Sample records for absorption tissue distribution

  1. The in vivo pharmacokinetics, tissue distribution and excretion investigation of mesaconine in rats and its in vitro intestinal absorption study using UPLC-MS/MS.

    PubMed

    Liu, Xiuxiu; Tang, Minghai; Liu, Taohong; Wang, Chunyan; Tang, Qiaoxin; Xiao, Yaxin; Yang, Ruixin; Chao, Ruobing

    2017-12-27

    1. Mesaconine, an ingredient from Aconitum carmichaelii Debx., has been proven to have cardiac effect. For further development and better pharmacological elucidation, the in vivo process and intestinal absorptive behavior of mesaconine should be investigated comprehensively. 2. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantitation of mesaconine in rat plasma, tissue homogenates, urine and feces to investigate the in vivo pharmacokinetic profiles, tissue distribution and excretion. The intestinal absorptive behavior of mesaconine was investigated using in vitro everted rat gut sac model. 3. Mesaconine was well distributed in tissues and a mass of unchanged form was detected in feces. It was difficultly absorbed into blood circulatory system after oral administration. The insufficient oral bioavailability of mesaconine may be mainly attributed to its low intestinal permeability due to a lack of lipophilicity. The absorption of mesaconine in rat's intestine is a first-order process with the passive diffusion mechanism.

  2. Reconstruction of spatial distributions of sound velocity and absorption in soft biological tissues using model ultrasonic tomographic data

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Zotov, D. I.; Rumyantseva, O. D.

    2014-07-01

    A two-step algorithm is used to reconstruct the spatial distributions of the acoustic characteristics of soft biological tissues-the sound velocity and absorption coefficient. Knowing these distributions is urgent for early detection of benign and malignant neoplasms in biological tissues, primarily in the breast. At the first stage, large-scale distributions are estimated; at the second step, they are refined with a high resolution. Results of reconstruction on the base of model initial data are presented. The principal necessity of preliminary reconstruction of large-scale distributions followed by their being taken into account at the second step is illustrated. The use of CUDA technology for processing makes it possible to obtain final images of 1024 × 1024 samples in only a few minutes.

  3. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) impact chemical concentration and activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. In order to better describe ADME parameters and how they modulat...

  4. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Differential Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...

  5. [Spectral properties of light migration in apple fruit tissue].

    PubMed

    Sun, Teng-Fei; Zhang, Teng-Teng; Zheng, Tian-Tian; Cao, Zeng-Hui; Zhang, Jun

    2013-11-01

    The present paper simulates laser wavelength 632 and 750 nm Gaussian beam migration in apple fruit tissue using Monte-Carlo method, and researches the spectral properties of absorption and scattering. It was shown that the special energy distribution characteristics of Gaussian beam influenced the diffusion of the laser in the tissue, the reflection, absorption and transmittance of 750 nm by tissue are lower, there are more photons interacting with tissue within the tissue, and they can more clearly reflect the information within the tissue. So, the transmission characteristics of the infrared light were relatively strong in biology tissue, which was convenient for researching biology tissue.

  6. Absorption, distribution and excretion of the anti-tuberculosis drug delamanid in rats: Extensive tissue distribution suggests potential therapeutic value for extrapulmonary tuberculosis.

    PubMed

    Shibata, Masakazu; Shimokawa, Yoshihiko; Sasahara, Katsunori; Yoda, Noriaki; Sasabe, Hiroyuki; Suzuki, Mitsunari; Umehara, Ken

    2017-05-01

    Delamanid (OPC-67683, Deltyba™, nitro-dihydro-imidazooxazoles derivative) is approved for the treatment of adult pulmonary multidrug-resistant tuberculosis. The absorption, distribution and excretion of delamanid-derived radioactivity were investigated after a single oral administration of 14 C-delamanid at 3 mg/kg to rats. In both male and female rats, radioactivity in blood and all tissues reached peak levels by 8 or 24 h post-dose, and thereafter decreased slowly. Radioactivity levels were 3- to 5-fold higher in lung tissue at time to maximum concentration compared with plasma. In addition, radioactivity was broadly distributed in various tissues, including the central nervous system, eyeball, placenta and fetus, indicating that 14 C-delamanid permeated the brain, retinal and placental blood barriers. By 168 h post-dose, radioactivity in almost all the tissues was higher than that in the plasma. Radioactivity was also transferred into the milk of lactating rats. Approximately 6% and 92% of radioactivity was excreted in the urine and feces, respectively, indicating that the absorbed radioactivity was primarily excreted via the biliary route. No significant differences in the absorption, distribution and excretion of 14 C-delamanid were observed between male and female rats. The pharmacokinetic results suggested that delamanid was broadly distributed to the lungs and various tissues for a prolonged duration of time at concentrations expected to effectively target tuberculosis bacteria. These data indicate that delamanid, in addition to its previously demonstrated efficacy in pulmonary tuberculosis, might be an effective therapeutic approach to treating extrapulmonary tuberculosis. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Distributed modeling of diffusive solute transport in peritoneal dialysis.

    PubMed

    Waniewski, Jacek

    2002-01-01

    The diffusive transport between blood and an ex-tissue medium (dialysis fluid) is evaluated using a mathematical model that takes into account the (quasicontinuous) distribution of capillaries within the tissue at various distances from the tissue surface, and includes diffusive-convective transport through the capillary wall and lymphatic absorption from the tissue. General formulas for solute penetration depth, lambda, and for the diffusive mass transport coefficient for the transport between blood and dialysis fluid, K(BD), are provided in terms of local transport coefficients for capillary wall, tissue, and lymphatic absorption. For pure diffusive transport between blood and dialysis fluid and thick tissue layers (i.e., if the solute penetration depth is much lower than the tissue thickness) these formulas yield previously known expressions. It is shown that apparent tissue layers, with widths lambdaTBL and lambdaT, respectively, may be defined according to the values of local transport parameters in such a way that K(BD) is equal to the solute clearance K(TBL) from the tissue by blood and lymph for a layer with width lambdaTBL or to the solute clearance K(T) from blood to dialysate by diffusion through the tissue layer with width lambdaT. For tissue layers with width much higher than the penetration depth: lambdaT approximately = lambdaTBL approximately = lambda. These characteristic width lengths depend on the transport parameters (and thus on the size) of solutes. Effective blood flow, which may be related to the exchange of the solute between blood and dialysate, is defined using an analogy to the extraction/absorption coefficients for blood-tissue exchange. Various approximations for the distributed model formula for diffusive mass transport coefficient (K(BD)) are possible. The appropriate range for their application is obtained from the general formula.

  8. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  9. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  10. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  11. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  12. Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults

    USDA-ARS?s Scientific Manuscript database

    Phytoene is a tomato carotenoid which may contribute to the apparent health benefits of tomato consumption. While phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lyc...

  13. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution

    PubMed Central

    Moran, Nancy E.; Erdman, John W.; Clinton, Steven K.

    2013-01-01

    Intake of lycopene, a red, tetraterpene carotenoid found in tomatoes is epidemiologically associated with a decreased risk of chronic disease processes, and lycopene has demonstrated bioactivity in numerous in vitro and animal models. However, our understanding of absorption, tissue distribution, and biological impact in humans remains very limited. Lycopene absorption is strongly impacted by dietary composition, especially the amount of fat. Concentrations of circulating lycopene in lipoproteins may be further influenced by a number of variations in genes related to lipid absorption and metabolism. Lycopene is not uniformly distributed among tissues, with adipose, liver, and blood being the major body pools, while the testes, adrenals, and liver have the greatest concentrations compared to other organs. Tissue concentrations of lycopene are likely dictated by expression of and genetic variation in lipoprotein receptors, cholesterol transporters, and carotenoid metabolizing enzymes, thus impacting lycopene accumulation at target sites of action. The novel application of genetic evaluation in concert with lycopene tracers will allow determination of which genes and polymorphisms define individual lycopene metabolic phenotypes, response to dietary variables, and ultimately determine biological and clinical outcomes. A better understanding of the relationship between diet, genetics, and lycopene distribution will provide necessary information to interpret epidemiological findings more accurately and to design effective, personalized clinical nutritional interventions addressing hypotheses regarding health outcomes. PMID:23845854

  14. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  15. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration.

    PubMed

    Cho, Wan-Seob; Kang, Byeong-Cheol; Lee, Jong Kwon; Jeong, Jayoung; Che, Jeong-Hwan; Seok, Seung Hyeok

    2013-03-26

    The in vivo kinetics of nanoparticles is an essential to understand the hazard of nanoparticles. Here, the absorption, distribution, and excretion patterns of titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles following oral administration were evaluated. Nanoparticles were orally administered to rats for 13 weeks (7 days/week). Samples of blood, tissues (liver, kidneys, spleen, and brain), urine, and feces were obtained at necropsy. The level of Ti or Zn in each sample was measured using inductively coupled plasma-mass spectrometry. TiO₂ nanoparticles had extremely low absorption, while ZnO nanoparticles had higher absorption and a clear dose-response curve. Tissue distribution data showed that TiO₂ nanoparticles were not significantly increased in sampled organs, even in the group receiving the highest dose (1041.5 mg/kg body weight). In contrast, Zn concentrations in the liver and kidney were significantly increased compared with the vehicle control. ZnO nanoparticles in the spleen and brain were minimally increased. Ti concentrations were not significantly increased in the urine, while Zn levels were significantly increased in the urine, again with a clear dose-response curve. Very high concentrations of Ti were detected in the feces, while much less Zn was detected in the feces. Compared with TiO₂ nanoparticles, ZnO nanoparticles demonstrated higher absorption and more extensive organ distribution when administered orally. The higher absorption of ZnO than TiO₂ nanoparticles might be due to the higher dissolution rate in acidic gastric fluid, although more thorough studies are needed.

  16. Determination of absorption changes from moments of distributions of times of flight of photons: optimization of measurement conditions for a two-layered tissue model.

    PubMed

    Liebert, Adam; Wabnitz, Heidrun; Elster, Clemens

    2012-05-01

    Time-resolved near-infrared spectroscopy allows for depth-selective determination of absorption changes in the adult human head that facilitates separation between cerebral and extra-cerebral responses to brain activation. The aim of the present work is to analyze which combinations of moments of measured distributions of times of flight (DTOF) of photons and source-detector separations are optimal for the reconstruction of absorption changes in a two-layered tissue model corresponding to extra- and intra-cerebral compartments. To this end we calculated the standard deviations of the derived absorption changes in both layers by considering photon noise and a linear relation between the absorption changes and the DTOF moments. The results show that the standard deviation of the absorption change in the deeper (superficial) layer increases (decreases) with the thickness of the superficial layer. It is confirmed that for the deeper layer the use of higher moments, in particular the variance of the DTOF, leads to an improvement. For example, when measurements at four different source-detector separations between 8 and 35 mm are available and a realistic thickness of the upper layer of 12 mm is assumed, the inclusion of the change in mean time of flight, in addition to the change in attenuation, leads to a reduction of the standard deviation of the absorption change in the deeper tissue layer by a factor of 2.5. A reduction by another 4% can be achieved by additionally including the change in variance.

  17. Laser Illumination Modality of Photoacoustic Imaging Technique for Prostate Cancer

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Peng, Yuan-yuan; Guo, Jian; Li, Hui

    2016-02-01

    Photoacoustic imaging (PAI) has recently emerged as a promising imaging technique for prostate cancer. But there was still a lot of challenge in the PAI for prostate cancer detection, such as laser illumination modality. Knowledge of absorbed light distribution in prostate tissue was essential since the distribution characteristic of absorbed light energy would influence the imaging depth and range of PAI. In order to make a comparison of different laser illumination modality of photoacoustic imaging technique for prostate cancer, optical model of human prostate was established and combined with Monte Carlo simulation method to calculate the light absorption distribution in the prostate tissue. Characteristic of light absorption distribution of transurethral and trans-rectal illumination case, and of tumor at different location was compared with each other.The relevant conclusions would be significant for optimizing the light illumination in a PAI system for prostate cancer detection.

  18. Ex vivo validation of photo-magnetic imaging.

    PubMed

    Luk, Alex; Nouizi, Farouk; Erkol, Hakan; Unlu, Mehmet B; Gulsen, Gultekin

    2017-10-15

    We recently introduced a new high-resolution diffuse optical imaging technique termed photo-magnetic imaging (PMI), which utilizes magnetic resonance thermometry (MRT) to monitor the 3D temperature distribution induced in a medium illuminated with a near-infrared light. The spatiotemporal temperature distribution due to light absorption can be accurately estimated using a combined photon propagation and heat diffusion model. High-resolution optical absorption images are then obtained by iteratively minimizing the error between the measured and modeled temperature distributions. We have previously demonstrated the feasibility of PMI with experimental studies using tissue simulating agarose phantoms. In this Letter, we present the preliminary ex vivo PMI results obtained with a chicken breast sample. Similarly to the results obtained on phantoms, the reconstructed images reveal that PMI can quantitatively resolve an inclusion with a 3 mm diameter embedded deep in a biological tissue sample with only 10% error. These encouraging results demonstrate the high performance of PMI in ex vivo biological tissue and its potential for in vivo imaging.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Euan; Kempson, Ivan; Juhasz, Albert L.

    The consumption of arsenic (As) contaminated rice is an important exposure route for humans in countries where rice cultivation employs As contaminated irrigation water. Arsenic toxicity and mobility are a function of its chemical-speciation. The distribution and identification of As in the rice plant are hence necessary to determine the uptake, transformation and potential risk posed by As contaminated rice. In this study we report on the distribution and chemical-speciation of As in rice (Oryza sativa Quest) by X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) measurements of rice plants grown in As contaminated paddy water. Investigations ofmore » {mu}XRF images from rice tissues found that As was present in all rice tissues, and its presence correlated with the presence of iron at the root surface and copper in the rice leaf. X-ray absorption near edge structure analysis of rice tissues identified that inorganic As was the predominant form of As in all rice tissues studied, and that arsenite became increasingly dominant in the aerial portion of the rice plant.« less

  20. Absorption, distribution, metabolism and excretion of peginesatide, a novel erythropoiesis-stimulating agent, in rats

    PubMed Central

    Woodburn, Kathryn W.; Holmes, Christopher P.; Wilson, Susan D.; Fong, Kei-Lai; Press, Randall J.; Moriya, Yuu; Tagawa, Yoshihiko

    2011-01-01

    The pharmacokinetics(PK) (absorption, distribution, metabolism, excretion) of peginesatide.a synthetic, PEGylated, investigational, peptide-based erythropoiesis-stimulating agent (ESA), was evaluated in rats. The PK profile was evaluated at 0.1-5 mg·kg−1 IV using unlabeled or [14C]-labeled peginesatide. Mass balance, tissue distribution and metabolism were evaluated following IV administration of 5 mg·kg−1 [14C]-peginesatide, with tissue distribution also evaluated by quantitative whole-body autoradiography (QWBA) following an IV dose of 17 mg·kg−1[14C]-peginesatide. Plasma clearance was slow and elimination was biphasic with unchanged peginesatide representing >90% of the total radioactivity of the total radioactive exposure. Slow uptake of the radiolabeled compound from the vascular compartment into the tissues was observed. Biodistribution to bone marrow and extramedullary hematopoietic sites, and to highly vascularized lymphatic and excretory tissues occurred. A predominant degradation event to occur in vivo was the loss of one PEG chain from the branched PEG moiety to generate mono-PEG. Renal excretion was the primary mechanism (41%) of elimination, with parent molecule (67%) the major moiety excreted. In conclusion, elimination of [14C]-peginesatide-derived radioactivity was extended, retention preferentially occurred at sites of erythropoiesis (bone marrow), and urinary excretion was the primary elimination route. PMID:22188389

  1. Depth distributions of light action spectra for skin chromophores

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  2. In vivo measurements of optical properties of human muscles with visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin

    2018-02-01

    Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.

  3. A general model for the absorption of ultrasound by biological tissues and experimental verification.

    PubMed

    Jongen, H A; Thijssen, J M; van den Aarssen, M; Verhoef, W A

    1986-02-01

    In this paper, a closed-form expression is derived for the absorption of ultrasound by biological tissues. In this expression, the viscothermal and viscoelastic theories of relaxation processes are combined. Three relaxation time distribution functions are introduced, and it is assumed that each of these distributions can be described by an identical and simple hyperbolic function. Several simplifying assumptions had to be made to enable the experimental verification of the derived closed-form expression of the absorption coefficient. The simplified expression leaves two degrees of freedom and it was fitted to the experimental data obtained from homogenized beef liver. The model produced a considerably better fit to the data than other, more pragmatic models for the absorption coefficient as a function of frequency that could be found in the literature. Scattering in beef liver was estimated indirectly from the difference between attenuation in in vitro liver tissue as compared to absorption in a homogenate. The frequency dependence of the scattering coefficient could be described by a power law with a power of the order of 2. A comparable figure was found in direct backscattering measurements, performed at our laboratory with the same liver samples [Van den Aarssen et al., J. Acoust. Soc. Am. (to be published)]. A model for scattering recently proposed by Sehgal and Greenleaf [Ultrason. Imag. 6, 60-80 (1984)] was fitted to the scattering data as well. This latter model enabled the estimation of a maximum scatterer distance, which appeared to be of the order of 25 micron.

  4. High-sensitivity terahertz imaging of traumatic brain injury in a rat model

    NASA Astrophysics Data System (ADS)

    Zhao, Hengli; Wang, Yuye; Chen, Linyu; Shi, Jia; Ma, Kang; Tang, Longhuang; Xu, Degang; Yao, Jianquan; Feng, Hua; Chen, Tunan

    2018-03-01

    We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.

  5. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei; Hu, Yongjun

    2013-01-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [3H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the Cmax and area under the curve (AUC)0–180 of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the Cmax and AUC0–180 of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10–100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  6. A Monte Carlo study of fluorescence generation probability in a two-layered tissue model

    NASA Astrophysics Data System (ADS)

    Milej, Daniel; Gerega, Anna; Wabnitz, Heidrun; Liebert, Adam

    2014-03-01

    It was recently reported that the time-resolved measurement of diffuse reflectance and/or fluorescence during injection of an optical contrast agent may constitute a basis for a technique to assess cerebral perfusion. In this paper, we present results of Monte Carlo simulations of the propagation of excitation photons and tracking of fluorescence photons in a two-layered tissue model mimicking intra- and extracerebral tissue compartments. Spatial 3D distributions of the probability that the photons were converted from excitation to emission wavelength in a defined voxel of the medium (generation probability) during their travel between source and detector were obtained for different optical properties in intra- and extracerebral tissue compartments. It was noted that the spatial distribution of the generation probability depends on the distribution of the fluorophore in the medium and is influenced by the absorption of the medium and of the fluorophore at excitation and emission wavelengths. Simulations were also carried out for realistic time courses of the dye concentration in both layers. The results of the study show that the knowledge of the absorption properties of the medium at excitation and emission wavelengths is essential for the interpretation of the time-resolved fluorescence signals measured on the surface of the head.

  7. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse.

    PubMed

    Maisel, Katharina; Ensign, Laura; Reddy, Mihika; Cone, Richard; Hanes, Justin

    2015-01-10

    It is believed that mucoadhesive surface properties on particles delivered to the gastrointestinal (GI) tract improve oral absorption or local targeting of various difficult-to-deliver drug classes. To test the effect of nanoparticle mucoadhesion on distribution of nanoparticles in the GI tract, we orally and rectally administered nano- and microparticles that we confirmed possessed surfaces that were either strongly mucoadhesive or non-mucoadhesive. We found that mucoadhesive particles (MAP) aggregated in mucus in the center of the GI lumen, far away from the absorptive epithelium, both in healthy mice and in a mouse model of ulcerative colitis (UC). In striking contrast, water absorption by the GI tract rapidly and uniformly transported non-mucoadhesive mucus-penetrating particles (MPP) to epithelial surfaces, including reaching the surfaces between villi in the small intestine. When using high gavage fluid volumes or injection into ligated intestinal loops, common methods for assessing oral drug and nanoparticle absorption, we found that both MAP and MPP became well-distributed throughout the intestine, indicating that the barrier properties of GI mucus were compromised. In the mouse colorectum, MPP penetrated into mucus in the deeply in-folded surfaces to evenly coat the entire epithelial surface. Moreover, in a mouse model of UC, MPP were transported preferentially into the disrupted, ulcerated tissue. Our results suggest that delivering drugs in non-mucoadhesive MPP is likely to provide enhanced particle distribution, and thus drug delivery, in the GI tract, including to ulcerated tissues. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optical properties of cells with melanin

    NASA Astrophysics Data System (ADS)

    Rohde, Barukh; Coats, Israel; Krueger, James; Gareau, Dan

    2014-02-01

    The optical properties of pigmented lesions have been studied using diffuse reflectance spectroscopy in a noninvasive configuration on optically thick samples such as skin in vivo. However, it is difficult to un-mix the effects of absorption and scattering with diffuse reflectance spectroscopy techniques due to the complex anatomical distributions of absorbing and scattering biomolecules. We present a device and technique that enables absorption and scattering measurements of tissue volumes much smaller than the optical mean-free path. Because these measurements are taken on fresh-frozen sections, they are direct measurements of the optical properties of tissue, albeit in a different hydration state than in vivo tissue. Our results on lesions from 20 patients including melanomas and nevi show the absorption spectrum of melanin in melanocytes and basal keratinocytes. Our samples consisted of fresh frozen sections that were unstained. Fitting the spectrum as an exponential decay between 500 and 1100 nm [mua = A*exp(-B*(lambda-C)) + D], we report on the fit parameters of and their variation due to biological heterogeneity as A = 4.20e4 +/- 1.57e5 [1/cm], B = 4.57e-3 +/- 1.62e-3 [1/nm], C = 210 +/- 510 [nm] , D = 613 +/- 534 [1/cm]. The variability in these results is likely due to highly heterogeneous distributions of eumelanin and pheomelanin.

  9. Absorption, Distribution, Metabolism, and Excretion of the Androgen Receptor Inhibitor Enzalutamide in Rats and Dogs.

    PubMed

    Ohtsu, Yoshiaki; Gibbons, Jacqueline A; Suzuki, Katsuhiro; Fitzsimmons, Michael E; Nozawa, Kohei; Arai, Hiroshi

    2017-08-01

    Enzalutamide is an androgen receptor inhibitor that has been approved in several countries. Absorption, distribution, metabolism, and excretion (ADME) data in animals would facilitate understanding of the efficacy and safety profiles of enzalutamide, but little information has been reported in public. The purpose of this study was to clarify the missing ADME profile in animals. ADME of 14 C-enzalutamide after oral administration as Labrasol solution were investigated in non-fasted male Sprague-Dawley rats and beagle dogs. Plasma concentrations of 14 C-enzalutamide peaked in rats and dogs at 6-8 h after a single oral administration. In most tissues, radioactivity concentration peaked at 4 h after administration. Excluding the gastrointestinal tract, tissues with the highest concentration of radioactivity were liver, fat, and adrenal glands. The tissue concentrations of radioactivity declined below the limit of quantitation or <0.89 % of maximum concentration by 168 h post-dose. Two known metabolites (M1 and M2) and at least 15 novel possible metabolites were detected in this study. M1 was the most abundant metabolite in both rats and dogs. Unchanged drug was a minor component in excreta. In intact rats, the mean urinary and fecal excretion of radioactivity accounted for 44.20 and 49.80 % of administered radioactivity, respectively. In intact dogs, mean urinary and fecal excretion was 62.00 and 22.30 % of the administered radioactivity, respectively. Rapid oral absorption was observed in rats and dogs when 14 C-enzalutamide was administered as Labrasol solution. Tissue distribution in rats was clarified. The elimination of enzalutamide is mediated primarily by metabolism. Species differences were observed in excretion route.

  10. Elucidation of Arctigenin Pharmacokinetics and Tissue Distribution after Intravenous, Oral, Hypodermic and Sublingual Administration in Rats and Beagle Dogs: Integration of In Vitro and In Vivo Findings.

    PubMed

    Li, Jie; Li, Xin; Ren, Yu-Shan; Lv, Yuan-Yuan; Zhang, Jun-Sheng; Xu, Xiao-Li; Wang, Xian-Zhen; Yao, Jing-Chun; Zhang, Gui-Min; Liu, Zhong

    2017-01-01

    Although arctigenin ( AG ) has diverse bioactivities, such as anti-oxidant, anti-inflammatory, anti-cancer, immunoregulatory and neuroprotective activities, its pharmacokinetics have not been systematically evaluated. The purpose of this work was to identify the pharmacokinetic properties of AG via various experiments in vivo and in vitro . In this research, rats and beagle dogs were used to investigate the PK (pharmacokinetics, PK) profiles of AG with different drug-delivery manners, including intravenous (i.v), hypodermic injection (i.h), and sublingual (s.l) administration. The data shows that AG exhibited a strong absorption capacity in both rats and beagle dogs (absorption rate < 1 h), a high absorption degree (absolute bioavailability > 100%), and a strong elimination ability ( t 1/2 < 2 h). The tissue distributions of AG at different time points after i.h showed that the distribution of AG in rat tissues is rapid (2.5 h to reach the peak) and wide (detectable in almost all tissues and organs). The AG concentration in the intestine was the highest, followed by that in the heart, liver, pancreas, and kidney. In vitro , AG were incubated with human, monkey, beagle dog and rat liver microsomes. The concentrations of AG were detected by UPLC-MS/MS at different time points (from 0 min to 90 min). The percentages of AG remaining in four species' liver microsomes were human (62 ± 6.36%) > beagle dog (25.9 ± 3.24%) > rat (15.7 ± 9%) > monkey (3.69 ± 0.12%). This systematic investigation of pharmacokinetic profiles of arctigenin (AG) in vivo and in vitro is worthy of further exploration.

  11. Elucidation of Arctigenin Pharmacokinetics and Tissue Distribution after Intravenous, Oral, Hypodermic and Sublingual Administration in Rats and Beagle Dogs: Integration of In Vitro and In Vivo Findings

    PubMed Central

    Li, Jie; Li, Xin; Ren, Yu-Shan; Lv, Yuan-Yuan; Zhang, Jun-Sheng; Xu, Xiao-Li; Wang, Xian-Zhen; Yao, Jing-Chun; Zhang, Gui-Min; Liu, Zhong

    2017-01-01

    Although arctigenin (AG) has diverse bioactivities, such as anti-oxidant, anti-inflammatory, anti-cancer, immunoregulatory and neuroprotective activities, its pharmacokinetics have not been systematically evaluated. The purpose of this work was to identify the pharmacokinetic properties of AG via various experiments in vivo and in vitro. In this research, rats and beagle dogs were used to investigate the PK (pharmacokinetics, PK) profiles of AG with different drug-delivery manners, including intravenous (i.v), hypodermic injection (i.h), and sublingual (s.l) administration. The data shows that AG exhibited a strong absorption capacity in both rats and beagle dogs (absorption rate < 1 h), a high absorption degree (absolute bioavailability > 100%), and a strong elimination ability (t1/2 < 2 h). The tissue distributions of AG at different time points after i.h showed that the distribution of AG in rat tissues is rapid (2.5 h to reach the peak) and wide (detectable in almost all tissues and organs). The AG concentration in the intestine was the highest, followed by that in the heart, liver, pancreas, and kidney. In vitro, AG were incubated with human, monkey, beagle dog and rat liver microsomes. The concentrations of AG were detected by UPLC-MS/MS at different time points (from 0 min to 90 min). The percentages of AG remaining in four species’ liver microsomes were human (62 ± 6.36%) > beagle dog (25.9 ± 3.24%) > rat (15.7 ± 9%) > monkey (3.69 ± 0.12%). This systematic investigation of pharmacokinetic profiles of arctigenin (AG) in vivo and in vitro is worthy of further exploration. PMID:28659807

  12. Pharmacokinetic study of darbepoetin alfa: absorption, distribution, and excretion after a single intravenous and subcutaneous administration to rats.

    PubMed

    Yoshioka, E; Kato, K; Shindo, H; Mitsuoka, C; Kitajima, S-I; Ogata, H; Misaizu, T

    2007-01-01

    KRN321 is a hyperglycosylated analogue of recombinant human erythropoietin (rHuEPO, epoetin alfa), and its absorption, distribution, and excretion have been studied after a single intravenous and subcutaneous administration of 125I-KRN321 at a dose of 0.5 microg kg-1 to male rats. The half-lives of immunoreactive radioactivity in the terminal phase after intravenous and subcutaneous administration were 14.05 and 14.36 h, respectively, and the bioavailability rate after subcutaneous administration was 47%. The total radioactivity in tissues was lower than that in the serum in all tissues excluding the thyroid gland and skin at the injection site (subcutaneous administration). The maximum concentrations were observed in the bone marrow or skin at the injection site followed by the thyroid gland, kidneys, adrenal glands, spleen, lungs, stomach and bladder. The radioactivity found in trichloroacetic acid-precipitated fractions suggested that a high-molecular weight compound, unchanged or mixed with endogenous protein, distributed to the tissues after administration. The whole-body autoradiographic findings in both groups were in agreement with the tissue distribution mentioned above. The blood cell uptake of KRN321 was low for both groups. The excretion ratios of radioactivity into urine and faeces up to 168 h were 71.4 and 14.1% after the intravenous administration and 74.9 and 12.0% after the subcutaneous administration. There was no difference in the excretion profile of radioactivity between the two groups.

  13. Determination of blood oxygenation in the brain by time-resolved reflectance spectroscopy: influence of the skin, skull, and meninges

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Wang, Lihong V.; Tittel, Frank K.; Chance, Britton; Jacques, Steven L.

    1994-07-01

    Near infrared light has been used for the determination of blood oxygenation in the brain but little attention has been paid to the fact that the states of blood oxygenation in arteries, veins, and capillaries differ substantially. In this study, Monte Carlo simulations for a heterogeneous system were conducted, and near infrared time-resolved reflectance measurements were performed on a heterogeneous tissue phantom model. The model was made of a solid polyester resin, which simulates the tissue background. A network of tubes was distributed uniformly through the resin to simulate the blood vessels. The time-resolved reflectance spectra were taken with different absorbing solutions filled in the network. Based on the simulation and experimental results, we investigated the dependence of the absorption coefficient obtained from the heterogeneous system on the absorption of the actual absorbing solution filled in the tubes. We show that light absorption by the brain should result from the combination of blood and blood-free tissue background.

  14. Modeling the thermo-acoustic effects of thermal-dependent speed of sound and acoustic absorption of biological tissues during focused ultrasound hyperthermia.

    PubMed

    López-Haro, S A; Gutiérrez, M I; Vera, A; Leija, L

    2015-10-01

    To evaluate the effects of thermal dependence of speed of sound (SOS) and acoustic absorption of biological tissues during noninvasive focused ultrasound (US) hyperthermia therapy. A finite element (FE) model was used to simulate hyperthermia therapy in the liver by noninvasive focused US. The model consisted of an ultrasonic focused transducer radiating a four-layer biological medium composed of skin, fat, muscle, and liver. The acoustic field and temperature distribution along the layers were obtained after 15 s of hyperthermia therapy using the bio-heat equation. The model solution was found with and without the thermal dependence of SOS and acoustic absorption of biological tissues. The inclusion of the thermal dependence of the SOS generated an increment of 0.4 mm in the longitudinal focus axis of the acoustic field. Moreover, results indicate an increment of the hyperthermia area (zone with temperature above 43 °C), and a maximum temperature difference of almost 3.5 °C when the thermal dependence of absorption was taken into account. The increment of the achieved temperatures at the treatment zone indicated that the effects produced by the thermal dependence of SOS and absorption must be accounted for when planning hyperthermia treatment in order to avoid overheating undesired regions.

  15. Towards noninvasive method for the detection of pathological tissue variations by mapping different blood parameters

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Qananwah, Qasem; Abo Alam, Kawther; Bolz, Armin

    2010-04-01

    This paper describes the development of an early detection method for probing pathological tissue variations. The method could be used for classifying various tissue alteration namely tumors tissue or skin disorders. The used approach is based on light scattering and absorption spectroscopy. Spectral content of the scattered light provides diagnostic information about the tissue contents. The importance of this method is using a safe light that has less power than the used in the imaging methods that will enable the frequent examination of tissue, while the exiting modalities have drawbacks like ionization, high cost, time-consuming, and agents' usage. A modality for mapping the oxygen saturation distribution in tissues noninvasively is new in this area of research, since this study focuses on the oxygen molecule in the tissue which supposed to be homogenously distributed through the tissues. Cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Therefore, oxygen existence and homogeneity will be alternated depending on the tissue state. In the proposed system, the signal was extracted after illuminating the tissue by light emitting diodes (LED's) that emits light in two wavelengths, red (660 nm) and infrared (880 nm). The absorption in these wavelengths is mainly due to oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) while other blood and tissue contents nearly have low effect on the signal. The backscattered signal which is received by a photodiodes array (128 PDs) was measured and processed using LabVIEW. Photoplethysmogram (PPG) signals have been measured at different locations. These signals will be used to differentiate between the normal and the pathological tissues. Variations in hemoglobin concentration and blood perfusion will also be used as an important indication feature for this purpose.

  16. Absorption of Orally Administered Hyaluronan.

    PubMed

    Kimura, Mamoru; Maeshima, Takuya; Kubota, Takumi; Kurihara, Hitoshi; Masuda, Yasunobu; Nomura, Yoshihiro

    2016-12-01

    Hyaluronan (HA) has been utilized as a supplement. However, the absorption of orally administrated HA remains controversial. The degradation and absorption of HA in the intestine were investigated in this study. HA excretion into the feces, degradation in the intestinal tract, absorption through the large intestine, and translocation to the blood and skin were examined. HA administered orally was not detected in rat feces. HA was degraded by cecal content, but not by artificial gastric juice and intestinal juice. Oligosaccharide HA passed through excised large intestine sacs. Furthermore, disaccharides, tetrasaccharides, and polysaccharides HA were distributed to the skin of rats following oral administration of high molecular weight HA (300 kDa). The results of the study suggest that orally administered HA is degraded to oligosaccharides by intestinal bacteria, and oligosaccharide HA is absorbed in the large intestine and is subsequently distributed throughout the tissues, including the skin.

  17. Comparative plasma and tissue distribution of Sun Pharma's generic doxorubicin HCl liposome injection versus Caelyx® (doxorubicin HCl liposome injection) in syngeneic fibrosarcoma-bearing BALB/c mice and Sprague-Dawley rats.

    PubMed

    Burade, Vinod; Bhowmick, Subhas; Maiti, Kuntal; Zalawadia, Rishit; Jain, Deepak; Rajamannar, Thennati

    2017-05-01

    The liposomal formulation of doxorubicin [doxorubicin (DXR) hydrochloride (HCl) liposome injection, Caelyx ® ] alters the tissue distribution of DXR as compared with nonliposomal DXR, resulting in an improved benefit-risk profile. We conducted studies in murine models to compare the plasma and tissue distribution of a proposed generic DXR HCl liposome injection developed by Sun Pharmaceuticals Industries Limited (SPIL DXR HCl liposome injection) with Caelyx ® . The plasma and tissue distributions of the SPIL and reference DXR HCl liposome injections were compared in syngeneic fibrosarcoma-bearing BALB/c mice and Sprague-Dawley rats. Different batches and different lots of the same batch of the reference product were also compared with each other. The SPIL and reference DXR HCl liposome injections exhibited generally comparable plasma and tissue distribution profiles in both models. While minor differences were observed between the two products in some tissues, different batches and lots of the reference product also showed some differences in the distribution of various analytes in some tissues. The ratios of estimated free to encapsulated DXR for plasma and tissue were generally comparable between the SPIL and reference DXR HCl liposome injections in both models, indicating similar extents of absorption into the tissues and similar rates of drug release from liposomes. The plasma and tissue distribution profiles of the SPIL and reference DXR HCl liposome injections were shown to be generally comparable. Inconsistencies between the products observed in some tissues were thought to be due to biological variation.

  18. Pixel-based absorption correction for dual-tracer fluorescence imaging of receptor binding potential

    PubMed Central

    Kanick, Stephen C.; Tichauer, Kenneth M.; Gunn, Jason; Samkoe, Kimberley S.; Pogue, Brian W.

    2014-01-01

    Ratiometric approaches to quantifying molecular concentrations have been used for decades in microscopy, but have rarely been exploited in vivo until recently. One dual-tracer approach can utilize an untargeted reference tracer to account for non-specific uptake of a receptor-targeted tracer, and ultimately estimate receptor binding potential quantitatively. However, interpretation of the relative dynamic distribution kinetics is confounded by differences in local tissue absorption at the wavelengths used for each tracer. This study simulated the influence of absorption on fluorescence emission intensity and depth sensitivity at typical near-infrared fluorophore wavelength bands near 700 and 800 nm in mouse skin in order to correct for these tissue optical differences in signal detection. Changes in blood volume [1-3%] and hemoglobin oxygen saturation [0-100%] were demonstrated to introduce substantial distortions to receptor binding estimates (error > 30%), whereas sampled depth was relatively insensitive to wavelength (error < 6%). In response, a pixel-by-pixel normalization of tracer inputs immediately post-injection was found to account for spatial heterogeneities in local absorption properties. Application of the pixel-based normalization method to an in vivo imaging study demonstrated significant improvement, as compared with a reference tissue normalization approach. PMID:25360349

  19. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    PubMed Central

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie

    2013-01-01

    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  20. Temperature distribution analysis of tissue water vaporization during microwave ablation: experiments and simulations.

    PubMed

    Ai, Haiming; Wu, Shuicai; Gao, Hongjian; Zhao, Lei; Yang, Chunlan; Zeng, Yi

    2012-01-01

    The temperature distribution in the region near a microwave antenna is a critical factor that affects the entire temperature field during microwave ablation of tissue. It is challenging to predict this distribution precisely, because the temperature in the near-antenna region varies greatly. The effects of water vaporisation and subsequent tissue carbonisation in an ex vivo porcine liver were therefore studied experimentally and in simulations. The enthalpy and high-temperature specific absorption rate (SAR) of liver tissues were calculated and incorporated into the simulation process. The accuracy of predictions for near-field temperatures in our simulations has reached the level where the average maximum error is less than 5°C. In addition, a modified thermal model that accounts for water vaporisation and the change in the SAR distribution pattern is proposed and validated with experiment. The results from this study may be useful in the clinical practice of microwave ablation and can be applied to predict the temperature field in surgical planning.

  1. In vivo absorption and disposition of α-cedrene, a sesquiterpene constituent of cedarwood oil, in female and male rats.

    PubMed

    Kim, Tae Hwan; Yoo, Sun Dong; Lee, Hye Suk; Lee, Kyoung Mee; Seok, Su Hyun; Kim, Min Gi; Jung, Byung Hwa; Kim, Min Gyu; Shin, Beom Soo

    2015-04-01

    This study aimed to evaluate the potential of α-cedrene as a new anti-obesity drug by characterizing absorption, metabolism and pharmacokinetics in rats. α-Cedrene was administered intravenously (10 and 20 mg/kg) and orally (50 and 100 mg/kg) to female and male Sprague-Dawley rats. Blood, tissues, urine, and feces were collected at predetermined times. α-Cedrene concentrations were determined by a validated gas chromatography-tandem mass spectrometry (GC-MS/MS). A gas chromatography-mass selective detection (GC-MSD) method was used to identify the major metabolite. After i.v. injection, α-cedrene exhibited a rapid clearance (98.4-120.3 ml/min/kg), a large distribution volume (35.9-56.5 l/kg), and a relatively long half-life (4.0-6.4 h). Upon oral administration, it was slowly absorbed (Tmax = 4.4 h) with bioavailability of 48.7-84.8%. No gender differences were found in its pharmacokinetics. Upon oral administration, α-cedrene was highly distributed to tissues, with the tissue-to-plasma partition coefficients (Kp) far greater than unity for all tissues. In particular, its distribution to lipid was notably high (Kp = 132.0) compared to other tissues. A mono-hydroxylated metabolite was identified as a preliminary metabolite in rat plasma. These results suggest that α-cedrene has the favorable pharmacokinetic characteristics to be further tested as an anti-obesity drug in clinical studies. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. ABO blood grouping from hard and soft tissues of teeth by modified absorption-elution technique.

    PubMed

    Ramnarayan, Bk; Manjunath, M; Joshi, Anagha Ananth

    2013-01-01

    Teeth have always been known as stable tissue that can be preserved both physically and chemically for long periods of time. Blood group substances have been known to be present in both the hard and soft tissues of the teeth. This study aimed at detection of ABO blood group substances from soft and hard tissues of teeth and also to evaluate the reliability of teeth stored for a relatively long period as a source of blood group substances by absorption-elution technique with some modifications. Blood group obtained from the teeth was compared with those obtained from the blood sample. Pulp showed a very large correlation in both fresh and long-standing teeth though it decreased slightly in the latter. Hard tissue showed a large correlation in both the groups indicating that hard tissue is quite reliable to detect blood group and that there is no much difference in the reliability in both the groups. However, combining pulp and hard tissue, correlation is moderate. Correlation of blood grouping with the age, sex, and jaw distribution was carried out. Blood group identification from hard and soft tissues of teeth aids in the identification of an individual.

  3. X-ray absorption fine structure (XAFS) analysis of titanium-implanted soft tissue.

    PubMed

    Uo, Motohiro; Asakura, Kiyotaka; Yokoyama, Atsuro; Ishikawa, Makoto; Tamura, Kazuchika; Totsuka, Yasunori; Akasaka, Tsukasa; Watari, Fumio

    2007-03-01

    Tissues contacting Ti dental implants were subjected to X-ray absorption fine structure (XAFS) analysis to examine the chemical state of Ti transferred from the placed implant into the surrounding tissue. Nine tissues that contacted pure Ti cover screws for several months were excised in a second surgery whereby healing abutments were set. Six tissues that surrounded implants retrieved due to their failure were also excised. Ti distributions in the excised specimens were confirmed by X-ray scanning analytical microscopy (XSAM), and the specimens were subjected to fluorescence XAFS analysis to determine the chemical states of the low concentrations of Ti in the tissues surrounding Ti dental implants. Ti mostly existed in the metallic state and was considered to be debris derived from the abrasion of implant pieces during implant surgery. Oxidized forms of Ti, such as anatase and rutile, were also detected in a few specimens-and existed in either a pure state or mixed state with metallic Ti. It was concluded that the existence of Ti in the tissue did not cause implant failure. Moreover, the usefulness of XAFS for analysis of the chemical states of rarely contained elements in biological tissue was demonstrated.

  4. A mass balance of tri-hexabrominated diphenyl ethers in lactating cows.

    PubMed

    Kierkegaard, Amelie; De Wit, Cynthia A; Asplund, Lillemor; McLachlan, Michael S; Thomas, Gareth O; Sweetman, Andrew J; Jones, Kevin C

    2009-04-01

    Beef and dairy products can be important vectors of human exposure to polybrominated diphenylethers (BDEs), and hence an understanding of BDE transfer from feed to cows' milk and tissue is important for BDE exposure assessment The fate of tri- to hexaBDEs in lactating cows exposed to a naturally contaminated diet was studied by analyzing feed, feces, and milk samples from a mass balance study. Tissue distribution was studied in one cowslaughtered afterthe experiment The carryover rates from feed to milk ranged from 0.15 to 0.35 for the major congeners. Lower values were observed for several of the tetrabrominated congeners, and this was attributed to metabolism. The dietary absorption efficiency decreased with increasing octanol-water partition coefficient of the BDE congener. The absorption behavior was consistent with a model based on chemical lipophilicity, but agreed less well with a model based on effective molecular diameter, and it violated Lipinski's "rule of 5". The lipid normalized concentrations were similar in all tissues analyzed including liver and milk, suggesting that tissue distribution is governed by partitioning into lipids. Overall, the behavior of the tri- to hexaBDEs was consistent with that observed for other classes of halogenated aromatic contaminants such as PCBs and PCDD/Fs, but it differed markedly from the behavior of the hepta- decaBDEs.

  5. The aluminium content of breast tissue taken from women with breast cancer.

    PubMed

    House, Emily; Polwart, Anthony; Darbre, Philippa; Barr, Lester; Metaxas, George; Exley, Christopher

    2013-10-01

    The aetiology of breast cancer is multifactorial. While there are known genetic predispositions to the disease it is probable that environmental factors are also involved. Recent research has demonstrated a regionally specific distribution of aluminium in breast tissue mastectomies while other work has suggested mechanisms whereby breast tissue aluminium might contribute towards the aetiology of breast cancer. We have looked to develop microwave digestion combined with a new form of graphite furnace atomic absorption spectrometry as a precise, accurate and reproducible method for the measurement of aluminium in breast tissue biopsies. We have used this method to test the thesis that there is a regional distribution of aluminium across the breast in women with breast cancer. Microwave digestion of whole breast tissue samples resulted in clear homogenous digests perfectly suitable for the determination of aluminium by graphite furnace atomic absorption spectrometry. The instrument detection limit for the method was 0.48 μg/L. Method blanks were used to estimate background levels of contamination of 14.80 μg/L. The mean concentration of aluminium across all tissues was 0.39 μg Al/g tissue dry wt. There were no statistically significant regionally specific differences in the content of aluminium. We have developed a robust method for the precise and accurate measurement of aluminium in human breast tissue. There are very few such data currently available in the scientific literature and they will add substantially to our understanding of any putative role of aluminium in breast cancer. While we did not observe any statistically significant differences in aluminium content across the breast it has to be emphasised that herein we measured whole breast tissue and not defatted tissue where such a distribution was previously noted. We are very confident that the method developed herein could now be used to provide accurate and reproducible data on the aluminium content in defatted tissue and oil from such tissues and thereby contribute towards our knowledge on aluminium and any role in breast cancer. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Lay, Christopher C.; Mathews, Marlon S.; Linskey, Mark E.; Frostig, Ron D.; Tromberg, Bruce J.

    2009-03-01

    We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (Iisch=ctHHb/ctO2Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.

  7. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  8. Fluorescence molecular imaging based on the adjoint radiative transport equation

    NASA Astrophysics Data System (ADS)

    Asllanaj, Fatmir; Addoum, Ahmad; Rodolphe Roche, Jean

    2018-07-01

    A new reconstruction algorithm for fluorescence diffuse optical tomography of biological tissues is proposed. The radiative transport equation in the frequency domain is used to model light propagation. The adjoint method studied in this work provides an efficient way for solving the inverse problem. The methodology is applied to a 2D tissue-like phantom subjected to a collimated laser beam. Indocyanine Green is used as fluorophore. Reconstructed images of the spatial fluorophore absorption distribution is assessed taking into account the residual fluorescence in the medium. We show that illuminating the tissue surface from a collimated centered direction near the inclusion gaves a better reconstruction quality. Two closely positioned inclusions can be accurately localized. Additionally, their fluorophore absorption coefficients can be quantified. However, the algorithm failes to reconstruct smaller or deeper inclusions. This is due to light attenuation in the medium. Reconstructions with noisy data are also achieved with a reasonable accuracy.

  9. Modelling and characterization of photothermal effects assisted with gold nanorods in ex vivo samples and in a murine model

    NASA Astrophysics Data System (ADS)

    Lamela Rivera, Horacio; Rodríguez Jara, Félix; Cunningham, Vincent

    2011-03-01

    We discuss in this article the implementation of a laser-tissue interaction and bioheat-transfer 2-D finite-element model for Photothermal Therapy assisted with Gold Nanorods. We have selected Gold Nanorods as absorbing nanostructures in order to improve the efficiency of using compact diode lasers because of their high opto-thermal conversion efficiency at 808 and 850 nm. The goal is to model the distribution of the optical energy among the tissue including the skin absorption effects and the tissue thermal response, with and without the presence of Gold Nanorods. The heat generation due to the optical energy absorption and the thermal propagation will be computationally modeled and optimized. The model has been evaluated and compared with experimental ex-vivo data in fresh chicken muscle samples and in-vivo BALB/c mice animal model.

  10. Numerical simulation of ultrasound-thermotherapy combining nonlinear wave propagation with broadband soft-tissue absorption.

    PubMed

    Ginter, S

    2000-07-01

    Ultrasound (US) thermotherapy is used to treat tumours, located deep in human tissue, by heat. It features by the application of high intensity focused ultrasound (HIFU), high local temperatures of about 90 degrees C and short treating time of a few seconds. Dosage of the therapy remains a problem. To get it under control, one has to know the heat source, i.e. the amount of absorbed US power, which shows nonlinear influences. Therefore, accurate simulations are essential. In this paper, an improved simulation model is introduced which enables accurate investigations of US thermotherapy. It combines nonlinear US propagation effects, which lead to generation of higher harmonics, with a broadband frequency-power law absorption typical for soft tissue. Only the combination of both provides a reliable calculation of the generated heat. Simulations show the influence of nonlinearities and broadband damping for different source signals on the absorbed US power density distribution.

  11. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials

    PubMed Central

    Sharma, Nilesh C.; Nath, Sudip; Parsons, Jason G.; Gardea- Torresdey, Jorge L.; Pal, Tarasankar

    2008-01-01

    Growth of Sesbania seedlings in chloroaurate solution resulted in the accumulation of gold with the formation of stable gold nanoparticles in plant tissues. Transmission electron microscopy revealed the intracellular distribution of monodisperse nanospheres, possibly due to reduction of the metal ions by secondary metabolites present in cells. X-ray absorption near-edge structure and extended X-ray absorption fine structure demonstrated a high degree of efficiency for the biotransformation of Au(III) into Au(0) by plant tissues. The catalytic function of the nanoparticle-rich biomass was substantiated by the reduction of aqueous 4-nitrophenol (4-NP). This is the first report of gold nanoparticle-bearing biomatrix directly reducing a toxic pollutant, 4-NP. PMID:17711235

  12. The metabolism of structured triacylglycerols.

    PubMed

    Mu, Huiling; Porsgaard, Trine

    2005-11-01

    The triacylglycerol (TAG) structure in addition to the overall fatty acid profile is of importance when considering the nutritional effect of a dietary fat. This review aims at summarizing our current knowledge of the digestion, absorption, uptake, and transport of structured TAGs, with particular emphasis on the following aspects: gastric emptying, specificity of pancreatic lipase, lymphatic transport and clearance of chylomicrons, effects of lipid structure on tissue lipid compositions and the fecal loss of fats. So an overview will be provided for how the structure and fatty acid composition of TAGs affect their absorption and the distribution of the fatty acids in the body following digestion and absorption.

  13. Laser optoacoustic tomography for medical diagnostics: principles

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Esenaliev, Rinat O.; Jacques, Steven L.; Tittel, Frank K.

    1996-04-01

    This paper is to describe principles of laser optoacoustic tomography for medical diagnostics. Two types of imaging modes are presented. The first is the tomography in transmission mode, which utilizes detection of stress transients transmitted from the laser-excited volume toward the depth through thick layers of tissue. The second is the tomography in reflection mode which utilizes detection of stress transients generated in superficial tissue layer and reflected back toward tissue surface. To distinguish the two modes, we have abbreviated them as (1) laser optoacoustic tomography in transmission mode, LOATT, and (2) time-resolved stress detection tomography of light absorption, TRSDTLA, in reflection mode where emphasis is made on high spatial resolution of images. The basis for laser optoacoustic tomography is the time-resolved detection of laser-induced transient stress waves, selectively generated in absorbing tissues of diagnostic interest. Such a technique allows one to visualize absorbed light distribution in turbid biological tissues irradiated by short laser pulses. Laser optoacoustic tomography can be used for detection of tissue pathological changes that result in either increased concentration of various tissue chromophores such as hemoglobin or in development of enhanced microcirculation in diseased tissue. Potential areas of applications are diagnosis of cancer, brain hemorrhages, arterial atherosclerotic plaques, and other diseased tissues. In addition, it can provide feedback information during medical treatments. Both LOATT and TRSDTLA utilize laser excitation of biological tissues and sensitive detection of laser-induced stress waves. Optical selectivity is based upon differences in optical properties of pathologically different tissues. Sensitivity comes from stress generation under irradiation conditions of temporal stress confinement. The use of sensitive wide-band lithium niobate acoustic transducers expands limits of laser optoacoustic tomography. The technology allows us to determine directly temperature distributions in tissues and locate tissues volumes with different absorption. To demonstrate principles of TRSDTLA, experiments were conducted in vivo with mice-model for breast cancer using specially designed front-surface transducers- reflectometers. To present advantages and limitation of LOATT, experiments were performed in phantoms made of gel with polystyrene spheres colored with copper sulfate. Our experimental results and theoretical calculations show that TRSDTLA can be applied for non- invasive histology of layered tissues with in-depth resolution of up to 2 microns. TRSDTLA in acoustic reflection mode is promising for diagnostics of skin and ocular diseases. LOATT in acoustic transmission mode can be applied for detection of small tissue volumes with enhanced absorption located inside organs at the depth of up to 10 cm.

  14. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    PubMed

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  15. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices

    PubMed Central

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size. PMID:25848250

  16. The fate of calcium carbonate nanoparticles administered by oral route: absorption and their interaction with biological matrices.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2015-01-01

    Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size.

  17. Interrogating the relationship between rat in vivo tissue distribution and drug property data for >200 structurally unrelated molecules

    PubMed Central

    Harrell, Andrew W; Sychterz, Caroline; Ho, May Y; Weber, Andrew; Valko, Klara; Negash, Kitaw

    2015-01-01

    The ability to explain distribution patterns from drug physicochemical properties and binding characteristics has been explored for more than 200 compounds by interrogating data from quantitative whole body autoradiography studies (QWBA). These in vivo outcomes have been compared to in silico and in vitro drug property data to determine the most influential properties governing drug distribution. Consistent with current knowledge, in vivo distribution was most influenced by ionization state and lipophilicity which in turn affected phospholipid and plasma protein binding. Basic and neutral molecules were generally better distributed than acidic counterparts demonstrating weaker plasma protein and stronger phospholipid binding. The influence of phospholipid binding was particularly evident in tissues with high phospholipid content like spleen and lung. Conversely, poorer distribution of acidic drugs was associated with stronger plasma protein and weaker phospholipid binding. The distribution of a proportion of acidic drugs was enhanced, however, in tissues known to express anionic uptake transporters such as the liver and kidney. Greatest distribution was observed into melanin containing tissues of the eye, most likely due to melanin binding. Basic molecules were consistently better distributed into parts of the eye and skin containing melanin than those without. The data, therefore, suggest that drug binding to macromolecules strongly influences the distribution of total drug for a large proportion of molecules in most tissues. Reducing lipophilicity, a strategy often used in discovery to optimize pharmacokinetic properties such as absorption and clearance, also decreased the influence of nonspecific binding on drug distribution. PMID:26516585

  18. Terahertz spectral unmixing based method for identifying gastric cancer

    NASA Astrophysics Data System (ADS)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  19. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    NASA Astrophysics Data System (ADS)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  20. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults

    USDA-ARS?s Scientific Manuscript database

    Lycopene is a red carotenoid found in tomatoes hypothesized to mediate disease preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, while human plasma and tissues demonstrate greater proportions of cis isomers. The objecti...

  1. Analytical prediction of sub-surface thermal history in translucent tissue phantoms during plasmonic photo-thermotherapy (PPTT).

    PubMed

    Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K

    2016-12-01

    Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Method for calculation of light field characteristics in optical diagnosis problems and personalized laser treatment of biological tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-05-01

    We have developed a simple method for solving the radiation transport equation, permitting us to rapidly calculate (with accuracy acceptable in practice) the diffuse reflection coeffi cient for a broad class of biological tissues in the spectral region of strong and weak absorption of light, and also the light flux distribution over the depth of the tissue. We show that it is feasible to use the proposed method for quantitative estimates of tissue parameters from its diffuse reflectance spectrum and also for selecting the irradiation dose which is optimal for a specifi c patient in laser therapy for various diseases.

  3. Absorption, Distribution, and Excretion of 14C-APX001 after Single-Dose Administration to Rats and Monkeys

    PubMed Central

    Mansbach, Robert; Shaw, Karen J; Hodges, Michael R; Coleman, Samantha; Fitzsimmons, Michael E

    2017-01-01

    Abstract Background APX001 is a small-molecule therapeutic agent in clinical development for the treatment of invasive fungal infections (IFI). Methods The absorption, distribution and excretion profiles of [14C]APX001-derived radioactivity were determined in rats (albino and pigmented) and monkeys. Rats (some implanted with bile duct cannulae) were administered a single 100 mg/kg oral dose or a 30 mg/kg intravenous (IV) dose. Monkeys were administered a single 6 mg/kg IV dose. Samples of blood, urine, feces and bile, as well as carcasses, were collected through 168 hours after dosing. Samples were analyzed for total radioactivity content by liquid scintillation counting, and carcasses were analyzed by quantitative whole-body autoradiography. Results [14C]APX001-derived radioactivity was rapidly and extensively absorbed and extensively distributed to most tissues for both routes of administration in both species. In rats, tissues with the highest radioactivity Cmax values included bile, abdominal fat, reproductive fat, subcutaneous fat, and liver, but radioactivity was also detected in tissues associated with IFI, including lung, brain and eye. In monkeys, the highest Cmax values were in bile, urine, uveal tract, bone marrow, abdominal fat, liver, and kidney cortex. Liver and kidney were the tissues with highest radioactivity, but as in the rat, radioactivity was also detected in lung, brain and eye tissues. In pigmented rats, radiocarbon was densely distributed into pigmented tissue and more slowly cleared than from other tissues. Mean recovery of radioactivity in rats was approximately 95–100%. In bile duct-intact rats, >90% of radioactivity was recovered in feces. In cannulated rats, biliary excretion of radioactivity was the major route of elimination and accounted for 88.8% of the dose, whereas urinary and fecal excretion of radioactivity was minor and accounted for 2.56% and 5.42% of the dose, respectively. In monkeys, the overall recovery of radioactivity was 87.6%, and was eliminated in feces (49.8% of dose) and to a lesser extent in urine (20.6% of dose). Conclusion Together, the results indicate that APX001-related radioactivity is extensively distributed to major tissues (including tissues relevant to IFI) in both rats and monkeys and cleared primarily by biliary/fecal excretion. Disclosures R. Mansbach, Amplyx Pharmaceuticals Inc.: Consultant, Consulting fee; K. J. Shaw, Amplyx Pharmaceuticals Inc.: Employee, Salary; M. R. Hodges, Amplyx Pharmaceuticals: Employee, Salary; S. Coleman, Covance Laboratories: Employee, Salary; M. E. Fitzsimmons, Covance Laboratories: Employee, Salary

  4. Noninvasive imaging of absolute PpIX concentration distribution in nonmelanoma skin tumors at pre-PDT

    NASA Astrophysics Data System (ADS)

    Sunar, Ulas; Rohrbach, Daniel; Morgan, Janet; Zeitouni, Natalie

    2013-03-01

    Photodynamic Therapy (PDT) has proven to be an effective treatment option for nonmelanoma skin cancers. The ability to quantify the concentration of drug in the treated area is crucial for effective treatment planning as well as predicting outcomes. We utilized spatial frequency domain imaging for quantifying the accurate concentration of protoporphyrin IX (PpIX) in phantoms and in vivo. We correct fluorescence against the effects of native tissue absorption and scattering parameters. First we quantified the absorption and scattering of the tissue non-invasively. Then, we corrected raw fluorescence signal by compensating for optical properties to get the absolute drug concentration. After phantom experiments, we used basal cell carcinoma (BCC) model in Gli mice to determine optical properties and drug concentration in vivo at pre-PDT.

  5. LASER METHODS IN MEDICINE: Light absorption in blood during low-intensity laser irradiation of skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2010-06-01

    An analytical procedure is proposed for describing optical fields in biological tissues inhomogeneous in the depth direction, such as human skin, with allowance for multiple scattering. The procedure is used to investigate the depth distribution of the optical power density in homogeneous and multilayer dermis when the skin is exposed to a laser beam. We calculate the absorbed laser power spectra for oxy- and deoxyhaemoglobin at different depths in relation to the absorption selectivity of these haemoglobin derivatives and the spectral dependence of the optical power density and demonstrate that the spectra vary considerably with depth. A simple exponential approximation is proposed for the depth distribution of the power density in the epidermis and dermis.

  6. Fast deep-tissue multispectral optoacoustic tomography (MSOT) for preclinical imaging of cancer and cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Taruttis, Adrian; Razansky, Daniel; Ntziachristos, Vasilis

    2012-02-01

    Optoacoustic imaging has enabled the visualization of optical contrast at high resolutions in deep tissue. Our Multispectral optoacoustic tomography (MSOT) imaging results reveal internal tissue heterogeneity, where the underlying distribution of specific endogenous and exogenous sources of absorption can be resolved in detail. Technical advances in cardiac imaging allow motion-resolved multispectral measurements of the heart, opening the way for studies of cardiovascular disease. We further demonstrate the fast characterization of the pharmacokinetic profiles of lightabsorbing agents. Overall, our MSOT findings indicate new possibilities in high resolution imaging of functional and molecular parameters.

  7. The specific absorption rate of tissues in rats exposed to electromagnetic plane waves in the frequency range of 0.05-5 GHz and SARwb in free-moving rats.

    PubMed

    Chen, Bingxin; Wang, Jiamin; Qi, Hongxin; Zhang, Jie; Chen, Shude; Wang, Xianghui

    2017-03-01

    As electromagnetic exposure experiments can only be performed on small animals, usually rats, research on the characteristics of specific absorption rate (SAR) distribution in the rat has received increasing interest. A series of calculations, which simulated the SAR in a male rat anatomical model exposed to electromagnetic plane waves ranging from 0.05 to 5 GHz with different incidence and polarization, were conducted. The whole-body-averaged SAR (SARwb) and the tissue-averaged SAR (SARavg) in 20 major tissues were determined. Results revealed that incidence has great impact on SAR in the rat at higher frequencies owing to the skin effect and the effect on SARavg in tissues is much more apparent than that on SARwb; while polarization plays an important role under lower frequencies. Not only the incidence, but also the polarization in the rat keeps changing when the rat is in free movement. Thus, this article discussed a convenient way to obtain relatively accurate SARwb in a free-moving rat.

  8. Quantitative evaluation of mucosal vascular contrast in narrow band imaging using Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Le, Du; Wang, Quanzeng; Ramella-Roman, Jessica; Pfefer, Joshua

    2012-06-01

    Narrow-band imaging (NBI) is a spectrally-selective reflectance imaging technique for enhanced visualization of superficial vasculature. Prior clinical studies have indicated NBI's potential for detection of vasculature abnormalities associated with gastrointestinal mucosal neoplasia. While the basic mechanisms behind the increased vessel contrast - hemoglobin absorption and tissue scattering - are known, a quantitative understanding of the effect of tissue and device parameters has not been achieved. In this investigation, we developed and implemented a numerical model of light propagation that simulates NBI reflectance distributions. This was accomplished by incorporating mucosal tissue layers and vessel-like structures in a voxel-based Monte Carlo algorithm. Epithelial and mucosal layers as well as blood vessels were defined using wavelength-specific optical properties. The model was implemented to calculate reflectance distributions and vessel contrast values as a function of vessel depth (0.05 to 0.50 mm) and diameter (0.01 to 0.10 mm). These relationships were determined for NBI wavelengths of 410 nm and 540 nm, as well as broadband illumination common to standard endoscopic imaging. The effects of illumination bandwidth on vessel contrast were also simulated. Our results provide a quantitative analysis of the effect of absorption and scattering on vessel contrast. Additional insights and potential approaches for improving NBI system contrast are discussed.

  9. Ultrasound enhances calcium absorption of jujube fruit by regulating the cellular calcium distribution and metabolism of cell wall polysaccharides.

    PubMed

    Zhi, Huanhuan; Liu, Qiqi; Xu, Juan; Dong, Yu; Liu, Mengpei; Zong, Wei

    2017-12-01

    Ultrasound has been applied in fruit pre-washing processes. However, it is not sufficient to protect fruit from pathogenic infection throughout the entire storage period, and sometimes ultrasound causes tissue damage. The goal of this study was to investigate the effects of calcium chloride (CaCl 2 , 10 g L -1 ) and ultrasound (350 W at 40 kHz), separately and in combination, on jujube fruit quality, antioxidant status, tissue Ca 2+ content and distribution along with cell wall metabolism at 20 °C for 6 days. All three treatments significantly maintained fruit firmness and peel color, reduced respiration rate, decay incidence, superoxide anion, hydrogen peroxide and malondialdehyde and preserved higher enzymatic (superoxide dismutase, catalase and peroxidase) and non-enzymatic (ascorbic acid and glutathione) antioxidants compared with the control. Moreover, the combined treatment was more effective in increasing tissue Ca 2+ content and distribution, inhibiting the generation of water-soluble and CDTA-soluble pectin fractions, delaying the solubilization of Na 2 CO 3 -soluble pectin and having lower activities of cell wall-modifying enzymes (polygalacturonase and pectate lyase) during storage. These results demonstrated that the combination of CaCl 2 and ultrasound has potential commercial application to extend the shelf life of jujube fruit by facilitating Ca 2+ absorption and stabilizing the cell wall structure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. 75 FR 40729 - Residues of Quaternary Ammonium Compounds, N-Alkyl (C12-14

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    .... Systemic toxicity occurs after absorption and distribution of the chemical to tissues in the body. Such... identified (the LOAEL) or a Benchmark Dose (BMD) approach is sometimes used for risk assessment. Uncertainty.... No systemic effects observed up to 20 mg/ kg/day, highest dose of technical that could be tested...

  11. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2017-04-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4 th dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermal model for optimization of vascular laser tissue soldering.

    PubMed

    Bogni, Serge; Stumpp, Oliver; Reinert, Michael; Frenz, Martin

    2010-06-01

    Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results. (c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A lead isotope distribution study in swine tissue using ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brown, L.D.; Casteel, S.W.

    1999-01-01

    In the United States lead is an ubiquitous environmental pollutant that is a serious human health hazard, especially for women of childbearing age, developing fetuses, and young children. Information concerning the uptake and distribution of lead to maternal and fetal tissues during pregnancy is poorly documented. A study was designed using domestic swine and lead isotope enrichment methodology to focus on maternal absorption and distribution of lead into bone and soft tissues, including the fetal compartment, under varying conditions of oral lead exposure and during altered physiological states (pregnant vs unbred). Total lead levels and Pb207/Pb206 ratios in bone (femur and vertebra), blood, and soft tissues (liver, kidney, brain) were determined by ICP-MS. Lead in fetal tissues derived from maternal bone could be differentiated from that derived from exogenous dosing. Unbred swine absorbed much less lead than pregnant females receiving the same dose. The accuracy and precision of ICP-MS at the instrumental level and for the entire method (sample collection, digestion, and analysis) were evaluated for both Pb207/Pb206 ratios and total lead. Several changes were suggested in method design to improve both instrumental and total method precision.

  14. Laser induced heat source distribution in bio-tissues

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxia; Fan, Shifu; Zhao, Youquan

    2006-09-01

    During numerical simulation of laser and tissue thermal interaction, the light fluence rate distribution should be formularized and constituted to the source term in the heat transfer equation. Usually the solution of light irradiative transport equation is given in extreme conditions such as full absorption (Lambert-Beer Law), full scattering (Lubelka-Munk theory), most scattering (Diffusion Approximation) et al. But in specific conditions, these solutions will induce different errors. The usually used Monte Carlo simulation (MCS) is more universal and exact but has difficulty to deal with dynamic parameter and fast simulation. Its area partition pattern has limits when applying FEM (finite element method) to solve the bio-heat transfer partial differential coefficient equation. Laser heat source plots of above methods showed much difference with MCS. In order to solve this problem, through analyzing different optical actions such as reflection, scattering and absorption on the laser induced heat generation in bio-tissue, a new attempt was made out which combined the modified beam broaden model and the diffusion approximation model. First the scattering coefficient was replaced by reduced scattering coefficient in the beam broaden model, which is more reasonable when scattering was treated as anisotropic scattering. Secondly the attenuation coefficient was replaced by effective attenuation coefficient in scattering dominating turbid bio-tissue. The computation results of the modified method were compared with Monte Carlo simulation and showed the model provided reasonable predictions of heat source term distribution than past methods. Such a research is useful for explaining the physical characteristics of heat source in the heat transfer equation, establishing effective photo-thermal model, and providing theory contrast for related laser medicine experiments.

  15. Novel pharmacokinetic studies of the Chinese formula Huang-Lian-Jie-Du-Tang in MCAO rats.

    PubMed

    Zhu, Huaxu; Qian, Zhilei; He, Feng; Liu, Mengzhu; Pan, Linmei; Zhang, Qichun; Tang, Yuping

    2013-07-15

    Our previous studies showed that after oral administration of an Huang-Lian-Jie-Du-Tang (HLJDT) decoction, there is a higher concentration of the pure components, berberine, baicalin and gardenoside in the plasma of Middle cerebral artery occlusion (MCAO) rats than in sham-operated rats, The aim of the present study was to determine whether these components could be reliably measured in MCAO rat tissues. First, the plasma concentration-time profiles of berberine, palmatine, baicalin, baicalein and gardenoside were characterised in MCAO rats after oral administration of the aqueous extract of HLJDT. Subsequently, liver, lung and kidney tissues were obtained from sudden death MCAO rats in the absorption phase (0.25 h), the distribution phase (1.0 h) and the elimination phase (8.0 h) after administration of the HLJDT aqueous extract. An HPLC method was developed and validated for the determination of the distribution characteristics of berberine, palmatine, baicalin, baicalein and gardenoside simultaneously from the above-mentioned rat tissues. The results indicated that berberine, palmatine, baicalin and baicalein distributed rapidly and accumulated at high levels in the lung, while gardenoside distributed widely in the lung and the kidney. To the best of our knowledge, this is the first report to describe the distribution of the active ingredients derived from HLJDT in MCAO rat tissues. The tissue distribution results provide a biopharmaceutical basis for the design of the clinic application of HLJDT in cerebrovascular disease. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight

    PubMed Central

    Diop, Mamadou; St. Lawrence, Keith

    2013-01-01

    Time-resolved (TR) techniques provide a means of discriminating photons based on their time-of-flight. Since early arriving photons have a lower probability of probing deeper tissue than photons with long time-of-flight, time-windowing has been suggested as a method for improving depth sensitivity. However, TR measurements also contain instrument contributions (instrument-response-function, IRF), which cause temporal broadening of the measured temporal point-spread function (TPSF) compared to the true distribution of times-of-flight (DTOF). The purpose of this study was to investigate the influence of the IRF on the depth sensitivity of TR measurements. TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved using a stable algorithm to recover the DTOFs. The microscopic Beer-Lambert law was applied to the TPSFs and DTOFs to obtain depth-resolved absorption changes. In contrast to the DTOF, the latest part of the TPSF was not the most sensitive to absorption changes in the lower layer, which was confirmed by computer simulations. The improved depth sensitivity of the DTOF was illustrated in a pig model of the adult human head. Specifically, it was shown that dynamic absorption changes obtained from the late part of the DTOFs recovered from TPSFs acquired by probes positioned on the scalp were similar to absorption changes measured directly on the brain. These results collectively demonstrate that this method improves the depth sensitivity of TR measurements by removing the effects of the IRF. PMID:23504445

  17. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  18. [Stress distribution in abutment teeth and related tissues under different design of connector: three-dimensional finite element analysis].

    PubMed

    Bai, Li-Ming; Li, Guo-Qiang; Zhang, Qiang; Dong, Xian

    2016-08-01

    To compare the stress distribution in abutment teeth and related tissues under the same material and different loading between improved major connector design and traditional major connector design. One 55-year-old male patient with unilateral maxillary first molar and second molar missing was chosen. The stress distribution in abutment teeth and related tissues were evaluated with spiral CT scanning, Mimics, Geomagic Studio software, a study model was built and finite element analysis was performed using ANSYS software. With the improved major connector design, the stress of abutment decreased significantly, the stress of periodontal decreased, the stress of edentulous mucosa increased significantly and became more balanced, the trend of stimulated absorption of alveolar bone decreased. For patients with distal free defect of dentition, the design of improved major connector has the effect of stress interruption, can protect the abutment better, detract the stress of the denture and has an good protective effect on the edentulous mucosa and alveolar bone.

  19. Obtaining source current density related to irregularly structured electromagnetic target field inside human body using hybrid inverse/FDTD method.

    PubMed

    Han, Jijun; Yang, Deqiang; Sun, Houjun; Xin, Sherman Xuegang

    2017-01-01

    Inverse method is inherently suitable for calculating the distribution of source current density related with an irregularly structured electromagnetic target field. However, the present form of inverse method cannot calculate complex field-tissue interactions. A novel hybrid inverse/finite-difference time domain (FDTD) method that can calculate the complex field-tissue interactions for the inverse design of source current density related with an irregularly structured electromagnetic target field is proposed. A Huygens' equivalent surface is established as a bridge to combine the inverse and FDTD method. Distribution of the radiofrequency (RF) magnetic field on the Huygens' equivalent surface is obtained using the FDTD method by considering the complex field-tissue interactions within the human body model. The obtained magnetic field distributed on the Huygens' equivalent surface is regarded as the next target. The current density on the designated source surface is derived using the inverse method. The homogeneity of target magnetic field and specific energy absorption rate are calculated to verify the proposed method.

  20. Pharmacokinetics and tissue distribution of five active ingredients of Eucommiae cortex in normal and ovariectomized mice by UHPLC-MS/MS.

    PubMed

    An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao

    2016-09-01

    1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.

  1. Determination of fluence rate and temperature distributions in the rat brain; implications for photodynamic therapy.

    PubMed

    Angell-Petersen, Even; Hirschberg, Henry; Madsen, Steen J

    2007-01-01

    Light and heat distributions are measured in a rat glioma model used in photodynamic therapy. A fiber delivering 632-nm light is fixed in the brain of anesthetized BDIX rats. Fluence rates are measured using calibrated isotropic probes that are positioned stereotactically. Mathematical models are then used to derive tissue optical properties, enabling calculation of fluence rate distributions for general tumor and light application geometries. The fluence rates in tumor-free brains agree well with the models based on diffusion theory and Monte Carlo simulation. In both cases, the best fit is found for absorption and reduced scattering coefficients of 0.57 and 28 cm(-1), respectively. In brains with implanted BT(4)C tumors, a discrepancy between diffusion and Monte Carlo-derived two-layer models is noted. Both models suggest that tumor tissue has higher absorption and less scattering than normal brain. Temperatures are measured by inserting thermocouples directly into tumor-free brains. A model based on diffusion theory and the bioheat equation is found to be in good agreement with the experimental data and predict a thermal penetration depth of 0.60 cm in normal rat brain. The predicted parameters can be used to estimate the fluences, fluence rates, and temperatures achieved during photodynamic therapy.

  2. Dual-energy x-ray image decomposition by independent component analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Yifeng; Jiang, Dazong; Zhang, Feng; Zhang, Dengfu; Lin, Gang

    2001-09-01

    The spatial distributions of bone and soft tissue in human body are separated by independent component analysis (ICA) of dual-energy x-ray images. It is because of the dual energy imaging modelí-s conformity to the ICA model that we can apply this method: (1) the absorption in body is mainly caused by photoelectric absorption and Compton scattering; (2) they take place simultaneously but are mutually independent; and (3) for monochromatic x-ray sources the total attenuation is achieved by linear combination of these two absorption. Compared with the conventional method, the proposed one needs no priori information about the accurate x-ray energy magnitude for imaging, while the results of the separation agree well with the conventional one.

  3. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.

    PubMed

    Siauve, N; Nicolas, L; Vollaire, C; Marchal, C

    2004-12-01

    This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.

  4. Zinc metabolism in genetically obese (ob/ob) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, M.L.; Failla, M.L.

    1987-05-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from those in lean controls. In the present studies the absorption, retention and tissue distribution of zinc and constitutive levels of zinc-metallothionein (Zn-MT) in selected tissues were compared in obese (ob/ob) and lean (+/.) C57BL/6J mice. When 5-, 10- and 22-wk-old mice were administered 1.2 mumol /sup 65/Zn by stomach tube the apparent absorption of /sup 65/Zn by obese mice was 1.5, 2.2 and 3.9 times higher, respectively, than that in age-matched lean mice. Retention of orallymore » administered /sup 65/Zn after 96 h was also substantially higher in obese mice than in lean mice. To assess the possible influences of hyperphagia and intestinal hypertrophy on the enhanced apparent absorption of /sup 65/Zn by obese mice food intake by an additional group of obese mice was restricted to that of age-matched lean controls. When actual absorption of zinc was determined according to the method of Heth and Hoekstra, groups of ad libitum--fed obese, pair-fed obese and lean mice absorbed 38, 32 and 18% of administered /sup 65/Zn, respectively. In contrast, the rate of /sup 65/Zn excretion 2-6 d after oral or subcutaneous administration of the metal was similar for obese and lean mice. Unrestricted and pair-fed obese mice had significantly lower percentages of carcass /sup 65/Zn present in skin, muscle plus bone, spleen and testes and higher percentages present in liver, small intestine and adipose tissue than lean mice.« less

  5. Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two-surface sound nut fungi spoilage susceptibility.

    PubMed

    Scussel, Vildes M; Manfio, Daniel; Savi, Geovana D; Moecke, Elisa H S

    2014-11-01

    This work reports the in-shell Brazil nut spoilage susceptible morpho-histological characteristics and fungi infection (shell, edible part, and brown skin) through stereo and scanning electron microscopies (SEM). The following characteristics related to shell (a) morphology-that allow fungi and insects' entrance to inner nut, and (b) histology-that allow humidity absorption, improving environment conditions for living organisms development, were identified. (a.1) locule in testae-the nut navel, which is a cavity formed during nut detaching from pods (located at 1.0 to 2.0/4th of the shell B&C nut faces linkage). It allows the nut brown skin (between shell and edible part) first contact to the external environment, through the (a.2) nut channel-the locule prolongation path, which has the water/nutrients cambium function for their transport and distribution to the inner seed (while still on the tree/pod). Both, locule followed by the channel, are the main natural entrance of living organisms (fungi and insects), including moisture to the inner seed structures. In addition, the (a.3) nut shell surface-which has a crinkled and uneven surface morphology-allows water absorption, thus adding to the deterioration processes too. The main shell histological characteristic, which also allows water absorption (thus improving environment conditions for fungi proliferation), is the (b.1) cell wall porosity-the multilayered wall and porous rich cells that compose the shell faces double tissue layers and the (b.2) soft tissue-the mix of tissues 2 faces corner/linkage. This work also shows in details the SEM nut spoilage susceptible features highly fungi infected with hyphae and reproductive structures distribution. © 2014 Institute of Food Technologists®

  6. Comparison of radio frequency energy absorption in ear and eye region of children and adults at 900, 1800 and 2450 MHz.

    PubMed

    Keshvari, J; Lang, S

    2005-09-21

    The increasing use of mobile communication devices, especially mobile phones by children, has triggered discussions on whether there is a larger radio frequency (RF) energy absorption in the heads of children compared to that of adults. The objective of this study was to clarify possible differences in RF energy absorption in the head region of children and adults using computational techniques. Using the finite-difference time-domain (FDTD) computational method, a set of specific absorption rate (SAR) calculations were performed for anatomically correct adult and child head models. A half-wave dipole was used as an exposure source at 900, 1800 and 2450 MHz frequencies. The ear and eye regions were studied representing realistic exposure scenarios to current and upcoming mobile wireless communication devices. The differences in absorption were compared with the maximum energy absorption of the head model. Four magnetic resonance imaging (MRI) based head models, one female, one adult, two child head models, aged 3 and 7 years, were used. The head models greatly differ from each other in terms of size, external shape and the internal anatomy. The same tissue dielectric parameters were applied for all models. The analyses suggest that the SAR difference between adults and children is more likely caused by the general differences in the head anatomy and geometry of the individuals rather than age. It seems that the external shape of the head and the distribution of different tissues within the head play a significant role in the RF energy absorption.

  7. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  8. Synchrotron X-ray microscopy and spectroscopy analysis of iron in hemochromatosis liver and intestines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, J .Y. Peter; Sham, Tsun-Kong; Chakrabarti, Subrata

    2009-12-01

    Hemochromatosis is a genetic disorder that causes body to store excess iron in organs such as heart or liver. Distribution of iron, as well as copper, zinc and calcium, and chemical identity of iron in hemochromatosis liver and intestine were investigated by X-ray microprobe experiments, which consist of X-ray microscopy and micro-X-ray absorption fine structure. Our results show that iron concentration in hemochromatosis liver tissue is high, while much less Fe is found in intestinal tissue. Moreover, chemical identity of Fe in hemochromatosis liver can be identified. X-ray microprobe experiments allows for examining elemental distribution at an excellent spatial resolution.more » Moreover, chemical identity of element of interest can be obtained.« less

  9. Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye.

    PubMed

    Makoid, M C; Robinson, J R

    1979-04-01

    The temporal and spatial pattern of [3H]-pilocarpine nitrate distribution in the albino rabbit eye following topical administration was determined. A four-compartment caternary chain model describing this disposition corresponds to the precorneal area, the cornea, the aqueous humor, and the lens and vitreous. Simultaneous computer fitting of data from tissue corresponding to some compartments in the model supported the proposed model. Additional support was provided by the excellent correlation between predicted and observed values in multiple-dosing studies. Several important aspects of ocular drug disposition are evident from the model. The extensive parallel elimination at the absorption site gives rise to an apparent absorption rate constant that is one to two orders of magnitude larger than the true absorption rate constant. In addition, aqueous flow accounts for most of the drug removal. Thus, major effects on absorption and elimination, independent of the drug structure, suggest the possibility of similar pharmacokinetics for vastly different drugs.

  10. 3D optical digitation applied to orthodontics: analysis of unilateral cleft lip and palate in newborn infants

    NASA Astrophysics Data System (ADS)

    Canal, Fernando; Garcia-Mateos, Jorge; Rodriguez-Larena, Jorge; Rivera, Alejandro; Aparicio, E.

    2000-12-01

    Medical therapeutic applications using lasers involves understanding the light tissue interaction, in particular the rate ofphotochemical and thermal reactions. Tissue is composed ofa mix ofturbid media. Light propagation in turbid media can be described by the so-called Equation of Radiative Transfer, an integro-differential equation where scattering, absorption and internal reflection are significant factors in determining the light distribution in tissue. The Equation of Radiative Transfer however can not commonly be solved analytically.' In order to visualize and simulate the effects of laser light on heart tissues (myocardium) in relation to the treatment of irregular heart rates or so called arrhythmias, a fast interactive computer program has been developed in Java.

  11. Photoacoustic imaging of vascular networks in transgenic mice

    NASA Astrophysics Data System (ADS)

    Laufer, J. G.; Cleary, J. O.; Zhang, E. Z.; Lythgoe, M. F.; Beard, P. C.

    2010-02-01

    The preferential absorption of near infrared light by blood makes photoacoustic imaging well suited to visualising vascular structures in soft tissue. In addition, the spectroscopic specificity of tissue chromophores can be exploited by acquiring images at multiple excitation wavelengths. This allows the quantification of endogenous chromophores, such as oxy- and deoxyhaemoglobin, and hence blood oxygenation, and the detection of exogenous chromophores, such as functionalised contrast agents. More importantly, this approach has the potential to visualise the spatial distribution of low concentrations of functionalised contrast agents against the strong background absorption of the endogenous chromophores. This has a large number of applications in the life sciences. One example is the structural and functional phenotyping of transgenic mice for the study of the genetic origins of vascular malformations, such as heart defects. In this study, photoacoustic images of mouse embryos have been acquired to study the development of the vasculature following specific genetic knockouts.

  12. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering.

    PubMed

    Adekogbe, Iyabo; Ghanem, Amyl

    2005-12-01

    Chitosan, the deacetylated derivative of chitin, is a promising scaffold material for skin tissue engineering applications. It is biocompatible and biodegradable, and the degradation products are resorbable. However, the rapid degradation of chitosan and its low mechanical strength are concerns that may limit its use. In this study, chitosan with 80%, 90% and 100% degree of deacetylation (DDA) was crosslinked with dimethyl 3-3, dithio bis' propionimidate (DTBP) and compared to uncrosslinked scaffolds. The scaffolds were characterized with respect to important tissue engineering properties. The tensile strength of scaffolds made from 100% DDA chitosan was significantly higher than for scaffolds made from 80% and 90% DDA chitosan. Crosslinking of scaffolds with DTBP increased the tensile strength. Crosslinking with DTBP had no significant effect on water vapour transmission rate (WVTR) or water absorption but had significant effect on the pore size and porosity of the samples. All samples showed a WVTR and pore size distribution suitable for skin tissue engineering; however, the water absorption and porosity were lower than the optimal values for skin tissue engineering. The biodegradation rate of scaffolds crosslinked with DTBP and glutaraldehyde (GTA) were reduced while no significant effect was observed in biodegradation of the samples made from 100% DDA chitosan whether crosslinked or uncrosslinked after 24 days of degradation.

  13. Stereoselective bioaccumulation of syn- and anti-Dechlorane plus isomers in different tissues of common carp (Cyprinus carpio).

    PubMed

    Tang, Bin; Luo, Xiao-Jun; Huang, Chen-Chen; Sun, Run-Xia; Wang, Tao; Zeng, Yan-Hong; Mai, Bi-Xian

    2018-03-01

    Common carps (Cyprinus carpio) were exposed to syn- and anti-Dechlorane Plus (DP) isomers to investigate absorption, tissue distribution, and stereoselective bioaccumulation of DP isomers. The absorption efficiencies of anti-DP in the gastrointestinal system were higher than those of syn-DP. A linear accumulation was found for both isomers in all fish tissues except for serum; and the liver and gill exhibited the highest and lowest DP assimilation efficiency, respectively. The elimination of DP isomers in all tissues followed first-order kinetics, with the fastest depuration rate occurring in the liver and serum. The biomagnification factors (BMFs) of both isomers were less than one in all tissues, except for serum. Anti-DP was preferably accumulated in the liver, gill, and serum, whereas syn-DP was selectively accumulated in the carcass and gastrointestinal tract. As a whole, fish did not show selective accumulation of the syn- or anti-DP isomer in the uptake stage, whereas a selective accumulation of syn-DP in fish was observed during the depuration period, which could be due to a selective excretion of anti-DP. Metabolism cannot be ruled out as a possible reason considering the high f anti values and the high elimination rate of DPs in the liver. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of a time-resolved optical brain imager for monitoring cerebral oxygenation during carotid surgery.

    PubMed

    Kacprzak, Michal; Liebert, Adam; Staszkiewicz, Walerian; Gabrusiewicz, Andrzej; Sawosz, Piotr; Madycki, Grzegorz; Maniewski, Roman

    2012-01-01

    Recent studies have shown that time-resolved optical measurements of the head can estimate changes in the absorption coefficient with depth discrimination. Thus, changes in tissue oxygenation, which are specific to intracranial tissues, can be assessed using this advanced technique, and this method allows us to avoid the influence of changes to extracerebral tissue oxygenation on the measured signals. We report the results of time-resolved optical imaging that was carried out during carotid endarterectomy. This surgery remains the "gold standard" treatment for carotid stenosis, and intraoperative brain oxygenation monitoring may improve the safety of this procedure. A time-resolved optical imager was utilized within the operating theater. This instrument allows for the simultaneous acquisition of 32 distributions of the time-of-flight of photons at two wavelengths on both hemispheres. Analysis of the statistical moments of the measured distributions of the time-of-flight of photons was applied for estimating changes in the absorption coefficient as a function of depth. Time courses of changes in oxy- and deoxyhemoglobin of the extra- and intracerebral compartments during cross-clamping of the carotid arteries were obtained. A decrease in the oxyhemoglobin concentration and an increase in the deoxyhemoglobin concentrations were observed in a large area of the head. Large changes were observed in the hemisphere ipsilateral to the site of clamped carotid arteries. Smaller amplitude changes were noted at the contralateral site. We also found that changes in the hemoglobin signals, as estimated from intracerebral tissue, are very sensitive to clamping of the internal carotid artery, whereas its sensitivity to clamping of the external carotid artery is limited. We concluded that intraoperative multichannel measurements allow for imaging of brain tissue hemodynamics. However, when monitoring the brain during carotid surgery, a single-channel measurement may be sufficient.

  15. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  16. Distribution, Metabolism and Toxic Effects of Beta-Cypermethrin in Lizards (Eremias argus) Following Oral Administration.

    PubMed

    Chen, Li; Xu, Peng; Diao, Jinling; Di, Shanshan; Li, Ruiting; Zhou, Zhiqiang

    2016-04-05

    Beta-cypermethrin (BCYP), a synthetic pyrethriod (PYR) pesticide which is a mixture of the alpha- and theta- cypermethrin, have been reported various toxicological profiles to non-target organisms. But little is known about assimilation, accumulation and toxic effects of BCYP in reptiles. The present study firstly elucidated absorption, tissue distribution, excretion of BCYP in Eremias argus . Treated group were administered orally with BCYP 20mg/kg body weight (bw) dissolved in corn oil. Neurotoxicity was observed at 24h after gavage, and the poisoning symptom ameliorated at 72h. The changes of BCYP concentration depended on degradation time and tissues. Lizards had a strong capacity to eliminate BCYP with different tissue distribution. The tissues concentration of BCYP from high to low were intestine, stomach, heart, kidney, blood, lung, liver and brain. Bimodal phenomena were observed in lung, liver and kidney. These results may be due to the activities of enzymes, circadian rhythm, and enterohepatic circulation in lizards. Based on the results of organ coefficient and histopathology analysis in liver, the liver was confirmed as the main target organ. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Temperature mapping and thermal dose calculation in combined radiation therapy and 13.56 MHz radiofrequency hyperthermia for tumor treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jung Kyung; Prasad, Bibin; Kim, Suzy

    2017-02-01

    To evaluate the synergistic effect of radiotherapy and radiofrequency hyperthermia therapy in the treatment of lung and liver cancers, we studied the mechanism of heat absorption and transfer in the tumor using electro-thermal simulation and high-resolution temperature mapping techniques. A realistic tumor-induced mouse anatomy, which was reconstructed and segmented from computed tomography images, was used to determine the thermal distribution in tumors during radiofrequency (RF) heating at 13.56 MHz. An RF electrode was used as a heat source, and computations were performed with the aid of the multiphysics simulation platform Sim4Life. Experiments were carried out on a tumor-mimicking agar phantom and a mouse tumor model to obtain a spatiotemporal temperature map and thermal dose distribution. A high temperature increase was achieved in the tumor from both the computation and measurement, which elucidated that there was selective high-energy absorption in tumor tissue compared to the normal surrounding tissues. The study allows for effective treatment planning for combined radiation and hyperthermia therapy based on the high-resolution temperature mapping and high-precision thermal dose calculation.

  18. Selective protection of normal hepatocytes by indocyanine green in photodynamic therapy for the hepatoma of rat

    NASA Astrophysics Data System (ADS)

    Gu, Ying; Li, Junheng; Guo, Zhong-He

    1993-03-01

    Using hepatocarcinoma transplanted rats, the present study made consecutive observation for the color change and indocyanine green (ICG) absorption peak of the normal liver and tumor tissues after intravenous injection of ICG. The normal liver tissue of the rat was found to turn violet-green soon after ICG injection and the optic density (OD) of ICG-characteristic spectral peak of the tissue homogenate reached its maximum value at 35 minutes post-injection, while neither color change nor OD value increase was noticed in the tissue of transplanted hepatocarcinoma, suggesting that there is a specific absorption of ICG by the normal liver tissue. Chemiluminescentoassay revealed inhibited luminal chemiluminescence by ICG, indicating the depression of singlet oxygen and reactive oxygen species (ROS) oxidation during HPD photosensitization by ICG. In PDT of the hepatocarcinoma, the irradiated area was examined under microscope and auto-microimage analysis system after ICG administration. For tumor-free tissue, the photosensitization induced necrotic area was found smaller in those with than those without ICG administration, whereas the tumor killing effect was almost the same of the two. It is suggested that ICG may offer selective protection for healthy hepatocytes without diminishing the destruction of tumor cells. The protection of healthy hepatocytes by ICG is thought to be in accordance with the amount of ICG in the cell and the distribution of light energy.

  19. Colloidal drug delivery system: amplify the ocular delivery.

    PubMed

    Ali, Javed; Fazil, Mohd; Qumbar, Mohd; Khan, Nazia; Ali, Asgar

    2016-01-01

    The ocular perceivers are the most voluntarily accessible organs in terms of location in the body, yet drug distribution to these tissues is one of the most intriguing and challenging endeavors and problematic to the pharmaceutical scientist. The most of ocular diseases are treated with topical application of conventional formulation, i.e. solutions, suspensions and ointment. Typically on installation of these conventional formulations, only <5% of the applied dose penetrates the cornea and reaches intraocular tissues, while a major fraction of the instilled dose is wastage due to the presence of many ocular barriers like external barriers, rapid loss of the instilled solution from the precorneal area and nasolacrimal drainage system. Systemic absorption caused systemic side effects varying from mild to life-threatening events. The main objective of this review is to explore the role of colloidal delivery of drug to minimize the drawbacks associated with them. This review provides an insight into the various constraints associated with ocular drug delivery, summarizes recent findings and applications of colloidal delivery systems, i.e. nanoparticles, nanosuspensions, liposomes, niosomes, dendrimers and contact lenses containing nanoparticles have the capacity to distribute ocular drugs to categorical target sites and hold promise to revolutionize the therapy of many ocular perceiver diseases and minimized the circumscription of conventional delivery. Form the basis of literature review, it has been found that the novel delivery system have greater impact to maximize ocular drug absorption, and minimize systemic absorption and side effects.

  20. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  1. Scattering and absorption control in biocompatible fibers towards equalized photobiomodulation.

    PubMed

    George, J; Haghshenas, H; d'Hemecourt, D; Zhu, W; Zhang, L; Sorger, V

    2017-03-01

    Transparent tissue scaffolds enable illumination of growing tissue to accelerate cell proliferation and improve other cell functions through photobiomodulation. The biphasic dose response of cells exposed to photobiomodulating light dictates that the illumination be evenly distributed across the scaffold such that the cells are neither under nor over exposed to light. However, equalized illumination has not been sufficiently addressed. Here we analyze and experimentally demonstrate spatially equalizing illumination by three methods, namely: engineered surface scattering, reflection by a gold mirror, and traveling-waves in a ring mesh. Our results show that nearly equalized illumination is achievable by controlling the light scattering-to-loss ratio. This demonstration furthers opportunities for dose-optimized photobiomodulation in tissue regeneration.

  2. Nanoparticle-enhanced spectral photoacoustic tomography: effect of oxygen saturation and tissue heterogeneity

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2016-03-01

    Molecular imaging for breast cancer detection, infectious disease diagnostics and preclinical animal research may be achievable through combined use of targeted exogenous agents - such as nanoparticles - and spectral Photoacoustic Tomography (PAT). However, tissue heterogeneity can alter fluence distributions and acoustic propagation, corrupting measured PAT absorption spectra and complicating in vivo nanoparticle detection and quantitation. Highly absorptive vascular structures represent a common confounding factor, and variations in vessel hemoglobin saturation (SO2) may alter spectral content of signals from adjacent/deeper regions. To evaluate the impact of this effect on PAT nanoparticle detectability, we constructed heterogeneous phantoms with well-characterized channel-inclusion geometries and biologically relevant optical and acoustic properties. Phantoms contained an array of tubes at several depths filled with hemoglobin solutions doped with varying concentrations of gold nanorods with an absorption peak at 780 nm. Both overlying and target network SO2 was tuned using sodium dithionite. Phantoms were imaged from 700 to 900 nm using a custom PAT system comprised of a tunable pulsed laser and a research-grade ultrasound system. Recovered nanoparticle spectra were analyzed and compared with results from both spectrophotometry and PAT data from waterimmersed tubes containing blood and nanoparticle solutions. Results suggested that nanoparticle selection for a given PAT application should take into account expected oxygenation states of both target blood vessel and background tissue oxygenation to achieve optimal performance.

  3. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  4. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia.

    PubMed

    Prasad, Bibin; Kim, Subin; Cho, Woong; Kim, Suzy; Kim, Jung Kyung

    2018-05-01

    Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  6. Myocardial temperature distribution under cw Nd:YAG laser irradiation in in vitro and in vivo situations: theory and experiment

    NASA Astrophysics Data System (ADS)

    Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.

    1995-01-01

    Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.

  7. Development and in vivo evaluation of self-microemulsion as delivery system for α-mangostin.

    PubMed

    Xu, Wen-Ke; Jiang, Hui; Yang, Kui; Wang, Ya-Qin; Zhang, Qian; Zuo, Jian

    2017-03-01

    α-Mangostin (MG) is a versatile bioactive compound isolated from mangosteen and possesses significant pharmacokinetic shortages. To augment the potential clinical efficacy, MG-loaded self-microemulsion (MG-SME) was designed and prepared in this study, and its potential as a drug loading system was evaluated based on the pharmacokinetic performance and tissue distribution feature. The formula of MG-SME was optimized by an orthogonal test under the guidance of ternary phase diagram, and the prepared MG-SME was characterized by encapsulation efficiency, size distribution, and morphology. Optimized high performance liquid chromatography method was employed to determine concentrations of MG and characterize the pharmacokinetic and tissue distribution features of MG in rodents. It was found that diluted MG-SME was characterized as spherical particles with a mean diameter of 24.6 nm and an encapsulation efficiency of 87.26%. The delivery system enhanced the area under the curve of MG by 4.75 times and increased the distribution in lymphatic organs. These findings suggested that SME as a nano-sized delivery system efficiently promoted the digestive tract absorption of MG and modified its distribution in tissues. The targeting feature and high oral bioavailability of MG-SME promised a good clinical efficacy, especially for immune diseases. Copyright © 2017. Published by Elsevier Taiwan.

  8. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  9. Selective sensitivity of Mueller imaging for tissue scattering over absorption changes in cancer mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Fathima, Adeeba; Sharma B. S., Mahima; N., Sujatha

    2018-03-01

    Tissue characterization using optical polarimetry, especially Mueller imaging is receiving sustained interest due to its potential in achieving optical contrast between normal and malignant variations. This is particularly important in identifying the margin of malignant growth in suspected tissue regions for accurate surgical removal, or in aiding the sampling procedure during biopsy. The sensitivity of Mueller matrix derived depolarization index to the combined effects of changes in scattering and absorption occurring in a cancerous growth is illustrated in this study. Depolarization imaging is shown to be useful in demarcating the boundary of two regions of differing optical properties using a tissue phantom, modeled according to the changes expected during cancerous growth in tissue. Tissue scattering and absorption are expected to generally increase with the nuclear size change and crowding as well as angiogenesis associated with malignancy. We have observed that there is selective sensitivity for the Mueller elements and derived depolarization index to tissue scattering over absorption in the object field. Although the scattering and absorption are expected to increase and decrease depolarization respectively, the optical contrast of Mueller images and the derived depolarization index between normal and cancerous tissue is found appreciable in this region.

  10. Simulation of a pulsed light propagation in the prostate phantom

    NASA Astrophysics Data System (ADS)

    Guo, Jian; Li, Zhifang; Xie, Wenming; Chen, Haiyu; Weng, Guo-Xing; Li, Hui

    2014-09-01

    In recent years, more and more Americans are diagnosed with prostate cancer, and the current detection methods still have some disadvantages. Photoacoustic imaging, as a new non-invasive imaging technique, has the capable of imaging complex tissue and owns the ability of early tumor imaging. And the photoacoustic signal of the tumor is bound up with its light energy distribution. In this paper, Monte Carlo method was used to simulate the light propagation in the prostate phantom. The pictures of light energy distribution by the irradiation of a pulsed laser were obtained. With the pulsed laser, according to the absorption coefficient of tumor, the local energy temporal changes in prostate can be illustrated. As we known, the local photoacoustic signal has a relationship with the change of light energy. Then we can see the influence of photoacoustic signal under the changes of the absorption coefficient of tumor.

  11. Simulations and experiments of photon propagation in biological tissue and liquid crystal waveguides

    NASA Astrophysics Data System (ADS)

    Lines, Collin M.

    The development of non-invasive methods to probe human tissue is an ongoing challenge in biomedical optics. In vivo measurements by conventional methods are limited by the mean free path (MFP) of a photon, which is governed by the spatial distribution of chromophores and the absorption and scattering properties of the tissue. As one of the strongest chromophores in human tissues, hemoglobin concentrations in human tissue greatly affect the MFP of photons in visible wavelengths (i.e. bruising). Changes in the concentration of hemoglobin and other chromophores within the tissue (minor trauma causing a contusion, increased bilirubin due to jaundice, etc.) will affect the MFP, leading to a visibly different appearance (color) of the tissue. As color perception is a complex physiological process, these changes are diffcult to quantify by human observation alone. The transport of hemoglobin and its breakdown products in tissue is related to a number of medical conditions that could benefit from a non-invasive method to determine the hemoglobin levels.

  12. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles.

    PubMed

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-06-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging - a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue and thus improves the PA imaging contrast. In this study, we demonstrated the 3D MPA image of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA images show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA for high contrast in vivo mapping of dual-contrast nanoparticles.

  13. Contrast-enhanced magneto-photo-acoustic imaging in vivo using dual-contrast nanoparticles☆

    PubMed Central

    Qu, Min; Mehrmohammadi, Mohammad; Truby, Ryan; Graf, Iulia; Homan, Kimberly; Emelianov, Stanislav

    2014-01-01

    By mapping the distribution of targeted plasmonic nanoparticles (NPs), photoacoustic (PA) imaging offers the potential to detect the pathologies in the early stages. However, optical absorption of the endogenous chromophores in the background tissue significantly reduces the contrast resolution of photoacoustic imaging. Previously, we introduced MPA imaging – a synergistic combination of magneto-motive ultrasound (MMUS) and PA imaging, and demonstrated MPA contrast enhancement using cell culture studies. In the current study, contrast enhancement was investigated in vivo using the magneto-photo-acoustic (MPA) imaging augmented with dual-contrast nanoparticles. Liposomal nanoparticles (LNPs) possessing both optical absorption and magnetic properties were injected into a murine tumor model. First, photoacoustic signals were generated from both the endogenous absorbers in the tissue and the liposomal nanoparticles in the tumor. Then, given significant differences in magnetic properties of tissue and LNPs, the magnetic response of LNPs (i.e. MMUS signal) was utilized to suppress the unwanted PA signals from the background tissue thus improving the PA imaging contrast. In this study, we demonstrated the 3D MPA imaging of LNP-labeled xenografted tumor in a live animal. Compared to conventional PA imaging, the MPA imaging show significantly enhanced contrast between the nanoparticle-labeled tumor and the background tissue. Our results suggest the feasibility of MPA imaging for high contrast in vivo mapping of dual-contrast nanoparticles. PMID:24653976

  14. Use of optical skin phantoms for calibration of dermatological lasers

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Sekowska, A.; Marchwiński, M.; Galla, S.; Cenian, A.

    2016-09-01

    A wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties, such as capacitance and conductivity specific heat. We have fabricated a range of optical tissue phantoms based on polyvinylchloride-plastisol PVC-P with varying optical properties, including the absorption, scattering and density of the matrix material. We have utilized a pre-clinical dermatological laser system with a 975 nm diode laser module. A range of laser settings were tested, such as laser pulse duration, laser power and number of pulses. We have studied laser irradiation efficiency on fabricated optical tissue phantoms. Measurements of the temporal and spatial temperature distribution on the phantoms' surface were performed using thermographic imaging. The comparison of results between tissues' and phantoms' optical and thermal response prove that they can be used for approximate evaluation of laser heating efficiency. This study presents a viable approach for calibration of dermatological lasers which can be utilized in practice.

  15. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  16. FREQUENCY-DEPENDENT ABSORPTION OF ELECTROMAGNETIC ENERGY IN BIOLOGICAL TISSUE

    EPA Science Inventory

    The frequency-dependent absorption of electromagnetic energy in biological tissue is illustrated by use of the Debye equations, model calculations for different irradiation conditions, and measured electrical properties (conductivity and permittivity) of different tissues. Four s...

  17. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  18. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.

    PubMed

    Gilbert, B; Perfetti, L; Fauchoux, O; Redondo, J; Baudat, P A; Andres, R; Neumann, M; Steen, S; Gabel, D; Mercanti, D; Ciotti, M T; Perfetti, P; Margaritondo, G; De Stasio, G

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  19. Graphene-based ultrasonic detector for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Song, Wei; Zhang, Chonglei; Fang, Hui; Min, Changjun; Yuan, Xiaocong

    2018-03-01

    Taking advantage of optical absorption imaging contrast, photoacoustic imaging technology is able to map the volumetric distribution of the optical absorption properties within biological tissues. Unfortunately, traditional piezoceramics-based transducers used in most photoacoustic imaging setups have inadequate frequency response, resulting in both poor depth resolution and inaccurate quantification of the optical absorption information. Instead of the piezoelectric ultrasonic transducer, we develop a graphene-based optical sensor for detecting photoacoustic pressure. The refractive index in the coupling medium is modulated due to photoacoustic pressure perturbation, which creates the variation of the polarization-sensitive optical absorption property of the graphene. As a result, the photoacoustic detection is realized through recording the reflectance intensity difference of polarization light. The graphene-based detector process an estimated noise-equivalentpressure (NEP) sensitivity of 550 Pa over 20-MHz bandwidth with a nearby linear pressure response from 11.0 kPa to 53.0 kPa. Further, a graphene-based photoacoustic microscopy is built, and non-invasively reveals the microvascular anatomy in mouse ears label-freely.

  20. Bioavailability of biologically sequestered cadmium and the implications of metal detoxification

    USGS Publications Warehouse

    Wallace, W.G.; Lopez, G.R.

    1997-01-01

    The deposit-feeding oligochaete Limnodrilus hoffmeisteri possesses metallothionein-like proteins and metal-rich granules for storing and detoxifying cadmium (Cd). In this study we investigated the bioavailability of Cd sequestered within this oligochaete by conducting feeding experiments with 109Cd-labeled oligochaetes and the omnivorous grass shrimp Palaemonetes pugio. We also make predictions on Cd trophic transfer based on oligochaete subcellular Cd distributions and absorption efficiencies of Cd by shrimp Cytosol [including metallothionein-like proteins and other proteins) and a debris fraction (including metal-rich granules and tissue fragments) isolated from homogenized 109Cd-labeled oligochaetes were embedded in gelatin and fed to shrimp. The 109Cd absorption efficiencies of shrimp fed these subcellular fractions were 84.8 and 48.6%, respectively, and were significantly different (p < 0.001), indicating that 109Cd bound in these fractions was not equally available to a predator. Mass balance equations demonstrate that shrimp fed whole worms absorb 61.5% of the ingested 109Cd, an absorption efficiency similar to that obtained experimentally (57.1%). Furthermore, the majority of the absorbed 109Cd comes from the fraction containing metallothionein-like proteins (i.e. cytosol). 109Cd absorbed from the debris fraction probably comes from the digestion of tissue fragments, rather than metal-rich granules. The ecological significance of these findings is that prey detoxification mechanisms may mediate the bioreduction or bioaccumulation of toxic metals along fond chains by altering metal bioavailability. Another important finding is that trophic transfer of metal can be predicted based on the subcellular metal distribution of prey.

  1. Thermal effects in tissues induced by interstitial irradiation of near infrared laser with a cylindrical diffuser

    NASA Astrophysics Data System (ADS)

    Le, Kelvin; Johsi, Chet; Figueroa, Daniel; Goddard, Jessica; Li, Xiaosong; Towner, Rheal A.; Saunders, Debra; Smith, Nataliya; Liu, Hong; Hode, Tomas; Nordquist, Robert E.; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT), using non-invasive laser irradiation, has resulted in promising outcomes in the treatment of late-stage cancer patients. However, the tissue absorption of laser light limits the clinical applications of LIT in patients with dark skin, or with deep tumors. The present study is designed to investigate the thermal effects of interstitial irradiation using an 805-nm laser with a cylindrical diffuser, in order to overcome the limitations of the non-invasive mode of treatment. Cow liver and rat tumors were irradiated using interstitial fiber. The temperature increase was monitored by thermocouples that were inserted into the tissue at different sites around the cylinder fiber. Three-dimensional temperature distribution in target tissues during and after interstitial laser irradiation was also determined by Proton Resonance Frequency. The preliminary results showed that the output power of laser and the optical parameters of the target tissue determined the light distribution in the tissue. The temperature distributions varied in the tissue according to the locations relative to the active tip of the cylindrical diffuser. The temperature increase is strongly related to the laser power and irradiation time. Our results using thermocouples and optical sensors indicated that the PRF method is reliable and accurate for temperature determination. Although the inhomogeneous biological tissues could result in temperature fluctuation, the temperature trend still can be reliable enough for the guidance of interstitial irradiation. While this study provides temperature profiles in tumor tissue during interstitial irradiation, the biological effects of the irradiation remain unclear. Future studies will be needed, particularly in combination with the application of immunostimulant for inducing tumor-specific immune responses in the treatment of metastatic tumors.

  2. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.

    PubMed

    Pogue, B W; Patterson, M S

    1994-07-01

    The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.

  3. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy

    PubMed Central

    Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques. PMID:21894259

  4. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy.

    PubMed

    Sun, Yang; Stephens, Douglas N; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M; Shung, K Kirk

    2008-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors and atherosclerotic plaques.

  5. An improved analytic function for predicting light fluence rate in circular fields on a semi-infinite geometry

    NASA Astrophysics Data System (ADS)

    Zhu, Timothy C.; Lu, Amy; Ong, Yi-Hong

    2016-03-01

    Accurate determination of in-vivo light fluence rate is critical for preclinical and clinical studies involving photodynamic therapy (PDT). This study compares the longitudinal light fluence distribution inside biological tissue in the central axis of a 1 cm diameter circular uniform light field for a range of in-vivo tissue optical properties (absorption coefficients (μa) between 0.01 and 1 cm-1 and reduced scattering coefficients (μs') between 2 and 40 cm-1). This was done using Monte-Carlo simulations for a semi-infinite turbid medium in an air-tissue interface. The end goal is to develop an analytical expression that would fit the results from the Monte Carlo simulation for both the 1 cm diameter circular beam and the broad beam. Each of these parameters is expressed as a function of tissue optical properties. These results can then be compared against the existing expressions in the literature for broad beam for analysis in both accuracy and applicable range. Using the 6-parameter model, the range and accuracy for light transport through biological tissue is improved and may be used in the future as a guide in PDT for light fluence distribution for known tissue optical properties.

  6. Study of the Contamination and Absorption of Sr$sup 90$ AND Cs$sup 137$Cs by Prochilodus Platensis (Sabalo). Report No. 31; ESTUDIO DE LA CONTAMINACION Y ABSORCION DEL $sup 90$Sr Y $sup 137$Cs POR EL PROCHILODUS PLATENSIS (SABALO). INFORME NO. 31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anghileri, L.J.

    1960-01-01

    BS>Contaminatibn and Absorption of Sr/sup 90/ and Cs/sup 137/ by Prochilodus lineatus or platensis (sabalo) is studied. A contamination of its "habitat'' (Rio de la Plata) would create health problems because of the industrialization along the river and use of the water for purposes related to the biological cycle. The distribution of the elements in various organs and tissues of the fish was determined. The results were compared with those obtained by other workers. (J.S.R.)

  7. Evaluation of intestinal metabolism and absorption using the Ussing chamber system equipped with intestinal tissue from rats and dogs.

    PubMed

    Miyake, Masateru; Kondo, Satoshi; Koga, Toshihisa; Yoda, Noriaki; Nakazato, Satoru; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2018-01-01

    The purpose of this study was to evaluate the intestinal metabolism and absorption in a mini-Ussing chamber equipped with animal intestinal tissues, based on the transport index (TI). TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. Midazolam was used as a test compound for the evaluation of intestinal metabolism and absorption. The metabolite formulation of midazolam was observed in both rats and dogs. Ketoconazole inhibited the intestinal metabolism of midazolam in rats and improved its intestinal absorption to a statistically significant extent. Therefore, the mini-Ussing chamber, equipped with animal intestinal tissues, showed potential to use the evaluation of the intestinal metabolism and absorption, including the assessment of species differences. Copyright © 2017. Published by Elsevier B.V.

  8. Bayesian estimation of optical properties of the human head via 3D structural MRI

    NASA Astrophysics Data System (ADS)

    Barnett, Alexander H.; Culver, Joseph P.; Sorensen, A. Gregory; Dale, Anders M.; Boas, David A.

    2003-10-01

    Knowledge of the baseline optical properties of the tissues of the human head is essential for absolute cerebral oximetry, and for quantitative studies of brain activation. In this work we numerically model the utility of signals from a small 6-optode time-resolved diffuse optical tomographic apparatus for inferring baseline scattering and absorption coefficients of the scalp, skull and brain, when complete geometric information is available from magnetic resonance imaging (MRI). We use an optical model where MRI-segmented tissues are assumed homogeneous. We introduce a noise model capturing both photon shot noise and forward model numerical accuracy, and use Bayesian inference to predict errorbars and correlations on the measurments. We also sample from the full posterior distribution using Markov chain Monte Carlo. We conclude that ~ 106 detected photons are sufficient to measure the brain"s scattering and absorption to a few percent. We present preliminary results using a fast multi-layer slab model, comparing the case when layer thicknesses are known versus unknown.

  9. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  10. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.

    PubMed

    Ergün, A Sanlı

    2011-10-01

    Focused ultrasound therapy relies on acoustic power absorption by tissue. The stronger the absorption the higher the temperature increase is. However, strong acoustic absorption also means faster attenuation and limited penetration depth. Hence, there is a trade-off between heat generation efficacy and penetration depth. In this paper, we formulated the acoustic power absorption as a function of frequency and attenuation coefficient, and defined two figures of merit to measure the power absorption: spatial peak of the acoustic power absorption density, and the acoustic power absorbed within the focal area. Then, we derived "rule of thumb" expressions for the optimum frequencies that maximized these figures of merit given the target depth and homogeneous tissue type. We also formulated a method to calculate the optimum frequency for inhomogeneous tissue given the tissue composition for situations where the tissue structure can be assumed to be made of parallel layers of homogeneous tissue. We checked the validity of the rules using linear acoustic field simulations. For a one-dimensional array of 4cm acoustic aperture, and for a two-dimensional array of 4×4cm(2) acoustic aperture, we found that the power absorbed within the focal area is maximized at 0.86MHz, and 0.79MHz, respectively, when the target depth is 4cm in muscle tissue. The rules on the other hand predicted the optimum frequencies for acoustic power absorption as 0.9MHz and 0.86MHz, respectively for the 1D and 2D array case, which are within 6% and 9% of the field simulation results. Because radiation force generated by an acoustic wave in a lossy propagation medium is approximately proportional to the acoustic power absorption, these rules can be used to maximize acoustic radiation force generated in tissue as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Characterization, pharmacokinetics and tissue distribution of chlorogenic acid-loaded self-microemulsifying drug delivery system.

    PubMed

    Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia

    2017-03-30

    The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Iron biomineralization of brain tissue and neurodegenerative disorders

    NASA Astrophysics Data System (ADS)

    Mikhaylova (Mikhailova), Albina

    The brain is an organ with a high concentration of iron in specific areas, particularly in the globus pallidus, the substantia nigra, and the red nucleus. In certain pathological states, such as iron overload disease and neurodegenerative disorders, a disturbed iron metabolism can lead to increased accumulation of iron not only in these areas, but also in the brain regions that are typically low in iron content. Recent studies of the physical and magnetic properties of metalloproteins, and in particular the discovery of biogenic magnetite in human brain tissue, have raised new questions about the role of biogenic iron formations in living organisms. Further investigations revealed the presence of magnetite-like crystalline structures in human ferritin, and indicated that released ferritin iron might act as promoter of oxidative damage to tissue, therefore contributing to pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. The purpose of this work was to examine the elemental composition and structure of iron deposits in normal brain tissue as well as tissue affected by neurodegenerative disorders. Employing the methods of X-ray microfocus fluorescence mapping, X-ray Absorption Near Edge Structure (XANES), X-ray Absorption Fine Structure spectroscopy (XAFS), and light and electron microscopic examinations allows one to obtain qualitative as well as quantitative data with respect to the cellular distribution and chemical state of iron at levels not detected previously. The described tissue preparation technique allows not only satisfactory XAS iron elemental imaging in situ but also multimodal examination with light and electron microscopes of the same samples. The developed protocol has assured consistent and reproducible results on relatively large sections of flat-embedded tissue. The resulting tissue samples were adequate for XAS examination as well as sufficiently well-preserved for future microscopy studies. The continued development of this technique should lead to major advances in mapping iron anomalies and the related chemical and structural information directly to cells and tissue structures in human brain tissue. At present this is done primarily by iron staining methods and any information on the relationship between iron distribution and cellular structures obtained this way is limited. Iron staining also offers no information on the specific compounds of iron that are present. This can be vitally important as the form of iron [including its oxidation state] in the human body can determine whether it plays a detrimental or beneficial role in neurophysiological processes.

  13. LASER BIOLOGY AND MEDICINE: Light scattering study of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Beuthan, J.; Netz, U.; Minet, O.; Klose, Annerose D.; Hielscher, A. H.; Scheel, A.; Henniger, J.; Müller, G.

    2002-11-01

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient μs, absorption coefficient μa, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the finger cross section. Model tests of the quality of this reconstruction method show good results.

  14. Microscopic video observation of capillary vessel systems using diffuse back lighting

    NASA Astrophysics Data System (ADS)

    Sakai, Minako; Arai, Hiroki; Iwai, Toshiaki

    2017-04-01

    We have been developing a simple and practical video microscopy system based on absorption spectra of biological substance to perform spectroscopic observation of living tissues. The diffuse backlighting effect is actively used in the developed system, which is generated by multiple light scattering in the tissue. It is demonstrated that the light specularly reflected from the skin surface can be completely suppressed in the microscopic observation and the biological activity of the capillary vessel systems distributed under the skin can be successfully observed. As a result, we can confirm the effectiveness of the video microscopy system using diffuse backlighting and the applicability of our developed system.

  15. Pharmacokinetics, Distribution, Metabolism, and Excretion of Omadacycline following a Single Intravenous or Oral Dose of 14C-Omadacycline in Rats

    PubMed Central

    Lin, Wen; Flarakos, Jimmy; Du, Yancy; Hu, Wenyu; He, Handan; Mangold, James; Tanaka, S. Ken

    2016-01-01

    ABSTRACT The absorption, distribution, metabolism, and excretion (ADME) of omadacycline, a first-in-class aminomethylcycline antibiotic with a broad spectrum of activity against Gram-positive, Gram-negative, anaerobic, and atypical bacteria, were evaluated in rats. Tissue distribution was investigated by quantitative whole-body autoradiography in male Long-Evans Hooded (LEH) rats. Following an intravenous (i.v.) dose of 5 mg/kg of body weight, radioactivity widely and rapidly distributed into most tissues. The highest tissue-to-blood concentration ratios (t/b) were observed in bone mineral, thyroid gland, and Harderian gland at 24 h post-i.v. dose. There was no evidence of stable accumulation in uveal tract tissue, suggesting the absence of a stable binding interaction with melanin. Following a 90 mg/kg oral dose in LEH rats, the highest t/b were observed in bone mineral, Harderian gland, liver, spleen, and salivary gland. The plasma protein binding levels were 26% in the rat and 15% to 21% in other species. Omadacycline plasma clearance was 1.2 liters/h/kg, and its half-life was 4.6 h; the steady-state volume of distribution (Vss) was 6.89 liters/kg. Major circulating components in plasma were intact omadacycline and its epimer. Consistent with observations in human, approximately 80% of the dose was excreted into the feces as unchanged omadacycline after i.v. administration. Fecal excretion was primarily the result of biliary excretion (∼40%) and direct gastrointestinal secretion (∼30%). However, urinary excretion (∼30%) was equally prominent after i.v. dosing. PMID:27821446

  16. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  17. Effect of Heterogeneity of Tissues on RF Energy Absorption in the Brain for Exposure Assessment in Epidemiological Studies on Mobile Phone Use and Brain Tumors

    NASA Astrophysics Data System (ADS)

    Varsier, Nadege; Wake, Kanako; Taki, Masao; Watanabe, Soichi

    We compared SAR distributions in major anatomical structures of the brain of a homogeneous and a heterogeneous model using FDTD calculations. Our results proved a good correlation between SAR values in lobes of the brain where tumors may arise more frequently. However SAR values at some specific locations were shown to be under or overestimated.

  18. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  19. Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models

    NASA Astrophysics Data System (ADS)

    Petrova, Kremena S.; Stoykova, Elena V.

    2006-09-01

    Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.

  20. In Vivo Absorption and Disposition of Cefadroxil after Escalating Oral Doses in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Posada, Maria M.; Smith, David E.

    2013-01-01

    Purpose To determine the effect of PepT1 on the absorption and disposition of cefadroxil, including the potential for saturable intestinal uptake, after escalating oral doses of drug. Methods The absorption and disposition kinetics of [3H]cefadroxil was determined in wild-type and PepT1 knockout mice after 44.5, 89.1, 178, and 356 nmol/g oral doses of drug. The pharmacokinetics of [3H]cefadroxil was also determined in both genotypes after 44.5 nmol/g intravenous bolus doses. Results PepT1 deletion reduced the area under the plasma concentration-time profile (AUC0-120) of cefadroxil by 10-fold, the maximum plasma concentration (Cmax) by 17.5-fold, and increased the time to reach a maximum plasma concentration (Tmax) by 3-fold. There was no evidence of nonlinear intestinal absorption since AUC0-120 and Cmax values changed in a dose-proportional manner. Moreover, the pharmacokinetics of cefadroxil was not different between genotypes after intravenous bolus doses, indicating that PepT1 did not affect drug disposition. Finally, no differences were observed in the peripheral tissue distribution of cefadroxil (i.e., outside gastrointestinal tract) once these tissues were corrected for differences in perfusing blood concentrations. Conclusions The findings demonstrate convincingly the critical role of intestinal PepT1 in both the rate and extent of oral administration for cefadroxil and potentially other aminocephalosporin drugs. PMID:23959853

  1. Infiltration of trace metal ions in the oral mucosa of a rat analyzed using SRXRF, XAFS, and ICP-MS.

    PubMed

    Imamura, Toshihiro; Kanno, Zuisei; Imai, Haruki; Sugiyama, Tomoko; Wada, Takahiro; Yoshida, Midori; Sakama, Minoru; Ono, Takashi; Honda, Eiichi; Uo, Motohiro

    2015-01-01

    Although the accumulation and distribution of metals from metallic orthodontic appliances in the oral mucosa have been studied extensively, they remain unclear because their concentration is quite low. In this study, metal specimens (Ni, Ni-Ti, and Co-Cr) were sutured in the unilateral oral mucosa of rats, and the distribution of the eluted elements in the mucosal tissue was estimated using inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron radiation X-ray fluorescence analysis (SR-XRF). While the infiltrations of Ni, Co, and Cr into the oral mucosal connective tissue were observed with SR-XRF, significant increases were only found in Ni from the pure Ni group and Cr from the Co-Cr group. Furthermore, Ni and Co were estimated as hydrated ions while Cr was estimated in oxide form through X-ray absorption fine structure (XAFS) analysis.

  2. Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles

    PubMed Central

    Baek, Miri; Chung, Hae-Eun; Yu, Jin; Lee, Jung-A; Kim, Tae-Hyun; Oh, Jae-Min; Lee, Won-Jae; Paek, Seung-Min; Lee, Jong Kwon; Jeong, Jayoung; Choy, Jin-Ho; Choi, Soo-Jin

    2012-01-01

    Background This study explored the pharmacokinetics, tissue distribution, and excretion profile of zinc oxide (ZnO) nanoparticles with respect to their particle size in rats. Methods Two ZnO nanoparticles of different size (20 nm and 70 nm) were orally administered to male and female rats, respectively. The area under the plasma concentration-time curve, tissue distribution, excretion, and the fate of the nanoparticles in organs were analyzed. Results The plasma zinc concentration of both sizes of ZnO nanoparticles increased during the 24 hours after administration in a dose-dependent manner. They were mainly distributed to organs such as the liver, lung, and kidney within 72 hours without any significant difference being found according to particle size or rat gender. Elimination kinetics showed that a small amount of ZnO nanoparticles was excreted via the urine, while most of nanoparticles were excreted via the feces. Transmission electron microscopy and x-ray absorption spectroscopy studies in the tissues showed no noticeable ZnO nanoparticles, while new Zn-S bonds were observed in tissues. Conclusion ZnO nanoparticles of different size were not easily absorbed into the bloodstream via the gastrointestinal tract after a single oral dose. The liver, lung, and kidney could be possible target organs for accumulation and toxicity of ZnO nanoparticles was independent of particle size or gender. ZnO nanoparticles appear to be absorbed in the organs in an ionic form rather than in a particulate form due to newly formed Zn-S bonds. The nanoparticles were mainly excreted via the feces, and smaller particles were cleared more rapidly than the larger ones. ZnO nanoparticles at a concentration below 300 mg/kg were distributed in tissues and excreted within 24 hours. These findings provide crucial information on possible acute and chronic toxicity of ZnO nanoparticles in potential target organs. PMID:22811602

  3. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics

    PubMed Central

    Hanagodimath, S. M.; Gerward, L.

    2011-01-01

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4‐component), for the photon energy range 0.015–15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Zeff. These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue‐equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range. PACS numbers: 32.80‐t, 87.53‐j, 78.70‐g, 78.70‐Ck PMID:22089011

  4. Concomitant bidirectional transport during peritoneal dialysis can be explained by a structured interstitium

    PubMed Central

    Waniewski, Jacek; Flessner, Michael F.; Lindholm, Bengt

    2016-01-01

    Clinical and animal studies suggest that peritoneal absorption of fluid and protein from dialysate to peritoneal tissue, and to blood and lymph circulation, occurs concomitantly with opposite flows of fluid and protein, i.e., from blood to dialysate. However, until now a theoretical explanation of this phenomenon has been lacking. A two-phase distributed model is proposed to explain the bidirectional, concomitant transport of fluid, albumin and glucose through the peritoneal transport system (PTS) during peritoneal dialysis. The interstitium of this tissue is described as an expandable two-phase structure with phase F (water-rich, colloid-poor region) and phase C (water-poor, colloid-rich region) with fluid and solute exchange between them. A low fraction of phase F is assumed in the intact tissue, which can be significantly increased under the influence of hydrostatic pressure and tissue hydration. The capillary wall is described using the three-pore model, and the conditions in the peritoneal cavity are assumed commencing 3 min after the infusion of glucose 3.86% dialysis fluid. Computer simulations demonstrate that peritoneal absorption of fluid into the tissue, which occurs via phase F at the rate of 1.8 ml/min, increases substantially the interstitial pressure and tissue hydration in both phases close to the peritoneal cavity, whereas the glucose-induced ultrafiltration from blood occurs via phase C at the rate of 15 ml/min. The proposed model delineating the phenomenon of concomitant bidirectional transport through PTS is based on a two-phase structure of the interstitium and provides results in agreement with clinical and experimental data. PMID:26945084

  5. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  6. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to efficient coupling of optical energy, pre-injection of photoactive dyes promoted the degree of tissue removal during laser irradiation. Further studies will investigate spatial distribution of dyes and optimal injecting pressure to govern the extent of dye-assisted ablation in a predictable manner. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser vaporization for BPH with low power application. © 2014 Wiley Periodicals, Inc.

  7. Absorption, Distribution and Excretion of Four Forms of Titanium Dioxide Pigment in the Rat.

    PubMed

    Farrell, Thomas P; Magnuson, Berna

    2017-08-01

    Titanium dioxide (TiO 2 ) is a white color additive that has a long history of global approval and use in food. There is, however, considerable confusion regarding the applicability of the biological effects of novel, engineered, nano-sized forms of TiO 2 developed for nonpigmentary applications to the safety of oral exposure to food grade TiO 2 pigment. The objective of this study was to assess the absorption, distribution, and routes of excretion in rats after oral exposure to food grade TiO 2 . Four different grades of TiO 2 (200 ppm) or control (0 ppm) diets were fed to rats for 7 consecutive days, followed by control diet only for 1, 24, or 72 h. Concentrations of titanium in liver, kidney and muscle were mainly below the limit of detection (<0.1 to < 0.2 mg/kg wet weight); tissue concentrations of titanium above the LOD were in the range of 0.1 to 0.3 mg/kg wet weight for all groups. Whole blood concentrations of titanium were <0.04 mg/L for all groups. Urinary excretion of titanium was equivalent to <2% daily dose/L of urine for all groups and was generally below the limit of quantification (<0.04 mg/L). Feces represented the predominant route of excretion. These results demonstrate that there is no accumulation of titanium in tissues following consumption of diets containing 200 ppm food grade TiO 2 . No differences in systemic absorption of the 4 forms of TiO 2 were observed indicating that the bioavailability of TiO 2 is consistently low for the range of particle sizes and morphologies examined in this study. © 2017 Institute of Food Technologists®.

  8. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    PubMed

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  9. Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging

    DTIC Science & Technology

    2005-07-01

    position. This indicates the polarization preservation nature of Cybesin. Time Resolved Fluorescence Intensity of Cybesin 60000 Perpendicular 3000 0...absorption than that of normal tissue at water absorption peaks indicating cancer tissue has less water content than that of normal tissue; (5) preliminary...rectum-and-membrane tissues.’ This indicates that our proposed approach of imaging a prostate gland through rectum using spectral polarization imaging

  10. Bioavailability of a Lipidic Formulation of Curcumin in Healthy Human Volunteers

    PubMed Central

    Pawar, Yogesh B.; Munjal, Bhushan; Arora, Saurabh; Karwa, Manoj; Kohli, Gunjan; Paliwal, Jyoti K.; Bansal, Arvind K.

    2012-01-01

    Numerous publications have reported the significant pharmacodynamic activity of Curcumin (CRM) despite low or undetectable levels in plasma. The objective of the present study was to perform a detailed pharmacokinetic evaluation of CRM after the oral administration of a highly bioavailable lipidic formulation of CRM (CRM-LF) in human subjects. Cmax, Tmax and AUC0–∞ were found to be 183.35 ± 37.54 ng/mL, 0.60 ± 0.05 h and 321.12 ± 25.55 ng/mL respectively, at a dose of 750 mg. The plasma profile clearly showed three distinct phases, viz., absorption, distribution and elimination. A close evaluation of the primary pharmacokinetic parameters provided valuable insight into the behavior of the CRM after absorption by CRM-LF. CRM-LF showed a lag time (Tlag) of 0.18 h (around 12 min). Pharmacokinetic modeling revealed that CRM-LF followed a two-compartment model with first order absorption, lag time and first order elimination. A high absorption rate constant (K01, 4.51/h) signifies that CRM-LF ensured rapid absorption of the CRM into the central compartment. This was followed by the distribution of CRM from the central to peripheral compartment (K12, 2.69/h). The rate of CRM transfer from the peripheral to central compartment (K21, 0.15/h) was slow. This encourages higher tissue levels of CRM as compared with plasma levels. The study provides an explanation of the therapeutic efficacy of CRM, despite very low/undetectable levels in the plasma. PMID:24300368

  11. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools.

    PubMed

    De Buck, Stefan S; Sinha, Vikash K; Fenu, Luca A; Gilissen, Ron A; Mackie, Claire E; Nijsen, Marjoleen J

    2007-04-01

    The aim of this study was to assess a physiologically based modeling approach for predicting drug metabolism, tissue distribution, and bioavailability in rat for a structurally diverse set of neutral and moderate-to-strong basic compounds (n = 50). Hepatic blood clearance (CL(h)) was projected using microsomal data and shown to be well predicted, irrespective of the type of hepatic extraction model (80% within 2-fold). Best predictions of CL(h) were obtained disregarding both plasma and microsomal protein binding, whereas strong bias was seen using either blood binding only or both plasma and microsomal protein binding. Two mechanistic tissue composition-based equations were evaluated for predicting volume of distribution (V(dss)) and tissue-to-plasma partitioning (P(tp)). A first approach, which accounted for ionic interactions with acidic phospholipids, resulted in accurate predictions of V(dss) (80% within 2-fold). In contrast, a second approach, which disregarded ionic interactions, was a poor predictor of V(dss) (60% within 2-fold). The first approach also yielded accurate predictions of P(tp) in muscle, heart, and kidney (80% within 3-fold), whereas in lung, liver, and brain, predictions ranged from 47% to 62% within 3-fold. Using the second approach, P(tp) prediction accuracy in muscle, heart, and kidney was on average 70% within 3-fold, and ranged from 24% to 54% in all other tissues. Combining all methods for predicting V(dss) and CL(h) resulted in accurate predictions of the in vivo half-life (70% within 2-fold). Oral bioavailability was well predicted using CL(h) data and Gastroplus Software (80% within 2-fold). These results illustrate that physiologically based prediction tools can provide accurate predictions of rat pharmacokinetics.

  12. NMR imaging of cell phone radiation absorption in brain tissue

    PubMed Central

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  13. NMR imaging of cell phone radiation absorption in brain tissue.

    PubMed

    Gultekin, David H; Moeller, Lothar

    2013-01-02

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry.

  14. Total mercury distribution in different tissues of six species of freshwater fish from the Kpong hydroelectric reservoir in Ghana.

    PubMed

    Atta, Alhassan; Voegborlo, Ray Bright; Agorku, Eric Selorm

    2012-05-01

    Total mercury concentrations were determined in seven tissues of 38 fish samples comprising six species from the Kpong hydroelectric reservoir in Ghana by cold vapour atomic absorption spectrometry technique using an automatic mercury analyzer. Mercury concentration in all the tissues ranged from 0.005 to 0.022 μg/g wet weight. In general, the concentration of mercury in all the tissues were decreasing in the order; liver > muscle > intestine > stomach > gonad > gill > swim bladder. Mercury concentration was generally greater in the tissues of high-trophic-level fish such as Clarotes laticeps, Mormyrops anguilloides and Chrysichthys aurutus whereas low-trophic-level fish such as Oreochromis niloticus recorded low mercury concentration in their tissues. The results obtained for total mercury concentration in the muscle tissues analysed in this study are below the WHO/FAO threshold limit of 0.5 μg/g. This suggests that the exposure of the general public to Hg through fish consumption can be considered negligible.

  15. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  16. Enhancement of lymphatic transport of lutein by oral administration of a solid dispersion and a self-microemulsifying drug delivery system.

    PubMed

    Sato, Yuki; Joumura, Tatsuru; Nashimoto, Shunsuke; Yokoyama, Sayaka; Takekuma, Yoh; Yoshida, Hideto; Sugawara, Mitsuru

    2018-06-01

    Lutein is located in the macula lutea in the human eye. Since humans cannot synthesize lutein de novo, it must be digested as food. Some studies including our previous study showed very low absorption of lutein after oral administration. These studies also suggested that the absorption route of lutein from the small intestine involves not only the blood but also the lymph. The aim of this study was to clarify the transfer of lutein into lymph and the tissue distribution after oral administration of a solid dispersion (SD) and a self-microemulsifying drug delivery system (SMEDDS) for improvement of the absorption. We used thoracic lymph-cannulated rats. It was shown that the plasma concentrations of lutein in the SD and SMEDDS groups were increased compared with that in the powder group. The absorption of lutein after oral administration of each formulation was clearly evaluated by its cumulative amount in lymph. Our data clearly showed that lutein is transferred into the lymph stream from the small intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Light scattering study of rheumatoid arthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beuthan, J; Netz, U; Minet, O

    The distribution of light scattered by finger joints is studied in the near-IR region. It is shown that variations in the optical parameters of the tissue (scattering coefficient {mu}{sub s}, absorption coefficient {mu}{sub a}, and anisotropy factor g) depend on the presence of the rheumatoid arthritis (RA). At the first stage, the distribution of scattered light was measured in diaphanoscopic experiments. The convolution of a Gaussian error function with the scattering phase function proved to be a good approximation of the data obtained. Then, a new method was developed for the reconstruction of distribution of optical parameters in the fingermore » cross section. Model tests of the quality of this reconstruction method show good results. (laser biology and medicine)« less

  18. Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer

    DOEpatents

    Canpolat, Murat; Mourant, Judith R.

    2003-12-09

    Apparatus and method for measuring scatterer size in a dense media with only a single fiber for both light delivery and collection are disclosed. White light is used as a source and oscillations of the detected light intensities are measured as a function of wavelength. The maximum and minimum of the oscillations can be used to determine scatterer size for monodisperse distributions of spheres when the refractive indices are known. In addition several properties of the probe relevant to tissue diagnosis are disclosed including the effects of absorption, a broad distribution of scatterers, and the depth probed.

  19. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    NASA Technical Reports Server (NTRS)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  20. Detection of titanium in human tissues after craniofacial surgery.

    PubMed

    Jorgenson, D S; Mayer, M H; Ellenbogen, R G; Centeno, J A; Johnson, F B; Mullick, F G; Manson, P N

    1997-04-01

    Generally, titanium fixation plates are not removed after osteosynthesis, because they have high biocompatability and high corrosion resistance characteristics. Experiments with laboratory animals, and limited studies of analyses of human tissues, have reported evidence of titanium release into local and distant tissues. This study summarizes our results of the analysis of soft tissues for titanium in four patients with titanium microfixation plates. Energy dispersive x-ray analysis, scanning electron microscopy, and electrothermal atomic absorption spectrophotometry were used to detect trace amounts of titanium in surrounding soft tissues. A single metal inclusion was detected by scanning electron microscopy and energy dispersive x-ray analysis in one patient, whereas, electrothermal atomic absorption spectrophotometry analyses revealed titanium present in three of four specimens in levels ranging from 7.92 to 31.8 micrograms/gm of dry tissue. Results from this study revealed trace amounts of titanium in tissues surrounding craniofacial plates. At the atomic level, electrothermal atomic absorption spectrophotometry appears to be a sensitive tool to quantitatively detect ultra-trace amounts of metal in human tissue.

  1. Biocompatible near-infrared fluorescent nanoparticles for macro and microscopic in vivo functional bioimaging

    PubMed Central

    Chu, Liliang; Wang, Shaowei; Li, Kanghui; Xi, Wang; Zhao, Xinyuan; Qian, Jun

    2014-01-01

    Near-infrared (NIR) imaging technology has been widely used for biomedical research and applications, since it can achieve deep penetration in biological tissues due to less absorption and scattering of NIR light. In our research, polymer nanoparticles with NIR fluorophores doped were synthesized. The morphology, absorption/emission features and chemical stability of the fluorescent nanoparticles were characterized, separately. NIR fluorescent nanoparticles were then utilized as bright optical probes for macro in vivo imaging of mice, including sentinel lymph node (SLN) mapping, as well as distribution and excretion monitoring of nanoparticles in animal body. Furthermore, we applied the NIR fluorescent nanoparticles in in vivo microscopic bioimaging via a confocal microscope. Under the 635 nm-CW excitation, the blood vessel architecture in the ear and the brain of mice, which were administered with nanoparticles, was visualized very clearly. The imaging depth of our one-photon microscopy, which was assisted with NIR fluorescent nanoprobes, can reach as deep as 500 μm. Our experiments show that NIR fluorescent nanoparticles have great potentials in various deep-tissue imaging applications. PMID:25426331

  2. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract.

    PubMed

    Shi, Juan; Fu, Qiang; Chen, Wang; Yang, Hai-Ping; Liu, Jing; Wang, Xiao-Meng; He, Xu

    2013-01-09

    Libanotis buchtormensis is the source of an important traditional medicine from Shaanxi province of China used in the treatment of many illnesses. Libanotis buchtormensis supercritical extract (LBSE) has analgesic, sedative and anti-inflammatory qualities. Osthole is one of the major bioactive components of LBSE; it is known for its significant anti-tumor, analgesic, and anti-inflammatory properties, it also alleviates hyperglycemia. The purpose of the present study was to compare the pharmacokinetics and tissue distribution of osthole in Sprague-Dawley (SD) rats after oral administration of pure osthole and LBSE. The two preparations were administered at the same osthole dose (approximately 130 mg/kg). The results should provide some guidance for the clinical applications of Libanotis buchtormensis. Comparative pharmacokinetics and tissue distribution of osthole in SD rats after oral administration of pure osthole and LBSE were analyzed using reversed-phase high-performance liquid chromatography (RP-HPLC). All pharmacokinetic data were analyzed using 3P97 software. Samples of blood and internal organs (heart, liver, spleen, lungs and kidney) were collected and pretreated according to the experimental schedule. After pretreatment, plasma and tissue samples were extracted using ether-ethyl acetate mixture (3:1, v/v). The concentration of osthole in the plasma and tissues were determined using the RP-HPLC method. The procedure described in this paper shows good precision and stability and is suitable for the osthole assays in biological samples. We found that the average plasma concentration-time profile of osthole after oral administration of osthole and LBSE showed a single peak. There were also clear differences between plasma concentrations of osthole after oral administration of pure osthole and LBSE. Non-osthole ingredients in LBSE showed some pharmacokinetic interactions with osthole and hence decreased its absorption levels (p<0.05). Our results show different tissue distribution of osthole in the single and composite administration regimens. This study compares the pharmacokinetic characteristics and tissue distribution of osthole in rats after oral administration of pure osthole and LBSE; the results might be useful in clinical application of this traditional Chinese herbal medicine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.

    PubMed

    Pisa, S; Cavagnaro, M; Bernardi, P; Lin, J C

    2001-05-01

    A 915-MHz antenna design that produces specific absorption rate distributions with preferential power deposition in tissues surrounding and including the distal end of the catheter antenna is described. The design features minimal reflected microwave current from the antenna flowing up the transmission line. This cap-choke antenna consists of an annular cap and a coaxial choke which matches the antenna to the coaxial transmission line. The design minimizes heating of the coaxial cable and its performance is not affected by the depth of insertion of the antenna into tissue. The paper provides a comparison of results obtained from computer modeling and experimental measurements made in tissue equivalent phantom materials. There is excellent agreement between numerical modeling and experimental measurement. The cap-choke, matched-dipole type antenna is suitable for intracavitary microwave thermal ablation therapy.

  4. MRI-induced heating of deep brain stimulation leads

    NASA Astrophysics Data System (ADS)

    Mohsin, Syed A.; Sheikh, Noor M.; Saeed, Usman

    2008-10-01

    The radiofrequency (RF) field used in magnetic resonance imaging is scattered by medical implants. The scattered field of a deep brain stimulation lead can be very intense near the electrodes stimulating the brain. The effect is more pronounced if the lead behaves as a resonant antenna. In this paper, we examine the resonant length effect. We also use the finite element method to compute the near field for (i) the lead immersed in inhomogeneous tissue (fat, muscle, and brain tissues) and (ii) the lead connected to an implantable pulse generator. Electric field, specific absorption rate and induced temperature rise distributions have been obtained in the brain tissue surrounding the electrodes. The worst-case scenario has been evaluated by neglecting the effect of blood perfusion. The computed values are in good agreement with in vitro measurements made in the laboratory.

  5. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    PubMed Central

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  6. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  7. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  8. Gastrointestinal uptake and distribution of copper in rainbow trout.

    PubMed

    Clearwater, S J; Baskin, S J; Wood, C M; McDonald, D G

    2000-08-01

    A single dose of radioactive copper ((64)Cu or new Cu) was infused into the stomach of rainbow trout (Oncorhynchus mykiss) to model dietary copper (Cu) uptake under conditions of a normal nutritional dose and optimum environmental temperature (16 degrees C, 0.117 microg Cu g(-)(1 )body mass). The distribution of new Cu to the gut and internal organs occurred in two phases: rapid uptake by the gut tissues (almost complete by 24 h post-infusion) followed by slower uptake by the internal organs. By 72 h, 60 % of the dose had been excreted, 19 % was still retained in the gut tissue, 10 % remained in the lumen and 12 % had been absorbed across the gut and partitioned amongst the internal organs. A reduction in water temperature of 10 degrees C (to 6 degrees C) significantly retarded components of new Cu distribution (movement of the bolus along the gut and excretion); nonetheless, by 72 h, the fraction absorbed by all the internal organs was similar to that at 16 degrees C. An increase in water temperature of 3 degrees C (to 19 degrees C) caused a pronounced increase in internal organ uptake by 24 h to approximately double the uptake occurring at 16 degrees C. The uptake of new Cu by the gut tissue had a low temperature coefficient (Q(10)<1) consistent with simple diffusion, while the temperature coefficient for transfer of new Cu from gut tissue to the internal organs was high (Q(10)>2), consistent with facilitated transport. Internally, the liver and gall bladder (including bile) were the target organs for dietary Cu partitioning since they were the only organs that concentrated new Cu from the plasma. Individual tissues differed in terms of the exchange of their background Cu pools with new Cu. The background Cu in the walls of the gastrointestinal tract (excluding stomach) exchanged 45-94 % with new Cu from the gut lumen, while tissues such as the stomach, gills, kidney, carcass and fat had 5-7 % exchangeable background Cu. The liver, heart, spleen, ovary, bile and plasma had only 0.2-0.8 % exchangeable background Cu. The gastrointestinal tissues appear to act as a homeostatic organ, regulating the absorption of nutritional (non-toxic) doses of Cu (0. 117 microg g(-)(1 )body mass day(-)(1)) by the internal organs. Within the dose range we used and at optimal temperature (16 degrees C), the new Cu content of the gut tissues fluctuated, but absorption of new Cu by the internal organs remained relatively constant. For example, predosing the fish with non-radioactive Cu caused new Cu absorption by the gut tissues to double and decreased new Cu excretion from 38 to 1.5 %, but had no effect on new Cu uptake by the internal organs. Feeding fish after application of the normal liquid dose of new Cu also had no effect on new Cu uptake by the internal organs, even though the presence of food in the digestive tract reduced the binding of new Cu to the gut tissues and assisted with the excretion of new Cu. The gut was therefore able to regulate new Cu internalization at this dosage. Higher new Cu doses (10, 100 and 1000 times the normal dose), however, evoked regurgitation and increased new Cu excretion within 4 h of application but did not elevate new Cu levels in gut tissue beyond a threshold of approximately 40 microg of new Cu. Only at the highest dose (1000 times the normal dose, 192 microg g(-)(1 )body mass), equivalent to toxic concentrations in the daily diet (7000 microg Cu g(-)(1 )dry mass food), was the buffering capacity of the gut overwhelmed, resulting in an increase in internal new Cu uptake.

  9. Curcumin therapeutic promises and bioavailability in colorectal cancer.

    PubMed

    Shehzad, A; Khan, S; Shehzad, O; Lee, Y S

    2010-07-01

    Curcumin, a polyphenol and derivative of turmeric is one of the most commonly used and highly researched phytochemicals. Several research studies have provided interesting insights into the multiple mechanisms by which curcumin may mediate chemotherapy and chemopreventive effects on cancers, including colorectal cancer. Curcumin has the ability to inhibit carcinogenic promotion of colorectal cancer through the modulation of multiple molecular targets such as transcription factors, enzymes, cell cycle proteins, cell surface adhesion proteins, survival pathways and cytokines. A number of clinical trials dealing with curcumin's efficacy and safety revealed poor absorption and low bioavailability. Different factors contributing to the low bioavailability include low plasma level, tissue distribution, rapid metabolism and elimination from the body. Although, curcumin poor absorption and low systemic bioavailability limit its translation into clinics, some of the methods for its use can be approached to enhance the absorption and achieve a therapeutic level of curcumin. Recent clinical trials suggest a potential role for curcumin in regards to colorectal cancer therapy.

  10. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass transport model is developed to simulate nanoparticle convection and diffusion in tumors, heat-induced tumor structural changes, as well as nanoparticle re-distribution during nanoparticle hyperthermia procedures. The modeled thermal damage induced nanoparticle redistribution predicts a 20% increase in the radius of the spherical tissue region containing nanoparticles. The developed model has demonstrated the feasibility of enhancing nanoparticle dispersion from injection sites using targeted thermal damage.

  11. 3D Monte Carlo simulation of light propagation for laser acupuncture and optimization of illumination parameters

    NASA Astrophysics Data System (ADS)

    Zhong, Fulin; Li, Ting; Pan, Boan; Wang, Pengbo

    2017-02-01

    Laser acupuncture is an effective photochemical and nonthermal stimulation of traditional acupuncture points with lowintensity laser irradiation, which is advantageous in painless, sterile, and safe compared to traditional acupuncture. Laser diode (LD) provides single wavelength and relatively-higher power light for phototherapy. The quantitative effect of illumination parameters of LD in use of laser acupuncture is crucial for practical operation of laser acupuncture. However, this issue is not fully demonstrated, especially since experimental methodologies with animals or human are pretty hard to address to this issue. For example, in order to protect viability of cells and tissue, and get better therapeutic effect, it's necessary to control the output power varied at 5mW 10mW range, while the optimized power is still not clear. This study aimed to quantitatively optimize the laser output power, wavelength, and irradiation direction with highly realistic modeling of light transport in acupunctured tissue. A Monte Carlo Simulation software for 3D vowelized media and the highest-precision human anatomical model Visible Chinese Human (VCH) were employed. Our 3D simulation results showed that longer wavelength/higher illumination power, larger absorption in laser acupuncture; the vertical direction emission of the acupuncture laser results in higher amount of light absorption in both the acupunctured voxel of tissue and muscle layer. Our 3D light distribution of laser acupuncture within VCH tissue model is potential to be used in optimization and real time guidance in clinical manipulation of laser acupuncture.

  12. Immunohistochemistry for the MEPHISTO X-PEEM

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Neumann, M.; Steen, S.; Gabel, D.; Andres, R.; Perfetti, P.; Margaritondo, G.; De Stasio, Gelsomina

    2000-05-01

    Over almost 50 years of its development, the science of immunology has become an indispensable tool for the understanding of the histology of tissues. Antibodies are highly specific probes, so that tissue structure can be interpreted not just by morphological considerations but by association with a wide variety of physiological molecular antigens. The simple concept of an antibody linked to a microscopically dense marker remains constant in each application of the technique, such as the use of fluorescent markers or the incorporation of electron-dense gold colloids for electron microscopy. We describe a new application of immunocytochemistry to x-ray spectromicroscopy: the antibody labeling of tissue structures with nickel precipitates. Regions of positive staining can be seen by the acquisition of nickel distribution maps in the MEPHISTO X-PEEM from the intense Ni L-edge absorption features around 850 eV. The aim of this work is to know the background tissue structures on which the distribution of other relevant elements (such as boron for BNCT) can be mapped. Results are presented showing positive staining by two antibodies in human glioblastoma tissue, anti-Ki-67, a protein found in the nuclei of proliferating cells, and anti-van Willebrandt factor, located in blood vessel endothelia. We show that the criteria for successful staining for optical microscopy are different than for spectroscopic imaging, but useful results can be obtained with careful image treatment.

  13. Robust Accurate Non-Invasive Analyte Monitor

    DOEpatents

    Robinson, Mark R.

    1998-11-03

    An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.

  14. Comparison of excitation wavelengths for in vivo deep imaging of mouse brain

    NASA Astrophysics Data System (ADS)

    Wang, Mengran; Wu, Chunyan; Li, Bo; Xia, Fei; Sinefeld, David; Xu, Chris

    2018-02-01

    The attenuation of excitation power reaching the focus is the main issue that limits the depth penetration of highresolution imaging of biological tissue. The attenuation is caused by a combination of tissue scattering and absorption. Theoretical model of the effective attenuation length for in vivo mouse brain imaging has been built based on the data of the absorption of water and blood and the Mie scattering of a tissue-like phantom. Such a theoretical model has been corroborated at a number of excitation wavelengths, such as 800 nm, 1300 nm , and 1700 nm ; however, the attenuation caused by absorption is negligible when compared to tissue scattering at all these wavelength windows. Here we performed in vivo three-photon imaging of Texas Red-stained vasculature in the same mouse brain with different excitation wavelengths, 1700 nm, 1550 nm, 1500 nm and 1450 nm. In particular, our studies include the wavelength regime where strong water absorption is present (i.e., 1450 nm), and the attenuation by water absorption is predicted to be the dominant contribution in the excitation attenuation. Based on the experimental results, we found that the effective attenuation length at 1450 nm is significantly shorter than those at 1700 nm and 1300 nm. Our results confirm that the theoretical model based on tissue scattering and water absorption is accurate in predicting the effective attenuation lengths for in vivo imaging. The optimum excitation wavelength windows for in vivo mouse brain imaging are at 1300 nm and 1700 nm.

  15. Increased epidermal laser fluence through simultaneous ultrasonic microporation

    NASA Astrophysics Data System (ADS)

    Whiteside, Paul J. D.; Chininis, Jeff A.; Schellenberg, Mason W.; Qian, Chenxi; Hunt, Heather K.

    2016-03-01

    Lasers have demonstrated widespread applicability in clinical dermatology as minimally invasive instruments that achieve photogenerated responses within tissue. However, before reaching its target, the incident light must first transmit through the surface layer of tissue, which is interspersed with chromophores (e.g. melanin) that preferentially absorb the light and may also generate negative tissue responses. These optical absorbers decrease the efficacy of the procedures. In order to ensure that the target receives a clinically relevant dose, most procedures simply increase the incident energy; however, this tends to exacerbate the negative complications of melanin absorption. Here, we present an alternative solution aimed at increasing epidermal energy uence while mitigating excess absorption by unintended targets. Our technique involves the combination of a waveguide-based contact transmission modality with simultaneous high-frequency ultrasonic pulsation, which alters the optical properties of the tissue through the agglomeration of dissolved gasses into micro-bubbles within the tissue. Doing so effectively creates optically transparent pathways for the light to transmit unobstructed through the tissue, resulting in an increase in forward scattering and a decrease in absorption. To demonstrate this, Q-switched nanosecond-pulsed laser light at 532nm was delivered into pig skin samples using custom glass waveguides clad in titanium and silver. Light transmission through the tissue was measured with a photodiode and integrating sphere for tissue with and without continuous ultrasonic pulsation at 510 kHz. The combination of these techniques has the potential to improve the efficiency of laser procedures while mitigating negative tissue effects caused by undesirable absorption.

  16. A theoretical and experimental investigation of nonlinear propagation of ultrasound through tissue mimicking media

    NASA Astrophysics Data System (ADS)

    Rielly, Matthew Robert

    An existing numerical model (known as the Bergen code) is used to investigate finite amplitude ultrasound propagation through multiple layers of tissue-like media. This model uses a finite difference method to solve the nonlinear parabolic KZK wave equation. The code is modified to include an arbitrary frequency dependence of absorption and transmission effects for wave propagation across a plane interface at normal incidence. In addition the code is adapted to calculate the total intensity loss associated with the absorption of the fundamental and nonlinearly generated harmonics. Measurements are also taken of the axial nonlinear pressure field generated from a circular focused, 2.25 MHz source, through single and multiple layered tissue mimicking fluids, for source pressures in the range from 13 kPa to 310 kPa. Two tissue mimicking fluids are developed to provide acoustic properties similar to amniotic fluid and a typical soft tissue. The values of the nonlinearity parameter, sound velocity and frequency dependence of attenuation for both fluids are presented, and the measurement procedures employed to obtain these characteristics are described in detail. These acoustic parameters, together with the measured source conditions are used as input to the numerical model, allowing the experimental conditions to be simulated. Extensive comparisons are made between the model's predictions and the axial pressure field measurements. Results are presented in the frequency domain showing the fundamental and three subsequent harmonic amplitudes on axis, as a function of axial distance. These show that significant nonlinear distortion can occur through media with characteristics typical of tissue. Time domain waveform comparisons are also made. An excellent agreement is found between theory and experiment indicating that the model can be used to predict nonlinear ultrasound propagation through multiple layers of tissue-like media. The numerical code is also used to model the intensity loss through layered tissue mimics and results are presented illustrating the effects of altering the layered medium on the magnitude and spatial distribution of intensity loss.

  17. Prediction of drug intestinal absorption in human using the Ussing chamber system: A comparison of intestinal tissues from animals and humans.

    PubMed

    Miyake, Masateru; Koga, Toshihisa; Kondo, Satoshi; Yoda, Noriaki; Emoto, Chie; Mukai, Tadashi; Toguchi, Hajime

    2017-01-01

    An adequate evaluation system for drug intestinal absorption is essential in the pharmaceutical industry. Previously, we established a novel prediction system of drug intestinal absorption in humans, using the mini-Ussing chamber equipped with human intestinal tissues. In this system, the TI value was defined as the sum of drug amounts transported to the basal-side component (X corr ) and drug amounts accumulated in the tissue (T corr ), which are normalized by AUC of a drug in the apical compartment, as an index for drug absorption. In order to apply this system to the screening assay, it is important to understand the differences between animal and human tissues in the intestinal absorption of drugs. In this study, the transport index (TI) values of three drugs, with different levels of membrane permeability, were determined to evaluate the rank order of drug absorbability in intestinal tissues from rats, dogs, and monkeys. The TI values in small intestinal tissues in rats and dogs showed a good correlation with those in humans. On the other hand, the correlation of TI values in monkeys was lower compared to rats and dogs. The rank order of the correlation coefficient between human and investigated animal tissues was as follows: dog (r 2 =0.978), rat (r 2 =0.955), and monkey (r 2 =0.620). TI values in large intestinal tissues from rats (r 2 =0.929) and dogs (r 2 =0.808) also showed a good correlation. The obtained TI values in small intestinal tissues in rats and dogs were well correlated with the fraction of drug absorbed (F a ) in humans. From these results, the mini-Ussing chamber, equipped with intestinal tissues in rats and dogs, would be useful as a screening tool in the drug discovery stage. In addition, the obtained TI values can be used for the prediction of the F a in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Effects of acupotomy lysis on local soft tissue tension in patients with the third lumbar vertebrae transverse process syndrome].

    PubMed

    Guo, Chang-Qing; Dong, Fu-Hui; Li, Shi-Liang; Qiao, Jin-Lin; Jiang, Zhao-Ia; Liu, Nai-Gang; Chen, Zhan-Lu

    2012-07-01

    To explore the mechanism of acupotomy lysis in treatment of the third lumbar vertebrae transverse process syndrome. One hundred and eighty patients were randomly assigned into an acupotomy group and an electroacupuncture (EA) group, 90 cases in each group. The acupotomy group was treated with acupotomy on the tip of the 3rd lumbar vertebrae transverse process (tender point) combination with massage manipulation of hyperflexion and hyperextension on the waist, once a week for 3 weeks. The EA group was treated with EA at bilateral Shenshu (BL 23), Yaoyangguan (GV 3), Ashi point (local tender point) and ipsilateral Weizhong (BL 40), 3 times a week for 3 weeks. The 500 g pressure displacement and the energy absorption ratio were measured by JZL-II soft tissue tension meter and the clinical effect was evaluated by JOA low back pain scale before treatment, after treatment and 6 months after treatment. After treatment and at follow-up visit, the 500 g pressure displacement in the acupotomy group increased significantly (both P < 0.01), but it was decreased significantly in the EA group (P < 0.05, P < 0.01). The energy absorption ratio in the acupotomy group after treatment and at follow-up visit increased significantly (both P < 0.01), and in the EA group, there was no significant difference after treatment as compared with that before treatment (P > 0.05), but it was increased significantly at follow-up visit (P < 0.01). The total therapeutic level distribution in the acupotomy group was better than that in the EA group after treatment and 6 months after treatment (P < 0.05, P < 0.01). Acupotomy therapy can significantly increase the 500 g pressure displacement and the energy absorption ratio of the local soft tissue around the third lumbar vertebrae transverse process, decrease the local soft tissue tension so as to alleviate pain. The clinical effect of the acupotomy is superior to that of electroacupuncture.

  19. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  20. Stress, temperature, heart rate, and hibernating factors in hamsters. [pathophysiological conditions resulting from exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1974-01-01

    Pathophysiological conditions resulting from prolonged exposure to zero gravity, cabin constraint, altered ambient environment, whether it be noise, vibrations, high temperatures, or combinations of such factors, are studied in laboratory animals and applied to manned space flight. Results and plans for further study are presented. Specific topics covered include: thermoregulation and its role in reflecting stress and adaptation to the gravity free environment and cabin confinement with its altered circadian forcings; renal function and its measurement in electrolyte distribution and blood flow dynamics; gastronintestinal function and an assessment of altered absorptive capacity in the intestinal mucosa; and catecholamine metabolism in terms of distribution and turnover rates in specific tissues.

  1. Modeling and image reconstruction in spectrally resolved bioluminescence tomography

    NASA Astrophysics Data System (ADS)

    Dehghani, Hamid; Pogue, Brian W.; Davis, Scott C.; Patterson, Michael S.

    2007-02-01

    Recent interest in modeling and reconstruction algorithms for Bioluminescence Tomography (BLT) has increased and led to the general consensus that non-spectrally resolved intensity-based BLT results in a non-unique problem. However, the light emitted from, for example firefly Luciferase, is widely distributed over the band of wavelengths from 500 nm to 650 nm and above, with the dominant fraction emitted from tissue being above 550 nm. This paper demonstrates the development of an algorithm used for multi-wavelength 3D spectrally resolved BLT image reconstruction in a mouse model. It is shown that using a single view data, bioluminescence sources of up to 15 mm deep can be successfully recovered given correct information about the underlying tissue absorption and scatter.

  2. Absorption and distribution of cadmium in mice fed diets containing either inorganic or oyster-incorporated cadmium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, M.F.; Hardy, J.T.; Miller, B.M.

    1984-02-01

    To determine the absorption, organ distribution, and retention of organically bound cadmium (Cd) and the effects of dietary zinc (Zn) on Cd metabolism, groups of mice were fed five different diets. The organic Cd used in the diets was in the form of lyophilized oyster (Crassostrea virginica) that had accumulated radiolabeled 109Cd through a plankton food chain. The mice were fed either a standard basal mouse diet (AIN-76) or diets containing five or eight times the Zn concentration of the basal diet. The source of Zn was either oyster tissue or ZnCO3. The concentration of organic and inorganic Cd providedmore » a dose of approximately 0.4 mg/kg. Diets prepared from oyster tissue probably contained all of the Cd and 85% of the Zn in organic form. Diets prepared with inorganic metals contained about the same Cd and Zn concentrations as the diets prepared with oyster. There was very little difference between the retention of Cd by mice that ingested organic (oyster bound) Cd and those fed inorganic Cd (CdCl2). However, when the Cd retained in the intestine was excluded, retention of organic Cd was significantly greater than that of inorganic Cd. The organ distribution of Cd differed significantly according to the chemical form of Cd fed (organic or inorganic) and the Zn level in the diet. The kidneys of mice fed organically bound Cd retained a higher percentage of the metal than the kidneys of those fed inorganic Cd. On the other hand, the livers of animals fed a low-Zn diet retained a higher percentage of the Cd than the livers of those fed a high-Zn diet, regardless of the dietary source of Cd.« less

  3. Evaluation of metal content in perch of the Ob River basin

    NASA Astrophysics Data System (ADS)

    Osipova, N. A.; Stepanova, K. D.; Matveenko, I. A.

    2015-11-01

    The geochemical features of river perch in the River Ob basin have been studied (the upper and middle reaches of the Ob River and the lower reach of the Tom River). The contents of Ag, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, W, Zn, Hg in perch's soft tissue are defined by the methods of ICP AES and stripping voltammetry, that of mercury in bones - by the atomic absorption method using mercury analyzer PA-915+. The distribution series of metal absolute concentrations in perch's soft tissue from the Ob River basin are plotted: Fe > Zn > Cu > Mn, typical for uncontaminated or slightly metal contaminated water bodies. In soft tissue of the studied samples the metal content does not exceed the permissible values. The mercury content in bones of studied samples is in the range 0,036-0,556 mg/kg. The mercury concentration is higher in bones in comparison with soft tissue in all samples.

  4. Functional optical coherence tomography: principles and progress

    NASA Astrophysics Data System (ADS)

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-05-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies.

  5. Functional Optical Coherence Tomography: Principles and Progress

    PubMed Central

    Kim, Jina; Brown, William; Maher, Jason R.; Levinson, Howard; Wax, Adam

    2015-01-01

    In the past decade, several functional extensions of optical coherence tomography (OCT) have emerged, and this review highlights key advances in instrumentation, theoretical analysis, signal processing and clinical application of these extensions. We review five principal extensions: Doppler OCT (DOCT), polarization-sensitive OCT (PS-OCT), optical coherence elastography (OCE), spectroscopic OCT (SOCT), and molecular imaging OCT. The former three have been further developed with studies in both ex vivo and in vivo human tissues. This review emphasizes the newer techniques of SOCT and molecular imaging OCT, which show excellent potential for clinical application but have yet to be well reviewed in the literature. SOCT elucidates tissue characteristics, such as oxygenation and carcinogenesis, by detecting wavelength-dependent absorption and scattering of light in tissues. While SOCT measures endogenous biochemical distributions, molecular imaging OCT detects exogenous molecular contrast agents. These newer advances in functional OCT broaden the potential clinical application of OCT by providing novel ways to understand tissue activity that cannot be accomplished by other current imaging methodologies. PMID:25951836

  6. Profile of disposition, tissue distribution and excretion of the novel anti-human immunodeficiency virus (HIV) agent W-1 in rats.

    PubMed

    Lu, Ying-Yuan; Wang, Xiao-Wei; Wang, Xin; Dai, Wen-Bing; Zhang, Qiang; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Liu, Jun-Yi; Zhang, Guo-Liang

    2016-07-01

    The purpose of this study was to characterize the disposition, distribution, excretion and plasma protein binding of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) in rats. Concentrations of W-1 within biological samples were determined using a validated high performance liquid chromatography method. The plasma protein binding of W-1 was examined by equilibrium dialysis method. After oral administration of W-1 (50, 100 and 200 mg/kg, respectively) in self-microemulsifying drug delivery system formulation, the pharmacokinetic parameters of W-1 were as follows: the peak plasma concentrations (C max) were 0.42, 1.50 and 2.55 μg/mL, the area under the curve (AUC0-t) were 0.89, 2.27 and 3.96 µg/h mL and the plasma half-life (t 1/2) were 5.15, 3.77 and 3.77 h, respectively. Moreover, the prototype of W-1 was rapidly and extensively distributed into fifteen tissues, especially higher concentrations were detected in intestine, stomach and liver, respectively. The plasma protein binding of W-1 in rat, beagle dog and human were in the range of 97.96-99.13 %. This study suggested that W-1 has an appropriate pharmacokinetics in rats, such as rapid absorption, moderate clearance, and rapid distribution to multiple tissues. Those properties provide important information for further development W-1 as an anti-HIV-1 drug candidate.

  7. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  8. Immunochemical detection of food-derived polyphenols in the aorta: macrophages as a major target underlying the anti-atherosclerotic activity of polyphenols.

    PubMed

    Kawai, Yoshichika

    2011-01-01

    It has been suggested that polyphenol-rich diets decrease the risk of cardiovascular diseases. Although studies of the bioavailability of polyphenols, particularly their absorption and metabolism, have been reported recently, the tissue and cellular distributions underlying their biological mechanisms remain unknown. It is difficult to evaluate the specific localization of tissue and/or cellular polyphenols, because the method is limited to chromatography. To overcome these difficulties, we have developed anti-polyphenol antibodies to characterize immunohistochemically the localization of polyphenols and their metabolites in vivo. Two novel monoclonal antibodies were raised against quercetin and tea catechins, which represent flavonoid-type polyphenols distributed in foods and beverages, and are expected to exhibit anti-oxidative and anti-inflammatory activities in vivo. Using these antibodies, we identified activated macrophages as a specific target of these flavonoids during the development of atherosclerotic lesions. This review describes recent findings on the molecular actions of flavonoids that underly their anti-atherosclerotic activity in vivo.

  9. Ingested hyaluronan moisturizes dry skin.

    PubMed

    Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Matsuoka, Ryosuke; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

    2014-07-11

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body's HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action.

  10. Ingested hyaluronan moisturizes dry skin

    PubMed Central

    2014-01-01

    Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body’s HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

  11. Determination of trace element level in different tissues of the leaping mullet (Liza saliens, Mugilidae) collected from Caspian Sea.

    PubMed

    Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2011-12-01

    The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.

  12. Phase-resolved reflectance spectroscopy on layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1995-05-01

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

  13. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.

    PubMed

    Oh, Se Heang; Lee, Jin Ho

    2013-02-01

    Porous scaffolds have been widely used in tissue engineering because they can guide cells and tissues to grow, synthesize extracellular matrix and other biological molecules, and facilitate the formation of functional tissues and organs. Although various natural and synthetic biodegradable polymers have been used to fabricate the scaffolds, synthetic polymers have been more widely used for scaffolds since they have good mechanical strength, reproducible/controllable mechanical-chemical properties, and controllable biodegradation rates. However, the 'hydrophobic character' of common synthetic polymers is considered a limitation for tissue engineering applications because it can lead to a low initial cell seeding density, heterogeneous cell distribution in the scaffold, and slow cell growth due to insufficient absorption/diffusion of cell culture medium into scaffold and lack of specific interaction sites with cells. The hydrophilization of porous synthetic polymer scaffolds has been considered as one of the simple but effective approaches to achieve desirable in vitro cell culture and in vivo tissue regeneration within the scaffolds. In this review paper, representative synthetic biodegradable polymers and techniques to fabricate porous scaffolds are briefly summarized and their hydrophilization techniques to improve cell/tissue compatibility are discussed.

  14. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  15. Measurement of absorption spectrum of deuterium oxide (D{sub 2}O) and its application to signal enhancement in multiphoton microscopy at the 1700-nm window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Wen, Wenhui; Wang, Kai

    2016-01-11

    1700-nm window has been demonstrated to be a promising excitation window for deep-tissue multiphoton microscopy (MPM). Long working-distance water immersion objective lenses are typically used for deep-tissue imaging. However, absorption due to immersion water at 1700 nm is still high and leads to dramatic decrease in signals. In this paper, we demonstrate measurement of absorption spectrum of deuterium oxide (D{sub 2}O) from 1200 nm to 2600 nm, covering the three low water-absorption windows potentially applicable for deep-tissue imaging (1300 nm, 1700 nm, and 2200 nm). We apply this measured result to signal enhancement in MPM at the 1700-nm window. Compared with water immersion, D{sub 2}O immersionmore » enhances signal levels in second-harmonic generation imaging, 3-photon fluorescence imaging, and third-harmonic generation imaging by 8.1, 24.8, and 24.7 times with 1662-nm excitation, in good agreement with theoretical calculation based on our absorption measurement. This suggests D{sub 2}O a promising immersion medium for deep-tissue imaging.« less

  16. Light scattering of semitransparent sintered polytetrafluoroethylene films.

    PubMed

    Li, Qinghe; Lee, Bong Jae; Zhang, Zhuomin M; Allen, David W

    2008-01-01

    Polytetrafluoroethylene (PTFE) is a strongly scattering material and has been regarded to have optical properties similar to biological tissues. In the present study, the bidirectional reflectance distribution function (BRDF) and the bidirectional transmittance distribution function (BTDF) of several PTFE films, with thicknesses from 0.11 to 10 mm, are measured using a laser scatterometer at the wavelength of 635 nm. The directional-hemispherical reflectance (R) and transmittance (T) were obtained by integrating BRDF and BTDF for normal incidence. Comparison of the ratio of the measured R and T with that calculated from the adding-doubling method allows the determination of the reduced scattering coefficient. Furthermore, the effect of surface scattering is investigated by measuring the polarization-dependent BRDF and BTDF at oblique incidence. By analyzing the measurement uncertainty of BTDF in the near-normal observation angles at normal incidence, the present authors found that the scattering coefficient of PTFE should exceed 1200 cm(-1), which is much greater than that of biological tissues. On the other hand, the absorption coefficient of PTFE must be less than 0.01 cm(-1), much smaller than that of biological tissues, a necessary condition to achieve R > or =0.98 with a 10-mm-thick slab.

  17. Reflectance and fluorescence spectroscopies in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Finlay, Jarod C.

    In vivo fluorescence spectroscopy during photodynamic therapy (PDT) has the potential to provide information on the distribution and degradation of sensitizers, the formation of fluorescent photoproducts and changes in tissue autofluorescence induced by photodynamic treatment. Reflectance spectroscopy allows quantification of light absorption and scattering in tissue. We present the results of several related studies of fluorescence and reflectance spectroscopy and their applications to photodynamic dosimetry. First, we develop and test an empirical method for the correction of the distortions imposed on fluorescence spectra by absorption and scattering in turbid media. We characterize the irradiance dependence of the in vivo photobleaching of three sensitizers, protoporphyrin IX (PpIX), Photofrin and mTHPC, in a rat skin model. The photobleaching and photoproduct formation of PpIX exhibit irradiance dependence consistent with singlet oxygen (1O2)-mediated bleaching. The bleaching of mTHPC occurs in two phases, only one of which is consistent with a 1O 2-mediated mechanism. Photofrin's bleaching is independent of irradiance, although its photoproduct formation is not. This can be explained by a mixed-mechanism bleaching model. Second, we develop an algorithm for the determination of tissue optical properties using diffuse reflectance spectra measured at a single source-detector separation and demonstrate the recovery of the hemoglobin oxygen dissociation curve from tissue-simulating phantoms containing human erythrocytes. This method is then used to investigate the heterogeneity of oxygenation response in murine tumors induced by carbogen inhalation. We find that while the response varies among animals and within each tumor, the majority of tumors exhibit an increase in blood oxygenation during carbogen breathing. We present a forward-adjoint model of fluorescence propagation that uses the optical property information acquired from reflectance spectroscopy to obtain the undistorted fluorescence spectrum over a wide range of optical properties. Finally, we investigate the ability of the forward-adjoint theory to extract undistorted fluorescence and optical property information simultaneously from a single measured fluorescence spectrum. This method can recover the hemoglobin oxygen dissociation curve in tissue-simulating phantoms with an accuracy comparable to that of reflectance-based methods while correcting distortions in the fluorescence over a wide range of absorption and scattering coefficients.

  18. The interaction of infrared radiation with the eye: A review of the literature

    NASA Technical Reports Server (NTRS)

    Turner, H. S.

    1972-01-01

    A compilation of data concerning the effects of infrared radiation on the eye is presented. Information in the following areas is included: (1) transmission and absorption of infrared radiation by the ocular tissues, (2) range of infrared radiation which is harmful to the ocular tissues, (3) infrared radiation thresholds of the various oscular tissues, and (4) infrared radiation transmission and absorption of current optic materials.

  19. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    PubMed

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Physical analysis on laser-induced cerebral damage

    NASA Astrophysics Data System (ADS)

    Luo, Xiaosen; Liu, Jiangang; Tao, Chunkan; Lan, Xiufeng; Cao, Lingyan; Pan, Weimin; Shen, Zhonghua; Lu, Jian; Ni, Xiaowu

    2005-01-01

    Experimental investigation on cerebral damage of adult SD rats induced by 532nm CW laser was performed. Tissue heat conductive equation was set up based on two-layered structure model. Finite difference algorithm was utilized to numerically simulate the temperature distribution in the brain tissue. Allowing for tissue response to temperature variation, free boundary model was used to discuss tissue thermal coagulation formation in brain. Experimental observations show that thermal coagulation and necrosis can be caused due to laser light absorption. The result of the calculation shows that the process of the thermal coagulation of the given mode comprises two stages: fast and slow. At the first stage, necrosis domain grows fast. Then necrosis domain growth becomes slower because of the competition between the heat diffusion into the surrounding undamaged tissue and the heat dissipation caused by blood perfusion. At the center of coagulation area no neuron was observed and at the transitional zone few nervous cells were seen by microscope. The research can provide reference data for developing clinical therapy of some kind of encephalic diseases by using 532nm laser, and for making cerebral infarction models in animal experiment.

  1. In vitro fluorescence measurements and Monte Carlo simulation of laser irradiation propagation in porcine skin tissue.

    PubMed

    Drakaki, E; Makropoulou, M; Serafetinides, A A

    2008-07-01

    In dermatology, the in vivo spectral fluorescence measurements of human skin can serve as a valuable supplement to standard non-invasive techniques for diagnosing various skin diseases. However, quantitative analysis of the fluorescence spectra is complicated by the fact that skin is a complex multi-layered and inhomogeneous organ, with varied optical properties and biophysical characteristics. In this work, we recorded, in vitro, the laser-induced fluorescence emission signals of healthy porcine skin, one of the animals, which is considered as one of the most common models for investigations related to medical diagnostics of human cutaneous tissues. Differences were observed in the form and intensity of the fluorescence signal of the porcine skin, which can be attributed to the different concentrations of the native fluorophores and the variable physical and biological conditions of the skin tissue. As the light transport in the tissue target is directly influencing the absorption and the fluorescence emission signals, we performed Monte Carlo simulation of the light distribution in a five-layer model of human skin tissue, with a pulsed ultraviolet laser beam.

  2. Selenium Metabolism in Cancer Cells: The Combined Application of XAS and XFM Techniques to the Problem of Selenium Speciation in Biological Systems

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Finney, Lydia; Vogt, Stefan; Witting, Paul K.; Harris, Hugh H.

    2013-01-01

    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed. PMID:23698165

  3. Absorption, Distribution, Metabolism, and Excretion of the Novel Helicase-Primase Inhibitor, Amenamevir (ASP2151), in Rodents.

    PubMed

    Ohtsu, Yoshiaki; Susaki, Yoko; Noguchi, Kiyoshi

    2018-05-10

    The helicase-primase inhibitor amenamevir (ASP2151) is a novel therapeutic agent which has been approved for the treatment of herpes zoster. The present study examined the pharmacokinetic profile of amenamevir in rodents and compared it with data from the literature of past and current established therapies (acyclovir and valaciclovir) to provide additional data to facilitate drug discovery and proper drug use. In situ absorption, blood and plasma radioactivity concentrations, tissue distribution, and excretion were determined using liquid scintillation counting. Plasma amenamevir concentrations were measured using a validated chromatographic method. Chemical structures of in vivo metabolites were investigated using liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Amenamevir, after single intravenous administration to mice, had an elimination half-life of 2 h. Bioavailability was 40% after single oral administration. In situ absorption data indicated that amenamevir is mainly absorbed in the small intestine. The main component in mouse plasma was amenamevir, accounting for 87.9% of amenamevir-derived components. Our results suggest that the main elimination pathway in mice is oxidative metabolism at a methyl group and a 1,2,3-trisubstituted benzene ring followed by biliary and fecal excretion. Following oral administration of 14 C-amenamevir to mice, 100.63% of the dose (10.06% in urine and 90.46% in feces) was excreted by 96 h post-dose. The underlying mechanism of the improved pharmacokinetic profile of amenamevir was linked to an improved absorption ratio (not hepatic availability) compared to acyclovir, and qualitative differences in elimination (slow metabolism of amenamevir vs rapid urinary excretion of acyclovir/valaciclovir).

  4. Laser-induced damage in biological tissue: Role of complex and dynamic optical properties of the medium

    NASA Astrophysics Data System (ADS)

    Ahmed, Elharith M.

    Since its invention in the early 1960's, the laser has been used as a tool for surgical, therapeutic, and diagnostic purposes. To achieve maximum effectiveness with the greatest margin of safety it is important to understand the mechanisms of light propagation through tissue and how that light affects living cells. Lasers with novel output characteristics for medical and military applications are too often implemented prior to proper evaluation with respect to tissue optical properties and human safety. Therefore, advances in computational models that describe light propagation and the cellular responses to laser exposure, without the use of animal models, are of considerable interest. Here, a physics-based laser-tissue interaction model was developed to predict the spatial and temporal temperature and pressure rise during laser exposure to biological tissues. Our new model also takes into account the dynamic nature of tissue optical properties and their impact on the induced temperature and pressure profiles. The laser-induced retinal damage is attributed to the formation of microbubbles formed around melanosomes in the retinal pigment epithelium (RPE) and the damage mechanism is assumed to be photo-thermal. Selective absorption by melanin creates these bubbles that expand and collapse around melanosomes, destroying cell membranes and killing cells. The Finite Element (FE) approach taken provides suitable ground for modeling localized pigment absorption which leads to a non-uniform temperature distribution within pigmented cells following laser pulse exposure. These hot-spots are sources for localized thermo-elastic stresses which lead to rapid localized expansions that manifest themselves as microbubbles and lead to microcavitations. Model predictions for the interaction of lasers at wavelengths of 193, 694, 532, 590, 1314, 1540, 2000, and 2940 nm with biological tissues were generated and comparisons were made with available experimental data for the retina, cornea or the skin. Good agreement between model and experimental results established the validity of the model.

  5. Absorption and distribution of lycopene in rat colon.

    PubMed

    Oshima, S; Inakuma, T; Narisawa, T

    1999-01-01

    Colonic absorption and distribution of lycopene, which inhibited rat colon carcinogenesis in our previous studies, were investigated in Sprague-Dawley rats. Three groups of six rats each with or without a single-barreled colostomy at the mid colon were given a single intragastric or intracolonic dose of 0.2 mL of corn oil containing 12 mg of lycopene. Twenty-four hours later, all rats were sacrificed and the blood and some tissues were collected. The contents of lycopene in the samples were assayed by HPLC. Lycopene was detected in an appreciable amount in the liver, but only in trace amount in the serum of all rats treated with an intracolonic dose of lycopene and in rats with an intragastric dose. After an intragastric lycopene treatment, lycopene was detected in the mucosa of the proximal colon and of the distal colon of the colostomized rats, whose distal colon had been excluded from the fecal stream. A large amount of lycopene was recovered in the feces. None was detected in any sample from the control rats treated with an intragastric or intracolonic dose of plain corn oil. The results suggest that lycopene is absorbed from the colon and also from the small intestine. It might be concluded that both ways of absorption contribute to a comparative amount of lycopene accumulation in the colon mucosa after ingestion of this carotenoid.

  6. Effects of heat transfer and energy absorption in the ablation of biological tissues by pulsetrain-burst (>100 MHz) ultrafast laser processing

    NASA Astrophysics Data System (ADS)

    Forrester, Paul; Bol, Kieran; Lilge, Lothar; Marjoribanks, Robin

    2006-09-01

    Energy absorption and heat transfer are important factors for regulating the effects of ablation of biological tissues. Heat transfer to surrounding material may be desirable when ablating hard tissue, such as teeth or bone, since melting can produce helpful material modifications. However, when ablating soft tissue it is important to minimize heat transfer to avoid damage to healthy tissue - for example, in eye refractive surgery (e.g., Lasik), nanosecond pulses produce gross absorption and heating in tissue, leading to shockwaves, which kill and thin the non-replicating epithelial cells on the inside of the cornea; ultrafast pulses are recognized to reduce this effect. Using a laser system that delivers 1ps pulses in 10μs pulsetrains at 133MHz we have studied a range of heat- and energy-transfer effects on hard and soft tissue. We describe the ablation of tooth dentin and enamel under various conditions to determine the ablation rate and chemical changes that occur. Furthermore, we characterize the impact of pulsetrain-burst treatment of collagen-based tissue to determine more efficient methods of energy transfer to soft tissues. By studying the optical science of laser tissue interaction we hope to be able to make qualitative improvements to medical treatments using lasers.

  7. Nonlinear absorption in biological tissue for high intensity focused ultrasound.

    PubMed

    Liu, Xiaozhou; Li, Junlun; Gong, Xiufen; Zhang, Dong

    2006-12-22

    In recent years the propagation of the high intensity focused ultrasound (HIFU) in biological tissue is an interesting area due to its potential applications in non-invasive treatment of disease. The base principle of these applications is the heat effect generated by ultrasound absorption. In order to control therapeutic efficiency, it is important to evaluate the heat generation in biological tissue irradiated by ultrasound. In his paper, based on the Khokhlov-Zabolotkaya-Kuznetsov (KZK) equation in frequency-domain, the numerical simulations of nonlinear absorption in biological tissues for high intensity focused ultrasound are performed. We find that ultrasound thermal transfer effect will be enhanced with the increasing of initial acoustic intensity due to the high harmonic generation. The concept of extra absorption factor is introduced to describe nonlinear absorption in biological tissue for HIFU. The theoretical results show that the heat deposition induced by the nonlinear theory can be nearly two times as large as that predicated by linear theory. Then, the influence of the diffraction effect on the position of the focus in HIFU is investigated. It is shown that the sound focus moves toward the transducer compared with the geometry focus because of the diffraction of the sound wave. The position of the maximum heat deposition is shifted to the geometry focus with the increase of initial acoustic intensity because the high harmonics are less diffraction. Finally, the temperature in the porcine fat tissue changing with the time is predicated by Pennes' equation and the experimental results verify the nonlinear theoretical prediction.

  8. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  9. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  10. Using late arriving photons for diffuse optical tomography of biological objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proskurin, S G

    2011-05-31

    The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)

  11. Quantitative Measurement of Protease-Activity with Correction of Probe Delivery and Tissue Absorption Effects

    PubMed Central

    Salthouse, Christopher D.; Reynolds, Fred; Tam, Jenny M.; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light. Fluorescence from a second spectrally matched constant (non-activatable) fluorophore on each nanoparticle platform can be used to correct for both probe delivery and tissue absorption. The fluorescence from each fluorophore is separated using fluorescence lifetime methods. PMID:20161242

  12. Fluoride metabolism.

    PubMed

    Buzalaf, Marília Afonso Rabelo; Whitford, Gary Milton

    2011-01-01

    Knowledge of all aspects of fluoride metabolism is essential for comprehending the biological effects of this ion in humans as well as to drive the prevention (and treatment) of fluoride toxicity. Several aspects of fluoride metabolism - including gastric absorption, distribution and renal excretion - are pH-dependent because the coefficient of permeability of lipid bilayer membranes to hydrogen fluoride (HF) is 1 million times higher than that of F(-). This means that fluoride readily crosses cell membranes as HF, in response to a pH gradient between adjacent body fluid compartments. After ingestion, plasma fluoride levels increase rapidly due to the rapid absorption from the stomach, an event that is pH-dependent and distinguishes fluoride from other halogens and most other substances. The majority of fluoride not absorbed from the stomach will be absorbed from the small intestine. In this case, absorption is not pH-dependent. Fluoride not absorbed will be excreted in feces. Peak plasma fluoride concentrations are reached within 20-60 min following ingestion. The levels start declining thereafter due to two main reasons: uptake in calcified tissues and excretion in urine. Plasma fluoride levels are not homeostatically regulated and vary according to the levels of intake, deposition in hard tissues and excretion of fluoride. Many factors can modify the metabolism and effects of fluoride in the organism, such as chronic and acute acid-base disturbances, hematocrit, altitude, physical activity, circadian rhythm and hormones, nutritional status, diet, and genetic predisposition. These will be discussed in detail in this review. Copyright © 2011 S. Karger AG, Basel.

  13. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.

    PubMed

    Duadi, Hamootal; Fixler, Dror; Popovtzer, Rachela

    2013-11-01

    Most methods for measuring light-tissue interactions focus on the volume reflectance while very few measure the transmission. We investigate both diffusion reflection and diffuse transmission at all exit angles to receive the full scattering profile. We also investigate the influence of blood vessel diameter on the scattering profile of a circular tissue. The photon propagation path at a wavelength of 850 nm is calculated from the absorption and scattering constants via Monte Carlo simulation. Several simulations are performed where a different vessel diameter and location were chosen but the blood volume was kept constant. The fraction of photons exiting the tissue at several central angles is presented for each vessel diameter. The main result is that there is a central angle that below which the photon transmission decreased for lower vessel diameters while above this angle the opposite occurred. We find this central angle to be 135 deg for a two-dimensional 10-mm diameter circular tissue cross-section containing blood vessels. These findings can be useful for monitoring blood perfusion and oxygen delivery in the ear lobe and pinched tissues. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

  14. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques

    NASA Astrophysics Data System (ADS)

    Richards, Simon D.; Leighton, Timothy G.; Brown, Niven R.

    2003-10-01

    Knowledge of the particle size distribution is required in order to predict ultrasonic absorption in polydisperse particulate suspensions. This paper shows that the method used to measure the particle size distribution can lead to important differences in the predicted absorption. A reverberation technique developed for measuring ultrasonic absorption by suspended particles is used to measure the absorption in suspensions of nonspherical particles. Two types of particulates are studied: (i) kaolin (china clay) particles which are platelike in form; and (ii) calcium carbonate particles which are more granular. Results are compared to theoretical predictions of visco-inertial absorption by suspensions of spherical particles. The particle size distributions, which are required for these predictions, are measured by laser diffraction, gravitational sedimentation and centrifugal sedimentation, all of which assume spherical particles. For a given sample, each sizing technique yields a different size distribution, leading to differences in the predicted absorption. The particle size distributions obtained by gravitational and centrifugal sedimentation are reinterpreted to yield a representative size distribution of oblate spheroids, and predictions for absorption by these spheroids are compared with the measurements. Good agreement between theory and measurement for the flat kaolin particles is obtained, demonstrating that these particles can be adequately represented by oblate spheroids.

  15. Cartilage ablation studies using mid-IR free electron laser

    NASA Astrophysics Data System (ADS)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  16. Rare Earth Doped IR Fiber Lasers For Medical Applications

    NASA Astrophysics Data System (ADS)

    Esterowitz, Leon; Allen, Roger

    1989-06-01

    Trivalent rare earth doped lasers in fluorozirconate glasses and fibers that lase between 2 and 3 μm are reviewed. There have been a large number of laser-fiber optic systems below 2pm developed for clinical microsurgery at a variety of sites. The required flexibility of the fiber optic waveguide varies with the clinical use, such as: intraocular (through a small diameter rigid tube), endoscopically accessible pulmonary and gastric mucosa (through a port of a fiber-optic endoscope of intermediate flexibility), and intra-arterial (as an integral part of a flexible catheter, which in the case of the coronaries must be very flexible so as to negotiate abrupt bends and bifurcations without damage to the vessels). Laser energy absorbed by tissue is capable of coagulation of tissue (denaturation of structural proteins), melting of fatty deposits or other structures (solid or gel to liquid phase transitions), as well as direct breakage of chemical bonds by high energy photons. It is of general interest to develop a pulsed laser system transmitted through flexible fiber optics that is capable of precise ablation of targeted tissue with minimal damage to the remaining tissue. Ideally, the device should be able to ablate any tissue because of the general absorptive properties of tissue, and not a specific chromophore such as melanin or hemoglobin, the concentration of which varies widely among tissues. Two obvious ubiquitous chromophores have been widely discussed: 1) proteins and nucleic acids whose high concentration and absorption coefficients lead to strong tissue absorption in the ultraviolet and 2) water whose strong infrared absorption bands have been widely utilized in CO2 laser surgery. Non-linear absorption occurring at very high power densities (~1 GW/cm2) has been shown to be very effective for non-invasive ocular (an optically transparent field) microsurgery at the image plane of a slit lamp, but this approach appears impractical in fiber optic systems because of similar non-linear damage mechanisms within the fiber.

  17. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  18. Evaluation of clinical utility of BTC-2000 for measuring soft tissue fibrosis.

    PubMed

    Davis, Aileen M; Gerrand, Craig; Griffin, Anthony; O'Sullivan, Brian; Hill, Richard P; Wunder, Jay S; Abudu, Adesegun; Bell, Robert S

    2004-09-01

    To evaluate whether mechanical tissue parameters, specifically laxity (in millimeters) and energy absorption (millimeters of mercury multiplied by millimeters) as measured by the BTC-2000, could discriminate levels of fibrosis severity among patients treated for extremity soft tissue sarcoma by surgery alone; preoperative radiotherapy (RT) and surgery; and surgery followed by postoperative RT. A total of 41 patients were treated for extremity soft tissue sarcoma by surgery alone (n = 11); preoperative RT (50 Gy in 2-Gy daily fractions) and surgery (n = 15); and surgery followed by postoperative RT (66 Gy in 2-Gy daily fractions; n = 15). Serial fibrosis measurements were evaluated at equal intervals from the midpoint of the surgical incision along the length of the incision. On the basis of the average of these measurements, differences among the three groups were analyzed using analysis of variance. Pair-wise statistically significant differences were found among the three treatment groups for both laxity and energy absorption as determined by the average of all measurements. The treatment difference remained statistically significant even after adjusting for differences based on the untreated contralateral limb and anatomic site (p <0.001 and p = 0.002 for laxity and energy absorption, respectively). The biomechanical tissue parameters of laxity and energy absorption discriminated fibrosis severity in patients treated with different RT doses. The BTC-2000 may provide a useful quantitative measure of soft tissue fibrosis.

  19. Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions.

    PubMed

    Chatterjee, I; Hagmann, M J; Gandhi, O P

    1980-01-01

    The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.

  20. Exercise, Insulin Absorption Rates, and Artificial Pancreas Control

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Basu, Ananda; Szeri, Andrew J.

    2016-11-01

    Type 1 Diabetes is characterized by an inability of a person to endogenously produce the hormone insulin. Because of this, insulin must be injected - usually subcutaneously. The size of the injected dose and the rate at which the dose reaches the circulatory system have a profound effect on the ability to control glucose excursions, and therefore control of diabetes. However, insulin absorption rates via subcutaneous injection are variable and depend on a number of factors including tissue perfusion, physical activity (vasodilation, increased capillary throughput), and other tissue geometric and physical properties. Exercise may also have a sizeable effect on the rate of insulin absorption, which can potentially lead to dangerous glucose levels. Insulin-dosing algorithms, as implemented in an artificial pancreas controller, should account accurately for absorption rate variability and exercise effects on insulin absorption. The aforementioned factors affecting insulin absorption will be discussed within the context of both fluid mechanics and data driven modeling approaches.

  1. Absorption from a mixture of seventeen free amino acids by the isolated small intestine of the rat.

    PubMed Central

    Gardner, M L

    1976-01-01

    Absorption and secretion from a mixture of seventeen free amino acids has been measured in isolated perfused rat small intestine. 2. The absorption rate of an amino acid from this mixture is proportional to its concentration in the perfusate and independent of its chemical constitution. The constant of proportionality is the same as that previously observed when the perfusate contained peptides as well as amino acids. 3. Amino acids are concentrated, on average, sixfold during passage across the mucosa, and the free amino acid composition of the secretion into the tissue fluid is very similar to that of the luminal perfusate. 4. Peptides do not appear to be added to the tissue fluid during absorption of free amino acids. 5. It is concluded that the mechanisms for absorption of free amino acids are in general independent of those for absorption of peptides. PMID:1255532

  2. Optical characterization of tissue mimicking phantoms by a vertical double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Han, Yilin; Jia, Qiumin; Shen, Shuwei; Liu, Guangli; Guo, Yuwei; Zhou, Ximing; Chu, Jiaru; Zhao, Gang; Dong, Erbao; Allen, David W.; Lemaillet, Paul; Xu, Ronald

    2016-03-01

    Accurate characterization of absorption and scattering properties for biologic tissue and tissue-simulating materials enables 3D printing of traceable tissue-simulating phantoms for medical spectral device calibration and standardized medical optical imaging. Conventional double integrating sphere systems have several limitations and are suboptimal for optical characterization of liquid and soft materials used in 3D printing. We propose a vertical double integrating sphere system and the associated reconstruction algorithms for optical characterization of phantom materials that simulate different human tissue components. The system characterizes absorption and scattering properties of liquid and solid phantom materials in an operating wavelength range from 400 nm to 1100 nm. Absorption and scattering properties of the phantoms are adjusted by adding titanium dioxide powder and India ink, respectively. Different material compositions are added in the phantoms and characterized by the vertical double integrating sphere system in order to simulate the human tissue properties. Our test results suggest that the vertical integrating sphere system is able to characterize optical properties of tissue-simulating phantoms without precipitation effect of the liquid samples or wrinkling effect of the soft phantoms during the optical measurement.

  3. Parameters and computer software for the evaluation of mass attenuation and mass energy-absorption coefficients for body tissues and substitutes.

    PubMed

    Okunade, Akintunde A

    2007-07-01

    The mass attenuation and energy-absorption coefficients (radiation interaction data), which are widely used in the shielding and dosimetry of X-rays used for medical diagnostic and orthovoltage therapeutic procedures, are strongly dependent on the energy of photons, elements and percentage by weight of elements in body tissues and substitutes. Significant disparities exist in the values of percentage by weight of elements reported in literature for body tissues and substitutes for individuals of different ages, genders and states of health. Often, interested parties are in need of these radiation interaction data for body tissues or substitutes with percentage by weight of elements and intermediate energies that are not tabulated in literature. To provide for the use of more precise values of these radiation interaction data, parameters and computer programs, MUA_T and MUEN_T are presented for the computation of mass attenuation and energy-absorption coefficients for body tissues and substitutes of arbitrary percentage-by-weight elemental composition and photon energy ranging between 1 keV (or k-edge) and 400 keV. Results are presented, which show that the values of mass attenuation and energy-absorption coefficients obtained from computer programs are in good agreement with those reported in literature.

  4. Highlights of laser-tissue interaction mechanism

    NASA Astrophysics Data System (ADS)

    Gabay, Shimon

    2001-10-01

    The aim of this paper is to present the fundamentals of good practice when using the laser in medicine and surgery. As a 'good practice' recommendation, the laser beam wavelength and power should be determined to match the desired thermal effect. The energy losses to the surroundings of the initial absorbing volume, caused by the heat diffusion mechanism, are strongly dependent on the exposure time duration. The differences in the absorption and scattering coefficients of some tissue components are used for selectively destroying those components having the higher absorption coefficients. Selective destruction of some tissue components can be achieved even for components having the same absorption coefficient but different dimensions. The laser therapy strategy is discussed: the effective use of lasers in medicine can be achieved only if the physician has an extensive understanding of the laser-tissue interaction mechanisms; continuing education and training is a must for laser surgeons to improve their skill to get clinically optimal results.

  5. Biological tissue component evaluation by measuring photoacoustic spectrum

    NASA Astrophysics Data System (ADS)

    Namita, Takeshi; Murata, Yuya; Tokuyama, Junji; Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi

    2017-03-01

    Photoacoustic imaging has garnered constant attention as a non-invasive modality for visualizing details of the neovascularization structure of tumors, or the distribution of oxygen saturation, which is related to the tumor grade. However, photoacoustic imaging is applicable not only for vascular imaging but also for diagnosing properties of various tissues such as skin or muscle diseases, fat related to arteriosclerosis or fatty liver, cartilage related to arthritis, and fibrous tissues related to hepatitis. The photoacoustic signal intensity is wavelength-dependent and proportional to the absorption coefficient and thermal acoustic conversion efficiency (i.e. Grüneisen parameter) of the target biological tissue. To ascertain the appropriate wavelength range for biological tissue imaging and to evaluate tissue properties, photoacoustic spectra of various tissues (e.g., skin, muscle, and adipose tissue) were measured using a hydrophone (9 mm diameter) at 680-1600 nm wavelengths. Results confirmed that respective tissues have unique photoacoustic spectra. However, almost all samples have peaks around 1200 nm and 1400-1500 nm for wavelengths where the light absorbance of lipid or water is high. The main components of biological tissues are water, protein, and lipid. Results confirmed that photoacoustic spectra reflect the tissue components well. To evaluate the feasibility of the tissue characterization using photoacoustic methods, the photoacoustic signal intensity ratio between two wavelength regions was calculated as described above. Signal intensity ratios agreed well with the composition ratio between water and lipid in samples. These analyses verified the feasibility of evaluating tissue properties using photoacoustic methods.

  6. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.

    PubMed

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  7. Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC-ICPMS and XAS along a contamination gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whaley-Martin, K. J.; Koch, I.; Reimer, K. J.

    Arsenic is naturally found in the tissues of marine animals, usually as the non-toxic arsenical arsenobetaine, but exposure to elevated arsenic concentrations in the environment may alter the arsenic species distribution within tissues of the organism. This study examined the arsenic species in the tissues of the marine periwinkle (Littorina littorea) along an arsenic concentration gradient in the sediment. The arsenicals in L. littorea were examined using the complementary analytical methods high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC–ICPMS) and X-ray absorption spectroscopy (XAS). Total arsenic concentrations in the periwinkle tissues ranged from 56 to 840more » mg · kg -1 dry weight (equivalent to 13 to 190 mg · kg -1 wet weight). Inorganic arsenicals were found to be positively correlated with total arsenic concentrations (R 2 = 0.993) and reached 600 mg · kg -1 dry weight, the highest reported to date in marine organisms. These high inorganic arsenic concentrations within this low trophic organism pose a potential toxicological risk to higher trophic consumers.« less

  8. Tissue distribution of molidone in a multidrug overdose.

    PubMed

    Flammia, Dwight D; Bateman, Henry R; Saady, Joseph J; Christensen, Erik D

    2004-09-01

    Molindone hydrochloride (Moban) is a dihydroindolone compound dissimilar in structure to other antipsychotic drugs (i.e., phenothiazines, butyrophenones, dibenzepines, and thioxanthenes). The antipsychotic (or neuroleptic) activity of molindone makes it particularly useful in the treatment of schizophrenia. There are a few published cases which report the tissue distribution of molindone in the human body. We report the analysis of molindone in postmortem samples using a solvent mixture (toluene/hexane/isoamyl alcohol) base extract followed by an acid (0.5M H(2)SO(4)) wash. Molindone was identified by gas chromatography-mass spectrometry (m/z 100, 176, 276) and quantitated using a gas chromatograph and nitrogen-phosphorus detector. The range of linearity was 0.1 mg/L to 5.0 mg/L. We report our findings of molindone concentrations in blood, liver, bile, gastric, and urine as follows: 6 mg/L in blood; 26 mg/kg in liver; 23.1 mg/L in bile; 1200 mg/L in gastric; and 37.3 mg/L in urine. Vitreous lithium (5.9 mmol/L) was determined by flame atomic absorption spectrometry. The medical examiner listed the cause of death as a combined drug overdose of molindone and lithium. The tissue results are compared with another case and the pharmacology of molindone is presented.

  9. In vivo spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  10. Spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  11. Vitamin D and male reproductive system.

    PubMed

    Costanzo, Pablo R; Knoblovits, Pablo

    2016-12-01

    Vitamin D deficiency is a highly prevalent worldwide condition and affects people of all ages. The most important role of vitamin D is the regulation of intestinal calcium absorption and metabolism of calcium and phosphorus to maintain muscle and bone homeostasis. Furthermore, in recent years it has been discovered that the vitamin D receptor (VDR) is widely distributed in many organs and tissues where vitamin D can perform other actions that include the modulation of the immune response, insulin secretion, anti-proliferative effect on cells of vascular smooth muscle, modulation of the renin-angiotensin-aldosterone system and regulates cell growth in several organs. The VDR is widely distributed in the male reproductive system. Vitamin D induces changes in the spermatozoa's calcium and cholesterol content and in protein phosphorylation to tyrosine/threonine residues. These changes could be involved in sperm capacitation. Vitamin D seems to regulate aromatase expression in different tissues. Studies analyzing seasonal variations of sex steroids in male populations yield conflicting results. This is probably due to the wide heterogeneity of the populations included according to age, systemic diseases and obesity.

  12. Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application.

    PubMed

    Kielbik, Paula; Kaszewski, Jaroslaw; Rosowska, Julita; Wolska, Ewelina; Witkowski, Bartłomiej S; Gralak, Mikolaj A; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michal M

    2017-04-01

    Biodegradable zinc oxide nanoparticles (ZnO NPs) are considered promising materials for future biomedical applications. To fulfil this potential, biodistribution and elimination patterns of ZnO NPs in the living organism need to be resolved. In order to investigate gastrointestinal absorption of ZnO NPs and their intra-organism distribution, water suspension of ZnO or fluorescent ZnO:Eu (Europium-doped zinc oxide) NPs (10mg/ml; 0.3ml/mouse) was alimentary-administered (IG: intra-gastric) to adult mice. Internal organs collected at key time-points after IG were evaluated by AAS for Zn concentration and analysed by cytometric techniques. We found that Zn-based NPs were readily absorbed and distributed (3 h post IG) in the nanoparticle form throughout the organism. Results suggest, that liver and kidneys were key organs responsible for NPs elimination, while accumulation was observed in the spleen and adipose tissues. We also showed that ZnO/ZnO:Eu NPs were able to cross majority of biological barriers in the organism (including blood-brain-barrier). Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Robust Wireless Power Transmission to mm-Sized Free-Floating Distributed Implants.

    PubMed

    Mirbozorgi, S Abdollah; Yeon, Pyungwoo; Ghovanloo, Maysam

    2017-06-01

    This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm 2 of brain surface.

  14. Optical measurements of absorption changes in two-layered diffusive media

    NASA Astrophysics Data System (ADS)

    Fabbri, Francesco; Sassaroli, Angelo; Henry, Michael E.; Fantini, Sergio

    2004-04-01

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is ~0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of ~4% for the superficial layer and ~10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  15. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  16. A thermo-fluid analysis in magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Iordana, Astefanoaei; Ioan, Dumitru; Alexandra, Stancu; Horia, Chiriac

    2014-04-01

    In the last years, hyperthermia induced by the heating of magnetic nanoparticles (MNPs) in an alternating magnetic field received considerable attention in cancer therapy. The thermal effects could be automatically controlled by using MNPs with selective magnetic absorption properties. In this paper, we analyze the temperature field determined by the heating of MNPs, injected in a malignant tissue, subjected to an alternating magnetic field. The main parameters which have a strong influence on temperature field are analyzed. The temperature evolution within healthy and tumor tissues are analyzed by finite element method (FEM) simulations in a thermo-fluid model. The cooling effect produced by blood flow in blood vessels from the tumor is considered. A thermal analysis is conducted under different distributions of MNP injection sites. The interdependence between the optimum dose of the nanoparticles and various types of tumors is investigated in order to understand their thermal effect on hyperthermia therapy. The control of the temperature field in the tumor and healthy tissues is an important step in the healing treatment.

  17. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  18. Differences in RF energy absorption in the heads of adults and children.

    PubMed

    Christ, Andreas; Kuster, Niels

    2005-01-01

    There has been a long and controversial debate on possible differences in electromagnetic (EM) energy absorption between adults and children during cell phone usage. Some published studies report higher specific absorption rate (SAR) in children and explain this based on smaller head size. More recently, age dependent changes of the dielectric tissue parameters have again ignited the discussion. This study intends to give a comprehensive review of the current state of knowledge about the parameters and mechanisms affecting the exposure of the mobile phone user with special focus on the exposure of children. Discussed are the absorption mechanism, tissue parameters, the effect of the pinna, and the uncertainties associated with head models based on spheroids, scaled adult heads, and magnetic resonance imaging (MRI) data of children. The conclusions of the review do not support the assumption that the energy exposure increases due to smaller heads, but identifies open issues regarding the dielectric tissue parameters and the thickness of the pinna. Copyright 2005 Wiley-Liss, Inc

  19. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  20. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  1. Optical signature of nerve tissue-Exploratory ex vivo study comparing optical, histological, and molecular characteristics of different adipose and nerve tissues.

    PubMed

    Balthasar, Andrea J R; Bydlon, Torre M; Ippel, Hans; van der Voort, Marjolein; Hendriks, Benno H W; Lucassen, Gerald W; van Geffen, Geert-Jan; van Kleef, Maarten; van Dijk, Paul; Lataster, Arno

    2018-05-14

    During several anesthesiological procedures, needles are inserted through the skin of a patient to target nerves. In most cases, the needle traverses several tissues-skin, subcutaneous adipose tissue, muscles, nerves, and blood vessels-to reach the target nerve. A clear identification of the target nerve can improve the success of the nerve block and reduce the rate of complications. This may be accomplished with diffuse reflectance spectroscopy (DRS) which can provide a quantitative measure of the tissue composition. The goal of the current study was to further explore the morphological, biological, chemical, and optical characteristics of the tissues encountered during needle insertion to improve future DRS classification algorithms. To compare characteristics of nerve tissue (sciatic nerve) and adipose tissues, the following techniques were used: histology, DRS, absorption spectrophotometry, high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy, and solution 2D 13 C- 1 H heteronuclear single-quantum coherence spectroscopy. Tissues from five human freshly frozen cadavers were examined. Histology clearly highlights a higher density of cellular nuclei, collagen, and cytoplasm in fascicular nerve tissue (IFAS). IFAS showed lower absorption of light around 1200 nm and 1750 nm, higher absorption around 1500 nm and 2000 nm, and a shift in the peak observed around 1000 nm. DRS measurements showed a higher water percentage and collagen concentration in IFAS and a lower fat percentage compared to all other tissues. The scattering parameter (b) was highest in IFAS. The HR-MAS NMR data showed three extra chemical peak shifts in IFAS tissue. Collagen, water, and cellular nuclei concentration are clearly different between nerve fascicular tissue and other adipose tissue and explain some of the differences observed in the optical absorption, DRS, and HR-NMR spectra of these tissues. Some differences observed between fascicular nerve tissue and adipose tissues cannot yet be explained but may be helpful in improving the discriminatory capabilities of DRS in anesthesiology procedures. Lasers Surg. Med. 9999:1-13, 2018. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2018 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  2. Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    B. S., Suresh Anand; N., Sujatha

    2011-08-01

    Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.

  3. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  4. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy.

    PubMed

    Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M

    2013-02-01

    3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.

  5. Biokinetics of zinc oxide nanoparticles: toxicokinetics, biological fates, and protein interaction

    PubMed Central

    Choi, Soo-Jin; Choy, Jin-Ho

    2014-01-01

    Biokinetic studies of zinc oxide (ZnO) nanoparticles involve systematic and quantitative analyses of absorption, distribution, metabolism, and excretion in plasma and tissues of whole animals after exposure. A full understanding of the biokinetics provides basic information about nanoparticle entry into systemic circulation, target organs of accumulation and toxicity, and elimination time, which is important for predicting the long-term toxic potential of nanoparticles. Biokinetic behaviors can be dependent on physicochemical properties, dissolution property in biological fluids, and nanoparticle–protein interaction. Moreover, the determination of biological fates of ZnO nanoparticles in the systemic circulation and tissues is critical in interpreting biokinetic behaviors and predicting toxicity potential as well as mechanism. This review focuses on physicochemical factors affecting the biokinetics of ZnO nanoparticles, in concert with understanding bioavailable fates and their interaction with proteins. PMID:25565844

  6. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    NASA Astrophysics Data System (ADS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.; Fossati, F.; Vittor, K.; Nano, R.; Facoetti, A.; Chiari, P.; Bakeine, J.; Clerici, A.; Ferrari, C.; Salvucci, O.

    2006-05-01

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher 10B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of 10B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  7. Monte Carlo modeling of fluorescence in semi-infinite turbid media

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Finlay, Jarod C.; Zhu, Timothy C.

    2018-02-01

    The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 - 1 cm-1 , μs'= 5 - 40 cm-1 ).

  8. Optical properties reconstruction using the adjoint method based on the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Addoum, Ahmad; Farges, Olivier; Asllanaj, Fatmir

    2018-01-01

    An efficient algorithm is proposed to reconstruct the spatial distribution of optical properties in heterogeneous media like biological tissues. The light transport through such media is accurately described by the radiative transfer equation in the frequency-domain. The adjoint method is used to efficiently compute the objective function gradient with respect to optical parameters. Numerical tests show that the algorithm is accurate and robust to retrieve simultaneously the absorption μa and scattering μs coefficients for lowly and highly absorbing medium. Moreover, the simultaneous reconstruction of μs and the anisotropy factor g of the Henyey-Greenstein phase function is achieved with a reasonable accuracy. The main novelty in this work is the reconstruction of g which might open the possibility to image this parameter in tissues as an additional contrast agent in optical tomography.

  9. Monte Carlo simulation of cutaneous absorption and reflectance for clear, matt and dark biological tissue with varicosities: an investigation for dermatological laser

    NASA Astrophysics Data System (ADS)

    Klouch, Nawel; Riane, Houaria; Hamdache, Fatima; Addi, Djamel

    2013-05-01

    We are interested in modeling the interaction between light and biological tissue from the Monte Carlo method which is an approach used to solve modeling problems in different physical domains. Through the Monte Carlo approach we are going to try to interpret the spectral response absorption, reflectance, transmittance of normal human tissue under its three dominant tints in the visible range (350-700) nm. Then we will focus on the spectral response of the human tissue with varicosities in order to determinate the optimal conditions of operating the semiconductor laser for esthetic aim.

  10. Abnormal Ion Permeation through Cystic Fibrosis Respiratory Epithelium

    NASA Astrophysics Data System (ADS)

    Knowles, M. R.; Stutts, M. J.; Spock, A.; Fischer, N.; Gatzy, J. T.; Boucher, R. C.

    1983-09-01

    The epithelium of nasal tissue excised from subjects with cystic fibrosis exhibited higher voltage and lower conductance than tissue from control subjects. Basal sodium ion absorption by cystic fibrosis and normal nasal epithelia equaled the short-circuit current and was amiloride-sensitive. Amiloride induced chloride ion secretion in normal but not cystic fibrosis tissue and consequently was more effective in inhibiting the short-circuit current in cystic fibrosis epithelia. Chloride ion-free solution induced a smaller hyperpolarization of cystic fibrosis tissue. The increased voltage and amiloride efficacy in cystic fibrosis reflect absorption of sodium ions across an epithelium that is relatively impermeable to chloride ions.

  11. Combined Monte Carlo and path-integral method for simulated library of time-resolved reflectance curves from layered tissue models

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Vishwanath, Karthik; Mycek, Mary-Ann

    2009-02-01

    Monte Carlo (MC) simulations are considered the "gold standard" for mathematical description of photon transport in tissue, but they can require large computation times. Therefore, it is important to develop simple and efficient methods for accelerating MC simulations, especially when a large "library" of related simulations is needed. A semi-analytical method involving MC simulations and a path-integral (PI) based scaling technique generated time-resolved reflectance curves from layered tissue models. First, a zero-absorption MC simulation was run for a tissue model with fixed scattering properties in each layer. Then, a closed-form expression for the average classical path of a photon in tissue was used to determine the percentage of time that the photon spent in each layer, to create a weighted Beer-Lambert factor to scale the time-resolved reflectance of the simulated zero-absorption tissue model. This method is a unique alternative to other scaling techniques in that it does not require the path length or number of collisions of each photon to be stored during the initial simulation. Effects of various layer thicknesses and absorption and scattering coefficients on the accuracy of the method will be discussed.

  12. Optical tomographic imaging for breast cancer detection

    NASA Astrophysics Data System (ADS)

    Cong, Wenxiang; Intes, Xavier; Wang, Ge

    2017-09-01

    Diffuse optical breast imaging utilizes near-infrared (NIR) light propagation through tissues to assess the optical properties of tissues for the identification of abnormal tissue. This optical imaging approach is sensitive, cost-effective, and does not involve any ionizing radiation. However, the image reconstruction of diffuse optical tomography (DOT) is a nonlinear inverse problem and suffers from severe illposedness due to data noise, NIR light scattering, and measurement incompleteness. An image reconstruction method is proposed for the detection of breast cancer. This method splits the image reconstruction problem into the localization of abnormal tissues and quantification of absorption variations. The localization of abnormal tissues is performed based on a well-posed optimization model, which can be solved via a differential evolution optimization method to achieve a stable reconstruction. The quantification of abnormal absorption is then determined in localized regions of relatively small extents, in which a potential tumor might be. Consequently, the number of unknown absorption variables can be greatly reduced to overcome the underdetermined nature of DOT. Numerical simulation experiments are performed to verify merits of the proposed method, and the results show that the image reconstruction method is stable and accurate for the identification of abnormal tissues, and robust against the measurement noise of data.

  13. Feasibility of spatial frequency-domain imaging for monitoring palpable breast lesions

    NASA Astrophysics Data System (ADS)

    Robbins, Constance M.; Raghavan, Guruprasad; Antaki, James F.; Kainerstorfer, Jana M.

    2017-12-01

    In breast cancer diagnosis and therapy monitoring, there is a need for frequent, noninvasive disease progression evaluation. Breast tumors differ from healthy tissue in mechanical stiffness as well as optical properties, which allows optical methods to detect and monitor breast lesions noninvasively. Spatial frequency-domain imaging (SFDI) is a reflectance-based diffuse optical method that can yield two-dimensional images of absolute optical properties of tissue with an inexpensive and portable system, although depth penetration is limited. Since the absorption coefficient of breast tissue is relatively low and the tissue is quite flexible, there is an opportunity for compression of tissue to bring stiff, palpable breast lesions within the detection range of SFDI. Sixteen breast tissue-mimicking phantoms were fabricated containing stiffer, more highly absorbing tumor-mimicking inclusions of varying absorption contrast and depth. These phantoms were imaged with an SFDI system at five levels of compression. An increase in absorption contrast was observed with compression, and reliable detection of each inclusion was achieved when compression was sufficient to bring the inclusion center within ˜12 mm of the phantom surface. At highest compression level, contrasts achieved with this system were comparable to those measured with single source-detector near-infrared spectroscopy.

  14. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs.

    PubMed

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply.

  15. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    PubMed Central

    Charton, Antoine; Péronnet, François; Doutreleau, Stephane; Lonsdorfer, Evelyne; Klein, Alexis; Jimenez, Liliana; Geny, Bernard; Diemunsch, Pierre; Richard, Ruddy

    2014-01-01

    Background Oral administration of oxygenated water has been shown to improve blood oxygenation and could be an alternate way for oxygen (O2) supply. In this experiment, tissue oxygenation was compared in anesthetized pigs receiving a placebo or water enriched in O2 by injection or a new electrolytic process. Methods Forty-two pigs randomized in three groups received either mineral water as placebo or water enriched in O2 by injection or the electrolytic process (10 mL/kg in the stomach). Hemodynamic parameters, partial pressure of oxygen in the arterial blood (PaO2), skin blood flow, and tissue oxygenation (transcutaneous oxygen pressure, or TcPO2) were monitored during 90 minutes of general anesthesia. Absorption and tissue distribution of the three waters administered were assessed using dilution of deuterium oxide. Results Mean arterial pressure, heart rate, PaO2, arteriovenous oxygen difference, and water absorption from the gut were not significantly different among the three groups. The deuterium to protium ratio was also similar in the plasma, skin, and muscle at the end of the protocol. Skin blood flow decreased in the three groups. TcPO2 slowly decreased over the last 60 minutes of the experiment in the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. PMID:25210438

  16. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-06-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.

  17. Tissue distribution, metabolism and hepatic tissue injury in Chinese lizards (Eremias argus) after a single oral administration of lambda-cyhalothrin.

    PubMed

    Chang, Jing; Li, Jitong; Wang, Huili; Wang, Yinghuan; Guo, Baoyuan; Yin, Jing; Hao, Weiyu; Li, Wei; Li, Jianzhong; Xu, Peng

    2016-11-01

    Lambda-cyhalothrin (LCT) is a widely used pyrethroid with neurotoxicity. However, little is known about the toxicokinetics of LCT in reptiles. In this study, the absorption, distribution, metabolism and excretion of LCT in Chinese lizards (Eremias Argus) were determined following a single dose (10 mg kg -1 ) treatment. In the liver, brain, gonads and skin, LCT levels peaked within several hours and then decreased rapidly. However, the concentration of LCT gradually increased in the fat tissue. More than 90% of the LCT dose was excreted in the faeces. One LCT metabolite, 3-phenoxybenzoic acid (PBA), was detected in lizard plasma and tissues. PBA preferentially accumulates in the brain and plasma. The half-life of PBA in the brain was 3.2 days, which was 35.4-fold greater than that of LCT. In the plasma, the concentration of PBA was significantly higher than that of LCT. The bioaccumulation of LCT in tissues was enantioselective, and the enantiomeric fractions (EF) ranged from 0.72 to 0.26. The preferential accumulation of enantiomers changed according to exposure time, but the reasons behind this phenomenon were not clear. For pathological analysis, vacuolation of the cytoplasm and large areas of necrosis were observed in the liver sections after 168 h of dosing. The liver tissues exhibited both decreases in the hepatosomatic index and histopathological lesions during the exposure period. In this study, the effect concentration of LCT in lizards was 200-fold lower than its LD 50 value used in risk assessments for birds. These results may provide additional information for the risk assessment of LCT for reptiles and indicate that birds may not be an ideal surrogate for reptile toxicity evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue

    NASA Astrophysics Data System (ADS)

    Lyndby, Niclas H.; Kühl, Michael; Wangpraseurt, Daniel

    2016-05-01

    Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.

  19. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  20. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging.

    PubMed

    Röschmann, P

    1987-01-01

    This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.

  1. Low-dose quantitative phase contrast medical CT

    NASA Astrophysics Data System (ADS)

    Mittone, A.; Bravin, A.; Coan, P.

    2018-02-01

    X-ray computed tomography (CT) is a powerful and routinely used clinical diagnostic technique, which is well tolerated by patients, and which provides high-resolution images and volumetric information about the body. However, two important limitations still affect this examination procedure: (1) its low sensitivity with respect to soft tissues, and (2) the hazards associated with x-ray exposure. Conventional radiology is based on the detection of the different photon absorption properties that characterize biological tissues, and thus the obtainable image contrast from soft and/or similar tissues is intrinsically limited. In this scenario, x-ray phase contrast imaging (XPCI) has been extensively tested and proven to overcome some of the main issues surrounding standard x-ray imaging. In addition to the absorption signal, XPCI relies on detecting the phase shifts induced by an object. Interestingly, as the order of magnitude of the phase contrast is higher than that of absorption, XPCI can, in principle, offer higher sensitivity at lower radiation doses. However, other technical aspects may counterbalance this gain, and an optimized setup and image processing solutions need to be implemented. The work presented here describes the strategies and developments we have realized, with the aim of controlling the radiation dose for the highly sensitive and quantitative XPCI-CT. Different algorithms for the phase retrieval and CT reconstruction of the XPCI data are presented. The CT algorithms we have implemented, namely the equally sloped tomography and the dictionary learning method, allow the image quality to be preserved while reducing the number of angular projections required by a factor of five. The results applied to breast imaging report accurate reconstructions at clinically compatible doses of the 3D distribution of the refractive properties of full human organs obtained by using three different phase retrieval methods. The described methodologies and the presented results have been validated by a team of clinical radiologists and represent an important step in the exploitation of XPCI-CT for in vivo and possible clinical applications.

  2. Improving diffuse optical tomography with structural a priori from fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan

    2012-03-01

    We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.

  3. Gastrointestinal absorption of americium-241 by orally exposed swine: comparison of experimental results with predictions of metabolic models.

    PubMed

    Eisele, G R; Bernard, S R; Nestor, C W

    1987-10-01

    Two groups of 11-week-old swine (40 miniature and 40 domestic swine) received a single oral administration of 1.9 X 10(8) Bq (5.2 mCi) of 241Am citrate, and groups of eight animals, four of each type, were killed and sampled at 1, 2, 4, 8, 16, 24, 48, 72, and 96 h and 30 days later. Uptake and excretion patterns of the radioactivity appeared to occur in three phases: rapid uptake, rapid excretion, and then a slower excretion. All animals were systematically dissected, and the eviscerated carcasses were autoclaved for separation of bone and muscle. The predominant site of deposition was bone, and autoclaving had little effect on releasing 241Am from either bone or muscle. The maximum fractional gastrointestinal absorption of 1.1 X 10(-3) occurred 8 h after radionuclide administration. The tissue distribution data suggest partitions of 50, 20, and 30%, for bone, liver, and other soft tissues, respectively. Two metabolic models were evaluated: a modified Mewhinney-Griffith model and the ICRP 30 model to compare the biological data with model predictions. All models underestimated the actual early time data, but the fits to the experimental results were better at later times.

  4. Effects of Different Levels of Molybdenum on Rumen Microbiota and Trace Elements Changes in Tissues from Goats.

    PubMed

    Zhou, Sihui; Zhang, Caiying; Xiao, Qingyang; Zhuang, Yu; Gu, Xiaolong; Yang, Fan; Xing, Chenghong; Hu, Guoliang; Cao, Huabin

    2016-11-01

    Molybdenum (Mo) is an essential trace element for animals and human beings. However, the negative effects on rumen function and distribution of trace elements in tissues induced by excessive Mo have not been well understood. Therefore, the purpose of present study was to investigate the impact of Mo on rumen microbiota, distribution of trace elements in various organs, and hematological parameters of goats. A total of 36 goats were randomly distributed into three groups with equal number and low-Mo and high-Mo groups were orally administered ammonium molybdate at 15 and 45 mg · Mo · kg -1  · BW respectively, while the control group received corresponding quantitative deionized water. The results showed that the total number of ciliate and protozoa protein concentration decreased significantly (P < 0.01) on days 25 and 50. Concentrations of ammonia nitrogen and bacterial protein were significantly higher (P < 0.05) in low-Mo group, while they were lower (P < 0.05) in high-Mo group than the control group on days 25 and 50. In addition, Mo accumulated in serum and all detected tissues. Copper (Cu) and zinc (Zn) contents significantly decreased (P < 0.05) in hair and serum on days 25 and 50, while Cu contents increased (P < 0.05) and the change of Zn contents were not obvious (P > 0.05) in other tissues on days 25 and 50. Besides, there was no obvious variation in iron (Fe) contents during whole experiment period (P > 0.05). Furthermore, excessive Mo content had no significant effect on red blood cell (RBC) counts and hemoglobin (HGB) concentration (P > 0.05) on days 25 and 50, while white blood cell (WBC) counts increased significantly (P < 0.05) on day 50. These results indicated that excessive Mo content could impact the balance of ruminal microorganisms and interfere with the absorption and distribution of Mo and Cu mainly.

  5. A kinetic approach to the study of absorption of solutes by isolated perfused small intestine

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new technique has been developed for making serial measurements of water and solute absorption from the lumen of isolated small intestine. 2. The isolated intestine is perfused in a single pass with a segmented flow of slugs of liquid separated by bubbles of oxygen-carbon dioxide mixture. Simultaneous collections are made of effluent from the lumen and of the fluid which is transported across the mucosa. This latter fluid appears to be a fair sample of the tissue fluid. 3. Conditions in the lumen can be changed within less than 5 min. The effects of two or more treatments applied to the same segment of intestine can be determined and the time course of a change in luminal conditions. 4. The rate of appearance of solutes on the serosal side depends on the rate of water absorption, and changes exponentially towards a steady state. The rate constant is a function of tissue fluid volume. 5. In the steady state the concentration of glucose in the tissue fluid is 71 mM when the luminal concentration is 28 mM, and is 45 mM when the luminal concentration is 8·3 mM. 6. For solutes such as glucose for which reflux from tissue fluid to lumen is small relative to flux from lumen to tissue fluid, the time of attainment of a steady state in secretion is usually 50-60 min. 7. For solutes such as sodium for which the reflux is relatively high, the steady state may be reached in 15-20 min. 8. The Km for glucose absorption (14-19 mM) is much lower than is found with unsegmented flow perfusion. 9. These findings emphasize problems in interpreting results from other types of intestinal preparation. 10. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium concentration is reduced abruptly. In contrast the rate of glucose absorption falls suddenly when the luminal glucose concentration is reduced abruptly. This suggests that glucose absorption is not directly dependent on luminal sodium ions. ImagesPlate 1 PMID:4422346

  6. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    USGS Publications Warehouse

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel 3.

  7. Tissue distribution of oral vitamin B12 is influenced by B12 status and B12 form: an experimental study in rats.

    PubMed

    Kornerup, Linda S; Fedosov, Sergey N; Juul, Christian B; Greibe, Eva; Heegaard, Christian W; Nexo, Ebba

    2018-06-01

    Hydroxocobalamin (HOCbl) is the dominating Cbl form in food, whereas cyanocobalamin (CNCbl) is common in vitamin pills and oral supplements. This study compares single-dose absorption and distribution of oral HO[ 57 Co]Cbl and CN[ 57 Co]Cbl in Cbl-deficient and normal rats. Male Wistar rats (7 weeks) were fed a 14-day diet with (n = 15) or without (n = 15) Cbl. We compared the uptakes of HO[ 57 Co]Cbl (free or bound to bovine transcobalamin) and free CN[ 57 Co]Cbl administered by gastric gavage (n = 5 in each diet group). Rats were sacrificed after 24 h. Blood, liver, kidney, brain, heart, spleen, intestines, skeletal muscle, 24-h urine and faeces were collected, and the content of [ 57 Co]Cbl was measured. Endogenous Cbl in tissues and plasma was analysed by routine methods. Mean endogenous plasma-Cbl was sevenfold lower in deficient vs. normal rats (190 vs. 1330 pmol/L, p < 0.0001). Cbl depletion increased endogenous Cbl ratios (tissue/plasma = k in /k out ) in all organs except for the kidney, where the ratio decreased considerably. Twenty-four-hour accumulation of labelled Cbl showed that HOCbl > CNCbl (liver) and CNCbl > HOCbl (brain, muscle and plasma). The Cbl status of rats and the administered Cbl form influence 24-h Cbl accumulation in tissues and plasma.

  8. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron.

    PubMed

    Singh, Sudhir P; Vogel-Mikuš, Katarina; Arčon, Iztok; Vavpetič, Primož; Jeromel, Luka; Pelicon, Primož; Kumar, Jitendra; Tuli, Rakesh

    2013-08-01

    Iron insufficiency is a worldwide problem in human diets. In cereals like wheat, the bran layer of the grains is an important source of iron. However, the dietary availability of iron in wheat flour is limited due to the loss of the iron-rich bran during milling and processing and the presence of anti-nutrients like phytic acid that keep iron strongly chelated in the grain. The present study investigated the localization of iron and phosphorus in grain tissues of wheat genotypes with contrasting grain iron content using synchrotron-based micro-X-ray fluorescence (micro-XRF) and micro-proton-induced X-ray emission (micro-PIXE). X-ray absorption near-edge spectroscopy (XANES) was employed to determine the proportion of divalent and trivalent forms of Fe in the grains. It revealed the abundance of oxygen, phosphorus, and sulphur in the local chemical environment of Fe in grains, as Fe-O-P-R and Fe-O-S-R coordination. Contrasting differences were noticed in tissue-specific relative localization of Fe, P, and S among the different genotypes, suggesting a possible effect of localization pattern on iron bioavailability. The current study reports the shift in iron distribution from maternal to filial tissues of grains during the evolution of wheat from its wild relatives to the present-day cultivated varieties, and thus suggests the value of detailed physical localization studies in varietal improvement programmes for food crops.

  9. Biokinetics of food additive silica nanoparticles and their interactions with food components.

    PubMed

    Lee, Jeong-A; Kim, Mi-Kyung; Song, Jae Ho; Jo, Mi-Rae; Yu, Jin; Kim, Kyoung-Min; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin

    2017-02-01

    Nanomaterials have been widely utilized in the food industry in production, packaging, sensors, nutrient delivery systems, and food additives. However, research on the interactions between food-grade nanoparticles and biomolecules as well as their potential toxicity is limited. In the present study, the in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of one of the most extensively used food additives, silica (SiO 2 ) were evaluated with respect to particle size (nano vs bulk) following single-dose oral administration to rats. Intestinal transport mechanism was investigated using a 3D culture system, in vitro model of human intestinal follicle-associated epithelium (FAE). The effect of the presence of food components, such as sugar and protein, on the oral absorption of nanoparticles was also evaluated with focus on their interactions. The results obtained demonstrated that the oral absorption of nanoparticles (3.94±0.38%) was greater than that of bulk materials (2.95±0.37%), possibly due to intestinal transport by microfold (M) cells. On the other hand, particle size was found to have no significant effect on in vivo dissolution property, biodistribution, or excretion kinetics. Oral absorption profile of silica nanoparticles was highly dependent on the presence of sugar or protein, showing rapid absorption rate in glucose, presumably due to their surface interaction on nanoparticles. These findings will be useful for predicting the potential toxicity of food-grade nanoparticles and for understanding biological interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of proinflammatory interleukins on jejunal nutrient transport

    PubMed Central

    Hardin, J; Kroeker, K; Chung, B; Gall, D

    2000-01-01

    AIM—We examined the effect of proinflammatory and anti-inflammatory interleukins on jejunal nutrient transport and expression of the sodium-glucose linked cotransporter (SGLT-1).
METHODS—3-O-methyl glucose and L-proline transport rates were examined in New Zealand White rabbit stripped, short circuited jejunal tissue. The effects of the proinflammatory cytokines interleukin (IL)-1α, IL-6, and IL-8, IL-1α plus the specific IL-1 antagonist, IL-1ra, and the anti-inflammatory cytokine IL-10 were investigated. In separate experiments, passive tissue permeability was assessed and brush border SGLT-1 expression was measured by western blot in tissues exposed to proinflammatory interleukins.
RESULTS—The proinflammatory interleukins IL-6, IL-1α, and IL-8 significantly increased glucose absorption compared with control levels. This increase in glucose absorption was due to an increase in mucosal to serosal flux. IL-1α and IL-8 also significantly increased L-proline absorption due to an increase in absorptive flux. The anti-inflammatory IL-10 had no effect on glucose transport. The receptor antagonist IL-1ra blocked the ability of IL-1α to stimulate glucose transport. IL-8 had no effect on passive tissue permeability. SGLT-1 content did not differ in brush border membrane vesicles (BBMV) from control or interleukin treated tissue.
CONCLUSIONS—These findings suggest that intestinal inflammation and release of inflammatory mediators such as interleukins increase nutrient absorption in the gut. The increase in glucose transport does not appear to be due to changes in BBMV SGLT-1 content.


Keywords: glucose transport; small intestine; intestinal inflammation; inflammation PMID:10896908

  11. Dependence of intestinal glucose absorption on sodium, studied with a new arterial infusion technique

    PubMed Central

    Fisher, R. B.; Gardner, M. L. G.

    1974-01-01

    1. A new preparation of isolated rat jejunum plus ileum (ca. 100 cm) is described in which a saline infusate is pumped into the superior mesenteric artery, the superior mesenteric vein having been ligated. 2. The arterial infusate washes out the tissue spaces: the lumen is perfused in a single pass with a segmented flow as by Fisher & Gardner (1974). 3. At an arterial infusion rate of 3 ml./min, steady states are set up in the tissue fluid within 10-15 min: the compositions of the fluids bathing both sides of the mucosa can therefore be controlled. 4. The rate of glucose absorption from the lumen falls only gradually when the luminal sodium is replaced by choline abruptly while the tissue fluid sodium is maintained at 144 m-equiv/l. by arterial infusion. 5. The rate of glucose absorption from the lumen is unaffected by replacement of sodium in the arterial infusate by choline. 6. Ouabain (10-4 M) in an arterial infusate containing sodium 144 m-equiv/l. causes inhibition of glucose and water absorption from the lumen. There is no effect of ouabain when the arterial infusate contains sodium, 0 or 72 m-equiv/l. 7. Arterial ouabain does not reverse the effects of depletion of luminal sodium. Simultaneous removal of luminal sodium and application of arterial ouabain causes faster inhibition of glucose absorption than does either treatment alone. 8. Glucose absorption is more likely to depend on rate of efflux of sodium from mucosal cell to tissue fluid than on a sodium gradient at the brush border or on intracellular sodium concentration. PMID:4422318

  12. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats

    PubMed Central

    2014-01-01

    Objective The aim of this study was to obtain kinetic data that can be used in human risk assessment of titanium dioxide nanomaterials. Methods Tissue distribution and blood kinetics of various titanium dioxide nanoparticles (NM-100, NM-101, NM-102, NM-103, and NM-104), which differ with respect to primary particle size, crystalline form and hydrophobicity, were investigated in rats up to 90 days post-exposure after oral and intravenous administration of a single or five repeated doses. Results For the oral study, liver, spleen and mesenteric lymph nodes were selected as target tissues for titanium (Ti) analysis. Ti-levels in liver and spleen were above the detection limit only in some rats. Titanium could be detected at low levels in mesenteric lymph nodes. These results indicate that some minor absorption occurs in the gastrointestinal tract, but to a very limited extent. Both after single and repeated intravenous (IV) exposure, titanium rapidly distributed from the systemic circulation to all tissues evaluated (i.e. liver, spleen, kidney, lung, heart, brain, thymus, reproductive organs). Liver was identified as the main target tissue, followed by spleen and lung. Total recovery (expressed as % of nominal dose) for all four tested nanomaterials measured 24 h after single or repeated exposure ranged from 64-95% or 59-108% for male or female animals, respectively. During the 90 days post-exposure period, some decrease in Ti-levels was observed (mainly for NM-100 and NM-102) with a maximum relative decrease of 26%. This was also confirmed by the results of the kinetic analysis which revealed that for each of the investigated tissues the half-lifes were considerable (range 28–650 days, depending on the TiO2-particle and tissue investigated). Minor differences in kinetic profile were observed between the various particles, though these could not be clearly related to differences in primary particle size or hydrophobicity. Some indications were observed for an effect of crystalline form (anatase vs. rutile) on total Ti recovery. Conclusion Overall, the results of the present oral and IV study indicates very low oral bioavailability and slow tissue elimination. Limited uptake in combination with slow elimination might result in the long run in potential tissue accumulation. PMID:24993397

  13. Synchrotron micro-scale study of trace metal transport and distribution in Spartina alterniflora root system in Yangtze River intertidal zone

    DOE PAGES

    Feng, Huan; Tappero, Ryan; Zhang, Weiguo; ...

    2015-07-26

    This study is focused on micro-scale measurement of metal (Ca, Cl, Fe, K, Mn, Cu, Pb, and Zn) distributions in Spartina alterniflora root system. The root samples were collected in the Yangtze River intertidal zone in July 2013. Synchrotron X-ray fluorescence (XRF), computed microtomography (CMT), and X-ray absorption near-edge structure (XANES) techniques, which provide micro-meter scale analytical resolution, were applied to this study. Although it was found that the metals of interest were distributed in both epidermis and vascular tissue with the varying concentrations, the results showed that Fe plaque was mainly distributed in the root epidermis. Other metals (e.g.,more » Cu, Mn, Pb, and Zn) were correlated with Fe in the epidermis possibly due to scavenge by Fe plaque. Relatively high metal concentrations were observed in the root hair tip. As a result, this micro-scale investigation provides insights of understanding the metal uptake and spatial distribution as well as the function of Fe plaque governing metal transport in the root system.« less

  14. Contaminant transport from point source on water surface in open channel flow with bed absorption

    NASA Astrophysics Data System (ADS)

    Guo, Jinlan; Wu, Xudong; Jiang, Weiquan; Chen, Guoqian

    2018-06-01

    Studying solute dispersion in channel flows is of significance for environmental and industrial applications. Two-dimensional concentration distribution for a most typical case of a point source release on the free water surface in a channel flow with bed absorption is presented by means of Chatwin's long-time asymptotic technique. Five basic characteristics of Taylor dispersion and vertical mean concentration distribution with skewness and kurtosis modifications are also analyzed. The results reveal that bed absorption affects both the longitudinal and vertical concentration distributions and causes the contaminant cloud to concentrate in the upper layer. Additionally, the cross-sectional concentration distribution shows an asymptotic Gaussian distribution at large time which is unaffected by the bed absorption. The vertical concentration distribution is found to be nonuniform even at large time. The obtained results are essential for practical implements with strict environmental standards.

  15. Comparison of specific absorption rate induced in brain tissues of a child and an adult using mobile phone

    NASA Astrophysics Data System (ADS)

    Lu, Mai; Ueno, Shoogo

    2012-04-01

    The steady increase of mobile phone usage, especially mobile phones by children, has led to a rising concern about the possible adverse health effects of radio frequency electromagnetic field exposure. The objective of this work is to study whether there is a larger radio frequency energy absorption in the brain of a child compared to that of an adult. For this reason, three high-resolution models, two child head models (6 - and 11-year old) and one adult head model (34-year old) have been used in the study. A finite-difference time-domain method was employed to calculate the specific absorption rate (SAR) in the models from exposure to a generic handset at 1750 MHz. The results show that the SAR distributions in the human brain are age-dependent, and there is a deeper penetration of the absorbed SAR in the child's brain. The induced SAR can be significantly higher in subregions of the child's brain. In all of the examined cases, the SAR values in the brains of a child and an adult are well below the IEEE safety standard.

  16. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China.

    PubMed

    Yuan, Ming; Liu, Chang; Liu, Wen-Shen; Guo, Mei-Na; Morel, Jean Louis; Huot, Hermine; Yu, Hong-Jie; Tang, Ye-Tao; Qiu, Rong-Liang

    2018-04-16

    The widespread use of rare earth elements (REEs) has resulted in problems for soil and human health. Phytolacca americana L. is a herbaceous plant widely distributed in Dingnan county of Jiangxi province, China, which is a REE mining region (ion absorption rare earth mine) and the soil has high levels of REEs. An investigation of REE content of P. americana growing naturally in Dingnan county was conducted. REE concentrations in the roots, stems, and leaves of P. americana and in their rhizospheric soils were determined. Results showed that plant REEs concentrations varied among the sampling sites and can reach 1040 mg/kg in the leaves. Plant REEs concentrations decreased in the order of leaf > root > stem and all tissues were characterized by a light REE enrichment and a heavy REE depletion. However, P. americana exhibited preferential accumulation of light REEs during the absorption process (from soil to root) and preferential accumulation of heavy REEs during the translocation process (from stem to leaf). The ability of P. americana to accumulate high REEs in the shoot makes it a potential candidate for understanding the absorption mechanisms of REEs and for the phytoremediation of REEs contaminated soil.

  17. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy.

    PubMed Central

    Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.

    1996-01-01

    The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339

  18. Transcellular movement of hydroxyurea is mediated by specific solute carrier transporters

    PubMed Central

    Walker, Aisha L.; Franke, Ryan M.; Sparreboom, Alex; Ware, Russell E.

    2015-01-01

    Objective Hydroxyurea has proven laboratory and clinical therapeutic benefits for sickle cell anemia (SCA) and other diseases, yet many questions remain regarding its in vivo pharmacokinetic and pharmacodynamic profiles. Previous reports suggest that hydroxyurea passively diffuses across cells, but its observed rapid absorption and distribution are more consistent with facilitated or active transport. We investigated the potential role of solute carrier (SLC) transporters in cellular uptake and accumulation of hydroxyurea. Materials and Methods Passive diffusion of hydroxyurea across cell membranes was determined using the parallel artificial membrane permeability assay. SLC transporter screens were conducted using in vitro intracellular drug accumulation and transcellular transport assays in cell lines and oocytes overexpressing SLC transporters. Gene expression of SLC transporters was measured by real-time PCR in human tissues and cell lines. Results Hydroxyurea had minimal diffusion across a lipid bilayer but was a substrate for 5 different SLC transporters belonging to the OCTN and OATP families of transporters and urea transporters A and B. Further characterization of hydroxyurea transport revealed that cellular uptake by OATP1B3 is time and temperature dependent and inhibited by known substrates of OATP1B3. Urea transporters A and B are expressed differentially in human tissues and erythroid cells, and transport hydroxyurea bidirectionally via facilitated diffusion. Conclusions These studies provide new insight into drug transport proteins that may be involved in the in vivo absorption, cellular distribution, and elimination of hydroxyurea. Elucidation of hydroxyurea transcellular movement should improve our understanding of its pharmacokinetics and pharmacodynamics, and may help explain some of the inter-patient drug variability observed in patients with SCA. PMID:21256917

  19. Overcoming sampling depth variations in the analysis of broadband hyperspectral images of breast tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kho, Esther; de Boer, Lisanne L.; Van de Vijver, Koen K.; Sterenborg, Henricus J. C. M.; Ruers, Theo J. M.

    2017-02-01

    Worldwide, up to 40% of the breast conserving surgeries require additional operations due to positive resection margins. We propose to reduce this percentage by using hyperspectral imaging for resection margin assessment during surgery. Spectral hypercubes were collected from 26 freshly excised breast specimens with a pushbroom camera (900-1700nm). Computer simulations of the penetration depth in breast tissue suggest a strong variation in sampling depth ( 0.5-10 mm) over this wavelength range. This was confirmed with a breast tissue mimicking phantom study. Smaller penetration depths are observed in wavelength regions with high water and/or fat absorption. Consequently, tissue classification based on spectral analysis over the whole wavelength range becomes complicated. This is especially a problem in highly inhomogeneous human tissue. We developed a method, called derivative imaging, which allows accurate tissue analysis, without the impediment of dissimilar sampling volumes. A few assumptions were made based on previous research. First, the spectra acquired with our camera from breast tissue are mainly shaped by fat and water absorption. Second, tumor tissue contains less fat and more water than healthy tissue. Third, scattering slopes of different tissue types are assumed to be alike. In derivative imaging, the derivatives are calculated of wavelengths a few nanometers apart; ensuring similar penetration depths. The wavelength choice determines the accuracy of the method and the resolution. Preliminary results on 3 breast specimens indicate a classification accuracy of 93% when using wavelength regions characterized by water and fat absorption. The sampling depths at these regions are 1mm and 5mm.

  20. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption

    NASA Astrophysics Data System (ADS)

    Guo, Chongshen; Yin, Shu; Yu, Haijun; Liu, Shaoqin; Dong, Qiang; Goto, Takehiro; Zhang, Zhiwen; Li, Yaping; Sato, Tsugio

    2013-06-01

    Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy.Recently, photothermal ablation therapy (PTA) employing near-infrared radiation (NIR) has been extensively investigated as an emerging modality for cancer management. However, the clinical translation of this promising approach is limited by the lack of PTA agents with broad NIR absorption, low cost and high photothermal conversion efficiency. Herein, we have developed PEGylated homogeneous CsxWO3 nanorods (a mean size ~69.3 nm × 12.8 nm) with broad photo-absorption (780-2500 nm) as a novel NIR absorbent for PTA treatment of human cancer. The prepared CsxWO3 nanocrystals displayed strong near-infrared optical absorption with a high molar extinction coefficient (e.g. 4.8 × 1010 M-1 cm-1 at 980 nm), thus generated significant amounts of heat upon excitation with near-infrared light. The PTA study in two human carcinoma cell lines (i.e. A549 lung cancer cells and HeLa ovarian cancer cells) demonstrated that CsxWO3 nanorods can efficiently cause cell death via hyperthermia induced lysosome destruction, cytoskeleton protein degradation, DNA damage and thereafter cellular necrosis or apoptosis. Our study also confirmed the migration of healthy cells migrated from unirradiated areas to dead cell cycle, which is essential for tissue reconstruction and wound healing after photodestruction of tumor tissue. The prompted results reported in the current study imply the promising potential of CsxWO3 nanorods for application in PTA cancer therapy. Electronic supplementary information (ESI) available: EDS spectra, XRD patterns, TG plot of CsxWO3 nanorod are provided in the ESI. Additionally, linear correlations between NIR absorbance and CsxWO3-PEGS nanorod concentrations, cytotoxicity results, TEM image of intracellular distribution of CsxWO3-PEGS nanorods and fluorescence images can be found in the ESI. See DOI: 10.1039/c3nr01025b

  1. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    PubMed

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  2. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  3. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation

    PubMed Central

    Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan

    2012-01-01

    Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784

  4. Thermal effects of X-band microwaves on skin tissues

    NASA Astrophysics Data System (ADS)

    Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik; Kim, Jaehwan; Choi, Sang H.

    2012-04-01

    Microwave can be used as a power carrier to implanted medical devices wirelessly, which is regarded as one of the attractive features for medical applications. The loss mechanism of microwave transmission through lossy media often appears as a thermal effect due to the absorption of microwave. Such a thermal effect on human tissue has not rigorously studied yet. The thermal effect on living tissues was experimentally tested with animal skins to understand the absorption characteristics of microwave. In this paper, the frequency range of microwave used for the tests was from 6 GHz to 13 GHz.

  5. Dietary mannitol increased the absorption of calcium and magnesium in rats.

    PubMed

    Xiao, J; Sakaguchi, E; Min, X; Kawasaki, K

    2016-08-01

    The effect of mannitol on bone-related mineral absorption and retention and the mechanism was investigated in this study. Fourteen 8-week-old male Wistar rats in experiment 1 and same number and age cecectomized Wistar male rats in experiment 2 were divided into two subgroups of seven animals, respectively, fed diets containing 0 or 4% mannitol for 28 days. Mineral balance tests were determined twice during days 8-12 and days 22-26, and the rats were slaughtered on day 28 both in experiment 1 and experiment 2. The whole caecum and colon were collected with the content to analyse tissue weight, content weight, content's pH and moisture, organic acids' concentration and mineral levels. In experiment 1, Ca absorption and retention and Mg absorption were significantly increased by mannitol feeding during days 8-12. Caecal total weight, tissue weight and content weight were increased, the pH of caecum and colon was reduced, and the concentrations of caecal short-chain fatty acids (SCFAs) were modified by mannitol feeding. In experiment 2, during days 8-12 and days 22-26, Ca absorption and retention were significantly lowered by mannitol feeding in cecectomized rats; however, mannitol feeding decreased Mg absorption during days 8-12, but did not impact Mg retention. Colonic total weight, tissue weight and content weight were significantly increased, and colonic pH was reduced by mannitol feeding. In conclusion, dietary mannitol increased the absorption of Ca and Mg and the caecum markedly contributed to this promoting effect of mannitol. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  6. Characterization of water molecular state in in-vivo thick tissues using diffuse optical spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Chung, So Hyun

    Structural changes in water molecules are related to physiological, anatomical and pathological properties of tissues. Near infrared (NIR) optical absorption methods are sensitive to water; however, detailed characterization of water in thick tissues is difficult to achieve because subtle spectral shifts can be obscured by multiple light scattering. In the NIR, a water absorption peak is observed around 975 nm. The precise NIR peak's shape and position are highly sensitive to water molecular disposition. A bound water index (BWI) was developed that quantifies the spectral shift and shape changes observed in tissue water absorption spectra measured by broadband diffuse optical spectroscopic imaging (DOSI). DOSI quantitatively measures light absorption and scattering spectra in cm-deep tissues and therefore reveals bound water spectral shifts. BWI as a water state index was validated by comparing broadband DOSI to MRI and a conductivity cell using bound water phantoms. Non-invasive BWI measurements of malignant and normal tissues in 18 subjects showed a significantly higher fraction of free water in malignant tissues (p<0.0001) compared to normal tissues. BWI showed potential as a prognostic index based on high correlations with tumor grade and size. An algorithm for absolute temperature measurements in deep tissues was developed based on resolving opposing effects of water vibrational frequency shifts due to macromolecular binding. DOSI measures absolute temperature with a difference of 1.1+/-0.91°C from a thermistor. Deep tissue temperature measured in forearms during cold-stress was consistent with previously reported invasively-measured deep tissue temperature. Finally, the BWI was compared to Apparent Diffusion Coefficient (ADC) of diffusion weighted MRI in 9 breast cancer patients. The BWI and ADC correlated (R=0.8, p=<0.01) and both parameters decreased with increasing bulk water content in cancer tissues. Although BWI and ADC are positively correlated in vivo, BWI appears to be more sensitive to free water in the extracellular matrix while ADC reflects increased tumor cellularity. The relationship between ADC, BWI and bulk water concentration suggests that both parameters have potential for assessing tumor histopathological grade. My results confirm the importance of water as a critical tissue component that can potentially provide unique insight into the molecular pathophysiology of cancer.

  7. Effect of absorption on nonlinear propagation of short ultrasound pulses generated by rectangular transducers

    NASA Astrophysics Data System (ADS)

    Khokhlova, Vera A.; Ponomaryov, Anatoly E.; Averkiou, Michalakis A.; Crum, Lawrence A.

    2002-11-01

    A numerical solution of the KZK-type parabolic nonlinear evolution equation is presented for finite-amplitude sound beams radiated by rectangular sources. The initial acoustic waveform is a short tone burst, similar to those used in diagnostic ultrasound. The generation of higher harmonic components and their spatial structure are investigated for media similar to tissue with various frequency dependent absorption properties. Nonlinear propagation in a thermoviscous fluid with a quadratic frequency law of absorption is compared to that in tissue with a nearly linear frequency law of absorption. The algorithm is based on that originally developed by Lee and Hamilton [J. Acoust. Soc. Am. 97, 906-917 (1995)] to model circular sources. The algorithm is generalized for two-dimensional sources without axial symmetry. The diffraction integral is adapted in the time-domain for two dimensions with the implicit backward finite difference (IBFD) scheme in the nearfield and with the alternate direction implicit (ADI) method at longer distances. Arbitrary frequency dependence of absorption is included in this model and solved in the frequency-domain using the FFT technique. The results of simulation may be used to better understand the nonlinear beam structure for tissue harmonic imaging in modern medical diagnostic scanners. [Work supported by CRDF and RFBR.

  8. Performance of a lookup table-based approach for measuring tissue optical properties with diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Nichols, Brandon S.; Rajaram, Narasimhan; Tunnell, James W.

    2012-05-01

    Diffuse optical spectroscopy (DOS) provides a powerful tool for fast and noninvasive disease diagnosis. The ability to leverage DOS to accurately quantify tissue optical parameters hinges on the model used to estimate light-tissue interaction. We describe the accuracy of a lookup table (LUT)-based inverse model for measuring optical properties under different conditions relevant to biological tissue. The LUT is a matrix of reflectance values acquired experimentally from calibration standards of varying scattering and absorption properties. Because it is based on experimental values, the LUT inherently accounts for system response and probe geometry. We tested our approach in tissue phantoms containing multiple absorbers, different sizes of scatterers, and varying oxygen saturation of hemoglobin. The LUT-based model was able to extract scattering and absorption properties under most conditions with errors of less than 5 percent. We demonstrate the validity of the lookup table over a range of source-detector separations from 0.25 to 1.48 mm. Finally, we describe the rapid fabrication of a lookup table using only six calibration standards. This optimized LUT was able to extract scattering and absorption properties with average RMS errors of 2.5 and 4 percent, respectively.

  9. Age-dependent tissue-specific exposure of cell phone users.

    PubMed

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  10. Age-dependent tissue-specific exposure of cell phone users

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  11. Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes.

    PubMed

    Abdul Nasir, Nurul Alimah; Agarwal, Puneet; Agarwal, Renu; Iezhitsa, Igor; Alyautdin, Renad; Nukolova, Natalia N; Chekhonin, Vladimir P; Mohd Ismail, Nafeeza

    2016-10-01

    Topical administration is the preferred route of drug delivery for ophthalmic ailments. However, poor permeation through ocular surface and significant systemic absorption, makes the topical drug delivery challenging. Furthermore, distribution of topically delivered drugs varies with their physicochemical properties and the type of formulation used. Hence, this study was done to understand the pattern of ocular drug distribution of topically applied hydrophilic and lipophilic substances in two different formulations. 5-Carboxyfluorescein and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate were used as representative candidates for hydrophilic and lipophilic substances, respectively. They were formulated in solution and liposomes. Single drop of either formulation containing hydrophilic or lipophilic substance was instilled topically, unilaterally to rat eyes. Subsequently, rats were sacrificed at 10, 30 and 120 min post-instillation. Eyes were cryosectioned and examined under confocal microscope to determine the fluorescence intensity in ocular tissues. Corneal permeation of hydrophilic and lipophilic substances in both formulations peaked at 30 min post-instillation. Liposomal-lipophilic dye and non-liposomal-hydrophilic dye showed better corneal distribution. Fluorescence was absent in contralateral eyes of non-liposomal-hydrophilic dye-treated animals but was present in contralateral eyes of liposomal-hydrophilic dye-treated animals. Fluorescence in contralateral eyes of liposomal-lipophilic dye-treated animals was significantly higher compared to non-liposomal-lipophilic dye-treated animals. Topically applied liposomal formulation of lipophilic substance provides higher corneal concentration of drug with lesser systemic absorption compared to its solution. For hydrophilic substance, topical use of solution provides greater corneal concentration compared to liposomes which is more likely to be absorbed systemically.

  12. In vivo characterization of tissue thermal properties of the kidney during local hyperthermia induced by MR-guided high-intensity focused ultrasound.

    PubMed

    Cornelis, François; Grenier, Nicolas; Moonen, Chrit T; Quesson, Bruno

    2011-08-01

    The purpose of this study was to evaluate quantitatively in vivo the tissue thermal properties during high-intensity focused ultrasound (HIFU) heating. For this purpose, a total of 52 localized sonications were performed in the kidneys of six pigs with HIFU monitored in real time by volumetric MR thermometry. The kidney perfusion was modified by modulation of the flow in the aorta by insertion of an inflatable angioplasty balloon. The resulting temperature data were analyzed using the bio-heat transfer model in order to validate the model under in vivo conditions and to estimate quantitatively the absorption (α), thermal diffusivity (D) and perfusion (w(b)) of renal tissue. An excellent correspondence was observed between the bio-heat transfer model and the experimental data. The absorption and thermal diffusivity were independent of the flow, with mean values (± standard deviation) of 20.7 ± 5.1 mm(3) K J(-1) and 0.23 ± 0.11 mm(2) s(-1), respectively, whereas the perfusion decreased significantly by 84% (p < 0.01) with arterial flow (mean values of w(b) of 0.06 ± 0.02 and 0.008 ± 0.007 mL(-1) mL s(-1)), as predicted by the model. The quantitative analysis of the volumetric temperature distribution during nondestructive HIFU sonication allows the determination of the thermal parameters, and may therefore improve the quality of the planning of noninvasive therapy with MR-guided HIFU. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

    PubMed

    Shi, Yuguang; Cheng, Dong

    2009-07-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

  14. Brachytherapy devices and methods employing americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L. A.

    1985-04-16

    Sources and methods for radiation therapy, particularly brachytherapy, employing americium-241 (60 keV gamma emission and 433 year half-life) provide major advantages for radiotherapy, including simplified radiation protection, dose reduction to healthy tissue, increased dose to tumor, and improved dose distributions. A number of apparent drawbacks and unfavorable considerations including low gamma factor, high self-absorption, increased activity required and alpha-particle generation leading to helium gas pressure buildup and potential neutron contamination in the generated radiation are all effectively dealt with and overcome through recognition of subtle favorable factors unique to americium-241 among brachytherapy sources and through suitable constructional techniques. Due tomore » an additional amount of radiation, in the order of 50%, provided primarily to nearby regions as a result of Compton scatter in tissue and water, higher dose rates occur than would be predicted by conventional calculations.« less

  15. Heavy metals in red crabs, Chaceon quinquedens, from the Gulf of Mexico.

    PubMed

    Perry, Harriet; Isphording, Wayne; Trigg, Christine; Riedel, Ralf

    2015-12-30

    The red crab, Chaceon quinquedens, is distributed in deep waters of the Gulf of Mexico (GOM) and is most abundant in an area associated with sediment deposition from the Mississippi River. Sediment geochemistry and biological and ecological traits of red crabs favor accumulation of contaminants. Red crabs, sediment, and bottom water samples were taken from three distinct geographic locations representing areas with differing exposure to contaminant laden effluents from the Mississippi River. Inductively coupled plasma spectrophotometry and atomic absorption spectrophotometry were employed to determine levels of heavy metals in red crab muscle tissue. Ion site partitioning was used to determine metal speciation in sediments. Red crabs showed evidence of heavy metal bioaccumulation in all sample areas with high variability in contaminant levels in individual crabs for some metals. Bioavailability of metals in sediment did not always result in accumulation in muscle tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of tissue viability by polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Nilsson, G.; Anderson, C.; Henricson, J.; Leahy, M.; O'Doherty, J.; Sjöberg, F.

    2008-09-01

    A new and versatile method for tissue viability imaging based on polarization spectroscopy of blood in superficial tissue structures such as the skin is presented in this paper. Linearly polarized light in the visible wavelength region is partly reflected directly by the skin surface and partly diffusely backscattered from the dermal tissue matrix. Most of the directly reflected light preserves its polarization state while the light returning from the deeper tissue layers is depolarized. By the use of a polarization filter positioned in front of a sensitive CCD-array, the light directly reflected from the tissue surface is blocked, while the depolarized light returning from the deeper tissue layers reaches the detector array. By separating the colour planes of the detected image, spectroscopic information about the amount of red blood cells (RBCs) in the microvascular network of the tissue under investigation can be derived. A theory that utilizes the differences in light absorption of RBCs and bloodless tissue in the red and green wavelength region forms the basis of an algorithm for displaying a colour coded map of the RBC distribution in a tissue. Using a fluid model, a linear relationship (cc. = 0.99) between RBC concentration and the output signal was demonstrated within the physiological range 0-4%. In-vivo evaluation using transepidermal application of acetylcholine by the way of iontophoresis displayed the heterogeneity pattern of the vasodilatation produced by the vasoactive agent. Applications of this novel technology are likely to be found in drug and skin care product development as well as in the assessment of skin irritation and tissue repair processes and even ultimately in a clinic case situation.

  17. In vivo pharmacokinetic and tissue distribution investigation of sustained-release cisplatin implants in the normal esophageal submucosa of 12 beagle dogs.

    PubMed

    Yin, Jia-Xue; Wei, Zhi; Xu, Jian-Jian; Sun, Zi-Qin

    2015-09-01

    The aim of this study was to clarify the pharmacokinetic, tissue distribution, hematologic, and histopathologic characteristics of sustained-release cisplatin from implants [CDDP-nanoparticle (NP) implants]. Eighteen dogs (six hybrids and twelve beagles) were divided into three groups. In Group A, the six hybrid dogs were intravenously administered 20 mg CDDP via a hind limb vein. In Groups B and C, CDDP-NP implants containing CDDP doses of 40 and 60 mg, respectively, were embedded into the esophageal submucosa of beagles via painless gastroscopy with an endoscopic booster. Graphite frameless atomic absorption spectrophotometry was used to measure total platinum in plasma and tissues at various timepoints. In addition, free platinum levels in Group B were determined using inductively coupled plasma mass spectrometry. Toxicologic evaluation was also conducted. Pharmacokinetic results indicated that the CDDP-NP implant could achieve a smooth pharmacokinetic curve, with the plasma invalid concentration reached after almost 480 h, which is approximately ten times longer than that of standard CDDP (48 h). The peak time, peak concentration, clearance, elimination half-life, area under the curve, volume of distribution at steady state, and mean residence time of Groups B and C were 494 and 211, 0.39 and 0.42, 0.044 and 0.059, 80.11 and 87.70, 44 and 49, 38.8 and 57.9, and 12.29 and 12.39 times those of Group A, respectively (all P < 0.05). The ratio of free/total platinum concentration was 2.0-3.1% in plasma, 14.2% in liver tissue, and 14.3% in kidney tissue. Tissue distribution studies showed that the highest platinum concentrations were found in the esophagus, followed by the kidney and liver. Compared with pre-implantation (day 0), there were no significant differences in most hematological indicators in Groups B and C (P > 0.05). Furthermore, histopathologic examination of the kidneys of dogs from Group C revealed no significant kidney damage. Unlike the intravenous CDDP group (Group A), no animals in the implantation groups showed any clinical signs of toxicity. CDDP-NP implants can be used to achieve a smooth pharmacokinetic curve and higher drug concentration, as well as a longer mean residence time at the implantation site, with reduced side effects compared with intravenous CDDP.

  18. Three-dimensional radiation transfer modeling in a dicotyledon leaf

    NASA Astrophysics Data System (ADS)

    Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.

    1996-11-01

    The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.

  19. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring.

    PubMed

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time.

  20. Precise Spatially Selective Photothermolysis Using Modulated Femtosecond Lasers and Real-time Multimodal Microscopy Monitoring

    PubMed Central

    Huang, Yimei; Lui, Harvey; Zhao, Jianhua; Wu, Zhenguo; Zeng, Haishan

    2017-01-01

    The successful application of lasers in the treatment of skin diseases and cosmetic surgery is largely based on the principle of conventional selective photothermolysis which relies strongly on the difference in the absorption between the therapeutic target and its surroundings. However, when the differentiation in absorption is not sufficient, collateral damage would occur due to indiscriminate and nonspecific tissue heating. To deal with such cases, we introduce a novel spatially selective photothermolysis method based on multiphoton absorption in which the radiant energy of a tightly focused near-infrared femtosecond laser beam can be directed spatially by aiming the laser focal point to the target of interest. We construct a multimodal optical microscope to perform and monitor the spatially selective photothermolysis. We demonstrate that precise alteration of the targeted tissue is achieved while leaving surrounding tissue intact by choosing appropriate femtosecond laser exposure with multimodal optical microscopy monitoring in real time. PMID:28255346

  1. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  2. Photodynamic therapy--mechanism and employment.

    PubMed

    Szpringer, Ewa; Lutnicki, Krzysztof; Marciniak, Andrzej

    2004-01-01

    Photodynamic terapy (PDT) is a new treatment for a wide variety of malignancies and premalignant dysplasias, as well as some non-cancer indications. Therapeutic response to PTD is achieved through the activation of non-toxic photosensitiser located within neoplastic tissue, using visible light tuned to the appropriate absorption band of the photosensitiser molecule. This produces cytotoxic free radical such as singlet oxigen, which result in local photo-oxidation, cell damage and destruction of the tumour cells. Systemic administration of photosensitisers has been used with endoscopic light exposure to treat a variety of internal malignances. A topical drug delivery is used in the skin deseases treatment. The selective distribution of photosensitiser in the target tissue is the fundamental to the process of PDT. This tissue specific photosensitation and normal tissue sparing results in good healing and often very good cosmetic results. Peterson PTD can be used for the treatment of cutaneous lesions (e.g., SCC, BCC, Bowen's disease, mycosis fungoides, erythroplasia of Queyrat, Gorlin's Syndrome, actinic keratoses), lower genital tract neoplasia (VIN and CIN), gastrointestinal tumours, etc., as well as nononcological indications (e.g., acne, condyloma acuminatum, lichen planus, psoriasis, vitiligo, vulval lichen sclerosus, warts and verrucae).

  3. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  4. Detection of Baicalin Metabolites Baicalein and Oroxylin-A in Mouse Pancreas and Pancreatic Xenografts

    PubMed Central

    Lu, Qing-Yi; Zhang, Lifeng; Moro, Aune; Chen, Monica C.; Harris, Diane M.; Eibl, Guido; Go, Vay-Liang W.

    2011-01-01

    Objectives Scutellaria baicalensis has been a subject of research interests due to its potential multiple therapeutic benefits. This study was to examine the distribution of baicalein, wogonin, oroxylin A and their glucuronide/sulfate conjugated metabolites in plasma, colon, small intestine, lung, liver, pancreas, kidney, and prostate tissues and in pancreatic tumor in a xenograft animal model. In addition, we examined metabolic stability of baicalin in these tissues. Methods A mouse xenograft model was prepared by injection of 3×106 human pancreatic cancer MiaPaCa-2 cells subcutaneously into nude mice. Mice were randomly allocated to control diet (AIN76A) and 1% SB diet (n=8 per group) for 13 weeks. Levels of baicalein, wogonin, oroxylin A, and their conjugates in mouce tissues were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Results A substantial amount of baicalin (34–63%) was methylated to oroxylin A and its conjugates in various organs during absorption. While plasma contained predominantly conjugates of baicalein, wogonin, and oroxylin A, both aglycones and conjugates were found in all other tissues investigated and in tumor. Conclusions Substantial accumulation of bioactive metabolites are found in target tissues, suggesting strong potential for SB use as a preventive or adjuvant supplement for pancreatic cancer. PMID:22158070

  5. Exposure to Hexavalent Chromium Resulted in Significantly Higher Tissue Chromium Burden Compared With Trivalent Chromium Following Similar Oral Doses to Male F344/N Rats and Female B6C3F1 Mice

    PubMed Central

    Collins, Bradley J.; Stout, Matthew D.; Levine, Keith E.; Kissling, Grace E.; Fennell, Timothy R.; Walden, Ramsey; Abdo, Kamal; Pritchard, John B.; Fernando, Reshan A.; Burka, Leo T.; Hooth, Michelle J.

    2010-01-01

    In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight3/4 (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI). PMID:20843897

  6. Exposure to hexavalent chromium resulted in significantly higher tissue chromium burden compared with trivalent chromium following similar oral doses to male F344/N rats and female B6C3F1 mice.

    PubMed

    Collins, Bradley J; Stout, Matthew D; Levine, Keith E; Kissling, Grace E; Melnick, Ronald L; Fennell, Timothy R; Walden, Ramsey; Abdo, Kamal; Pritchard, John B; Fernando, Reshan A; Burka, Leo T; Hooth, Michelle J

    2010-12-01

    In National Toxicology Program 2-year studies, hexavalent chromium [Cr(VI)] administered in drinking water was clearly carcinogenic in male and female rats and mice, resulting in small intestine epithelial neoplasms in mice at a dose equivalent to or within an order of magnitude of human doses that could result from consumption of chromium-contaminated drinking water, assuming that dose scales by body weight(3/4) (body weight raised to the 3/4 power). In contrast, exposure to trivalent chromium [Cr(III)] at much higher concentrations may have been carcinogenic in male rats but was not carcinogenic in mice or female rats. As part of these studies, total chromium was measured in tissues and excreta of additional groups of male rats and female mice. These data were used to infer the uptake and distribution of Cr(VI) because Cr(VI) is reduced to Cr(III) in vivo, and no methods are available to speciate tissue chromium. Comparable external doses resulted in much higher tissue chromium concentrations following exposure to Cr(VI) compared with Cr(III), indicating that a portion of the Cr(VI) escaped gastric reduction and was distributed systemically. Linear or supralinear dose responses of total chromium in tissues were observed following exposure to Cr(VI), indicating that these exposures did not saturate gastric reduction capacity. When Cr(VI) exposure was normalized to ingested dose, chromium concentrations in the liver and glandular stomach were higher in mice, whereas kidney concentrations were higher in rats. In vitro studies demonstrated that Cr(VI), but not Cr(III), is a substrate of the sodium/sulfate cotransporter, providing a partial explanation for the greater absorption of Cr(VI).

  7. Bioavailability and nervous tissue distribution of pyrethroid insecticide cyfluthrin in rats.

    PubMed

    Rodríguez, José-Luis; Ares, Irma; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2018-05-08

    Toxicokinetics of cyfluthrin after single oral [20 mg/kg body weight (bw)] and intravenous (IV) (3 mg/kg bw) doses were studied in rats. Serial blood samples were obtained after oral and IV administration. Brain tissue samples were also collected after oral administration. Cyfluthrin concentrations in plasma and brain tissues (hypothalamus, striatum, hippocampus and frontal cortex) were quantified using liquid chromatography tandem mass spectrometry (LC/MS). Cyfluthrin disposition was best described by the use of a two-compartment open model. When given orally, plasma kinetics showed an extensive oral absorption of cyfluthrin and a slow elimination. The area under the concentration-time curve [AUC (0-24h) ] and maximal plasma concentration (Cmax) were 6.11 ± 1.06 mg h/L and 0.385 ± 0.051 μg/mL, respectively; β phase elimination half-life (T 1/2 β) was (17.15 ± 1.67 h). Oral bioavailability was found to be 71.60 ± 12.36%. After oral administration, cyfluthrin was widely distributed to brain tissues. AUC (0-24h) was significant higher in all tested brain tissues than in plasma. The largest discrepancy was found for hypothalamus. AUC (0-24h) , Cmax and T 1/2 β in hypothalamus were 19.36 ± 2.56 mg h/L, 1.21 ± 0.11 μg/g and 22.73 ± 1.60 h, respectively. Assuming the identified toxicokinetics parameters, this study serves to better understand mammalian toxicity of pyrethroid cyfluthrin and to design further studies to characterize its neurotoxicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue

    NASA Astrophysics Data System (ADS)

    Taroni, Paola; Pifferi, Antonio; Quarto, Giovanna; Farina, Andrea; Ieva, Francesca; Paganoni, Anna Maria; Abbate, Francesca; Cassano, Enrico; Cubeddu, Rinaldo

    2015-05-01

    Time-resolved diffuse optical spectroscopy provides non-invasively the optical characterization of highly diffusive media, such as biological tissues. Light pulses are injected into the tissue and the effects of light propagation on re-emitted pulses are interpreted with the diffusion theory to assess simultaneously tissue absorption and reduced scattering coefficients. Performing spectral measurements, information on tissue composition and structure is derived applying the Beer law to the measured absorption and an empiric approximation to Mie theory to the reduced scattering. The absorption properties of collagen powder were preliminarily measured in the range of 600-1100 nm using a laboratory set-up for broadband time-resolved diffuse optical spectroscopy. Optical projection images were subsequently acquired in compressed breast geometry on 218 subjects, either healthy or bearing breast lesions, using a portable instrument for optical mammography that operates at 7 wavelengths selected in the range 635-1060 nm. For all subjects, tissue composition was estimated in terms of oxy- and deoxy-hemoglobin, water, lipids, and collagen. Information on tissue microscopic structure was also derived. Good correlation was obtained between mammographic breast density (a strong risk factor for breast cancer) and an optical index based on collagen content and scattering power (that accounts mostly for tissue collagen). Logistic regression applied to all optically derived parameters showed that subjects at high risk for developing breast cancer for their high breast density can effectively be identified based on collagen content and scattering parameters. Tissue composition assessed in breast lesions with a perturbative approach indicated that collagen and hemoglobin content are significantly higher in malignant lesions than in benign ones.

  9. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    PubMed

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral capsaicin effect at one remote site. There was an accompanying decrease and an increase in the proportion of body fat in visceral and subcutaenous compartments, respectively. Taken together, if oral capsaicin could regulate adipose tissue distribution, the process might involve the effect of intestinal mucosal afferent nerves in modulating intestinal and visceral adipose tissue blood flow. The hypothesis that the intestinal mucosal afferent mechanism is a plausible therapeutic target for abating visceral obesity deserves to be further evaluated.

  10. A COMPREHENSIVE INSIGHT ON OCULAR PHARMACOKINETICS

    PubMed Central

    Agrahari, Vibhuti; Mandal, Abhirup; Agrahari, Vivek; Trinh, Hoang My; Joseph, Mary; Ray, Animikh; Hadji, Hicheme; Mitra, Ranjana; Pal, Dhananjay; Mitra, Ashim K.

    2017-01-01

    Eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment model of ocular drug delivery has been developed for describing the absorption, distribution and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems and routes of administration are discussed including factors affecting intraocular bioavailability. Factors such as pre-corneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, drug metabolism renders ocular delivery challenging and elaborated in this manuscript. Several compartment models are discussed those are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations. PMID:27798766

  11. Determination of optical properties in heterogeneous turbid media using a cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2012-10-01

    For interstitial photodynamic therapy (PDT), cylindrical diffusing fibers (CDFs) are often used to deliver light. This study examines the feasibility and accuracy of using CDFs to characterize the absorption (μa) and reduced scattering (μ‧s) coefficients of heterogeneous turbid media. Measurements were performed in tissue-simulating phantoms with μa between 0.1 and 1 cm-1 and μ‧s between 3 and 10 cm-1 with CDFs 2 to 4 cm in length. Optical properties were determined by fitting the measured light fluence rate profiles at a fixed distance from the CDF axis using a heterogeneous kernel model in which the cylindrical diffusing fiber is treated as a series of point sources. The resulting optical properties were compared with independent measurement using a point source method. In a homogenous medium, we are able to determine the absorption coefficient μa using a value of μ‧s determined a priori (uniform fit) or μ‧s obtained by fitting (variable fit) with standard (maximum) deviations of 6% (18%) and 18% (44%), respectively. However, the CDF method is found to be insensitive to variations in μ‧s, thus requiring a complementary method such as using a point source for determination of μ‧s. The error for determining μa decreases in very heterogeneous turbid media because of the local absorption extremes. The data acquisition time for obtaining the one-dimensional optical properties distribution is less than 8 s. This method can result in dramatically improved accuracy of light fluence rate calculation for CDFs for prostate PDT in vivo when the same model and geometry is used for forward calculations using the extrapolated tissue optical properties.

  12. Histology-validated x-ray tomography for imaging human coronary arteries

    NASA Astrophysics Data System (ADS)

    Buscema, Marzia; Schulz, Georg; Deyhle, Hans; Khimchenko, Anna; Matviykiv, Sofiya; Holme, Margaret N.; Hipp, Alexander; Beckmann, Felix; Saxer, Till; Michaud, Katarzyna; Müller, Bert

    2016-10-01

    Heart disease is the number one cause of death worldwide. To improve therapy and patient outcome, the knowledge of anatomical changes in terms of lumen morphology and tissue composition of constricted arteries is crucial for designing a localized drug delivery to treat atherosclerosis disease. Traditional tissue characterization by histology is a pivotal tool, although it brings disadvantages such as vessel morphology modification during decalcification and slicing. X-ray tomography in absorption and phase contrast modes yields a deep understanding in blood vessel anatomy in healthy and diseased stages: measurements in absorption mode make visible highly absorbing tissue components including cholesterol plaques, whereas phase contrast tomography gains better contrast of the soft tissue components such as vessel walls. Established synchrotron radiation-based micro-CT techniques ensure high performance in terms of 3D visualization of highly absorbing and soft tissues.

  13. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  14. 3D photomechanical model of tooth enamel ablation by Er-laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.

    2014-02-01

    The three-dimensional (3D) photomechanical model of human tooth enamel ablation is described. It takes into account: the structural peculiarities of enamel, Er-laser beam energy spatial distribution and laser radiation attenuation in the tissue. Dynamics change of enamel coefficient of absorption during ablation is also discussed. We consider the 3D photomechanical model of incomplete removal (modification) of the enamel rods by the pressure of water contained in the enamel pores and heated by laser radiation, and complete removal (ablation) of the enamel rods as result of hydroxyapatite heated by laser radiation and evaporation. Modeling results are in close agreement with the experimental results.

  15. Predicting transporter-mediated drug interactions: Commentary on: "Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin" and "Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A".

    PubMed

    Zhang, L; Sparreboom, A

    2017-04-01

    Transporters, expressed in various tissues, govern the absorption, distribution, metabolism, and excretion of drugs, and consequently their inherent safety and efficacy profiles. Drugs may interact with a transporter as a substrate and/or an inhibitor. Understanding transporter-mediated drug-drug interactions (DDIs), in addition to enzyme-mediated DDIs, is an integral part of risk assessment in drug development and regulatory review because the concomitant use of more than one medication in patients is common. © 2016 ASCPT.

  16. Multimodal optoacoustic and multiphoton fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sela, Gali; Razansky, Daniel; Shoham, Shy

    2013-03-01

    Multiphoton microscopy is a powerful imaging modality that enables structural and functional imaging with cellular and sub-cellular resolution, deep within biological tissues. Yet, its main contrast mechanism relies on extrinsically administered fluorescent indicators. Here we developed a system for simultaneous multimodal optoacoustic and multiphoton fluorescence 3D imaging, which attains both absorption and fluorescence-based contrast by integrating an ultrasonic transducer into a two-photon laser scanning microscope. The system is readily shown to enable acquisition of multimodal microscopic images of fluorescently labeled targets and cell cultures as well as intrinsic absorption-based images of pigmented biological tissue. During initial experiments, it was further observed that that detected optoacoustically-induced response contains low frequency signal variations, presumably due to cavitation-mediated signal generation by the high repetition rate (80MHz) near IR femtosecond laser. The multimodal system may provide complementary structural and functional information to the fluorescently labeled tissue, by superimposing optoacoustic images of intrinsic tissue chromophores, such as melanin deposits, pigmentation, and hemoglobin or other extrinsic particle or dye-based markers highly absorptive in the NIR spectrum.

  17. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers

    NASA Astrophysics Data System (ADS)

    Hu, Jun; Xu, Hebing; Li, Chao

    2018-03-01

    Laser processing of carbon fiber reinforced polymer (CFRP) is a non-traditional machining method which has many prospective applications. The laser absorption characteristics of CFRP are analyzed in this paper. A ray tracing model describing the interaction of the laser spot with CFRP is established. The material model contains randomly distributed carbon fibers which are generated using an improved carbon fiber placement method. It was found that CFRP has good laser absorption due to multiple reflections of the light rays in the material’s microstructure. The randomly distributed carbon fibers make the absorptivity of the light rays change randomly in the laser spot. Meanwhile, the average absorptivity fluctuation is obvious during movement of the laser. The experimental measurements agree well with the values predicted by the ray tracing model.

  18. Studies on the Presence of Mycotoxins in Biological Samples: An Overview

    PubMed Central

    Escrivá, Laura; Font, Guillermina; Manyes, Lara

    2017-01-01

    Mycotoxins are fungal secondary metabolites with bioaccumulation levels leading to their carry-over into animal fluids, organs, and tissues. As a consequence, mycotoxin determination in biological samples from humans and animals has been reported worldwide. Since most mycotoxins show toxic effects at low concentrations and considering the extremely low levels present in biological samples, the application of reliable detection methods is required. This review summarizes the information regarding the studies involving mycotoxin determination in biological samples over the last 10 years. Relevant data on extraction methodology, detection techniques, sample size, limits of detection, and quantitation are presented herein. Briefly, liquid-liquid extraction followed by LC-MS/MS determination was the most common technique. The most analyzed mycotoxin was ochratoxin A, followed by zearalenone and deoxynivalenol—including their metabolites, enniatins, fumonisins, aflatoxins, T-2 and HT-2 toxins. Moreover, the studies were classified by their purpose, mainly focused on the development of analytical methodologies, mycotoxin biomonitoring, and exposure assessment. The study of tissue distribution, bioaccumulation, carry-over, persistence and transference of mycotoxins, as well as, toxicokinetics and ADME (absorption, distribution, metabolism and excretion) were other proposed goals for biological sample analysis. Finally, an overview of risk assessment was discussed. PMID:28820481

  19. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  20. Precise optical dosimetry in low-level laser therapy of soft tissues in oral cavity

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Sabotinov, O.

    2004-06-01

    The new low level laser therapy (LLLT) is widely applied for treatment of diseases of the oral mucosa and parodont. Depending on indication, different optical tips and light-guides are used to create beams with a required shape. However, to the best of our knowledge, the developed irradiation geometries are usually proposed assuming validity of Bouger-Lambert law. This hardly corresponds to the real situation because of the dominating multiple scattering within 600-1200 nm range that destroys correlation between the emitted laser beam and the spatial distribution of the absorbed dose inside the tissue. The aim of this work is to base the dosimetry of the LLLT procedures of periodontal tissues on radiation transfer theory using a flexible Monte-Carlo code. We studied quantitatively the influence of tissue optical parameters (absorption and scattering coefficients, tissue refraction index, anisotropy factor) on decreasing of correlation between the emitted beam and the energy deposition for converging or diverging beams. We evaluated energy deposition for the developed by us LLLT system in a 3-D model of periodontal tissues created using a cross-sectional image of this region with internal structural information on the gingival and the tooth. The laser source is a CW diode laser emitting elliptical beam within 650-675 nm at output power 5-30 mW. To determine the geometry of the irradiating beam we used CCD camera Spiricon LBA 300.

  1. A method for depth-dose distribution measurements in tissue irradiated by a proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gambarini, G.; Birattari, C.; Bartolo, D. de

    1994-12-31

    The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acidmore » and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).« less

  2. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    PubMed

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Absorption, excretion and retention of 51Cr from labelled Cr-(III)-picolinate in rats.

    PubMed

    Kottwitz, Karin; Laschinsky, Niels; Fischer, Roland; Nielsen, Peter

    2009-04-01

    The bioavailability of chromium from Cr-picolinate (CrPic(3)) and Cr-chloride (CrCl(3)) was studied in rats using (51)Cr-labelled compounds and whole-body-counting. The intestinal absorption of Cr was twice as high from CrPic(3) (1.16% vs 0.55%) than from CrCl(3), however most of the absorbed (51)Cr from CrPic(3) was excreted into the urine within 24 h. After i.v. or i.p. injection, the whole-body retention curves fitted well to a multiexponential function, demonstrating that plasma chromium is in equilibrium with three pools. For CrPic(3), a large pool exists with a very rapid exchange (T (1/2) = <0.5 days), suggesting that CrPic(3) is absorbed as intact molecule, from which the main part is directly excreted by the kidney before degradation of the chromium complex in the liver can occur. CrCl(3) is less well absorbed but the rapid exchange pool is much smaller, resulting in even higher Cr concentrations in tissue such as muscle and fat. However, 1-3 days after application, the relative distribution of (51)Cr from both compounds was similar in all tissues studied, indicating that both compounds contribute to the same storage pool. In summary, the bioavailability of CrPic(3) in rats is not superior compared to CrCl(3).

  4. A probable risk factor of female breast cancer: study on benign and malignant breast tissue samples.

    PubMed

    Rehman, Sohaila; Husnain, Syed M

    2014-01-01

    The study reports enhanced Fe, Cu, and Zn contents in breast tissues, a probable risk factor of breast cancer in females. Forty-one formalin-fixed breast tissues were analyzed using atomic absorption spectrophotometry. Twenty malignant, six adjacent to malignant and 15 benign tissues samples were investigated. The malignant tissues samples were of grade 11 and type invasive ductal carcinoma. The quantitative comparison between the elemental levels measured in the two types of specimen (benign and malignant) tissues (removed after surgery) suggests significant elevation of these metals (Fe, Cu, and Zn) in the malignant tissue. The specimens were collected just after mastectomy of women aged 19 to 59 years from the hospitals of Islamabad and Rawalpindi, Pakistan. Most of the patients belong to urban areas of Pakistan. Findings of study depict that these elements have a promising role in the initiation and development of carcinoma as consistent pattern of elevation for Fe, Cu, and Zn was observed. The results showed the excessive accumulation of Fe (229 ± 121 mg/L) in malignant breast tissue samples of patients (p < 0.05) to that in benign tissues samples (49.1 ± 11.4 mg/L). Findings indicated that excess accumulation of iron in malignant tissues can be a risk factor of breast cancer. In order to validate our method of analysis, certified reference material muscle tissue lyophilized (IAEA) MA-M-2/TM was analyzed for metal studied. Determined concentrations were quite in good agreement with certified levels. Asymmetric concentration distribution for Fe, Cu, and Zn was observed in both malignant and benign tissue samples.

  5. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  6. Quantitative detection of astaxanthin and cantaxanthin in Atlantic salmon by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2006-02-01

    Two major carotenoids species found in salmonids muscle tissues are astaxanthin and cantaxanthin. They are taken up from fish food and are responsible for the attractive red-orange color of salmon filet. Since carotenoids are powerful antioxidants and biomarkers of nutrient consumption, they are thought to indicate fish health and resistance to diseases in fish farm environments. Therefore, a rapid, accurate, quantitative optical technique for measuring carotenoid content in salmon tissues is of economic interest. We demonstrate the possibility of using fast, selective, quantitative detection of astaxanthin and cantaxanthin in salmon muscle tissues, employing resonance Raman spectroscopy. Analyzing strong Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue laser excitation, we are able to characterize quantitatively the concentrations of carotenoids in salmon muscle tissue. To validate the technique, we compared Raman data with absorption measurements of carotenoid extracts in acetone. A close correspondence was observed in absorption spectra for tissue extract in acetone and a pure astaxanthin solution. Raman results show a linear dependence between Raman and absorption data. The proposed technique holds promise as a method of rapid screening of carotenoid levels in fish muscle tissues and may be attractive for the fish farm industry to assess the dietary status of salmon, risk for infective diseases, and product quality control.

  7. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation.

    PubMed

    Ravi, Punna Rao; Vats, Rahul; Dalal, Vikas; Murthy, Aditya Narasimha

    2014-07-01

    To prepare stearic acid-based lopinavir (LPV) loaded solid lipid nanoparticles (SLNs) using a hybrid design and compare in-vivo performance of optimized formulation with marketed LPV/ritonavir (RTV) coformulation. LPV SLNs were prepared by hot melt emulsion technique and optimized using Plackett-Burman design and Box-Behnken design. Physical characterization studies were conducted for the optimized SLNs. Comparative oral pharmacokinetic studies and tissue distribution studies of optimized SLNs and LPV/RTV coformulation were done in Wistar rats. In-vitro metabolic stability and intestinal permeability studies for LPV SLNs were undertaken to elucidate the mechanism involved in the pharmacokinetic improvement of LPV. Optimized SLNs exhibited nanometeric size (223 nm) with high entrapment efficiency (83%). In-vitro drug release study of SLNs showed biphasic sustained release behaviour. Significant increase in oral bioavailability of LPV from LPV SLNs (5 folds) and LPV/RTV coformulation (3.7 folds) was observed as compared with free LPV. LPV SLNs showed better tissue distribution of LPV in HIV reservoirs than LPV/RTV coformulation. In-vitro studies demonstrated that SLNs provided metabolic protection of LPV and were endocytosized during absorption. SLNs enhanced oral bioavailability and improved distribution profile of LPV to HIV reservoirs and hence could be better alternative to LPV/RTV coformulation. © 2014 Royal Pharmaceutical Society.

  8. Predictive framework for estimating exposure of birds to pharmaceuticals

    USGS Publications Warehouse

    Bean, Thomas G.; Arnold, Kathryn E.; Lane, Julie M.; Bergström, Ed; Thomas-Oates, Jane; Rattner, Barnett A.; Boxall, Allistair B.A.

    2017-01-01

    We present and evaluate a framework for estimating concentrations of pharmaceuticals over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, accumulation into wildlife food items, and uptake by wildlife with subsequent distribution into, and elimination from, tissues. Because many pharmacokinetic parameters for wildlife are unavailable for the majority of drugs in use, a read-across approach was employed using either rodent or human data on absorption, distribution, metabolism, and excretion. Comparison of the different steps in the framework against experimental data for the scenario where birds are feeding on a WWTP contaminated with fluoxetine showed that estimated concentrations in wastewater treatment works were lower than measured concentrations; concentrations in food could be reasonably estimated if experimental bioaccumulation data are available; and read-across from rodent data worked better than human to bird read-across. The framework provides adequate predictions of plasma concentrations and of elimination behavior in birds but yields poor predictions of distribution in tissues. The approach holds promise, but it is important that we improve our understanding of the physiological similarities and differences between wild birds and domesticated laboratory mammals used in pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more effectively in ecological risk assessments.

  9. Integrated photoacoustic/ultrasound/HFU system based on a clinical ultrasound imaging platform

    NASA Astrophysics Data System (ADS)

    Kim, Jeesu; Choi, Wonseok; Park, Eun-Yeong; Kim, Chulhong

    2018-02-01

    Non-invasive treatment of tumor is beneficial for the favorable prognosis of the patients. High Intensity Focused Ultrasound (HIFU) is an emerging non-invasive treatment tool that ablates tumor lesions by increasing local temperature without damaging surrounding tissues. In HIFU therapy, accurate focusing of the HIFU energy into the target lesion and real-time assessment of thermal distribution are critical for successful and safe treatment. Photoacoustic (PA) imaging is a novel biomedical imaging technique that can visualize functional information of biological tissues based on optical absorption and thermoelastic expansion. One unique feature of PA imaging is that the amplitude of the PA signal reflects the local temperature. Here, we demonstrate a real-time temperature monitoring system that can evaluate thermal distribution during HIFU therapy. We have integrated a HIFU treatment system, a clinical ultrasound (US) machine, and a tunable laser system and have acquired real-time PA/US images of in vitro phantoms and in vivo animals during HIFU therapy without interference from the therapeutic US waves. We have also evaluated the temperature monitoring capability of the system by comparing the amplitude of PA signals with the measured temperature in melanoma tumor bearing mice. Although much more updates are required for clinical applications, the results show the promising potential of the system to ensure accurate and safe HIFU therapy by monitoring the thermal distribution of the treatment area.

  10. Predictive framework for estimating exposure of birds to pharmaceuticals.

    PubMed

    Bean, Thomas G; Arnold, Kathryn E; Lane, Julie M; Bergström, Ed; Thomas-Oates, Jane; Rattner, Barnett A; Boxall, Alistair B A

    2017-09-01

    We present and evaluate a framework for estimating concentrations of pharmaceuticals over time in wildlife feeding at wastewater treatment plants (WWTPs). The framework is composed of a series of predictive steps involving the estimation of pharmaceutical concentration in wastewater, accumulation into wildlife food items, and uptake by wildlife with subsequent distribution into, and elimination from, tissues. Because many pharmacokinetic parameters for wildlife are unavailable for the majority of drugs in use, a read-across approach was employed using either rodent or human data on absorption, distribution, metabolism, and excretion. Comparison of the different steps in the framework against experimental data for the scenario where birds are feeding on a WWTP contaminated with fluoxetine showed that estimated concentrations in wastewater treatment works were lower than measured concentrations; concentrations in food could be reasonably estimated if experimental bioaccumulation data are available; and read-across from rodent data worked better than human to bird read-across. The framework provides adequate predictions of plasma concentrations and of elimination behavior in birds but yields poor predictions of distribution in tissues. The approach holds promise, but it is important that we improve our understanding of the physiological similarities and differences between wild birds and domesticated laboratory mammals used in pharmaceutical efficacy/safety trials, so that the wealth of data available can be applied more effectively in ecological risk assessments. Environ Toxicol Chem 2017;36:2335-2344. © 2017 SETAC. © 2017 SETAC.

  11. Simulating thermal effects of MR-guided focused ultrasound in cortical bone and its surrounding tissue.

    PubMed

    Hudson, Thomas J; Looi, Thomas; Pichardo, Samuel; Amaral, Joao; Temple, Michael; Drake, James M; Waspe, Adam C

    2018-02-01

    Magnetic resonance-guided focused ultrasound (MRgFUS) is emerging as a treatment alternative for osteoid osteoma and painful bone metastases. This study describes a new simulation platform that predicts the distribution of heat generated by MRgFUS when applied to bone tissue. Calculation of the temperature distribution was performed using two mathematical models. The first determined the propagation and absorption of acoustic energy through each medium, and this was performed using a multilayered approximation of the Rayleigh integral method. The ultrasound energy distribution derived from these equations could then be converted to heat energy, and the second mathematical model would then use the heat generated to determine the final temperature distribution using a finite-difference time-domain application of Pennes' bio-heat transfer equation. Anatomical surface geometry was generated using a modified version of a mesh-based semiautomatic segmentation algorithm, and both the acoustic and thermodynamic models were calculated using a parallelized algorithm running on a graphics processing unit (GPU) to greatly accelerate computation time. A series of seven porcine experiments were performed to validate the model, comparing simulated temperatures to MR thermometry and assessing spatial, temporal, and maximum temperature accuracy in the soft tissue. The parallelized algorithm performed acoustic and thermodynamic calculations on grids of over 10 8 voxels in under 30 s for a simulated 20 s of heating and 40 s of cooling, with a maximum time per calculated voxel of less than 0.3 μs. Accuracy was assessed by comparing the soft tissue thermometry to the simulation in the soft tissue adjacent to bone using four metrics. The maximum temperature difference between the simulation and thermometry in a region of interest around the bone was measured to be 5.43 ± 3.51°C average absolute difference and a percentage difference of 16.7%. The difference in heating location resulted in a total root-mean-square error of 4.21 ± 1.43 mm. The total size of the ablated tissue calculated from the thermal dose approximation in the simulation was, on average, 67.6% smaller than measured from the thermometry. The cooldown was much faster in the simulation, where it decreased by 14.22 ± 4.10°C more than the thermometry in 40 s after sonication ended. The use of a Rayleigh-based acoustic model combined with a discretized bio-heat transfer model provided a rapid three-dimensional calculation of the temperature distribution through bone and soft tissue during MRgFUS application, and the parallelized GPU algorithm provided the computational speed that would be necessary for an intraoperative treatment planning software platform. © 2017 American Association of Physicists in Medicine.

  12. A method for analyzing absorbed power distribution in the hand and arm substructures when operating vibrating tools

    NASA Astrophysics Data System (ADS)

    Dong, Jennie H.; Dong, Ren G.; Rakheja, Subhash; Welcome, Daniel E.; McDowell, Thomas W.; Wu, John Z.

    2008-04-01

    In this study it was hypothesized that the vibration-induced injuries or disorders in a substructure of human hand-arm system are primarily associated with the vibration power absorption distributed in that substructure. As the first step to test this hypothesis, the major objective of this study is to develop a method for analyzing the vibration power flow and the distribution of vibration power absorptions in the major substructures (fingers, palm-hand-wrist, forearm and upper arm, and shoulder) of the system exposed to hand-transmitted vibration. A five-degrees-of-freedom model of the system incorporating finger- as well as palm-side driving points was applied for the analysis. The mechanical impedance data measured at the two driving points under four different hand actions involving 50 N grip-only, 15 N grip and 35 N push, 30 N grip and 45 N push, and 50 N grip and 50 N push, were used to identify the model parameters. The vibration power absorption distributed in the substructures were evaluated using vibration spectra measured on many tools. The frequency weightings of the distributed vibration power absorptions were derived and compared with the weighting defined in ISO 5349-1 (2001). This study found that vibration power absorption is primarily distributed in the arm and shoulder when operating low-frequency tools such as rammers, while a high concentration of vibration power absorption in the fingers and hand is observed when operating high-frequency tools, such as grinders. The vibration power absorption distributed in palm-wrist and arm is well correlated with the ISO-weighted acceleration, while the finger vibration power absorption is highly correlated with unweighted acceleration. The finger vibration power absorption-based frequency weighting suggested that exposure to vibration in the frequency range of 16-500 Hz could pose higher risks of developing finger disorders. The results support the use of the frequency weighting specified in the current standard for assessing risks of developing disorders in the palm-wrist-arm substructures. The standardized weighting, however, could overestimate low-frequency effects but greatly underestimate high-frequency effects on the development of finger disorders. The results are further discussed to show that the trends observed in the vibration power absorptions distributed in the substructures are consistent with some major findings of various physiological and epidemiological studies, which provides a support to the hypothesis of this study.

  13. Tissue phantom-based breast cancer detection using continuous near-infrared sensor

    PubMed Central

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang

    2016-01-01

    ABSTRACT Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection. PMID:27459672

  14. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.

    PubMed

    Liu, Dan; Liu, Xin; Zhang, Yan; Wang, Qisong; Lu, Jingyang

    2016-09-02

    Women's health is seriously threatened by breast cancer. Taking advantage of efficient diagnostic instruments to identify the disease is very meaningful in prolonging life. As a cheap noninvasive radiation-free technology, Near-infrared Spectroscopy is suitable for general breast cancer examination. A discrimination method of breast cancer is presented using the deference between absorption coefficients and applied to construct a blood oxygen detection device based on Modified Lambert-Beer theory. Combined with multi-wavelength multi-path near-infrared sensing technology, the proposed method can quantitatively distinguish the normal breast from the abnormal one by measuring the absorption coefficients of breast tissue and the blood oxygen saturation. An objective judgment about the breast tumor is made according to its high absorption of near-infrared light. The phantom experiment is implemented to show the presented method is able to recognize the absorption differences between phantoms and demonstrates its feasibility in the breast tumor detection.

  15. Corneal tissue ablation using 6.1 μm quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Kang, Jin U.

    2012-03-01

    High absorption property of tissues in the IR range (λ> 2 μm) results in effective tissue ablation, especially near 3 μm. In the mid-infrared range, wavelengths of 6.1 μm and 6.45 μm fall into the absorption bands of the amide protein groups Amide-I and Amide-II, respectively. They also coincide with the deformation mode of water, which has an absorption peak at 6.1 μm. This coincidence makes 6.1 μm laser a better ablation tool that has promising effectiveness and minimum collateral damages than 3 μm lasers. In this work, we performed bovine corneal ablation test in-vitro using high-power 6.1μm quantum cascade laser (QCL) operated at pulse mode. Quantum cascade laser has the advantages of low cost, compact size and tunable wavelength, which makes it great alternative Mid-IR light source to conventional tunable free-electron lasers (FEL) for medical applications. Preliminary results show that effective corneal stroma craters were achieved with much less collateral damage in corneal tissue that contains less water. Future study will focus on optimizing the control parameters of QCL to attain neat and precise ablation of corneal tissue and development of high peak power QCL.

  16. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yubin; Yuan, Zhen, E-mail: zhenyuan@umac.mo

    Purpose: The aim of this study was to develop novel methods for photoacoustically determining the optical absorption coefficient of biological tissues using Monte Carlo (MC) simulation. Methods: In this study, the authors propose two quantitative photoacoustic tomography (PAT) methods for mapping the optical absorption coefficient. The reconstruction methods combine conventional PAT with MC simulation in a novel way to determine the optical absorption coefficient of biological tissues or organs. Specifically, the authors’ two schemes were theoretically and experimentally examined using simulations, tissue-mimicking phantoms, ex vivo, and in vivo tests. In particular, the authors explored these methods using several objects withmore » different absorption contrasts embedded in turbid media and by using high-absorption media when the diffusion approximation was not effective at describing the photon transport. Results: The simulations and experimental tests showed that the reconstructions were quantitatively accurate in terms of the locations, sizes, and optical properties of the targets. The positions of the recovered targets were accessed by the property profiles, where the authors discovered that the off center error was less than 0.1 mm for the circular target. Meanwhile, the sizes and quantitative optical properties of the targets were quantified by estimating the full width half maximum of the optical absorption property. Interestingly, for the reconstructed sizes, the authors discovered that the errors ranged from 0 for relatively small-size targets to 26% for relatively large-size targets whereas for the recovered optical properties, the errors ranged from 0% to 12.5% for different cases. Conclusions: The authors found that their methods can quantitatively reconstruct absorbing objects of different sizes and optical contrasts even when the diffusion approximation is unable to accurately describe the photon propagation in biological tissues. In particular, their methods are able to resolve the intrinsic difficulties that occur when quantitative PAT is conducted by combining conventional PAT with the diffusion approximation or with radiation transport modeling.« less

  17. Multispectral Photoacoustic Imaging of Tumor Protease Activity with a Gold Nanocage-Based Activatable Probe.

    PubMed

    Liu, Cheng; Li, Shiying; Gu, Yanjuan; Xiong, Huahua; Wong, Wing-Tak; Sun, Lei

    2018-05-07

    Tumor proteases have been recognized as significant regulators in the tumor microenvironment, but the current strategies for in vivo protease imaging have tended to focus on the development of a probe design rather than the investigation of a novel imaging strategy by leveraging the imaging technique and probe. Herein, it is the first report to investigate the ability of multispectral photoacoustic imaging (PAI) to estimate the distribution of protease cleavage sites inside living tumor tissue by using an activatable photoacoustic (PA) probe. The protease MMP-2 is selected as the target. In this probe, gold nanocages (GNCs) with an absorption peak at ~ 800 nm and fluorescent dye molecules with an absorption peak at ~ 680 nm are conjugated via a specific enzymatic peptide substrate. Upon enzymatic activation by MMP-2, the peptide substrate is cleaved and the chromophores are released. Due to the different retention speeds of large GNCs and small dye molecules, the probe alters its intrinsic absorption profile and produces a distinct change in the PA signal. A multispectral PAI technique that can distinguish different chromophores based on intrinsic PA spectral signatures is applied to estimate the signal composition changes and indicate the cleavage interaction sites. Finally, the multispectral PAI technique with the activatable probe is tested in solution, cultured cells, and a subcutaneous tumor model in vivo. Our experiment in solution with enzyme ± inhibitor, cell culture ± inhibitor, and in vivo tumor model with administration of the developed probe ± inhibitor demonstrated the probe was cleaved by the targeted enzyme. Particularly, the in vivo estimation of the cleavage site distribution was validated with the result of ex vivo immunohistochemistry analysis. This novel synergy of the multispectral PAI technique and the activatable probe is a potential strategy for the distribution estimation of tumor protease activity in vivo.

  18. New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.

    2013-12-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  19. A novel modeling and simulation technique of photo--thermal interactions between lasers and living biological tissues undergoing multiple changes in phase.

    PubMed

    Dua, Rajan; Chakraborty, Suman

    2005-06-01

    Knowledge of heat transfer in biological bodies has many therapeutic applications involving either raising or lowering of temperature, and often requires precise monitoring of the spatial distribution of thermal histories that are produced during a treatment protocol. Extremes of temperature into the freezing and burning ranges are useful in surgical procedures for selective killing and/or removal of target tissues. For example, the primary objective of hyperthermia is to raise the temperature of the diseased tissue to a therapeutic value, typically 41- 44 degrees C, and then thermally destroy it. The present paper therefore aims to develop a mathematical model for effective simulation of photo--thermal interactions between laser rays and biological tissues. In particular, damage of biological tissues when subjected to single point laser diathermy is numerically investigated using a unique enthalpy-based approach for modeling multiple phase change, (namely, melting of fat and vaporization of water content of the tissues) and the associated release/absorption of latent heat in conjunction with unsteady state heat conduction mechanisms. The governing equations of bio-heat transfer coupled with initial and boundary conditions are solved using a finite volume approach in conjunction with line by a line tri-diagonal matrix algorithm (TDMA) solver. Temperature responses of tissues subject to laser heating are quantitatively investigated in detail using the present model, and the resultant solutions are expected to be immensely useful in a variety of Bio-thermal practices in medicine and surgery.

  20. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    months.31 A heated mixture of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc...for absorption, and titanium dioxide powder for scat- ter TiO2, Sigma Inc. that are solidified by cooling to room temperature. Optically...2713-2727. 8. Bolin, F.P., Preuss, L. E., Taylor, R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method

  1. 24-hour human urine and serum profiles of bisphenol A: Evidence against sublingual absorption following ingestion in soup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G., E-mail: jt@pnl.gov; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 93771; Twaddle, Nathan C., E-mail: nathan.twaddle@fda.hhs.gov

    Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to < 1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently demonstrated in dogs, could lead to the higher serum BPA concentrations reported in some human biomonitoring studies. We hypothesized that the extensive interaction with the oral mucosa by a liquid matrix, like soup, relative to solid food or capsules, might enhance absorption through non-metabolizing oral cavity tissues in humans, producing higher bioavailability and higher serum BPA concentrations.more » Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24 hour period in 10 adult male volunteers following ingestion of 30 μg d6-BPA/kg body weight in soup. Absorption of d6-BPA was rapid (t{sub 1/2} = 0.45 h) and elimination of the administered dose was complete 24 h post-ingestion, evidence against any tissue depot for BPA. The maximum serum d6-BPA concentration was 0.43 nM at 1.6 h after administration and represented < 0.3% of total d6-BPA. Pharmacokinetic parameters, pharmacokinetic model simulations, and the significantly faster appearance half-life of d6-BPA-glucuronide compared to d6-BPA (0.29 h vs 0.45 h) were evidence against meaningful absorption of BPA in humans through any non-metabolizing tissue (< 1%). This study confirms that typical exposure to BPA in food produces picomolar to subpicomolar serum BPA concentrations in humans, not nM concentrations reported in some biomonitoring studies.« less

  2. 24-hour human urine and serum profiles of bisphenol A: Evidence against sublingual absorption following ingestion in soup.

    PubMed

    Teeguarden, Justin G; Twaddle, Nathan C; Churchwell, Mona I; Yang, Xiaoxia; Fisher, Jeffrey W; Seryak, Liesel M; Doerge, Daniel R

    2015-10-15

    Extensive first-pass metabolism of ingested bisphenol A (BPA) in the gastro-intestinal tract and liver restricts blood concentrations of bioactive BPA to <1% of total BPA in humans and non-human primates. Absorption of ingested BPA through non-metabolizing tissues of the oral cavity, recently demonstrated in dogs, could lead to the higher serum BPA concentrations reported in some human biomonitoring studies. We hypothesized that the extensive interaction with the oral mucosa by a liquid matrix, like soup, relative to solid food or capsules, might enhance absorption through non-metabolizing oral cavity tissues in humans, producing higher bioavailability and higher serum BPA concentrations. Concurrent serum and urine concentrations of d6-BPA, and its glucuronide and sulfate conjugates, were measured over a 24hour period in 10 adult male volunteers following ingestion of 30μg d6-BPA/kg body weight in soup. Absorption of d6-BPA was rapid (t1/2=0.45h) and elimination of the administered dose was complete 24h post-ingestion, evidence against any tissue depot for BPA. The maximum serum d6-BPA concentration was 0.43nM at 1.6h after administration and represented <0.3% of total d6-BPA. Pharmacokinetic parameters, pharmacokinetic model simulations, and the significantly faster appearance half-life of d6-BPA-glucuronide compared to d6-BPA (0.29h vs 0.45h) were evidence against meaningful absorption of BPA in humans through any non-metabolizing tissue (<1%). This study confirms that typical exposure to BPA in food produces picomolar to subpicomolar serum BPA concentrations in humans, not nM concentrations reported in some biomonitoring studies. Published by Elsevier Inc.

  3. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model

    NASA Astrophysics Data System (ADS)

    Salomatina, E.; Yaroslavsky, A. N.

    2008-06-01

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, μa, scattering coefficients, μs, and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 °C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 °C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  4. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.

    PubMed

    Salomatina, E; Yaroslavsky, A N

    2008-06-07

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, mu(a), scattering coefficients, mu(s), and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 degrees C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 degrees C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  5. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography.

    PubMed

    Kamei, Noriyasu; Morishita, Mariko; Kanayama, Yousuke; Hasegawa, Koki; Nishimura, Mie; Hayashinaka, Emi; Wada, Yasuhiro; Watanabe, Yasuyoshi; Takayama, Kozo

    2010-08-17

    Molecular imaging technique by use of positron emission tomography (PET) is a noninvasive tool that allows one to quantitatively analyze the function of endogenous molecules and the pharmacokinetics of therapeutic agents in vivo. This technique is expected to be useful for evaluating the effectiveness of diverse drug delivery systems. We demonstrated previously that intestinal insulin absorption is increased significantly by coadministration of cell-penetrating peptides (CPPs), which are taken up effectively by several cells. However, the distribution behavior of insulin whose absorption is increased by CPPs is not clear. We used PET imaging and quantitatively analyzed the intestinal absorption and subsequent distribution of insulin and the effect of CPPs on its absorption and distribution. An unlabeled insulin solution containing tracer insulin, (68)Ga-DOTA-insulin, was administered with or without CPPs into a rat ileal closed loop. PET imaging showed that the CPPs, particularly D-R8 and L-penetratin, significantly increased the (68)Ga-DOTA-insulin level in the liver, kidney, and circulation. After absorption from the intestine, the (68)Ga-DOTA-insulin passed rapidly through the liver and accumulated in the kidney. The increase in the hepatic and renal distribution of (68)Ga-DOTA-insulin by each CPP coadministration was similar manner as that in intestinal absorption, suggesting that the increased accumulation of insulin in the liver and kidney induced by coadministration of CPPs was associated with the increased intestinal absorption of insulin. This is the first study to show that PET imaging enables one to quantitatively analyze the distribution behavior of intestinally absorbed insulin in several organs. This imaging methodology is likely to be useful for developing effective drug delivery systems targeted to specific organs. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Visualization of hemodynamics and light scattering in exposed brain of rat using multispectral image reconstruction based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ishizuka, Tomohiro; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-07-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green, blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. We performed simultaneous recordings of spectral diffuse reflectance images and of the electrophysiological signals for in vivo exposed rat brain during the cortical spreading depression evoked by the topical application of KCl. Changes in the total hemoglobin concentration and the tissue oxygen saturation imply the temporary change in cerebral blood flow during CSD. Change in the reduced scattering coefficient was observed before the profound increase in the total hemoglobin concentration, and its occurrence was synchronized with the negative dc shift of the local field potential.

  7. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.

    PubMed

    Smalls, Lola K; Randall Wickett, R; Visscher, Marty O

    2006-02-01

    Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer SEM 575 Skin Elasticity Meter , to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Skin thickness was significantly correlated with stiffness, energy absorption, and U(r)/U(f) for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P<0.05, one-way anova). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U(r), U(f), and U(r)/U(f) and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U(r)/U(f), elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption (tissue softness, compliance) compared with the left side. A significant (P< or =0.02) negative relationship with age was seen for all biomechanical measures except stiffness at the shoulder. For the thigh and calf sites, significant negative correlations with age were found for elasticity %, U(r), and U(r)/U(f). Age and skin thickness were not correlated in this population. Skin thickness and age influenced the energy absorption at the shoulder site. The biological elasticity at the calf site could be predicted by age and BMI. The biological activity at the thigh site could be predicted by skin thickness and BMI. Significant regional variations in biomechanical properties and dominant side effects were observed. The biomechanical properties were significantly influenced by age. Certain properties varied with dermal thickness and tissue composition. The parameters were well correlated between the two instruments. The Cutometer, with its smaller aperture, was found to be more sensitive to age relationships.

  8. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  9. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of cracks in rocks at potential nuclear waste repositories. - The location and chemical speciation of toxic elements such as arsenic and nickel in soils and in plant tissues in contaminated Superfund sites. - The strength of earth materials under the pressure and temperature conditions of the Earth's mantle, providing insights into plate tectonics and the generation of earthquakes.

  10. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  11. Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species.

    PubMed

    Silva, Denise Brentan; Turatti, Izabel Cristina Casanova; Gouveia, Dayana Rubio; Ernst, Madeleine; Teixeira, Simone Pádua; Lopes, Norberto Peporine

    2014-03-07

    Lychnophora salicifolia plants collected from four different places in Brazil (three states: Goias, Minas Gerais and Bahia) revealed a conserved accumulation of vicenin-2, a di-C-glycosyl flavonoid. Quantitative studies by UPLC-MS/MS showed high concentration of vicenin-2 in leaves from sixty specimens of six Lychnophora species. So the tissue distributions of vicenin-2 were evaluated in wild Lychnophora leaves (Asteraceae) by laser based imaging mass spectrometry (IMS) to propose its distributions and possible functions for the species analyzed. Mass spectrometric imaging revealed that vicenin-2, unlike other flavonoids, was produced at the top of the leaves. The combination of localization and UV absorption properties of vicenin-2 suggests that it could act as a UV light barrier to protect the plants, since plants are sessile organisms that have to protect themselves from harsh external conditions such as intense sunlight.

  12. Effect of cadmium-feeding on tissue concentrations of elements in germ-free silkworm (Bombyx mori) larvae and distribution of cadmium in the alimentary canal.

    PubMed

    Suzuki, K T; Aoki, Y; Nishikawa, M; Masui, H; Matsubara, F

    1984-01-01

    Silkworm (Bombyx mori) larvae were reared on an artificial diet containing cadmium (Cd) at concentrations of 5 and 80 micrograms/g wet diet from hatching to the fourth instar and then for 5 days at the fifth instar, respectively. Concentrations of Cd and other elements in the alimentary canal, Malpighian tubes, silk gland, fat body and other organs were determined simultaneously by inductively coupled argon plasma-atomic emission spectrometry. Cd was accumulated in the alimentary canal and Malpighian tubes at concentrations of 1100 and 470 micrograms/g dry wt, respectively. The distribution of Cd in the supernatants of the two highly accumulated organs were determined on an SW column by high performance liquid chromatography-atomic absorption spectrophotometry. Cd was primarily bound to inducible high molecular weight Cd-binding proteins.

  13. Mass Spectrometry of Flavonoid Vicenin-2, Based Sunlight Barriers in Lychnophora species

    PubMed Central

    Silva, Denise Brentan; Turatti, Izabel Cristina Casanova; Gouveia, Dayana Rubio; Ernst, Madeleine; Teixeira, Simone Pádua; Lopes, Norberto Peporine

    2014-01-01

    Lychnophora salicifolia plants collected from four different places in Brazil (three states: Goias, Minas Gerais and Bahia) revealed a conserved accumulation of vicenin-2, a di-C-glycosyl flavonoid. Quantitative studies by UPLC-MS/MS showed high concentration of vicenin-2 in leaves from sixty specimens of six Lychnophora species. So the tissue distributions of vicenin-2 were evaluated in wild Lychnophora leaves (Asteraceae) by laser based imaging mass spectrometry (IMS) to propose its distributions and possible functions for the species analyzed. Mass spectrometric imaging revealed that vicenin-2, unlike other flavonoids, was produced at the top of the leaves. The combination of localization and UV absorption properties of vicenin-2 suggests that it could act as a UV light barrier to protect the plants, since plants are sessile organisms that have to protect themselves from harsh external conditions such as intense sunlight. PMID:24603617

  14. Mass Spectrometry of Flavonoid Vicenin-2, Based Sunlight Barriers in Lychnophora species

    NASA Astrophysics Data System (ADS)

    Silva, Denise Brentan; Turatti, Izabel Cristina Casanova; Gouveia, Dayana Rubio; Ernst, Madeleine; Teixeira, Simone Pádua; Lopes, Norberto Peporine

    2014-03-01

    Lychnophora salicifolia plants collected from four different places in Brazil (three states: Goias, Minas Gerais and Bahia) revealed a conserved accumulation of vicenin-2, a di-C-glycosyl flavonoid. Quantitative studies by UPLC-MS/MS showed high concentration of vicenin-2 in leaves from sixty specimens of six Lychnophora species. So the tissue distributions of vicenin-2 were evaluated in wild Lychnophora leaves (Asteraceae) by laser based imaging mass spectrometry (IMS) to propose its distributions and possible functions for the species analyzed. Mass spectrometric imaging revealed that vicenin-2, unlike other flavonoids, was produced at the top of the leaves. The combination of localization and UV absorption properties of vicenin-2 suggests that it could act as a UV light barrier to protect the plants, since plants are sessile organisms that have to protect themselves from harsh external conditions such as intense sunlight.

  15. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model.

    PubMed

    Petrut, Bogdan; Hogea, Maximiliam; Fetica, Bogdan; Kozan, Andrei; Feflea, Dragos; Sererman, Gabriel; Goezen, Ali Serdar; Rassweiler, Jens

    2013-01-01

    The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats' scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings.

  16. In-vivo assessment of barbed suturing thread with regard to tissue reaction and material absorption in a rat model

    PubMed Central

    PETRUT, BOGDAN; HOGEA, MAXIMILIAM; FETICA, BOGDAN; KOZAN, ANDREI; FEFLEA, DRAGOS; SERERMAN, GABRIEL; GOEZEN, ALI SERDAR; RASSWEILER, JENS

    2013-01-01

    Aim The laparoscopic approach in urological surgery demands a high degree of skill in intracorporeal suturing and knot tying. In an effort to reduce the amount of time required to perform a suture, new materials have been developed that through selfanchorage distribute tension more evenly across the suture and also eliminate the need of knot tying. The goal of this study was to assess the in vivo tissue response to a novel material (V-Loc tm; Covidien) in comparison to established materials (Vicryl, PDS II), in the case of bladder suturing, in a rat model. Methods The study included 48 male Wistar rats. All underwent a median abdominal incision, with a 1cm cystotomy, followed by a running suture. The suture material used was either V-Loc absorbable self anchoring thread, Vicryl threaded absorbable suture or monofilament absorbable suture. The abdominal cavity and the bladder suture were macroscopically evaluated at the rats’ scheduled death at 3 and 6 weeks. The bladder wall was microscopically assessed by a pathologist, with regard to tissue reaction and suture material degradation. Results All rats survived the procedure, with the abdominal scar fully healed at week 2. There were no signs of infection or lithiasis during the observation. Macroscopically, at 3 weeks, the suture material was recognizable and visible in all cases, with special mention that the V-Loc thread was considerably more rigid, retaining its shape almost entirely, and provoked more adhesion of the surrounding tissue. At 6 weeks, the suture was indistinguishable in the bladder wall in the case of monofilament absorbable material, barely visible in the case of Vicryl, while the aspect of the V-Loc suture resembled the one at 3 weeks, with the material still clearly visible in the bladder wall, shape almost entirely maintained, and surrounding tissue adherence. Microscopically, at 3 weeks and 6 weeks, all bladder walls examined had regained their structure. At 3 weeks, the monofilament absorbable suture showed intense tissue reaction, with the material already in phagocytosis; at 6 weeks, no clear evidence of leftover material was observed. At 3 weeks, the Vicryl material showed moderate tissue reaction, with phagocytosis initiated between the strands of the material; at 6 weeks, the material was almost entirely absorbed, but with a clear leftover tissue reaction. In the case of the V-Loc suture, due to the hardness of the thread, the material itself could not be cut for analysis with the bladder wall, and the examination could only involve the bladder wall and marks of the thread. Thus, the tissue reaction was minimal, as was the presence of phagocytes at the suture site. The material showed little, if any, signs of absorption after 6 weeks. Conclusion The materials tested all proved equally effective in suturing the bladder wall in a rat model. However, the novel barbed thread proved a consistently low in-vivo absorption rate, while maintaining its rigidity over time. More research is needed to assess the possible clinical implications of these findings. PMID:26527981

  17. Examination of contrast mechanisms in optoacoustic imaging of thermal lesions

    NASA Astrophysics Data System (ADS)

    Richter, Christian; Spirou, Gloria; Oraevsky, Alexander A.; Whelan, William M.; Kolios, Michael C.

    2006-02-01

    Optoacoustic Imaging is based on the thermal expansion of tissue caused by a temperature rise due to absorption of short laser pulses. At constant laser fluence, optoacoustic image contrast is proportional to differences in optical absorption and the thermoacoustic efficiency, expressed by the Grueuneisen parameter, Γ. Γ is proportional to the thermal expansion coefficient, the sound velocity squared and the inverse heat capacity at constant pressure. In thermal therapies, these parameters may be modified in the treated area. In this work experiments were performed to examine the influence of these parameters on image contrast. A Laser Optoacoustic Imaging System (LOIS, Fairway Medical Technologies, Houston, Texas) was used to image tissue phantoms comprised of cylindrical Polyvinyl Chloride Plastisol (PVCP) optical absorbing targets imbedded in either gelatin or PVCP as the background medium. Varying concentrations of Black Plastic Color (BPC) and titanium dioxide (TiO II) were added to targets and background to yield desired tissue relevant optical absorption and effective scattering coefficients, respectively. In thermal therapy experiments, ex-vivo bovine liver was heated with laser fibres (805nm laser at 5 W for 600s) to create regions of tissue coagulation. Lesions formed in the liver tissue were visible using the LOIS system with reasonable correspondence to the actual region of tissue coagulation. In the phantom experiments, contrast could be seen with low optical absorbing targets (μ a of 0.50cm -1 down to 0.13cm-1) embedded in a gelatin background (see manuscript for formula). Therefore, the data suggest that small objects (< 5mm) with low absorption coefficients (in the range < 1cm -1) can be imaged using LOIS. PVCP-targets in gelatin were visible, even with the same optical properties as the gelatin, but different Γ. The enhanced contrast may also be caused by differences in the mechanical properties between the target and the surrounding medium. PVCP-targets imbedded in PVCP produced poorer image contrast than PVCP-targets in gelatin with comparable optical properties. The preliminary investigation in tissue equivalent phantoms indicates that in addition to tissue optical properties, differences in mechanical properties between heated and unheated tissues may be responsible for image contrast. Furthermore, thermal lesions in liver tissue, ex-vivo, can be visualized using an optoacoustic system.

  18. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.

    PubMed

    Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John

    2009-06-08

    Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

  19. Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption

    PubMed Central

    Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry. PMID:28335354

  20. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  1. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  2. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.

    PubMed

    Gudowska, I; Brahme, A; Andreo, P; Gudowski, W; Kierkegaard, J

    1999-09-01

    The absorbed dose due to photonuclear reactions in soft tissue, lung, breast, adipose tissue and cortical bone has been evaluated for a scanned bremsstrahlung beam of end point 50 MeV from a racetrack accelerator. The Monte Carlo code MCNP4B was used to determine the photon source spectrum from the bremsstrahlung target and to simulate the transport of photons through the treatment head and the patient. Photonuclear particle production in tissue was calculated numerically using the energy distributions of photons derived from the Monte Carlo simulations. The transport of photoneutrons in the patient and the photoneutron absorbed dose to tissue were determined using MCNP4B; the absorbed dose due to charged photonuclear particles was calculated numerically assuming total energy absorption in tissue voxels of 1 cm3. The photonuclear absorbed dose to soft tissue, lung, breast and adipose tissue is about (0.11-0.12)+/-0.05% of the maximum photon dose at a depth of 5.5 cm. The absorbed dose to cortical bone is about 45% larger than that to soft tissue. If the contributions from all photoparticles (n, p, 3He and 4He particles and recoils of the residual nuclei) produced in the soft tissue and the accelerator, and from positron radiation and gammas due to induced radioactivity and excited states of the nuclei, are taken into account the total photonuclear absorbed dose delivered to soft tissue is about 0.15+/-0.08% of the maximum photon dose. It has been estimated that the RBE of the photon beam of 50 MV acceleration potential is approximately 2% higher than that of conventional 60Co radiation.

  3. Use of synchrotron radiation to characterize metals in plants: the case of Cd in the hyperacumulator Arabidopsis halleri

    NASA Astrophysics Data System (ADS)

    Isaure, M.; Sarret, G.; Verbruggen, N.

    2010-12-01

    Phytoremediation uses plants to extract (phytoextraction) or stabilize (phytostabilization) metals accumulated in soils, and can be an alternative to invasive physico-chemical remediation techniques. Its development requires the knowledge of the mechanisms involved in metal tolerance and accumulation in plants, and particularly the way that plants transfer and store metals. In that context, synchrotron radiation based techniques such as micro-focused X-Ray Fluorescence (µXRF), and micro-focused X-ray Absorption Spectroscopy, including Extended X-ray Absorption Fine Structure and X-ray Absorption Near Edge Structure, are particularly suited to determine the localization and the chemical forms of metals in the different tissues, cells and sub-cellular compartments. Arabidopsis halleri is a Zn, Cd hyperaccumulating plant, naturally growing on contaminated sites, and is a model plant to investigate metal hyperaccumulation. This work presents the application of µXRF and Cd µXANES to determine the distribution and speciation of Cd in this species. Results showed that Cd was mainly located in the mesophyll and veins of leaves. It is bound to S ligands in some leaves and to O/N ligands in other ones, and the observed variations may be related to the age of the leaves. Cd speciation seems to differ from other metals, and particularly Zn, generally encountered in hyperaccumulators. High local Cd concentrations were also detected at the base of trichomes, epidermal hairs of leaves, associated to O/N ligands, probably to the cell wall. This phenomenon was also observed on non-hyperaccumulators and is clearly not the major sink for Cd, but trichomes might play a role in the detoxification process. This study illustrates the suitability of synchrotron radiation based techniques to investigate metal distribution and speciation in plants.

  4. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.

    PubMed

    Chen, Weiting; Zhao, Huijuan; Li, Tongxin; Yan, Panpan; Zhao, Kuanxin; Qi, Caixia; Gao, Feng

    2017-08-08

    Spatial frequency domain (SFD) measurement allows rapid and non-contact wide-field imaging of the tissue optical properties, thus has become a potential tool for assessing physiological parameters and therapeutic responses during photodynamic therapy of skin diseases. The conventional SFD measurement requires a reference measurement within the same experimental scenario as that for a test one to calibrate mismatch between the real measurements and the model predictions. Due to the individual physical and geometrical differences among different tissues, organs and patients, an ideal reference measurement might be unavailable in clinical trials. To address this problem, we present a reference-free SFD determination of absorption coefficient that is based on the modulation transfer function (MTF) characterization. Instead of the absolute amplitude that is used in the conventional SFD approaches, we herein employ the MTF to characterize the propagation of the modulated lights in tissues. With such a dimensionless relative quantity, the measurements can be naturally corresponded to the model predictions without calibrating the illumination intensity. By constructing a three-dimensional database that portrays the MTF as a function of the optical properties (both the absorption coefficient μ a and the reduced scattering coefficient [Formula: see text]) and the spatial frequency, a look-up table approach or a least-square curve-fitting method is readily applied to recover the absorption coefficient from a single frequency or multiple frequencies, respectively. Simulation studies have verified the feasibility of the proposed reference-free method and evaluated its accuracy in the absorption recovery. Experimental validations have been performed on homogeneous tissue-mimicking phantoms with μ a ranging from 0.01 to 0.07 mm -1 and [Formula: see text] = 1.0 or 2.0 mm -1 . The results have shown maximum errors of 4.86 and 7% for [Formula: see text] = 1.0 mm -1 and [Formula: see text] = 2.0 mm -1 , respectively. We have also presented quantitative ex vivo imaging of human lung cancer in a subcutaneous xenograft mouse model for further validation, and observed high absorption contrast in the tumor region. The proposed method can be applied to the rapid and accurate determination of the absorption coefficient, and better yet, in a reference-free way. We believe this reference-free strategy will facilitate the clinical translation of the SFD measurement to achieve enhanced intraoperative hemodynamic monitoring and personalized treatment planning in photodynamic therapy.

  5. Computational determination of refractive index distribution in the crystalline cones of the compound eye of Antarctic krill (Euphausia superba).

    PubMed

    Gál, József; Miyazaki, Taeko; Meyer-Rochow, Victor Benno

    2007-01-21

    In order to understand how a compound eye channels light to the retina and forms an image, one needs to know the refractive index distribution in the crystalline cones. Direct measurements of the refractive indices require sections of fresh, unfixed tissue and the use of an interference microscope, but frequently neither is available. Using the eye of the Antarctic krill Euphausia superba (the main food of baleen whales) we developed a computational method to predict a likely refractive index distribution non-invasively from sections of fixed material without the need of an interference microscope. We used a computer model of the eye and calculated the most realistic spatial distribution of the refractive index gradient in the crystalline cone that would enable the eye to produce a sharp image on the retina. The animals are known to see well and on the basis of our computations we predict that for the eyes of the adult a maximum refractive index of 1.45-1.50 in the centre of the cone yields a better angular sensitivity and light absorption in a target receptor of the retina than if N(max) were 1.55. In juveniles with a narrower spatial separation between dioptric structures and retina, however, an N(max) of 1.50-1.55 gives a superior result. Our method to determine the most likely refractive index distribution in the cone without the need of fresh material and an interference microscope could be useful in the study of other invertebrate eyes that are known to possess good resolving power, but for a variety of reasons are not suitable for or will not permit direct refractive index measurements of their dioptric tissues to be taken.

  6. Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal)

    NASA Astrophysics Data System (ADS)

    Almeida, C. M. R.; Mucha, Ana P.; Teresa Vasconcelos, M.

    2011-01-01

    The aim of the present work was to understand the role different salt marsh plants on metal distribution and retention in the Lima River estuary (NW Portugal), which to our knowledge have not been ascertained in this area yet. The knowledge of these differences is an important requirement for the development of appropriate management strategies, and is poorly described for Eurosiberian estuaries, like the one selected. In addition it is important to understand the difference among introduced and native salt marsh plants. In this work, metal levels (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were surveyed (by atomic absorption spectrometry) in sediments from sites vegetated with Juncus maritimus, Spartina patens, Phragmites australis and Triglochin striata (rhizo-sediments), in non-vegetated sediments and in the different tissues of the plants (roots, rhizomes and aerial shoots). In general, rhizo-sediments had higher metal concentrations than non-vegetated sediments, a feature that seems common to sediments colonized by salt marsh plants of different estuarine areas. All plants concentrated metals, at least Cd, Cu and Zn (and Pb for T. striata) in their belowground structures ([ M] belowground tissues/[ M] non-vegetated sediment > 1). However, when considered per unit of salt marsh area, the different selected plants played a different role on sediment metal distribution and retention. Triglochin striata retained a significant metal burden in it belowground structures (root plus rhizomes) acting like a possible phyto-stabilizer, whereas P. australis had an higher metal burden in aboveground tissues acting as a possible phyto-extractor. As for J. maritimus and S. patens, metal burden distribution between above and belowground structures depended on the metal, with J. maritimus retaining, for instance, much more Cd and Cu in the aboveground than in the belowground structures. Therefore, the presence of invasive and exotic plants in some areas of the salt marsh may considerably affect metal distribution and retention in the estuarine region.

  7. A frequency quantum interpretation of the surface renewal model of mass transfer

    PubMed Central

    Mondal, Chanchal

    2017-01-01

    The surface of a turbulent liquid is visualized as consisting of a large number of chaotic eddies or liquid elements. Assuming that surface elements of a particular age have renewal frequencies that are integral multiples of a fundamental frequency quantum, and further assuming that the renewal frequency distribution is of the Boltzmann type, performing a population balance for these elements leads to the Danckwerts surface age distribution. The basic quantum is what has been traditionally called the rate of surface renewal. The Higbie surface age distribution follows if the renewal frequency distribution of such elements is assumed to be continuous. Four age distributions, which reflect different start-up conditions of the absorption process, are then used to analyse transient physical gas absorption into a large volume of liquid, assuming negligible gas-side mass-transfer resistance. The first two are different versions of the Danckwerts model, the third one is based on the uniform and Higbie distributions, while the fourth one is a mixed distribution. For the four cases, theoretical expressions are derived for the rates of gas absorption and dissolved-gas transfer to the bulk liquid. Under transient conditions, these two rates are not equal and have an inverse relationship. However, with the progress of absorption towards steady state, they approach one another. Assuming steady-state conditions, the conventional one-parameter Danckwerts age distribution is generalized to a two-parameter age distribution. Like the two-parameter logarithmic normal distribution, this distribution can also capture the bell-shaped nature of the distribution of the ages of surface elements observed experimentally in air–sea gas and heat exchange. Estimates of the liquid-side mass-transfer coefficient made using these two distributions for the absorption of hydrogen and oxygen in water are very close to one another and are comparable to experimental values reported in the literature. PMID:28791137

  8. Full-wave simulations of ICRF heating regimes in toroidal plasmas with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E.J.; Green, D.L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737 (1975)], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys. Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion 44, 2423 (2002)], have been extended to allow the prescriptionmore » of arbitrary velocity distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either aMonte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tends to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  9. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    NASA Astrophysics Data System (ADS)

    Bertelli, N.; Valeo, E. J.; Green, D. L.; Gorelenkova, M.; Phillips, C. K.; Podestà, M.; Lee, J. P.; Wright, J. C.; Jaeger, E. F.

    2017-05-01

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributions of the form f≤ft({{v}\\parallel},{{v}\\bot},\\psi,θ \\right) . For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.

  10. Cation distribution in NiZn-ferrite films via extended x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Koon, N. C.; Williams, C. M.; Zhang, Q.; Abe, M.; Kirkland, J. P.

    1996-04-01

    We have applied extended x-ray absorption fine structure (EXAFS) spectroscopy to study the cation distribution in a series of spin-sprayed NiZn-ferrite films. A least-squares fitting of experimental EXAFS data with theoretical, multiple-scattering, EXAFS data allowed the quantitative determination of site distributions for all transition metal cations.

  11. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    NASA Astrophysics Data System (ADS)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  12. Evaluation of fluid absorption during holmium laser enucleation of prostate by breath ethanol technique.

    PubMed

    Shah, Hemendra N; Kausik, Vikram; Hegde, Sunil; Shah, Jignesh N; Bansal, Manish B

    2006-02-01

    In a prospective manner we studied various factors affecting fluid absorption during HoLEP. We also simultaneously evaluated changes in serum electrolytes and hemoglobin decrease during HoLEP. This prospective study comprised of 53 patients who underwent HoLEP at our institute. Irrigation fluid was normal saline tagged with ethanol (1% w/v). Intraoperatively a standard breath analyzer was used to monitor expired breath ethanol levels during the procedure at 10-minute intervals. Patients who absorbed irrigating fluid as indicated by positive intraoperative breath tests were considered absorbers. Serum electrolyte and hemoglobin estimations were done before and after surgery. Total irrigation time, amount of irrigation fluid used, weight of resected tissue and presence of capsular perforation were recorded. Statistical analysis was performed to observe the effects of various factors on the amount of intraoperative fluid absorption. Of 53 patients studied 14 (26.41%) demonstrated fluid absorption in the range of 213 to 930 ml (mean 459). Preoperative prostate weight, total irrigation time, amount of irrigation fluid used and resected tissue weight were all significantly greater in absorbers. Similarly, absorbers had a statistically significant decrease in hemoglobin level postoperatively. There was no statistically significant change in serum electrolytes between absorbers and nonabsorbers. Preoperative weight of prostate, total irrigation time, amount of irrigation fluid used and weight of resected tissue all directly influence the amount of fluid absorption during HoLEP. There is no significant change in serum electrolytes and no risk of the transurethral resection syndrome.

  13. Improvement of depth resolution on photoacoustic imaging using multiphoton absorption

    NASA Astrophysics Data System (ADS)

    Yamaoka, Yoshihisa; Fujiwara, Katsuji; Takamatsu, Tetsuro

    2007-07-01

    Commercial imaging systems, such as computed tomography and magnetic resonance imaging, are frequently used powerful tools for observing structures deep within the human body. However, they cannot precisely visualized several-tens micrometer-sized structures for lack of spatial resolution. In this presentation, we propose photoacoustic imaging using multiphoton absorption technique to generate ultrasonic waves as a means of improving depth resolution. Since the multiphoton absorption occurs at only the focus point and the employed infrared pulses deeply penetrate living tissues, it enables us to extract characteristic features of structures embedded in the living tissue. When nanosecond pulses from a 1064-nm Nd:YAG laser were focused on Rhodamine B/chloroform solution (absorption peak: 540 nm), the peak intensity of the generated photoacoustic signal was proportional to the square of the input pulse energy. This result shows that the photoacoustic signals can be induced by the two-photon absorption of infrared nanosecond pulse laser and also can be detected by a commercial low-frequency MHz transducer. Furthermore, in order to evaluate the depth resolution of multiphoton-photoacoustic imaging, we investigated the dependence of photoacoustic signal on depth position using a 1-mm-thick phantom in a water bath. We found that the depth resolution of two-photon photoacoustic imaging (1064 nm) is greater than that of one-photon photoacoustic imaging (532 nm). We conclude that evolving multiphoton-photoacoustic imaging technology renders feasible the investigation of biomedical phenomena at the deep layer in living tissue.

  14. XAS Studies of Se Speciation in Selenite-Fed Rats

    PubMed Central

    Weekley, Claire M.; Aitken, Jade B.; Witting, Paul K.; Harris, Hugh H.

    2014-01-01

    The biological activity of selenium is dependent on its chemical form. Therefore, knowledge of Se chemistry in vivo is required for efficacious use of selenium compounds in disease prevention and treatment. Using X-ray absorption spectroscopy, Se speciation in the kidney, liver, heart, spleen, testis and red blood cells of rats fed control (~0.3 ppm Se) or selenite-supplemented (1 ppm or 5 ppm Se) diets for 3 or 6 weeks, was investigated. X-ray absorption spectroscopy revealed the presence of Se–Se and Se–C species in the kidney and liver, and Se–S species in the kidney, but not the liver. X-ray absorption near edge structure (XANES) spectra showed that there was variation in speciation in the liver and kidneys, but Se speciation was much more uniform in the remaining organs. Using principal component analysis (PCA) to interpret the Se K-edge X-ray absorption spectra, we were able to directly compare the speciation of Se in two different models of selenite metabolism – human lung cancer cells and rat tissues. The effects of Se dose, tissue type and duration of diet on selenium speciation in rat tissues were investigated, and a relationship between the duration of the diet (3 weeks versus 6 weeks) and selenium speciation was observed. PMID:25363824

  15. Unmixing chromophores in human skin with a 3D multispectral optoacoustic mesoscopy system

    NASA Astrophysics Data System (ADS)

    Schwarz, Mathias; Aguirre, Juan; Soliman, Dominik; Buehler, Andreas; Ntziachristos, Vasilis

    2016-03-01

    The absorption of visible light by human skin is governed by a number of natural chromophores: Eumelanin, pheomelanin, oxyhemoglobin, and deoxyhemoglobin are the major absorbers in the visible range in cutaneous tissue. Label-free quantification of these tissue chromophores is an important step of optoacoustic (photoacoustic) imaging towards clinical application, since it provides relevant information in diseases. In tumor cells, for instance, there are metabolic changes (Warburg effect) compared to healthy cells, leading to changes in oxygenation in the environment of tumors. In malignant melanoma changes in the absorption spectrum have been observed compared to the spectrum of nonmalignant nevi. So far, optoacoustic imaging has been applied to human skin mostly in single-wavelength mode, providing anatomical information but no functional information. In this work, we excited the tissue by a tunable laser source in the spectral range from 413-680 nm with a repetition rate of 50 Hz. The laser was operated in wavelengthsweep mode emitting consecutive pulses at various wavelengths that allowed for automatic co-registration of the multispectral datasets. The multispectral raster-scan optoacoustic mesoscopy (MSOM) system provides a lateral resolution of <60 μm independent of wavelength. Based on the known absorption spectra of melanin, oxyhemoglobin, and deoxyhemoglobin, three-dimensional absorption maps of all three absorbers were calculated from the multispectral dataset.

  16. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.

    PubMed

    Zhang, Hairong; Salo, Daniel; Kim, David M; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y

    2016-12-01

    Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent.

  17. A Phantom Study of Terahertz Spectroscopy and Imaging of Micro- and Nano-diamonds and Nano-onions as Contrast Agents for Breast Cancer.

    PubMed

    Bowman, Tyler; Walter, Alec; Shenderova, Olga; Nunn, Nicholas; McGuire, Gary; El-Shenawee, Magda

    2017-10-01

    THz imaging is effective in distinguishing between cancerous, healthy, and fatty tissues in breast tumors, but a challenge remains in the contrast between cancerous and fibroglandular (healthy) tissues. This work investigates carbon-based nanoparticles as potential contrast agents for terahertz imaging of breast cancer. Microdiamonds, nanodiamonds, and nanometer-scale onion-like carbon are characterized with terahertz transmission spectroscopy in low-absorption backgrounds of polydimethylsiloxane or polyethylene. The refractive index and absorption coefficients are calculated based on the measured electric fields. Nanodiamonds show little effect on the terahertz signal, microdiamonds express resonance-like, size-dependent absorption peaks, and onion-like carbon provides a uniform increase in the optical properties even at low concentration. Due to its strong interaction with terahertz frequencies and ability to be activated for selective binding to cancer cells, onion-like carbon is implemented into engineered three-dimensional breast tumor models composed of phantom tissue mimicking infiltrating ductal carcinoma surrounded by a phantom mimicking healthy fibroglandular tissue. This model is imaged using the terahertz reflection mode to examine the effectiveness of contrast agents for differentiation between the two tissue types. In both spectroscopy and imaging, a 10% concentration of onion-like carbon shows the strongest impact on the terahertz signal and holds promise as a terahertz contrast agent.

  18. Photoacoustic phasoscopy super-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  19. The challenges for quantitative photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Cox, B. T.; Laufer, J. G.; Beard, P. C.

    2009-02-01

    In recent years, some of the promised potential of biomedical photoacoustic imaging has begun to be realised. It has been used to produce good, three-dimensional, images of blood vasculature in mice and other small animals, and in human skin in vivo, to depths of several mm, while maintaining a spatial resolution of <100 μm. Furthermore, photoacoustic imaging depends for contrast on the optical absorption distribution of the tissue under study, so, in the same way that the measurement of optical spectra has traditionally provided a means of determining the molecular constituents of an object, there is hope that multiwavelength photoacoustic imaging will provide a way to distinguish and quantify the component molecules of optically-scattering biological tissue (which may include exogeneous, targeted, chromophores). In simple situations with only a few significant absorbers and some prior knowledge of the geometry of the arrangement, this has been shown to be possible, but significant hurdles remain before the general problem can be solved. The general problem may be stated as follows: is it possible, in general, to take a set of photoacoustic images obtained at multiple optical wavelengths, and process them in a way that results in a set of quantitatively accurate images of the concentration distributions of the constituent chromophores of the imaged tissue? If such an 'inversion' procedure - not specific to any particular situation and free of restrictive suppositions - were designed, then photoacoustic imaging would offer the possibility of high resolution 'molecular' imaging of optically scattering tissue: a very powerful technique that would find uses in many areas of the life sciences and in clinical practice. This paper describes the principal challenges that must be overcome for such a general procedure to be successful.

  20. Speciation and distribution of arsenic and localization of nutrients in rice grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, E.; Scheckel, K.G.; Pallon, J.

    2012-09-05

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains because these are key factors controlling bioavailability of nutrients and contaminants. Bulk total and speciation analyses using high-pressure liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) and X-ray absorption near-edge spectroscopy (XANES) was complemented by spatially resolved microspectroscopic techniques ({mu}-XANES, {mu}-X-ray fluorescence ({mu}-XRF) and particle induced X-ray emission (PIXE)) to investigate both speciation and distribution of As andmore » localization of nutrients in situ. The distribution of As and micronutrients varied between the various parts of the grains (husk, bran and endosperm) and was characterized by element-specific distribution patterns. The speciation of As in bran and endosperm was dominated by As(III)-thiol complexes. The results indicate that the translocation from the maternal to filial tissues may be a bottleneck for As accumulation in the grain. Strong similarities between the distribution of iron (Fe), manganese (Mn) and phosphorus (P) and between zinc (Zn) and sulphur (S) may be indicative of complexation mechanisms in rice grains.« less

  1. Silver distribution and release from an antimicrobial denture base resin containing silver colloidal nanoparticles.

    PubMed

    Monteiro, Douglas Roberto; Gorup, Luiz Fernando; Takamiya, Aline Satie; de Camargo, Emerson Rodrigues; Filho, Adhemar Colla Ruvolo; Barbosa, Debora Barros

    2012-01-01

    The aim of this study was to evaluate a denture base resin containing silver colloidal nanoparticles through morphological analysis to check the distribution and dispersion of these particles in the polymer and by testing the silver release in deionized water at different time periods. A Lucitone 550 denture resin was used, and silver nanoparticles were synthesized by reduction of silver nitrate with sodium citrate. The acrylic resin was prepared in accordance with the manufacturers' instructions, and silver nanoparticle suspension was added to the acrylic resin monomer in different concentrations (0.05, 0.5, and 5 vol% silver colloidal). Controls devoid of silver nanoparticles were included. The specimens were stored in deionized water at 37°C for 7, 15, 30, 60, and 120 days, and each solution was analyzed using atomic absorption spectroscopy. Silver was not detected in deionized water regardless of the silver nanoparticles added to the resin and of the storage period. Micrographs showed that with lower concentrations, the distribution of silver nanoparticles was reduced, whereas their dispersion was improved in the polymer. Moreover, after 120 days of storage, nanoparticles were mainly located on the surface of the nanocomposite specimens. Incorporation of silver nanoparticles in the acrylic resin was evidenced. Moreover, silver was not detected by the detection limit of the atomic absorption spectrophotometer used in this study, even after 120 days of storage in deionized water. Silver nanoparticles are incorporated in the PMMA denture resin to attain an effective antimicrobial material to help control common infections involving oral mucosal tissues in complete denture wearers. © 2011 by the American College of Prosthodontists.

  2. Absorption, tissue distribution and excretion of radiolabelled compounds in rats after administration of [14C]-L-alpha-glycerylphosphorylcholine.

    PubMed

    Abbiati, G; Fossati, T; Lachmann, G; Bergamaschi, M; Castiglioni, C

    1993-01-01

    The kinetics and metabolism of L-alpha-glycerylphosphoryl-choline (alpha-GPC) were investigated in male and female rats after i.v. (10 mg/kg) and oral doses (100-300 mg/kg). alpha-GPC was labelled with [14C]-glycerol ([14G]-GPC) or [14C]-choline ([14C]-GPC). Different kinetic and metabolic profiles were observed after i.v. and oral administration. It is assumed that alpha-GPC is hydrolyzed by phosphodiesterases in the gut mucosa. The different labelled metabolites have different kinetic properties of absorption, distribution and clearance, leading to different blood concentration-time curves of total radioactivity. Both labelled compounds gave a wide distribution of radioactivity, particularly concentrated in the liver, kidney, lung and spleen compared to blood. Brain concentrations of [14C]-GPC were comparable to ([14G]-GPC) or lower than ([14C]-GPC) total blood radioactivity. The metabolite profile in the perfused brain showed a small amount of choline and two unknown metabolites, probably the same as in blood. In addition, choline was incorporated into brain phospholipids in increasing amounts within 24 h of dosing. In all cases renal and fecal excretion of radioactivity was low and comparable for [14G]-GPC and [14C]-GPC. Mostly the administered radioactivity was exhaled as 14CO2, this degradation being faster and more pronounced for the glycerol-labelled metabolites than for the choline-labelled metabolites for both routes of administration. In all cases the results were the same for male and female rats.

  3. Tissue characterization with ballistic photons: counting scattering and/or absorption centres

    NASA Astrophysics Data System (ADS)

    Corral, F.; Strojnik, M.; Paez, G.

    2015-03-01

    We describe a new method to separate ballistic from the scattered photons for optical tissue characterization. It is based on the hypothesis that the scattered photons acquire a phase delay. The photons passing through the sample without scattering or absorption preserve their coherence so they may participate in interference. We implement a Mach-Zehnder experimental setup where the ballistic photons pass through the sample with the delay caused uniquely by the sample indices of refraction. We incorporate a movable mirror on the piezoelectric actuator in the sample arm to detect the amplitude of the modulation term. We present the theory that predicts the path-integrated (or total) concentration of the scattering and absorption centres. The proposed technique may characterize samples with transmission attenuation of ballistic photons by a factor of 10-14.

  4. In vitro and in vivo photothermal cancer therapy using excited gold nanorod surface plasmons

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Lung; Liu, Bruce; Ou, Min-Nan; Chang, Fu-Hsiung; Lin, Win-Li; Chia, Chih-Ta; Chen, Yang-Yuan

    2013-03-01

    The application of heat to eliminate or restrain specific cancer cells is proposed as an encouraging approach in optimizing cancer therapy. This talk presents the in vitro and in vivo photothermal cancer therapy using photo-excited gold nanorods (Au NRs), and studies the impact of thermal heat on the necrosis of tumor tissue. The therapeutic efficacy in vivo was evaluated by analyzing tumor size change, vascular development, and histological images. The safety standard for the therapy process and administration of Au NRs were conducted to exclude side effects arising from the irradiation and materials. It is found that the smaller size of Au NRs exhibits better therapeutic efficacy due to their optical absorption efficiency and space distribution uniformity in the cell. The generation of local heating from excited Au NR surface plasmons is high enough to make the tumor tissue gradually develop to an eschar; resulting in a dramatic size decreases in these treated tumors.

  5. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism

    PubMed Central

    Shi, Yuguang; Cheng, Dong

    2009-01-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications. PMID:19116371

  6. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.

  7. Light propagation from fluorescent probes in biological tissues by coupled time-dependent parabolic simplified spherical harmonics equations

    PubMed Central

    Domínguez, Jorge Bouza; Bérubé-Lauzière, Yves

    2011-01-01

    We introduce a system of coupled time-dependent parabolic simplified spherical harmonic equations to model the propagation of both excitation and fluorescence light in biological tissues. We resort to a finite element approach to obtain the time-dependent profile of the excitation and the fluorescence light fields in the medium. We present results for cases involving two geometries in three-dimensions: a homogeneous cylinder with an embedded fluorescent inclusion and a realistically-shaped rodent with an embedded inclusion alike an organ filled with a fluorescent probe. For the cylindrical geometry, we show the differences in the time-dependent fluorescence response for a point-like, a spherical, and a spherically Gaussian distributed fluorescent inclusion. From our results, we conclude that the model is able to describe the time-dependent excitation and fluorescent light transfer in small geometries with high absorption coefficients and in nondiffusive domains, as may be found in small animal diffuse optical tomography (DOT) and fluorescence DOT imaging. PMID:21483606

  8. Magnetic Resonance Based Electrical Properties Tomography: A Review

    PubMed Central

    Zhang, Xiaotong; Liu, Jiaen

    2014-01-01

    Frequency-dependent electrical properties (EPs; conductivity and permittivity) of biological tissues provide important diagnostic information (e.g. tumor characterization), and also play an important role in quantifying radiofrequency (RF) coil induced Specific Absorption Rate (SAR) which is a major safety concern in high- and ultrahigh-field Magnetic Resonance Imaging (MRI) applications. Cross-sectional imaging of EPs has been pursued for decades. Recently introduced Electrical Properties Tomography (EPT) approaches utilize the measurable RF magnetic field induced by the RF coil in an MRI system to quantitatively reconstruct the EP distribution in vivo and non-invasively with a spatial resolution of a few millimeters or less. This paper reviews the Electrical Properties Tomography approach from its basic theory in electromagnetism to the state of the art research outcomes. Emphasizing on the imaging reconstruction methods rather than experimentation techniques, we review the developed imaging algorithms, validation results in physical phantoms and biological tissues, as well as their applications in in vivo tumor detection and subject-specific SAR prediction. Challenges for future research are also discussed. PMID:24803104

  9. Absorption properties of alternative chromophores for use in laser tissue soldering applications.

    PubMed

    Byrd, Brian D; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

    2003-01-01

    The feasibility of using alternative chromophores in laser tissue soldering applications was explored. Two commonly used chromophores, indocyanine green (ICG), and methylene blue (MB) were investigated, as well as three different food colorings: red #40 (RFC), blue #1 (BFC), and green consisting of yellow #5 and blue #1 (GFC). Three experimental studies were conducted: (i) The absorption profiles of the five chromophores, when diluted in deionized water and when bound to protein, were recorded; (ii) the effect of accumulated thermal dosages on the absorption profile of the chromophores was evaluated; and (iii) the stability of the absorption profiles of the chromophore-doped solutions when exposed to ambient light for extended time periods was measured. The peak absorption wavelengths of ICG, MB, RFC, and BFC, were found to be 805 nm, 665 nm, 503 nm, and 630 nm respectively in protein solder. The GFC had two absorption peaks at 426 nm and 630 nm, corresponding to the two dye components comprising this color. The peak absorption wavelength of ICG and MB was dependent on the choice of solvent (deionized water or protein). In contrast, the peak absorption wavelengths of the three chromophores were not dependent on the choice of solvent. ICG and MB showed a significant decrease in absorbance units with increased time and temperature when heated to temperature up to 100 degrees C. A significant decrease in the absorption peak occurred in the ICG and MB samples when exposed to ambient light for a period of 7 days. Negligible change in absorption with accumulated thermal dose up to 100 degrees C or light dose (over a period of 84 days) was observed for any of the three food colorings investigated.

  10. Envelope and phase distribution of a resonance transmission through a complex environment

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry V.

    2018-06-01

    A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.

  11. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  12. New insights on the biomineralisation process developing in human lungs around inhaled asbestos fibres

    NASA Astrophysics Data System (ADS)

    Bardelli, Fabrizio; Veronesi, Giulia; Capella, Silvana; Bellis, Donata; Charlet, Laurent; Cedola, Alessia; Belluso, Elena

    2017-03-01

    Once penetrated into the lungs of exposed people, asbestos induces an in vivo biomineralisation process that leads to the formation of a ferruginous coating embedding the fibres. The ensemble of the fibre and the coating is referred to as asbestos body and is believed to be responsible for the high toxicological outcome of asbestos. Lung tissue of two individuals subjected to prolonged occupational exposure to crocidolite asbestos was investigated using synchrotron radiation micro-probe tools. The distribution of K and of elements heavier than Fe (Zn, Cu, As, and Ba) in the asbestos bodies was observed for the first time. Elemental quantification, also reported for the first time, confirmed that the coating is highly enriched in Fe (~20% w/w), and x-ray absorption spectroscopy indicated that Fe is in the 3+ oxidation state and that it is present in the form of ferritin or hemosiderin. Comparison of the results obtained studying the asbestos bodies upon removing the biological tissue by chemical digestion and those embedded in histological sections, allowed unambiguously distinguishing the composition of the asbestos bodies, and understanding to what extent the digestion procedure altered their chemical composition. A speculative model is proposed to explain the observed distribution of Fe.

  13. Sub-Chronic Oral Exposure to Iridium (III) Chloride Hydrate in Female Wistar Rats: Distribution and Excretion of the Metal

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio; Conti, Marcelo Enrique; Pino, Anna; Mattei, Daniela; Bocca, Beatrice; Alimonti, Alessandro

    2012-01-01

    Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure. PMID:22942873

  14. [Initial studies of the application of the linear signal transfer theory in evaluating diaphanoscopic examinations exemplified by rheumatism diagnosis].

    PubMed

    Beuthan, J; Cappius, H J; Hielscher, A; Hopf, M; Klose, A; Netz, U

    2001-11-01

    Rheumatoid arthritis affecting the small joints--in particular the fingers--has advantageous geometry for the transmission of near-infrared (NIR) light. Examination of the optical properties of tissues has revealed that as a result of changes to the capsule and synovial fluid there is a considerable increase in photon scattering already in the early stages of the disease--in particular around 685 nm. This suggests the appropriateness of analysing the photon density profile resulting from punctiform irradiation of the joint. In a first approximation, the point spread function of transmitted photon density is confirmed to be proportional to a Gauss distribution, as suggested by Arridge. In accordance with the linear signal transfer theory, therefore, it is possible to establish a virtual transfer system described by a first-order differential equation. (The tissue optical conditions mu a < mu's and mu a = constant (mu a = absorption coefficient) were assumed). The parameter mu's (= reduced scattering coefficient) was determined by linear approximation of the Gauss distribution to the calculated or measured point spread function. For selected patient data, the mu's was determined in healthy and diseased finger joints (e.g. 10.1 cm-1 and 26.8 cm-1, respectively), and the results were in good agreement with those obtained experimentally.

  15. Photoacoustic microscopy of human teeth

    NASA Astrophysics Data System (ADS)

    Rao, Bin; Cai, Xin; Favazza, Christopher; Yao, Junjie; Li, Li; Duong, Steven; Liaw, Lih-Huei; Holtzman, Jennifer; Wilder-Smith, Petra; Wang, Lihong V.

    2011-03-01

    Photoacoustic microscopy (PAM) utilizes short laser pulses to deposit energy into light absorbers and sensitively detects the ultrasonic waves the absorbers generate in response. PAM directly renders a three-dimensional spatial distribution of sub-surface optical absorbers. Unlike other optical imaging technologies, PAM features label-free optical absorption contrast and excellent imaging depths. Standard dental imaging instruments are limited to X-ray and CCD cameras. Subsurface optical dental imaging is difficult due to the highly-scattering enamel and dentin tissue. Thus, very few imaging methods can detect dental decay or diagnose dental pulp, which is the innermost part of the tooth, containing the nerves, blood vessels, and other cells. Here, we conducted a feasibility study on imaging dental decay and dental pulp with PAM. Our results showed that PAM is sensitive to the color change associated with dental decay. Although the relative PA signal distribution may be affected by surface contours and subsurface reflections from deeper dental tissue, monitoring changes in the PA signals (at the same site) over time is necessary to identify the progress of dental decay. Our results also showed that deep-imaging, near-infrared (NIR) PAM can sensitively image blood in the dental pulp of an in vitro tooth. In conclusion, PAM is a promising tool for imaging both dental decay and dental pulp.

  16. Mathematical modeling of reflectance and intrinsic fluorescence for cancer detection in human pancreatic tissue

    NASA Astrophysics Data System (ADS)

    Wilson, Robert H.; Chandra, Malavika; Scheiman, James; Simeone, Diane; McKenna, Barbara; Purdy, Julianne; Mycek, Mary-Ann

    2009-02-01

    Pancreatic adenocarcinoma has a five-year survival rate of only 4%, largely because an effective procedure for early detection has not been developed. In this study, mathematical modeling of reflectance and fluorescence spectra was utilized to quantitatively characterize differences between normal pancreatic tissue, pancreatitis, and pancreatic adenocarcinoma. Initial attempts at separating the spectra of different tissue types involved dividing fluorescence by reflectance, and removing absorption artifacts by applying a "reverse Beer-Lambert factor" when the absorption coefficient was modeled as a linear combination of the extinction coefficients of oxy- and deoxy-hemoglobin. These procedures demonstrated the need for a more complete mathematical model to quantitatively describe fluorescence and reflectance for minimally-invasive fiber-based optical diagnostics in the pancreas.

  17. Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue

    NASA Astrophysics Data System (ADS)

    Wang, Lidai; Xia, Jun; Yao, Junjie; Maslov, Konstantin I.; Wang, Lihong V.

    2013-11-01

    Blood flow speed is an important functional parameter. Doppler ultrasound flowmetry lacks sufficient sensitivity to slow blood flow (several to tens of millimeters per second) in deep tissue. To address this challenge, we developed ultrasonically encoded photoacoustic flowgraphy combining ultrasonic thermal tagging with photoacoustic imaging. Focused ultrasound generates a confined heat source in acoustically absorptive fluid. Thermal waves propagate with the flow and are directly visualized in pseudo color using photoacoustic computed tomography. The Doppler shift is employed to calculate the flow speed. This method requires only acoustic and optical absorption, and thus is applicable to continuous fluid. A blood flow speed as low as 0.24mm·s-1 was successfully measured. Deep blood flow imaging was experimentally demonstrated under 5-mm-thick chicken breast tissue.

  18. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhamami, Mosa; Kolios, Michael C.; Tavakkoli, Jahan, E-mail: jtavakkoli@ryerson.ca

    Purpose: The aims of this study are: (a) to investigate the capability of photoacoustic (PA) method in detecting high-intensity focused ultrasound (HIFU) treatments in muscle tissuesin vitro; and (b) to determine the optical properties of HIFU-treated and native tissues in order to assist in the interpretation of the observed contrast in PA detection of HIFU treatments. Methods: A single-element, spherically concaved HIFU transducer with a centre frequency of 1 MHz was utilized to create thermal lesions in chicken breast tissuesin vitro. To investigate the detectability of HIFU treatments photoacoustically, PA detection was performed at 720 and 845 nm on sevenmore » HIFU-treated tissue samples. Within each tissue sample, PA signals were acquired from 22 locations equally divided between two regions of interest within two volumes in tissue – a HIFU-treated volume and an untreated volume. Optical spectroscopy was then carried out on 10 HIFU-treated chicken breast specimens in the wavelength range of 500–900 nm, in 1-nm increments, using a spectrophotometer with an integrating sphere attachment. The authors’ optical spectroscopy raw data (total transmittance and diffuse reflectance) were used to obtain the optical absorption and reduced scattering coefficients of HIFU-induced thermal lesions and native tissues by employing the inverse adding-doubling method. The aforementioned interaction coefficients were subsequently used to calculate the effective attenuation coefficient and light penetration depth of HIFU-treated and native tissues in the wavelength range of 500–900 nm. Results: HIFU-treated tissues produced greater PA signals than native tissues at 720 and 845 nm. At 720 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.68 ± 0.25 (mean ± standard error of the mean). At 845 nm, the averaged ratio of the peak-to-peak PA signal amplitude of HIFU-treated tissue to that of native tissue was 3.75 ± 0.26 (mean ± standard error of the mean). The authors’ spectroscopic investigation has shown that HIFU-treated tissues have a greater optical absorption and reduced scattering coefficients than native tissues in the wavelength range of 500–900 nm. In fact, at 720 and 845 nm, the ratio of the optical absorption coefficient of HIFU-treated tissues to that of native tissues was 1.13 and 1.17, respectively; on the other hand, the ratio of the reduced scattering coefficient of HIFU-treated tissues to that of native tissues was 13.22 and 14.67 at 720 and 845 nm, respectively. Consequently, HIFU-treated tissues have a higher effective attenuation coefficient and a lower light penetration depth than native tissues in the wavelength range 500–900 nm. Conclusions: Using a PA approach, HIFU-treated tissues interrogated at 720 and 845 nm optical wavelengths can be differentiated from untreated tissues. Based on the authors’ spectroscopic investigation, the authors conclude that the observed PA contrast between HIFU-induced thermal lesions and untreated tissue is due, in part, to the increase in the optical absorption coefficient, the reduced scattering coefficient and, therefore, the deposited laser energy fluence in HIFU-treated tissues.« less

  19. Time-resolved photoion imaging spectroscopy: Determining energy distribution in multiphoton absorption experiments

    NASA Astrophysics Data System (ADS)

    Qian, D. B.; Shi, F. D.; Chen, L.; Martin, S.; Bernard, J.; Yang, J.; Zhang, S. F.; Chen, Z. Q.; Zhu, X. L.; Ma, X.

    2018-04-01

    We propose an approach to determine the excitation energy distribution due to multiphoton absorption in the case of excited systems following decays to produce different ion species. This approach is based on the measurement of the time-resolved photoion position spectrum by using velocity map imaging spectrometry and an unfocused laser beam with a low fluence and homogeneous profile. Such a measurement allows us to identify the species and the origin of each ion detected and to depict the energy distribution using a pure Poisson's equation involving only one variable which is proportional to the absolute photon absorption cross section. A cascade decay model is used to build direct connections between the energy distribution and the probability to detect each ionic species. Comparison between experiments and simulations permits the energy distribution and accordingly the absolute photon absorption cross section to be determined. This approach is illustrated using C60 as an example. It may therefore be extended to a wide variety of molecules and clusters having decay mechanisms similar to those of fullerene molecules.

  20. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution.

    PubMed

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N; Eakins, Gregory; Cheng, Ji-Xin

    2016-09-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption-induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans . The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy.

  1. Optical pump-probe microscopy for biomedicine and art conservation

    NASA Astrophysics Data System (ADS)

    Fischer, Martin

    2013-03-01

    Nonlinear optical microscopy can provide contrast in highly heterogeneous media and a wide range of applications has emerged, primarily in biology, medicine, and materials science. Compared to linear microscopy methods, the localized nature of nonlinear interactions leads to high spatial resolution, optical sectioning, and larger possible imaging depth in scattering media. However, nonlinear contrast (other than fluorescence, harmonic generation or CARS) is generally difficult to measure because it is overwhelmed by the large background of detected illumination light. This background can be suppressed by using femtosecond pulse or pulse train shaping to encode nonlinear interactions in background-free regions of the frequency spectrum. We have developed this shaping technology to study novel intrinsic structural and molecular contrast in biological tissue, generally using less power than a laser pointer. For example we have recently been able to sensitively measure detailed transient absorption dynamics of melanin sub-types in a variety of skin lesions, showing clinically relevant differences of melanin type and distribution between cancerous and benign tissue.[1] Recently we have also applied this technology to paint samples and to historic artwork in order to provide detailed, depth-resolved pigment identification. Initial studies in different inorganic and organic pigments have shown a rich and pigment-specific nonlinear absorption signature.[2] Some pigments, for example lapis lazuli (natural ultramarine), even show marked differences in signal depending on its geographic origin and on age, demonstrating the potential of this technique to determine authenticity, provenance, technology of manufacture, or state of preservation of historic works of art.

  2. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band.

    PubMed

    Wainwright, P R

    2003-10-07

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor' deltaT/SAR. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bioheat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur.

  3. Uptake and Distribution of Silver in the Aquatic Plant Landoltia punctata (Duckweed) Exposed to Silver and Silver Sulfide Nanoparticles.

    PubMed

    Stegemeier, John P; Colman, Benjamin P; Schwab, Fabienne; Wiesner, Mark R; Lowry, Gregory V

    2017-05-02

    Aquatic ecosystems are expected to receive Ag 0 and Ag 2 S nanoparticles (NPs) through anthropogenic waste streams. The speciation of silver in Ag-NPs affects their fate in ecosystems, but its influence on interactions with aquatic plants is still unclear. Here, the Ag speciation and distribution was measured in an aquatic plant, duckweed (Landoltia punctata), exposed to Ag 0 or Ag 2 S NPs, or to AgNO 3 . The silver distribution in duckweed roots was visualized using synchrotron-based micro X-ray fluorescence (XRF) mapping and Ag speciation was determined using extended X-ray absorption fine structure (EXAFS) spectroscopy. Duckweed exposed to Ag 2 S-NPs or Ag 0 -NPs accumulated similar Ag concentrations despite an order of magnitude smaller dissolved Ag fraction measured in the exposure medium for Ag 2 S-NPs compared to Ag 0 -NPs. By 24 h after exposure, all three forms of silver had accumulated on and partially in the roots regardless of the form of Ag exposed to the plants. Once associated with duckweed tissue, Ag 0 -NPs had transformed primarily into silver sulfide and silver thiol species. This suggests that plant defenses were active within or at the root surface. The Ag 2 S-NPs remained as Ag 2 S, while AgNO 3 exposure led to Ag 0 and sulfur-associated Ag species in plant tissue. Thus, regardless of initial speciation, Ag was readily available to duckweed.

  4. Understanding the tissue effects of tribo-corrosion: uptake, distribution, and speciation of cobalt and chromium in human bone cells.

    PubMed

    Shah, Karan M; Quinn, Paul D; Gartland, Alison; Wilkinson, J Mark

    2015-01-01

    Cobalt and chromium species are released in the local tissues as a result of tribo-corrosion, and affect bone cell survival and function. However we have little understanding of the mechanisms of cellular entry, intracellular distribution, and speciation of the metals that result in impaired bone health. Here we used synchrotron based X-ray fluorescence (XRF), X-ray absorption spectroscopy (XAS), and fluorescent-probing approaches of candidate receptors P2X7R and divalent metal transporter-1 (DMT-1), to better understand the entry, intra-cellular distribution and speciation of cobalt (Co) and chromium (Cr) in human osteoblasts and primary human osteoclasts. We found that both Co and Cr were most highly localized at nuclear and perinuclear sites in osteoblasts, suggesting uptake through cell membrane transporters, and supported by a finding that P2X7 receptor blockade reduced cellular entry of Co. In contrast, metal species were present at discrete sites corresponding to the basolateral membrane in osteoclasts, suggesting cell entry by endocytosis and trafficking through a functional secretory domain. An intracellular reduction of Cr6+ to Cr3+ was the only redox change observed in cells treated with Co2+, Cr3+, and Cr6+. Our data suggest that the cellular uptake and processing of Co and Cr differs between osteoblasts and osteoclasts. © 2014 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  5. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  6. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  7. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  8. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  9. A high definition Mueller polarimetric endoscope for tissue characterisation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Elson, Daniel

    2016-03-01

    The mechanism of most medical endoscopes is based on the interaction between light and biological tissue, inclusive of absorption, elastic scattering and fluorescence. In essence, the metrics of those interactions are obtained from the fundamental properties of light as an electro-magnetic waves, namely, the radiation intensity and wavelength. As another fundamental property of light, polarisation can not only reveal tissue scattering and absorption information from a different perspective, but is also able to provide a fresh insight into directional tissue birefringence properties induced by birefringent compositions and anisotropic fibrous structures, such as collagen, elastin, muscle fibre, etc at the same time. Here we demonstrate a low cost high definition Muller polarimetric endoscope with minimal alteration of a rigid endoscope. By imaging birefringent tissue mimicking phantoms and a porcine bladder, we show that this novel endoscopic imaging modality is able to provide different information of interest from unpolarised endoscopic imaging, including linear depolarization, circular depolarization, birefringence, optic axis orientation and dichroism. This endoscope can potentially be employed for better tissue visualisation and benefit endoscopic investigations and intra-operative guidance.

  10. Threshold thickness for applying diffusion equation in thin tissue optical imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2014-08-01

    We investigated the suitability of the semi-infinite model of the diffusion equation when using diffuse optical imaging (DOI) to image thin tissues with double boundaries. Both diffuse approximation and Monte Carlo methods were applied to simulate light propagation in the thin tissue model with variable optical parameters and tissue thicknesses. A threshold value of the tissue thickness was defined as the minimum thickness in which the semi-infinite model exhibits the same reflected intensity as that from the double-boundary model and was generated as the final result. In contrast to our initial hypothesis that all optical properties would affect the threshold thickness, our results show that only absorption coefficient is the dominant parameter and the others are negligible. The threshold thickness decreases from 1 cm to 4 mm as the absorption coefficient grows from 0.01 mm-1 to 0.2 mm-1. A look-up curve was derived to guide the selection of the appropriate model during the optical diagnosis of thin tissue cancers. These results are useful in guiding the development of the endoscopic DOI for esophageal, cervical and colorectal cancers, among others.

  11. Terahertz spectroscopic investigation of human gastric normal and tumor tissues

    NASA Astrophysics Data System (ADS)

    Hou, Dibo; Li, Xian; Cai, Jinhui; Ma, Yehao; Kang, Xusheng; Huang, Pingjie; Zhang, Guangxin

    2014-09-01

    Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.

  12. Application of in Vitro Biotransformation Data and ...

    EPA Pesticide Factsheets

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha

  13. Pharmacokinetic modeling of 4,4'-methylenedianiline released from reused polyurethane dialyzer potting materials.

    PubMed

    Do Luu, H M; Hutter, J C

    2000-01-01

    4, 4'-Methylenedianiline (MDA) is a hydrolysis degradation product that can be released from polyurethanes commonly used in medical device applications. MDA is mutagenic and carcinogenic in animals. In humans, it is hepatotoxic, a known contact and respiratory allergen, and a suspected carcinogen. A physiologically based pharmacokinetic (PBPK) model was developed to estimate the absorption, distribution, metabolism, and excretion of MDA in patients exposed to MDA leached from the potting materials of hemodialyzers. A worst-case reuse situation and a single use case were investigated. The PBPK model included five tissue compartments: liver, kidney, gastrointestinal tract, slowly perfused tissues, and richly perfused tissues. Physiological and chemical parameters of a healthy individual used in the model were obtained from the literature. The model was calibrated using previously published kinetic studies of IV administered doses of (14) C-MDA to rats. The model was validated using independent data published for MDA-exposed workers. The PBPK results indicated that dialysis patients who are exposed to MDA released from dialyzers (new or reused) could accumulate low levels of MDA and metabolites (total MDA) over time. Copyright 2000 John Wiley & Sons, Inc.

  14. 8.0-Tesla human MR system: temperature changes associated with radiofrequency-induced heating of a head phantom.

    PubMed

    Kangarlu, Allahyar; Shellock, Frank G; Chakeres, Donald W

    2003-02-01

    To investigate if the heat induced in biological tissues by typical radio frequency (RF) energy associated with an 8.0-Tesla magnetic resonance (MR) system causes excessive temperature changes. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast. A series of experiments were conducted with measurements obtained at RF power levels ranging from a specific absorption rate (SAR) of up to 4.0 W/kg for 10 minutes. The highest temperature increases were up to 0.7 degrees C. An inhomogeneous heating pattern was observed. In general, the deep regions within the phantom registered higher temperature increases compared to the peripheral sites. The expectation of an inhomogeneous RF distribution in ultra high field systems (> 4 T) was confirmed. At a frequency of 340 MHz and in-tissue RF wave length of about 10 cm, the RF inhomogeneity was measured to create higher temperatures in deeper regions of a human head phantom compared to peripheral tissues. Our results agree with the computational electromagnetic calculations for such frequencies. Importantly, these experiments indicated that there were no regions of heating that exceeded the current FDA guidelines. Copyright 2003 Wiley-Liss, Inc.

  15. Simulation of fluorescent measurements in the human skin

    NASA Astrophysics Data System (ADS)

    Meglinski, Igor V.; Sinichkin, Yurii P.; Utz, Sergei R.; Pilipenko, Helena A.

    1995-05-01

    Reflectance and fluorescence spectroscopy are successfully used for skin disease diagnostics. Human skin optical parameters are defined by its turbid, scattering properties with nonuniform absorption and fluorescence chromophores distribution, its multilayered structure, and variability under different physiological and pathological conditions. Theoretical modeling of light propagation in skin could improve the understanding of these condition and may be useful in the interpretation of in vivo reflectance and autofluorescence (AF) spectra. Laser application in medical optical tomography, tissue spectroscopy, and phototherapy stimulates the development of optical and mathematical light-tissue interaction models allowing to account the specific features of laser beam and tissue inhomogeneities. This paper presents the version of a Monte Carlo method for simulating of optical radiation propagation in biotissue and highly scattering media, allowing for 3D geometry of a medium. The simulation is based on use of Green's function of medium response to single external pulse. The process of radiation propagation is studied in the area with given boundary conditions, taking into account the processes of reflection and refraction at the boundaries of layers inside the medium under study. Results of Monte Carlo simulation were compared with experimental investigations and demonstrated good agreement.

  16. In vivo tomographic imaging of deep seated cancer using fluorescence lifetime contrast

    PubMed Central

    Rice, William L.; Shcherbakova, Daria M; Verkusha, Vladislav V.; Kumar, Anand T.N.

    2015-01-01

    Preclinical cancer research would benefit from non-invasive imaging methods that allow tracking and visualization of early stage metastasis in vivo. While fluorescent proteins revolutionized intravital microscopy, two major challenges which still remain are tissue autofluorescence and hemoglobin absorption, which act to limit intravital optical techniques to large or subcutaneous tumors. Here we employ time-domain technology for the effective separation of tissue autofluorescence from extrinsic fluorophores, based on their distinct fluorescence lifetimes. Additionally, we employ cancer cells labelled with near infra-red fluorescent proteins (iRFP) to allow deep-tissue imaging. Our results demonstrate that time-domain imaging allows the detection of metastasis in deep-seated organs of living mice with a more than 20-fold increase in sensitivity compared to conventional continuous wave techniques. Furthermore, the distinct fluorescence lifetimes of each iRFP enables lifetime multiplexing of three different tumors, each expressing unique iRFP labels in the same animal. Fluorescence tomographic reconstructions reveal 3D distributions of iRFP720-expressing cancer cells in lungs and brain of live mice, allowing ready longitudinal monitoring of cancer cell fate with greater sensitivity than otherwise currently possible. PMID:25670171

  17. Protective Effect of Aronia Melanocarpa Polyphenols on Cadmium Accumulation in the Body: A Study in a Rat Model of Human Exposure to this Metal.

    PubMed

    Brzoska, Malgorzata M; Galazyn-Sidorczuk, Malgorzata; Jurczuk, Maria; Tomczyk, Michal

    2015-01-01

    Recently a growing attention has been paid to the possibility of using biologically active compounds, including polyphenols, for the prevention of unfavourable effects of exposure to xenobiotics. The study was aimed to investigate, in a female rat model, whether consumption of Aronia melanocarpa polyphenols (AMP) under chronic exposure to cadmium (Cd) decreases the gastrointestinal absorption and body burden of this heavy metal. For this purpose, Cd turnover (apparent absorption, retention in the body, concentration in the blood, soft tissues and bone tissue, total pool in internal organs, faecal and urinary excretion) was evaluated in the female Wistar rats who were administered only a 0.1% aqueous extract of AMP (prepared from the powdered extract containing 65.74% of polyphenols) as drinking fluid or/and Cd in diet (1 and 5 mg/kg) for up to 24 months. AMP administration under the low Cd treatment (1 mg/kg diet) had only a very slight protective impact against this metal accumulation in the organism, whereas polyphenols application under moderate exposure (5 mg Cd/kg diet) significantly decreased apparent absorption and retention in the body, and increased urinary concentration of this xenobiotic, resulting in its lower concentration in the blood and lower accumulation in soft tissues (mainly in the liver and kidneys) and bone tissue. Based on the study, it can be concluded that consumption of polyphenol- rich products may prevent Cd absorption from the diet polluted by this metal and its accumulation in the females' body, and thus also prevent its toxic action.

  18. Heterogeneous and Evolving Distributions of Pluto's Volatile Surface Ices

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Olkin, C. B.; Young, L. A.; Buie, M. W.; Young, E. F.

    2013-10-01

    We report observations of Pluto's 0.8 to 2.4 µm reflectance spectrum with IRTF/SpeX on 70 nights over the 13 years from 2001 to 2013. The spectra show numerous vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Pluto's surface. These absorptions are modulated by the planet's 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Pluto's anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90° from the longitude of maximum CO and N2 absorption. In addition to the diurnal/longitudinal variations, the spectra show longer term trends. On decadal timescales, Pluto's stronger CH4 absorption bands have deepened, while the amplitude of their diurnal variation has diminished, consistent with additional CH4 absorption by high northern latitude regions rotating into view as the sub-Earth latitude moves north (as defined by the system's angular momentum vector). Unlike the CH4 absorptions, Pluto's CO and N2 absorptions are declining over time, suggesting more equatorial or southerly distributions of those species. The authors gratefully thank the staff of IRTF for their tremendous assistance over the dozen+ years of this project. The work was funded in part by NSF grants AST-0407214 and AST-0085614 and NASA grants NAG5-4210 and NAG5-12516.

  19. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.

    PubMed

    Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki

    2006-12-20

    Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.

  20. The Impact of Polymeric Nanoencapsulation on the Bioavailability of Lutein

    NASA Astrophysics Data System (ADS)

    Kamil, Alison

    Lutein, a fat-soluble xanthophyll, contributes partially to the health benefits from consuming plant foods. Like all dietary carotenoids, lutein has a low bioavailability. In addition to increasing the intake of lutein-rich foods to enhance lutein status, delivery of lutein in polymeric nanoparticles (NP) presents a novel approach to enhancing lutein bioavailability. The overall research objective of this project was to investigate, in rats, the impact of nanoencapsulation using poly(lactic-co-glycolic acid) (PLGA) on the pharmacokinetics of lutein. We also used an in vitro cell culture approach utilizing human epithelial colorectal adenocarcinoma (Caco-2) cells grown in both conventional (CONV) and permeable support (PS) systems to investigate the impact of PLGA-NP on the absorption of lutein in intestinal cells. In chapter one, we compared the efficacy of lutein absorption in vitro using Caco-2 cells grown in both CONV and PS systems. We further examined the role of the micelle, the physiological vehicle for lutein within the small intestine, on its intestinal absorption in vitro compared to an organic solvent, ethanol, which is safe and consumed by humans. The finding from this study demonstrated that the CONV system displayed a larger efficacy of lutein uptake by Caco-2 cells. Further, in the PS system, micelle components appeared to facilitate more effective intestinal secretion of lutein. These findings suggest that lutein uptake by Caco-2 cells is subject to the influence of culturing system (CONV vs. PS) and delivery vehicle (ethanol vs. micelle). Chapter two examined the impact of PLGA-NP in rats on lutein pharmacokinetics in plasma and distribution in selected tissues as compared to free lutein. We also investigated the effect of nanoencapsulation on the absorption of lutein in intestinal cells compared to a more physiological vehicle, the micelle, using the PS method. In addition, we explored the need of additional micelles for the ultimate absorption of lutein loaded in a water soluble NP. The findings of the rat study indicated that, compared to free lutein, PLGA-NP improved the pharmacokinetics (Cmax and AUC) of lutein in the plasma of rats and in general promoted lutein accumulation in mesenteric adipose tissue and spleen but not liver. Yet, compared to micellized lutein, although NP improved the maximal concentration of lutein in the plasma of rats as well as in selected tissues it decreased the cell uptake and secretion of lutein in Caco-2 cells. The negative effect of the NP on cell uptake and secretion was partially remedied by the addition of micelle components. These findings suggest that the delivery of lutein within polymeric NP appears to be a promising approach to improving the bioavailability of lutein in rats. The inconsistent results between the rat and cell culture models warrant further investigations to determine which approach better predicts responses in humans. Further, bile salts and phospholipids, which are necessary to stimulate synthesis and secretion of chylomicrons, appear to facilitate more effective intestinal secretion of PLGA-NP lutein. In summary, with Caco-2 cells cultured in the PS system reliably grown to display phenotypes and functions of enterocytes in the small intestine, this in vitro platform enables the generation of information that is closer to the physiology of the absorptive enterocytes. However, although the CONV system has the physiological attributes of colonic tissue, it appeared to display a greater efficacy of lutein uptake by Caco-2 cells which can provide a rapid preliminary tool for methodology development for nutrient absorption studies. Further, the delivery of lutein in polymeric NP appears to be a promising approach to improve the bioavailability of lutein in vivo but raises issues with regard to the comparability and the predictive value of in vitro models to in vivo responses.

  1. Plasma pharmacokinetics and synovial concentrations of S-flurbiprofen plaster in humans.

    PubMed

    Yataba, Ikuko; Otsuka, Noboru; Matsushita, Isao; Kamezawa, Miho; Yamada, Ichimaro; Sasaki, Sigeru; Uebaba, Kazuo; Matsumoto, Hideo; Hoshino, Yuichi

    2016-01-01

    The purpose of this study is to investigate the pharmacokinetics and deep tissue penetration capability of the newly developed S-flurbiprofen plaster (SFPP) in humans. Study 1: SFPP tape-type patch (2-60 mg) was applied to the lower back for 24 h in healthy adult volunteers. S-flurbiprofen (SFP) plasma concentration was measured over time to examine SFP pharmacokinetics. Study 2: SFPP (20 mg) was applied for 12 h to the affected knee of osteoarthritis (OA) patients who were scheduled for total knee arthroplasty. Deep tissues (synovial tissue and synovial fluid) were collected during surgery to compare SFP concentrations after application of SFPP or a commercially available flurbiprofen (FP) gel-type patch. Study 1: The plasma concentration of SFP was sustained during 24-h topical application of the SFPP, showing a high percutaneous absorption ratio of 51.4-72.2 %. Cmax and AUC0-∞ were dose-proportional. Study 2: After application of the SFPP for 12 h, SFP concentrations in the synovial tissue and synovial fluid were 14.8-fold (p = 0.002) and 32.7-fold (p < 0.001) higher, respectively, than those achieved by the FP patch. Sustained plasma concentration of SFP and high percutaneous absorption ratio was observed after 24-h topical application of the SFPP. Compared to the FP patch, the SFPP showed superior percutaneous absorption and greater tissue penetration of SFP into the synovial tissue. Greater tissue penetration of the SFPP seemed to be primarily due to its formulation. Thus, SFPP is expected to show higher efficacy for the treatment of knee OA.

  2. Nutrient Distribution and Absorption in the Colonial Hydroid Podocoryna carnea Is Sequentially Diffusive and Directional.

    PubMed

    Buss, Leo W; Anderson, Christopher P; Perry, Elena K; Buss, Evan D; Bolton, Edward W

    2015-01-01

    The distribution and absorption of ingested protein was characterized within a colony of Podocoryna carnea when a single polyp was fed. Observations were conducted at multiple spatial and temporal scales at three different stages of colony ontogeny with an artificial food item containing Texas Red conjugated albumin. Food pellets were digested and all tracer absorbed by digestive cells within the first 2-3 hours post-feeding. The preponderance of the label was located in the fed polyp and in a transport-induced diffusion pattern surrounding the fed polyp. After 6 hours post-feeding particulates re-appeared in the gastrovascular system and their absorption increased the area over which the nutrients were distributed, albeit still in a pattern that was centered on the fed polyp. At later intervals, tracer became concentrated in some stolon tips, but not in others, despite the proximity of these stolons either to the fed polyp or to adjacent stolons receiving nutrients. Distribution and absorption of nutrients is sequentially diffusive and directional.

  3. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector

    PubMed Central

    Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge

    2017-01-01

    Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900

  4. Pharmacokinetics of vephylline--a new N-substituted theophylline derivative.

    PubMed

    Staneva, D; Mihailova, D; Astroug, H; Prodanova, K; Micheva, M

    1988-01-01

    Vephylline (7,2-bis-2-hydroxyethylamino-1, 3-dimethylxanthine tartarate) is a xanthine derivative with high bronchodilating activity, low toxicity, and weak effects on the central nervous system. The aim of this study is to determine the pharmacokinetic parameters of vephylline after intravenous and oral (in solution and in tablets) administration to rabbits. Vephylline (dose 50 mg/kg b.w. intravenousely and orally in solution and dose 53.5 mg/kg b.w. in the form of tablets) is administered to the rabbits in an autocontrol crossover design at 7-days intervals. After the intravenous administration the distribution is relatively fast (t1/2 alpha = 3.28h). High values of the apparent volume of distribution--12.15 1/kg suggest tissue accumulation. Elimination is considerably slower (t1/2 beta = 19,00 h) than distribution. After oral administration of the drug in solution the absorption half-life is short and the bioavailability is relatively high. Peak plasma levels are attained at the first hour. The differences in the distribution and elimination patterns for vephylline and theophyline could determine a longer effect for the new bronchodilating drug. The results are discussed in regard to the future clinical application of vephylline.

  5. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertelli, N.; Valeo, E. J.; Green, D. L.

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  6. Full-wave simulations of ICRF heating regimes in toroidal plasma with non-Maxwellian distribution functions

    DOE PAGES

    Bertelli, N.; Valeo, E. J.; Green, D. L.; ...

    2017-04-03

    At the power levels required for significant heating and current drive in magnetically-confined toroidal plasma, modification of the particle distribution function from a Maxwellian shape is likely (Stix 1975 Nucl. Fusion 15 737), with consequent changes in wave propagation and in the location and amount of absorption. In order to study these effects computationally, both the finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the full-wave, hot-plasma toroidal simulation code TORIC (Brambilla 1999 Plasma Phys. Control. Fusion 41 1 and Brambilla 2002 Plasma Phys. Control. Fusion 44 2423), have been extended to allow the prescription of arbitrary velocity distributionsmore » of the form f(v(parallel to), v(perpendicular to) , psi, theta). For hydrogen (H) minority heating of a deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies significantly with changes in parallel temperature but is essentially independent of perpendicular temperature. On the other hand, for HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional beam ion absorption varies mainly with changes in the perpendicular temperature. The evaluation of the wave-field and power absorption, through the full wave solver, with the ion distribution function provided by either a Monte-Carlo particle and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas. Non-Maxwellian effects generally tend to increase the absorption with respect to the equivalent Maxwellian distribution.« less

  7. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    NASA Astrophysics Data System (ADS)

    Czapla-Masztafiak, J.; Lis, G. J.; Gajda, M.; Jasek, E.; Czubek, U.; Bolechała, F.; Borca, C.; Kwiatek, W. M.

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe3+ is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe3+ form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  8. A new Monte Carlo code for light transport in biological tissue.

    PubMed

    Torres-García, Eugenio; Oros-Pantoja, Rigoberto; Aranda-Lara, Liliana; Vieyra-Reyes, Patricia

    2018-04-01

    The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.

  9. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.

    PubMed

    Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae

    2018-04-01

    We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.

  10. [Lasers in dentistry. Part B--Interaction with biological tissues and the effect on the soft tissues of the oral cavity, the hard tissues of the tooth and the dental pulp].

    PubMed

    Moshonov, J; Stabholz, A; Leopold, Y; Rosenberg, I; Stabholz, A

    2001-10-01

    The interaction of laser energy with target tissue is mainly determined by two non operator-dependent factors: the specific wavelength of the laser and the optical properties of the target tissues. Power density, energy density, pulse repetition rate, pulse duration and the mode of energy transferring to the tissue are dictated by the clinician. Combination of these factors enables to control optimal response for the clinical application. Four responses are described when the laser beam hits the target tissue: reflection, absorption, transmission and scattering. Three main mechanisms of interaction between the laser and the biological tissues exist: photothermic, photoacoustic and photochemical. The effect of lasers on the soft tissues of the oral cavity is based on transformation of light energy into thermal energy which, in turn heats the target tissue to produce the desirable effect. In comparison to the scalpel used in surgical procedures, the laser beam is characterized by tissue natural sterility and by minimum bleeding during the surgical procedures due to blood vessels welding. The various effects achieved by the temperature elevation during the laser application on the soft tissue are: I. coagulation and hemostasis II. tissue sterilization III. tissue welding IV. incision and excision V. ablation and vaporization Ablation and melting are the two basic modalities by which the effect of lasers on the hard tissues of the tooth is produced. When discussing the effect of laser on dental hard tissues, the energy absorption in the hydroxyapatite plays a major role in addition to its absorption in water. When laser energy is absorbed in the water of the hard tissues, a rapid volume expansion of the evaporating water occurs as a result of a substantial temperature elevation in the interaction site. Microexplosions are produced causing hard tissue disintegration. If pulp temperatures are raised beyond 5 degrees C level, damage to the dental pulp is irreversible. Histologically, after laser ablation, presence of odontoblastic nuclei is important. Consistency and composition of the intracellular tissue is another factor influencing cell viability. If heat is intensive and exists for an extended time, the consistency of the intracellular ground substance may not be preserved. Accordingly, the application of excessive energy densities has been shown to result in significant damage to pulp tissue and in particular to odontoblasts. Studies showed that the use of Er:YAG laser to treat dental hard tissues is both safe and effective for caries removal, cavity preparation and enamel etching.

  11. Energy absorption buildup factors, exposure buildup factors and Kerma for optically stimulated luminescence materials and their tissue equivalence for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Badiger, N. M.

    2014-11-01

    Optically stimulated luminescence (OSL) materials are sensitive dosimetric materials used for precise and accurate dose measurement for low-energy ionizing radiation. Low dose measurement capability with improved sensitivity makes these dosimeters very useful for diagnostic imaging, personnel monitoring and environmental radiation dosimetry. Gamma ray energy absorption buildup factors and exposure build factors were computed for OSL materials using the five-parameter Geometric Progression (G-P) fitting method in the energy range 0.015-15 MeV for penetration depths up to 40 mean free path. The computed energy absorption buildup factor and exposure buildup factor values were studied as a function of penetration depth and incident photon energy. Effective atomic numbers and Kerma relative to air of the selected OSL materials and tissue equivalence were computed and compared with that of water, PMMA and ICRU standard tissues. The buildup factors and kerma relative to air were found dependent upon effective atomic numbers. Buildup factors determined in the present work should be useful in radiation dosimetry, medical diagnostics and therapy, space dosimetry, accident dosimetry and personnel monitoring.

  12. THE ACQUISITION AND APPLICATION OF ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION (ADME) DATA IN AGRICULTURAL CHEMICAL SAFETY ASSESSMENTS

    EPA Science Inventory

    A multi-sector international group of government, academic, and industry scientists has developed a proposal for an improved testing scheme for assessing the safety of crop protection chemicals. Incorporation of pharmacokinetic studies describing the absorption, distribution, me...

  13. Diffuse Optical Imaging and Spectroscopy of the Human Breast for Quantitative Oximetry with Depth Resolution

    NASA Astrophysics Data System (ADS)

    Yu, Yang

    Near-infrared spectral imaging for breast cancer diagnostics and monitoring has been a hot research topic for the past decade. Here we present instrumentation for diffuse optical imaging of breast tissue with tandem scan of a single source-detector pair with broadband light in transmission geometry for tissue oximetry. The efforts to develop the continuous-wave (CW) domain instrument have been described, and a frequency-domain (FD) system is also used to measure the bulk tissue optical properties and the breast thickness distribution. We also describe the efforts to improve the data processing codes in the 2D spatial domain for better noise suppression, contrast enhancement, and spectral analysis. We developed a paired-wavelength approach, which is based on finding pairs of wavelength that feature the same optical contrast, to quantify the tissue oxygenation for the absorption structures detected in the 2D structural image. A total of eighteen subjects, two of whom were bearing breast cancer on their right breasts, were measured with this hybrid CW/FD instrument and processed with the improved algorithms. We obtained an average tissue oxygenation value of 87% +/- 6% from the healthy breasts, significantly higher than that measured in the diseased breasts (69% +/- 14%) (p < 0.01). For the two diseased breasts, the tumor areas bear hypoxia signatures versus the remainder of the breast, with oxygenation values of 49 +/- 11% (diseased region) vs. 61 +/- 16% (healthy regions) for the breast with invasive ductal carcinoma, and 58 +/- 8% (diseased region) vs 77 +/- 11% (healthy regions) for ductal carcinoma in situ. Our subjects came from various ethnical/racial backgrounds, and two-thirds of our subjects were less than thirty years old, indicating a potential to apply the optical mammography to a broad population. The second part of this thesis covers the topic of depth discrimination, which is lacking with our single source-detector scan system. Based on an off-axis detection method, we incorporated an additional detector to acquire a second set of image independently. We then proposed an inner-product approach to associate absorption structures detected in the on-axis image with those detected in the off-axis image. The spatial coordinate difference for the same structure between the two images is directly related to the depth of the corresponding structure, and the monotonic dependence can be quantified by perturbation theory of the diffusion equation. A preliminary phantom study shows good agreement between the measured and the actual depth of embedded structures, and human measurements show the capability to assign a depth coordinate to the more complex absorption structures inside the breast.

  14. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  15. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries

    PubMed Central

    Zhang, Hairong; Salo, Daniel; Kim, David M.; Komarov, Sergey; Tai, Yuan-Chuan; Berezin, Mikhail Y.

    2016-01-01

    Abstract. Measurement of photon penetration in biological tissues is a central theme in optical imaging. A great number of endogenous tissue factors such as absorption, scattering, and anisotropy affect the path of photons in tissue, making it difficult to predict the penetration depth at different wavelengths. Traditional studies evaluating photon penetration at different wavelengths are focused on tissue spectroscopy that does not take into account the heterogeneity within the sample. This is especially critical in shortwave infrared where the individual vibration-based absorption properties of the tissue molecules are affected by nearby tissue components. We have explored the depth penetration in biological tissues from 900 to 1650 nm using Monte–Carlo simulation and a hyperspectral imaging system with Michelson spatial contrast as a metric of light penetration. Chromatic aberration-free hyperspectral images in transmission and reflection geometries were collected with a spectral resolution of 5.27 nm and a total acquisition time of 3 min. Relatively short recording time minimized artifacts from sample drying. Results from both transmission and reflection geometries consistently revealed that the highest spatial contrast in the wavelength range for deep tissue lies within 1300 to 1375 nm; however, in heavily pigmented tissue such as the liver, the range 1550 to 1600 nm is also prominent. PMID:27930773

  16. Unique insights into the intestinal absorption, transit, and subsequent biodistribution of polymer-derived microspheres

    PubMed Central

    Reineke, Joshua J.; Cho, Daniel Y.; Dingle, Yu-Ting; Morello, A. Peter; Jacob, Jules; Thanos, Christopher G.; Mathiowitz, Edith

    2013-01-01

    Polymeric microspheres (MSs) have received attention for their potential to improve the delivery of drugs with poor oral bioavailability. Although MSs can be absorbed into the absorptive epithelium of the small intestine, little is known about the physiologic mechanisms that are responsible for their cellular trafficking. In these experiments, nonbiodegradable polystyrene MSs (diameter range: 500 nm to 5 µm) were delivered locally to the jejunum or ileum or by oral administration to young male rats. Following administration, MSs were taken up rapidly (≤5 min) by the small intestine and were detected by transmission electron microscopy and confocal laser scanning microscopy. Gel permeation chromatography confirmed that polymer was present in all tissue samples, including the brain. These results confirm that MSs (diameter range: 500 nm to 5 µm) were absorbed by the small intestine and distributed throughout the rat. After delivering MSs to the jejunum or ileum, high concentrations of polystyrene were detected in the liver, kidneys, and lungs. The pharmacologic inhibitors chlorpromazine, phorbol 12-myristate 13-acetate, and cytochalasin D caused a reduction in the total number of MSs absorbed in the jejunum and ileum, demonstrating that nonphagocytic processes (including endocytosis) direct the uptake of MSs in the small intestine. These results challenge the convention that phagocytic cells such as the microfold cells solely facilitate MS absorption in the small intestine. PMID:23922388

  17. Distributed Bragg Reflectors With Reduced Optical Absorption

    DOEpatents

    Klem, John F.

    2005-08-16

    A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.

  18. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks.

    PubMed

    Kettunen, H; Peuranen, S; Tiihonen, K; Saarinen, M

    2001-02-01

    The efficiency of betaine absorption into small intestinal slices of broiler chicks was studied in vitro with 14C-labeled betaine. The relative proportion of Na+-coupled betaine uptake, as well as the total uptake capacity was larger in the duodenum than in the jejunum. Dietary betaine increased the Na+-coupled uptake in the duodenum. In in vivo-experiments, methyl-14C-labeled betaine, methionine, or choline was fed to broiler chicks. Betaine appeared in the blood more rapidly, and reached a higher total concentration than choline or methionine. The data suggest that choline and methionine were associated with plasma lipoproteins whereas betaine remained free in the plasma. The label distribution in liver, kidney, and intestinal tissues was studied 24 h after label ingestion. Most of the label from betaine was found in the aquaeous phase in the muscle, while in the liver and jejunum the label from betaine was distributed more evenly between the aquaeous, lipid, and protein phases. Label from choline accumulated in the lipid fraction, particularly so in the liver, whereas label from methionine showed a more variable distribution pattern. The distribution results are interpreted in terms of specific roles of betaine, choline, and methionine in methyl group metabolism.

  19. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourant, J.R.; Boyer, J.; Johnson, T.M.

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.« less

  20. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the year.

  1. Experimental and simulated study of a composite structure metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Chen, Jiajun

    2017-11-01

    In this paper, a high performance metamaterial absorber is designed and experimental studied. Measured results indicate that a perfect absorption band and a short-wavelength absorption peak are achieved in the near-infrared spectrum. Current strength distributions reveal that the absorption band is excited by the cavity resonance. And electric field distributions show that the short-wavelength absorption peak is excited by the horizontal coupled of localized surface plasmon (LSP) modes near hole edges. On the one hand, the absorption property of the measured metamaterial absorber can be enhanced through optimizing the structural parameters (a, w, and H). On the other hand, the absorption property is sensitive to the change of refractive index of environmental medias. A sensing scheme is proposed for refractive index detecting based on the figure of merit (FOM) value. Measured results indicate that the proposed sensing scheme can achieve high FOM value with different environmental medias (water, glucose solution).

  2. Low-cost 420nm blue laser diode for tissue cutting and hemostasis

    NASA Astrophysics Data System (ADS)

    Linden, Kurt J.

    2016-03-01

    This paper describes the use of a 420 nm blue laser diode for possible surgery and hemostasis. The optical absorption of blood-containing tissue is strongly determined by the absorption characteristics of blood. Blood is primarily comprised of plasma (yellowish extracellular fluid that is approximately 95% water by volume) and formed elements: red blood cells (RBCs), white blood cells (WBCs) and platelets. The RBCs (hemoglobin) are the most numerous, and due to the spectral absorption characteristics of hemoglobin, the optical absorption of blood has a strong relative maximum value in the 420 nm blue region of the optical spectrum. Small, low-cost laser diodes emitting at 420 nm with tens of watts of continuous wave (CW) optical power are becoming commercially available. Experiments on the use of such laser diodes for tissue cutting with simultaneous hemostasis were carried out and are here described. It was found that 1 mm deep x 1 mm wide cuts can be achieved in red meat at a focused laser power level of 3 W moving at a velocity of ~ 1 mm/s. The peripheral necrosis and thermal damage zone extended over a width of approximately 0.5 mm adjacent to the cuts. Preliminary hemostasis experiments were carried out with fresh equine blood in Tygon tubing, where it was demonstrated that cauterization can occur in regions of intentional partial tubing puncture.

  3. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    NASA Astrophysics Data System (ADS)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  4. An accurate homogenized tissue phantom for broad spectrum autofluorescence studies: a tool for optimizing quantum dot-based contrast agents

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu; Wilson, Brian C.

    2008-02-01

    We are investigating the use of ZnS-capped CdSe quantum dot (QD) bioconjugates combined with fluorescence endoscopy for improved early cancer detection in the esophagus, colon and lung. A major challenge in using fluorescent contrast agents in vivo is to extract the relevant signal from the tissue autofluorescence (AF). The present studies are aimed at maximizing the QD signal to AF background ratio (SBR) to facilitate detection. These contrast optimization studies require optical phantoms that simulate tissue autofluorescence, absorption and scattering over the entire visible spectrum, while allowing us to control the optical thickness. We present an optical phantom made of fresh homogenized tissue diluted in water. The homogenized tissue is poured into a clear polymer tank designed to hold a QD-loaded silica capillary in its center. Because of the non-linear effects of absorption and scattering on measured autofluorescence, direct comparison between results obtained using tissue phantoms of different concentration is not possible. We introduce mathematical models that make it possible to perform measurements on diluted tissue homogenates and subsequently extrapolate the results to intact (non-diluted) tissue. Finally, we present preliminary QD contrast data showing that the 380-420 nm spectral window is optimal for surface QD imaging.

  5. Current understanding of iron homeostasis.

    PubMed

    Anderson, Gregory J; Frazer, David M

    2017-12-01

    Iron is an essential trace element, but it is also toxic in excess, and thus mammals have developed elegant mechanisms for keeping both cellular and whole-body iron concentrations within the optimal physiologic range. In the diet, iron is either sequestered within heme or in various nonheme forms. Although the absorption of heme iron is poorly understood, nonheme iron is transported across the apical membrane of the intestinal enterocyte by divalent metal-ion transporter 1 (DMT1) and is exported into the circulation via ferroportin 1 (FPN1). Newly absorbed iron binds to plasma transferrin and is distributed around the body to sites of utilization with the erythroid marrow having particularly high iron requirements. Iron-loaded transferrin binds to transferrin receptor 1 on the surface of most body cells, and after endocytosis of the complex, iron enters the cytoplasm via DMT1 in the endosomal membrane. This iron can be used for metabolic functions, stored within cytosolic ferritin, or exported from the cell via FPN1. Cellular iron concentrations are modulated by the iron regulatory proteins (IRPs) IRP1 and IRP2. At the whole-body level, dietary iron absorption and iron export from the tissues into the plasma are regulated by the liver-derived peptide hepcidin. When tissue iron demands are high, hepcidin concentrations are low and vice versa. Too little or too much iron can have important clinical consequences. Most iron deficiency reflects an inadequate supply of iron in the diet, whereas iron excess is usually associated with hereditary disorders. These disorders include various forms of hemochromatosis, which are characterized by inadequate hepcidin production and, thus, increased dietary iron intake, and iron-loading anemias whereby both increased iron absorption and transfusion therapy contribute to the iron overload. Despite major recent advances, much remains to be learned about iron physiology and pathophysiology. © 2017 American Society for Nutrition.

  6. Selenium inhibits the phytotoxicity of mercury in garlic (Allium sativum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jiating; Gao, Yuxi, E-mail: gaoyx@ihep.ac.cn; Li, Yu-Feng

    2013-08-15

    To investigate the influence of selenium on mercury phytotoxicity, the levels of selenium and mercury were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS) in garlic tissues upon exposure to different dosages of inorganic mercury (Hg{sup 2+}) and selenite (SeO{sub 3}{sup 2−}) or selenate (SeO{sub 4}{sup 2−}). The distributions of selenium and mercury were examined with micro-synchrotron radiation X-ray fluorescence (μ-SRXRF), and the mercury speciation was investigated with micro-X-ray absorption near edge structure (μ-XANES). The results show that Se at higher exposure levels (>1 mg/L of SeO{sub 3}{sup 2−} or SeO{sub 4}{sup 2−}) would significantly inhibit the absorption and transportation ofmore » Hg when Hg{sup 2+} levels are higher than 1 mg/L in culture media. SeO{sub 3}{sup 2−} and SeO{sub 4}{sup 2−} were found to be equally effective in reducing Hg accumulation in garlic. The inhibition of Hg uptake by Se correlates well with the influence of Se on Hg phytotoxicity as indicated by the growth inhibition factor. Elemental imaging using μ-SRXRF also shows that Se could inhibit the accumulation and translocation of Hg in garlic. μ-XANES analysis shows that Hg is mainly present in the forms of Hg–S bonding as Hg(GSH){sub 2} and Hg(Met){sub 2}. Se exposure elicited decrease of Hg–S bonding in the form of Hg(GSH){sub 2}, together with Se-mediated alteration of Hg absorption, transportation and accumulation, may account for attenuated Hg phytotoxicity by Se in garlic. -- Highlights: ► Hg phytotoxicity can be mitigated by Se supplement in garlic growth. ► Se can inhibit the accumulation and transportation of Hg in garlic tissues. ► Localization and speciation of Hg in garlic can be modified by Se.« less

  7. Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues: 'traps for new users'.

    PubMed

    Zohdi, Vladislava; Whelan, Donna R; Wood, Bayden R; Pearson, James T; Bambery, Keith R; Black, M Jane

    2015-01-01

    Fourier Transform Infrared (FTIR) micro-spectroscopy is an emerging technique for the biochemical analysis of tissues and cellular materials. It provides objective information on the holistic biochemistry of a cell or tissue sample and has been applied in many areas of medical research. However, it has become apparent that how the tissue is handled prior to FTIR micro-spectroscopic imaging requires special consideration, particularly with regards to methods for preservation of the samples. We have performed FTIR micro-spectroscopy on rodent heart and liver tissue sections (two spectroscopically very different biological tissues) that were prepared by desiccation drying, ethanol substitution and formalin fixation and have compared the resulting spectra with that of fully hydrated freshly excised tissues. We have systematically examined the spectra for any biochemical changes to the native state of the tissue caused by the three methods of preparation and have detected changes in infrared (IR) absorption band intensities and peak positions. In particular, the position and profile of the amide I, key in assigning protein secondary structure, changes depending on preparation method and the lipid absorptions lose intensity drastically when these tissues are hydrated with ethanol. Indeed, we demonstrate that preserving samples through desiccation drying, ethanol substitution or formalin fixation significantly alters the biochemical information detected using spectroscopic methods when compared to spectra of fresh hydrated tissue. It is therefore imperative to consider tissue preparative effects when preparing, measuring, and analyzing samples using FTIR spectroscopy.

  8. FISSION PRODUCT METABOLISM AND RESPONSE IN LABORATORY AND DOMESTIC ANIMALS AND PLANNING STUDY FOR EVALUATION OF RADIOACTIVE CONTAMINATION OF THE FOOD CHAIN. Progress Report April 1, 1961-January 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comar, C.L.; Wasserman, R.H.; Lengemann, F.W.

    Studies are reported of the absorption, transport, and movement of Ca and Sr across membranes and intestinal tissue, and of the skeletal uptake and urinary excretion of these two elements. The behavior of lactose-1-C/sup 14/ within the mucosal epithelium of the ileum is described. Radioiodine metabolism is studied. The distribution of Cs and Sr in milk products is investigated. Factors sffecting the retention and metabolism of Cs/sup 137/ are analyzed. The construction and description of a whole-body counting facility is given. Examinations of radioactive contamination of the food chain are outlined. (T.F.H.)

  9. Toxicity and tissue distribution of 2,2',4,4'- and 3,3',4, 4'-tetrachlorobiphenyls in houseflies.

    PubMed

    Saghir, S A; Hansen, L G

    1999-02-01

    Insects selectively retain different polychlorinated biphenyls (PCBs) which are then contributed to the food chain. To quantitate specific differences, adult female houseflies (Musca domestica L.) were topically dosed with 0.5 microgram of two structurally distinct PCB congeners (14C-2,2',4,4'-tetraCB or 14C-3,3',4,4'-tetraCB). Total radioactivity in the acetone rinse of intact flies, several tissues, and excrement was determined at 11 time points over a 48-h period. Ninety-seven percent of the applied 2,2',4,4'-tetraCB disappeared from the surface following an initial rapid absorption of 79% within 3 h. The absorbed 2,2',4,4'-tetraCB was immediately found within the thoracic cuticle, then spreading laterally to the abdominal cuticle and head, through the wax layers, or penetrating to the alimentary canal and ovaries. Penetration of 3,3',4, 4'-tetraCB was markedly slower; even though 87% of the applied dose was absorbed within 48 h, only 19% of the dose penetrated into the fly body within the first 3 h. This PCB very slowly distributed into the tissues. Toxicities of the sublethal doses were determined by monitoring changes in activity of houseflies following dosing with 0. 5 microg of radioactive PCBs. Flies treated with 2,2',5-triCB and 3, 3',4,4'-tetraCB remained very active, whereas 2,2',4, 4'-tetraCB-treated flies were less active, consistent with the previously reported toxicity of this congener. Copyright 1999 Academic Press.

  10. Determination of gold nanoparticle shape from absorption spectroscopy and ellipsometry

    NASA Astrophysics Data System (ADS)

    Battie, Yann; Izquierdo-Lorenzo, Irene; Resano-Garcia, Amandine; Naciri, Aotmane En; Akil, Suzanna; Adam, Pierre Michel; Jradi, Safi

    2017-11-01

    A new methodology is developed to determine the shape distribution of gold nanoparticles (NPs) from optical spectroscopic measurements. Indeed, the morphology of Au colloids is deduced by fitting their absorption spectra with an effective medium theory which takes into account the nanoparticle shape distribution. The same procedure is applied to ellipsometric measurements recorded on photoresist films which contain Au NPs. Three spaces (L2, r2, P2) are introduced to interpret the NPs shape distribution. In the P2 space, the sphericity, the prolacity and the oblacity estimators are proposed to quantify the shape of NPs. The r2 space enables the determination of the NP aspect ratio distribution. The distributions determined from optical spectroscopy were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting absorption or ellipsometric spectra with an adequate effective medium theory, provides a robust tool for measuring the shape and concentration of metallic NPs.

  11. Pharmacokinetics, bioavailability, tissue distribution and excretion of tangeretin in rat.

    PubMed

    Hung, Wei-Lun; Chang, Wei-Shan; Lu, Wen-Chien; Wei, Guor-Jien; Wang, Yu; Ho, Chi-Tang; Hwang, Lucy Sun

    2018-04-01

    Tangeretin, 4',5,6,7,8-pentamethoxyflavone, is one of the major polymethoxyflavones (PMFs) existing in citrus fruits, particularly in the peels of sweet oranges and mandarins. Tangeretin has been reported to possess several beneficial bioactivities including anti-inflammatory, anti-proliferative and neuroprotective effects. To achieve a thorough understanding of the biological actions of tangeretin in vivo, our current study is designed to investigate the pharmacokinetics, bioavailability, distribution and excretion of tangeretin in rats. After oral administration of 50 mg/kg bw tangeretin to rats, the C max , T max and t 1/2 were 0.87 ± 0.33 μg/mL, 340.00 ± 48.99 min and 342.43 ± 71.27 min, respectively. Based on the area under the curves (AUC) of oral and intravenous administration of tangeretin, calculated absolute oral bioavailability was 27.11%. During tissue distribution, maximum concentrations of tangeretin in the vital organs occurred at 4 or 8 h after oral administration. The highest accumulation of tangeretin was found in the kidney, lung and liver, followed by spleen and heart. In the gastrointestinal tract, maximum concentrations of tangeretin in the stomach and small intestine were found at 4 h, while in the cecum, colon and rectum, tangeretin reached the maximum concentrations at 12 h. Tangeretin excreted in the urine and feces was recovered within 48 h after oral administration, concentrations were only 0.0026% and 7.54%, respectively. These results suggest that tangeretin was mainly eliminated as metabolites. In conclusion, our study provides useful information regarding absorption, distribution, as well as excretion of tangeretin, which will provide a good base for studying the mechanism of its biological effects. Copyright © 2017. Published by Elsevier B.V.

  12. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Pinto, Rosanna; Lovisolo, Giorgio A.; Cavagnaro, Marta

    2012-04-01

    In microwave thermal ablation (MTA) therapy, the dielectric properties of the target tissue play an important role in determining the radiation properties of the microwave ablation antenna. In this work, the ex vivo dielectric properties of bovine liver were experimentally characterized as a function of the temperature during MTA at the frequency of 2.45 GHz. The obtained data were compared with measurements performed at the end of the MTA treatment, and considering the heating achieved with a temperature-controlled water bath. Finally, measured data were used to perform a numerical study evaluating the effects of changes in tissue's dielectric properties during the MTA treatment on the radiation properties of a microwave interstitial ablation antenna, as well as on the obtained thermal lesion. Results evidenced a significant decrease of both relative permittivity (about 38%) and electric conductivity (about 33%) in the tissue during treatment as the temperature increased to over 60 °C, with a dramatic drop when the temperature approached 100 °C. Moreover, the numerical study evidenced that changes in tissue's dielectric properties during the MTA treatment affect the distribution of the power absorbed by the tissue (specific absorption rate—SAR, W kg-1) surrounding the microwave interstitial ablation antenna, leading to a peak SAR up to 20% lower, as well as to a thermal lesion up to 8% longer. This work may represent a preliminary step towards the future development of a procedure for MTA treatment planning.

  13. X-ray micro-tomography for investigations of brain tissues on cellular level

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based phase contrast data.

  14. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can introduce absolute errors in estimates of the midvisible single-scattering albedo of up to 0.05 for realistic dry particle size distributions. Our study also indicates that this error increases with increasing wavelength. The potential errors in aerosol single-scattering albedo derived here are comparable in magnitude and in addition to uncertainties in single-scattering albedo estimates that are based on measurements of aerosol light absorption and scattering.

  15. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  16. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.

    PubMed

    Ibitoye, Ayo Zaccheaus; Nwoye, Ephraim Okeke; Aweda, Adebayo Moses; Oremosu, Ademola A; Anunobi, Chidozie Charles; Akanmu, Nurudeen Olanrewaju

    2016-12-01

    To study the efficiency of a dual slot antenna with a floating metallic sleeve on the ablation of different ex vivo bovine tissues. COMSOL Multiphysics® version 4.4 (Stockholm, Sweden), which is based on finite element methods (FEM), was used to design and simulate monopole and dual slot with sleeve antennas. Power, specific absorption rate (SAR), temperature and necrosis distributions in the selected tissues were determined using these antennas. Monopole and dual slot with sleeve antennas were designed, simulated, constructed and applied in this study based on a semi-rigid coaxial cable. Ex vivo experiments were performed on liver, lung, muscle and heart of bovine obtained from a public animal slaughter house. The microwave energy was delivered using a 2.45 GHz solid-state microwave generator at 40 W for 3, 5 and 10 min. Aspect ratio, ablation length and ablation diameter were also determined on ablated tissues and compared with simulated results. Student's t-test was used to compare the statistically significant difference between the performance of the two antennas. The dual slot antenna with sleeve produces localised microwave energy better than the monopole antenna in all ablated tissues using simulation and experimental validation methods. There were significant differences in ablation diameter and aspect ratio between the sleeve antenna and monopole antenna. Additionally, there were no significant differences between the simulation and experimental results. This study demonstrated that the dual slot antenna with sleeve produced larger ablation zones and higher sphericity index in ex vivo bovine tissues with minimal backward heating when compared with the monopole antenna.

  17. Spectrometric characteristics and tumor-affinity of a novel photosensitizer: mono-l-aspartyl aurochlorin e6 (Au-NPe6).

    PubMed

    Ishizumi, Taichiro; Aizawa, Katsuo; Tsuchida, Takaaki; Okunaka, Tetsuya; Kato, Harubumi

    2004-12-01

    Photodiagnosis and photodynamic therapy with photosensitizers can be indicated only for tumors of the superficial type, because these approaches utilizing visible light are limited by said light penetrability. To overcome this disadvantage, we innovated a novel photosensitizer, mono-l-aspartyl aurochlorin e6 (Au-NPe6), by incorporating a gold atom in the center of tetrapyrrole ring of NPe6 with a coordination bond. The gold atom in Au-NPe6 plays a role as an X-ray interceptor to detect deeply sited tumors. In this study, the absorption spectrum of novel Au-NPe6 in the diagnosis of deeply sited tumors was investigated, and the results were compared with the parent photosensitizer NPe6. Furthermore, the tumor-affinity of Au-NPe6 was evaluated using atomic absorption spectrometry. Despite the fact that both photosensitizers display a difference in the absorption spectrum, waveform changes of either photosensitizer with human serum albumin established a saturation point at a molar ratio of 1:1. The results indicate that it is highly possible that Au-NPe6 bound with albumin at a molar ratio (1:1) similar to NPe6. The accumulation rate of gold in tumor tissues was always significantly (p<0.05) higher than that in normal muscle tissues during the observation terms. Moreover, absorption spectra of tumor-tissue homogenates obtained from tumor-bearing mice after Au-NPe6 administration revealed a common peak with a wavelength equivalent to that of albumin-bond Au-NPe. This result suggests that the gold atom and NPe6 probably remained bonded even when Au-NPe6 was incorporated in tumor tissues.

  18. Progesterone transfer among cohabitating female big brown bats (Eptesicus fuscus).

    PubMed

    Greville, Lucas J; Pollock, Tyler; Salter, Joseph C; Faure, Paul A; deCatanzaro, Denys

    2017-06-01

    Experiments using female mice and bats have demonstrated that tritium-labeled 17β-estradiol ( 3 H-E 2 ) can be absorbed via cutaneous and intranasal routes and distributed to reproductive and neural tissues. Radioactivity has also been measured in tissues of untreated females after 48h cohabitation with 3 H-E 2 injected males. The present study was designed to quantify steroid transfer among female bats. Radioactive quantification via liquid scintillation counting revealed absorption of tritium-labeled progesterone ( 3 H-P 4 ) in adult females 1h after cutaneous and intranasal application (10μCi). Subsequently, pairs of mature females were each housed for 48h with a single mature female that had been administered 3 H-P 4 (50μCi) via intraperitoneal injection. Radioactivity was observed in all collected tissues of all non-injected females at levels significantly greater than the control group. Following the same paradigm, radioactivity was not observed in the tissues of untreated female bats that were housed with stimulus females treated with 3 H-E 2 (50μCi). Enzyme immunoassays revealed measurable levels of unconjugated progesterone and estradiol in the urine of female bats, suggesting urine as a vector for steroid transfer. Given that bats of this species live in predominantly female roosts in very close contact, progesterone transfer among individuals is likely to occur in natural roosts. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Linear attenuation coefficients of tissues from 1 keV to 150 keV

    NASA Astrophysics Data System (ADS)

    Böke, Aysun

    2014-09-01

    The linear attenuation coefficients and three interaction processes have been computed for liver, kidney, muscle, fat and for a range of x-ray energies from 1 keV to 150 keV. Molecular photoelectric absorption cross sections were calculated from atomic cross section data. Total coherent (Rayleigh) and incoherent (Compton) scattering cross sections were obtained by numerical integration over combinations of F2m(x) with the Thomson formula and Sm(x) with the Klein-Nishina formula, respectively. For the coherent (Rayleigh) scattering cross section calculations, molecular form factors were obtained from recent experimental data in the literature for values of x<1 Å-1 and from the relativistic modified atomic form factors for values of x≥1 Å-1. With the inclusion of molecular interference effects in the coherent (Rayleigh) scattering, more accurate knowledge of the scatter from these tissues will be provided. The number of elements involved in tissue composition is 5 for liver, 47 for kidney, 44 for muscle and 3 for fat. The results are compared with previously published experimental and theoretical linear attenuation coefficients. In general, good agreement is obtained. The molecular form factors and scattering functions and cross sections are incorporated into a Monte Carlo program. The energy distributions of x-ray photons scattered from tissues have been simulated and the results are presented.

  20. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    PubMed

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  1. Visualisation of distribution of gold nanoparticles in liver tissues ex vivo and in vitro using the method of optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Terentyuk, G S; Khlebtsov, B N

    2012-06-30

    The possibility of visualising the distribution of gold nanoparticles in liver by means of the method of optical coherence tomography is studied experimentally in model samples of beef liver in vitro and rat liver ex vivo. In the experiments we used the gold nanoparticles in the form of nanocages with resonance absorption in the near-IR spectral region. In the model studies the suspension of nanoparticles was applied to the surface of the sample, which then was treated with ultrasound. In the ex vivo studies the suspension of nanoparticles was injected to the laboratory rats intravenously. The image contrast and themore » optical depth of detection of blood vessels and liver structure components are calculated, as well as the depth of liver optical probing before and after the injection of nanoparticles. It was shown that the administration of the nanoparticle increases significantly the imaging contrast of liver blood vessels owing to the localisation of the nanoparticles therein.« less

  2. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  3. Thermal Characteristics of ThermoBrachytherapy Surface Applicators (TBSA) for Treating Chestwall Recurrence

    PubMed Central

    Arunachalam, K.; Maccarini, P. F.; Craciunescu, O. I.; Schlorff, J. L.; Stauffer, P. R.

    2010-01-01

    Purpose To study temperature and thermal dose distributions of ThermoBrachytherapy Surface Applicators (TBSA) developed for concurrent or sequential high dose rate (HDR) brachytherapy and microwave hyperthermia treatment of chest wall recurrence and other superficial disease. Methods A steady state thermodynamics model coupled with the fluid dynamics of water bolus and electromagnetic radiation of hyperthermia applicator is used to characterize the temperature distributions achievable with TBSA applicators in an elliptical phantom model of the human torso. Power deposited by 915 MHz conformal microwave array (CMA) applicators is used to assess the specific absorption rate (SAR) distributions of rectangular (500 cm2) and L-shaped (875 cm2) TBSA. The SAR distribution in tissue and fluid flow distribution inside the Dual-Input Dual-Output (DIDO) water bolus are coupled to solve the steady state temperature and thermal dose distributions of rectangular TBSA (R-TBSA) for superficial tumor targets extending 10–15 mm beneath the skin surface. Thermal simulations are carried out for a range of bolus inlet temperature (Tb=38–43°C), water flow rate (Qb=2–4 L/min) and tumor blood perfusion (ωb=2–5 kg/m3/s) to characterize their influence on thermal dosimetry. Results Steady state SAR patterns of R- and L-TBSA demonstrate the ability to produce conformal and localized power deposition inside tumor target sparing surrounding normal tissues and nearby critical organs. Acceptably low variation in tissue surface cooling and surface temperature homogeneity was observed for the new DIDO bolus at 2 L/min water flow rate. Temperature depth profiles and thermal dose volume histograms indicate bolus inlet temperature (Tb) to be the most influential factor on thermal dosimetry. A 42 °C water bolus was observed to be the optimal choice for superficial tumors extending 10–15 mm from the surface even under significant blood perfusion. Lower bolus temperature may be chosen to reduce thermal enhancement ratio (TER) in the most sensitive skin where maximum radiation dose is delivered and to extend thermal enhancement of radiation dose deeper. Conclusion This computational study indicates that well-localized elevation of tumor target temperature to 40–44 °C can be accomplished by large surface-conforming TBSA applicators using appropriate selection of coupling bolus temperature. PMID:20224154

  4. Non-invasive tissue temperature measurements based on quantitative diffuse optical spectroscopy (DOS) of water.

    PubMed

    Chung, S H; Cerussi, A E; Merritt, S I; Ruth, J; Tromberg, B J

    2010-07-07

    We describe the development of a non-invasive method for quantitative tissue temperature measurements using Broadband diffuse optical spectroscopy (DOS). Our approach is based on well-characterized opposing shifts in near-infrared (NIR) water absorption spectra that appear with temperature and macromolecular binding state. Unlike conventional reflectance methods, DOS is used to generate scattering-corrected tissue water absorption spectra. This allows us to separate the macromolecular bound water contribution from the thermally induced spectral shift using the temperature isosbestic point at 996 nm. The method was validated in intralipid tissue phantoms by correlating DOS with thermistor measurements (R=0.96) with a difference of 1.1+/-0.91 degrees C over a range of 28-48 degrees C. Once validated, thermal and hemodynamic (i.e. oxy- and deoxy-hemoglobin concentration) changes were measured simultaneously and continuously in human subjects (forearm) during mild cold stress. DOS-measured arm temperatures were consistent with previously reported invasive deep tissue temperature studies. These results suggest that DOS can be used for non-invasive, co-registered measurements of absolute temperature and hemoglobin parameters in thick tissues, a potentially important approach for optimizing thermal diagnostics and therapeutics.

  5. Solid tissue simulating phantoms having absorption at 970 nm for diffuse optics

    NASA Astrophysics Data System (ADS)

    Kennedy, Gordon T.; Lentsch, Griffin R.; Trieu, Brandon; Ponticorvo, Adrien; Saager, Rolf B.; Durkin, Anthony J.

    2017-07-01

    Tissue simulating phantoms can provide a valuable platform for quantitative evaluation of the performance of diffuse optical devices. While solid phantoms have been developed for applications related to characterizing exogenous fluorescence and intrinsic chromophores such as hemoglobin and melanin, we report the development of a poly(dimethylsiloxane) (PDMS) tissue phantom that mimics the spectral characteristics of tissue water. We have developed these phantoms to mimic different water fractions in tissue, with the purpose of testing new devices within the context of clinical applications such as burn wound triage. Compared to liquid phantoms, cured PDMS phantoms are easier to transport and use and have a longer usable life than gelatin-based phantoms. As silicone is hydrophobic, 9606 dye was used to mimic the optical absorption feature of water in the vicinity of 970 nm. Scattering properties are determined by adding titanium dioxide, which yields a wavelength-dependent scattering coefficient similar to that observed in tissue in the near-infrared. Phantom properties were characterized and validated using the techniques of inverse adding-doubling and spatial frequency domain imaging. Results presented here demonstrate that we can fabricate solid phantoms that can be used to simulate different water fractions.

  6. Harmful effects of 41 and 202 MHz radiations on some body parts and tissues.

    PubMed

    Kumar, Vijay; Vats, R P; Pathak, P P

    2008-08-01

    Many types of invisible electromagnetic waves are produced in our atmosphere. When these radiations penetrate our body, electric fields are induced inside the body, resulting in the absorption of power, which is different for different body parts and also depends on the frequency of radiations. Higher power absorption may result into health problems. In this communication, effects of electromagnetic waves (EMW) of 41 and 202 MHz frequencies transmitted by the TV tower have been studied on skin, muscles, bone and fat of human. Using international standards for safe exposure limits of specific absorption rate (SAR), we have found the safe distance from TV transmission towers for two frequencies. It is suggested that transmission towers should be located away from the thickly populated areas and people should keep away from the transmission towers, as they radiate electromagnetic radiations that are harmful to some parts/tissues of body.

  7. [The expression and significance of receptor activator of nuclear factor kappaB ligand and osteoprotegerin in periapical cyst and periapical granuloma].

    PubMed

    Zhang, Meihua; Yu, Yunzhi; Miao, Yu

    2012-08-01

    To investigate the expression of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) in periapical cyst and periapical granuloma by comparison with the expression in the normal periodontal tissue as control, and to identify their functional mechanism in the bone destruction of periapical cyst and granuloma. 20 periapical cyst tissues (cyst group), 20 periapical granuloma tissues (granuloma group), and 20 normal periodontal tissues (control group) were collected respectively. Immunohistochemical technology was performed to detect the expression of RANKL and OPG in above three groups. In cyst group, granuloma group and control group, the expression of RANKL were 75.00 +/- 7.54, 68.40 +/- 6.74 and 29.40 +/- 2.46, respectively. The expression of OPG were 38.10 +/- 7.09, 47.65 +/- 13.85 and 58.60 +/- 5.88, respectively. The differences among the three groups were statistically significant (P<0.05). RANKL and OPG in cysts group were negatively correlated (r=-0.56, P=0.01) and were not correlated with granuloma and control group (P>0.05). RANKL and OPG play roles in the bone absorption of periapical disease. In periapical disease, abnormal expression of RANKL and OPG are detected, RANKL significantly increase, OPG decrease, bone absorption accelerate and osteolytic lesion are observed. In periapical cyst, the bone absorption is more active compared with periapical granuloma.

  8. Translational value of liquid chromatography coupled with tandem mass spectrometry-based quantitative proteomics for in vitro-in vivo extrapolation of drug metabolism and transport and considerations in selecting appropriate techniques.

    PubMed

    Al Feteisi, Hajar; Achour, Brahim; Rostami-Hodjegan, Amin; Barber, Jill

    2015-01-01

    Drug-metabolizing enzymes and transporters play an important role in drug absorption, distribution, metabolism and excretion and, consequently, they influence drug efficacy and toxicity. Quantification of drug-metabolizing enzymes and transporters in various tissues is therefore essential for comprehensive elucidation of drug absorption, distribution, metabolism and excretion. Recent advances in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) have improved the quantification of pharmacologically relevant proteins. This report presents an overview of mass spectrometry-based methods currently used for the quantification of drug-metabolizing enzymes and drug transporters, mainly focusing on applications and cost associated with various quantitative strategies based on stable isotope-labeled standards (absolute quantification peptide standards, quantification concatemers, protein standards for absolute quantification) and label-free analysis. In mass spectrometry, there is no simple relationship between signal intensity and analyte concentration. Proteomic strategies are therefore complex and several factors need to be considered when selecting the most appropriate method for an intended application, including the number of proteins and samples. Quantitative strategies require appropriate mass spectrometry platforms, yet choice is often limited by the availability of appropriate instrumentation. Quantitative proteomics research requires specialist practical skills and there is a pressing need to dedicate more effort and investment to training personnel in this area. Large-scale multicenter collaborations are also needed to standardize quantitative strategies in order to improve physiologically based pharmacokinetic models.

  9. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  10. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  11. 3D printing of tissue-simulating phantoms for calibration of biomedical optical devices

    NASA Astrophysics Data System (ADS)

    Zhao, Zuhua; Zhou, Ximing; Shen, Shuwei; Liu, Guangli; Yuan, Li; Meng, Yuquan; Lv, Xiang; Shao, Pengfei; Dong, Erbao; Xu, Ronald X.

    2016-10-01

    Clinical utility of many biomedical optical devices is limited by the lack of effective and traceable calibration methods. Optical phantoms that simulate biological tissues used for optical device calibration have been explored. However, these phantoms can hardly simulate both structural and optical properties of multi-layered biological tissue. To address this limitation, we develop a 3D printing production line that integrates spin coating, light-cured 3D printing and Fused Deposition Modeling (FDM) for freeform fabrication of optical phantoms with mechanical and optical heterogeneities. With the gel wax Polydimethylsiloxane (PDMS), and colorless light-curable ink as matrix materials, titanium dioxide (TiO2) powder as the scattering ingredient, graphite powder and black carbon as the absorption ingredient, a multilayer phantom with high-precision is fabricated. The absorption and scattering coefficients of each layer are measured by a double integrating sphere system. The results demonstrate that the system has the potential to fabricate reliable tissue-simulating phantoms to calibrate optical imaging devices.

  12. Fast photoacoustic imaging system based on 320-element linear transducer array.

    PubMed

    Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun

    2004-04-07

    A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.

  13. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  14. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second, the laser was used to measure the optical transmission across water layers of known thicknesses. The data were used to develop a Dynamic Saturable Absorption (DSA) model to predict the dynamic changes in the absorption coefficient of water as a function of incident energy. The DSA model, based in part upon the homogeneous broadening of an atomic transition in a laser gain medium, accurately predicts the absorption coefficient of water over a wide range of incident fluences. One sees saturation of the absorption at both high and low fluence with a monotonic decrease in absorption with increasing fluence. Transmission measurements were also made at 9.6 and 10.6 μm using a TEA CO2 laser. The data show essentially no change in the absorption coefficient as the fluence is varied. The results from the experiments make a significant contribution towards an understanding of the relationship among the dynamic optical properties of water and clinically relevant properties such as ablation rate and residual thermal damage.

  15. Thermo-elastic optical coherence tomography.

    PubMed

    Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van

    2017-09-01

    The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.

  16. Influence of betaine and salinomycin on intestinal absorption of methionine and glucose and on the ultrastructure of intestinal cells and parasite developmental stages in chicks infected with Eimeria acervulina.

    PubMed

    Augustine, P C; Danforth, H D

    1999-01-01

    The effect of betaine and salinomycin on absorption of methionine and glucose in tissue from the duodenal loops of Eimeria acervulina-infected chicks was determined. Differences in the ultrastructure of the intestinal cells and parasite developmental stages were also examined. With a drug-resistant isolate of E. acervulina, methionine absorption was significantly higher in chicks fed a basal diet supplemented with 0.15% betaine as compared with absorption in chicks fed the unsupplemented basal diet. Addition of 66 ppm salinomycin to the diet containing betaine did not further enhance absorption. Conversely, with a drug-sensitive isolate, methionine absorption was significantly higher in chicks fed a diet supplemented with both betaine and salinomycin than in chicks fed the unsupplemented basal diet. Tissue from chicks fed any of the supplemented diets was usually significantly heavier than that from chicks fed the unsupplemented diet, even when weight gains of the birds were similar. Glucose absorption was similar in all diet groups. Epithelial cells in coccidia-infected and uninfected chicks fed diets supplemented with betaine or betaine plus salinomycin were less electron dense than cells from chicks fed diets that were not supplemented with betaine. Merozoites of E. acervulina in chicks fed diets supplemented with salinomycin had extensive membrane disruption and vacuolization, but the damage was prevented when betaine was added to the diet. Numerous merozoites and intact schizonts were seen in the intestinal lumen of chicks fed the diet containing betaine plus salinomycin.

  17. Steroids alter ion transport and absorptive capacity in proximal and distal colon.

    PubMed

    Sellin, J H; DeSoignie, R C

    1985-07-01

    Steroids are potent absorbagogues, increasing Na and fluid absorption in a variety of epithelia. This study characterizes the in vitro effects of pharmacological doses of gluco- and mineralocorticoids on transport parameters of rabbit proximal and distal colon. Treatment with methylprednisolone (MP, 40 mg im for 2 days) and desoxycortone acetate (DOCA, 12.5 mg im for 3 days) resulted in a significant increase in short-circuit current (Isc) in distal colon, suggesting an increase in basal Na absorption. Amiloride (10(-4) M) caused a significantly negative Isc in MP-treated tissue, demonstrating a steroid-induced, amiloride-insensitive electrogenic ion transport in distal colon. The effect of two absorbagogues, impermeant anions (SO4-Ringer) and amphotericin, were compared in control and steroid-treated distal colon. In controls, both absorbagogues increased Isc. Impermeant anions caused a rise in Isc in both MP and DOCA tissues, suggesting that the high rate of basal Na absorption had not caused a saturation of the Na pump. The steroid-treated colons, however, did not consistently respond to amphotericin. Amiloride inhibited the entire Isc in MP-treated distal colon that had been exposed to amphotericin; this suggested that amphotericin had not exerted its characteristic effect on the apical membrane of steroid-treated colon. In proximal colon, steroids did not alter basal rates of transport; however, epinephrine-induced Na-Cl absorption was significantly greater in MP-treated vs control (P less than 0.005). Steroids increase the absorptive capacity of both proximal and distal colon for Na, while increasing basal Na absorption only in the distal colon.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. New approaches to increase intestinal length: Methods used for intestinal regeneration and bioengineering

    PubMed Central

    Shirafkan, Ali; Montalbano, Mauro; McGuire, Joshua; Rastellini, Cristiana; Cicalese, Luca

    2016-01-01

    Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of intestinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neo-formed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option. PMID:27011901

  19. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE PAGES

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; ...

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  20. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurementsmore » taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.« less

  1. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  2. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn

    In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less

  3. Photoacoustic micro-imaging of focused ultrasound induced blood-brain-barrier opening in a rat model

    NASA Astrophysics Data System (ADS)

    Wang, Po-Hsun; Hsu, Po-Hung; Liu, Hao-Li; Wang, Churng-Ren Chris; Li, Meng-Lin

    2010-02-01

    Blood brain barrier (BBB) prevents most of the drug from transmitting into the brain tissue and decreases the treatment performance for brain disease. One of the methods to overcome the difficulty of drug delivery is to locally increase the permeability of BBB with high-intensity focused ultrasound. In this study, we have investigated the feasibility of photoacoustic microscopy of focused-ultrasound induced BBB opening in a rat model in vivo with gold nanorods (AuNRs) as a contrast agent. This study takes advantage of the strong near-infrared absorption of AuNRs and their extravasation tendency from BBB opening foci due to their nano-scale size. Before the experiments, craniotomy was performed on rats to provide a path for focused ultrasound beam. Localized BBB opening at the depth of about 3 mm from left cortex of rat brains was achieved by delivering 1.5 MHz focused ultrasound energy into brain tissue in the presence of microbubbles. PEGylated AuNRs with a peak optical absorption at ~800 nm were then intravenously administered. Pre-scan prior to BBB disruption and AuNR injection was taken to mark the signal background. After injection, the distribution of AuNRs in rat brains was monitored up to 2 hours. Experimental results show that imaging AuNRs reveals BBB disruption area in left brains while there are no changes observed in the right brains. From our results, photoacoustic imaging plus AuNRs shows the promise as a novel monitoring strategy in identifying the location and variation of focused-ultrasound BBB-opening in a rat model.

  4. A stochastic whole-body physiologically based pharmacokinetic model to assess the impact of inter-individual variability on tissue dosimetry over the human lifespan.

    PubMed

    Beaudouin, Rémy; Micallef, Sandrine; Brochot, Céline

    2010-06-01

    Physiologically based pharmacokinetic (PBPK) models have proven to be successful in integrating and evaluating the influence of age- or gender-dependent changes with respect to the pharmacokinetics of xenobiotics throughout entire lifetimes. Nevertheless, for an effective application of toxicokinetic modelling to chemical risk assessment, a PBPK model has to be detailed enough to include all the multiple tissues that could be targeted by the various xenobiotics present in the environment. For this reason, we developed a PBPK model based on a detailed compartmentalization of the human body and parameterized with new relationships describing the time evolution of physiological and anatomical parameters. To take into account the impact of human variability on the predicted toxicokinetics, we defined probability distributions for key parameters related to the xenobiotics absorption, distribution, metabolism and excretion. The model predictability was evaluated by a direct comparison between computational predictions and experimental data for the internal concentrations of two chemicals (1,3-butadiene and 2,3,7,8-tetrachlorodibenzo-p-dioxin). A good agreement between predictions and observed data was achieved for different scenarios of exposure (e.g., acute or chronic exposure and different populations). Our results support that the general stochastic PBPK model can be a valuable computational support in the area of chemical risk analysis. (c)2010 Elsevier Inc. All rights reserved.

  5. Subsurface wrinkle removal by laser treatment in combination with dynamic cooling

    NASA Astrophysics Data System (ADS)

    Paithankar, Dilip Y.; Hsia, James C.; Ross, E. V.

    2000-05-01

    Compared to traditional CO2 or Er:YAG laser resurfacing, sub-surface thermal injury to stimulate skin remodeling for the removal of wrinkles is attractive due to the lower morbidity associated with epidermal preservation. We have developed a technique that thermally damages dermal collagen while preserving the epidermis by a combination of infra-red laser irradiation and dynamic cooling of skin. Wound healing response to the thermal denaturation of collagen may trigger synthesis of fresh collagen and result in restoration of a more youthful appearance. The laser wavelength is chosen so as to thermally injure dermis in a narrow band at depths of 150 to 500 microns from the surface of the skin. The epidermis is preserved by a Candela dynamic cooling device (DCDTM) cryogen spray. Three-dimensional Monte Carlo calculations have been done to calculate the light distribution within tissue while taking into account light absorption and scattering. This light distribution has been used to calculate heat generation within tissue. Heat transfer calculations have been done while taking into consideration the cryogen cooling. The resulting temperature profiles have been used to suggest heating and cooling parameters. Freshly excised ex vivo pig skin was irradiated with laser and DCD at these heating and cooling parameters. Histological evaluation of the biopsies has shown that it is possible to spare the epidermis while thermally denaturing the dermal collagen. The modeling and histology results are discussed.

  6. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    PubMed

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  7. AERONET derived (BC) aerosol absorption

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    AERONET is a ground-based sun-/sky-photometer network with good annual statistics at more than 400 sites worldwide. Inversion methods applied to these data define all relevant column aerosol optical properties and reveal even microphysical detail. The extracted data include estimates for aerosol size-distributions and for aerosol refractive indices at four different solar wavelengths. Hereby, the imaginary parts of the refractive indices define the aerosol column absorption. For regional and global averages and radiative impact assessment with off-line radiative transfer, these local data have been extended with distribution patterns offered by AeroCom modeling experiments. Annual and seasonal absorption distributions for total aerosol and estimates for component contributions (such as BC) are presented and associated direct forcing impacts are quantified.

  8. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.

    PubMed

    Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C

    1999-12-01

    A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.

  9. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    PubMed

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  10. Clinical skin imaging using color spatial frequency domain imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin J.; Reichenberg, Jason; Tunnell, James W.

    2016-02-01

    Skin diseases are typically associated with underlying biochemical and structural changes compared with normal tissues, which alter the optical properties of the skin lesions, such as tissue absorption and scattering. Although widely used in dermatology clinics, conventional dermatoscopes don't have the ability to selectively image tissue absorption and scattering, which may limit its diagnostic power. Here we report a novel clinical skin imaging technique called color spatial frequency domain imaging (cSFDI) which enhances contrast by rendering color spatial frequency domain (SFD) image at high spatial frequency. Moreover, by tuning spatial frequency, we can obtain both absorption weighted and scattering weighted images. We developed a handheld imaging system specifically for clinical skin imaging. The flexible configuration of the system allows for better access to skin lesions in hard-to-reach regions. A total of 48 lesions from 31 patients were imaged under 470nm, 530nm and 655nm illumination at a spatial frequency of 0.6mm^(-1). The SFD reflectance images at 470nm, 530nm and 655nm were assigned to blue (B), green (G) and red (R) channels to render a color SFD image. Our results indicated that color SFD images at f=0.6mm-1 revealed properties that were not seen in standard color images. Structural features were enhanced and absorption features were reduced, which helped to identify the sources of the contrast. This imaging technique provides additional insights into skin lesions and may better assist clinical diagnosis.

  11. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  12. Demonstration of temperature imaging by H₂O absorption spectroscopy using compressed sensing tomography.

    PubMed

    An, Xinliang; Brittelle, Mack S; Lauzier, Pascal T; Gord, James R; Roy, Sukesh; Chen, Guang-Hong; Sanders, Scott T

    2015-11-01

    This paper introduces temperature imaging by total-variation-based compressed sensing (CS) tomography of H2O vapor absorption spectroscopy. A controlled laboratory setup is used to generate a constant two-dimensional temperature distribution in air (a roughly Gaussian temperature profile with a central temperature of 677 K). A wavelength-tunable laser beam is directed through the known distribution; the beam is translated and rotated using motorized stages to acquire complete absorption spectra in the 1330-1365 nm range at each of 64 beam locations and 60 view angles. Temperature reconstructions are compared to independent thermocouple measurements. Although the distribution studied is approximately axisymmetric, axisymmetry is not assumed and simulations show similar performance for arbitrary temperature distributions. We study the measurement error as a function of number of beams and view angles used in reconstruction to gauge the potential for application of CS in practical test articles where optical access is limited.

  13. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  14. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  15. Fat digestion and absorption in spice-pretreated rats.

    PubMed

    Prakash, Usha N S; Srinivasan, Krishnapura

    2012-02-01

    A few common spices are known to stimulate secretion of bile with higher amount of bile acids which play a major role in digestion and absorption of dietary lipids. It would be appropriate to verify if these spices enable efficient digestion and absorption during high-fat intake. In this context, dietary ginger (0.05%), piperine (0.02%), capsaicin (0.015%), and curcumin (0.5%) were examined for their influence on bile secretion, digestive enzymes of pancreas and absorption of dietary fat in high-fat (30%) fed Wistar rats for 8 weeks. These spices enhanced the activity of pancreatic lipase, amylase, trypsin and chymotrypsin by 22-57%, 32-51%, 63-81% and 12-38%, respectively. Dietary intake of spices along with high-fat enhanced fat absorption. These dietary spices increased bile secretion with higher bile acid content. Stimulation of lipid mobilisation from adipose tissue was suggested by the decrease in perirenal adipose tissue weight by dietary capsaicin and piperine. This was also accompanied by prevention of the accumulation of triglyceride in liver and serum in high-fat fed rats. Activities of key lipogenic enzymes in liver were reduced which was accompanied by an increased activity of hormone-sensitive lipase. Thus, dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase. At the same time, the energy expenditure is facilitated by these spices to prevent the accumulation of absorbed fat. Copyright © 2011 Society of Chemical Industry.

  16. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  17. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  18. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biochemical measurement of bilirubin with an evanescent wave optical sensor

    NASA Astrophysics Data System (ADS)

    Poscio, Patrick; Depeursinge, Christian D.; Emery, Y.; Parriaux, Olivier M.; Voirin, Guy

    1991-09-01

    Optical sensing techniques can be considered as powerful information sources on the biochemistry of tissue, blood, and physiological fluids. Various sensing modalities can be considered: spectroscopic determination of the fluorescence or optical absorption of the biological medium itself, or more generally, of a reagent in contact with the biological medium. The principle and realization of the optical sensor developed are based on the use of polished fibers: the cladding of a monomode fiber is removed on a longitudinal section. The device can then be inserted into an hypodermic needle for in-vivo measurements. Using this minute probe, local measurements of the tissue biochemistry or metabolic processes can be obtained. The sensing mechanism is based on the propagation of the evanescent wave in the tissues or reagent: the proximity of the fiber core allows the penetration of the model field tail into the sensed medium, with a uniquely defined field distribution. Single or multi-wavelength analysis of the light collected into the fiber yields the biochemical information. Here an example of this sensing technology is discussed. In-vitro measurement of bilirubin in gastric juice demonstrates that the evanescent wave optical sensor provides a sensitivity which matches the physiological concentrations. A device is proposed for in-vivo monitoring of bilirubin concentration in the gastro-oesophageal tract.

  20. Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guangwei; Deming, Drake; Knutson, Heather

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less

Top