}6{ital d} transition and this structure is compared to that recently reported for the 6{ital d}{sup 1}{r arrow}5{ital f}{sup 1} emission spectra in the same system.

  17. New narrow infrared absorption features in the spectrum of Io between 3600 and 3100 cm (2.8-3.2 micrometers)

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Geballe, Thomas R.; Salama, Farid; Goorvitch, David

    1994-01-01

    We report the discovery of a series of infrared absorption bands between 3600 and 3100/cm (2.8-3.2 micrometers) in the spectrum of Io. Individual narrow bands are detected at 3553, 3514.5, 3438, 3423, 3411.5, and 3401/cm (2.815, 2.845, 2.909, 2.921, 2.931, and 2.940 micrometers, respectively). The positions and relative strengths of these bands, and the difference of their absolute strengths between the leading and trailing faces of Io, indicate that they are due to SO2. The band at 3438/cm (2.909 micrometers) could potentially have a contribution from an additional molecular species. The existence of these bands in the spectrum of Io indicates that a substantial fraction of the SO2 on Io must reside in transparent ices having relatively large crystal sizes. The decrease in the continuum observed at the high frequency ends of the spectra is probably due to the low frequency side of the recently detected, strong 3590/cm (2.79 micrometer) feature. This band is likely due to the combination of a moderately strong SO2 band and an additional absorption from another molecular species, perhaps H2O isolated in SO2 at low concentrations. A broad (FWHM approximately = 40-60/cm), weak band is seen near 3160/cm (3.16 micrometers) and is consistent with the presence of small quantities of H2O isolated in SO2-rich ices. There is no evidence in the spectra for the presence of H2O vapor on Io. Thus, the spectra presented here neither provide unequivocal evidence for the presence of H2O on Io nor preclude it at the low concentrations suggested by past studies.

  18. Experimental and theoretical study of absorption spectrum of the (CH3)2CO···HF complex. Influence of anharmonic interactions on the frequency and intensity of the C=O and H-F stretching bands.

    PubMed

    Bulychev, V P; Svishcheva, E A; Tokhadze, K G

    2014-01-01

    IR absorption spectra of mixtures (CH3)2CO/HF and free (CH3)2CO molecules are recorded in the region of 4000-900 cm(-1) with a Bruker IFS-125 HR vacuum Fourier spectrometer at room temperature with a resolution up to 0.02 cm(-1). Spectral characteristics of the 2ν(C=O) overtone band of free acetone are reliably measured. The ν1(HF) and ν(C=O) absorption bands of the (CH3)2CO···HF complex are obtained by subtracting the absorption bands of free HF and acetone and absorption lines of atmospheric water from the experimental spectrum of mixtures. The experimental data are compared with theoretical results obtained from variational solutions of 1D-4D vibrational Schrödinger equations. The anharmonic potential energy and dipole moment surfaces used in the calculations were computed in the MP2/6-311++G(2d,2p) approximation with corrections for the basis set superposition error. Comparison of the data derived from solutions for different combinations of vibrational degrees of freedom shows that taking the inter-mode anharmonic interactions into account has different effects on the transition frequencies and intensities. Particular attention has been given to elucidation of the influence of anharmonic coupling of the H-F and C=O stretches with the low-frequency intermolecular modes on their frequencies and intensities and the strength of resonance between the fundamental H-F and the first overtone C=O transitions. PMID:24128921

  19. Assignment and modeling of the absorption spectrum of 13CH4 at 80 K in the region of the 2ν3 band (5853-6201 cm-1)

    NASA Astrophysics Data System (ADS)

    Starikova, E.; Nikitin, A. V.; Rey, M.; Tashkun, S. A.; Mondelain, D.; Kassi, S.; Campargue, A.; Tyuterev, Vl. G.

    2016-07-01

    The absorption spectrum of the 13CH4 methane isotopologue has been recently recorded by Differential Absorption Spectroscopy (DAS) at 80 K in the 5853-6201 cm-1 spectral range. An empirical list of 3717 lines was constructed for this spectral range corresponding to the upper part of the Tetradecad dominated by the 2ν3 band near 5987 cm-1. In this work, we present rovibrational analyses of these spectra obtained via two theoretical approaches. Assignments of strong and medium lines were achieved with variational calculations using ab initio potential energy (PES) and dipole moment surfaces. For further analysis a non-empirical effective Hamiltonian (EH) of the methane polyads constructed by high-order Contact Transformations (CT) from an ab initio PES was employed. Initially predicted values of EH parameters were empirically optimized using 2898 assigned line positions fitted with an rms deviation of 5×10-3 cm-1. More than 1860 measured line intensities were modeled using the effective dipole transition moments approach with the rms deviation of about 10%. These new data were used for the simultaneous fit of the 13CH4 Hamiltonian parameters of the {Ground state/Dyad/Pentad/Octad/Tetradecad} system and the dipole moment parameters of the {Ground state-Tetradecad} system. Overall, 10 vibrational states and 28 vibration sublevels of the 13CH4 Tetradecad are determined. The comparison of their energy values with corresponding theoretical calculations is discussed.

  20. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  1. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline

    PubMed Central

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-01

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts. PMID:26781083

  2. A Combination of Chemometrics and Quantum Mechanics Methods Applied to Analysis of Femtosecond Transient Absorption Spectrum of Ortho-Nitroaniline.

    PubMed

    Yi, Jing; Xiong, Ying; Cheng, Kemei; Li, Menglong; Chu, Genbai; Pu, Xuemei; Xu, Tao

    2016-01-01

    A combination of the advanced chemometrics method with quantum mechanics calculation was for the first time applied to explore a facile yet efficient analysis strategy to thoroughly resolve femtosecond transient absorption spectroscopy of ortho-nitroaniline (ONA), served as a model compound of important nitroaromatics and explosives. The result revealed that the ONA molecule is primarily excited to S3 excited state from the ground state and then ultrafast relaxes to S2 state. The internal conversion from S2 to S1 occurs within 0.9 ps. One intermediate state S* was identified in the intersystem crossing (ISC) process, which is different from the specific upper triplet receiver state proposed in some other nitroaromatics systems. The S1 state decays to the S* one within 6.4 ps and then intersystem crossing to the lowest triplet state within 19.6 ps. T1 was estimated to have a lifetime up to 2 ns. The relatively long S* state and very long-lived T1 one should play a vital role as precursors to various nitroaromatic and explosive photoproducts. PMID:26781083

  3. Pathogenic and commensal Escherichia coli from irrigation water show potential in transmission of extended spectrum and AmpC β-lactamases determinants to isolates from lettuce

    PubMed Central

    Njage, Patrick M K; Buys, Elna M

    2015-01-01

    There are few studies on the presence of extended-spectrum β-lactamases and AmpC β-lactamases (ESBL/AmpC) in bacteria that contaminate vegetables. The role of the production environment in ESBL/AmpC gene transmission is poorly understood. The occurrence of ESBL/AmpC in Escherichia coli (n = 46) from lettuce and irrigation water and the role of irrigation water in the transmission of resistant E. coli were studied. The presence of ESBL/AmpC, genetic similarity and phylogeny were typed using genotypic and phenotypic techniques. The frequency of β-lactamase gene transfer was studied in vitro. ESBLs/AmpC were detected in 35 isolates (76%). Fourteen isolates (30%) produced both ESBLs/AmpC. Prevalence was highest in E. coli from lettuce (90%). Twenty-two isolates (48%) were multi-resistant with between two and five ESBL/AmpC genes. The major ESBL determinant was the CTX-M type (34 isolates). DHA (33% of isolates) were the dominant AmpC β lactamases. There was a high conjugation efficiency among the isolates, ranging from 3.5 × 10−2 to 1 × 10−2 ± 1.4 × 10−1 transconjugants per recipient. Water isolates showed a significantly higher conjugation frequency than those from lettuce. A high degree of genetic relatedness between E. coli from irrigation water and lettuce indicated possible common ancestry and pathway of transmission. PMID:25488608

  4. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    PubMed

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum. PMID:26832574

  5. High-resolution absorption spectrum of jet-cooled CH3Cl between 70 000 and 85 000 cm-1: New assignments

    NASA Astrophysics Data System (ADS)

    Cossart-Magos, Claudina; Jungen, Martin; Stalder, Joerg; Launay, Françoise

    2005-09-01

    The absorption spectrum of jet-cooled CH3Cl was photographed from 165to117nm (or 60000-85000cm-1, 7.5-10.5eV) at a resolution limit of 0.0008nm (0.3-0.6cm-1 or 0.04-0.08meV). Even in the best structured region of the spectrum, from 70000to85000cm-1 (8.7-10.5eV ), observed bandwidths (full width at half maximum) are large, from 50to150cm-1. No rotational feature could be resolved. The spectrum is dominated by two strong bands near 9eV, 140nm, the D and E bands of Mulliken [J. Chem. Phys. 8, 382 (1940)] or the spectral region D of Price [J. Chem. Phys.4, 539 (1936)]. Their relative intensity is incompatible with previous assignments, namely, to a triplet and a singlet state belonging to the same configuration. On the basis of the present ab initio calculations, those bands are now assigned to two singlet states, the A11 and E1 excited states resulting from the 2e34pe Rydberg configuration. The present calculations also reveal that the two E1 states issued from 2e34sa1 and 2e34pa1 are quasidegenerate and strongly mixed. They should be assigned to the two broad bands near 8eV, 160nm, the B and C bands of Mulliken and Price. Three vibrational modes are observed to be active: the CCl bond stretch ν3(a1), and the CH3 umbrella and rocking vibrations, respectively, ν2(a1) and ν6(e ). The fundamental frequencies deduced are well within the ranges defined by the corresponding values in the neutral and ion ground states. The possibility of a dynamical Jahn-Teller effect induced by the ν6(e) vibrational mode in the E1 Rydberg states is discussed.

  6. Infrared absorption spectrum of free carriers in polar semiconductors. Progress report, July 1, 1979-June 30, 1980

    SciTech Connect

    Jensen, B.

    1980-02-01

    The Drude Zener theory of the absorption of high frequency radiation by free carriers (inverse bremsstrahlung) has been extended into the quantum region (h-bar omega > k/sub 0/T) in terms of a frequency dependent relaxation time which predicts the dc mobility in the quasiclassical limit. Numerical calculations of the frequency and concentration dependent electron scattering rate have been completed for InP, InAs, Ga/sub 0/ /sub 47/In/sub 0/ /sub 53/As, and previous results for GaAs extended to high carrier concentrations. When starting from a quantum statistical theory, the fact that n/sub q/oh-bar omega ..-->.. k/sub 0/T at low frequencies can be used to prevent the divergence of the coulomb scattering rate without inclusion of a screening radius. A result containing no adjustable parameters is found which predicts a mobility for uncompensated samples that decreases strongly at high concentrations. This has been observed in GaAs, and is not accounted for by the usual dc calculation which assumes h-bar omega = 0 and a screening parameter. Calculated results for GaAs are in good agreement with experimental measurements of the mobility which are found to be independent of a wide variety of conditions of material preparation. This indicates that disagreement with previous theoretical calculations was not due to compensation. Calculations for ZnSe and further investigation of the modification of the optical constants by the presence of an intense laser field and by a static magnetic field are currently planned.

  7. The angiotensin converting enzyme inhibitory tripeptides Ile-Pro-Pro and Val-Pro-Pro show increasing permeabilities with increasing physiological relevance of absorption models.

    PubMed

    Foltz, Martin; Cerstiaens, Anja; van Meensel, Ans; Mols, Raf; van der Pijl, Pieter C; Duchateau, Guus S M J E; Augustijns, Patrick

    2008-08-01

    Transepithelial transport of the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro was studied in different models of absorption. Apparent permeability (P(app)) values for absorptive transport across Caco-2 monolayers were 1.0+/-0.9 x 10(-8) (Ile-Pro-Pro) and 0.5+/-0.1 x 10(-8)cms(-1) (Val-Pro-Pro). Ex vivo transport across jejunal segments in the Ussing chamber was 5-times (Ile-Pro-Pro) to 10-times (Val-Pro-Pro) higher with no significant differences (p>0.05) observed between both peptides. The peptidase inhibitor bestatin increased permeability for the absorptive direction for Ile-Pro-Pro by twofold. Neither a transepithelial pH gradient nor increased apical tripeptide concentration nor longitudinal localization of the intestinal segment influenced P(app) in the ex vivo experiments. Val-Pro-Pro transport across Peyer's patches, however, was 4-times higher (P(app)=21.0+/-9.3 x10(-8)cms(-1)) as compared to duodenum (P(app)=4.8+/-1.4 x 10(-8)cms(-1)). In the in situ perfusion experiments P(app) values varied greatly among different animals ranging from 0.5 to 24.0 x10(-8)cms(-1) (Ile-Pro-Pro) and from 1.0 to 15.6 x 10(-8)cms(-1) (Val-Pro-Pro). In summary, Caco-2 and ex vivo absorption models differ considerably regarding their peptide permeability. The in situ model seems to be less appropriate because of the observed large variability in peptide permeability. The results of this study demonstrate that the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro are absorbed partially undegraded. PMID:18490081

  8. "I like that He Always Shows Who He Is": The Perceptions and Experiences of Siblings with a Brother with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Petalas, Michael A.; Hastings, Richard P.; Nash, Susie; Dowey, Alan; Reilly, Deirdre

    2009-01-01

    Semi-structured interviews were used to explore the perceptions and experiences of eight typically developing siblings in middle childhood who had a brother with autism spectrum disorder (ASD). The interviews were analysed using interpretative phenomenological analysis (IPA). The analysis yielded five main themes: (i) siblings' perceptions of the…

  9. Young Adults with Autism Spectrum Disorder Show Normal Attention to Eye-Gaze Information--Evidence from a New Change Blindness Paradigm

    ERIC Educational Resources Information Center

    Fletcher-Watson, Sue; Leekam, Susan R.; Findlay, John M.; Stanton, Elaine C.

    2008-01-01

    Other people's eye-gaze is a powerful social stimulus that captures and directs visual attention. There is evidence that this is not the case for children with autism spectrum disorder (ASD), although less is known about attention to eye-gaze in adults. We investigated whether young adults would detect a change to the direction of eye-gaze in…

  10. Structural and optical study of core–shell InGaN layers of nanorod arrays with multiple stacks of InGaN/GaN superlattices for absorption of longer solar spectrum

    NASA Astrophysics Data System (ADS)

    Bae, Si-Young; Jung, Byung Oh; Lekhal, Kaddour; Lee, Dong-Seon; Deki, Manato; Honda, Yoshio; Amano, Hiroshi

    2016-05-01

    We report on the material and optical properties of core–shell InGaN layers grown on GaN nanorod arrays. The core–shell InGaN layers were well grown on polarization-reduced surfaces such as semipolar pyramids and nonpolar sidewalls. In addition, to compensate the biaxial strain between GaN and InGaN layers, we grew interlayers underneath a thick InGaN layer. Here, the interlayers were composed of multiple superlattice structures. We could observe that the indium composition of core–shell InGaN structures increased with the number of interlayers. This indicates that the absorption energy band of InGaN alloys can be better matched to the spectral irradiance of the solar spectrum in nature. We also implemented a simulation of Ga-polar and nonpolar InGaN-based solar cells based on the indium composition obtained from the experiments. The result showed that nonpolar InGaN solar cells had a much higher efficiency than Ga-polar InGaN solar cells with the same thickness of the absorption layer.

  11. XMM-Newton/Reflection Grating Spectrometer detection of the missing interstellar O VII Kα absorption line in the spectrum of Cyg X-2

    NASA Astrophysics Data System (ADS)

    Cabot, Samuel H. C.; Wang, Q. Daniel; Yao, Yangsen

    2013-05-01

    The hot interstellar medium is an important part of the Galactic ecosystem and can be effectively characterized through X-ray absorption line spectroscopy. However, in a study of the hot medium using the accreting neutron star X-ray binary, Cyg X-2, as a background light source, a mystery came about when the putatively strong O VII Kα line was not detected in Chandra grating observations, while other normally weaker lines such as O VII Kβ as well as O VI and O VIII Kα are clearly present. We have investigated the grating spectra of Cyg X-2 from 10 XMM-Newton observations, in search of the missing line. We detect it consistently in nine of these observations, but the line is absent in the remaining one observation or is inconsistent with the detection in others at a ˜4σ confidence level. This absence of the line resembles that seen in the Chandra observations. Similarly, the O VI Kα line is found to disappear occasionally, but not in concert with the variation of the O VII Kα line. All these variations are most likely due to the presence of changing O VII and O VI Kα emission lines of Cyg X-2, which are blurred together with the absorption ones in the X-ray spectra. A re-examination of the Chandra grating data indeed shows evidence for a narrow emission line slightly off the O VI Kα absorption line. We further show that narrow N V emission lines with varying centroids and fluxes are present in far-ultraviolet spectra from the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. These results provide new constraints on the accretion around the neutron star and on the X-ray-heating of the stellar companion. The understanding of these physical processes is also important to the fidelity of using such local X-ray binaries for interstellar absorption line spectroscopy.

  12. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of beta-carotene in nonpolar solvent.

    PubMed

    Burt, Jim A; Zhao, Xihua; McHale, Jeanne L

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio kappa = Lambda/Delta is increased, where Lambda and Delta are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of kappa for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy lambdasolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Lambda and Delta are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of beta-carotene in isopentane and CS2. The derived values of lambdasolv using the Gaussian model are found to be in better agreement with the high temperature limit of Delta2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Delta of the solvent-induced frequency fluctuations. PMID:15268604

  13. Inertial solvent dynamics and the analysis of spectral line shapes: Temperature-dependent absorption spectrum of β-carotene in nonpolar solvent

    NASA Astrophysics Data System (ADS)

    Burt, Jim A.; Zhao, Xihua; McHale, Jeanne L.

    2004-03-01

    The influence of solvent dynamics on optical spectra is often described by a stochastic model which assumes exponential relaxation of the time-correlation function for solvent-induced frequency fluctuations. In contrast, theory and experiment suggest that the initial (subpicosecond) phase of solvent relaxation, resulting from inertial motion of the solvent, is a Gaussian function of time. In this work, we employ numerical and analytical calculations to compare the predicted absorption line shapes and the derived solvent reorganization energies obtained from exponential (Brownian oscillator) versus Gaussian (inertial) solvent dynamics. Both models predict motional narrowing as the ratio κ=Λ/Δ is increased, where Λ and Δ are the frequency and variance, respectively, of the solvent-induced frequency fluctuations. However, the motional narrowing limit is achieved at lower values of κ for the Brownian oscillator model compared to the inertial model. For a given line shape, the derived value of the solvent reorganization energy λsolv is only weakly dependent on the solvent relaxation model employed, though different solvent parameters Λ and Δ are obtained. The two models are applied to the analysis of the temperature-dependent absorption spectrum of β-carotene in isopentane and CS2. The derived values of λsolv using the Gaussian model are found to be in better agreement with the high temperature limit of Δ2/2kBT than are the values obtained using the Brownian oscillator model. In either approach, the solvent reorganization energy is found to increase slightly with temperature as a result of an increase in the variance Δ of the solvent-induced frequency fluctuations.

  14. The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm

    NASA Astrophysics Data System (ADS)

    Hao, Jing-Yu; Xu, Ying; Zhang, Yu-Pei; Chen, Shu-Fen; Li, Xing-Ao; Wang, Lian-Hui; Huang, Wei

    2015-04-01

    Au nanoparticles (NPs) mixed with a majority of bone-like, rod, and cube shapes and a minority of irregular spheres, which can generate a wide absorption spectrum of 400 nm-1000 nm and three localized surface plasmon resonance peaks, respectively, at 525, 575, and 775 nm, are introduced into the hole extraction layer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) to improve optical-to-electrical conversion performances in polymer photovoltaic cells. With the doping concentration of Au NPs optimized, the cell performance is significantly improved: the short-circuit current density and power conversion efficiency of the poly(3-hexylthiophene): [6,6]-phenyl-C60-butyric acid methyl ester cell are increased by 20.54% and 21.2%, reaching 11.15 mA·cm-2 and 4.23%. The variations of optical, electrical, and morphology with the incorporation of Au NPs in the cells are analyzed in detail, and our results demonstrate that the cell performance improvement can be attributed to a synergistic reaction, including: 1) both the localized surface plasmon resonance- and scattering-induced absorption enhancement of the active layer, 2) Au doping-induced hole transport/extraction ability enhancement, and 3) large interface roughness-induced efficient exciton dissociation and hole collection. Project supported by the National Basic Research Program of China (Grant Nos. 2015CB932202 and 2012CB933301), the National Natural Science Foundation of China (Grant Nos. 61274065, 51173081, 61136003, BZ2010043, 51372119, and 51172110), the Science Fund from the Ministry of Education of China (Grant No. IRT1148), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113223110005), the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions (Grant No. YX03001), and the National Synergistic Innovation Center for Advanced Materials and the Synergetic Innovation Center for Organic Electronics and

  15. Hybrid Ab initio/EFP approach for calculating d-d absorption spectrum of hexaammineruthenium(II) ion in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Yurenev, P. V.; Scherbinin, A. V.; Stepanov, N. F.

    Ab initio quantum chemical strategies for quantitatively predicting the lowest (1Ag rarr 1T1g) vertical d-d excitation energy of hexaammineruthenium(II) ion in aqueous solution are discussed. The scalar-relativistic ECP/valence basis set on Ru atom developed by the Stuttgart group in a combination with the state-average CASSCF(d) approach, followed by multiconfigurational quasi-degenerate second-order perturbation theory (MCQDPT2) to account for differential correlation effects is proved to be an adequate tool to reproduce the experimental absorption spectrum of the complex for a variety of AO basis sets on ligand atoms. In addition, different ab initio methodologies are examined in order to predict the ground state geometry which is consistent with the follow-up excitation spectrum calculations. It is observed that the use of the optimized structures of a hypothetical gas-phase complex lead to substantial underestimation of excitation energies. Solvent effects strongly influence the excitation energy though indirectly, mainly by means of changing the ground state geometry of the solvated complex when compared with the vacuum one. In particular, the ground state structure of the complex surrounded by effective fragments simulating water molecules provides the lowest CASSCF/MCQDPT excitation energy estimate to be within 25,500-26,400 cm-1, in a fair agreement with the experimentally measured value of 25,600 cm-1. At the same time, direct incorporation of solvation effects causes only minor change in the estimated transition energies, within several hundred cm-1.

  16. Application of Permutation-Inversion Group Theory to the Interpretation of the Microwave Absorption Spectrum of Dimethyl Methylphosphonate

    NASA Astrophysics Data System (ADS)

    Ohashi, Nobukimi; Hougen, Jon T.

    2002-01-01

    The G36 permutation-inversion group theoretical tunneling-rotational formalism originally developed for the methanol dimer has been modified (for the subgroup G18) and extended (to the larger group G54) for application to dimethyl methylphosphonate, CH3P(O)(OCH3)2, which has three large-amplitude methyl top internal rotation motions and one large-amplitude methoxy interchange motion. Energy levels of this chiral molecule are conveniently labeled by symmetry species corresponding to a mixed set of irreducible and reducible representations of G18 denoted by A1, A2, E, E1sep, E2sep, and Gsep. The separably degenerate species (with subscript sep) consist of pairs of irreducible representations of G18 whose energies are degenerate for Hamiltonians invariant to time reversal. All characters of these separably degenerate representations are real. Comparison of the group-theoretically derived splitting patterns with Fourier transform microwave and ab initio results from the preceding paper permit drawing a semiquantitative energy level diagram showing how a given Ka=0 level splits into A1⊕A2⊕2E⊕E1sep⊕E2sep⊕2Gsep components when the large-amplitude motions are turned on in the following order: (i) low-barrier methyl top internal rotation, (ii) medium-barrier methyl top internal rotation, (iii) top-top interaction, and (iv) methoxy interchange motion. (Internal rotation of the high-barrier methyl top is ignored.) Spectral splitting patterns observed for Ka=1-1 transitions are also quite regular, being either the same as, or mirror images of, the Ka=0-0 patterns. Theoretical work on Ka>0 splitting patterns is in progress.

  17. Titanium Dioxide/Upconversion Nanoparticles/Cadmium Sulfide Nanofibers Enable Enhanced Full-Spectrum Absorption for Superior Solar Light Driven Photocatalysis.

    PubMed

    Zhang, Fu; Zhang, Chuan-Ling; Wang, Wan-Ni; Cong, Huai-Ping; Qian, Hai-Sheng

    2016-06-22

    In this work, we demonstrate an electrospinning technique to fabricate TiO2 /upconversion nanoparticles (UCNPs)/CdS nanofibers on large scale. In addition, the as-prepared TiO2 nanofibers are incorporated with a high population of UCNPs and CdS nanospheres; this results in Förster resonance energy-transfer configurations of the UCNPs, TiO2 , and CdS nanospheres that are in close proximity. Hence, strong fluorescent emissions for the Tm(3+) ions including the (1) G4 →(3) H6 transition are efficiently transferred to TiO2 and the CdS nanoparticles through an energy-transfer process. The as-prepared TiO2 /UCNPs/CdS nanofibers exhibit full-spectrum solar-energy absorption and enable the efficient degradation of organic dyes by fluorescence resonance energy transfer between the UCNPs and TiO2 (or CdS). The UCNPs/TiO2 /CdS nanofibers may also have enhanced energy-transfer efficiency for wide applications in solar cells, bioimaging, photodynamics, and chemotherapy. PMID:27214754

  18. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr{sup +} at the surface and in the bulk of CrF{sub 2}

    SciTech Connect

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-23

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF{sub 2} recorded at the chromium L{sub 2,3} are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr{sup +}, Cr{sup 2+}, and Cr{sup 3+}. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF{sub 2}, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  19. X-ray absorption and resonant inelastic x-ray scattering (RIXS) show the presence of Cr+ at the surface and in the bulk of CrF2

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2015-07-01

    X-Ray absorption and resonant inelastic x-ray scattering (RIXS) spectra of CrF2 recorded at the chromium L2,3 are presented. An atomic multiplet crystal field calculation is compared with the experimental data. Experiment and theory are in agreement once the calculation includes three chromium oxidation states, namely Cr+, Cr2+, and Cr3+. X-Ray absorption allows a direct determination of the surface oxidation, while the RIXS spectra shows the presence of these three oxidation states in the sample bulk. To give a quantitative interpretation of the RIXS data the effect of the incomming and outgoing photon penetration depth and self-absorption must be considered. For the much simpler case of MnF2, with only one metal oxidation state, the measured RIXS spectra relative intensities are found to be proportional to the square of the sample attenuation length.

  20. The Complete Ultraviolet Spectrum of the Archetypal "Wind-dominated" Quasar Mrk 231: Absorption and Emission from a High-speed Dusty Nuclear Outflow

    NASA Astrophysics Data System (ADS)

    Veilleux, S.; Meléndez, M.; Tripp, T. M.; Hamann, F.; Rupke, D. S. N.

    2016-07-01

    New near- and far-ultraviolet (NUV and FUV) Hubble Space Telescope spectra of Mrk 231, the nearest quasar known, are combined with ground-based optical spectra to study the remarkable dichotomy between the FUV and NUV–optical spectral regions in this object. The FUV emission-line features are faint, broad, and highly blueshifted (up to ˜7000 km s‑1), with no significant accompanying absorption. In contrast, the profiles of the NUV absorption features resemble those of the optical Na i D, He i, and Ca ii H and K lines, exhibiting broad blueshifted troughs that overlap in velocity space with the FUV emission-line features and indicate a dusty, high-density and patchy broad absorption line (BAL) screen covering ˜90% of the observed continuum source at a distance ≲2–20 pc. The FUV continuum emission does not show the presence of any obvious stellar features and is remarkably flat compared with the steeply declining NUV continuum. The NUV (FUV) features and continuum emission have not varied significantly over the past ˜22 (3) years and are unresolved on scales ˜40 (170) pc. These results favor an active galactic nucleus origin for the NUV–FUV line and continuum emission. The observed FUV line emission is produced in the outflowing BAL cloud system, while the Balmer lines arise primarily from the standard broad line region seen through the dusty BAL screen. Our data are inconsistent with the recently proposed binary black hole model. We argue instead that Mrk 231 is the nearest example of weak-lined “wind-dominated” quasars with high Eddington ratios and geometrically thick (“slim”) accretion disks; these quasars are likely more common in the early universe.

  1. Transgenic Brassica rapa plants over-expressing eIF(iso)4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance.

    PubMed

    Kim, Jinhee; Kang, Won-Hee; Hwang, Jeena; Yang, Hee-Bum; Dosun, Kim; Oh, Chang-Sik; Kang, Byoung-Cheorl

    2014-08-01

    The protein-protein interaction between VPg (viral protein genome-linked) of potyviruses and eIF4E (eukaryotic initiation factor 4E) or eIF(iso)4E of their host plants is a critical step in determining viral virulence. In this study, we evaluated the approach of engineering broad-spectrum resistance in Chinese cabbage (Brassica rapa) to Turnip mosaic virus (TuMV), which is one of the most important potyviruses, by a systematic knowledge-based approach to interrupt the interaction between TuMV VPg and B. rapa eIF(iso)4E. The seven amino acids in the cap-binding pocket of eIF(iso)4E were selected on the basis of other previous results and comparison of protein models of cap-binding pockets, and mutated. Yeast two-hybrid assay and co-immunoprecipitation analysis demonstrated that W95L, K150L and W95L/K150E amino acid mutations of B. rapa eIF(iso)4E interrupted its interaction with TuMV VPg. All eIF(iso)4E mutants were able to complement an eIF4E-knockout yeast strain, indicating that the mutated eIF(iso)4E proteins retained their function as a translational initiation factor. To determine whether these mutations could confer resistance, eIF(iso)4E W95L, W95L/K150E and eIF(iso)4E wild-type were over-expressed in a susceptible Chinese cabbage cultivar. Evaluation of the TuMV resistance of T1 and T2 transformants demonstrated that the over-expression of the eIF(iso)4E mutant forms can confer resistance to multiple TuMV strains. These data demonstrate the utility of knowledge-based approaches for the engineering of broad-spectrum resistance in Chinese cabbage. PMID:24417952

  2. The application of new methane line absorption data to Gemini-N/NIFS and KPNO/FTS observations of Uranus' near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Irwin, P. G. J.; de Bergh, C.; Courtin, R.; Bézard, B.; Teanby, N. A.; Davis, G. R.; Fletcher, L. N.; Orton, G. S.; Calcutt, S. B.; Tice, D.; Hurley, J.

    2012-08-01

    New line data describing the absorption of CH4 and CH3D from 1.26 to 1.71 μm (Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128), building upon previous papers by Campargue et al. (Campargue, A., Wang, L., Kassi, S., Masat, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Transfer 111, 1141-1151; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Transfer 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Transfer 112, 937-951)) have been applied to the analysis of Gemini-N/NIFS observations of Uranus made in 2010 and compared with earlier disc-averaged observations made by KPNO/FTS in 1982. The new line data are found to improve greatly the fit to the observed spectra and present a huge advance over previous methane absorption tables by allowing us to determine the CH3D/CH4 ratio and also start to break the degeneracy between methane abundance and cloud top height. The best fits are obtained if the cloud particles in the main cloud deck at the 2-3 bar level become less scattering with wavelength across the 1.4-1.6 μm region and we have modelled this variation here by varying the extinction cross-section and single-scattering albedo of the particles. Applying the new line data to the NIFS spectra of Uranus, we determine a new estimate of the CH3D/CH4 ratio of 2.9-0.5+0.9×10-4, which is consistent with the estimate of de Bergh et al. (de Bergh, C., Lutz, B.L., Owen, T., Brault, J., Chauville, J. [1986]. Astrophys. J. 311, 501-510) of 3.6-2.8+3.6×10-4, made by fitting a disc-averaged KPNO/FTS spectrum measured in 1982, but much better constrained. The NIFS observations made in 2010 have been disc-averaged and compared with the 1982 KPNO/FTS spectrum and found to be in excellent agreement. Using k-tables fitted to the new line data, the central meridian observations of

  3. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  4. A Large Family with Carney Complex Caused by the S147G PRKAR1A Mutation Shows a Unique Spectrum of Disease Including Adrenocortical Cancer

    PubMed Central

    Anselmo, João; Medeiros, Sandra; Carneiro, Victor; Greene, Elizabeth; Levy, Isaac; Nesterova, Maria; Lyssikatos, Charalampos; Horvath, Anelia; Carney, J. Aidan

    2012-01-01

    Context: Most tumors in Carney complex (CNC) are benign, including primary pigmented nodular adrenocortical disease (PPNAD), the main endocrine tumor in CNC. Adrenocortical cancer (AC) has never been observed in the syndrome. Herein, we describe a large Azorean family with CNC caused by a point mutation in the PRKAR1A gene coding for type 1-α (RIα) regulatory subunit of the cAMP-dependent protein kinase A, in which the index patient presented with AC. Objective: We studied the genotype-phenotype correlation in CNC. Design and Setting: We reported on case series and in vitro testing of the PRKAR1A mutation in a tertiary care referral center. Patients: Twenty-two members of a family were investigated for Cushing syndrome and other CNC components; their DNA was sequenced for PRKAR1A mutations. Results: Cushing syndrome due to PPNAD occurred in four patients, including the proposita who presented with AC and three who had Cushing syndrome and/or PPNAD. Lentigines were found in six additional patients who did not have PPNAD. A base substitution (c.439A>G/p.S147G) in PRKAR1A was identified in the proposita, in the three others with PPNAD, in the proposita's twin daughters who had lentigines but no evidence of hypercortisolism, and in five other family members, including one without lentigines or evidence of hypercortisolism. Unlike in other RIα defects, loss of heterozygosity was not observed in AC. The S147G mutation was compared to other expressed PRKAR1A mutations; it led to decreased cAMP and catalytic subunit binding by RIα and increased protein kinase A activity in vitro. Conclusions: In a large family with CNC, one amino acid substitution caused a spectrum of adrenal disease that ranged from lack of manifestations to cancer. PPNAD and AC were the only manifestations of CNC in these patients, in addition to lentigines. These data have implications for counseling patients with CNC and are significant in documenting the first case of AC in the context of PPNAD

  5. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  6. The absorption spectrum of water vapor in the 1.25 μm atmospheric window (7911-8337 cm-1)

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Mikhailenko, S. N.; Lohan, Benoit Guillo; Karlovets, E. V.; Mondelain, D.; Kassi, S.

    2015-05-01

    The absorption spectrum of water vapor in "natural" isotopic abundance has been recorded at room temperature by high sensitivity Continuous Wave Cavity Ring Down Spectroscopy (CW-CRDS) between 7911 and 8337 cm-1. The investigated region covers most of the 1.25 μm transparency window of importance for atmospheric applications. The recordings were performed with sensitivity on the order of αmin~2×10-11 cm-1, more than two orders of magnitude better than previous investigations by Fourier Transform Spectroscopy (FTS). Measured line intensities cover a range of seven orders of magnitude (3×10-30-2×10-23 cm/molecule at room temperature). The experimental line list provided as Supplementary Material includes more than 5000 transitions. As a result of the achieved sensitivity, more than 1150 lines of the experimental list were identified as being due to ammonia present as an impurity at the 5 ppm concentration level in the water sample. Although incomplete, the obtained ammonia line list seems to be the first one in the region. More than 3193 water lines were assigned to 3560 transitions of five water isotopologues (H216O, H218O, H217O, HD16O and HD18O). The assignments were performed using known experimental energy levels and calculated spectra based on variational calculations by Schwenke and Partridge. The obtained results are compared to the most relevant previous studies by Fourier Transform Spectroscopy in the region and to the exhaustive review of rovibrational line positions and levels performed recently by an IUPAC sponsored task group. Two-hundred and sixty-six levels are newly determined and 46 are corrected by more than 0.015 cm-1 compared to those recommended by the water IUPAC task group. The overall agreement between variational and measured intensities is satisfactory. A complete empirical list of 4473 transitions incorporating all the experimental information at disposal was constructed for water in the studied region. The intensity cut-off was fixed

  7. Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 μm

    NASA Astrophysics Data System (ADS)

    Hansen, Gary B.

    2005-11-01

    A laboratory experiment was devised to measure transmission at fine spectral resolution through thick, high-quality samples of CO2 ice over an extended wavelength range. The absorption coefficient throughout the ultraviolet and near-infrared spectral ranges 0.174-1.8 μm (5555-57,470 cm-1 in wave number) is presented here. CO2 ice samples were grown at a temperature of 150 K, typical of the Martian polar caps. The path length of the samples varied from 1.6 to 107.5 mm, allowing the measurement of absorption from <0.1 to 4000 m-1. The experiment used both a grating monochromator (with spectral resolution 0.1-0.3 nm) and a Fourier transform spectrometer (with an effective resolution of <1.0 cm-1). The transmission data for five thicknesses are used to estimate both the scattering losses for each sample and the absorption coefficient at each wavelength. The uncertainty in the most transparent wavelength regions (<10 m-1) is due to scattering extinction. Measurement noise and data scatter produce significant uncertainty only where absorption coefficients exceed 1000 m-1. Between 1.0 and 1.8 μm there are several weak to moderate absorption lines. Only an upper limit to the absorption can be determined in many places; e.g., the absorption from ~0.25 to 1.0 μm is below the detection limit. The estimated visible absorption, ~10-2 m-1, is a factor of 1000 smaller than the values reported by Egan and Spagnolo, which have been used previously to compute albedos of CO2 snow. The new results should be useful for studies of the seasonal polar caps of Mars.

  8. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm.

    PubMed

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV-vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400-640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  9. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm

    PubMed Central

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV–vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400–640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  10. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  11. LED-Based Fourier Transform Spectroscopy: the HD16O Absorption Spectrum in the Range of 11200-12400 cm-1

    NASA Astrophysics Data System (ADS)

    Sinitsa, L. N.; Serdyukov, V. I.; Polovtseva, E. R.; Shcherbakov, A. P.; Voronin, B. A.; Bykov, A. D.

    2016-03-01

    The vibrational—rotational spectrum of the HD16O molecule is studied within the range of 11200-12400 cm-1. The spectrum is recorded by an IFS-125M Fourier spectrometer with a resolution of 0.05 cm-1. The measurements are performed using a multipass White cell. A light-emitting diode is used as a radiation source. The signal-to-noise ratio was about 104. The centers, intensities, and half-widths of the spectral lines are determined by fitting to the experimental data by the least-squares method. A linelist containing more than 1500 lines is created. The results obtained are compared with the experimental data of other authors.

  12. Ultraviolet Continuum of the Quasar PKS 0405-123: Lyman Edge in the Accretion Disk Spectrum

    NASA Astrophysics Data System (ADS)

    Lee, G.; Kriss, G. A.; Davidsen, A. F.; Zheng, W.

    1995-05-01

    We study the characteristics of the ultraviolet continuum of the quasar PKS 0405-123 using the archival HST/FOS spectrum. The spectrum from 1150 to 3300 Angstroms shows a steeply rising continuum in F_λ with a strong absorption feature ~ 100 Angstroms wide around the intrinsic Lyman limit of this z=0.574 quasar. The spectrum also shows Lyman absorption line systems in the wavelength range of the broad absorption feature. A Lyalpha absorption line whose corresponding Lyman limit could contribute to the broad absorption feature is also identified. We investigate the possibility that the broad absorption feature may be due to the sum of the contributions from each Lyman absorption system. The estimated opacity due to the Lyman absorption systems in the region of the broad absorption feature, however, is not high enough to completely account for it. We thus propose that a significant part of the continuum drop in the broad absorption feature may be due to a broadened Lyman edge in the spectrum of an accretion disk. We model the ultraviolet continuum using an alpha -disk with an adiabatic vertical structure. We compute the emitted spectrum by solving the radiative transfer numerically. The observed spectrum is corrected for relativistic effects assuming a Schwarzschild metric, and we also consider the effect of Comptonization by a surrounding hot corona on the observed spectrum. A realistic disk spectrum with a significant amount of Comptonization describes the steep continuum shape and the broad Lyman edge feature, and it is consistent with the X-ray flux observed with EINSTEIN observatory IPC. This work was supported by NASA Grant NAG 5-1630 to the FOS team and NASA contract NAS 5-27000 to the Johns Hopkins University.

  13. The X-ray absorption spectrum of 4U1700-37 and its implications for the stellar wind of the companion HD153919

    NASA Technical Reports Server (NTRS)

    White, N. E.; Kallman, T. R.; Swank, J. H.

    1982-01-01

    The first high resolution non-dispersive 2-60 KeV X-ray spectra of 4U1700-37 is presented. The continuum is typical of that found from X-ray pulsars; that is a flat power law between 2 and 10 keV and, beyond 10 keV, an exponential decay of characteristic energy varying between 10 and 20 keV. No X-ray pulsations were detected between 160 ms and 6 min with an amplitude greater than approximately 2%. The absorption measured at binary phases approximately 0.72 is comparable to that expected from the stellar wind of the primary. The gravitational capture of material in the wind is found to be more than enough to power the X-ray source. The increase in the average absorption after phi o approximately 0.5 is confirmed. The minimum level of adsorption is a factor of 2 or 3 lower than that reported by previous observers, which may be related to a factor of approximately 10 decline in the average X-ray luminosity over the same interval. Short term approximately 50% variations in adsorption are seen for the first time which appear to be loosely correlated with approximately 10 min flickering activity in the X-ray flux. These most likely originate from inhomogeneities in the stellar wind of the primary.

  14. Pressure-dependence on the absorption spectrum of CuMoO 4: study of the green→brownish-red piezochromic phase transition at 2.5 kbar

    NASA Astrophysics Data System (ADS)

    Hernández, D.; Rodríguez, F.; Garcia-Jaca, J.; Ehrenberg, H.; Weitzel, H.

    1999-04-01

    The optical properties of CuMoO 4 are investigated by means of hydrostatic pressure techniques in the 0-60 kbar range. Attention is paid to the piezochromism exhibited by this crystal at the α (green)→γ (brownish red) structural phase transition. The variation of the absorption spectra with pressure indicates that the piezochromic transition takes place at 2.5 kbar. The associated change of colour is due to the broadening of the first O 2-→Cu 2+ charge transfer band and the disappearance of an intense band at 12000 cm -1, related to the presence of pyramidal CuO 5 complexes in α-CuMoO 4. The measured oscillator strength suggests that this band corresponds to the e→b 1 crystal field transition rather than to a charge transfer within CuO 5. The structural correlation with the absorption spectra performed in this work explains the strong dichroism exhibited by the crystal in the high-pressure γ-CuMoO 4.

  15. Communication: THz absorption spectrum of the CO{sub 2}–H{sub 2}O complex: Observation and assignment of intermolecular van der Waals vibrations

    SciTech Connect

    Andersen, J.; Mahler, D. W.; Larsen, R. Wugt; Heimdal, J.; Nelander, B.

    2014-03-07

    Terahertz absorption spectra have been recorded for the weakly bound CO{sub 2}–H{sub 2}O complex embedded in cryogenic neon matrices at 2.8 K. The three high-frequency van der Waals vibrational transitions associated with out-of-plane wagging, in-plane rocking, and torsional motion of the isotopic H{sub 2}O subunit have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm{sup −1} from the class of intermolecular van der Waals vibrations is proposed and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm{sup −1} for the dissociation energy D{sub 0}.

  16. Influence of the size and protonation state of acidic residue 85 on the absorption spectrum and photoreaction of the bacteriorhodopsin chromophore

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.; Tittor, J.; Varo, G.; Krippahl, G.; Oesterhelt, D.

    1992-01-01

    The consequences of replacing Asp-85 with glutamate in bacteriorhodopsin, as expressed in Halobacterium sp. GRB, were investigated. Similarly to the in vitro mutated and in Escherichia coli expressed protein, the chromophore was found to exist as a mixture of blue (absorption maximum 615 nm) and red (532 nm) forms, depending on the pH. However, we found two widely separated pKa values (about 5.4 and 10.4 without added salt), arguing for two blue and two red forms in separate equilibria. Both blue and red forms of the protein are in the two-dimensional crystalline state. A single pKa, such as in the E. coli expressed protein, was observed only after solubilization with detergent. The photocycle of the blue forms was determined at pH 4.0 with 610 nm photoexcitation, and that of the red forms at pH 10.5 and with 520 nm photoexcitation, in the time-range of 100 ns to 1 s. The blue forms produced no M, but a K- and an L-like intermediate, whose spectra and kinetics resembled those of blue wild-type bacteriorhodopsin below pH 3. The red forms produced a K-like intermediate, as well as M and N. Only the red forms transported protons. Specific perturbation of the neighborhood of the Schiff base by the replacement of Asp-85 with glutamate was suggested by (1) the shift and splitting of the pKa for what is presumably the protonation of residue 85, (2) a 36 nm blue-shift in the absorption of the all-trans red chromophore and a 25 nm red-shift of the 13-cis N chromophore, as compared to wild-type bacteriorhodopsin and its N intermediate, and (3) significant acceleration of the deprotonation of the Schiff base at pH 7, but not of its reprotonation and the following steps in the photocycle.

  17. THE 3-5 {mu}m SPECTRUM OF NGC 1068 AT HIGH ANGULAR RESOLUTION: DISTRIBUTION OF EMISSION AND ABSORPTION FEATURES ACROSS THE NUCLEAR CONTINUUM SOURCE

    SciTech Connect

    Geballe, T. R.; Mason, R. E.; Rodriguez-Ardila, A.; Axon, D. J.

    2009-08-20

    We report moderate resolution 3-5 {mu}m spectroscopy of the nucleus of NGC 1068 obtained at 0.''3 (20 pc) resolution with the spectrograph slit aligned approximately along the ionization cones of the active galactic nucleus. The deconvolved full width at half-maximum of the nuclear continuum source in this direction is 0.''3. Four coronal lines of widely different excitations were detected; the intensity of each peaks near radio knot C, approximately 0.''3 north of the infrared continuum peak, where the radio jet changes direction. Together with the broadened line profiles observed near that location, this suggests that shock ionization is the dominant excitation mechanism of the coronal lines. The depth of the 3.4 {mu}m hydrocarbon absorption is maximum at and just south of the continuum peak, similar to the 10 {mu}m silicate absorption. That and the similar and rapid variations of the optical depths of both features across the nucleus suggest that substantial portions of both arise in a dusty environment just in front of the continuum source(s). A new and tighter limit is set on the column density of CO. Although clumpy models of the dust screen might explain the shallowness of the silicate feature, the presence of the 3.4 {mu}m feature and the absence of CO are strongly reminiscent of Galactic diffuse cloud environments and a consistent explanation for them and the observed silicate feature is found if all three phenomena occur in such an environment, existing as close as 10 pc to the central engine.

  18. Novel Technique for Improving the Signal-to-Background Ratio of X-ray Absorption Near-Edge Structure Spectrum in Fluorescence Mode and Its Application to the Chemical State Analysis of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Yonemura, Takumi; Iihara, Junji; Saito, Yoshihiro; Ueno, Masaki

    2013-12-01

    A novel measurement technique for an X-ray absorption near-edge structure (XANES) for magnesium (Mg) doped in gallium nitride (GaN) has been developed. XANES spectra from Mg at very low concentrations of 1 ×1018/cm3 doped in GaN have successfully been obtained by optimizing the region of interest (ROI) and by using highly brilliant synchrotron radiation X-rays of SPring-8. The ROI is the limited energy region from an X-ray fluorescence spectrum to elicit signals of particular atoms. Using this new technique, we have investigated the effect of the annealing process for Mg-doped GaN on the XANES spectra. It has been found that the XANES spectra of Mg significantly changed as the annealing temperature increased. This indicates that the local structure around Mg atoms in GaN was modified by the annealing process.

  19. "The Show"

    ERIC Educational Resources Information Center

    Gehring, John

    2004-01-01

    For the past 16 years, the blue-collar city of Huntington, West Virginia, has rolled out the red carpet to welcome young wrestlers and their families as old friends. They have come to town chasing the same dream for a spot in what many of them call "The Show". For three days, under the lights of an arena packed with 5,000 fans, the state's best…

  20. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  1. UV nebular absorption in Eta Car and Weigelt D

    NASA Astrophysics Data System (ADS)

    Nielsen, K. E.; Vieira, G. L.; Gull, T. R.; Lindler, D. J.; Eta Car HST Treasury Team

    2003-12-01

    The high angular and high spectral resolution of the HST/STIS MAMA echelle mode, provide an unique means to distinguish the physical structures surrounding Eta Car. Observations are parts of the HST treasury program (K. Davidson P.I.) for monitoring variations over Eta Car's spectroscopic minimum. Nebular emission is present above and below the stellar spectrum which is about 0.03'' wide. We have extracted the nebular part of the central source spectrum and compared it with the spectrum of Weigelt D, located approximately 0.2'' Northwest of the central source. The spectra show significant similarities and our conclusions are two-fold. First, the radiation from the Wiegelt blobs give an unwanted contribution to the spectrum of the central source, which emphasizes the importance of using an extracted spectrum in a spectral analysis. Second, the Weigelt blobs have so far been assumed to produce a pure emission line spectrum. However, this comparison shows the presence of similar absorption structures previously observed in the spectrum of the central star (Gull et al., 2003, submitted ApJL). Two velocity structures at approximately -50 and -500 km/s, respectively, have been observed in the Weigelt D spectrum. We present identifications of the absorption structures to supplement the emission line work performed by T. Zethson (2000, PhD Thesis) and provide additional information regarding the geometry of the inner parts of the Eta Car nebula. The -50 km/s velocity component is similar to the absorption structure at -146 km/s observed in the spectrum of the central object. If these velocity systems are related, this implies that the absorption component is located close to the central parts of the nebular system.

  2. Two-photon solvatochromism II: experimental and theoretical study of solvent effects on the two-photon absorption spectrum of Reichardt's dye.

    PubMed

    Wielgus, Małgorzata; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Samoc, Marek; Bartkowiak, Wojciech

    2013-11-11

    In this study, we report on the influence of solvent on the two-photon absorption (2PA) spectra of Reichardt's dye (RD). The measurement of 2PA cross-sections is performed for three solvents (chloroform, dimethyl formamide, and dimethyl sulfoxide) using the Z-scan technique. The key finding of this study is the observation that the cross-section, corresponding to the 2PA of the intramolecular charge-transfer state, diminishes substantially upon increasing the solvent polarity. To unravel the solvent dependence of the 2PA cross-section, the electronic structure of RD is determined using a hybrid quantum mechanics/molecular mechanics (QM/MM) approach, in which polarization between the solute and solvent is taken into account by using a self-consistent scheme in the solvent polarization. The two-state approximation proves to be adequate for the studied system, and allowed the observed solvent-polarity-induced decrease of the 2PA cross-section to be related to the decrease of the transition moment and the increase in the excitation energy. PMID:24106066

  3. Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-09-01

    We study the directional dependence of the absorption spectrum of ballistic nanowires in the presence of gate-controlled Rashba spin-orbit interaction and an in-plane magnetic field. In the weak Rashba regime, our analytical and numerical results show that the absorption peaks associated with the first and third intersubband transitions exhibit frequency shifts and strong amplitude modulations as the direction of the magnetic field changes. If the field is parallel to the nanowire axis, these peaks disappear and the resonance frequencies of the whole absorption spectrum are given merely in terms of the Zeeman splitting and the energy scale characterizing the confinement potential. The second transition has an absorption peak that suffers an opposite frequency shift with amplitude that is largely direction independent. The amplitude modulation and frequency shift of the absorption spectrum is periodic in the angle that the magnetic field makes with the nanowire axis.

  4. [PHOSPHOLIPIDS AND FATTY ACIDS IN ERYTHROCYTES OF THE LAMPREY LAMPETRA FLUVIATILIS DURING AUTUMN PRESPAWNING PERIOD AND THE ABSORPTION SPECTRUM OF THEIR LIPID EXTRACT].

    PubMed

    Zabelinskii, S A; Chebotareva, M A; Shukolyukova, E P; Krivchenko, A I

    2015-01-01

    The content of some classes of phospholipids and their fatty acid composition in erythrocytes of the lamprey Lampetrafluviatilis during the autumn period of its prespawning migration are investigated. It is found that the phospholipid spectrum of erythrocytes of the lamprey, the oldest representative of vertebrates, is similar to that of many mammals. A four-fold prevalence of phosphatidilcholine content over sphingomyelin content as well as prevalence of (ω3-acids over ω6-acids indicates the of lamprey's erythrocyte membranes - an important indicator of deformational ability of lamprey's erythrocytes. Phosphatidilethanol amine and its plasmalogenic form are the most unsaturated phospholipids (their unsaturation indices are 230 and 342, correspondingly). Phosphatidilcholine is the most saturated one (UI is 167). It is found that the basic acid indicators characterizing the fluidity of erythrocyte membranes remain unchanged during the whole period of prespawning migration of lampreys up to spawning. The blood contains several buffer systems, in particular, membrane phospholipids which neutralize acids and alkali incoming into the blood. In the process of organism life a change of pH inside erythrocytes occurs. One can suppose that the base of the system associated with buffer properties of the blood is water dissociation. Inside thin vessels of the circulatory system the hemoglobin attaches and returns molecules of oxygen due to interaction of the buffer systems with water. The property of water to dissociate as well as ion transfer produce in erythrocytes, lying within narrow vessels of the circulatory system, a local pH alteration allowing displacing/attaching the molecule of oxygen from hemoglobin. PMID:26547949

  5. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  6. Percutaneous absorption in diseased skin: an overview.

    PubMed

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  7. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  8. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  9. VARIATIONS OF ABSORPTION TROUGHS IN THE QUASAR SDSS J125216.58+052737.7

    SciTech Connect

    Chen, Zhi-Fu; Qin, Yi-Ping

    2015-01-20

    In this work, we analyze the spectra of quasar J125216.58+052737.7 (z {sub em} = 1.9035) which was observed by SDSS-I/II on 2003 January 30 and by BOSS on 2011 April 2. Both the continuum and the absorption spectra of this quasar show obvious variations between the two epochs. In the SDSS-I/II spectrum, we detect 8 C IV λλ1548,1551 absorption systems, which are detected at z {sub abs} = 1.9098, 1.8948, 1.8841, 1.8770, 1.8732, 1.8635, 1.8154, and 1.7359, respectively, and one Mg II λλ2796,2803 absorption system at z {sub abs} = 0.9912. Among these absorption systems, two C IV λλ1548,1551 absorption systems at z {sub abs} = 1.9098 and 1.7359 and the Mg II λλ2796,2803 absorption system are imprinted on the BOSS spectrum as well, and have similar absorption strengths when compared to those measured from the SDSS-I/II spectrum. Three C IV λλ1548,1551 absorption systems at z {sub abs} = 1.8948, 1.8841, and 1.8770 are also detected in the BOSS spectrum, while their absorption strengths are much weaker than those measured from the SDSS-I/II spectrum; three systems at z {sub abs} = 1.8732, 1.8635, and 1.8154 disappeared from the BOSS spectrum. Based on the variability analysis, the absorption systems that disappeared and weakened are likely to be intrinsic to the quasar. If these intrinsic absorption gases are blown away from the central region of the quasar, with respect to the quasar system, the absorption systems that disappeared would have separation velocities of 3147 kms{sup –1}, 4161 km s{sup –1}, and 9241 km s{sup –1}, while the absorption systems that weakened would have separation velocities of 900 km s{sup –1}, 2011 km s{sup –1}, and 2751 km s{sup –1}. Well-coordinated variations of the six C IV λλ1548,1551 absorption systems that disappeared and weakened, occurring on a timescale of 1026.7 days at the quasar rest frame, can be interpreted as a result of global changes in the ionization state of the absorbing gas.

  10. Zellweger Spectrum

    MedlinePlus

    ... the Zellweger spectrum result from defects in the assembly of a cellular structure called the peroxisome, and ... Zellweger spectrum are caused by defects in the assembly of the peroxisome. There are at least 12 ...

  11. A patient showing features of both SBBYSS and GPS supports the concept of a KAT6B-related disease spectrum, with mutations in mid-exon 18 possibly leading to combined phenotypes.

    PubMed

    Vlckova, Marketa; Simandlova, Martina; Zimmermann, Pavel; Stranecky, Viktor; Hartmannova, Hana; Hodanova, Katerina; Havlovicova, Marketa; Hancarova, Miroslava; Kmoch, Stanislav; Sedlacek, Zdenek

    2015-10-01

    Genitopatellar syndrome (GPS) and Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) are two distinct clinically overlapping syndromes caused by de novo heterozygous truncating mutations in the KAT6B gene encoding lysine acetyltransferase 6B, a part of the histone H3 acetyltransferase complex. We describe an 8-year-old girl with a KAT6B mutation and a combined GPS/SBBYSS phenotype. The comparison of this patient with 61 previously published cases with KAT6B mutations and GPS, SBBYSS or combined GPS/SBBYSS phenotypes allowed us to separate the KAT6B mutations into four groups according to their position in the gene (reflecting nonsense mediated RNA decay and protein domains) and their clinical outcome. We suggest that mutations in mid-exon 18 corresponding to the C-terminal end of the acidic (Asp/Glu-rich) domain of KAT6B may have more variable expressivity leading to GPS, SBBYSS or combined phenotypes, in contrast to defects in other regions of the gene which contribute more specifically to either GPS or SBBYSS. Notwithstanding the clinical overlap, our cluster analysis of phenotypes of all known patients with KAT6B mutations supports the existence of two clinical entities, GPS and SBBYSS, as poles within the KAT6B-related disease spectrum. The awareness of these phenomena is important for qualified genetic counselling of patients with KAT6B mutations. PMID:26370006

  12. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  13. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  14. Absorption of ac fields in amorphous indium-oxide films

    NASA Astrophysics Data System (ADS)

    Ovadyahu, Z.

    2014-08-01

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (InxO) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In2O3-x) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  15. TURBULENCE SPECTRA FROM DOPPLER-BROADENED SPECTRAL LINES: TESTS OF THE VELOCITY CHANNEL ANALYSIS AND VELOCITY COORDINATE SPECTRUM TECHNIQUES

    SciTech Connect

    Chepurnov, A.; Lazarian, A.

    2009-03-10

    Turbulent motions induce Doppler shifts of observable emission and absorption lines motivating studies of turbulence using precision spectroscopy. We provide numerical testing of the two most promising techniques, velocity channel analysis and velocity coordinate spectrum (VCS). We obtain an expression for the shot noise that the discretization of the numerical data entails and successfully test it. We show that the numerical resolution required for recovering the underlying turbulent spectrum from observations depend on the spectral index of velocity fluctuations, which makes low-resolution testing misleading. We demonstrate numerically that, when dealing with absorption lines, sampling of turbulence along just a dozen directions provides a high quality spectrum with the VCS technique.

  16. DISCOVERY OF THE TRANSITION OF A MINI-BROAD ABSORPTION LINE INTO A BROAD ABSORPTION LINE IN THE SDSS QUASAR J115122.14+020426.3

    SciTech Connect

    Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane; Hamann, Fred; Murphy, Michael T.; Nestor, Daniel

    2013-09-20

    We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broad absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.

  17. Broadband perfect absorption of ultrathin conductive films with coherent illumination: Superabsorption of microwave radiation

    NASA Astrophysics Data System (ADS)

    Li, Sucheng; Luo, Jie; Anwar, Shahzad; Li, Shuo; Lu, Weixin; Hang, Zhi Hong; Lai, Yun; Hou, Bo; Shen, Mingrong; Wang, Chinhua

    2015-06-01

    Absorption of microwaves by metallic conductors is typically inefficient, albeit naturally broadband, due to the huge impedance mismatch between metal and free space. Reducing metal to ultrathin profile may improve absorption efficiency, but a maximal 50% absorption limit induced by the field continuity exists. Here, we experimentally show that broadband, perfect (100%) absorption of microwaves can be realized in a single layer of ultrathin conductive film when illuminated coherently by two oppositely directed incident beams. Our experiments keep the field continuity and simultaneously break the 50% limit. Inheriting the intrinsic broadband feature of metals, complete absorption is observed to be frequency independent in microwave experiments from 6 to 18 GHz. Remarkably, this occurs in films with thicknesses that are at the extreme subwavelength scales, ˜λ /10 000 or less. Our work proposes a way to achieve total electromagnetic wave absorption in an ultrawide spectrum of radio waves and microwaves with a simple conductive film.

  18. Absorption Measure Distribution in Mrk 509

    NASA Astrophysics Data System (ADS)

    Adhikari, T. P.; Różańska, A.; Sobolewska, M.; Czerny, B.

    2015-12-01

    In this paper we model the observed absorption measure distribution (AMD) in Mrk 509, which spans three orders of magnitude in ionization level with a single-zone absorber in pressure equilibrium. AMD is usually constructed from observations of narrow absorption lines in radio-quiet active galaxies with warm absorbers. We study the properties of the warm absorber in Mrk 509 using recently published broadband spectral energy distribution observed with different instruments. This spectrum is an input in radiative transfer computations with full photoionization treatment using the titan code. We show that the simplest way to fully reproduce the shape of AMD is to assume that the warm absorber is a single zone under constant total pressure. With this assumption, we found theoretical AMD that matches the observed AMD determined on the basis of the 600 ks reflection grating spectrometer XMM-Newton spectrum of Mrk 509. The softness of the source spectrum and the important role of the free-free emission breaks the usual degeneracy in the ionization state calculations, and the explicit dependence of the depths of AMD dips on density open a new path to the density diagnostic for the warm absorber. In Mrk 509, the implied density is of the order of 108 cm-3.

  19. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  20. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  1. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  2. Resonant Nanophotonic Spectrum Splitting for Ultrathin Multijunction Solar Cells

    PubMed Central

    2015-01-01

    We present an approach to spectrum splitting for photovoltaics that utilizes the resonant optical properties of nanostructures for simultaneous voltage enhancement and spatial separation of different colors of light. Using metal–insulator–metal resonators commonly used in broadband metamaterial absorbers we show theoretically that output voltages can be enhanced significantly compared to single-junction devices. However, the approach is general and works for any type of resonator with a large absorption cross section. Due to its resonant nature, the spectrum splitting occurs within only a fraction of the wavelength, as opposed to traditional spectrum splitting methods, where many wavelengths are required. Combining nanophotonic spectrum splitting with other nanophotonic approaches to voltage enhancements, such as angle restriction and concentration, may lead to highly efficient but deeply subwavelength photovoltaic devices. PMID:26322319

  3. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  4. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    SciTech Connect

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridged oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.

  5. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    SciTech Connect

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-09-09

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products.

  6. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    NASA Astrophysics Data System (ADS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-09-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products.

  7. Economic strategies of plant absorptive roots vary with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis < 247 µm) and thick roots. For each category, we analyzed a range of root traits related to resource acquisition and conservation, including root tissue density, different carbon (C), and nitrogen (N) fractions (i.e., extractive, acid-soluble, and acid-insoluble fractions) as well as root anatomical traits. The results showed significant relationships among root traits indicating an acquisition-conservation tradeoff for thin absorptive roots while no such trait relationships were found for thick absorptive roots. Similar results were found when reanalyzing data of a previous study including 96 plant species. The contrasting economic strategies between thin and thick absorptive roots, as revealed here, may provide a new perspective on our understanding of the root economics spectrum.

  8. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  9. Chaotic systems with absorption.

    PubMed

    Altmann, Eduardo G; Portela, Jefferson S E; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions D(q) obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D(1) in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results. PMID:24138240

  10. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    SciTech Connect

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S. E-mail: sredfield@wesleyan.edu E-mail: wdc@astro.as.utexas.edu E-mail: barman@lowell.edu

    2011-12-20

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra-i.e., the transmission spectra-to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at {lambda}{lambda}5889, 5895 and neutral potassium (K I) at {lambda}7698. We used the transmission spectrum at Ca I {lambda}6122-which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres-as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (- 5.26 {+-} 1.69) Multiplication-Sign 10{sup -4} (the average value over a 12 A integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (- 2.63 {+-} 0.81) Multiplication-Sign 10{sup -4}, though the interpretation is less clear. Furthermore, we find Na I absorption of (- 3.16 {+-} 2.06) Multiplication-Sign 10{sup -4} at <3{sigma} in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to {>=}3{sigma}, although we observe some features that we argue are primarily artifacts.

  11. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Emami, Farzin; Nozhat, Najmeh

    2014-07-01

    A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano bi-pyramids in order to achieve maximum absorption coefficient spectrum. In binary TLBO, a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nanoparticles in the array. Simulation results show that absorption coefficient strongly depends on the localized position of plasmonic nanoparticles. Non-periodic structures have more appropriate response in term of absorption coefficient. This approach is useful in optical applications such as solar cells and plasmonic nano antenna.

  12. IRIS Spectrum Line Plot

    NASA Video Gallery

    This video shows a line plot of the spectrum. The spectra here are shown for various locations on the Sun. The changes in the movie are caused by differing physical conditions in the locations. Cre...

  13. Terahertz spectrum analysis of leather at room temperature

    NASA Astrophysics Data System (ADS)

    Li, Jiusheng; Yao, Jianquan; Li, Jianrui

    2008-12-01

    Over the past ten years, electromagnetic terahertz (THz) frequencies region from 100 GHz to 10 THz (or wavelengths of 30 μm ~3 mm) have received extensive attention and investigation. Terahertz wave detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. There are many potential applications such as radio astronomy, atmospheric studies, remote sensing, and plasma diagnostics. Shoes, neckties and sofa, etc are mainly made of skin of animal, imitated skin and artificial leather. It has important practical value to component analysis and quality assessment by measuring absorption, refractive index, and other optical parameters. In this paper, the spectral characteristics of sheepskin, imitated sheepskin and artificial leather have been measured with terahertz time-domain spectroscopy (THz-TDS) in the range of 0.1~2.0THz. The results show that there have not absorption peak in the absorption spectrum of the sheepskin. However, it is found that there are three absorption peaks in the absorption spectrum of the artificial leather at the frequency of 1.13THz, 1.21THz, and 1.36THz, respectively. The potential application of the leather in THz frequency region is also discussed.

  14. Terahertz spectrum of gallic acid

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Zhao, Guozhong; Wang, Haiyan; Liang, Chengshen

    2009-11-01

    Gallic acid is natural polyphenol compound found in many green plants. More and more experiments have demonstrated that the gallic acid has comprehensive applications. In the field of medicine, the gallic acid plays an important role in antianaphylaxis, antineoplastic, antimycotic, anti-inflammatory, antivirotic, antiasthmatic and inhibiting the degradation of insulin. It also has a lot of applications in chemical industry, food industry and light industry. So it is important to study the terahertz time-domain spectroscopy of gallic acid. Terahertz time-domain spectroscopy (THz-TDS) is a new coherent spectral technology based on the femtosecond laser. In this work, the spectral characteristics of gallic acid in the range of 0.4 THz to 2.6 THz have been measured by THz-TDS. We obtained its absorption and refraction spectra at room temperature. The vibration absorption spectrum of the single molecule between 0.4 THz and 2.6 THz is simulated based on the Density Functional Theory (DFT). It is found that the gallic acid has the spectral response to THz wave in this frequency range. The results show the abnormal dispersion at 1.51 THz and 2.05 THz. These results can be used in the qualitative analysis of gallic acid and the medicine and food inspection.

  15. [Using 2-DCOS to identify the molecular spectrum peaks for the isomer in the multi-component mixture gases Fourier transform infrared analysis].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-10-01

    The generalized two-dimensional correlation spectroscopy and Fourier transform infrared were used to identify hydrocarbon isomers in the mixed gases for absorption spectra resolution enhancement. The Fourier transform infrared spectrum of n-butane and iso-butane and the two-dimensional correlation infrared spectrum of concentration perturbation were used for analysis as an example. The all band and the main absorption peak wavelengths of Fourier transform infrared spectrum for single component gas showed that the spectra are similar, and if they were mixed together, absorption peaks overlap and peak is difficult to identify. The synchronous and asynchronous spectrum of two-dimensional correlation spectrum can clearly identify the iso-butane and normal butane and their respective characteristic absorption peak intensity. Iso-butane has strong absorption characteristics spectrum lines at 2,893, 2,954 and 2,893 cm(-1), and n-butane at 2,895 and 2,965 cm(-1). The analysis result in this paper preliminary verified that the two-dimensional infrared correlation spectroscopy can be used for resolution enhancement in Fourier transform infrared spectrum quantitative analysis. PMID:25739197

  16. Neuron absorption study and mid-IR optical excitations

    NASA Astrophysics Data System (ADS)

    Guo, Dingkai; Chen, Xing; Vadala, Shilpa; Leach, Jennie; Kostov, Yordan; Bewley, William W.; Kim, Chul-Soo; Kim, Mijin; Canedy, Chadwick L.; Merritt, Charles D.; Vurgaftman, Igor; Meyer, Jerry R.; Choa, Fow-Sen

    2012-02-01

    Neuronal optical excitation can provide non-contacting tools to explore brain circuitry and a durable stimulation interface for cardiac pacing and visual as well as auditory sensory neuronal stimulation. To obtain accurate absorption spectra, we scan the transmission of neurons in cell culture medium, and normalize it by subtracting out the absorption spectrum of the medium alone. The resulting spectra show that the main neuronal absorption peaks are in the 3000- 6000nm band, although there is a smaller peak near 1450nm. By coupling the output of a 3μm interband cascade laser (ICL) into a mid-IR fluorozirconate fiber, we can effectively deliver more than 1J/cm2 photon intensity to the excitation site for neuronal stimulation.

  17. Extreme Variability in a Broad Absorption Line Quasar

    NASA Astrophysics Data System (ADS)

    Stern, Daniel; Graham, Matthew; Arav, Nahum; Djorgovski, Stanislav G.; Chamberlain, Carter; Barth, Aaron J.; Donalek, Ciro; Drake, Andrew J.; Glikman, Eilat; Jun, Hyunsung David; Mahabal, Ashish A.; Steidel, Charles C.

    2016-01-01

    We report on extreme spectral variability seen in a broad absorption line quasar over the past decade, initially identified from the Catalina Real-time Transient Survey (CRTS). Photometrically, the source had a visual magnitude of V = 17.3 between 2002 and 2008. Then, over the following 5 years, the source slowly brightened by approximately one magnitude, to V = 16.2. A combination of archival and newly acquired spectra reveal the source to be an iron low-ionization broad absorption line (Fe-LoBAL) quasar with extreme changes in its absorption spectrum. Some absorption features completely disappear over the 9 years of optical spectra, while other features remain essentially unchanged. Absorption systems separated by several 1000 km/s in velocity show coordinated changes in the depths of their troughs, correlated with the flux changes. Therefore, we interpret the variability in the absorption troughs to be due to changes in photoionization, rather than due to motion of material into our line of sight. This source highlights the sort of rare transition objects that astronomy will now be finding through dedicated time domain surveys.

  18. Absorption of Sunlight in Clear and Cloudy Atmospheres: A Solution to the Cloud Absorption Anomaly

    NASA Technical Reports Server (NTRS)

    Crisp, D.

    1997-01-01

    To identify the origin of this mission absorption, a spectrum-resolving (line-by-line) multiple scattering model was used to derive solar radiances, fluxes, and heating rates for realistic clear and cloudy atmospheres.

  19. Ultraviolet absorption and luminescence of matrix-isolated adenine

    SciTech Connect

    Polewski, K.; Sutherland, J.; Zinger, D.; Trunk, J.

    2011-10-01

    We have investigated the absorption, the fluorescence and phosphorescence emission and the fluorescence lifetimes of adenine in low-temperature argon and nitrogen matrices at 15 K. Compared to other environments the absorption spectrum shows higher intensity at the shortest wavelengths, and a weak apparent absorption peak is observed at 280 nm. The resolved fluorescence excitation spectrum has five peaks at positions corresponding to those observed in the absorption spectrum. The position of the fluorescence maximum depends on the excitation wavelength. Excitation below 220 nm displays a fluorescence maximum at 305 nm, while for excitations at higher wavelengths the maximum occurs at 335 nm. The results suggest that multiple-emission excited electronic states are populated in low-temperature gas matrices. Excitation at 265 nm produces a phosphorescence spectrum with a well-resolved vibrational structure and a maximum at 415 nm. The fluorescence decays corresponding to excitation at increasing energy of each resolved band could be fit with a double exponential, with the shorter and longer lifetimes ranging from 1.7 to 3.3 ns and from 12 to 23 ns, respectively. Only for the excitation at 180 nm one exponential is required, with the calculated lifetimes of 3.3 ns. The presented results provide an experimental evidence of the existence of multiple site-selected excited electronic states, and may help elucidate the possible deexcitation pathways of adenine. The additional application of synchrotron radiation proved to result in a significant enhancement of the resolution and spectral range of the phenomena under investigation.

  20. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  1. [Retrieval of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy].

    PubMed

    Wang, Yang; Xie, Pin-hua; Li, Ang; Xu, Jin; Zeng, Yi; Si, Fu-qi; Wu, Feng-cheng

    2012-04-01

    An appropriate reference spectrum is essential for the direct-sun differential optical absorption spectroscopy (DS-DOAS). It depends on the real reference spectrum to retrieve the total vertical column density (VCD). The spectrum detected at the time with minimum sun zenith angle under the relative clear atmospheric condition in the measurement period was conventionally selected as the reference spectrum. Because there is still untracked NO2 absorption structure in the reference spectrum, the VCD retrieved based on the above spectrum is actually relative VCD, which results in larger error. To solve this problem, a new method was investigated. A convolution of extraterrestrial high-precision solar Fraunhofer spectrum and the instrumental function of the spectrometer was computed and chosen as the reference spectrum. The error induced by NO2 absorption structure in the reference spectrum was removed. Then the fitting error of slant column density (SCD) retrieved by this method was analyzed. The correlation between the absolute SCD and the differential slant column density (dSCD) was calculated. The result shows that the error of SCD retrieved by this new method is below 1.6 x 10(16) molecules x cm(-2) on March 7, 2011, while the error generated by the normal method is about 4.25 x 10(16) molecules x cm(-2). The new method decreased more than 62% error. In addition, the results throughout the day were compared to the troposphere VCD from MAX-DOAS and they are in good agreement. It indicates that the new method could effectively reduce the VCD error of the common way. PMID:22715747

  2. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  3. Absorption by dirty black holes: Null geodesics and scalar waves

    NASA Astrophysics Data System (ADS)

    Macedo, Caio F. B.; Leite, Luiz C. S.; Crispino, Luís C. B.

    2016-01-01

    Black holes are a paradigm in physics nowadays and are expected to be hosted at the centers of galaxies. Supermassive galactic black holes are not isolated, and their surroundings play crucial roles in many observational features. The absorption and scattering of fields by isolated black holes have been vastly studied, allowing the understanding of many phenomenological features. However, as far as we are aware, a study of the influence of the presence of matter surrounding black holes in their planar wave scattering and absorption spectrum is still lacking in the literature. This may be important in the analysis of, for instance, the accretion of dark matter by black holes. We consider planar massless scalar waves incident upon a Schwarzschild black hole surrounded by a thin spherical shell. We use the partial-wave method to determine the absorption cross section and present a selection of numerical results. In the low-frequency regime, we show that the absorption cross section is equal to the horizon area. At the high-frequency regime, we show that the absorption cross section approaches the geodesic capture cross section.

  4. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  5. The effect of different particle sizes of polyethylene on the absorption of myrrh in mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Li, Bin; Zuo, Jian; Zhang, Cunlin

    2015-08-01

    Terahertz radiation lies between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Absorption spectra of different mass ratio of the myrrh and polyethylene can be gained by Fourier transform infrared spectrometer in this paper. It is found that absorption spectra show a slight red-shift with the decrease of the mass ratio of myrrh and polyethylene. On the other hand, different particle sizes of polyethylene (PE) mixed with myrrh absorption spectra were measured. Due to the different sizes of polyethylene particles, there are some differences in the vibration peak intensity, peak position and peak numbers in the absorption spectra. The experimental results show that the scattering effect leads to this phenomenon.

  6. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  7. PKS 0483-436 - A high-redshift quasar with strong X-ray absorption

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Elvis, Martin; Fiore, Fabrizio; Mcdowell, Jonathan C.; Tananbaum, Harvey; Lawrence, Andrew

    1992-01-01

    The first X-ray spectrum of a high-redshift (z = 2.85) quasar is reported. The Rosat PSPC spectrum of PKS 0438-436, covering 0.3-9 keV in the quasar's rest frame, reveals unexpected absorption of about 1 x 10 exp 22/sq cm, assuming it occurs at the source. Only one other high-luminosity quasar (of greater than about 50 observed by Einstein) shows significant absorption in its X-ray spectrum. Of the common line-of-sight absorbers, only highly ionized Ly-alpha forest clouds may be able to explain this amount of absorption. Candidates for an intrinsic absorber are discussed. Absorption at about 1 keV (rest frame) is due primarily to heavy elements. (O, Ne, Mg, Si, S) raising the possibility of measuring early universe abundances via X-ray absorption in this and like quasars. PKS 0438-436 may be a high-redshift member of a population of quasars which can contribute to the X-ray background above 2 keV, without being detectable by previous imaging missions.

  8. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  9. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  10. Absorption spectra of monolayer MoS2 in high magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Duen; Her, Jim-Long; Takeyama, Shojiro; Matsuda, Yasuhiro; Wang, Kai-Hsuan

    2015-03-01

    We have measured the absorption spectra of monolayer MoS2 film at several temperatures in pulsed high magnetic fields up to 52 T. At room temperature, the observed spectrum dominated by two main peaks, which are located at 660 nm and 606 nm. These peaks are ascribed to excition and trion absorption peaks respectively [1]. At low temperature (4.2 K), two peaks show the blue shift to 633 nm and 588 nm, respectively. Irrespective of the temperature, applying magnetic field does not show pronounced influence on the peaks even in 52 T.

  11. 832 Karin Shows No Rotational Spectral Variations

    NASA Astrophysics Data System (ADS)

    Chapman, Clark R.; Enke, B.; Merline, W. J.; Nesvorny, D.; Tamblyn, P.; Young, E. F.

    2006-09-01

    Sasaki et al. (2004, 2005) claimed that 832 Karin, the brightest member of the very young (5.75 Myr) Karin cluster of the Koronis family, shows dramatically different colors as a function of rotational phase. It was interpreted that Karin is a fragment of the recently broken-up asteroid, showing the reddish space-weathered exterior surface of the precursor asteroid as well as an interior face, which has not had time to become space-weathered. On five nights during UT 7-14 January 2006, we observed Karin with the SpeX instrument, 0.8-2.5 microns, on the IRTF. We sampled its spectrum well throughout its rotation. We analyzed the data in 50 deg. intervals of rotational longitude; some longitudes were sampled during two different nights. We find that Karin exhibits minimal spectral variations with rotation, certainly nothing of the magnitude reported by Sasaki et al. Since our data resemble Sasaki et al.'s "blue" and "green" sets, we suggest that their "red" set is spurious. Indeed, it is difficult to understand how the reported color change could have occurred during such a modest interval ( 4%) of rotational longitude. (Note that we have not determined Karin's pole position nor the phase of the Sasaki et al. data within our own coverage, so the refutation of dramatic color change is not absolutely secure.) Karin and its family members are not quite as red as typical S-types, yet have shallow absorption bands. Perhaps the space-weathering process affecting these young asteroids has had time to reduce spectral contrast, but has not operated long enough to redden them -- an intermediate case of space weathering, which has gone to completion for older main-belt asteroids of these sizes. Supported by the NASA Planetary Astronomy Program. T. Sasaki et al. 2004. ApJ 615, L161-L164; T. Sasaki et al. 2005. LPSC XXXVI, 1590.pdf.

  12. Decays of the Three Top Contributors to the Reactor ν[over ¯]_{e} High-Energy Spectrum, ^{92}Rb, ^{96gs}Y, and ^{142}Cs, Studied with Total Absorption Spectroscopy.

    PubMed

    Rasco, B C; Wolińska-Cichocka, M; Fijałkowska, A; Rykaczewski, K P; Karny, M; Grzywacz, R K; Goetz, K C; Gross, C J; Stracener, D W; Zganjar, E F; Batchelder, J C; Blackmon, J C; Brewer, N T; Go, S; Heffron, B; King, T; Matta, J T; Miernik, K; Nesaraja, C D; Paulauskas, S V; Rajabali, M M; Wang, E H; Winger, J A; Xiao, Y; Zachary, C J

    2016-08-26

    We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs β decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three β decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of ^{142}Cs, reducing the β feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%. PMID:27610847

  13. [Qualitative Determination of Organic Vapour Using Violet and Visible Spectrum].

    PubMed

    Jiang, Bo; Hu, Wen-zhong; Liu, Chang-jian; Zheng, Wei; Qi, Xiao-hui; Jiang, Ai-li; Wang, Yan-ying

    2015-12-01

    Vapours of organic matters were determined qualitatively employed with ultraviolet-visible absorption spectroscopy. Vapours of organic matters were detected using ultraviolet-visible spectrophotometer employing polyethylene film as medium, the ultraviolet and visible absorption spectra of vegetable oil vapours of soybean oil, sunflower seed oil, peanut oil, rapeseed oil, sesame oil, cotton seed oil, tung tree seed oil, and organic compound vapours of acetone, ethyl acetate, 95% ethanol, glacial acetic acid were obtained. Experimental results showed that spectra of the vegetable oil vapour and the organic compound vapour could be obtained commendably, since ultra violet and visible spectrum of polyethylene film could be deducted by spectrograph zero setting. Different kinds of vegetable oils could been distinguished commendably in the spectra since the λ(max), λ(min), number of absorption peak, position, inflection point in the ultra violet and visible spectra obtained from the vapours of the vegetable oils were all inconsistent, and the vapours of organic compounds were also determined perfectly. The method had a good reproducibility, the ultraviolet and visible absorption spectra of the vapours of sunflower seed oil in 10 times determination were absolutely the same. The experimental result indicated that polyethylene film as a kind of medium could be used for qualitative analysis of ultraviolet and visible absorption spectroscopy. The method for determination of the vapours of the vegetable oils and organic compounds had the peculiarities of fast speed analysis, well reproducibility, accuracy and reliability and low cost, and so on. Ultraviolet and visible absorption spectrum of organic vapour could provide feature information of material vapour and structural information of organic compound, and provide a novel test method for identifying vapour of compound and organic matter. PMID:26964229

  14. Demonstration That Calibration of the Instrument Response to Polarizations Parallel and Perpendicular to the Object Space Projected Slit of an Imaging Spectrometer Enable Measurement of the Atmospheric Absorption Spectrum in Region of the Weak CO2 Band for the Case of Arbitrary Polarization: Implication for the Geocarb Mission

    NASA Astrophysics Data System (ADS)

    Kumer, J. B.; Rairden, R. L.; Polonsky, I. N.; O'Brien, D. M.

    2014-12-01

    The Tropospheric Infrared Mapping Spectrometer (TIMS) unit rebuilt to operate in a narrow spectral region, approximately 1603 to 1615 nm, of the weak CO2 band as described by Kumer et al. (2013, Proc. SPIE 8867, doi:10.1117/12.2022668) was used to conduct the demonstration. An integrating sphere (IS), linear polarizers and quarter wave plate were used to confirm that the instrument's spectral response to unpolarized light, to 45° linearly polarized light and to circular polarized light are identical. In all these cases the intensity components Ip = Is where Ip is the component parallel to the object space projected slit and Is is perpendicular to the slit. In the circular polarized case Ip = Is in the time averaged sense. The polarizer and IS were used to characterize the ratio Rθ of the instrument response to linearly polarized light at the angle θ relative to parallel from the slit, for increments of θ from 0 to 90°, to that of the unpolarized case. Spectra of diffusely reflected sunlight passed through the polarizer in increments of θ, and divided by the respective Rθ showed identical results, within the noise limit, for solar spectrum multiplied by the atmospheric transmission and convolved by the Instrument Line Shape (ILS). These measurements demonstrate that unknown polarization in the diffusely reflected sunlight on this small spectral range affect only the slow change across the narrow band in spectral response relative to that of unpolarized light and NOT the finely structured / high contrast spectral structure of the CO2 atmospheric absorption that is used to retrieve the atmospheric content of CO2. The latter is one of the geoCARB mission objectives (Kumer et al, 2013). The situation is similar for the other three narrow geoCARB bands; O2 A band 757.9 to 768.6 nm; strong CO2 band 2045.0 to 2085.0 nm; CH4 and CO region 2300.6 to 2345.6 nm. Polonsky et al have repeated the mission simulation study doi:10.5194/amt-7-959-2014 assuming no use of a geo

  15. Deviations of the exciton level spectrum in Cu2O from the hydrogen series

    NASA Astrophysics Data System (ADS)

    Schöne, F.; Krüger, S.-O.; Grünwald, P.; Stolz, H.; Scheel, S.; Aßmann, M.; Heckötter, J.; Thewes, J.; Fröhlich, D.; Bayer, M.

    2016-02-01

    Recent high-resolution absorption spectroscopy on excited excitons in cuprous oxide [Nature (London) 514, 343 (2014), 10.1038/nature13832] has revealed significant deviations of their spectrum from that of the ideal hydrogen-like series. Here we show that the complex band dispersion of the crystal, which determines the kinetic energy of electrons and holes, strongly affects the exciton binding energy. Specifically, we show that the nonparabolicity of the band dispersion is the main cause of the deviation from the hydrogen series. Experimental data collected from high-resolution absorption spectroscopy in electric fields validate the assignment of the deviation to the nonparabolicity of the band dispersion.

  16. Reinvestigation of the triplet-minus-singlet spectrum of chloroplasts

    NASA Astrophysics Data System (ADS)

    Jávorfi, T.; Garab, G.; Razi Naqvi, K.

    2000-01-01

    A comparison of the triplet-minus-singlet (TmS) absorption spectrum of spinach chloroplasts, recorded some thirty years ago, with the more recently published TmS spectrum of isolated Chl a/ b LHCII (light-harvesting complexes associated with photosystem II of higher plants) shows that the two spectra are very similar, which is to be expected, since only the carotenoid pigments contribute to each spectrum. Be that as it may, the comparison also reveals a dissimilarity: photoexcitation of the sample does, or does not, affect the absorbance in the Qy region (650-700 nm), depending on whether the sample is a suspension of chloroplasts or of isolated LHCII. The Qy-signal in the TmS spectrum of LHCII decays, it should be noted, at the same rate as the rest of the difference spectrum, and its most prominent feature is a negative peak. As the carotenoids do not absorb in the Qy region, the presence of a signal in this region calls for an explanation: van der Vos, Carbonera and Hoff, the first to find as well as fathom the phenomenon, attributed the Qy-signal to a change, in the absorption spectrum of a chlorophyll a (Chl a) molecule, brought about by the presence of triplet excitation on a neighbouring carotenoid (Car). The difference in the behaviours of chloroplasts and LHCII, if reproducible, would imply that the Car triplets which give rise to the TmS spectrum of chloroplasts do not influence the absorption spectra of their Chl a neighbours. With a view to reaching a firm conclusion about this vexed issue, spinach chloroplasts and thylakoids have been examined with the aid of the same kinetic spectrometer as that used for investigating LHCII; the TmS spectra of both chloroplasts and thylakoids contain prominent bleaching signals centred at 680 nm, and the triplet decay time in each case is comparable to that of the Chl a/ b LHCII triplets. Results pertaining to other closely related systems are recalled, and it is concluded that, so far as the overall appearance of the

  17. [Mineral Spectrum Change Analysis under the Conditions of Different Particle Size].

    PubMed

    Wang, Yan-xia; Wu, Jian; Zhou, Liang-guang; Hou, Lan-gong; Wang, Dong; Cao, Min

    2015-03-01

    Mineral particle size is an important factor affecting mineral spectrum characteristics, so to explore the changes of the mineral spectrum curves under different particle sizes and the spectrum difference of different minerals under the same particle size are the keys of hyperspectral remote sensing information mineral identification and the theoretical basis of research on spectral differences of different particle -sizes. Six kinds of collected minerals were observed by spectrometer to get the reflectivity spectrum curve and first order differential spectral curve under different particle sizes, and the spectral characteristics of various kinds of minerals under different particle sizes were analyzed. At the same time, spectrum difference of different mineral under the same particle size was compared to explore possible wavelengths of hyperspectral remote sensing mineral identify. Results show that the spectrum curves of various minerals have a larger difference with the change of the particle size, but change law is not the same. The whole spectrum curve of hypersthene will be decreased with the increase of particle size, and the spectrum curve at a specific wavelength range of antigorite, hematite, kaolinite and chlorite will be decreased with the increase of particle size, and there is no direct correlation between the spectrum of olivine and the particle size. Under the same size, different mineral spectral reflectance change a lot in most band range and it provides the possibility for high precision identification of mineral. Antigorite, kaolinite and chlorite all have more absorption peaks of narrow width and smaller intensity than the other minerals. Spectrum curves of hematite, olivine and hypersthene are relatively smooth, and the number of the absorption and reflection peaks is relatively small. This study aims at providing basic data and theoretical support for mineral spectral library construction and mineral hyperspectral identification technology

  18. Atmospheric absorption of high frequency noise and application to fractional-octave bands

    NASA Technical Reports Server (NTRS)

    Shields, F. D.; Bass, H. E.

    1977-01-01

    Pure tone sound absorption coefficients were measured at 1/12 octave intervals from 4 to 100 KHz at 5.5K temperature intervals between 255.4 and 310.9 K and at 10 percent relative humidity increments between 0 percent and saturation in a large cylindrical tube (i.d., 25.4 cm; length, 4.8 m). Special solid-dielectric capacitance transducers, one to generate bursts of sound waves and one to terminate the sound path and detect the tone bursts, were constructed to fit inside the tube. The absorption was measured by varying the transmitter receiver separation from 1 to 4 m and observing the decay of multiple reflections or change in amplitude of the first received burst. The resulting absorption was compared with that from a proposed procedure for computing sound absorption in still air. Absorption of bands of noise was numerically computed by using the pure tone results. The results depended on spectrum shape, on filter type, and nonlinearly on propagation distance. For some of the cases considered, comparison with the extrapolation of ARP-866A showed a difference as large as a factor of 2. However, for many cases, the absorption for a finite band was nearly equal to the pure tone absorption at the center frequency of the band. A recommended prediction procedure is described for 1/3 octave band absorption coefficients.

  19. Aircraft observations of Venus' near-infrared reflection spectrum - Implications for cloud composition

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Erickson, E. F.; Witteborn, F. C.; Chackerian, C., Jr.; Summers, A. L.; Van Camp, W.; Baldwin, B. J.; Augason, G. C.; Caroff, L. J.

    1974-01-01

    A comparison of aircraft-based measurement data on Venus' near-infrared (1.2- to 4.1-micron) reflection spectrum with computer generated spectra of a number of cloud candidates shows a 75-% or more concentrated water solution of sulfuric acid to give the only acceptable match to the profile of Venus' strong 3-micron absorption feature. However, the measurement data obtained also show a modest decline in reflectivity from 2.3-micron to 1.2-micron wavelength, which is inconsistent with the flat spectrum of sulfuric acid in this spectral region. It is hypothesized that this decline is due to impurities in the sulfuric acid droplets.

  20. Transformation and absorption of MHD oscillations in plane-stratified models of the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Kozlov, D. A.; Leonovich, A. S.

    2011-12-01

    The process of resonant transformation of fast magnetosonic (FMS) waves originating from the solar wind in Alfvén and slow magnetosonic (SMS) oscillations in the Earth's magnetosphere is investigated. The study of this process in a one-dimensional inhomogeneous medium model shows that the presence of a resonant surface for SMS oscillations in the plasma configuration significantly increases the absorption of the energy of FMS waves incident on the magnetosphere. The spatial distribution of the absorption rate of an energy flux of FMS waves is examined. In numerical calculations, the Kolmogorov spectrum was used for FMS waves, which is typical of the waves in the transition layer between a shock wave and the magnetopause. It is shown that the rate of energy absorption of FMS waves due to the resonant excitation of SMS oscillations is by several orders of magnitude greater than the absorption of their energy associated with resonant Alfvén waves at the same magnetic shells.

  1. Bulk resonance absorption induced by relativistic effects in laser-plasma interaction

    SciTech Connect

    Ding Wenjun; Sheng, Z.-M.; Zhang, J.; Yu, M. Y.

    2009-04-15

    Resonance absorption in relativistic laser-plasma interaction is studied via two-dimensional particle-in-cell simulation. As the laser intensity increases from the linear regime, the absorption rate first decreases due to relativistic modulation of the electron plasma oscillations excited at the mode conversion layer. However, the trend reverses after a critical intensity. The reversal can be attributed to the fact that the relativistic critical layer depends on the local intensity of the laser pulse, so that instead of occurring in a thin layer, resonance absorption occurs in a plasma bulk region, leading absorption rate increase. The reflected-light spectrum also shows broadening and splitting of the harmonics at high laser intensities, which can be attributed to critical-surface oscillations driven by the laser ponderomotive force.

  2. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    NASA Astrophysics Data System (ADS)

    Li, Zi; Zhang, Shen; Wang, Cong; Kang, Wei; Zhang, Ping

    2016-05-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  3. Impedance Characteristics of the Plasma Absorption Probe

    NASA Astrophysics Data System (ADS)

    Yamazawa, Yohei

    2009-10-01

    The plasma absorption probe (PAP) is a diagnostics for determination of spatially resolved electron density.footnotetextH. Kokura, et al., Jpn. J. Appl. Phys. 38 5262 (1999). PAP has attracted considerable interest because of its applicability in a reactive plasma. The simple structure of the probe allows us a robust measurement while the mechanism of the absorption is complicated and there are still some uncertainty.footnotetextM. Lapke, et al., Appl. Phys. Lett. 90, 121502 (2007) In this study, we focus on the frequency characteristics of the impedance instead of the absorption spectrum. An electromagnetic field simulation reveals that there is only one parallel resonance in the impedance characteristics even in a case there are many peaks in absorption spectrum. Thus, the impedance characteristics provide a clue to understanding the mechanism.

  4. Design and testing of a 10B4C capsule for spectral-tailoring in mixed-spectrum reactors

    NASA Astrophysics Data System (ADS)

    Greenwood, L. R.; Wittman, R.; Metz, L. A.; Finn, E. C.; Friese, J. I.

    2014-04-01

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum than measured previously with a natural boron carbide capsule. A cadmium outer cover was used to reduce thermal alpha heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  5. Design and Testing of a 10B4C Capsule for Spectral-Tailoring in Mixed-Spectrum Reactors

    SciTech Connect

    Greenwood, Lawrence R.; Wittman, Richard S.; Metz, Lori A.; Finn, Erin C.; Friese, Judah I.

    2014-04-11

    A boron carbide capsule highly enriched in 10B has been designed and used for spectral-tailoring experiments at the TRIGA reactor at Washington State University. New experiments show that enriching the boron to 96% B-10 results in additional absorption of neutrons in the resonance region thereby producing a neutron spectrum that is much closer to a pure 235U fission spectrum. A cadmium outer cover was used to reduce thermal heating. The neutron spectrum calculated with MCNP was found to be in very good agreement with measured activation rates from neutron fluence monitors.

  6. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  7. Clear evidence for the presence of O VI absorption in QSO metal systems

    NASA Technical Reports Server (NTRS)

    Lu, Limin; Savage, Blair D.

    1993-01-01

    We have detected O VI 1031.93 A, 1037.62 A doublet absorption in a composite QSO spectrum formed from a large number of intervening C IV absorption systems. The detections constitute the first firm evidence for the presence of O VI in intervening QSO metal absorption systems. The equivalent width of the detected O VI absorption implies an O VI column density N(O VI) not less than 2.8 x 10 exp 14/sq cm. This value, together with the nondetection of the N V 1238.82 A, 1242.80 A doublet absorption, suggests that N(O VI)/N(N V) not less than 4.4. For collisionally ionized gas with a solar O to N abundance ratio in thermal equilibrium the above ratio requires a temperature T not less than 2.5 x 10 exp 5 K. It is found that C IV systems which show low-ionization species and those which do not both have associated O VI absorption, suggesting that O VI is probably present in all C IV systems. We also find that C IV systems which show low-ionization species on average have stronger high-ionization absorption lines than those which do not. A simple interpretation was given to explain this trend.

  8. Fractal morphology of black carbon aerosol enhances absorption in the thermal infrared wavelengths.

    PubMed

    Heinson, William R; Chakrabarty, Rajan K

    2016-02-15

    In this Letter, we numerically calculate the mass absorption cross sections (MACs) of black carbon fractal aggregates in the thermal infrared solar spectrum. Compared to equivalent-size spheres, the MAC values of aggregates show a percent enhancement of ≈150 and 400 at small and large length scales, respectively. The absorption properties of aggregates with size parameters >1 surprisingly continued to remain in the Rayleigh optics regime. We explain this phenomenon using the Maxwell-Garnett effective medium theory and the concept of phase shift parameter. PMID:26872194

  9. Ultra high energy neutrinos: absorption, thermal effects and signatures

    SciTech Connect

    Lunardini, Cecilia; Sabancilar, Eray; Yang, Lili E-mail: Eray.Sabancilar@asu.edu

    2013-08-01

    We study absorption of ultra high energy neutrinos by the cosmic neutrino background, with full inclusion of the effect of the thermal distribution of the background on the resonant annihilation channel. For a hierarchical neutrino mass spectrum (with at least one neutrino with mass below ∼ 10{sup −2} eV), thermal effects are important for ultra high energy neutrino sources at z∼>16. The neutrino transmission probability shows no more than two separate suppression dips since the two lightest mass eigenstates contribute as a single species when thermal effects are included. Results are applied to a number of models of ultra high energy neutrino emission. Suppression effects are strong for sources that extend beyond z ∼ 10, which can be realized for certain top down scenarios, such as superheavy dark matter decays, cosmic strings and cosmic necklaces. For these, a broad suppression valley should affect the neutrino spectrum at least in the energy interval 10{sup 12}−10{sup 13} GeV — which therefore is disfavored for ultra high energy neutrino searches — with only a mild dependence on the neutrino mass spectrum and hierarchy. The observation of absorption effects would indicate a population of sources beyond z ∼ 10, and favor top-down mechanisms; it would also be an interesting probe of the physics of the relic neutrino background in the unexplored redshift interval z ∼ 10–100.

  10. Spectrum allocations above 40 GHz

    NASA Technical Reports Server (NTRS)

    Katzenstein, W. E.; Moore, R. P.; Kimball, H. G.

    1981-01-01

    The 1979 World Administrative Radio Conference (WARC-79) revised the International Table of Frequency Allocations to reflect increased interest and activity in the region of the EM spectrum above 40 GHz. The total width of the spectrum allocated (235 GHz) in the region above 40 GHz indicates the extent of this new spectrum resource, made accessible by advances in the state-of-the-art of telecommunications equipment. There are some striking differences between the approach to allocation above and below 40 GHz. For example, there are not bands allocated exclusively. This reflects the characteristics of propagation and the small antenna beamwidths achievable at these frequencies. Attention is given to atmospheric window and absorption band limits, allocations to satellite services, allocations to scientific services, allocations to terrestrial services, the future refinement of the radio regulations above 40 GHz, and allocations of WARC-79 and frequency management.

  11. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  12. THE 3 μm SPECTRUM OF JUPITER's IRREGULAR SATELLITE HIMALIA

    SciTech Connect

    Brown, M. E.; Rhoden, A. R. E-mail: Alyssa.Rhoden@jhuapl.edu

    2014-10-01

    We present a medium resolution spectrum of Jupiter's irregular satellite Himalia covering the critical 3 μm spectral region. The spectrum shows no evidence for aqueously altered phyllosilicates, as had been suggested from the tentative detection of a 0.7 μm absorption, but instead shows a spectrum strikingly similar to the C/CF type asteroid 52 Europa. 52 Europa is the prototype of a class of asteroids generally situated in the outer asteroid belt between less distant asteroids which show evidence for aqueous alteration and more distant asteroids which show evidence for water ice. The spectral match between Himalia and this group of asteroids is surprising and difficult to reconcile with models of the origin of the irregular satellites.

  13. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  14. Evidence for sulphur implantation in Europa's UV absorption band

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Nelson, R. M.; Matson, D. L.

    1981-01-01

    The UV spectral characteristics of the Galilean satellites are investigated (using data from the International Ultraviolet Explorer (IUE) spacecraft) as a function of the orbital position, large-scale areal variability, and temporal dynamics. The discovery of an absorption feature at 280 nm in Europa's reflection spectrum is reported and observations show that the absorption is strongest on the trailing hemisphere (central longitude 270 degrees). The feature resembles SO2 and seems to result from S-O bond formation between deeply implanted sulphur atoms and the adjacent damaged water-ice-lattice. The sulphur supposedly comes from energetic (hundreds of keV) sulphur ions that are present in the Jovian magnetosphere. An appropriate equilibrium condition can be found to match the observed spectral data if sputtering erosion occurs at no greater than approximately 20 meters per one billion years.

  15. Television Quiz Show Simulation

    ERIC Educational Resources Information Center

    Hill, Jonnie Lynn

    2007-01-01

    This article explores the simulation of four television quiz shows for students in China studying English as a foreign language (EFL). It discusses the adaptation and implementation of television quiz shows and how the students reacted to them.

  16. Absorption Characteristics of Vertebrate Non-Visual Opsin, Opn3

    PubMed Central

    Sugihara, Tomohiro; Nagata, Takashi; Mason, Benjamin; Koyanagi, Mitsumasa; Terakita, Akihisa

    2016-01-01

    Most animals possess multiple opsins which sense light for visual and non-visual functions. Here, we show spectral characteristics of non-visual opsins, vertebrate Opn3s, which are widely distributed among vertebrates. We successfully expressed zebrafish Opn3 in mammalian cultured cells and measured its absorption spectrum spectroscopically. When incubated with 11-cis retinal, zebrafish Opn3 formed a blue-sensitive photopigment with an absorption maximum around 465 nm. The Opn3 converts to an all-trans retinal-bearing photoproduct with an absorption spectrum similar to the dark state following brief blue-light irradiation. The photoproduct experienced a remarkable blue-shift, with changes in position of the isosbestic point, during further irradiation. We then used a cAMP-dependent luciferase reporter assay to investigate light-dependent cAMP responses in cultured cells expressing zebrafish, pufferfish, anole and chicken Opn3. The wild type opsins did not produce responses, but cells expressing chimera mutants (WT Opn3s in which the third intracellular loops were replaced with the third intracellular loop of a Gs-coupled jellyfish opsin) displayed light-dependent changes in cAMP. The results suggest that Opn3 is capable of activating G protein(s) in a light-dependent manner. Finally, we used this assay to measure the relative wavelength-dependent response of cells expressing Opn3 chimeras to multiple quantally-matched stimuli. The inferred spectral sensitivity curve of zebrafish Opn3 accurately matched the measured absorption spectrum. We were unable to estimate the spectral sensitivity curve of mouse or anole Opn3, but, like zebrafish Opn3, the chicken and pufferfish Opn3-JiL3 chimeras also formed blue-sensitive pigments. These findings suggest that vertebrate Opn3s may form blue-sensitive G protein-coupled pigments. Further, we suggest that the method described here, combining a cAMP-dependent luciferase reporter assay with chimeric opsins possessing the third

  17. [Denoising and assessing method of additive noise in the ultraviolet spectrum of SO2 in flue gas].

    PubMed

    Zhou, Tao; Sun, Chang-Ku; Liu, Bin; Zhao, Yu-Mei

    2009-11-01

    The problem of denoising and assessing method of the spectrum of SO2 in flue gas was studied based on DOAS. The denoising procedure of the additive noise in the spectrum was divided into two parts: reducing the additive noise and enhancing the useful signal. When obtaining the absorption feature of measured gas, a multi-resolution preprocessing method of original spectrum was adopted for denoising by DWT (discrete wavelet transform). The signal energy operators in different scales were used to choose the denoising threshold and separate the useful signal from the noise. On the other hand, because there was no sudden change in the spectra of flue gas in time series, the useful signal component was enhanced according to the signal time dependence. And the standard absorption cross section was used to build the ideal absorption spectrum with the measured gas temperature and pressure. This ideal spectrum was used as the desired signal instead of the original spectrum in the assessing method to modify the SNR (signal-noise ratio). There were two different environments to do the proof test-in the lab and at the scene. In the lab, SO2 was measured several times with the system using this method mentioned above. The average deviation was less than 1.5%, while the repeatability was less than 1%. And the short range experiment data were better than the large range. In the scene of a power plant whose concentration of flue gas had a large variation range, the maximum deviation of this method was 2.31% in the 18 groups of contrast data. The experimental results show that the denoising effect of the scene spectrum was better than that of the lab spectrum. This means that this method can improve the SNR of the spectrum effectively, which is seriously polluted by additive noise. PMID:20101989

  18. The Transit Transmission Spectrum of a Cold Gas Giant Planet

    NASA Astrophysics Data System (ADS)

    Dalba, Paul A.; Muirhead, Philip S.; Fortney, Jonathan J.; Hedman, Matthew M.; Nicholson, Philip D.; Veyette, Mark J.

    2015-12-01

    We use solar occultations observed by the Visual and Infrared Mapping Spectrometer on board the Cassini Spacecraft to extract the 1-5 μm transmission spectrum of Saturn, as if it were a transiting exoplanet. We detect absorption from methane, ethane, acetylene, aliphatic hydrocarbons, and possibly carbon monoxide, with peak-to-peak features of up to 90 parts-per-million despite the presence of ammonia clouds. We also find that atmospheric refraction, as opposed to clouds or haze, determines the minimum altitude that could be probed during mid-transit. Self-consistent exoplanet atmosphere models show good agreement with Saturn’s transmission spectrum but fail to reproduce a large absorption feature near 3.4 μm, likely caused by gaseous ethane and a C-H stretching mode of an unknown aliphatic hydrocarbon. This large feature is located in one of the Spitzer Space Telescope bandpasses and could alter interpretations of transmission spectra if not properly modeled. The large signal in Saturn’s transmission spectrum suggests that transmission spectroscopy of cold, long-period gaseous exoplanets should be possible with current and future observatories. Motivated by these results, we briefly consider the feasibility of using a survey to search for and characterize cold exoplanets that are analogous to Jupiter and Saturn utilizing a target-of-opportunity approach.

  19. The action spectrum for vitamin D3: initial skin reaction and prolonged exposure.

    PubMed

    van Dijk, Arjan; den Outer, Peter; van Kranen, Henk; Slaper, Harry

    2016-07-01

    Vitamin D3 photosynthesis in the skin is formulated as a set of reaction equations, including side-reactions to lumisterol, tachysterol and toxisterols, and the accompanying reverse reactions, isomerisation of previtamin D3 to vitamin D3 and photodegradation of vitamin D3. The solution of this set is given for the stationary irradiance spectrum. The effective action spectrum for the instantaneous vitamin D3 production changes shape as a function of exposure, and therefore, no single action spectrum can be used. We assessed the action spectrum for unexposed skin and for skin that has been exposed to 7.5 Standard Erythemal Doses (SED). We constructed two new estimates: (1) the RIVM action spectrum, based on absorption spectra, quantum yields and skin transmission spectra, and (2) the modified QUT action spectrum, which is adjusted for self-absorption and skin transmission. For previously unexposed skin, the modified QUT action spectrum gives a qualitatively similar, but larger estimate than the RIVM action spectrum. We have not been able to solve the lack of quantitative agreement between the vitamin D production estimates from the three action spectrum estimates (RIVM, modified QUT and CIE). All new action spectra have stronger emphasis on the short wavelengths than the CIE action spectrum. We showed that, for wavelengths larger than 300 nm, the bandwidth that was used in the experiment that formed the basis of the CIE action spectrum, gives a red-shift of about 1 nm. Generally, with the formation of previtamin D3, the return reaction to provitamin D3 limits the production of vitamin D3. After some exposure, the new action spectrum has negative values for the longer wavelengths in the UVB. For the RIVM action spectrum, this happens after 7.5 SED, for the modified QUT action spectrum already after 1.25 SED, and after 7.5 SED the net production rate is largely cancelled. Thus prolonged exposure of previously unexposed skin saturates vitamin D3 formation. For maximum

  20. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  1. Comparison of performance capabilities of spread spectrum coherent and direct detection CO2 DIAL systems

    NASA Astrophysics Data System (ADS)

    Hasson, Victor H.; Kovacs, Mark A.

    2002-02-01

    This paper compares the performance of a conventional direct detection CO2 Differential Absorption Lidar (DIAL) system with the coherent spread spectrum approach developed and patented by Textron. The analysis shows that the coherent approach is far superior in terms of maximum attainable standoff range at a specified transmitter average power and substantially reduced system power and associated size and weight at a predetermined range. The requirements on local oscillator stability are fairly relaxed and the spread spectrum/coherent DIAL concept is fairly easy to implement. Some comparative validation data are provided.

  2. Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-09-15

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  3. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  4. Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Parinaz; Soltani-Vala, Ali; Barvestani, Jamal

    2016-06-01

    In this paper, the influence of impurity parameters on the electron energy spectrum and absorption coefficients in a parabolic quantum dot and in the presence of Rashba spin-orbit interaction subjected to a perpendicular magnetic field is studied. The impurity potential is approximated by a Gaussian form. We have shown that in the both cases of a repulsive and attractive Gaussian impurity, the absorption coefficients are strongly affected by the decay length. These coefficients show blue (red) shift as the decay length of repulsive (attractive) impurity is increased. The dependence of the absorption coefficients on the impurity position is also examined for different polarizations. Our results show that the absorption coefficient has local maximum (minimum) for a given value of impurity position for Y-polarized (X-polarized) light.

  5. Autism Spectrum Disorder (ASD): Related Topics

    MedlinePlus

    ... Facebook Tweet Share Compartir Q: Do vaccines cause autism spectrum disorder (ASD)? A: Many studies that have looked at whether there is a relationship between vaccines and autism spectrum disorder (ASD). To date, the studies continue to show ...

  6. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  7. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  8. The Wordpath Show.

    ERIC Educational Resources Information Center

    Anderton, Alice

    The Intertribal Wordpath Society is a nonprofit educational corporation formed to promote the teaching, status, awareness, and use of Oklahoma Indian languages. The Society produces "Wordpath," a weekly 30-minute public access television show about Oklahoma Indian languages and the people who are teaching and preserving them. The show aims to…

  9. Full wave effects on the lower hybrid wave spectrum and driven current profile in tokamak plasmas

    SciTech Connect

    Shiraiwa, S.; Ko, J.; Meneghini, O.; Parker, R.; Schmidt, A. E.; Greenwald, M.; Hubbard, A. E.; Hughes, J.; Ma, Y.; Podpaly, Y.; Rice, J. E.; Wallace, G.; Wolfe, S. M.; C-Mod Group, Alcator; Scott, S.; Wilson, J. R.

    2011-08-15

    A numerical modeling of current profile modification by lower hybrid current drive (LHCD) using a fullwave/Fokker-Planck simulation code is presented. A MHD stable LHCD discharge on Alcator C-Mod was analyzed, and the current profile from full wave simulations was found to show better agreement with the experiment than a ray-tracing code. Comparison of full wave and ray-tracing simulation shows that, although ray-tracing can reproduce the stochastic wave spectrum broadening, the full wave calculation predicts even wider spectrum broadening, and the wave spectrum fills all of the kinematically allowed domain. This is the first demonstration of LHCD current profile modeling using a full wave simulation code in a multi-pass absorption regime, showing the clear impact of full wave effects on the LHCD driven current profile.

  10. Self-absorption of tritium betas in metal tritide particles.

    PubMed

    Kropf, R F; Wang, Y; Cheng, Y S

    1998-10-01

    Inhaling metal tritide particles is a potential occupational hazard. The radiation dose to tissue from tritide particles depends on their solubility and retention in the body. In each tritide particle, a portion of the beta particles from decay of tritium is absorbed by the metal matrix and therefore cannot contribute to absorbed radiation dose to tissue. A theoretical model for estimating the self-absorption of tritium betas in spherical metal tritide particles is presented. Numerical calculations are made with this method for titanium, zirconium, and erbium particles from 0.5 to 50 microm in diameter. The tritium spectrum is divided into energy groups to facilitate estimation of the energy that escapes the particle for dose calculations. Our results show considerable absorption of beta particles and their energy, even for respirable particles smaller than 5 microm. Limited experimental data of self-absorption for titanium and zirconium tritides supported the theoretical calculation. It is concluded that the self-absorption factors should be required for counting tritide particle samples as well as for estimating absorbed radiation dose to tissue. PMID:9753363

  11. Absorption of ac fields in amorphous indium-oxide films

    SciTech Connect

    Ovadyahu, Z.

    2014-08-20

    Absorption data from applied ac fields in Anderson-localized amorphous indium-oxide (In{sub x}O) films are shown to be frequency and disorder dependent. The absorption shows a roll-off at a frequency which is much lower than the electron-electron scattering rate of the material when it is in the diffusive regime. This is interpreted as evidence for discreteness of the energy spectrum of the deeply localized regime. This is consistent with recent many-body localization scenarios. As the metal-insulator transition is approached, the absorption shifts to higher frequencies. Comparing with the previously obtained results on the crystalline version of indium-oxide (In{sub 2}O{sub 3−x}) implies a considerably higher inelastic electron-phonon scattering rate in the amorphous material. The range over which the absorption versus frequency decreases may indicate that a wide distribution of localization length is a common feature in these systems.

  12. Optical absorption of dilute nitride alloys using self-consistent Green's function method

    NASA Astrophysics Data System (ADS)

    Seifikar, Masoud; O'Reilly, Eoin P.; Fahy, Stephen

    2014-01-01

    We have calculated the optical absorption for InGaNAs and GaNSb using the band anticrossing (BAC) model and a self-consistent Green's function (SCGF) method. In the BAC model, we include the interaction of isolated and pair N levels with the host matrix conduction and valence bands. In the SCGF approach, we include a full distribution of N states, with non-parabolic conduction and light-hole bands, and parabolic heavy-hole and spin-split-off bands. The comparison with experiments shows that the first model accounts for many features of the absorption spectrum in InGaNAs; including the full distribution of N states improves this agreement. Our calculated absorption spectra for GaNSb alloys predict the band edges correctly but show more features than are seen experimentally. This suggests the presence of more disorder in GaNSb alloys in comparison with InGaNAs.

  13. Effects of backlight structure on absorption experiments

    SciTech Connect

    Iglesias, C A

    2004-11-08

    The impact of spectral details in the backlight of absorption spectroscopy experiments is considered. It is shown that experimentally unresolved structure in the backlight spectrum can introduce significant errors in the inferred transmission. Furthermore, it is shown that a valuable experimental procedure previously used to test the accuracy of the data fails to reveal these errors.

  14. The spatio-temporal spectrum of turbulent flows.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2015-12-01

    Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711

  15. Vibrational structure of luminiscence spectrum of Cr3+ in MgAl2O4

    NASA Astrophysics Data System (ADS)

    Czaja, M.; Mazurak, Z.

    1993-07-01

    The optical absorption and luminescence spectra of MgAl2O4:Cr3+ natural spinel (from Ural) have been measured at 77 K and 293 K. The luminescent emission from 4 T 2 g , 2 E g covers wide region of 600 750 nm. The emission spectrum at 77 K shows a very rich vibrational structure which can be mainly explained through the vibrational modes of the oxygen octahedron.

  16. Evidence for Active Galactic Nucleus Feedback in the Broad Absorption Lines and Reddening of Mrk 231

    NASA Astrophysics Data System (ADS)

    Leighly, Karen M.; Terndrup, Donald M.; Baron, Eddie; Lucy, Adrian B.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-01

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ~100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  17. A Holographic Road Show.

    ERIC Educational Resources Information Center

    Kirkpatrick, Larry D.; Rugheimer, Mac

    1979-01-01

    Describes the viewing sessions and the holograms of a holographic road show. The traveling exhibits, believed to stimulate interest in physics, include a wide variety of holograms and demonstrate several physical principles. (GA)

  18. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  19. [The spectrum characteristics of an invasion plant: Eupatorium adenophorum Spreng].

    PubMed

    Chen, Jun; Quan, Wen-ting; Zhou, Guan-hua; Wen, Zhen-he

    2010-07-01

    Eupatorium adenophorum Spreng. (EAS) is a toxic invasion plant and has caused significant economic and environmental impacts in China. The EAS has the characteristics of widely distributing and quickly spreading. The traditional detecting and supervising methods become invalid when applied for managing the spatial distribution of EAS. Based on the analyzing results of the spectrum features of EAS, the present paper tried to structure the identifying models by remote sensing. The main objective of this paper is to develop an available method for detecting and mapping the spatial distribution of EAS. The study shows that the spectrum of EAS has two reflecting peaks and one absorbing trough. The corresponding wavelengths of those peaks are 560, 730 and 674 nm, respectively. The absorption characteristics of EAS at 647 nm are that the absorbing depth is 0.504 3-1.910 3, the absorbing width is 13.778 9-17.251 8 nm and the area at the left absorption band is greater than the right, and the corresponding area ratio of left to right is 1.771 9-2.444 1. The white flowers of EAS make the reflectance higher at visible bands, and the first-order derivatives of EAS spectral show a wave peak at 420 nm. Compared with the spectral feature of other representative materials, the absorbing characteristics at 647 nm, such as absorption width and absorption depth, and the peak at 420 nm of derivatives spectral are special features of EAS spectral, which can be used as remotely sensed parameters for detecting and mapping the EAS at florescence. PMID:20827985

  20. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  1. Energy spectrum of C60 fullerene

    NASA Astrophysics Data System (ADS)

    Mironov, G. I.; Murzashev, A. I.

    2011-11-01

    The energy spectrum of the C60 fullerene has been calculated in terms of the Shubin-Vonsovskii-Hubbard model using an approximation of static fluctuations. Based on the spectrum, the optical absorption bands at 4.84, 5.88, and 6.30 eV observed experimentally have been successfully explained. It has been concluded that the model used is applicable for the calculation of the energy spectrum and the energy properties of other nanosystems, such as fullerenes of higher orders, carbon nanotubes, and grafen planes.

  2. Show What You Know

    ERIC Educational Resources Information Center

    Eccleston, Jeff

    2007-01-01

    Big things come in small packages. This saying came to the mind of the author after he created a simple math review activity for his fourth grade students. Though simple, it has proven to be extremely advantageous in reinforcing math concepts. He uses this activity, which he calls "Show What You Know," often. This activity provides the perfect…

  3. The Ozone Show.

    ERIC Educational Resources Information Center

    Mathieu, Aaron

    2000-01-01

    Uses a talk show activity for a final assessment tool for students to debate about the ozone hole. Students are assessed on five areas: (1) cooperative learning; (2) the written component; (3) content; (4) self-evaluation; and (5) peer evaluation. (SAH)

  4. Honored Teacher Shows Commitment.

    ERIC Educational Resources Information Center

    Ratte, Kathy

    1987-01-01

    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  5. Talk Show Science.

    ERIC Educational Resources Information Center

    Moore, Mitzi Ruth

    1992-01-01

    Proposes having students perform skits in which they play the roles of the science concepts they are trying to understand. Provides the dialog for a skit in which hot and cold gas molecules are interviewed on a talk show to study how these properties affect wind, rain, and other weather phenomena. (MDH)

  6. Stage a Water Show

    ERIC Educational Resources Information Center

    Frasier, Debra

    2008-01-01

    In the author's book titled "The Incredible Water Show," the characters from "Miss Alaineus: A Vocabulary Disaster" used an ocean of information to stage an inventive performance about the water cycle. In this article, the author relates how she turned the story into hands-on science teaching for real-life fifth-grade students. The author also…

  7. Showing What They Know

    ERIC Educational Resources Information Center

    Cech, Scott J.

    2008-01-01

    Having students show their skills in three dimensions, known as performance-based assessment, dates back at least to Socrates. Individual schools such as Barrington High School--located just outside of Providence--have been requiring students to actively demonstrate their knowledge for years. The Rhode Island's high school graduating class became…

  8. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core–shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron–electron Coulomb repulsion is neglected.

  9. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected. PMID:27102909

  10. Infra-red absorption lines by molecules in grain mantles

    NASA Astrophysics Data System (ADS)

    Hagen, W.; Allamandola, L. J.; Greenberg, J. M.

    1980-06-01

    The laboratory spectrum of a solid mixture of H2O, CO, CH3OH, and NH3 at a temperature of 10 K reproduces the shape and peak positions of interstellar features. It is shown that the broad absorption features evident in the MIR spectra of some astronomical objects associated with interstellar dust can be explained by absorptions of molecules in grain mantles.

  11. Two-dimensional probe absorption in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Ningwu; Zhang, Yan; Kang, Chengxian; Wang, Zhiping; Yu, Benli

    2016-07-01

    We investigate the two-dimensional (2D) probe absorption in coupled quantum dots. It is found that, due to the position-dependent quantum interference effect, the 2D optical absorption spectrum can be easily controlled via adjusting the system parameters. Thus, our scheme may provide some technological applications in solid-state quantum communication.

  12. A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Christensen, L.; Fynbo, J. P. U.; Prochaska, J. X.; Jakobsson, P.

    2011-02-01

    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35 < z < 6.7 observed with low-resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of {approx}300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Ly{alpha} line to {approx}5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Ly{alpha} line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine-structure lines when dividing the sample into bursts observed within 2 hr from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high- or low-prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong Ca II and Mg II absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine-structure lines, while metal absorption lines are weaker.

  13. A High Signal-to-noise Ratio Composite Spectrum of Gamma-ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Fynbo, J. P. U.; Prochaska, J. X.; Thöne, C. C.; de Ugarte Postigo, A.; Jakobsson, P.

    2011-02-01

    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35 < z < 6.7 observed with low-resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 Å in the rest frame and has a mean signal-to-noise ratio of 150 per 1 Å pixel and reaches a maximum of ~300 in the range 2500-3500 Å. Equivalent widths are measured from metal absorption lines from the Lyα line to ~5200 Å, and associated metal and hydrogen lines are identified between the Lyman break and Lyα line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine-structure lines when dividing the sample into bursts observed within 2 hr from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high- or low-prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong Ca II and Mg II absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine-structure lines, while metal absorption lines are weaker.

  14. SPECTRAL POLARIZATION OF THE REDSHIFTED 21 cm ABSORPTION LINE TOWARD 3C 286

    SciTech Connect

    Wolfe, Arthur M.; Jorgenson, Regina A.; Robishaw, Timothy; Heiles, Carl; Xavier Prochaska, J. E-mail: raj@ast.cam.ac.uk E-mail: heiles@astro.berkeley.edu

    2011-05-20

    A reanalysis of the Stokes-parameter spectra obtained of the z = 0.692 21 cm absorption line toward 3C 286 shows that our original claimed detection of Zeeman splitting by a line-of-sight magnetic field, B{sub los} = 87 {mu}G, is incorrect. Because of an insidious software error, what we reported as Stokes V is actually Stokes U: the revised Stokes V spectrum indicates a 3{sigma} upper limit of B{sub los}< 17 {mu}G. The correct analysis reveals an absorption feature in fractional polarization that is offset in velocity from the Stokes I spectrum by -1.9 km s{sup -1}. The polarization position-angle spectrum shows a dip that is also significantly offset from the Stokes I feature, but at a velocity that differs slightly from the absorption feature in fractional polarization. We model the absorption feature with three velocity components against the core-jet structure of 3C 286. Our {chi}{sup 2} minimization fitting results in components with differing (1) ratios of H I column density to spin temperature, (2) velocity centroids, and (3) velocity dispersions. The change in polarization position angle with frequency implies incomplete coverage of the background jet source by the absorber. It also implies a spatial variation of the polarization position angle across the jet source, which is observed at frequencies higher than the 839.4 MHz absorption frequency. The multi-component structure of the gas is best understood in terms of components with spatial scales of {approx}100 pc comprised of hundreds of low-temperature (T {<=} 200 K) clouds with linear dimensions of <<100 pc. We conclude that previous attempts to model the foreground gas with a single uniform cloud are incorrect.

  15. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  16. Autism Spectrum Disorder

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Autism Spectrum Disorder Information Page Condensed from Autism Spectrum ... en Español Additional resources from MedlinePlus What is Autism Spectrum Disorder? Autistic disorder (sometimes called autism or ...

  17. Taking in a Show.

    PubMed

    Boden, Timothy W

    2016-01-01

    Many medical practices have cut back on education and staff development expenses, especially those costs associated with conventions and conferences. But there are hard-to-value returns on your investment in these live events--beyond the obvious benefits of acquired knowledge and skills. Major vendors still exhibit their services and wares at many events, and the exhibit hall is a treasure-house of information and resources for the savvy physician or administrator. Make and stick to a purposeful plan to exploit the trade show. You can compare products, gain new insights and ideas, and even negotiate better deals with representatives anxious to realize returns on their exhibition investments. PMID:27249887

  18. Identification and Characterization of Visible Absorption Components in Aqueous Methylglyoxal-Ammonium Sulfate Mixtures

    NASA Astrophysics Data System (ADS)

    McGivern, W. S.; Allison, T. C.; Radney, J. G.; Zangmeister, C. D.

    2014-12-01

    The aqueous reaction of methylglyoxal (MG) with ammonium sulfate has been suggested as a source of atmospheric ``brown carbon.'' We have utilized high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy and tandem mass spectrometry to study the products of this reaction at high concentrations. The overall product spectrum shows a large number of distinct components; however, the visible absorption from this mixture is derived a very small number of components. The largest contributor is an imine-substituted (C=N-H) product of aldol condensation/facile dehydration reaction between the parent MG and a hydrated product of the MG + ammonia reaction. The asymmetric nature of this compound relative to the aldol condensation of two MG results in a sufficiently large redshift of the UV absorption spectrum that absorption of visible radiation can occur in the long-wavelength tail. The simplicity of the imine products is a result of a strong bias toward ketimine products due to the extensive hydration of the aldehydic moiety in the parent in aqueous solution. In addition, a strong pH dependence of the absorption cross section was observed with significantly greater absorption under more basic conditions. We have performed time-dependent density functional theory calculations to evaluate the absorption spectra of all of the possible condensation products and their respective ions, and the results are consistent with the experimental observations. We have also observed smaller concentrations of other condensation products of the imine-substituted parent species that do not contribute significantly to the visible absorption but have not been previously discussed.

  19. Broad spectrum bioactive sunscreens.

    PubMed

    Velasco, Maria Valéria Robles; Sarruf, Fernanda Daud; Salgado-Santos, Idalina Maria Nunes; Haroutiounian-Filho, Carlos Alberto; Kaneko, Telma Mary; Baby, André Rolim

    2008-11-01

    The development of sunscreens containing reduced concentration of chemical UV filters, even though, possessing broad spectrum effectiveness with the use of natural raw materials that improve and infer UV absorption is of great interest. Due to the structural similarities between polyphenolic compounds and organic UV filters, they might exert photoprotection activity. The objective of the present research work was to develop bioactive sunscreen delivery systems containing rutin, Passiflora incarnata L. and Plantago lanceolata extracts associated or not with organic and inorganic UV filters. UV transmission of the sunscreen delivery system films was performed by using diffuse transmittance measurements coupling to an integrating sphere. In vitro photoprotection efficacy was evaluated according to the following parameters: estimated sun protection factor (SPF); Boot's Star Rating category; UVA/UVB ratio; and critical wavelength (lambda(c)). Sunscreen delivery systems obtained SPF values ranging from 0.972+/-0.004 to 28.064+/-2.429 and bioactive compounds interacted with the UV filters positive and negatively. This behavior may be attributed to: the composition of the delivery system; the presence of inorganic UV filter and quantitative composition of the organic UV filters; and the phytochemical composition of the P. incarnata L. and P. lanceolata extracts. Among all associations of bioactive compounds and UV filters, we found that the broad spectrum sunscreen was accomplished when 1.68% (w/w) P. incarnata L. dry extract was in the presence of 7.0% (w/w) ethylhexyl methoxycinnamate, 2.0% (w/w) benzophenone-3 and 2.0% (w/w) TiO(2). It was demonstrated that this association generated estimated SPF of 20.072+/-0.906 and it has improved the protective defense against UVA radiation accompanying augmentation of the UVA/UVB ratio from 0.49 to 0.52 and lambda(c) from 364 to 368.6nm. PMID:18662760

  20. Absorption spectra of CdSe-ZnS core-shell quantum dots at high photon energies: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amlan; Ghosh, Sandip

    2014-11-01

    Absorption spectra of CdSe-ZnS core-shell quantum dot (QD) ensembles, with average core diameters ranging from 2.6 nm to 7.2 nm have been obtained using both transmission and photoluminescence excitation measurements. In agreement with previous reports, the absorption coefficient at energies ≃1 eV above the effective bandgap increases monotonically as in bulk solids. A simple effective-mass spherical core-shell potential model cannot explain the relatively high absorption at higher energies. The calculated electron and hole radial envelope wavefunctions show asymmetry due to the core-shell structure. It leads to normally symmetry-disallowed transitions acquiring a weak oscillator strength, with their number and strength increasing with energy. A phenomenological model that invokes normally disallowed transitions in general is shown to reproduce the absorption spectrum at higher energies quite well. The oscillator strength scaling factor for such transitions increases with decrease in QD size, consistent with expectations.

  1. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  2. Spectrum formation in superluminous supernovae (Type I)

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Sullivan, M.; Pian, E.; Greiner, J.; Kann, D. A.

    2016-06-01

    The near-maximum spectra of most superluminous supernovae (SLSNe) that are not dominated by interaction with a H-rich circum-stellar medium (SLSN-I) are characterized by a blue spectral peak and a series of absorption lines which have been identified as O II. SN 2011kl, associated with the ultra-long gamma-ray burst GRB111209A, also had a blue peak but a featureless optical/ultraviolet (UV) spectrum. Radiation transport methods are used to show that the spectra (not including SN 2007bi, which has a redder spectrum at peak, like ordinary SNe Ic) can be explained by a rather steep density distribution of the ejecta, whose composition appears to be typical of carbon-oxygen cores of massive stars which can have low metal content. If the photospheric velocity is ˜10 000-15 000 km s-1, several lines form in the UV. O II lines, however, arise from very highly excited lower levels, which require significant departures from local thermodynamic equilibrium to be populated. These SLSNe are not thought to be powered primarily by 56Ni decay. An appealing scenario is that they are energized by X-rays from the shock driven by a magnetar wind into the SN ejecta. The apparent lack of evolution of line velocity with time that characterizes SLSNe up to about maximum is another argument in favour of the magnetar scenario. The smooth UV continuum of SN 2011kl requires higher ejecta velocities (˜20 000 km s-1): line blanketing leads to an almost featureless spectrum. Helium is observed in some SLSNe after maximum. The high-ionization near-maximum implies that both He and H may be present but not observed at early times. The spectroscopic classification of SLSNe should probably reflect that of SNe Ib/c. Extensive time coverage is required for an accurate classification.

  3. Not a "reality" show.

    PubMed

    Wrong, Terence; Baumgart, Erica

    2013-01-01

    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show. PMID:23631336

  4. Optical absorption signature of a self-assembled dye monolayer on graphene

    PubMed Central

    Sghaier, Tessnim; Le Liepvre, Sylvain; Fiorini, Céline; Douillard, Ludovic

    2016-01-01

    Summary A well-organized monolayer of alkylated perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all oriented parallel to the substrate. The maximum absorption is consistent with the measured surface density of molecules and their absorption cross section. The spectrum presents mainly a large red-shift of the absorption line compared with the free molecules dispersed in solution, whereas the relative strengths of the vibronic structures are preserved. These changes are attributed to non-resonant interactions with the graphene layer and the neighbouring molecules. PMID:27547603

  5. Analytical algorithm to determine the spherical particle size distribution from spectral absorption measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Qi; Li, Jiangnan

    2015-11-01

    A modified anomalous diffraction theory (MADT) by including the effects of reflection and refraction is proposed. With respect to MADT, an analytical technique for retrieval of spherical particle size distribution (PSD), based on absorption was developed. Also, an MADT transform pair between the size distribution and the absorption spectrum was constructed. This provides a new tool to study the related particle optical properties. By Gaver-Stehfest inversion method, the derived complex-inversion formula is finally converted into the new real-inversion formula so that the measured absorption data can be applied directly. The inversion experiments show that the use of extended precision instead of double precision arithmetic can produce more reliable results at the expense of CPU time. The effects of complex refractive index on retrieval of PSD were examined. Also it was found that an appropriate reduction of the truncation number with the smoothing technique improved the anti-noise ability for the algorithm.

  6. Variability of light absorption by aquatic particles in the near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Tassan, Stelvio; Ferrari, Giovanni M.

    2003-08-01

    We have measured the light absorption of a set of particle suspensions of varying nature (pure minerals, particulate standards, aquatic particles) using a double-beam spectrophotometer with a 15-cm-diameter integrating sphere. The sample was located inside the sphere so as to minimize the effect of light scattering by the particles. The results obtained showed highly variable absorption in the near-IR region of the wavelength spectrum. The same particle samples were deposited on glass-fiber filters, and their absorption was measured by the transmittance-reflectance method, based on a theoretical model that corrects for the effect of light scattering. The good agreement found between the results of the measurements carried out inside the sphere and by the transmittance-reflectance method confirms the validity of the scattering correction included in the above method.

  7. Public medical shows.

    PubMed

    Walusinski, Olivier

    2014-01-01

    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre. PMID:25273491

  8. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  9. The geoid spectrum from altimetry

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1978-01-01

    Satellite altimetry information from the world's major oceans was analyzed to arrive at a geoid power spectrum. Using the equivalent of about 7 revolutions of data (mostly from GEOS-3) the power spectrum of the sea surface generally follows the expected values from Kaula's rule applied to the geoid. Analysis of overlapping altimetry arcs (and oceanographic data) shows that the surface spectrum is dominated by the geoid to about 500 cycles (40 km half wavelength) but that sea state departures are significant starting at about 250 cycles (80 km). Estimates of geopotential variances from a derived (smooth) geoid spectrum show significantly less power than Kaula's rule to about 60 cycles, but somewhat more from there to about 400 cycles. At less than 40 km half wavelength, the total power in the marine geoid may be negligible.

  10. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2014-09-01

    We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.

  11. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T. W.; Thatcher, T. L.

    2012-02-01

    Spectroscopic analysis shows that 115 residential wood smoke-dominated particulate matter samples absorb light with strong spectral selectivity, consistent with prior work that has demonstrated that organic carbon (OC), in addition to black carbon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. Apportionment of light absorption yields the absorption Ångström exponent of the light absorbing OC in these samples, which ranges from 3.0 to 7.4 and averages 5.0, and indicates that OC and BC, respectively, would account for 14% and 86% of solar radiation absorbed by the wood smoke in the atmosphere (integrated over the solar spectrum from 300 to 2500 nm). OC would contribute 49% of the wood smoke particulate matter absorption of ultraviolet solar radiation at wavelengths below 400 nm. These results illustrate that BC is the dominant light absorbing particulate matter species in atmospheres burdened with residential wood smoke and OC absorption is secondary but not insignificant. Further, since biomass combustion generates a major portion of atmospheric particulate matter globally, these results suggest that OC absorption should be included when particulate matter effects on the radiative forcing of climate are considered, and that OC absorption may affect the ultraviolet actinic flux and thus tropospheric photochemistry.

  12. The Great Cometary Show

    NASA Astrophysics Data System (ADS)

    2007-01-01

    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  13. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  14. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  15. Effects of thermal motion on electromagnetically induced absorption

    SciTech Connect

    Tilchin, E.; Wilson-Gordon, A. D.; Firstenberg, O.

    2011-05-15

    We describe the effect of thermal motion and buffer-gas collisions on a four-level closed N system interacting with strong pump(s) and a weak probe. This is the simplest system that experiences electromagnetically induced absorption (EIA) due to transfer of coherence via spontaneous emission from the excited state to the ground state. We investigate the influence of Doppler broadening, velocity-changing collisions (VCC), and phase-changing collisions (PCC) with a buffer gas on the EIA spectrum of optically active atoms. In addition to exact expressions, we present an approximate solution for the probe absorption spectrum, which provides physical insight into the behavior of the EIA peak due to VCC, PCC, and the wave-vector difference between the pump and probe beams. VCC are shown to produce a wide pedestal at the base of the EIA peak, which is scarcely affected by the pump-probe angular deviation, whereas the sharp central EIA peak becomes weaker and broader due to the residual Doppler-Dicke effect. Using diffusionlike equations for the atomic coherences and populations, we construct a spatial-frequency filter for a spatially structured probe beam and show that Ramsey narrowing of the EIA peak is obtained for beams of finite width.

  16. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    PubMed

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  17. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  18. The marine diversity spectrum.

    PubMed

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-07-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the 'diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0.5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0.5 and -0.1. Slopes of -0.5 and -0.1 represent markedly different communities: a slope of -0.5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of -0.1 depicts a 1.6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour, dispersal, and life history on

  19. Cathodoluminescence Spectrum Imaging Software

    2011-04-07

    The software developed for spectrum imaging is applied to the analysis of the spectrum series generated by our cathodoluminescence instrumentation. This software provides advanced processing capabilities s such: reconstruction of photon intensity (resolved in energy) and photon energy maps, extraction of the spectrum from selected areas, quantitative imaging mode, pixel-to-pixel correlation spectrum line scans, ASCII, output, filling routines, drift correction, etc.

  20. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  1. Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1993-01-01

    Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.

  2. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1absorption (FW20) lies in the range 63 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1

  3. A study of a high resolution IUE spectrum of AM Canum Venaticorum

    NASA Technical Reports Server (NTRS)

    Solheim, J.-E.; Sion, E. M.

    1994-01-01

    We have obtained the first high resolution IUE spectrum of the helium-rich, cataclysmic variable star AM CVn. The spectrum is greatly underexposed, but we can still detect both wide and narrow line profiles. We report broad, shortward-shifted, P-Cygni-like absorption and in some cases emission lines in the far UV high ionization resonance lines of C, N, O, and Si, but the profiles are considerably disk/boundary layer outflows, absorption disk continuum light in H-rich CVs. The highest ionizations show evidence of a narrow jet or conical flow. For other, lower ionized lines, we find some evidence of a stellar origin. The broad He II (lambda 1640 A) absorption profile with blue shifted emission core has a remarkably similar overall structure to the He II (lambda 1640 A) broad absorption trough in the IUE spectrum of the prototypical cool DO white dwarf HZ 21. The sharp absorption lines seem most convincingly in the resonance doublets of N V (lambda 1238 A, lambda 1242 A) and C IV (lambda 1548 A, lambda 1550 A) and in He II (lambda 1640 A) exhibit a precise velocity coincidence. These sharp features are almost certainly due to circumbinary matter because they are obviously unaffected by the rapid orbital motion (or rapid stellar rotation) in this short period system during the long (9.3 hour) IUE echelle exposure. Our observations support an evolution through shell episodes of a close binary system which ends up with an expanding envelope as seen for HZ 21, and suggests one possible evolutionary channel for production of DOs (DBs).

  4. Temperature dependence of the absorption edge of vitreous silica

    NASA Technical Reports Server (NTRS)

    Bates, C. W., Jr.

    1976-01-01

    During an investigation of the optical properties of high-purity vitreous silica (fused quartz), which is being developed by NASA as a reflective and ablative heat shield, some interesting properties of theoretical and experimental nature have become apparent which otherwise may have remained unnoticed. Of particular interest for the NASA application is the shift of the absorption edge toward longer wavelengths with increasing temperature. The results of studies of this shift and of the spectral dependence of the absorption edge are summarized in the present paper. Plots of the absorption edge and the absorption spectrum of fused quartz vs temperature are given and discussed.

  5. THE COMPLEX X-RAY SPECTRUM OF THE SEFYERT 1.5 SOURCE NGC 6860

    SciTech Connect

    Winter, Lisa M.; Mushotzky, Richard

    2010-08-10

    The X-ray spectrum of the Seyfert 1.5 source NGC 6860 is among the most complex of the sources detected in the Swift Burst Alert Telescope all-sky survey. A short XMM-Newton follow-up observation of the source revealed a flat spectrum both above and below 2 keV. To uncover the complexity of the source, in this paper we analyze both a 40 ks Suzaku and a 100 ks XMM-Newton observation of NGC 6860. While the spectral state of the source changed between the newer observations presented here and the earlier short XMM-Newton spectrum-showing a higher flux and a steeper power-law component-the spectrum of NGC 6860 is still complex with clearly detected warm absorption signatures. We find that a two-component warm ionized absorber is present in the soft spectrum, with column densities of about 10{sup 20} and 10{sup 21} cm{sup -2}, ionization parameters of {xi} = 180 and 45 erg s{sup -1}, and outflow velocities for each component in the range of {approx}0-300 km s{sup -1}. Additionally, in the hard spectrum we find a broad ({approx}11, 000 km s{sup -1}) Fe K{alpha} emission line, redshifted by {approx}2800 km s{sup -1}.

  6. Representation and transformation of Langley's map of the infrared solar spectrum

    NASA Astrophysics Data System (ADS)

    Loettgers, Andrea

    In 1900, after 18 years of research, the American astrophysicist Samuel Pierpont Langley published the final report of his investigations in the infrared region of the solar spectrum. (See Samuel P. Langley: Annals of the Astrophysical Observatory of the Smithsonian Institution, Vol. 1, Washington: Goverment Printing Office, 1900.) In this report one finds three different types of maps of the infrared region, extending from 1.1 mu-m to 5.3 mu-m and showing the positions of 750 absorption lines: a bolograph, a line spectrum and a normal spectrum. (The bolograph, the line spectrum and the normal spectrum are accessible as pl. XX and XXIV at http://adsbit.harvard.edu/books/saoann/.) Looking at these three distinct forms of representation raises the questions: Why did Langley decide to use three representations for the visualization of his results? How are these distinct representations connected? An analysis of the first question will provide further insight into the ``connection between instruments, practices, and the visual'', into the recording, evaluation and processing of the data and, furthermore, into the historical and disciplinary contexts. The prevailing trend toward the automation of measuring and registration processes, and the associated claim of `mechanical objectivity', together with standards concerning precision and completeness set by Henry Rowland's photographic measurements in the visible part of the spectrum, turn out to be the strongest elements in the development of the different forms of representation and their respective transformations.

  7. Absorption of different lead compounds

    PubMed Central

    Barltrop, D.; Meek, F.

    1975-01-01

    A rapid method for the determination of relative absorption of dietary lead by rats is described. The influence of age, weight and dose rate has been determined and using standard conditions the tissue lead content of blood, kidney and femur are significantly correlated with each other and are a function of ingested lead. Eight lead compounds were evaluated using this technique and the findings related to lead acetate as a reference compound. Of the inorganic preparations studied, lead carbonate (basic) and metallic lead showed a twelve-fold difference in absorption, with the remaining compounds giving intermediate values. The absorption of lead from four organic compounds was determined from diets containing 7·5% corn oil added to the standard diet. Lead tallate was absorbed to the same degree as lead acetate, but lesser absorptions resulted from lead octoate, naphthenate and alsynate. The addition of corn oil to a final concentration of 7·5% of the diet enhanced the absorption of lead acetate. PMID:1208290

  8. Absorption properties of identical atoms

    SciTech Connect

    Sancho, Pedro

    2013-09-15

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions.

  9. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  10. [Spectrum diagnostic of arcjet].

    PubMed

    Zhao, Wen-Hua; Shen, Yan; Chen, Li-Ming

    2004-08-01

    Arcjet is a kind of propulsion device for mechanical operation and control of spacecraft. As its specific impulse is far greater than classical device using chemical propellant, arcjet is playing an increasing role in spacecraft propulsion. To improve our understanding of its working mechanics, the diagnostic method of arcjet is discussed and a set of spectrum diagnostic system is established in this paper. With this system, spectrum diagnostic was executed for Ar propellant at a setting value of flow rate and input current in a vacuum chamber. The result shows that the system has a high signal-to-noise ratio and the data collected can reflect the physical process objectively. Through transaction and analysis of these data, radial distribution of emission coefficient was obtained for different spectral lines, and radial distribution of temperature was also obtained through farther analysis of the emission coefficient. The result shows that under the experiment conditions of this paper, arcjet is in thermodynamic non-equilibrium state, therefore the temperatures obtained by different spectral lines are different. PMID:15766102

  11. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals

    NASA Technical Reports Server (NTRS)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.

    1981-01-01

    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  12. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  13. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  14. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly. PMID:17314975

  15. Autism Spectrum Disorder

    MedlinePlus

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a ... and pervasive developmental disorders. It is called a "spectrum" disorder because people with ASD can have a ...

  16. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... spectrum disorder (ASD) is a group of developmental disabilities that can cause significant social, communication and behavioral ... for autism spectrum disorder (ASD) and other developmental disabilities. More E-mail Your Friends "Children with autism ...

  17. Nuclear quantum effects in the structure and lineshapes of the N2 NEXAFS spectrum

    SciTech Connect

    Fatehi, Shervin; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2009-12-04

    We study the relative ability of several models of the X-ray absorption spectrum to capture the Franck-Condon structure apparent from an experiment on gaseous nitrogen. In doing so, we adopt the Born-Oppenheimer approximation and a constrained density functional theory method for computing the energies of the X-ray-excited molecule. Starting from an otherwise classical model for the spectrum, we systematically introduce more realistic physics, first by substituting the quantum mechanical nuclear radial density in the bond separation R for the classical radial density, then by adding the effect of zero-point energy and other level shifts, and finally by including explicit rovibrational quantization of both the ground and excited states. The quantization is determined exactly, using a discrete variable representation. We show that the NEXAFS spectrum can be predicted semiquantiatively within this framework. We also address the possibility of non-trivial temperature dependence in the spectrum. Finally, we show that it is possible to improve the predicted spectrum by using constrained DFT in combination with more accurate potentials.

  18. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. PMID:23299022

  19. Ultra-violet and visible absorption characterization of explosives by differential reflectometry

    NASA Astrophysics Data System (ADS)

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E.

    2013-03-01

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R2 > 0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials.

  20. Why Replacing Different Oxygens of Thymine with Sulfur Causes Distinct Absorption and Intersystem Crossing.

    PubMed

    Bai, Shuming; Barbatti, Mario

    2016-08-18

    Recent experiments replacing oxygen atoms by sulfur in thymine have revealed that absorption and intersystem crossing properties of these derivatives are strongly dependent on the position and number of the substitutions, affecting their potential performance for photodynamical therapy. Using multireference quantum chemical methods (CASPT2 and DFT/MRCI), we calculated absorption spectra and spin-orbit coupling matrix elements for thymine (Thy), 2-thiothymine (2tThy), 4-thiothymine (4tThy), and 2,4-dithiothymine (2,4dtThy), to investigate this relation between structure and photophysics. The simulations showed that a simple 4-electrons/4-orbital minimum model can explain the main experimentally observed spectral features. Moreover, the computational estimate of intersystem crossing lifetimes in this sequence of molecules revealed that the experimental value attributed to thymine in water might be underestimated by a factor 20, most probably due to an overlap of singlet/triplet absorption signals in the transient absorption spectrum. The difference between the absorptivity of 2tThy and 2tThd was also investigated, but no conclusive explanation could be found. PMID:27454198

  1. Photoadaptation in marine phytoplankton: changes in spectral absorption and excitation of chlorophyll a fluorescence

    SciTech Connect

    Neori, A.; Holm-Hansen, O.; Mitchell, B.G.; Kiefer, D.A.

    1984-10-01

    The optical properties of marine phytoplankton were examined by measuring the absorption spectra and fluorescence excitation spectra of chlorophyll a for natural marine particles collected on glass fiber filters. Samples were collected at different depths from stations in temperate waters of the Southern California Bight and in polar waters of the Scotia and Ross Seas. At all stations, phytoplankton fluorescence excitation and absorption spectra changed systematically with depth and vertical stability of the water columns. In samples from deeper waters, both absorption and chlorophyll a fluorescence excitation spectra showed enhancement in the blue-to-green portion of the spectrum (470-560 nm) relative to that at 440 nm. Since similar changes in absorption and excitation were induced by incubating sea water samples at different light intensities, the changes in optical properties can be attributed to photoadaptation of the phytoplankton. The data indicate that in the natural populations studied, shade adaptation caused increases in the concentration of photosynthetic accessory pigments relative to chlorophyll a. These changes in cellular pigment composition were detectable within less than 1 day. Comparisons of absorption spectra with fluorescence excitation spectra indicate an apparent increase in the efficiency of sensitization of chlorophyll a fluorescence in the blue and green spectral regions for low light populations. 30 references, 6 figures.

  2. The Amazing COS FUV (1320 - 1460 A) Spectrum of (lambda) Vel (K4Ib-II)

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2010-01-01

    The FUV spectrum (1320-1460 A) of the K4 lb-11 supergiant (lambda) Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously recorded in (lambda) Vel at high resolution and, in a mere 20 minutes of exposure, reveals a treasure trove of information. It shows a wide variety of strong emission lines, superposed on a bright continuum, with contributions from both atomic and molecular species. Multiple absorptions, including numerous Ni II and Fe II lines, are visible over this continuum, which is likely generated in the chromosphere of the star. Evidence of the stellar wind is seen in the P Cygni profiles of the CII lines near 1335 A and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of (alpha) Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 Iab supergiant (alpha) Ori, but minus the CO fundamental absorption bands seen in the spectrum of the latter star. However, fluoresced CO emission is present, as in the K-giant stars (alpha) Boo and (alpha) Tau (K5 III). The presence of hot plasma in the atmosphere of the star, indicated by previous GHRS observations of Si III] and C III] lines near 1900 A and FUSE observations of O VI 1032 A, is further confirmed by the detection in this COS spectrum of the Si IV UV 1 lines near 1400 A, though both lines are contaminated by overlying fluorescent H2 emission. We present the details of this spectrum, in comparison with stars of similar temperature or luminosity and discuss the implications for the structure of, and the radiative processes active in, the outer atmospheres of these stars.

  3. Broadband Transient Absorption and Two-Dimensional Electronic Spectroscopy of Methylene Blue.

    PubMed

    Dean, Jacob C; Rafiq, Shahnawaz; Oblinsky, Daniel G; Cassette, Elsa; Jumper, Chanelle C; Scholes, Gregory D

    2015-08-27

    Broadband transient absorption and two-dimensional electronic spectroscopy (2DES) studies of methylene blue in aqueous solution are reported. By isolating the coherent oscillations of the nonlinear signal amplitude and Fourier transforming with respect to the population time, we analyzed a significant number of coherences in the frequency domain and compared them with predictions of the vibronic spectrum from density function theory (DFT) calculations. We show here that such a comparison enables reliable assignments of vibrational coherences to particular vibrational modes, with their constituent combination bands and overtones also being identified via Franck–Condon analysis aided by DFT. Evaluation of the Fourier transform (FT) spectrum of transient absorption recorded to picosecond population times, in coincidence with 2D oscillation maps that disperse the FT spectrum into the additional excitation axis, is shown to be a complementary approach toward detailed coherence determination. Using the Franck–Condon overlap integrals determined from DFT calculations, we modeled 2D oscillation maps up to two vibrational quanta in the ground and excited state (six-level model), showing agreement with experiment. This semiquantitative analysis is used to interpret the geometry change upon photoexcitation as an expansion of the central sulfur/nitrogen containing ring due to the increased antibonding character in the excited state. PMID:26274093

  4. Investigations on nonlinear absorption and nonlinear refraction of a new photonic crystal using Z-scan

    NASA Astrophysics Data System (ADS)

    Shetty, T. C. S.; Sandeep, K. M.; Mascarenhas, N. P.; Dharmaprakash, S. M.

    2016-05-01

    A new photonic material, (2E)-1-(3-chlorophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCPP) was synthesized and crystallised at room temperature. The functional groups of synthesised material were confirmed using FT-IR. The third order nonlinear optical (NLO) properties were investigated using Z-scan technique with 5 ns Nd:YAG laser pulses operating at a wavelength of 532 nm. Linear absorption spectrum of DCPP crystals shows an optical transmittance window and a lower cutoff wavelength of absorption at 380 nm. The direct transition band gap energy was determined using Tauc's plot. The melting point and thermal stability of the crystal have been investigated by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). The Thermo gravimetric curve showed absence of any phase transition before melting point.

  5. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    SciTech Connect

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  6. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  7. LH wave absorption by mode conversion near ion cyclotron harmonics

    SciTech Connect

    Ko, K.; Bers, A.; Fuchs, V.

    1981-02-01

    Numerical studies of the dispersion relation near the lower-hybrid frequency in an inhomogeneous plasma (..delta.. n, ..delta.. T, ..delta.. B) show that portions of an incident lower-hybrid wave spectrum undergo successive but partial mode conversions to warm-plasma waves in the presence of ion cyclotron harmonics. Wave absorption beyond the first mode conversion occurs near an ion cyclotron harmonic where ion Landau damping is enhanced. A second-order dispersion relation numerically in good agreement with the full dispersion relation in the mode conversion region is derived using the condition par. delta D/par. delta k = 0. The mode conversion efficiency at each confluence is evaluated by solving the corresponding differential equation.

  8. The compact structure of radio-loud broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Wang, T. G.; Xie, F. G.

    2008-11-01

    We present the results of EVN+MERLIN very long baseline interferometry (VLBI) polarization observations of eight broad absorption line (BAL) quasars at 1.6 GHz, including four low-ionization BAL quasars (LoBALs) and four high-ionization BAL quasars (HiBALs) with either steep or flat spectra on Very Large Array (VLA) scales. Only one steep-spectrum source, J1122+3124, shows two-sided structure on the scale of 2 kpc. The other four steep-spectrum sources and three flat-spectrum sources display either an unresolved image or a core-jet structure on scales of less than 300 pc. In all cases, the marginally resolved core is the dominant radio component. Linear polarization in the cores has been detected in the range of a few to 10 per cent. Polarization, together with high brightness temperatures (from 2 × 109 to 5 × 1010K), suggests a synchrotron origin for the radio emission. There is no apparent difference in the radio morphologies or polarization between low-ionization and high-ionization BAL quasi-stellar objects (QSOs) or between flat- and steep-spectrum sources. We discuss the orientation of BAL QSOs with both flat and steep spectra, and consider a possible evolutionary scenario for BAL QSOs. In this scenario, BAL QSOs are probably a young population of radio sources that are compact steep spectrum or GHz peaked radio source analogues at the low end of radio power.

  9. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  10. [Influence of silver/silicon dioxide on infrared absorption spectroscopy of sodium nitrate].

    PubMed

    Yang, Shi-Ling; Yue, Li; Jia, Zhi-Jun

    2014-09-01

    Quickly detecting of ocean nutrient was one important task in marine pollution monitoring. We discovered the application of surface-enhanced infrared absorption spectroscopy in the detection of ocean nutrient through researching the evaporation of sodium nitrate solution. The silicon dioxide (SiO2) with highly dispersion was prepared by Stober method, The silver/silica (Ag/SiO2) composite materials were prepared by mixing ammonia solution and silicon dioxide aqueous solution. Three kinds of composite materials with different surface morphology were fabricated through optimizing the experimental parameter and changing the experimental process. The surface morphology, crystal orientation and surface plasmon resonance were investigated by means of the scanning electronic microscope (SEM), X-ray diffraction (XRD), UV-Visible absorption spectrum and infrared ab- sorption spectroscopy. The SEM images showed that the sample A was purified SiO2, sample B and sample C were mixture of silver nanoparticle and silicon dioxide, while sample D was completed nanoshell structure. The absorption spectroscopy showed that there was surface plasmon resonance in the UV-visible region, while there was possibility of surface plasmon resonance in the Infrared absorption region. The effect of Ag/SiO2 composite material on the infrared absorption spectra of sodium nitrite solution was investigated through systematically analyzing the infrared absorption spectroscopy of sodium nitrate solution during its evaporation, i. e. the peak integration area of nitrate and the peak integration area of water molecule. The experimental results show that the integration area of nitrate was enhanced greatly during the evaporation process while the integration area of water molecule decreased continuously. The integration area of nitrate comes from the anti-symmetric stretch vibration and the enhancement of the vibration is attributed to the interface effect of Ag/SiO2 which is consistent with Jensen T

  11. Ocean color spectrum calculations

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    There is obvious value in developing the means for measuring a number of subsurface oceanographic parameters using remotely sensed ocean color data. The first step in this effort should be the development of adequate theoretical models relating the desired oceanographic parameters to the upwelling radiances to be observed. A portion of a contributory theoretical model can be described by a modified single scattering approach based on a simple treatment of multiple scattering. The resulting quasisingle scattering model can be used to predict the upwelling distribution of spectral radiance emerging from the sea. The shape of the radiance spectrum predicted by this model for clear ocean water shows encouraging agreement with measurements made at the edge of the Sargasso Sea off Cape Hatteras.

  12. The electronic absorption edge of petroleum

    SciTech Connect

    Mullins, O.C.; Mitra-Kirtley, S.; Zhu, Yifu

    1992-09-01

    The electronic absorption spectra of more than 20 crude oils and asphaltenes are examined. The spectral location of the electronic absorption edge varies over a wide range, from the near-infrared for heavy oils and asphaltenes to the near-UV for gas condensates. The functional form of the electronic absorption edge for all crude oils (measured) is characteristic of the {open_quotes}Urbach tail,{close_quotes} a phenomenology which describes electronic absorption edges in wide-ranging materials. The crude oils all show similar Urbach widths, which are significantly larger than those generally found for various materials but are similar to those previously reported for asphaltenes. Monotonically increasing absorption at higher photon energy continues for all crude oils until the spectral region is reached where single-ring aromatics dominate absorption. However, the rate of increasing absorption at higher energies moderates, thereby deviating from the Urbach behavior. Fluorescence emission spectra exhibit small red shifts from the excitation wavelength and small fluorescence peak widths in the Urbach regions of different crude oils, but show large red shifts and large peak widths in spectral regions which deviate from the Urbach behavior. This observation implies that the Urbach spectral region is dominated by lowest-energy electronic absorption of corresponding chromophores. Thus, the Urbach tail gives a direct measure of the population distribution of chromophores in crude oils. Implied population distributions are consistent with thermally activated growth of large chromophores from small ones. 12 refs., 8 figs.

  13. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  14. Spectrum analysis in beam diagnostics

    SciTech Connect

    Zhang, S.Y.; Weng, W.T.

    1993-04-23

    In this article, we discuss fundamentals of the spectrum analysis in beam diagnostics, where several important particle motions in a circular accelerator are considered. The properties of the Fourier transform are presented. Then the coasting and the bunched beam motion in both longitudinal and transverse are studied. The discussions are separated for the signal particle, multiple particle, and the Schottky noise cases. To demonstrate the interesting properties of the beam motion spectrum, time domain functions are generated, and then the associated spectra are calculated and plotted. In order to show the whole picture in a single plot, some data have been scaled, therefore they may not be realistic in an accelerator.

  15. Titan's 5-micron spectrum: VLT/ISAAC observations

    NASA Astrophysics Data System (ADS)

    Lellouch, E.; Coustenis, A.; Sebag, B.; Cuby, J.-G.; Crovisier, J.; Maillard, J. P.

    2001-11-01

    Earlier observations by Noll and Knacke (Icarus, 101, 272, 1993) and Noll et al. (Icarus, 124, 625, 1996) have shown that the 5 micron region of Titan's spectrum is a methane window probing Titan's lower atmosphere and surface. In particular, Noll et al. found that the 4.8-4.95 micron radiation is dominated by absorption in the (1-0) vibrational band of CO in Titan's troposphere, and that the 4.95-5.2 micron flux is reflected at the surface. They inferred a 10 ppm tropospheric CO mixing ratio, but this value was uncertain because of limited S/N of their data, which in particular did not show the individual rovibrational lines of CO. On November 16, 2000, we observed Titan near Eastern Elongation with the 8-m UT1 (Antu) of the Very Large Telescope, equipped with the Infrared Spectrometer and Array Camera (ISAAC). The insrument was used in long slit spectroscopy mode. The 4.75-5.1 micron range was covered, at a mean resolution of about 2000. Standard reduction included flat-fielding, correction for horizontal distortion and slit curvature, spectrum extraction, correction for telluric absorption, and wavelength and flux calibration. Preliminary results indicate that (i) the continuum flux at 5.0 micron is about 100 mJy (indicating a geometric albedo of 0.055), consistent with Noll et al. 1996 (ii) the albedo tends to decrease longward of 5.0 micron (iii) residual flux is detected at 4.75-4.83 micron (iv) several rovibrational lines of CO are seen in absorption (P10 to P19 of 13CO) at 4.85-4.95 micron. We will present the analysis of these data and infer a new measurement of the CO abundance in Titan's troposphere, contributing to the long-standing problem of the abundance, vertical distribution and origin of carbon monoxide on Titan. In addition, the spectrum seems to show emission features at 4.75-4.83 micron coinciding with the position of some CO(1-0) lines; however stratospheric thermal emission and solar induced fluorescence seem to be unable to explain

  16. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  17. Zinc absorption in inflammatory bowel disease

    SciTech Connect

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-07-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  18. The Optical Spectrum of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Schiminovich, David; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained an optical spectrum of the isolated pulsar Geminga at the Keck Observatory. The optical object is at the limit of spectroscopic capability of any telescope, with a continuum flux that is approx. 0.5% of the dark sky on Mauna Kea. With particular attention paid to the dominant systematics of sky subtraction in our observing and analysis methods, we attained approx. 0.1% systematics in heavily binned spectra. The resulting spectrum spanning 3700 - 8000 A has a flat power-law shape f(sub nu) proportional to nu(exp -0.8) and a broad dip over 6300 - 6500 A. Thermal radiation cannot explain the optical spectrum of Geminga. The dominant component can be modeled as either electron synchrotron emission and ion (proton) cyclotron absorption, or ion cyclotron emission, the latter in a 10(exp 11) G magnetic field.

  19. Absorption properties of identical atoms

    NASA Astrophysics Data System (ADS)

    Sancho, Pedro

    2013-09-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  20. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements

    NASA Astrophysics Data System (ADS)

    Lin, H.; Reed, Z. D.; Sironneau, V. T.; Hodges, J. T.

    2015-08-01

    We present a cavity ring-down spectrometer which was developed for near-infrared measurements of laser absorption by atmospheric greenhouse gases. This system has several important attributes that make it possible to conduct broad spectral surveys and to determine line-by-line parameters with wide dynamic range, and high spectral resolution, sensitivity and accuracy. We demonstrate a noise-equivalent absorption coefficient of 4×10-12 cm-1 Hz-1/2 and a signal-to-noise ratio of 1.5×106:1 in an absorption spectrum of carbon monoxide. We also present high-resolution measurements of trace methane in air spanning more than 1.2 THz and having a frequency axing with an uncertainty less than 100 kHz. Finally, we discuss how this system enables stringent tests of advanced line shape models. To illustrate, we measured an air-broadened carbon dioxide transition over a wide pressure range and analyzed these data with a multi-spectrum fit of the partially correlated, quadratic speed-dependent Nelkin-Ghatak profile. We obtained a quality-of-fit parameter in the multispectrum fit equal to 36,000, thus quantifying small-but-measurable limitations of the model profile. This analysis showed that the line shape depends upon collisional narrowing, speed dependent effects and partial correlations between velocity- and phase-changing collisions.

  1. Phase-dependent absorption features in X-ray spectra of XDINSs

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.

    2016-06-01

    A detailed pulse phase spectroscopy using all the available XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs) have revealed the presence of narrow and strongly phase-dependent absorption X-ray features. The first discovered was in the X-ray spectrum of the nearby XDINS RX J0720.4-3125. The line seems to be stable in time over a timespan of 12 years and is present in 20% of the pulsar rotation. Because of its narrow width and its strong dependency on the rotational phase, the spectral line is probably due to proton cyclotron absorption in a ˜10^{14} G confined magnetic structure (with a field strength about 7 times the dipolar field of this pulsar). Performing the same analysis to all archival XDINS data, a new possible candidate was found in the X-ray spectrum of RX J1308.6+2127. This absorption feature shows the same phase dependency and energy as the first one, revealing the presence of a high-B structure close to the stellar surface. This result supports the proposed scenario of XDINSs being aged magnetars, having still a strong non-dipolar crustal B-field component.

  2. Optical Absorption and Electron Paramagnetic Resonance studies of two different solid solutions of Pyralspite Garnet

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Espinoza, S. R. Q.; Chubaci, J. F. D.; Cano, N. F.; Cornejo, D. R.

    2015-04-01

    Two different solid solutions of pyralspite garnet have been investigated as to their optical absorption and EPR properties. The absorption band around 9850 cm-1 is due to Fe2+. After heating above 950 °C we found this band diminishes considerably; which was interpreted as Fe2+ loosing an electron to become Fe3+. The EPR spectrum of sample consisted of a straight line with angular coefficient of about 176°. After 600°C/1hr annealing, the spectrum starts deviating from a straight line. A strong typical EPR signal is observed around g = 2.0 after annealing at 850°C. We assume that with high temperature annealing a large number of Fe2+ are converted to Fe3+ as the optical absorption has shown. These results were also confirmed by chemical reaction. The susceptibility vs. magnetic field measurement has shown that the samples annealed at temperatures below 850°C present normal paramagnetic behavior, however, annealed above 900 °C, they show hysteresis, namely ferromagnetic behavior.

  3. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    SciTech Connect

    Sargent, B. A.; Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C.; D'Alessio, P.; Calvet, N.; Furlan, E.; Green, J.; Pontoppidan, K.

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  4. Absorption of Solar Radiation by Clouds: Observations Versus Models

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Minnis, P.; Corsetti, L.; Dutton, E. G.; Forgan, B. W.; Garber, D. P.; Gates, W. L.; Hack, J. J.; Harrison, E. F.; Jing, X.; Kiehl, J. T.; Long, C. N.; Morcrette, J.-J.; Potter, G. L.; Ramanathan, V.; Subasilar, B.; Whitlock, C. H.; Young, D. F.; Zhou, Y.

    1995-01-01

    There has been a long history of unexplained anomalous absorption of solar radiation by clouds. Collocated satellite and surface measurements of solar radiation at five geographically diverse locations showed significant solar absorption by clouds, resulting in about 25 watts per square meter more global-mean absorption by the cloudy atmosphere than predicted by theoretical models. It has often been suggested that tropospheric aerosols could increase cloud absorption. But these aerosols are temporally and spatially heterogeneous, whereas the observed cloud absorption is remarkably invariant with respect to season and location. Although its physical cause is unknown, enhanced cloud absorption substantially alters our understanding of the atmosphere's energy budget.

  5. Wave-number spectrum of electroencephalographic signals.

    PubMed

    O'Connor, S C; Robinson, P A; Chiang, A K I

    2002-12-01

    A recently developed, physiologically based continuum model of corticothalamic electrodynamics is used to derive the theoretical form of the electroencephalographic wave-number spectrum and its projection onto a one-dimensional recording array. The projected spectrum is found to consist of a plateau followed by regions of power-law decrease with various exponents, which are dependent on both model parameters and temporal frequency. The theoretical spectrum is compared with experimental results obtained in other studies, showing good agreement. The model provides a framework for understanding the nature of the spatial power spectrum by linking the underlying physiology with the large-scale dynamics of the brain. PMID:12513316

  6. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  7. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  8. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  9. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  10. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  11. On the mechanism of electromagnetic microwave absorption in superfluid helium

    SciTech Connect

    Pashitskii, E. A. Pentegov, V. I.

    2012-08-15

    In experiments on electromagnetic (EM) wave absorption in the microwave range in superfluid (SF) helium [1-3], a narrow EM field absorption line with a width on the order of (20-200) kHz was observed against the background of a wide absorption band with a width of 30-40 GHz at frequencies f{sub 0} Almost-Equal-To 110-180 GHz corresponding to the roton gap energy {Delta}{sub r}(T) in the temperature range 1.4-2.2 K. Using the so-called flexoelectric mechanism of polarization of helium atoms ({sup 4}He) in the presence of density gradients in SF helium (HeII), we show that nonresonance microwave absorption in the frequency range 170-200 GHz can be due to the existence of time-varying local density gradients produced by roton excitations in the bulk HeII. The absorption bandwidth is determined by the roton-roton scattering time in an equilibrium Boltzmann gas of rotons, which is t{sub r-r} Almost-Equal-To 3.4 Multiplication-Sign 10{sup -11} s at T = 1.4 K and decreases upon heating. We propose that the anomalously narrow microwave resonance absorption line in HeII at the roton frequency f{sub 0}(T) = {Delta}r(T)/2{pi}h appears due to the following two factors: (i) the discrete structure of the spectrum of the surface EM resonator modes in the form of a periodic sequence of narrow peaks and (ii) the presence of a stationary dipole layer in HeII near the resonator surface, which forms due to polarization of {sup 4}He atoms under the action of the density gradient associated with the vanishing of the density of the SF component at the solid wall. For this reason, the relaxation of nonequilibrium rotons generated in such a surface dipole layer is strongly suppressed, and the shape and width of the microwave resonance absorption line are determined by the roton density of states, which has a sharp peak at the edge of the roton gap in the case of weak dissipation. The effective dipole moments of rotons in the dipole layer can be directed either along or across the normal to

  12. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  13. Terbium chloride--aluminum chloride vapor system. I. Absorption and excitation spectra

    SciTech Connect

    Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Williams, C.W.

    1981-01-15

    The absorption spectrum of the vapor complex formed at elevated temperatures between TbCl/sub 3/ and AlCl/sub 3/ has been measured in the region 20 000--50 000 cm/sup -1/. Oscillator strengths of f--f absorption bands below 37 000 cm/sup -1/ were determined. Strong absorption due to opposite parity 4f/sup 7/5d states was observed in the 37 000 to 50 000 cm/sup -1/ region with a peak molar absorptivity of approximately 500 l/mol cm. Significant additional absorption attributed to a molecular complex was also observed in this region. By measuring the excitation spectrum it was found that the molecular absorption does not appear to lead to fluorescence of the /sup 5/D/sub 4/ state. In contrast, absorption by the 4f/sup 7/5d states does result in strong /sup 5/D/sub 4/ fluorescence.

  14. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  15. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  18. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  19. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  20. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  1. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  2. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  3. Atmospheric Solar Heating in Minor Absorption Bands

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah

    1998-01-01

    Solar radiation is the primary source of energy driving atmospheric and oceanic circulations. Concerned with the huge computing time required for computing radiative transfer in weather and climate models, solar heating in minor absorption bands has often been neglected. The individual contributions of these minor bands to the atmospheric heating is small, but collectively they are not negligible. The solar heating in minor bands includes the absorption due to water vapor in the photosynthetically active radiation (PAR) spectral region from 14284/cm to 25000/cm, the ozone absorption and Rayleigh scattering in the near infrared, as well as the O2 and CO2 absorption in a number of weak bands. Detailed high spectral- and angular-resolution calculations show that the total effect of these minor absorption is to enhance the atmospheric solar heating by approximately 10%. Depending upon the strength of the absorption and the overlapping among gaseous absorption, different approaches are applied to parameterize these minor absorption. The parameterizations are accurate and require little extra time for computing radiative fluxes. They have been efficiently implemented in the various atmospheric models at NASA/Goddard Space Flight Center, including cloud ensemble, mesoscale, and climate models.

  4. Surface Material Analysis of the S-type Asteroids: Removing the Space Weathering Effect from Reflectance Spectrum

    NASA Technical Reports Server (NTRS)

    Ueda, Y.; Miyamoto, M.; Mikouchi, T.; Hiroi, T.

    2003-01-01

    Recent years, many researchers have been observing a lot of asteroid reflectance spectra in the UV, visible to NIR at wavelength region. Reflectance spectroscopy of asteroid at this range should bring us a lot of information about its surface materials. Pyroxene and olivine have characteristic absorption bands in this wavelength range. Low-Ca pyroxene has two absorption bands around 0.9 microns and 1.9 microns. The more Ca and Fe content, the longer both absorption band centers. On the other hand, reflectance spectrum of olivine has three complicated absorption bands around 1 m, and no absorption feature around 2 microns. In general, reflectance spectra of many asteroids that are considered to be silicate rich (i.e., S- and A type asteroids) show redder slope and more subdued absorption bands than those of terrestrial minerals and meteorites. These features are now believed to be caused by the space weathering effect, which is probably caused by micrometeorite bombardment and/or solar wind. This process causes nanophase reduced iron (npFe(sup 0)) particles near the surface of mineral grains, which leads the optical change. Therefore, the space weathering effect should be removed from asteroid reflectance spectra to compare with those of meteorite and terrestrial minerals. In this report, we will apply the expanded modified Gaussian model (MGM) to the reflectance spectra of S-type asteroids 7 Iris and 532 Herculina and compare them with those of meteorites.

  5. Phosphorescence, near-infrared absorption and nonlinear optical property of a new chiral organic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Bei; Zhao, Yu-Mei; Yong, Guo-Ping

    2014-02-01

    A new enantiomerically pure compound was synthesized by the single step reduced reaction from 2-(imidazo[1,2-a]pyridin-2-yl)-2-oxo-N-(pyridin-2-yl)acetamide via chiral induction with D-tartaric acid in good yield. Single crystal data confirm this compound crystallizes in chiral space group P21. Transmission spectrum reveals that the crystal has low UV cut-off of 372 nm and has a good transmittance in the entire visible and near-infrared (NIR)region to 1100 nm, indicating its optical application. Kurtz powder test shows a good second harmonic generation (SHG) which also demonstrates its chiral structure. Moreover, this material exhibits blue phosphorescence with quantum yield of 3.6% and unusually NIR absorption between 1500 nm and 2500 nm. Therefore, this new chiral crystal is a promising multifunctional material for the blue phosphorescence, NIR absorption and nonlinear optical (NLO) applications.

  6. Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads

    PubMed Central

    Jeon, Seaho; Wang, Min; Tan, Loon-Seng; Cooper, Thomas; Hamblin, Michael R.; Chiang, Long Y.

    2013-01-01

    Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C60-(antenna)x analogous compounds as branched triad C60(>DPAF-C18)(>CPAF-C2M) and tetrad C60(>DPAF-C18)(>CPAF-C2M)2 nanostructures. These compounds showed approximately equal extinction coefficients of optical absorption over 400–550 nm that corresponds to near-IR two-photon based excitation wavelengths at 780–1,100 nm. Accordingly, they may be utilized as potential precursor candidates to the active-core structures of photosensitizing nanodrugs for 2γ-PDT in the biological optical window of 800–1,050 nm. PMID:23941881

  7. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. PMID:27343458

  8. Synthesis of photoresponsive dual NIR two-photon absorptive [60]fullerene triads and tetrads.

    PubMed

    Jeon, Seaho; Wang, Min; Tan, Loon-Seng; Cooper, Thomas; Hamblin, Michael R; Chiang, Long Y

    2013-01-01

    Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C₆₀-(antenna)(x) analogous compounds as branched triad C₆₀(>DPAF-C₁₈)(>CPAF-C(2M)) and tetrad C₆₀(>DPAF-C₁₈)(>CPAF-C(2M))₂ nanostructures. These compounds showed approximately equal extinction coefficients of optical absorption over 400-550 nm that corresponds to near-IR two-photon based excitation wavelengths at 780-1,100 nm. Accordingly, they may be utilized as potential precursor candidates to the active-core structures of photosensitizing nanodrugs for 2γ-PDT in the biological optical window of 800-1,050 nm. PMID:23941881

  9. Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers.

    PubMed

    Belkin, Mikhail A; Loncar, Marko; Lee, Benjamon G; Pflugl, Christian; Audet, Ross; Diehl, Laurent; Capasso, Federico; Bour, David; Corzine, Scott; Hofler, Gloria

    2007-09-01

    We demonstrate microfluidic laser intra-cavity absorption spectroscopy with mid-infrared lambda approximately 9mum quantum cascade lasers. A deepetched narrow ridge waveguide laser is placed in a microfluidic chamber. The evanescent tails of the laser mode penetrate into a liquid on both sides of the ridge. The absorption lines of the liquid modify the laser waveguide loss, resulting in significant changes in the laser emission spectrum and the threshold current. A volume of liquid as small as ~10pL may, in principle, be sufficient for sensing using the proposed technique. This method, similar to the related gas-phase technique, shows promise as a sensitive means of detecting chemicals in small volumes of solutions. PMID:19547483

  10. Optical absorption of several nanostructures arrays for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Zhaopeng; Qiao, Huiling; Huangfu, Huichao; Li, Xiaowei; Guo, Jingwei; Wang, Haiyan

    2015-12-01

    To improve the efficiency and reduce the cost of solar cells, it's important to enhance the light absorption. Within the visible solar spectrum based on optimization simulations by COMSOL Multiphysics, the optical absorption of silicon cylindrical nanowires, nanocones and inverted nanocones was calculated respectively. The results reveal that the average absorption for the nanocones between 400 and 800 nm is 70.2%, which is better than cylindrical nanowires (55.3%), inverted nanocones (42.3%) and bulk silicon (42.2%). In addition, more than 95% of light from 630 to 800 nm is reflected for inverted nanocones, which can be used to enhance infrared reflection in photovoltaic devices.

  11. Effects of tattoo ink's absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser.

    PubMed

    Leu, Fur-Jiang; Huang, Chuen-Lin; Sue, Yuh-Mou; Lee, Shao-Chen; Wang, Chia-Chen

    2015-01-01

    The mechanisms responsible for variable responses of cosmetic tattoos to Q-switched laser removal treatment remain unclear. We sought to investigate the properties of tattoo inks that may affect the efficacy of laser-assisted tattoo removal. The absorption of white, brown, and black inks before and after Q-switched neodymium-doped yttrium aluminum garnet laser irradiation were analyzed by a reflectance measurement system. Rats were tattooed using the three inks and treated with the same laser for two sessions. Skin biopsies were taken from the treated and untreated sites. Black ink showed strong absorption, reduced after laser irradiation, over the entire spectrum. White ink had low absorption over the visible light spectrum, and brown ink had strong absorption at 400-550 nm wavelengths. White and brown inks turned dark after laser exposure, and the absorption of laser-darkened inks were intermediate between their original color and black ink. White, brown, and black tattoos in rat skin achieved poor, fair to good, and excellent responses to laser treatment, respectively. Transmission electron microscopy showed that white tattoo particles were the largest, brown were intermediate, and black were the smallest before laser. After laser treatment, white and brown tattoo particles were mixtures of large and small particles, while black particles showed overall reduction in number and size. Black tattoo ink's excellent response to Q-switched lasers was associated with its strong absorption and small particle size. White tattoo ink's poor response was associated with its poor absorption, even after laser darkening, and large particle size. PMID:25249494

  12. X-ray absorption spectroscopy study of prototype chemical systems: Theory vs. experiment

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig Philip

    Understanding the details of the intensities and spectral shapes of x-ray absorption spectra is a long-standing problem in chemistry and physics. Here, I present detailed studies of x-ray absorption for prototypical liquids, solids and gases with the goal of enhancing our general understanding of core-level spectroscopy via comparisons of modern theory and experiment. In Chapter 2, I investigate the importance of quantum motions in the x-ray absorption spectra of simple gases. It is found that rare fluctuations in atomic positions can be a cause of features in the spectra of gaseous molecules. In Chapter 3, I explore a novel quantization scheme for the excited and ground state potential surfaces for an isolated nitrogen molecule. This allows for the explicit calculation of the "correct" transition energies and peak widths (i.e. without any adjustable parameters). In Chapter 4, the importance of nuclear motion in molecular solids is investigated for glycine. We find that the inclusion of these motions permits the spectrum to be accurately calculated without any additional adjustable parameters. In Chapter 5, I provide a detailed study of the hydroxide ion solvated in water. There has been recent controversy as to how hydroxide is solvated, with two principal models invoked. I show that some of the computational evidence favoring one model of solvation over the other has been either previously obtained with inadequate precision or via a method that is systematically biased. In Chapter 6, the measured and computed x-ray absorption spectra of pyrrole in both the gas phase and when solvated by water are compared. We are able to accurately predict the spectra in both cases. In Chapter 7, the measured x-ray absorption of a series of highly charged cationic salts (YBr3, CrCl3, SnCl4 , LaCl3 and InCl3) solvated in water are presented and explained. In Chapter 8, the measured x-ray absorption spectrum at the nitrogen K-edge of aqueous triglycine is presented, including

  13. XMM-Newton Observations of the Radio-Loud Broad Absorption Line Quasar FBQS J131213.5+231958

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Dai, Xinyu

    2010-12-01

    We present XMM-Newton observations of the broad absorption line (BAL) quasar FBQS J131213.5+231958. The X-ray spectrum of the source can be well described by an absorbed power-law model in which the absorber is either ionized or only partially covers the continuum source. This can explain the apparent lack of absorption observed in the Chandra spectrum with low signal-to-noise ratio. While the power-law slope of the spectrum is similar to that of non-BAL radio-loud quasars, the Eddington luminosity ratio is likely to be significantly higher than the mean. This shows that in high-mass black holes (BHs), high Eddington accretion may not result in as steep of a spectrum as in lower-mass BHs. This provides important constraints for accretion disk models. It also provides support to the idea that BAL quasars, at least their radio-loud subclass, represent an early evolutionary stage of quasars.

  14. The BUSS spectrum of Beta Lyrae. [Balloon-borne Ultraviolet Stellar Spectrograph

    NASA Technical Reports Server (NTRS)

    Hack, M.; Sahade, J.; De Jager, C.; Kondo, Y.

    1983-01-01

    The spectrum of Beta Lyrae from about 1975 to 3010 A taken with the Balloon-borne ultraviolet Stellar Spectrograph experiment in May 1976 at phase 0.61 P is analyzed. Results show the presence of N II semi-forbidden emission and provide evidence for about the same location, in the outer envelope of the system, of the layers responsible for the resonance Mg II doublet emissions and for the "narrow" H-alpha emission. In addition, three sets of absorption lines, P Cygni profiles of Fe III and broad Beals Type III emissions of Mg II, are found to be present.

  15. Tuning the Protein-Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics.

    PubMed

    Suomivuori, Carl-Mikael; Lang, Lucas; Sundholm, Dage; Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-06-01

    Rational design of light-capturing properties requires understanding the molecular and electronic structure of chromophores in their native chemical or biological environment. We employ here large-scale quantum chemical calculations to study the light-capturing properties of retinal in recently designed human cellular retinol binding protein II (hCRBPII) variants (Wang et al. Science, 2012, 338, 1340-1343). Our calculations show that these proteins absorb across a large part of the visible spectrum by combined polarization and electrostatic effects. These effects stabilize the ground or excited state energy levels of the retinal by perturbing the Schiff-base or β-ionone moieties of the chromophore, which in turn modulates the amount of charge transfer within the molecule. Based on the predicted tuning principles, we design putative in silico mutations that further shift the absorption properties of retinal in hCRBPII towards the ultraviolet and infrared regions of the spectrum. PMID:27120137

  16. Formaldehyde absorption toward W51

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Petuchowski, S. J.

    1989-01-01

    Formaldehyde (H2CO) absorption toward the H II region complex W51A (G49.5 - 0.4) in the 6 cm and 2 cm wavelength rotational transitions has been measured with angular resolution of about 0.15 pc. The continuum H II region shows a large, previously undetected shell structure 5.5 pc along the major axis. The absorption, converted to optical depth, shows a higher degree of clumping throughout the map than previous maps at lower resolution; in particular, two narrow regions of enhanced opacity are observed. The absorption in the velocity range 64-67 km/s LSR extends over most of the region, with an observed velocity gradient of 5.2 km/s pc. The opacity structure largely parallels the velocity structure, with a ridge of enhanced opacity to the north of the highest velocity feature. The S/N of the maps allows accurate modeling of the spectral profiles. Nine distinct clumps in the foreground clouds have been identified and parametrized, and column densities for the 1(11) and 2(12) rotational levels of orthoformaldehyde have been derived.

  17. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  19. Optical absorption in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Zhang, Fan; Niu, Qian

    2013-03-01

    We use a low energy effective model to analyze the optical responses of trilayer graphene samples. We first show that optical absorption of the ABA-stacked trilayer has strong dependence on both the Fermi energy and optical frequency, which is in sharp contrast to that of ABC-stacked trilayer graphene. Secondly, we are able to determine the possible existence of trigonal warping effects in the bandstructure of ABC-stacked trilayer graphene by a divergence in the absorption spectra at around 10 meV. In addition, we can partially distinguish the vairious broken symmetry states driven by electron-electron interactions in ABC-stacked trilayer graphene. In particular, the quantum anomalous Hall (QAH) state is sensitive to the polarization of the incident light, giving a way to detect its possible existence.

  20. Absorption of surface acoustic waves by topological insulator thin films

    SciTech Connect

    Li, L. L.; Xu, W.

    2014-08-11

    We present a theoretical study on the absorption of the surface acoustic waves (SAWs) by Dirac electrons in topological insulator (TI) thin films (TITFs). We find that due to momentum and energy conservation laws, the absorption of the SAWs in TITFs can only be achieved via intra-band electronic transitions. The strong absorption can be observed up to sub-terahertz frequencies. With increasing temperature, the absorption intensity increases significantly and the cut-off frequency is blue-shifted. More interestingly, we find that the absorption of the SAWs by the TITFs can be markedly enhanced by the tunable subgap in the Dirac energy spectrum of the TI surface states. Such a subgap is absent in conventional two-dimensional electron gases (2DEGs) and in the gapless Dirac 2DEG such as graphene. This study is pertinent to the exploration of the acoustic properties of TIs and to potential application of TIs as tunable SAW devices working at hypersonic frequencies.

  1. A plant canopy light absorption model with application to wheat

    NASA Technical Reports Server (NTRS)

    Chance, J. E.; Lemaster, E. W.

    1977-01-01

    From the light absorption model the absorption of light in the photosynthetically active region of the spectrum was calculated for a Penjamo wheat crop for several situations including: (1) the percent absorption of the incident radiation by a canopy having a four layer structure; (2) the percent absorption of light by the individual layers within a four layer canopy and by the underlying soil; (3) the percent absorption of light by each vegetative canopy layer for variable sun angle; and (4) the cumulative solar energy absorbed by the developing wheat canopy as it progresses from a single layer through its growth stages to a three layer canopy. This calculation was also presented as a function of the leaf area index.

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGESBeta

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  6. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  7. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  8. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  9. Broadband Reflectionless Metasheets: Frequency-Selective Transmission and Perfect Absorption

    NASA Astrophysics Data System (ADS)

    Asadchy, V. S.; Faniayeu, I. A.; Ra'di, Y.; Khakhomov, S. A.; Semchenko, I. V.; Tretyakov, S. A.

    2015-07-01

    Energy of propagating electromagnetic waves can be fully absorbed in a thin lossy layer, but only in a narrow frequency band, as follows from the causality principle. On the other hand, it appears that there are no fundamental limitations on broadband matching of thin resonant absorbing layers. However, known thin absorbers produce significant reflections outside of the resonant absorption band. In this paper, we explore possibilities to realize a thin absorbing layer that produces no reflected waves in a very wide frequency range, while the transmission coefficient has a narrow peak of full absorption. Here we show, both theoretically and experimentally, that a thin resonant absorber, invisible in reflection in a very wide frequency range, can be realized if one and the same resonant mode of the absorbing array unit cells is utilized to create both electric and magnetic responses. We test this concept using chiral particles in each unit cell, arranged in a periodic planar racemic array, utilizing chirality coupling in each unit cell but compensating the field coupling at the macroscopic level. We prove that the concept and the proposed realization approach also can be used to create nonreflecting layers for full control of transmitted fields. Our results can have a broad range of potential applications over the entire electromagnetic spectrum including, for example, perfect ultracompact wave filters and selective multifrequency sensors.

  10. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  11. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  12. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  13. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  14. Fission Spectrum Related Uncertainties

    SciTech Connect

    G. Aliberti; I. Kodeli; G. Palmiotti; M. Salvatores

    2007-10-01

    The paper presents a preliminary uncertainty analysis related to potential uncertainties on the fission spectrum data. Consistent results are shown for a reference fast reactor design configuration and for experimental thermal configurations. However the results obtained indicate the need for further analysis, in particular in terms of fission spectrum uncertainty data assessment.

  15. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  16. Coherent perfect absorption in chiral metamaterials.

    PubMed

    Ye, Yuqian; Hay, Darrick; Shi, Zhimin

    2016-07-15

    We study the coherent perfect absorption (CPA) of a chiral structure and derive analytically the CPA condition for transversely isotropic chiral structures in circular polarization bases. The coherent absorption of such a chiral system is generally polarization dependent and can be tuned by the relative phase between the coherent input beams. To demonstrate our theoretical predictions, a chiral metamaterial absorber operating in the terahertz frequency range is optimized. We numerically demonstrate that a coherent absorption of 99.5% can be achieved. Moreover, we show that an optimized CPA chiral structure can be used as an interferometric control of polarization state of the output beams with constant output intensity. PMID:27420535

  17. Total absorption by degenerate critical coupling

    SciTech Connect

    Piper, Jessica R. Liu, Victor; Fan, Shanhui

    2014-06-23

    We consider a mirror-symmetric resonator with two ports. We show that, when excited from a single port, complete absorption can be achieved through critical coupling to degenerate resonances with opposite symmetry. Moreover, any time two resonances with opposite symmetry are degenerate in frequency and absorption is always significantly enhanced. In contrast, when two resonances with the same symmetry are nearly degenerate, there is no absorption enhancement. We numerically demonstrate these effects using a graphene monolayer on top of a photonic crystal slab, illuminated from a single side in the near-infrared.

  18. Selective coherent perfect absorption in metamaterials

    SciTech Connect

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng; Shi, Jinhui

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  19. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  20. Absorption by ground-state lead atoms of the 283. 3-nm resonant line from a lead hollow cathode lamp. An absolute number density calibration

    SciTech Connect

    Simons, J.W. ); Oldenborg, R.C.; Baughcum, S.L. )

    1989-10-19

    An accurate absolute number density calibration curve for absorption by gaseous lead atoms of the 283.3-nm resonant line from a typical lead hollow cathode lamp is reported. This calibration shows the usual curvature in the Beer-Lambert plot for atomic absorption at moderate to high absorbances that is commonly attributed to self-absorption leading to line reversal in the source and/or preferential absorption at the line center when the absorber temperature is not much greater than the source Doppler temperature. A theoretical calculation utilizing a Doppler-limited Fourier transform spectrum of the 283.3-nm emission from the lamp and a tabulated value of the absorption cross section and accounting for the isotopic and nuclear hyperfine components in both the emission and absorption due to naturally occurring lead quantitatively reproduces the experimental calibration curve without any parameter adjustments. It is found that the curvature in the Beer-Lambert plot has more to do with the fact that the absorbing and emitting atoms are a mixture of isotopes giving several isotopic and nuclear hyperfine transitions at slightly different frequencies than it does with preferential absorption at line centers.

  1. Absorption of planar waves in a draining bathtub

    NASA Astrophysics Data System (ADS)

    Oliveira, Ednilton S.; Dolan, Sam R.; Crispino, Luís C. B.

    2010-06-01

    We present an analysis of the absorption of acoustic waves by a black hole analogue in (2+1) dimensions generated by a fluid flow in a draining bathtub. We show that the low-frequency absorption length is equal to the acoustic hole circumference and that the high-frequency absorption length is 4 times the ergoregion radius. For intermediate values of the wave frequency, we compute the absorption length numerically and show that our results are in excellent agreement with the low- and high-frequency limits. We analyze the occurrence of superradiance, manifested as negative partial absorption lengths for corotating modes at low frequencies.

  2. Absorption of planar waves in a draining bathtub

    SciTech Connect

    Oliveira, Ednilton S.; Dolan, Sam R.; Crispino, Luis C. B.

    2010-06-15

    We present an analysis of the absorption of acoustic waves by a black hole analogue in (2+1) dimensions generated by a fluid flow in a draining bathtub. We show that the low-frequency absorption length is equal to the acoustic hole circumference and that the high-frequency absorption length is 4 times the ergoregion radius. For intermediate values of the wave frequency, we compute the absorption length numerically and show that our results are in excellent agreement with the low- and high-frequency limits. We analyze the occurrence of superradiance, manifested as negative partial absorption lengths for corotating modes at low frequencies.

  3. The infrared spectrum of M8 E - Evidence for circumstellar CO

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Hofmann, R.

    1986-01-01

    High-resolution spectroscopic observations of the compact infrared source M8 E are reported in the region from 3 to 5 microns. Very prominent CO absorption lines are observed in the v = 1-0 band at 4.7 microns. The velocity width and rotational temperature suggest that this CO absorption occurs in a highly excited region. The high background continuum flux level and the prominent appearance of the CO features suggest that the CO line-forming region must be in front of the dust emission region. A blister model for M8 E, which places most of the dust continuum emission behind the source, satisfies this requirement. According to this picture, the observed circumstellar CO spectrum shows a high rotational temperature and a large velocity dispersion because of the combined effects of the strong stellar wind and possible shock heating near the dust zone as the wind encounters the ambient molecular cloud.

  4. Novel gas sensor combined active fiber loop ring-down and dual wavelengths differential absorption method.

    PubMed

    Zhao, Yanjie; Chang, Jun; Ni, Jiasheng; Wang, Qingpu; Liu, Tongyu; Wang, Chang; Wang, Pengpeng; Lv, Guangping; Peng, Gangding

    2014-05-01

    A novel active fiber loop ring-down gas sensor combined with dual wavelengths differential absorption method is proposed. Two Distributed Feedback Laser Diodes (DFB LDs) with different wavelengths are employed. One LD whose wavelength covered with the absorption line of target gas is used for sensing. Another LD whose wavelength is centered outside the absorption line is used for reference. The gas absorption loss can be obtained by differencing the reference signal and sensing signal. Compared with traditional method of one wavelength employed, it can eliminate the influence of the cavity loss variety and photoelectric device drift in the system efficiently. An Erbium Doped Fiber Amplifier (EDFA) with Automatic Gain Control (AGC) is used to compensate the loss of the light in the ring-down cavity, which will increase the cavity round trips and improve the precision of gas detection. And two fiber Bragg gratings (FBGs) are employed to get rid of amplified spontaneous emission (ASE) spectrum noise as filters. The calibrating ethyne samples of different concentrations are measured with a 65 mm long gas cell in order to evaluate the effect of reference. The results show the relative deviation is found to be less than ± 0.4% of 0.1% ethyne when a certain additional loss from 0 to 1.2dB is introduced to the cavity and the relative deviation of measured concentration is less than ± 0.5% over 24 hours. PMID:24921822

  5. Transient Heavy Element Absorption Systems in Novae: Episodic Mass Ejection from the Secondary Star

    NASA Astrophysics Data System (ADS)

    Williams, Robert; Mason, Elena; Della Valle, Massimo; Ederoclite, Alessandro

    2008-09-01

    A high-resolution spectroscopic survey of post-outburst novae reveals short-lived heavy element absorption systems in a majority of novae near maximum light, having expansion velocities of 400-1000 km s-1 and velocity dispersions between 35 and 350 km s-1. A majority of systems are accelerated outward, and they all progressively weaken and disappear over timescales of weeks. A few of the systems having narrow, deeper absorption reveal a rich spectrum of singly ionized Sc, Ti, V, Cr, Fe, Sr, Y, Zr, and Ba lines. Analysis of the richest such system, in LMC 2005, shows the excitation temperature to be 104 K and elements lighter than Fe to have abundance enhancements over solar values by up to an order of magnitude. The gas causing the absorption systems must be circumbinary and its origin is most likely mass ejection from the secondary star. The absorbing gas exists before the outburst and may represent episodic mass transfer events from the secondary star that initiate the nova outburst(s). If SNe Ia originate in single degenerate binaries, such absorption systems could be detectable before maximum light.

  6. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation

    NASA Astrophysics Data System (ADS)

    Kirchstetter, T. W.; Thatcher, T. L.

    2012-07-01

    A spectroscopic analysis of 115 wintertime particulate matter samples collected in rural California shows that wood smoke absorbs solar radiation with a strong spectral selectivity. This is consistent with prior work that has demonstrated that organic carbon (OC), in addition to black carbon (BC), appreciably absorbs solar radiation in the visible and ultraviolet spectral regions. We apportion light absorption to OC and BC and find that the absorption Ångström exponent of the light-absorbing OC in these samples ranges from 3.0 to 7.4 and averages 5.0. Further, we calculate that OC would account for 14% and BC would account for 86% of solar radiation absorbed by the wood smoke in the atmosphere (integrated over the solar spectrum from 300 to 2500 nm). OC would contribute 49% of the wood smoke particulate matter absorption of ultraviolet solar radiation at wavelengths below 400 nm and, therefore, may affect tropospheric photochemistry. These results illustrate that BC is the dominant light-absorbing particulate matter species in atmospheres burdened with residential wood smoke and OC absorption is secondary but not insignificant. Further, these results add to the growing body of evidence that light-absorbing OC is ubiquitous in atmospheres influenced by biomass burning and may be important to include when considering particulate matter effects on climate.

  7. Retrieval of Black Carbon Absorption from Proposed Satellite Measurements Over the Ocean Glint

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Matins, J. V.; Remer, L. A.; Schoeberl, M. R.; Yamasoe, M. A.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Haze and air pollution includes many chemicals that together form small particles suspended in the air called aerosols. One of the main ingredients found to affect climate and human health is Black Carbon. Black particles emitted from engines that do not burn the fuel completely, e.g. old trucks. Black carbon absorption of sunlight emerges as one of the key components of man-made forcing of climate. However, global characterization of black carbon emissions, distribution and pathways in which it can affect the amount of solar radiation absorbed by the atmosphere is very uncertain. A new method is proposed to measure sunlight absorption by fine aerosol particles containing black carbon over the ocean glint from a satellite mission designed for this purpose. The satellite will scan the same spot over the ocean in the glint plane and a plane 40 degrees off-glint a minute apart, collecting measurements of the reflected light across the solar spectrum. First the dark ocean off the glint is used to derive aerosol properties. Then the black carbon absorption is derived prop the attenuation of the bright glint by the aerosol layer. Such measurements if realized in a proposed future mission - COBRA are expected to produce global monthly climatology of black carbon absorption with high accuracy (110 to 15%) that can show their effect on climate.

  8. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors. PMID:25402159

  9. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  10. Changes in the ultraviolet spectrum of the mass-losing Be star 59 Cygni

    NASA Technical Reports Server (NTRS)

    Marlborough, J. M.; Snow, T. P., Jr.

    1980-01-01

    Observations of a few selected wavelength regions in the ultraviolet spectrum of the Be star 59 Cyg, obtained in 1975 November, are compared with the complete low-resolution Copernicus scan of the same star obtained in 1972 October. Changes in the spectrum between the two times are discussed and interpreted in terms of the two distinct shell episodes revealed by optical data. A wide range of ionization exists from Fe III to N V, with a range in radial velocity of approximately 1000 km/s. Changes in the Si III, Si IV, and N V absorption arising in the stellar wind show that the velocity structure of the wind may have changed, and that the ionization balance also was altered over the 3 year interim.

  11. The role of deuterium in optical activity: The CD spectrum of (S,S)-dideuteriooxirane

    SciTech Connect

    Ben-Tzur, S.; Basil, A.; Gedanken, A.

    1992-07-01

    The circular dichroism of (S,S)-[2,3-{sup 2}H{sub 2}]oxirane has been investigated in the gas phase over the 1800-1500-{angstrom} region. While the absorption spectrum reveals only two allowed transitions, the circular dichroism (CD) spectrum shows a third transition which is magnetic dipole allowed and electric dipole forbidden. The CD sign of the first excited state complies with a quadrant rule which was formulated for the oxirane chromophore. This consignate behavior is contrary to the role of deuterium in carbonyl compounds, where an antioctant behavior is observed. The signs of the CD signals of the first excited state for oxiranes with methyl or deuterium substituents located in the same quadrant are the same, in contrast to the antioctant behavior of deuterium in carbonyls. This leaves the chirality rule formulated for substituted oxiranes without any exceptions. 33 refs., 1 fig.

  12. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  13. VIEW SHOWING WEST ELEVATION, EAST SIDE OF MEYER AVENUE. SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SHOWING WEST ELEVATION, EAST SIDE OF MEYER AVENUE. SHOWS 499-501, MUNOZ HOUSE (AZ-73-37) ON FAR RIGHT - Antonio Bustamente House, 485-489 South Meyer Avenue & 186 West Kennedy Street, Tucson, Pima County, AZ

  14. Spectral effects on direct-insolation absorptance of five collector coatings

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    Absorptances for direct insolation of black chrome, black nickel, copper oxide, and two black zinc conversion selective coatings were calculated for a number of typical solar spectrums. Measured spectral reflectances were used while the effects of atmospheric ozone density, turbidity, and air mass were incorporated in calculated direct solar spectrums. Absorptance variation for direct insolation was found to be of the order of 1 percent for a typical range of clear-sky atmospheric conditions.

  15. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  16. Log-transforming the matter power spectrum

    NASA Astrophysics Data System (ADS)

    Greiner, M.; Enßlin, T. A.

    2015-02-01

    We investigate whether non-linear effects on the large-scale power spectrum of dark matter, namely the increase in small-scale power and the smearing of baryon acoustic oscillations, can be decreased by a log-transformation or emulated by an exponential transformation of the linear spectrum. To that end we present a formalism to convert the power spectrum of a log-normal field to the power spectrum of the logarithmic Gaussian field and vice versa. All ingredients of our derivation can already be found in various publications in cosmology and other fields. We follow a more pedagogical approach providing a detailed derivation, application examples, and a discussion of implementation subtleties in one text. We use the formalism to show that the non-linear increase in small-scale power in the matter power spectrum is significantly smaller for the log-transformed spectrum which fits the linear spectrum (with less than 20% error) for redshifts down to 1 and k ≤ 1.0 h Mpc. For lower redshifts the fit to the linear spectrum is not as good, but the reduction of non-linear effects is still significant. Similarly, we show that applying the linear growth factor to the logarithmic density leads to an automatic increase in small-scale power for low redshifts fitting to third-order perturbation spectra and Cosmic Emulator spectra with an error of less than 20%. Smearing of baryon acoustic oscillations is at least three times weaker, but still present.

  17. 15. Detail showing lower chord pinconnected to vertical member, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail showing lower chord pin-connected to vertical member, showing floor beam riveted to extension of vertical member below pin-connection, and showing brackets supporting cantilevered sidewalk. View to southwest. - Selby Avenue Bridge, Spanning Short Line Railways track at Selby Avenue between Hamline & Snelling Avenues, Saint Paul, Ramsey County, MN

  18. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  19. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  20. Consecutive combined response spectrum

    NASA Astrophysics Data System (ADS)

    Xu, Longjun; Zhao, Guochen; Liu, Qingyang; Xie, Yujian; Xie, Lili

    2014-12-01

    Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function f( T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.