Science.gov

Sample records for absorption x-ray photoelectron

  1. Photoelectron and X-ray Absorption Spectroscopy Of Pu

    SciTech Connect

    Tobin, J; Chung, B; Schulze, R; Farr, J; Shuh, D

    2003-11-12

    We have performed Photoelectron Spectroscopy and X-Ray Absorption Spectroscopy upon highly radioactive samples of Plutonium at the Advanced Light Source in Berkeley, CA, USA. First results from alpha and delta Plutonium are reported as well as plans for future studies of actinide studies.

  2. Correlation of magnetic dichroism in x-ray absorption and photoelectron emission using ultrathin magnetic alloy films

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Mankey, G.J.; Willis, R.F.; Denlinger, J.D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    We have begun a program to characterize magnetic alloy overlays using both magnetic x-ray circular dichroism (MXCD) and magnetic x-ray linear dichroism (MXLD). This will allow a direct comparison of MXCD-absorption and MXLD-photoelectron emission. First results from the Advanced Light Source will be presented.

  3. Electronic structure of fluorinated multiwalled carbon nanotubes studied using x-ray absorption and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Brzhezinskaya, M. M.; Muradyan, V. E.; Vinogradov, N. A.; Preobrajenski, A. B.; Gudat, W.; Vinogradov, A. S.

    2009-04-01

    This paper presents the results of combined investigation of the chemical bond formation in fluorinated multiwalled carbon nanotubes (MWCNTs) with different fluorine contents (10-55wt%) and reference compounds (highly oriented pyrolytic graphite crystals and “white” graphite fluoride) using x-ray absorption and photoelectron spectroscopy at C1s and F1s thresholds. Measurements were performed at BESSY II (Berlin, Germany) and MAX-laboratory (Lund, Sweden). The analysis of the soft x-ray absorption and photoelectron spectra points to the formation of covalent chemical bonding between fluorine and carbon atoms in the fluorinated nanotubes. It was established that within the probing depth (˜15nm) of carbon nanotubes, the process of fluorination runs uniformly and does not depend on the fluorine concentration. In this case, fluorine atoms interact with MWCNTs through the covalent attachment of fluorine atoms to graphene layers of the graphite skeleton (phase 1) and this bonding is accompanied by a change in the hybridization of the 2s and 2p valence electron states of the carbon atom from the trigonal (sp2) to tetrahedral (sp3) hybridization and by a large electron transfer between carbon an fluorine atoms. In the MWCNT near-surface region the second fluorine-carbon phase with weak electron transfer is formed; it is located mainly within two or three upper graphene monolayers, and its contribution becomes much poorer as the probing depth of fluorinated multiwalled carbon nanotubes (F-MWCNTs) increases. The defluorination process of F-MWCNTs on thermal annealing has been investigated. The conclusion has been made that F-MWCNT defluorination without destruction of graphene layers is possible.

  4. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy studies of CaSO 4:Dy thermoluminescent phosphors

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Jha, S. N.; Olivi, L.; Phase, D. M.; Kher, R. K.; Bhattacharyya, D.

    2007-11-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO4:Dy phosphor samples at the Dy L3 edge with synchrotron radiation. Measurements were carried out on a set of samples which were subjected to post-preparation annealing at different temperatures and for different cycles. The EXAFS data have been analysed to find the Dy-S and Dy-O bond lengths in the neighbourhood of the Dy atoms in a CaSO4 matrix. The observations from EXAFS measurements were verified with XANES and XPS techniques. On the basis of these measurements, efforts were made to explain the loss of thermoluminescence sensitivity of CaSO4:Dy phosphors after repeated cycles of annealing at 400 °C in air for 1 h.

  5. Hard X-ray photoelectron and X-ray absorption spectroscopy characterization of oxidized surfaces of iron sulfides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri; Tomashevich, Yevgeny; Vorobyev, Sergey; Saikova, Svetlana; Romanchenko, Alexander; Félix, Roberto

    2016-11-01

    Hard X-ray photoelectron spectroscopy (HAXPES) using an excitation energy range of 2 keV to 6 keV in combination with Fe K- and S K-edge XANES, measured simultaneously in total electron (TEY) and partial fluorescence yield (PFY) modes, have been applied to study near-surface regions of natural polycrystalline pyrite FeS2 and pyrrhotite Fe1-xS before and after etching treatments in an acidic ferric chloride solution. It was found that the following near-surface regions are formed owing to the preferential release of iron from oxidized metal sulfide lattices: (i) a thin, no more than 1-4 nm in depth, outer layer containing polysulfide species, (ii) a layer exhibiting less pronounced stoichiometry deviations and low, if any, concentrations of polysulfide, the composition and dimensions of which vary for pyrite and pyrrhotite and depend on the chemical treatment, and (iii) an extended almost stoichiometric underlayer yielding modified TEY XANES spectra, probably, due to a higher content of defects. We suggest that the extended layered structure should heavily affect the near-surface electronic properties, and processes involving the surface and interfacial charge transfer.

  6. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  7. X-ray absorption and photoelectron spectroscopy studies on graphite and single-walled carbon nanotubes: Oxygen effect

    NASA Astrophysics Data System (ADS)

    Abbas, M.; Wu, Z. Y.; Zhong, J.; Ibrahim, K.; Fiori, A.; Orlanducci, S.; Sessa, V.; Terranova, M. L.; Davoli, Ivan

    2005-08-01

    We have investigated the electronic states of highly oriented pyrolitic graphite and single-walled carbon nanotubes using x-ray absorption spectroscopy (XAS) before and after annealing treatment in ultrahigh vacuum, and observed that the small peak between π* and σ* features, which has been previously assigned to free-electron-like interlayer states, disappears after in situ annealing treatment, suggesting that the signal may be assigned to a surface contamination, especially oxygen contamination introduced by chemical processing or gas adsorption. Additional experiments by photoelectron spectroscopy as well as XAS methods, performed after aging in air, fully support this interpretation.

  8. X-ray absorption and photoelectron spectroscopic study of plasma-nitrided SiO{sub 2} film

    SciTech Connect

    Song, H.J.; Shin, H.J.; Chung, Youngsu; Lee, J.C.; Lee, M.K.

    2005-06-01

    Plasma-nitrided SiO{sub 2} thin film has been analyzed by synchrotron-radiation-based x-ray absorption and photoelectron spectroscopies (XAS and XPS). High-resolution N 1s XAS and N 1s, O 1s, and Si 2p XPS spectral changes were obtained for different annealing temperatures. N 1s XPS and XAS spectra show that at room temperature, besides the main species of N[Si(O-){sub 3-x}]{sub 3}, there exist free moleculelike N{sub 2} and HN[Si(O-){sub 3}]{sub 2}, H{sub 2}NSi(O-){sub 3}, and N-Si{sub 2}O species with surface contaminants. The spectral intensities of the N{sub 2} and the HN[Si(O-){sub 3}]{sub 2}, H{sub 2}NSi(O-){sub 3}, and N-Si{sub 2}O species decrease as the annealing temperature increases, and finally the nitrogen exists dominantly in the form of N[Si(O){sub 3}]{sub 3} species above 820 K, indicating out-diffusion of molecular N{sub 2} and structural reconstruction to form a stable structure upon annealing. The Si 2p and O 1s XPS spectra show that Si{sup >4+} 2p peak and O 1s peak appear at 103.7 and 534.0 eV, respectively, which are higher binding energies than those of thermally grown oxynitride films with lower coverage on silicon. Upon annealing the sample, these peaks shift towards lower binding energy; {approx}0.3 eV for Si{sup >4+} and 0.4 eV for O 1s. The causes of the peaks appearance at relatively higher binding energy and the peak shift upon annealing are discussed.

  9. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  10. Electronic structure of nickel porphyrin NiP: Study by X-ray photoelectron and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Svirskiy, G. I.; Sergeeva, N. N.; Krasnikov, S. A.; Vinogradov, N. A.; Sergeeva, Yu. N.; Cafolla, A. A.; Preobrajenski, A. B.; Vinogradov, A. S.

    2017-02-01

    Energy distributions and properties of the occupied and empty electronic states for a planar complex of nickel porphyrin NiP are studied by X-ray photoemission and absorption spectroscopy techniques. As a result of the analysis of the experimental spectra of valence photoemission, the nature and energy positions of the highest occupied electronic states were determined: the highest occupied state is formed mostly by atomic states of the porphine ligand; the following two states are associated with 3 d states of the nickel atom. It was found that the lowest empty state is specific and is described by the σ-type b 1 g MO formed by empty Ni3{d_{{x^2} - {y^2}}}-states and occupied 2 p-states of lone electron pairs of nitrogen atoms. This specific nature of the lowest empty state is a consequence of the donor-acceptor chemical bond in NiP.

  11. Layered structure of the near-surface region of oxidized chalcopyrite (CuFeS2): hard X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and DFT+U studies.

    PubMed

    Mikhlin, Yuri; Nasluzov, Vladimir; Romanchenko, Alexander; Tomashevich, Yevgeny; Shor, Alexey; Félix, Roberto

    2017-01-25

    The depletion of oxidized metal sulfide surfaces in metals due to the preferential release of cations is a common, but as yet poorly understood phenomenon. Herein, X-ray photoelectron spectroscopy using excitation energies from 1.25 keV to 6 keV, and Fe K- and S K-edge X-ray absorption near-edge spectra in total electron and partial fluorescence yield modes was employed to study natural chalcopyrite oxidized in air and etched in an acidic ferric sulfate solution. The metal-depleted undersurface formed was found to consist of a thin, 1-4 nm, outer layer containing polysulfide species, a layer with a pronounced deficiency of metals, mainly iron, and an abundant disulfide content but negligible polysulfide content (about 20 nm thick after the chemical etching), and a defective underlayer which extended down to about a hundred nm. DFT+U was used to simulate chalcopyrite with increasing numbers of removed Fe atoms. It was found that the structure with disulfide anion near double Fe vacancies, and the 'defective' structure comprising Cu in the position of Fe and Cu vacancy are most energetically favorable, especially when using a higher Hubbard-type parameter U, and have a large density of states at the Fermi level, whereas polysulfide anions are stable only near the surface. We propose a mechanism explaining the formation of the layered undersurface and 'passivation' of metal sulfides by (i) arrested decomposition of a nearly stoichiometric sulfide surface, and (ii) faster interfacial transfer and solid diffusion of cations towards the surface; (iii) stability limits for specific defect structures, promoting their expansion in depth rather than through compositional changes, excluding surface layers; (iv) decay of surface polysulfide layer yielding elemental sulfur.

  12. Multimode Surface Functional Group Determination: Combining Steady-State and Time-Resolved Fluorescence with X-ray Photoelectron Spectroscopy and Absorption Measurements for Absolute Quantification.

    PubMed

    Fischer, Tobias; Dietrich, Paul M; Unger, Wolfgang E S; Rurack, Knut

    2016-01-19

    The quantitative determination of surface functional groups is approached in a straightforward laboratory-based method with high reliability. The application of a multimode BODIPY-type fluorescence, photometry, and X-ray photoelectron spectroscopy (XPS) label allows estimation of the labeling ratio, i.e., the ratio of functional groups carrying a label after reaction, from the elemental ratios of nitrogen and fluorine. The amount of label on the surface is quantified with UV/vis spectrophotometry based on the molar absorption coefficient as molecular property. The investigated surfaces with varying density are prepared by codeposition of 3-(aminopropyl)triethoxysilane (APTES) and cyanoethyltriethoxysilane (CETES) from vapor. These surfaces show high functional group densities that result in significant fluorescence quenching of surface-bound labels. Since alternative quantification of the label on the surface is available through XPS and photometry, a novel method to quantitatively account for fluorescence quenching based on fluorescence lifetime (τ) measurements is shown. Due to the complex distribution of τ on high-density surfaces, the stretched exponential (or Kohlrausch) function is required to determine representative mean lifetimes. The approach is extended to a commercial Rhodamine B isothiocyanate (RITC) label, clearly revealing the problems that arise from such charged labels used in conjunction with silane surfaces.

  13. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    National Institute of Standards and Technology Data Gateway

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  14. Recent applications of hard x-ray photoelectron spectroscopy

    DOE PAGES

    Weiland, Conan; Rumaiz, Abdul K.; Pianetta, Piero; ...

    2016-05-05

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in-situ or in-operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. We also present physical considerations that differentiate HAXPES from photoemission measurements utilizing soft and ultraviolet x rays.

  15. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  16. Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Syres, Karen L.; Thomas, Andrew G.; Graham, Darren M.; Spencer, Ben F.; Flavell, Wendy R.; Jackman, Mark J.; Dhanak, Vinod R.

    2014-08-01

    The adsorption of malonic acid on rutile TiO2 (110) has been studied using photoelectron spectroscopy and C K-edge, near edge X-ray fine structure spectroscopy (NEXAFS). Analysis of the O 1s and Ti 2p spectra suggest that the molecule adsorbs dissociatively in a doubly-bidentate adsorption geometry as malonate. The data are unable to distinguish between a chelating bonding mode with the backbone of the molecule lying along the [001] azimuth or a bridging geometry along the direction. Work carried out on a wiggler beamline suggests that the molecule is unstable under irradiation by high-flux synchrotron radiation from this type of insertion device.

  17. Hard x-ray photoelectron spectroscopy and x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Lee, Tien-Lin

    2006-03-01

    Using the brilliant undulator radiation available from the third generation synchrotron sources, hard x-ray photoelectron spectroscopy (HAXPES) has become an emerging field in the recent years. With the excitation energy used in HAXPES one can benefits from the large mean free path of fast electrons (˜ 5 nm for electrons of 6 keV kinetic energy) in probing the bulk electronic properties of materials. For high-resolution studies, photon energy bandwidth narrower than 100 meV is also readily achievable in the hard x-ray range with crystal monochromators. In addition, working with hard x-ray offers the possibility for combining photoelectron spectroscopy with x-ray standing wave (XSW) method. With the high spatial resolution from XSWs, this unique combination can provide site-specific, chemical and electronic information for studying surfaces, buried interfaces, thin films and bulk crystals. In this talk, I will briefly mention some HAXPES experiments detecting electrons up to 14.5 keV [1,2]. I will then sketch the principle of combining XSWs with HAXPES and present results from some recent applications using this combination: (1) chemical state-specific surface structure determination with core-level photoemission, (2) site-specific valence x-ray photoelectron spectroscopy and (3) XSW imaging with core-level photoemission. [1] S. Thiess, C. Kunz, B.C.C. Cowie, T.-L. Lee, M. Renier, and J. Zegenhagen. Solid State Communications 132, 589 (2004) [2] C. Kunz, S. Thiess, B.C.C. Cowie, T.-L. Lee, and J. Zegenhagen, Nuclear Instruments and Methods A 547, 73 (2005).

  18. Probing deeper by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Risterucci, P.; Renault, O. Martinez, E.; Delaye, V.; Detlefs, B.; Zegenhagen, J.; Gaumer, C.; Grenet, G.; Tougaard, S.

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  19. Electronic structure of self-doped layered Eu3F4Bi2S4 material revealed by x-ray absorption spectroscopy and photoelectron spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Paris, E.; Sugimoto, T.; Wakita, T.; Barinov, A.; Terashima, K.; Kandyba, V.; Proux, O.; Kajitani, J.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y.; Yokoya, T.; Mizokawa, T.; Saini, N. L.

    2017-01-01

    We have studied the electronic structure of Eu3F4Bi2S4 using a combination of Eu L3-edge x-ray absorption spectroscopy (XAS) and space-resolved angle-resolved photoemission spectroscopy (ARPES). From the Eu L3-edge XAS, we have found that the Eu in this system is in mixed valence state with coexistence of Eu2 +/Eu3 + . The bulk charge doping was estimated to be ˜0.3 per Bi site in Eu3F4Bi2S4 , which corresponds to the nominal x in a typical REO1 -xFxBiS2 system (RE: rare-earth elements). From the space-resolved ARPES, we have ruled out the possibility of any microscale phase separation of Eu valence in the system. Using a microfocused beam we have observed the band structure as well as the Fermi surface that appeared similar to other compounds of this family with disconnected rectangular electronlike pockets around the X point. The Luttinger volume analysis gives the effective carrier to be 0.23 electrons per Bi site in Eu3F4Bi2S4 , indicating that the system is likely to be in the underdoped region of its superconducting phase diagram.

  20. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  1. X-ray photoelectron spectroscopy in the hard x-ray regime

    NASA Astrophysics Data System (ADS)

    Fadley, Charles S.

    2006-03-01

    Photoelectron spectroscopy is by now a very widely used tool for the study of atoms, molecules, solids, surfaces, and nanoscale structures. Until very recently, the exciting radiation has been limited to the energy range below about 2 keV. However, within the past few years, a few experimental projects have been initiated in which photon energies in the 5-15 keV range are employed. By matching the characteristics of undulator beamlines at third-generation synchrotron radiation sources to the optical properties of the electron spectrometer, it has proven possible to overcome the reduced photoelectric cross sections at such high energies and to study both core and valence electronic levels with resolutions down to ca. 50 meV [1]. Such hard x-ray photoelectron spectroscopy (HXPS or HAXPES) has the advantage of being more bulk sensitive, with electron inelastic attenuation lengths in the 50-150 Angstrom range. In this talk, I will discuss the advantages and disadvantages of this new direction, including highlights from recent work, as well as suggested future avenues for HXPS studies. [1] Nuclear Instruments and Methods A 547, 24 (2005), special issue dedicated to hard x-ray photoelectron spectroscopy, edited by J. Zegenhagen and C. Kunz.

  2. X-ray Photoelectron Spectroscopy of Isolated Nanoparticles.

    PubMed

    Sublemontier, Olivier; Nicolas, Christophe; Aureau, Damien; Patanen, Minna; Kintz, Harold; Liu, Xiaojing; Gaveau, Marc-André; Le Garrec, Jean-Luc; Robert, Emmanuel; Barreda, Flory-Anne; Etcheberry, Arnaud; Reynaud, Cécile; Mitchell, James B; Miron, Catalin

    2014-10-02

    X-ray photoelectron spectroscopy (XPS) is a very efficient and still progressing surface analysis technique. However, when applied to nano-objects, this technique faces drawbacks due to interactions with the substrate and sample charging effects. We present a new experimental approach to XPS based on coupling soft X-ray synchrotron radiation with an in-vacuum beam of free nanoparticles, focused by an aerodynamic lens system. The structure of the Si/SiO2 interface was probed without any substrate interaction or charging effects for silicon nanocrystals previously oxidized in ambient air. Complete characterization of the surface was obtained. The Si 2p core level spectrum reveals a nonabrupt interface.

  3. Effects of rare-earth substitution in the oxyarsenides REFeAsO (RE=Ce, Pr, Nd, Sm, Gd) and CeNiAsO by X-ray photoelectron and absorption spectroscopy

    SciTech Connect

    Blanchard, Peter E.R.; Cavell, Ronald G.; Mar, Arthur

    2010-08-16

    X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES) have been applied to examine the electronic structure of the rare-earth transition-metal oxyarsenides REFeAsO (RE=Ce, Pr, Nd, Sm, Gd) and CeNiAsO. Within the metal-arsenic layer [MAs], the bonding character is predominantly covalent and the As atoms are anionic, as implied by the small energy shifts in the M 2p and As 3d XPS spectra. Within the rare-earth-oxygen layer [REO], the bonding character is predominantly ionic, as implied by the similarity of the O 1s binding energies to those in highly ionic oxides. Substitution with a smaller RE element increases the O 1s binding energy, a result of an enhanced Madelung potential. The Ce 3d XPS and Ce L{sub 3}-edge XANES spectra have lineshapes and energies that confirm the presence of trivalent cerium in CeFeAsO and CeNiAsO. A population analysis of the valence band spectrum of CeNiAsO supports the formal charge assignment [Ce{sup 3+}O{sup 2-}][Ni{sup 2+}As{sup 3-}].

  4. X-ray photoelectron spectra of MgH2

    NASA Astrophysics Data System (ADS)

    He, Z. X.; Pong, W.

    1990-06-01

    Measurements of X-ray photoemission from magnesium hydride MgH2 were made in an effort to further the fundamental understanding of the electronic structure of this metal hydride. The polycrystalline MgH2 was compressed onto a metal holder to provide a smooth solid surface in a dry nitrogen box and then transferred into a ESCA system without exposure to air. Measurements were made immediately after the surface was scrapped in the vacuum. The binding energies of the photoelectrons from Mg 2s and 2p states were found to be 88.9 ± 0.2eV, and 50.1 ± 0.2eV, respectively. The valence band spectrum shows an effective base width of approximately 8.8eV, which is in reasonable agreement with the recent band structure calculation for MgH2. The photoelectron spectra also display features that can be identified as volume plasmon energy loss of 14.6 ± 0.2eV. The data can be shown to be useful in calculating the average band gap energy (5.80eV) for MgH2.

  5. Theoretical Model For Photoelectron Transport In X-Ray Lithography Systems

    NASA Astrophysics Data System (ADS)

    Garth, J. C.

    1983-11-01

    We have developed a theoretical model for calculating the dose received by a resist behind an x-ray absorbing mask in an x-ray lithography system. The model enables the dose-depth profile due to photoelectrons entering the resist from the mask to be predicted as a function of x-ray target material, excitation voltage, mask material and thickness, and chemical composition of the resist. As an application, we have calculated the dose profile in the resist PBS next to a Au mask irradiated by x-rays from Ag and Al targets operated at 10 kilovolt beam voltage. The characteristic line and continuum spectrum from the targets are computed, the absorption by the Au mask obtained, and an approximate photoelectron and Auger electron spectrum in the gold and PBS is evaluated. The dose-depth curve next to the gold-resist interface is found using the analytic electron transport model developed by Burke and Garth (1979). The calculations show that the dose profiles obtained using bremsstrahlung-produced electrons extend deeper than profiles than are computed from characteristic photon radiation alone. At 10 kV, this effect is found to be much greater for Ag than for Al.

  6. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  8. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  9. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  10. Effects of Galactic absorption on soft X-ray surveys

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Gioia, I. M.; Maccacaro, T.; Wolter, A.

    1988-01-01

    A bias in the spectral distribution of X-ray sources detected in X-ray surveys is discussed which is due to the combination of the intrinsic characteristics of X-ray telescopes and the effects of low-energy photoelectric absorption within the Galaxy. A statistical method for obtaining information on the average spectrum of X-ray sources detected in well-defined surveys is presented. This method can be applied to surveys performed with X-ray telescopes working at relatively soft X-ray energies, such as Einstein, Exosat, and Rosat.

  11. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, Kimberly Sue

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  12. Corrosion and degradation studies utilizing X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Hixson, Holly Gwyndolen

    1997-08-01

    This dissertation involves studies of corrosion behavior at the surface of various metal samples, as well as the degradation of wool fibers obtained from the Star-Spangled Banner. Molybdenum metal and iron-zinc alloys were examined under corrosive conditions, and the degradation of the wool fibers was studied. The behavior of a polished molybdenum metal surface upon exposure to both aerated and deaerated water and 1.0 M NaCl solution was studied by X-ray Photoelectron Spectroscopy (XPS). Exposure to deaerated water and NaCl failed to produce oxidation of the metal surfaces, but exposing the polished metal surface to aerated water produced significant oxidation. Metal surfaces cleaned by argon-ion etching were found to be inert to oxidation by aerated water. The etching process also appears to passivate the metal surface. The behavior of molybdenum metal in 0.5 M Hsb2SOsb4 treated at various potentials has been studied using core and valence band XPS. The study indicates that Mosp{IV} and Mosp{VI} (including possibly Mosp{V} in some cases) were formed as the potential of the system was increased within the active range of molybdenum. The corrosive behavior of iron-zinc alloys that have been electroplated on plain steel in both aerated and deaerated quadruply-distilled water has been studied using XPS. Several different iron-zinc alloys were electroplated for comparative purposes: an iron-rich alloy, a zinc-rich alloy, and an alloy of similar iron and zinc composition. Treatment in aerated water produces oxidation for the iron-rich and similar composition alloys, but the oxide is reduced for the zinc-rich alloy. Degradation of the fibers in the original Star-Spangled Banner has been monitored using XPS and Scanning Electron Microscopy (SEM). Comparison of white and red wool fibers and linen fibers from the flag with new, mechanically-abraded, and chemically-treated white, red, and linen fibers, respectively, was performed in an attempt to determine the fibers' levels

  13. Evaluating Superconducting YBCO Film Properties Using X-Ray Photoelectron Spectroscopy (Postprint)

    DTIC Science & Technology

    2012-02-01

    AFRL-RZ-WP-TP-2012-0093 EVALUATING SUPERCONDUCTING YBCO FILM PROPERTIES USING X-RAY PHOTOELECTRON SPECTROSCOPY (POSTPRINT) Paul N. Barnes...2012 Conference Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE EVALUATING SUPERCONDUCTING YBCO FILM PROPERTIES USING X-RAY

  14. X-ray Photoelectron Spectroscopy (XPS), Rutherford Back Scattering (RBS) studies

    NASA Technical Reports Server (NTRS)

    Neely, W. C.; Bozak, M. J.; Williams, J. R.

    1993-01-01

    X-ray photoelectron spectroscopy (XPS), Rutherford Back Scattering (RBS) studies of each of sample received were completed. Since low angle X-ray could not be performed because of instrumentation problems, Auger spectrometry was employed instead. The results of these measurements for each of the samples is discussed in turn.

  15. Photoelectron dynamics in x-ray free-electron-laser diffractive imaging of biological samples.

    PubMed

    Hau-Riege, Stefan P

    2012-06-08

    X-ray free electron lasers hold the promise of enabling atomic-resolution diffractive imaging of single biological molecules. We develop a hybrid continuum-particle model to describe the x-ray induced damage and find that the photoelectron dynamics and electrostatic confinement strongly affect the time scale of the damage processes. These phenomena are not fully captured in hydrodynamic modeling approaches.

  16. Temperature dependent soft x-ray absorption spectroscopy of liquids.

    PubMed

    Meibohm, Jan; Schreck, Simon; Wernet, Philippe

    2014-10-01

    A novel sample holder is introduced which allows for temperature dependent soft x-ray absorption spectroscopy of liquids in transmission mode. The setup is based on sample cells with x-ray transmissive silicon nitride windows. A cooling circuit allows for temperature regulation of the sample liquid between -10 °C and +50 °C. The setup enables to record soft x-ray absorption spectra of liquids in transmission mode with a temperature resolution of 0.5 K and better. Reliability and reproducibility of the spectra are demonstrated by investigating the characteristic temperature-induced changes in the oxygen K-edge x-ray absorption spectrum of liquid water. These are compared to the corresponding changes in the oxygen K-edge spectra from x-ray Raman scattering.

  17. Photoelectron range limitations to the spatial resolution for x-rays in gas proportional chambers

    SciTech Connect

    Smith, G.C.; Fischer, J.; Radeka, V.

    1983-11-01

    Measurements have been made, for x-ray energies from a few keV to 18 keV, of the limiting spatial resolution caused by the finite range of the photoelectron, or electrons, created when an x-ray is absorbed in the gas of a proportional chamber. In hydrocarbon gases such as methane and ethane, where the photoelectron receives the bulk of the x-ray energy, the limiting spatial resolution is found to vary as a power law of x-ray energy. In argon and xenon, at an x-ray energy approximately twice that of the A/sub K/ edge and the Xe/sub L/ edge respectively, the measured limiting resolution is better than expected from an equivalent power law behavior.

  18. Combined surface plasmon resonance and X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia, Miguel Angel; Serrano, Aida; Rodriguez de La Fuente, Oscar; Castro, German R.

    2012-02-01

    We present a system for the excitation and measurement of surface plasmons in metallic films based on the Kretschmann-Raether configuration that can be installed in a synchrotron beamline. The device was mounted an tested in a hard X-ray Absorption beamline, BM25 Spline at ESRF. Whit this device it is possible to carry on experiments combining surface plasmon and X-ray absorption spectroscopies. The surface plasmons can be use to monitor in situ changes induced by the X-rays in the metallic films or the dielectric overlayer. Similarly, the changes in the electronic configuration of the material when surface plasmons are excited can be measured by X-ray absorption spectroscopy. The resolution of the system allows to observe changes in the signals of the order of 10-3 to 10-5 depending on the particular experiment and used configuration. The system is available for experiments at the beamline.

  19. X-ray photoelectron spectroscopy peak assignment for perfluoropolyether oils

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1990-01-01

    Perfluoroalkylpolyether (PFPE) oils are increasingly being used as vacuum pump oils and as lubricants for magnetic recording media and instrumentation for satellites. In this paper, the relative binding energies of three PFPE oils are determined. When sample oils are continuously irradiated during X-ray spectroscopy (XPS) measurements, the relative peak intensity of the spectra is altered significantly, indicating that gaseous products form from the oils during XPS measurements. Thus, attention should be paid to chemical changes when XPE is used to characterize fluorinated carbons such as PFPE oils.

  20. X-ray absorption fine structure measurement with a 9 V electric battery x-ray emitter

    SciTech Connect

    Mitsuya, Shota; Ishii, Hideshi; Kawai, Jun; Tanaka, Keiichi

    2006-09-25

    X-ray absorption spectral analysis is a well known technique for analyzing the chemical environment of an element in a specimen. It has been believed that high intensity and monochromatized x rays such as the synchrotron radiation are required for an x-ray absorption experiment. In the present study, however, we demonstrate that the x-ray absorption spectral measurement of transition metal foils with an energy resolution of 10 eV is possible with a combination of a 9 V dry electric battery pyroelectric x-ray generator and a superconducting microcalorimeter.

  1. An X-ray diffraction and X-ray absorption spectroscopy joint study of neuroglobin.

    PubMed

    Arcovito, Alessandro; Moschetti, Tommaso; D'Angelo, Paola; Mancini, Giordano; Vallone, Beatrice; Brunori, Maurizio; Della Longa, Stefano

    2008-07-01

    Neuroglobin (Ngb) is a member of the globin family expressed in the vertebrate brain, involved in neuroprotection. A combined approach of X-ray diffraction (XRD) on single crystal and X-ray absorption spectroscopy (XAS) in solution, allows to determine the oxidation state and the structure of the Fe-heme both in the bis-histidine and the CO-bound (NgbCO) states. The overall data demonstrate that under X-ray the iron is photoreduced fairly rapidly, and that the previously reported X-ray structure of ferric Ngb [B. Vallone, K. Nienhaus, M. Brunori, G.U. Nienhaus, Proteins 56 (2004) 85-92] very likely refers to a photoreduced species indistinguishable from the dithionite reduced protein. Results from the XAS analysis of NgbCO in solution are in good agreement with XRD data on the crystal. However prolonged X-ray exposure at 15K determines CO release. This preliminary result paves the way to experiments aimed at the characterization of pentacoordinate ferrous Ngb, the only species competent in binding external ligands such as O2, CO or NO.

  2. Polytetrafluoroethylene transfer film studied with X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1980-01-01

    Polytetrafluoroethylene (PTFE) was rubbed against nickel in ultrahigh vacuum at loads up to 3.9 N and speeds up to 94 mm/sec. The transfer film formed on the nickel was analyzed using X-ray phototectron spectroscopy. The film was indistinguishable from bulk PTFE except for the possible presence of a small amount of NiF2. The transfer film was found to be about 1 molecule (0.5 nm) thick under all conditions; but at speeds above 10 mm/sec, there was evidence of bulk transfer in the form of fragments as well. The thickness measurements required a choice among conflicting published values of the inelastic mean free path for electrons in polymers. The values chosen gave internally consistent results.

  3. TU-A-9A-07: X-Ray Acoustic Computed Tomography (XACT): 100% Sensitivity to X-Ray Absorption

    SciTech Connect

    Xiang, L; Ahmad, M; Nikoozadeh, A; Pratx, G; Khuri-Yakub, B; Xing, L

    2014-06-15

    Purpose: To assess whether X-ray acoustic computed tomography (XACT) is more sensitive to X-ray absorption than that of the conventional X-ray imaging. Methods: First, a theoretical model was built to analyze the X-ray absorption sensitivity of XACT imaging and conventional X-ray imaging. Second, an XACT imaging system was developed to evaluate the X-ray induced acoustic signal generation as well as the sensitivity improvement over transmission x-ray imaging. Ultra-short x-ray pulses (60-nanosecond) were generated from an X-ray source operated at the energy of 150 kVp with a 10-Hz repetition rate. The X-ray pulse was synchronized with the acoustic detection via a x-ray scintillation triggering to acquire the X-ray induced acoustic signal. Results: Theoretical analysis shows that X-ray induced acoustic signal is sensitive only to the X-ray absorption, while completely insensitive to out the X-ray scattering and fluorescence. XACT has reduced background and increased contrast-to-noise ratio, and therefore has increased sensitivity compared to transmission x-ray imaging. For a 50-μm size, gadolinium insertion in tissue exposed to 40 keV X-rays; the sensitivity of XACT imaging is about 28.9 times higher than that of conventional X-ray imaging. Conclusion: X-ray acoustic computer tomography (XACT) as a new imaging modality combines X-ray absorption contrast and high ultrasonic resolution in a single modality. It is feasible to improve the imaging sensitivity with XACT imaging compared with conventional X-ray imaging. Taking advantage of the high ultrasonic resolution, it is possible to perform 3-D imaging with a single x-ray pulse with arrays of transducers without any mechanical motion of the imaging system. This single-shot capability offers the potential of reducing radiation dose by a factor of 1000, and imaging 100 times faster when compared to the conventional X-ray CT, and thus revolutionizing x-ray imaging applications in medicine and biology. The authors

  4. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    SciTech Connect

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  5. Magnetic x-ray linear dichroism in the photoelectron spectroscopy of ultrathin magnetic alloy films

    NASA Astrophysics Data System (ADS)

    Tobin, J. G.; Goodman, K. W.; Mankey, G. J.; Willis, R. F.; Denlinger, J. D.; Rotenberg, E.; Warwick, A.

    1996-04-01

    The magnetic structure of nanoscale alloy films has been probed using the magnetic x-ray linear dichroism in photoelectron spectroscopy. FeNi and CoFe epitaxial films were grown on Cu(001), in situ and using molecular beam epitaxy techniques. The magnetic x-ray linear dichroism measurements were made at the Spectromicroscopy Facility of the Third Generation Advanced Light Source. Because soft x-rays were used to generate photoemission from the 3p core levels, both elemental selectivity and magnetic sensitivity were achieved simultaneously.

  6. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  7. Coherence based contrast enhancement in x-ray radiography with a photoelectron microscope

    NASA Astrophysics Data System (ADS)

    Hwu, Y.; Lai, B.; Mancini, D. C.; Je, J. H.; Noh, D. Y.; Bertolo, M.; Tromba, G.; Margaritondo, G.

    1999-10-01

    We show that a photoelectron spectromicroscope of the photoelectron emission microscope type can be used as an x-ray imaging detector for radiology. Using high penetration hard-x-ray photons (wavelength <0.1 nm), samples as thick as a few millimeters can be imaged with submicron resolution. The high imaging resolution enables us to substantially decrease the object-detector distance needed to observe coherent based contrast enhancement with respect to the standard film-based detection technique. Our result implies several advantages, the most important being a marked reduction of the required source emittance for contrast enhanced radiology.

  8. Hard x-ray photoelectron spectroscopy of chalcopyrite solar cell components

    NASA Astrophysics Data System (ADS)

    Gloskovskii, A.; Jenkins, C. A.; Ouardi, S.; Balke, B.; Fecher, G. H.; Dai, X.-F.; Gruhn, T.; Johnson, B.; Lauermann, I.; Caballero, R.; Kaufmann, C. A.; Felser, C.

    2012-02-01

    Hard x-ray photoelectron spectroscopy is used to examine the partial density of states of Cu(In,Ga)Se2 (CIGSe), a semiconducting component of solar cells. The investigated, thin Cu(In,Ga)Se2 films were produced by multi-stage co-evaporation. Details of the measured core level and valence band spectra are compared to the calculated density of states. The semiconducting type electronic structure of Cu(In,Ga)Se2 is clearly resolved in the hard x-ray photoelectron spectra.

  9. X-Ray Weak Broad-Line Quasars: Absorption or Intrinsic X-Ray Weakness

    NASA Technical Reports Server (NTRS)

    Risaliti, Guido; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    XMM observations of X-ray weak quasars have been performed during 2003. The data for all but the last observation are now available (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed these data, and obtained interesting preliminary scientific results. Out of the eight sources, 4 are confirmed to be extrimely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confirmed to be highly variable both in flux (by factors 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects, an article is in preparation. Preliminary results have been presented at an international workshop on AGN surveys in December 2003, in Cozumel (Mexico). In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations, and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations will be performed in early 2004, and will complement the XMM data, in order to understand whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circumnuclear material.

  10. The Effect of X-Ray Absorption Fine Structure in Soft X-ray Astronomical Telescopes

    NASA Astrophysics Data System (ADS)

    Owens, Alan; Denby, Michael; Wells, Alan; Keay, Adam; Graessle, Dale E.; Blake, Richard L.

    1997-02-01

    Recent in-orbit measurements by high resolution soft X-ray telescopes have revealed low-level fine structure in target spectra that cannot be attributed to a celestial source. Ultimately, this can be traced to the ability of the new high spectral resolution silicon detectors to resolve X-ray absorption fine structure (XAFS) produced in the various detection subsystems. Based on measurements taken at the Daresbury Synchrotron Radiation Source (SRS) and the National Synchrotron Light Source (NSLS), we have modeled the full-up response function of the Joint European X-ray Telescope (JET-X), taking into account edge structure generated in the detectors, filters, and mirrors. It is found that unfolding celestial source spectra using a response function in which the detailed edge shapes are calculated from standard absorption cross sections leads to the generation of spectral artifacts at every absorption edge. These in turn produce unacceptably high values of χ2 in model fits for total source fluxes above ~4 × 104 counts. For JET-X, this corresponds to a source strength of ~0.4 millicrab observed for 105 s. Statistically significant ``linelike'' features are introduced into the derived source spectra with amplitudes as great as 10% of the source flux. For JET-X, these features rise above the 3 σ level for integral source exposures above ~5 × 104 source counts. The largest deviations in the residuals arise near 0.5 keV and 2.2 keV and are attributed to XAFS produced in the oxide surface layers of the CCD and the gold reflective surface of the mirrors, respectively. These results are significant for data interpretation tasks with the ASCA, JET-X, XMM, and Advanced X-Ray Astrophysics Facility (AXAF) telescopes.

  11. Total reflection X-ray photoelectron spectroscopy as a semiconductor lubricant elemental analysis method

    NASA Astrophysics Data System (ADS)

    Alshehabi, Abbas; Sasaki, Nobuharu; Kawai, Jun

    2015-12-01

    Photoelectron spectra from a typical hard disk storage media device (HDD) were measured at total reflection and non-total reflection at unburnished, acetone-cleaned, and argon-sputtered conditions. F, O, N, and C usually making the upper layer of a typical hard disk medium were detected. Enhancement of the photoelectron emission of the fluorocarbon lubricant was observed at total reflection. Pt and Co were only found by non-total X-ray photoelectron spectroscopy (XPS) because they are constituents of a deeper region than the top and interface regions. Argon-sputtered, ultrasonic acetone-cleaned, and unburnished top layers were compared at total and non-total reflection conditions. Total reflection X-ray photoelectron spectroscopy (TRXPS) is demonstrated to be a powerful tool for storage media lubrication layer chemical state analysis, reliable for industrial quality control application , and reproducible.

  12. High ionisation absorption in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; De, K.; Fender, R.; Merloni, A.

    2016-05-01

    The advent of the new generation of X-ray telescopes yielded a significant step forward in our understanding of ionised absorption generated in the accretion discs of X-ray binaries. It has become evident that these relatively weak and narrow absorption features, sporadically present in the X-ray spectra of some systems, are actually the signature of equatorial outflows, which might carry away more matter than that being accreted. Therefore, they play a major role in the accretion phenomenon. These outflows (or ionised atmospheres) are ubiquitous during the softer states but absent during the power-law dominated, hard states, suggesting a strong link with the state of the inner accretion disc, presence of the radio-jet and the properties of the central source. Here, we discuss the current understanding of this field.

  13. X-ray photoelectron spectroscopy studies of the sodium chloride surface after laser exposure

    NASA Astrophysics Data System (ADS)

    Savintsev, A. P.; Gavasheli, Yu O.; Kalazhokov, Z. Kh; Kalazhokov, Kh Kh

    2016-11-01

    The surface of NaCl crystals outside and in the crater was examined using an x-ray photoelectron spectrometer. The comparative analysis of the XPS spectra showed that high- intensity laser irradiation has a significant impact on the state and composition of the surface of the ionic crystal.

  14. Ultrafast absorption of intense x rays by nitrogen molecules

    SciTech Connect

    Buth, Christian; Liu Jicai; Chen, Mau Hsiung; Cryan, James P.; Fang Li; Hoener, Matthias; Berrah, Nora; Glownia, James M.; Coffee, Ryan N.

    2012-06-07

    We devise a theoretical description for the response of nitrogen molecules (N{sub 2}) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations ({Delta}SCF method). To describe the interaction with N{sub 2}, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N{sub 2}: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N{sub 2}{sup 2+}, and molecular fragmentation are explained.

  15. In situ soft X-ray absorption spectroscopy of flames

    NASA Astrophysics Data System (ADS)

    Frank, Jonathan H.; Shavorskiy, Andrey; Bluhm, Hendrik; Coriton, Bruno; Huang, Erxiong; Osborn, David L.

    2014-10-01

    The feasibility of in situ soft X-ray absorption spectroscopy for imaging carbonaceous species in hydrocarbon flames is demonstrated using synchrotron radiation. Soft X-rays are absorbed by core level electrons in all carbon atoms regardless of their molecular structure. Core electron spectroscopy affords distinct advantages over valence spectroscopy, which forms the basis of traditional laser diagnostic techniques for combustion. In core level spectroscopy, the transition linewidths are predominantly determined by the instrument response function and the decay time of the core-hole, which is on the order of a femtosecond. As a result, soft X-ray absorption measurements can be performed in flames with negligible Doppler and collisional broadening. Core level spectroscopy has the further advantage of measuring all carbonaceous species regardless of molecular structure in the far-edge region, whereas near-edge features are molecule specific. Interferences from non-carbon flame species are unstructured and can be subtracted. In the present study, absorption measurements in the carbon K-edge region are demonstrated in low-pressure ( P total = 20-30 Torr) methane jet flames. Two-dimensional imaging of the major carbonaceous species, CH4, CO2, and CO, is accomplished by tuning the synchrotron radiation to the respective carbon K-edge, near-edge X-ray absorption fine structure (NEXAFS) transitions and scanning the burner.

  16. Determining the Uncertainty of X-Ray Absorption Measurements

    PubMed Central

    Wojcik, Gary S.

    2004-01-01

    X-ray absorption (or more properly, x-ray attenuation) techniques have been applied to study the moisture movement in and moisture content of materials like cement paste, mortar, and wood. An increase in the number of x-ray counts with time at a location in a specimen may indicate a decrease in moisture content. The uncertainty of measurements from an x-ray absorption system, which must be known to properly interpret the data, is often assumed to be the square root of the number of counts, as in a Poisson process. No detailed studies have heretofore been conducted to determine the uncertainty of x-ray absorption measurements or the effect of averaging data on the uncertainty. In this study, the Poisson estimate was found to adequately approximate normalized root mean square errors (a measure of uncertainty) of counts for point measurements and profile measurements of water specimens. The Poisson estimate, however, was not reliable in approximating the magnitude of the uncertainty when averaging data from paste and mortar specimens. Changes in uncertainty from differing averaging procedures were well-approximated by a Poisson process. The normalized root mean square errors decreased when the x-ray source intensity, integration time, collimator size, and number of scanning repetitions increased. Uncertainties in mean paste and mortar count profiles were kept below 2 % by averaging vertical profiles at horizontal spacings of 1 mm or larger with counts per point above 4000. Maximum normalized root mean square errors did not exceed 10 % in any of the tests conducted. PMID:27366627

  17. Correlation of X-Ray Absorption Parameters with Schultz index

    NASA Astrophysics Data System (ADS)

    Kekre, Pravin A.; Khatri, Sunil; Mishra, A.; Joshi, K. P.

    2012-05-01

    A novel application of topological Index in estimating some X-ray parameters is described. X-Ray Absorption parameters (Chemical Shift and Effective Charge) are correlated with Schultz index. Some Cobalt (II) complexes were used to establish this type of correlation. The result have indicated that the chemical shift and effective charge are sensitive to the topological structure of coordinating ligand moieties. The topological understanding of molecular properties can lead to the development of new areas of present and future interest. i.e. designing of new drugs, tracking the effects of pollutants in environment and the prediction of carcinogenicity of a molecule.

  18. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    SciTech Connect

    Serrano, A.; Rodriguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Castro, G. R.; Monton, C.; Garcia, M. A.

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  19. X-ray absorption and soft x-ray fluorescence analysis of KDP optics

    SciTech Connect

    Nelson, A J; van Buuren, T; Miller, E; Land, T A; Bostedt, C; Franco, N; Whitman, P K; Baisden, P A; Terminello, L J; Callcott, T A

    2000-08-09

    Potassium Dihydrogen Phosphate (KDP) is a non-linear optical material used for laser frequency conversion and optical switches. Unfortunately, when KDP crystals are coated with a porous silica anti-reflection coating [1] and then exposed to ambient humidity, they develop dissolution pits [2,3]. Previous investigations [2] have shown that thermal annealing renders KDP optics less susceptible to pitting suggesting that a modification of surface chemistry has occurred. X-ray absorption and fluorescence were used to characterize changes in the composition and structure of KDP optics as a function of process parameters. KDP native crystals were also analyzed to provide a standard basis for interpretation. Surface sensitive total electron yield and bulk sensitive fluorescence yield from the K 2p, P 2p (L{sub 2,3}-edge) and O 1s (K-edge) absorption edges were measured at each process step. Soft X-ray fluorescence was also used to observe changes associated with spectral differences noted in the absorption measurements. Results indicate that annealing at 160 C dehydrates the surface of KDP resulting in a metaphosphate surface composition with K:P:O = 1:1:3.

  20. An XPS (X-Ray Photoelectron Spectroscopy) Study of the Composition of Thin Polyimide Films Formed by Vapor Deposition.

    DTIC Science & Technology

    1987-07-15

    Deposition, volycrystalline ? Silver, 0xidianiline (ODA), Benzenetetracarboxylic anhydride (PMDA), .- imidization, polymer , in situ, X-ray Photoelectron...imidization reaction leading to polymer formation was followed in situ with X-ray Photoelectron Spectroscopy. The uncertainties inherent in a...is an important polymer for application in solid state electronic technology because of its favorable dielectric properties and high thermal

  1. Linear dimerized Se chains in cancrinite nanochannels: X-ray diffraction and photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Poborchii, V. V.; Sato, M.; Shchukarev, A. V.

    1997-09-01

    Cancrinite crystals containing adsorbed selenium in 1-dimensional nanochannels (Can-Se) have been examined by X-ray diffraction, X-ray photoelectron spectroscopy and polarized infrared spectroscopy. It is found that adsorbed selenium forms Se 22- anions substituting OH - groups inside channels. Se 22- dimers are located in the center of the cancrinite channel and oriented along the channel. They interact with Na + cations located in the channels and with each other giving rise to a linear chain incommensurate to the cancrinite matrix. The arrangement of the dimers in the chain has been found to be dependent on the temperature.

  2. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  3. Extended X-ray absorption fine structure of bimetallic nanoparticles

    PubMed Central

    2011-01-01

    Summary Electronic and magnetic properties strongly depend on the structure of the material, especially on the crystal symmetry and chemical environment. In nanoparticles, the break of symmetry at the surface may yield different physical properties with respect to the corresponding bulk material. A useful tool to investigate the electronic structure, magnetic behaviour and local crystallographic structure is X-ray absorption spectroscopy. In this review, recent developments in the field of extended X-ray absorption fine structure measurements and in the analysis methods for structural investigations of bimetallic nanoparticles are highlighted. The standard analysis based on Fourier transforms is compared to the relatively new field of wavelet transforms that have the potential to outperform traditional analysis, especially in bimetallic alloys. As an example, the lattice expansion and inhomogeneous alloying found in FePt nanoparticles is presented, and this is discussed below in terms of the influence of employed density functional theory calculations on the magnetic properties. PMID:21977436

  4. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    SciTech Connect

    Newberg, John T. Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia; Åhlund, John

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  5. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  6. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers.

    PubMed

    Newberg, John T; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  7. X-ray photoelectron spectroscopy of γ-ray-irradiated single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Lee, Eunmo; Hong, W.; Han, J. H.; Choi, D. M.; Lee, Cheol Eui; Kim, H. D.; Kim, J.

    2015-07-01

    The effects of γ-ray irradiation on herring sperm single-stranded DNA have been studied by using X-ray photoelectron spectroscopy (XPS) in the view of the bonding configurations and the structural modifications. The significant changes in the hydrogen, carbon, nitrogen, and phosphorous bonding energies, as revealed by the XPS analysis, indicate that electron transfers result in the creation of radicals and in DNA strand breaks.

  8. An X-Ray Photoelectron Spectroscopy (XPS) Study of Activated Carbons Impregnated with some Organocopper Complexes,

    DTIC Science & Technology

    1993-10-01

    AD-A282 721 l lllllll a Dfene Defence nationals AN X.RAY PHOTOELECTRON SPECTROSCOPY (XPS) STUDY OF ACTIVATED CARBONS IMPREGNATED WITH SOME... ammoniacal solution as a carrier into which all impregnants (except TEDA) were dissolved. Without a suitable carrier, and with the inherent low vapor...and will not be repeated here. All five complexes were synthesized at DREO using known methods. 2 2.2 IMPREGNATING PROCEDURES Two impregnating

  9. Presence of monovalent oxygen anions in oxides demonstrated using X-ray photoelectron spectra

    SciTech Connect

    Wu, L. Q.; Li, Z. Z.; Tang, G. D. Qi, W. H.; Xue, L. C.; Ding, L. L.; Ge, X. S.; Li, S. Q.; Li, Y. C.

    2016-01-11

    The oxygen vacancy model has been used to explain the magnetic and electrical transport properties of dilute magnetic semiconductors and resistive switching. In particular, some authors have claimed that they found a symmetric peak corresponding to the oxygen vacancies in O1s photoelectron spectra. In this paper, using X-ray photoelectron spectra with argon ion etching, it is shown that this symmetric peak may also be interpreted as being related to O{sup 1−} anions, rather than to oxygen vacancies.

  10. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  11. MODELING BROADBAND X-RAY ABSORPTION OF MASSIVE STAR WINDS

    SciTech Connect

    Leutenegger, Maurice A.; Zsargo, Janos; Martell, Erin M.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-08-20

    We present a method for computing the net transmission of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming that the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes that all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength-dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral interstellar medium (ISM) tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype can largely be understood as a wind absorption effect.

  12. X-ray absorption studies of battery materials

    SciTech Connect

    McBreen, J.

    1996-10-01

    X-ray absorption spectroscopy (XAS) is ideal for {ital in}{ital situ} studies of battery materials because both the probe and signal are penetrating x rays. The advantage of XAS being element specific permits investigation of the environment of a constituent element in a composite material. This makes it very powerful for studying electrode additives and corrosion of individual components of complex metal hydride alloys. The near edge part of the spectrum (XANES) provides information on oxidation state and site symmetry of the excited atom. This is particularly useful in study of corrosion and oxidation changes in cathode materials during charge/discharge cycle. Extended fine structure (EXAFS) gives structural information. Thus the technique provides both chemical and structural information. Since XAS probes only short range order, it can be applied to study of amorphous electrode materials and electrolytes. This paper discusses advantages and limitations of the method, as well as some experimental aspects.

  13. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  14. X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS

    SciTech Connect

    Eitan, Assaf; Behar, Ehud E-mail: behar@physics.technion.ac.il

    2013-09-01

    The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

  15. High repetition rate laser produced soft x-ray source for ultrafast x-ray absorption near edge structure measurements.

    PubMed

    Fourmaux, S; Lecherbourg, L; Harmand, M; Servol, M; Kieffer, J C

    2007-11-01

    Recent progress in high intensity ultrafast laser systems provides the opportunity to produce laser plasma x-ray sources exhibiting broad spectrum and high average x-ray flux that are well adapted to x-ray absorption measurements. In this paper, the development of a laser based x-ray absorption near edge structure (XANES) beamline exhibiting high repetition rate by using the Advanced Laser Light Source (ALLS) facility 100 Hz laser system (100 mJ, 35 fs at 800 nm) is presented. This system is based on a broadband tantalum solid target soft x-ray source and a grazing incidence grating spectrometer in the 1-5 nm wavelength range. To demonstrate the high potential of this laser based XANES technique in condensed matter physics, material science, or biology, measurements realized with several samples are presented: VO2 vanadium L edge, Si3N4 nitrogen K edge, and BPDA/PPD polyimide carbon K edge. The characteristics of this laser based beamline are discussed in terms of brightness, signal to noise ratio, and compared to conventional synchrotron broadband x-ray sources which allow achieving similar measurements. Apart from the very compact size and the relative low cost, the main advantages of such a laser based soft x-ray source are the picosecond pulse duration and the perfect synchronization between this x-ray probe and a laser pulse excitation which open the way to the realization of time resolved x-ray absorption measurements with picosecond range time resolution to study the dynamics of ultrafast processes and phase transition.

  16. Size-induced changes in optical and X-ray photoelectron spectra of GaN nanoparticles deposited at lower substrate temperature.

    PubMed

    Mann, A K; Varandani, D; Mehta, B R; Malhotra, L K; Shivaprasad, S M

    2005-11-01

    This study reports the synthesis of GaN nanoparticles having hexagonal structure by a simple technique of activated reactive evaporation with substrates kept at comparatively lower temperatures than usually reported. By varying the substrate temperature from 30 degrees C to 350 degrees C, it is possible to vary nanoparticle sizes from 5-30 nm. X-ray diffraction and X-ray photoelectron spectroscopy analysis confirm the formation of GaN on quartz and silicon substrates at room temperature. The observed size dependent shift in energy position, large increase in full width at half maximum value of Ga 3d and N 1s X-ray photoelectron spectroscopy peaks and blue shift in the optical absorption edge are related to nanoparticle character.

  17. Extended x-ray absorption fine structure studies of hemoglobin

    SciTech Connect

    Shulman, R.G.

    1987-02-01

    Results of extended x-ray absorption fine structure (EXAFS) studies of the iron atom in deoxygenated hemoglobin are reviewed. It is shown that the iron-porphinato nitrogen distance has been determined to be 2.06 +/- 0.01 A by two independent investigations. Difficulties experienced in using this distance to calculate the iron's distance above the plane by triangulation are shown to be due to ignoring differences between ferrous and ferric hemes. It is concluded that the iron is 0.2 +/- 0.1/0.2 A above the plane of the nitrogens as originally shown.

  18. X-ray laser-induced photoelectron spectroscopy for single-state measurements

    NASA Astrophysics Data System (ADS)

    Nelson, A. J.; Dunn, J.; van Buuren, T.; Hunter, J.

    2004-12-01

    We demonstrate single-shot x-ray laser-induced time-of-flight photoelectron spectroscopy on metal and semiconductor surfaces with picosecond time resolution. Our compact multipulse terawatt tabletop x-ray laser source provides the necessary high photon flux (>1012/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature polycrystalline Cu foils and Ge(100). Surface contamination was removed by UV ozone cleaning prior to analysis. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  19. X-Ray Laser Induced Photoelectron Spectroscopy for Single-State Measurements

    SciTech Connect

    Nelson, A J; Dunn, J; van Buuren, T; Hunter, J

    2004-07-14

    We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on metal and semiconductor surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>10{sup 12}/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature polycrystalline Cu foils and Ge(100). Surface contamination was removed by UV ozone cleaning prior to analysis. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials.

  20. Hard x-ray photoelectron spectroscopy using an environmental cell with silicon nitride membrane windows

    SciTech Connect

    Tsunemi, Eika; Watanabe, Yoshio; Oji, Hiroshi; Cui, Yi-Tao; Son, Jin-Young

    2015-06-21

    We applied hard x-ray photoelectron spectroscopy (HAXPES) to a sample under ambient pressure conditions using an environmental cell with an approximately 24 nm-thick SiN{sub x} membrane window. As a model chemical substance, europium (II) iodide (EuI{sub 2}) sealed in the cell with argon gas was investigated with HAXPES to identify the chemical species present inside the cell. The optical and morphological properties of the sample within the cell were measured with optical and fluorescent microscopy, scanning electron microscopy, cathodoluminescence, and energy dispersive x-ray spectrometry. We confirmed the effectiveness of the gas barrier properties of the cell with the SiN{sub x} window and demonstrated its applicability to various other optical and electron measurements as well as HAXPES.

  1. X-ray absorption variability in NGC 4507

    NASA Astrophysics Data System (ADS)

    Marinucci, Andrea; Risaliti, Guido; Wang, Junfeng; Bianchi, Stefano; Elvis, Martin; Matt, Giorgio; Nardini, Emanuele; Braito, Valentina

    2013-03-01

    We present a complete spectral analysis of an XMM-Newton and Chandra campaign of the obscured AGN in NGC 4507, consisting of six observations spanning a period of six months, ranging from 2010 June to December. We detect strong absorption variability on time-scales between 1.5 and 4 months, suggesting that the obscuring material consists of gas clouds at parsec-scale distance. The lack of significant variability on shorter time-scales suggests that this event is not due to absorption by broad-line region (BLR) clouds, which was instead found in other studies of similar sources. This shows that a single, universal structure of the absorber (either BLR clouds, or the parsec-scale torus) is not enough to reproduce the observed complexity of the X-ray absorption features of this AGN.

  2. Comparison of hard and soft x-ray photoelectron spectra of silicon

    NASA Astrophysics Data System (ADS)

    Offi, F.; Werner, W. S. M.; Sacchi, M.; Torelli, P.; Cautero, M.; Cautero, G.; Fondacaro, A.; Huotari, S.; Monaco, G.; Paolicelli, G.; Smekal, W.; Stefani, G.; Panaccione, G.

    2007-08-01

    A detailed comparison of the surface sensitivity of x-ray photoemission spectroscopy for hard and soft x rays is presented and discussed. Electron scattering parameters and their energy dependence are given for Si and two Si spectra are analyzed: a MgKα (hν=1253.6eV) excited spectrum of the Si2p and 2s lines and a hard x-ray excited spectrum (hν=5925eV) of the Si1s line. The differential inelastic scattering characteristics for Si are extracted from reflection electron energy loss spectra taken at energies of 1500 and 4000eV . Using these scattering characteristics and electron mean free paths from the literature, simulated spectra are compared with experiment. The experimental spectra are deconvoluted to give the true intrinsic line shape corresponding to the theoretical collision statistics when interference effects between intrinsic and extrinsic scattering are neglected. The magnitude of interference effects cannot be assessed by our analysis. Within the (unknown) uncertainty introduced by neglecting interference effects, it is possible to determine the relative intensity of intrinsic and extrinsic excitations. In this way, it is found that in the case of the soft x-ray excited photoelectron spectrum of the shallower electronic shells ( 2p and 2s ), intrinsic plasmon creation is rather weak, and the apparent asymmetric line shape of the spectrum might be interpreted as the fact that electron-hole pair creation dominates the intrinsic loss spectrum, while an alternative explanation in terms of surface core level shifted components is also proposed. For the deeper core electronic shell, probed with hard x rays, the opposite situation is observed: while intrinsic electron-hole pair creation was not observed, a strong contribution of intrinsic plasmon losses of about 30% was seen.

  3. Progress in the Theory and Interpretation of X-ray Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.

    2002-03-01

    There has been dramatic progress in recent years in the understanding of x-ray absorption spectra (XAS) [1]. For example, modern real space multiple scattering theory has yielded a quantitative treatment of the extended fine structure in XAS. Crucial in the theory is a treatment of electronic excited states including many-body effects such as inelastic losses and Debye-Waller factors. These developments have led to ab initio codes which permit an interpretation of the spectra in terms of geometrical and electronic properties of materials [2]. Indeed, the availability of such codes has revolutionized experimental investigations based on synchrotron radiation x-ray sources. Algorithmic improvements have recently made possible fast, parallel calculations of the near edge structure (XANES) [3], and approximate treatments of local field effects and many-body amplitude factors. Related techniques have been applied to several other spectroscopies, e.g., anomalous x-ray scattering, x-ray magnetic circular dichroism, and photoelectron diffraction [4]. [1] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000); [2] A. L. Ankudinov, B. Ravel, J.J. Rehr, and S. Conradson, Phys. Rev. B 58, 7565 (1998); [3] A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, and H. Hung, Phys. Rev. B, in press (2002); [4] F. J. Garcia de Abajo, M. A. Van Hove, C. S. Fadley, Phys. Rev. B 63, 075404 (2001).

  4. Extended x-ray-absorption fine structure—Auger process for surface structure analysis: Theoretical considerations of a proposed experiment

    PubMed Central

    Landman, Uzi; Adams, David L.

    1976-01-01

    A method for surface structure analysis is proposed. The proposed process combines x-ray photoabsorption and Auger electron emission. The extended x-ray-absorption fine structure, occurring for photon energies above an atomic absorption edge, contains structural information of the microscopic environment due to the coupling of the photoelectron final state with the atomic initial state. Measurement of the variations in the intensity of particular Auger lines, as a function of the incident radiation energy, provides a surface sensitive measure of the photoabsorption cross section in the media. Theoretical considerations of the physical processes underlying the proposed experiment and its feasibility, and a discussion of background contributions are presented. PMID:16592339

  5. Short-range order in amorphous SiO{sub x} by x ray photoelectron spectroscopy

    SciTech Connect

    Novikov, Yu. N.; Gritsenko, V. A.

    2011-07-01

    The Si 2p x ray photoelectron spectra of SiO{sub x} with a different composition of 0 {<=} x {<=} 2 have been studied experimentally and theoretically. The SiO{sub x} films were prepared by low-pressure chemical vapor deposition from SiH{sub 4} and N{sub 2}O source at 750 deg. C. Neither random bonding nor random mixture models can adequately describe the structure of these compounds. The interpretation of the experimental results is discussed according to a large scale potential fluctuation due to the spatial variation of chemical composition in SiO{sub x}.

  6. Composition of RF-sputtered refractory compounds determined by X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    RF-sputtered coatings of CrB2, MoSi2, Mo2C, TiC, and MoS2 were examined by X-ray photoelectron spectroscopy (XPS). Data on stoichiometry, impurity content, and chemical bonding were obtained. The influences of sputtering target history, deposition time, RF power level, and substrate bias were studied. Significant deviations from stoichiometry and high oxide levels were related to target outgassing. The effect of substrate bias depended on the particular coating material studied.

  7. X-ray photoelectron spectroscopy investigation on electrochemical degradation of proton exchange membrane fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-05-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot pressed ionomer) but have identical, commercial catalyst and catalyst loading. A significant degree of carbon corrosion, platinum migration and ionomer degradation were observed in the electrodes after the treatment. The degradation of the ionomer in the electrode is more severe than that of membrane. The electrode structure and the corresponding interface are crucial for the catalyst performance and durability.

  8. X-ray photoelectron spectroscopy study of the effects of ultrapure water on GaAs

    NASA Astrophysics Data System (ADS)

    Massies, J.; Contour, J. P.

    1985-06-01

    X-ray photoelectron spectroscopy has been used to investigate the effects of de-ionized water on chemical etched GaAs surfaces. When the treatment with water is performed in static conditions (stagnant water) a Ga-rich oxide layer is formed on GaAs at the rate of 10-20 Å h-1. In contrast, when the GaAs surface is treated in dynamic conditions (running water), no oxide buildup is observed. Moreover, running water can remove the oxide film formed in static conditions, as well as oxidized layers due to air exposure. These results are discussed in the framework of cleaning prior to molecular beam epitaxy.

  9. Making use of x-ray optical effects in photoelectron-, Auger electron-, and x-ray emission spectroscopies: Total reflection, standing-wave excitation, and resonant effects

    SciTech Connect

    Yang, S.-H.; Gray, A. X.; Kaiser, A. M.; Mun, B. S.; Sell, B. C.; Kortright, J. B.; Fadley, C. S.

    2013-02-21

    We present a general theoretical methodology and related open-access computer program for carrying out the calculation of photoelectron, Auger electron, and x-ray emission intensities in the presence of several x-ray optical effects, including total reflection at grazing incidence, excitation with standing-waves produced by reflection from synthetic multilayers and at core-level resonance conditions, and the use of variable polarization to produce magnetic circular dichroism. Calculations illustrating all of these effects are presented, including in some cases comparisons to experimental results. Sample types include both semi-infinite flat surfaces and arbitrary multilayer configurations, with interdiffusion/roughness at their interfaces. These x-ray optical effects can significantly alter observed photoelectron, Auger, and x-ray intensities, and in fact lead to several generally useful techniques for enhancing surface and buried-layer sensitivity, including layer-resolved densities of states and depth profiles of element-specific magnetization. The computer program used in this study should thus be useful for a broad range of studies in which x-ray optical effects are involved or are to be exploited in next-generation surface and interface studies of nanoscale systems.

  10. Imide photodissociation investigated by X-ray absorption spectroscopy.

    PubMed

    Johnson, Phillip S; Cook, Peter L; Liu, Xiaosong; Yang, Wanli; Bai, Yiqun; Abbott, Nicholas L; Himpsel, F J

    2012-06-21

    X-ray absorption spectroscopy is used to investigate the photodissociation of the imides PMDI (pyromellitic diimide) and SSMCC (sulfosuccinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate). PMDI contains only one type of imide, and its photodissociation can be explained by a simple conversion from imide to a mix of imine and nitrile after desorption of the oxygens from the imide. SSMCC contains two different imides. One reacts like PMDI, the other in a more complex multistep process. Eventually, N(2) is formed in the bulk of the sample at high radiation density. The sequence of reactions is inferred from the π* peaks in total electron yield and fluorescence yield absorption spectra at the N 1s and O 1s edges. First-order rate equations are used to model the evolution of the peak areas versus radiation dose.

  11. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source

    SciTech Connect

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-15

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipments for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  12. The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range.

    PubMed

    Rueff, J P; Ablett, J M; Céolin, D; Prieur, D; Moreno, Th; Balédent, V; Lassalle-Kaiser, B; Rault, J E; Simon, M; Shukla, A

    2015-01-01

    The GALAXIES beamline at the SOLEIL synchrotron is dedicated to inelastic X-ray scattering (IXS) and photoelectron spectroscopy (HAXPES) in the 2.3-12 keV hard X-ray range. These two techniques offer powerful complementary methods of characterization of materials with bulk sensitivity, chemical and orbital selectivity, resonant enhancement and high resolving power. After a description of the beamline components and endstations, the beamline capabilities are demonstrated through a selection of recent works both in the solid and gas phases and using either IXS or HAXPES approaches. Prospects for studies on liquids are discussed.

  13. Quantitative x-ray photoelectron spectroscopy: Quadrupole effects, shake-up, Shirley background, and relative sensitivity factors from a database of true x-ray photoelectron spectra

    SciTech Connect

    Seah, M. P.; Gilmore, I. S.

    2006-05-01

    An analysis is provided of the x-ray photoelectron spectroscopy (XPS) intensities measured in the National Physical Laboratory (NPL) XPS database for 46 solid elements. This present analysis does not change our previous conclusions concerning the excellent correlation between experimental intensities, following deconvolving the spectra with angle-averaged reflection electron energy loss data, and the theoretical intensities involving the dipole approximation using Scofield's cross sections. Here, more recent calculations for cross sections by Trzhaskovskaya et al. involving quadrupole terms are evaluated and it is shown that their cross sections diverge from the experimental database results by up to a factor of 5. The quadrupole angular terms lead to small corrections that are close to our measurement limit but do appear to be supported in the present analysis. Measurements of the extent of shake-up for the 46 elements broadly agree with the calculations of Yarzhemsky et al. but not in detail. The predicted constancy in the shake-up contribution by Yarzhemsky et al. implies that the use of the Shirley background will lead to a peak area that is a constant fraction of the true peak area including the shake-up intensities. However, the measured variability of the shake-up contribution makes the Shirley background invalid for quantification except for situations where the sensitivity factors are from reference samples similar to those being analyzed.

  14. X-ray absorption in neon modulated by a strong laser pulse

    NASA Astrophysics Data System (ADS)

    Hertlein, M. P.; Glover, T. E.; Allison, T. K.; van Tilborg, J.; Rude, B. S.; Belkacem, A.; Southworth, S. H.; Kanter, E. P.; Krässig, B.; Varma, H. R.; Santra, R.; Young, L.

    2009-11-01

    We have measured the absorption of x-rays in neon gas in the presence of a strong laser pulse. The femtosecond x-rays were tuned to energies near the neon 1s-3p resonance, and the laser intensity of 1013 W/cm2 was below the intensity required to alone ionize neon. We observed strong modification of the x-ray absorption when the neon was subjected to laser light that was temporally overlapped with the x-rays.

  15. X-Ray Photoelectron Diffraction Studies of Structural and Magnetic Disordering Transitions Near Surfaces

    NASA Astrophysics Data System (ADS)

    Tran, Thuy Thu

    This thesis deals with order/disorder transitions near solid surfaces as studied by x-ray photoelectron diffraction and photoelectron holography. Transitions involving both atomic positional order and magnetic order have been studied. Further evidence for a reversible high-temperature surface-disordering phase transition on Ge(111) has been found using Ge 3p x-ray photoelectron diffraction (a short -range-order probe of surface structure) and photoelectron holography. Azimuthal diffraction data at takeoff angles with respect to the surface of theta = 19^circ and theta = 55^circ show abrupt drops in intensity of ~30%-40% over the temperature interval of 900-1200 K. Photoelectron holographic near-neighbor images at temperatures below and above the transition region furthermore indicate an identical near-neighbor structure for all atoms present in ordered sites. These combined diffraction and holography data show that by 1200 K, the Ge(111) surface is covered by a completely disordered overlayer of about 2 Ge monolayers in thickness. The rate of growth of this overlayer with increasing temperature is in excellent agreement with recent medium-energy ion scattering results, although the thickness we find for the overlayer is 1.5-2.0x larger than that derived from ion scattering. Based on these data, a disordering model for the Ge(111) surface phase transition occurring at 1050 K is discussed. Spin-polarized photoelectron diffraction is a recently developed and promising application of photoelectron diffraction to the study of the magnetic structure near surfaces. This technique is based on an internal source of spin-polarized electrons as produced in core-level multiplet splittings and it is thus sensitive to the short-range magnetic order around a given type of emitter in the crystal. In prior studies, it has been applied to two antiferromagnets, KMnF_3 and MnO, and the effects seen at temperatures well above the Neel (or long-range -order) temperature have been

  16. Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite.

    PubMed

    Kim, Eun Jung; Batchelor, Bill

    2009-04-15

    Interactions of arsenic with synthesized pyrite were investigated using macroscopic (solution phase experiments) and microscopic (X-ray photoelectron spectroscopic investigation) approaches. Arsenic removal by pyrite was strongly dependent on pH and arsenic species. Both arsenite (As(III)) and arsenate (As(V)) had a strong affinity for the pyrite surface under acidic conditions, but As(III) was more effectively removed than As(V). A BET isotherm equation provided the best fit to arsenic removal data, suggesting that surface precipitation occurred at a high arsenic/pyrite ratio. The addition of competing ions did not substantially affect the ultimate distribution of arsenic between the pyrite surface and the solution, but changing the pH affected arsenic stability on pyrite. X-ray photoelectron spectroscopy (XPS) revealed that under acidic conditions, arsenic was removed by reaction with pyrite to form solid phases similar to As2S3 and As4S4. However, under neutral to alkaline conditions, arsenic was removed by sorption and precipitation to form solid phases that are similar to FeAsS and As2S3/As4S4.

  17. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms.

    PubMed

    Susi, Toma; Pichler, Thomas; Ayala, Paola

    2015-01-01

    X-ray photoelectron spectroscopy (XPS) is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.

  18. X-ray photoelectron spectroscopy characterization of the {omega} phase in water quenched Ti-5553 alloy

    SciTech Connect

    Qin, Dongyang; Lu, Yafeng; Zhang, Kong; Liu, Qian; Zhou, Lian

    2012-11-15

    X-ray photoelectron spectroscopy was used to investigate the {omega} phase in water quenched Ti-5553 alloy with a nominal composition of Ti-5Al-5V-5Mo-3Cr (wt.%), and the {omega} and the {beta} phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale {omega} phase in {beta} alloys. - Highlights: Black-Right-Pointing-Pointer We characterize the {omega} phase in Ti-5553 alloy by XPS. Black-Right-Pointing-Pointer Binding energy of Al2p, V2p and Cr2p electron are different in the {omega} and {beta} phase. Black-Right-Pointing-Pointer Structural difference leads to the binding energy gap.

  19. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    SciTech Connect

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  20. Investigating DNA Radiation Damage Using X-Ray Absorption Spectroscopy

    PubMed Central

    Czapla-Masztafiak, Joanna; Szlachetko, Jakub; Milne, Christopher J.; Lipiec, Ewelina; Sá, Jacinto; Penfold, Thomas J.; Huthwelker, Thomas; Borca, Camelia; Abela, Rafael; Kwiatek, Wojciech M.

    2016-01-01

    The biological influence of radiation on living matter has been studied for years; however, several questions about the detailed mechanism of radiation damage formation remain largely unanswered. Among all biomolecules exposed to radiation, DNA plays an important role because any damage to its molecular structure can affect the whole cell and may lead to chromosomal rearrangements resulting in genomic instability or cell death. To identify and characterize damage induced in the DNA sugar-phosphate backbone, in this work we performed x-ray absorption spectroscopy at the P K-edge on DNA irradiated with either UVA light or protons. By combining the experimental results with theoretical calculations, we were able to establish the types and relative ratio of lesions produced by both UVA and protons around the phosphorus atoms in DNA. PMID:27028640

  1. Characterization of SiC fibers by soft x-ray photoelectron and photoabsorption spectroscopies and scanning Auger microscopy

    SciTech Connect

    Ma, Qing; McDowell, M.W.; Rosenberg, R.A.

    1996-08-01

    Synchrotron radiation soft x-ray photoelectron and photoabsorption spectroscopy was used to characterize commercially obtained SiC fibers produced by CVD on a W core and followed by a C passivating layer. Depth profiling of the fiber through the C/SiC interface was done by making Si 2p and C 1s core level PES and PAS, as well as scanning Auger microscopy, measurements following Ar{sup +} sputtering. No significant changes in either photoemission or absorption or Auger line shapes were observed versus depth, indicating no significant interfacial reaction. The line shapes of the carbonaceous coatings are predominantely graphite-like and those of the CVD SiC coatings are microcrystalline, with disorder present to some extent in both cases.

  2. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides

    SciTech Connect

    Tobin, J G

    2011-03-17

    The subjects of discussion included: VUV photoelectron spectroscopy, X-ray photoelectron spectroscopy, Synchrotron-radiation-based photoelectron spectroscopy, Soft x-ray absorption spectroscopy, Soft x-ray emission spectroscopy, Inverse photoelectron spectroscopy, Bremstrahlung Isochromat Spectroscopy, Low energy IPES, Resonant inverse photoelectron spectroscopy.

  3. Investigation of surface structure with X-ray absorption and electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Pauli, Mark Daniel

    The use of electron spectromicroscopy for the study of the chemical composition and electronic properties of surfaces, overlayers, and interfaces has become widely accepted. Improvements to the optics of instruments such as the X-ray photo electron emission microscope have pushed spectroscopic microscopies into the realm of very high spatial resolution, at and below 1 micrometer [1]. Coupled with the high spectral resolution available from third generation synchrotron sources, this spatial resolution allows the measurement of micro-X-ray absorption near-edge spectra in addition to the more typical electron emission spectra and diffraction patterns. Complementary to the experimental developments is the development of improved theoretical methods for computational modeling of X-ray absorption and emission spectroscopies. In the field of tribochemistry, zinc dialkyl dithiophosphate (ZDDP) has long been a topic of much study. ZDDP is widely used as an anti-wear additive in engine oils and there is interest in determining the decomposition products of ZDDP that provide this protection against friction. An analysis of X-ray absorption near-edge spectra of thermal films from ZDDP samples is presented, including a comparison of the Zinc L-edge spectra with model calculations [2]. It was found essential to carry out self-consistent calculations of the electronic structure for the modeling. For the techniques of electron diffraction, a new method for a full multiple-scattering calculation of diffraction patterns from crystals with two-dimensional periodicity parallel to the surface is presented [3]. The calculation makes use of Helmholtz's reciprocity principle to compute the path-reversed process of the back propagation of a photoelectron from the position of a distant detector to that of the emitting atom. Early application is demonstrated with simulations of 64 eV M2,3VV and 914 eV L 2,3VV Auger electron diffraction from a Cu(001) surface. The functionality of the path

  4. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    SciTech Connect

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.; and others

    2014-10-10

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  5. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions

    NASA Astrophysics Data System (ADS)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.; Brown, Matthew A.

    2016-04-01

    Over the past decade, energy-dependent ambient pressure X-ray photoelectron spectroscopy (XPS) has emerged as a powerful analytical probe of the ion spatial distributions at the vapor (vacuum)-aqueous electrolyte interface. These experiments are often paired with complementary molecular dynamics (MD) simulations in an attempt to provide a complete description of the liquid interface. There is, however, no systematic protocol that permits a straightforward comparison of the two sets of results. XPS is an integrated technique that averages signals from multiple layers in a solution even at the lowest photoelectron kinetic energies routinely employed, whereas MD simulations provide a microscopic layer-by-layer description of the solution composition near the interface. Here, we use the National Institute of Standards and Technology database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to quantitatively interpret atom-density profiles from MD simulations for XPS signal intensities using sodium and potassium iodide solutions as examples. We show that electron inelastic mean free paths calculated from a semi-empirical formula depend strongly on solution composition, varying by up to 30% between pure water and concentrated NaI. The XPS signal thus arises from different information depths in different solutions for a fixed photoelectron kinetic energy. XPS signal intensities are calculated using SESSA as a function of photoelectron kinetic energy (probe depth) and compared with a widely employed ad hoc method. SESSA simulations illustrate the importance of accounting for elastic-scattering events at low photoelectron kinetic energies (<300 eV) where the ad hoc method systematically underestimates the preferential enhancement of anions over cations. Finally, some technical aspects of applying SESSA to liquid interfaces are discussed.

  6. Electronic Structures of Uranium Compounds Studied by Soft X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2016-06-01

    The electronic structures of uranium-based compounds have been studied by photoelectron spectroscopy with soft X-ray synchrotron radiation. Angle-resolved photoelectron spectroscopy with soft X-rays has made it possible to directly observe their bulk band structures and Fermi surfaces. It has been shown that the band structures and Fermi surfaces of itinerant compounds such as UB2, UN, and UFeGa5 are quantitatively described by a band-structure calculation treating all U 5f electrons as itinerant. Furthermore, the overall electronic structures of heavy-fermion compounds such as UPd2Al3, UNi2Al3, and URu2Si2 are also explained by a band-structure calculation, although some disagreements exist, which might originate from the electron correlation effect. This suggests that the itinerant description of U 5f states is an appropriate starting point for the description of their electronic structures. The situation is similar for ferromagnetic superconductors such as UGe2, URhGe, UCoGe, and UIr, although the complications from their low-symmetry crystal structures make it more difficult to describe their detailed electronic structures. The local electronic structures of the uranium site have been probed by core-level photoelectron spectroscopy with soft X-rays. The comparisons of core-level spectra of heavy-fermion compounds with typical itinerant and localized compounds suggest that the local electronic structures of most itinerant and heavy-fermion compounds are close to the U 5f3 configuration except for UPd2Al3 and UPt3. The core-level spectrum of UPd2Al3 has similarities to those of both itinerant and localized compounds, suggesting that it is located at the boundary between the itinerant and localized states. Moreover, the spectrum of UPt3 is very close to that of the localized compound UPd3, suggesting that it is nearly localized, although there are narrow quasi-particle bands in the vicinity of EF.

  7. X-ray-selected broad absorption line quasi-stellar objects

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Carrera, F. J.; Ceballos, M.; Corral, A.; Ebrero, J.; Esquej, P.; Krumpe, M.; Mateos, S.; Rosen, S.; Schwope, A.; Streblyanska, A.; Symeonidis, M.; Tedds, J. A.; Watson, M. G.

    2017-02-01

    We study a sample of six X-ray-selected broad absorption line (BAL) quasi-stellar objects (QSOs) from the XMM-Newton Wide Angle Survey. All six objects are classified as BALQSOs using the classic balnicity index, and together they form the largest sample of X-ray-selected BALQSOs. We find evidence for absorption in the X-ray spectra of all six objects. An ionized absorption model applied to an X-ray spectral shape that would be typical for non-BAL QSOs (a power law with energy index α = 0.98) provides acceptable fits to the X-ray spectra of all six objects. The optical to X-ray spectral indices, αOX, of the X-ray-selected BALQSOs, have a mean value of <αOX> = 1.69 ± 0.05, which is similar to that found for X-ray-selected and optically selected non-BAL QSOs of a similar ultraviolet luminosity. In contrast, optically selected BALQSOs typically have much larger αOX and so are characterized as being X-ray weak. The results imply that X-ray selection yields intrinsically X-ray bright BALQSOs, but their X-ray spectra are absorbed by a similar degree to that seen in optically selected BALQSO samples; X-ray absorption appears to be ubiquitous in BALQSOs, but X-ray weakness is not. We argue that BALQSOs sit at one end of a spectrum of X-ray absorption properties in QSOs related to the degree of ultraviolet absorption in C IV 1550 Å.

  8. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles

    NASA Astrophysics Data System (ADS)

    Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.

    2016-11-01

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions.

  9. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles

    PubMed Central

    Ouf, F.-X.; Parent, P.; Laffon, C.; Marhaba, I.; Ferry, D.; Marcillaud, B.; Antonsson, E.; Benkoula, S.; Liu, X.-J.; Nicolas, C.; Robert, E.; Patanen, M.; Barreda, F.-A.; Sublemontier, O.; Coppalle, A.; Yon, J.; Miserque, F.; Mostefaoui, T.; Regier, T. Z.; Mitchell, J.-B. A.; Miron, C.

    2016-01-01

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot’s work function obtained at different combustion conditions. PMID:27883014

  10. First in-flight synchrotron X-ray absorption and photoemission study of carbon soot nanoparticles.

    PubMed

    Ouf, F-X; Parent, P; Laffon, C; Marhaba, I; Ferry, D; Marcillaud, B; Antonsson, E; Benkoula, S; Liu, X-J; Nicolas, C; Robert, E; Patanen, M; Barreda, F-A; Sublemontier, O; Coppalle, A; Yon, J; Miserque, F; Mostefaoui, T; Regier, T Z; Mitchell, J-B A; Miron, C

    2016-11-24

    Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot's work function obtained at different combustion conditions.

  11. Charge transfer in nanocrystalline-Au /ZnO nanorods investigated by x-ray spectroscopy and scanning photoelectron microscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Ray, S. C.; Tsai, H. M.; Pao, C. W.; Chien, F. Z.; Pong, W. F.; Tsai, M.-H.; Wu, J. J.; Tseng, C. H.; Chen, C.-H.; Lee, J. F.; Guo, J.-H.

    2007-05-01

    O K- and Zn and Au L3-edge x-ray absorption near-edge structure (XANES), x-ray emission spectroscopy (XES), and scanning photoelectron microscopy (SPEM) are performed to investigate the electronic structure of ZnO nanorods with nanocrystalline (nc)-Au particles grown on the surfaces. The XANES spectra of nc-Au /ZnO nanorods reveal the decrease of the number of both O 2p and Zn 4s/3d unoccupied states with the increase of the nc-Au particle size. The number of Au 6s /5d unoccupied states increases when the size of nc-Au particle decreases, indicating that the deposition of nc-Au particles on the surface of ZnO nanorods promotes charge transfer from the ZnO nanorods to nc-Au particles. Excitation energy dependent XES and SPEM spectra show that the number of electrons in the valence band of O 2p-Zn 4sp hybridized states decreases as the nc-Au particle size increases, revealing that more electrons are excited from the valence band to the conduction band of ZnO nanorods and the storage of electrons in nc-Au particles.

  12. An XPS (X-Ray Photoelectron Spectroscopy) Study of the Composition of Thin Polyimide Films Formed by Vapor Deposition.

    DTIC Science & Technology

    1987-07-15

    1985) 2857. 13. B. D. Silverman, J. W. Bartha, J. G. Clabes, P. S Ho and A. R. Rossi, J. Polym . Sci. Part A 24 (1986) 3325. 14. E. Cartier , P. Pfluger...Benzenetetracarboxylic anhydride (PMDA), imidization, polymer , in situ, X-ray Photoelectron Spectroscopy (XPS),Cu(111) 20. ABSTRACT (Continue an...ODA) and 1,2,4,5 Benzenetetracarboxylic anhydride (PMDA). The imidization reaction leading to polymer formation was followed in situ with X-ray

  13. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  14. Iron distances in hemoglobin: comparison of x-ray crystallographic and extended x-ray absorption fine structure studies

    SciTech Connect

    Fermi, G.; Perutz, M.F.; Shulman, R.G.

    1987-09-01

    A comparison is presented of the structures obtained around the iron atom in deoxyhemoglobin (Hb). The data come from extended x-ray absorption fine structure (EXAFS) studies of the iron, which gave Fe-porphyrin nitrogen distances of 2.06 +- 0.01 A, and from the most recent high-resolution x-ray crystallographic study, which gave exactly the same distance-2.06 +- 0.02 A. The distance of Fe above the plane of the porphyrin nitrogens was 0.38 +- 0.04 A from the crystallographic study; this value is not far from the upper limit of the distances 0.20 +- /sub 0.20//sup 0.10/ A calculated from the EXAFS experiment by triangulation. These distances above the nitrogen plane are shorter than those estimated in the earliest x-ray structures

  15. Uses of Auger and x ray photoelectron spectroscopy in the study of adhesion and friction

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1990-01-01

    Three studies are described characterizing the possible contributions of surface science to tribology. These include surface contamination formed by the interaction of a surface with the environment, contaminants obtained with diffusion of compounds, and surface chemical changes resulting from selective thermal evaporation. Surface analytical tools such as Auger electron spectroscopy (AES) and x ray photoelectron spectroscopy (XPS) incorporated directly into adhesion and friction systems are primarily used to define the nature of tribological surfaces before and after tribological experimentation and to characterize the mechanism of solid-to-solid interaction. Emphasis is on fundamental studies involving the role of surfaces in controlling the adhesion and friction properties of materials emerging as a result of the surface analyses. The materials which were studied include metals and ceramics such as elemental metals, amorphous alloys (metallic glasses), and silicon-based ceramics.

  16. X-ray photoelectron and mass spectroscopic study of electron irradiation and thermal stability of polytetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. A quantitative comparison of the radiation dose rate with that in other reported studies showed that, for a given total dose, the damage observed by XPS is greater for higher dose rates. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS that were associated with damage diminished, giving the appearance that the radiation damage annealed. The apparent annealing of the radiation damage was found to be due to the covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  17. The Rh oxide ultrathin film on Rh(100): an x-ray photoelectron diffraction study.

    PubMed

    Zhan, Rong Rong; Vesselli, Erik; Baraldi, Alessandro; Lizzit, Silvano; Comelli, Giovanni

    2010-12-07

    The surface and interface structure of the RhO(2) ultrathin film grown on Rh(100) is investigated by means of x-ray photoelectron diffraction. Experimental and simulated one- and two-dimensional angular distribution intensities of the O1s and Rh3d(5/2) chemically shifted core levels are quantitatively analyzed. The previously proposed O-Rh-O trilayer model is independently confirmed. A rippled buckling of the metal surface is observed at the oxide-metal interface, with a mean interfacial Rh-O distance which is 0.2 Å larger with respect to previous findings. The link between the local atomic rearrangement and the overall geometric and electronic properties of the oxide is discussed on the basis of a thorough comparison with the corresponding RhO(2) rutile structure.

  18. X-ray photoelectron and Raman spectroscopic studies of MeV proton irradiated graphite

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Joseph, B.; Sekhar, B. R.; Dev, B. N.

    2008-07-01

    Poly-crystalline graphite samples were irradiated using 2.25 MeV H + ions with a fluence of 2 × 10 17 ions/cm 2. Magnetic ordering in highly oriented pyrolytic graphite samples have been reported earlier under the similar irradiation conditions [Esquinazi et al., Phys. Rev. Lett. 91 (2003) 227201]. In that study, the authors attribute the observed irradiation induced magnetic ordering to the formation of a mixed sp 2-sp 3 hybridized carbon atoms. In the present study, we report the X-ray photoelectron and Raman spectroscopic studies on pristine and irradiated samples. Irradiated samples are found to show an increased number of sp 3 hybridized carbon atoms. However, the Raman spectrum, specially the second order data, do indicate that the nature of the graphene lattice structure has been preserved in the irradiated samples. The mechanisms for the irradiation induced enhancement in sp 3 hybridization are discussed.

  19. Assessment of the weathering of protective coatings using x-ray photoelectron spectroscopy

    SciTech Connect

    Wilson, G.R.; Skerry, B.S.

    1993-12-31

    Three fully formulated coatings systems: polyurethane, alkyd and latex, were exposed either outdoors to a natural industrial atmospheric environment or to an accelerated corrosion/weathering test incorporating UV-condensation exposures and wet/dry corrosion cycling or to an RF generated {open_quotes}in-glow{close_quotes} oxygen plasma. Changes in coating surface chemistry as a function of time in each environment were followed using X-ray photoelectron spectroscopy (XPS). XPS detected changes in the surface composition of all three systems for all three environmentS. Some of the trends in degradation detected on the exterior exposed samples were reproduced by both accelerated tests. The data obtained from this study also suggested that the corrosion/weathering test would benefit from an increase in the amount of UV exposure over that which is currently used. Oxygen plasma etching also appears to have some potential as a tool for accelerated weathering of paint systems.

  20. X-ray photoelectron spectroscopy study of chemically-etched Nd-Ce-Cu-O surfaces

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Gupta, A.; Kussmaul, A.

    1991-01-01

    Acetic acid, Br2, and HCl solutions are investigated for removing insulating species from Nd(1.85)Ce(0.15)CuO(4-delta) (NCCO) thin film surfaces. X-ray photoelectron spectroscopy (XPS) shows that the HCl etch is most effective, yielding O 1s spectra comparable to those obtained from samples cleaned in vacuum and a clear Fermi edge in the valence band region. Reduction and oxidation reversibly induces and eliminates, respectively, Fermi level states for undoped samples, but has no clearly observable effect on the XPS spectra for doped samples. Reactivity to air is much less for NCCO compared to hole superconductors, which is attributed to the lack of reactive alkaline earth elements in NCCO.

  1. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  2. Determination of band profiles in GaN films using hard X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Saito, Shinji; Yoshiki, Masahiko; Nunoue, Shinya; Sano, Nobuyuki

    2017-02-01

    We investigated band-profile control by introducing interlayers between a semiconductor and metal contact layers to improve the electrical properties of GaN-based semiconductor devices. We evaluated the electronic structure of the semiconductor surface and the metal/semiconductor interface by hard X-ray photoelectron spectroscopy. We also performed Monte Carlo simulations using the Boltzmann transport equation under the potential profile obtained using the Poisson equation. The band profile in the semiconductor substrate was then examined by comparing the energy spectra from the simulations with those from the experiments. We obtained good agreement between the two results. The present experimental and theoretical methods allow one to determine the band profile near the surface of a semiconductor as well as that in a metal interface. This approach may become a useful tool in the design and/or evaluation of processing conditions.

  3. Core-Hole Molecular Frame X-Ray Photoelectron Angular Distributions as Molecular Geometry Probes

    NASA Astrophysics Data System (ADS)

    Trevisan, Cynthia; Williams, Joshua; Menssen, Adrian; Weber, Thorsten; Rescigno, Thomas; McCurdy, Clyde; Landers, Allen

    2014-05-01

    We present experimental and theoretical results for the angular dependence of electrons ejected from the core orbitals of ethane (C2H6) and tetrafluoromethane (CF4) in an effort to understand the origin of the imaging effect by which the molecular frame photoelectron angular distributions (MFPADs) for removing an electron from a 1s orbital effectively image the geometry of a class of molecules. At low energies, our calculations predict the same imaging effect in X2H6 previously found in CH4, H2O and NH3. By contrast, in experiment and calculations CF4 displays an anti-imaging effect, whereby the electron ejected by core photoionization has the tendency to avoid molecular bonds, if averaged over directions of polarization of the incident X-ray beam. Our measurements employ the COLTRIMS method and the calculations were performed with the Complex Kohn Variational method.

  4. Enzymatic modification and X-ray photoelectron spectroscopy analysis of a functionalized polydiacetylene thin film

    SciTech Connect

    Wilson, T.E.; Spevak, W.; Bednarski, M.D. Lawrence Berkeley Lab., CA ); Charych, D.H. )

    1994-05-01

    The mild conditions and specificity of biological catalysts are attractive incentives for their use in the formation of surfaces with well-defined chemical functionality. Herein, we describe the synthesis, characterization, and enzymatic modification of a functionalized polymeric bilayer assembly. The assembly is composed of a self-assembled monolayer of octadecylsilane and a Langmuir-Blodgett monolayer of polydiacetylene functionalized with the dipeptide phenylalanine-alanine (Phe-Ala). We demonstrate via X-ray photoelectron spectroscopy surface analysis that the surface-bound Phe-Ala dipeptide is a substrate for specific cleavage by the enzyme subtilisin BPN[prime]. In-situ surface transformations via enzymatic synthesis or cleavage offer an alternative to chemical treatments of organic thin films. 28 refs., 4 figs.

  5. Angularly resolved X-ray photoelectron spectroscopy investigation of PTFE after prolonged space exposure

    NASA Technical Reports Server (NTRS)

    Dalins, I.; Karimi, M.

    1992-01-01

    Monochromatized angularly resolved X-ray photoelectron spectroscopy (ARXPS) was used to study PTFE (Teflon) that had been exposed to an earth orbital environment for approximately six years. The primary interest of the research is on a very reactive component of this environment (atomic oxygen) which, because of the typical orbital velocities of a spacecraft, impinge on exposed surfaces with 5 eV energy. This presentation deals with the method of analysis, the findings as they pertain to a rather complex carbon, oxygen, and fluorine XPS peak analysis, and the character of the valence bands. An improved bias referencing method, based on ARXPS, is also demonstrated for evaluating specimen charging effects. It was found that the polymer molecule tends to resist the atomic oxygen attack by reorienting itself, so that the most electronegative CF3 groups are facing the incoming hyperthermal oxygen atoms. The implications of these findings to ground-based laboratory studies are discussed.

  6. X-ray photoelectron spectroscopy study of radiofrequency-sputtered refractory compound steel interfaces

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    Radiofrequency sputtering was used to deposit Mo2C, Mo2B5, and MoSi2 coatings on 440C steel substrates. Both sputter etched and preoxidized substrates were used, and the films were deposited with and without a substrate bias of -300 V. The composition of the coatings was measured as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. In the interfacial region there was evidence that bias produced a graded interface in Mo2B5 but not in Mo2C. Oxides of iron and of all film constituents except carbon were presented in all cases but the iron oxide concentration was higher and the layer thicker on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 film. The presence of mixed oxides correlates with enhanced film adhesion.

  7. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; de Vries, C. P.; Zatsarinny, O.

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  8. A comprehensive X-ray absorption model for atomic oxygen

    SciTech Connect

    Gorczyca, T. W.; Bautista, M. A.; Mendoza, C.; Hasoglu, M. F.; García, J.; Gatuzz, E.; Kaastra, J. S.; Raassen, A. J. J.; De Vries, C. P.; Kallman, T. R.; Manson, S. T.; Zatsarinny, O.

    2013-12-10

    An analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  9. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  10. X-ray photoelectron spectroscopy and luminescent properties of Y2O3:Bi3+ phosphor

    NASA Astrophysics Data System (ADS)

    Jafer, R. M.; Coetsee, E.; Yousif, A.; Kroon, R. E.; Ntwaeaborwa, O. M.; Swart, H. C.

    2015-03-01

    X-ray photoelectron spectroscopy (XPS) results provided proof for the blue and green emission of Bi3+ in the Y2O3:Bi3+ phosphor. The Y2O3:Bi3+ phosphor was successfully prepared by the combustion process during the investigation of down-conversion materials for Si solar cell application. The X-ray diffraction (XRD) patterns indicated that a single-phase cubic crystal structure with the Ia3 space group was formed. X-ray photoelectron spectroscopy (XPS) showed that the Bi3+ ion replaces the Y3+ ion in two different coordination sites in the Y2O3 crystal structure. The O 1s peak shows five peaks, two which correlate with the O2- ion in Y2O3 in the two different sites, two which correlate with O2- in Bi2O3 in the two different sites and the remaining peak relates to hydroxide. The Y 3d spectrum shows two peaks for the Y3+ ion in the Y2O3 structure in two different sites and the Bi 4f spectrum shows the Bi3+ ion in the two different sites in Bi2O3. The photoluminescence (PL) results showed three broad emission bands in the blue and green regions under ultraviolet excitation, which were also present for panchromatic cathodoluminescence (CL) results. These three peaks have maxima at ∼3.4, 3.0 and 2.5 eV. The PL emission ∼3.0 eV (blue emission) showed two excitation bands centered at ∼3.7 and 3.4 eV while the PL emission at ∼2.5 eV (green emission) showed a broad excitation band from ∼4 to 3.4 eV. The panchromatic CL images were obtained for selected wavelengths at (2.99 ± 0.08) eV (for blue emission) and (2.34 ± 0.06) eV (for green emission). These luminescence results correlate with the XPS results that show that there are two different Bi3+ sites in the host lattice.

  11. Depth-Resolved X-ray Absorption Spectroscopy by Means of Grazing Emission X-ray Fluorescence.

    PubMed

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-11-03

    Grazing emission X-ray fluorescence (GEXRF) is well suited for nondestructive elemental-sensitive depth-profiling measurements on samples with nanometer-sized features. By varying the grazing emission angle under which the X-ray fluorescence signal is detected, the probed depth range can be tuned from a few to several hundred nanometers. The dependence of the XRF intensity on the grazing emission angle can be assessed in a sequence of measurements or in a scanning-free approach using a position-sensitive area detector. Hereafter, we will show that the combination of scanning-free GEXRF and fluorescence detected X-ray absorption spectroscopy (XAS) allows for depth-resolved chemical speciation measurements with nanometer-scale accuracy. While the conventional grazing emission geometry is advantageous to minimize self-absorption effects, the use of a scanning-free setup makes the sequential scanning of the grazing emission angles obsolete and paves the way toward time-resolved depth-sensitive XAS measurements. The presented experimental approach was applied to study the surface oxidation of an Fe layer on the top of bulk Si and of a Ge bulk sample. Thanks to the penetrating properties and the insensitivity toward the electric conduction properties of the incident and emitted X-rays, the presented experimental approach is well suited for in situ sample surface studies in the nanometer regime.

  12. GaN quantum dot polarity determination by X-ray photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Romanyuk, O.; Bartoš, I.; Brault, J.; Mierry, P. De; Paskova, T.; Jiříček, P.

    2016-12-01

    Growth of GaN quantum dots (QDs) on polar and semipolar GaN substrates is a promising technology for efficient nitride-based light emitting diodes (LED). The QDs crystal orientation typically repeats the polarity of the substrate. In case of non-polar or semipolar substrates, the polarity of QDs is not obvious. In this article, the polarity of GaN QDs and of underlying layers was investigated nondestructively by X-ray photoelectron diffraction (XPD). Polar and semipolar GaN/Al0.5Ga0.5N heterostructures were grown on the sapphire substrates with (0001) and (1 1 bar 00) orientations by molecular beam epitaxy (MBE). Polar angle dependence of N 1s core-level photoelectron intensities were measured from GaN QDs and compared with the corresponding experimental curves from free-standing GaN crystals. It is confirmed experimentally, that the crystalline orientation of polar (0001) GaN QDs follows the orientation of the (0001) sapphire substrate. In case of semipolar GaN QDs grown on (1 1 bar 00) sapphire substrate, the (11 2 bar 2) polarity of QDs was determined.

  13. Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy

    SciTech Connect

    Black, Leon; Garbev, Krassimir; Stemmermann, Peter; Hallam, Keith R.; Allen, Geoffrey C

    2003-06-01

    We have prepared a number of crystalline calcium-silicate-hydrate (C-S-H) phases hydrothermally, with calcium-silicon ratios varying from approximately 0.5 (K-phase) to 2.0 (hillebrandite and {alpha}-dicalcium silicate hydrate). The phases were then analysed using X-ray photoelectron spectroscopy (XPS). Increasing calcium-silicon ratios resulted in decreased silicon binding energies. Additionally, changes in the O 1s spectra could be explained in terms of bridging (BO) and nonbridging oxygen (NBO) moieties. Finally, the modified Auger parameter has proved particularly useful in determining the extent of silicate anion polymerisation. Of note also are the apparently unusual spectra for 11 A tobermorite. The silicon and oxygen photoelectron spectra indicate a phase with a lower degree of silicate polymerisation than predicted from its composition. The main contributing factor is the intrinsic disorder within the tobermorite structure. This study has shown how XPS may be used to obtain valuable structural information from C-S-H phases, and our analysis of the crystalline phases is the first step towards the analysis of real C-S-H-based cement systems.

  14. Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy

    SciTech Connect

    Knut, Ronny Lindblad, Rebecka; Rensmo, Håkan; Karis, Olof; Grachev, Sergey; Faou, Jean-Yvon; Søndergård, Elin

    2014-01-28

    The chemistry and intermixing at buried interfaces in sputter deposited ZnO/Ti/ZnO thin layers were studied by hard x-ray photoelectron spectroscopy. The long mean free path of the photoelectrons allowed for detailed studies of the oxidation state, band bending effects, and intrinsic doping of the buried interfaces. Oxidation of the Ti layer was observed when ZnO was deposited on top. When Ti is deposited onto ZnO, Zn Auger peaks acquire a metallic character indicating a strong reduction of ZnO at the interface. Annealing of the stack at 200 °C results in further reduction of ZnO and oxidation of Ti. Above 300 °C, oxygen transport from the bulk of the ZnO layer takes place, leading to re-oxidation of ZnO at the interface and further oxidation of Ti layer. Heating above 500 °C leads to an intermixing of the layers and the formation of a Zn{sub x}TiO{sub y} compound.

  15. Surface structure of lithiated graphite by X-ray photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Lee, Choong Man; Yang, S.-H.; Mun, B.-J.; Ross, Philip N.

    2001-04-01

    The surface composition and structure of a stage-one lithium intercalation compound (Li-GIC) was studied by X-ray photoelectron diffraction (XPD) from Li 1s and C 1s core levels. The Li-GIC was prepared in situ by vapor phase intercalation of lithium into highly oriented pyrolitic graphite (HOPG) in an ultra-high vacuum system. Stage-one Li-GIC, LiC 6, having a characteristic golden color, was obtained using Li evaporation onto a HOPG substrate at 400 K, while a metallic lithium overlayer was observed at depositions below room temperature. XPD patterns of Li 1s and C 1s intensities as a function of the polar emission angle were obtained at a fixed photon energy of 1253.6 eV. The experimental XPD patterns on the HOPG and the stage-one Li-GIC were both in quite good agreement with calculated XPD patterns based on Rehr-Albers separable representation for scattering of the emitted photoelectrons. The structural model for the surface of the Li-GIC producing the best fit to the experimental data has the bulk LiC 6 lattice with surface termination in the graphene plane.

  16. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    SciTech Connect

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d{sup 10}4f{sup n} {yields} 3d-{sup 9}4f{sup n+1} transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO{sub 4} (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations.

  17. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  18. X-ray photoelectron spectra structure and chemical bond nature in NpO2

    NASA Astrophysics Data System (ADS)

    Teterin, Yu. A.; Teterin, A. Yu.; Ivanov, K. E.; Ryzhkov, M. V.; Maslakov, K. I.; Kalmykov, St. N.; Petrov, V. G.; Enina, D. A.

    2014-01-01

    Quantitative analysis was done of the x-ray photoelectron spectra structure in the binding energy (BE) range of 0 to ˜35 eV for neptunium dioxide (NpO2) valence electrons. The BEs and structure of the core electronic shells (˜35-1250 eV) as well as the relativistic discrete variation calculation results for the finite fragment of the NpO2 lattice and the data of other authors were taken into account. The experimental data show that the many-body effects and the multiplet splitting contribute to the spectral structure much less than the effects of formation of the outer (0-˜15 eV) and the inner (˜15-˜35 eV) valence molecular orbitals (OVMO and IVMO, respectively). The filled Np 5f electronic states were shown to form in the NpO2 valence band. The Np 6p electrons participate in formation of both the IVMO and the OVMO (bands). The filled Np 6p3/2 and the O 2s electronic shells were found to take the maximum part in the IVMO formation. The MO composition and the sequence order in the BE range 0-˜35 eV in NpO2 were established. The experimental and theoretical data allowed a quantitative MO scheme for NpO2, which is fundamental for both understanding the chemical bond nature in neptunium dioxide and the interpretation of other x-ray spectra of NpO2.

  19. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  20. Laboratory-based high pressure X-ray photoelectron spectroscopy: A novel and flexible reaction cell approach

    NASA Astrophysics Data System (ADS)

    Kerherve, Gwilherm; Regoutz, Anna; Bentley, David; Hood, Colin; Feeley, Keith; Knight, Stewart; Robson, Anthony; Turner, Craig; Singh, Nick; Pontefract, John; Åhlund, John; Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J.

    2017-03-01

    The last 10-15 years have witnessed a resurgence in the application of high pressure X-ray photoelectron spectroscopy, mainly through the development of new electron energy analyser designs and the utilization of high-brilliance synchrotron radiation sources. To continue this expansion of the technique, it is crucial that instruments are developed for the home-laboratory, considering that this is where the vast majority of traditional ultra-high vacuum (UHV) X-ray photoelectron spectroscopy is performed. The research presented here introduces a new addition to the field, an instrument capable of performing spectroscopy measurements from UHV to high pressure (25 mbar), achieved using a retractable and modular reaction cell design. The ease of use, stability (of analyser, X-ray source, and gas delivery, etc.), and overall capability of the instrument will be demonstrated.

  1. X-ray absorption in pillar shaped transmission electron microscopy specimens.

    PubMed

    Bender, H; Seidel, F; Favia, P; Richard, O; Vandervorst, W

    2017-03-07

    The dependence of the X-ray absorption on the position in a pillar shaped transmission electron microscopy specimen is modeled for X-ray analysis with single and multiple detector configurations and for different pillar orientations relative to the detectors. Universal curves, applicable to any pillar diameter, are derived for the relative intensities between weak and medium or strongly absorbed X-ray emission. For the configuration as used in 360° X-ray tomography, the absorption correction for weak and medium absorbed X-rays is shown to be nearly constant along the pillar diameter. Absorption effects in pillars are about a factor 3 less important than in planar specimens with thickness equal to the pillar diameter. A practical approach for the absorption correction in pillar shaped samples is proposed and its limitations discussed. The modeled absorption dependences are verified experimentally for pillars with HfO2 and SiGe stacks.

  2. First-principles core-level X-ray photoelectron spectroscopy calculation on arsenic defects in silicon crystal

    SciTech Connect

    Kishi, Hiroki; Miyazawa, Miki; Matsushima, Naoki; Yamauchi, Jun

    2014-02-21

    We investigate the X-ray photoelectron spectroscopy (XPS) binding energies of As 3d in Si for various defects in neutral and charged states by first-principles calculation. It is found that the complexes of a substitutional As and a vacancy in charged and neutral states explain the experimentally observed unknown peak very well.

  3. Enhancement of X-ray dose absorption for medical applications

    NASA Astrophysics Data System (ADS)

    Lim, Sara; Nahar, S.; Pradhan, A.; Barth, R.

    2013-05-01

    A promising technique for cancer treatment is radiation therapy with high-Z (HZ) nanomoities acting as radio-sensitizers attached to tumor cells and irradiated with X-rays. But the efficacy of radiosenstization is highly energy dependent. We study the physical effects in using platinum (Pt) as the radio-sensitizing agent, coupled with commonly employed broadband x-ray sources with mean energies around 100 keV, as opposed to MeV energies produced by clinical linear accelerators (LINAC) used in radiation therapy. Numerical calculations, in vitro, and in vivo studies of F98 rat glioma (brain cancer) demonstrate that irradiation from a medium energy X-ray (MEX) 160 kV source is far more effective than from a high energy x-ray (HEX) 6 MV LINAC. We define a parameter to quantify photoionization by an x-ray source, which thereby provides a measure of subsequent Auger decays. The platinum (Z = 78) results are also relevant to ongoing studies on x-ray interaction with gold (Z = 79) nanoparticles, widely studied as an HZ contrast agent. The present study should be of additional interest for a combined radiation plus chemotherapy treatment since Pt compounds such cis-Pt and carbo-Pt are commonly used in chemotherapy.

  4. Surface composition analysis of HF vapour cleaned silicon by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Ermolieff, A.; Martin, F.; Amouroux, A.; Marthon, S.; Westendorp, J. F. M.

    1991-06-01

    X-ray photoelectron spectroscopy (XPS) measurements on silicon surfaces treated by HF gaseous cleaning are described. Various cleaning recipes, which essentially differ by the amount of water present during the reaction were studied; the composition of the silicon surface was measured in terms of monolayer coverage of oxygen, fluorine and carbon. These gaseous cleaned surfaces are compared with those of commonly deglazed silicon samples by using an aqueous HF bath. The F(1s), O(1s), Si(2p), C(1s) photoelectron lines were monitored, and concentrations determined as usual by integration of the lines after removal of the non-linear backgroune. The F(1s), C(1s) and Si(2p) lines were decomposed into several components corresponding to different chemical bonds. The results show that the amount of fluorine is directly correlated with the amount of oxygen: the higher the oxygen level on the sample, the more important is the fluorine content till 0.7 ML, essentially in a O sbnd Si sbnd F bonding state. For more aggresive etching leaving less than one monolayer of oxygen, the Si sbnd F bond becomes predominant. The ratio of the SiF to OSiF concentrations is a significant signature of the deoxidation state of the surface. Hydrophobicity of the water appears in the range of 25% Si sbnd F bonds. With very aggresive etching processes, 67% Si sbnd F bonds and 33% O sbnd Si sbnd F bonds are reached and the total amount of fluoride drops below 0.3 ML. For comparison, only Si sbnd F bonds are observed after a wet etching in a dilute HF bath without a rinse with a much lower fluorine concentration. The balance between Si sbnd F and O sbnd Si sbnd F remains stable and seems to be representative of the surface states provided by the etching process.

  5. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    PubMed

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  6. Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy.

    PubMed

    Menard, Melissa C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2013-11-14

    Magnetite (Fe3O4) is an abundant, low cost, environmentally benign material with potential application in batteries. Recently, low temperature coprecipitation methods have enabled preparation of a series of nanocrystalline magnetite samples with a range of crystallite sizes. Electrochemical cells based on Li/Fe3O4 show a linear increase in capacity with decreasing crystallite size at voltages ≥1.2 V where a 2× capacity improvement relative to commercial (26.2 nm) magnetite is observed. In this report, a combination of X-ray powder diffraction (XRD) and X-ray absorption spectroscopy (XAS) is used to measure magnetite structural changes occurring upon electrochemical reduction, with parent Fe3O4 crystallite size as a variable. Notably, XAS provides evidence of metallic iron formation at high levels of electrochemical reduction.

  7. Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation

    SciTech Connect

    Delmelle, Renaud; Borgschulte, Andreas; Probst, Benjamin; Alberto, Roger; Züttel, Andreas; Bleiner, Davide

    2015-05-15

    Comprehensive studies of gas-solid reactions require the in-situ interaction of the gas at a pressure beyond the operating pressure of ultrahigh vacuum (UHV) X-ray photoelectron spectroscopy (XPS). The recent progress of near ambient pressure XPS allows to dose gases to the sample up to a pressure of 20 mbar. The present work describes an alternative to this experimental challenge, with a focus on H{sub 2} as the interacting gas. Instead of exposing the sample under investigation to gaseous hydrogen, the sample is in contact with a hydrogen permeation membrane, through which hydrogen is transported from the outside to the sample as atomic hydrogen. Thereby, we can reach local hydrogen concentrations at the sample inside an UHV chamber, which is equipped with surface science tools, and this corresponds to a hydrogen pressure up to 1 bar without affecting the sensitivity or energy resolution of the spectrometer. This experimental approach is validated by two examples, that is, the reduction of a catalyst precursor for CO{sub 2} hydrogenation and the hydrogenation of a water reduction catalyst for photocatalytic H{sub 2} production, but it opens the possibility of the new in situ characterisation of energy materials and catalysts.

  8. X-ray photoelectron spectroscopic study of the chemical vapor deposited W/Al interface

    NASA Astrophysics Data System (ADS)

    Ohshima, H.; Katayama, M.; Onoda, K.; Hattori, T.; Suzuki, H.; Tokuda, Y.

    1993-07-01

    The dependence of the amount of aluminum trifluoride (AlF3) piled up at the interface of chemical vapor deposited tungsten and the aluminum under layer on the deposition time and subsequent annealing in ultrahigh vacuum (UHV) or in monosilane (SiH4) gas has been studied. AlF3 is formed by the reaction of the aluminum under layer with tungsten hexafluoride (WF6) during the initial state of tungsten chemical vapor deposition. Tungsten was deposited on an Al layer under selective deposition conditions by SiH4 reduction at 250 °C. X-ray photoelectron spectroscopy measurement reveals that the amount of AlF3 decreases with an increase in the tungsten deposition time and that the reduction of AlF3 by volatilization of aluminum fluorides, which occurs at higher temperatures (≳400 °C) is not observed at low temperature (270 °C). Annealing in SiH4 gas after the tungsten deposition was effective to reduce the amount of AlF3 compared with annealing in UHV. This result and thermochemical data would suggest that the dependence of the amount of AlF3 on the tungsten deposition time is explained by the reduction of AlF3 with hydrogen atoms supplied from the dissociation of SiH4.

  9. Surface characterization of various graphites by x-ray photoelectron, secondary ion mass, and Raman spectroscopies

    SciTech Connect

    Ashida, K.; Kanamori, K.; Watanabe, K.

    1988-07-01

    Graphite is the primary candidate for the first wall of magnetically confined fusion devices. For this purpose, it is important to know the surface properties of graphite to understand the plasma--surface interactions as well as vacuum properties of graphite. From this viewpoint, we examined the binding states of carbon atoms, inherent hydrogen content, and crystallinity of the surfaces of isotropic graphites prepared by several Japanese companies as well as anisotropic ones with x-ray photoelectron (XPS), secondary ion mass (SIMS), and Raman (RS) spectroscopies. Although no measurable difference in the binding state of carbon atoms was detected among the isotropic and anisotropic graphites with XPS, RS revealed that their crystallite sizes differed from each other. Namely, the crystallite sizes of the isotropic graphites were in the range from 100 to 300 A, whereas those of the anisotropic graphites were more than approx.1000 A. In addition, nongraphitized carbon which was not observed for the anisotropic graphites was present in the surface layers of the isotropic ones. SIMS revealed that the inherent hydrogen contents in the isotropic graphites were larger than those in the anisotropic ones. The results indicate that the larger hydrogen contents in the isotropic graphites are due to the presence of nongraphitized carbon which acts as the trapping site of hydrogen atoms.

  10. Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry.

    PubMed

    Kurylo, Ievgen; Dupré, Mathieu; Cantel, Sonia; Enjalbal, Christine; Drobecq, Hervé; Szunerits, Sabine; Melnyk, Oleg; Boukherroub, Rabah; Coffinier, Yannick

    2017-03-13

    In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS). XPS allowed us to follow the peptide immobilization and its photorelease by recording the variation of the signal intensities of the different elements present on the SiNW surface. Mass spectrometry was performed without the use of an organic matrix and peptide ions were produced via a photocleavage mechanism. Indeed, thanks to direct photorelease achieved upon laser irradiation, a recorded predictable peak related to the molecular peptide ion has been detected, allowing the identification of the model peptide. Additional MS/MS experiments confirmed the photodissociation site and confirmed the N-terminal immobilization of the peptide on SiNWs.

  11. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-10-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry.

  12. Quantum-classical calculations of X-ray photoelectron spectra of polymers-Polymethyl methacrylate revisited.

    PubMed

    Löytynoja, T; Harczuk, I; Jänkälä, K; Vahtras, O; Ågren, H

    2017-03-28

    In this work, we apply quantum mechanics/molecular mechanics (QM/MM) approach to predict core-electron binding energies and chemical shifts of polymers, obtainable via X-ray photoelectron spectroscopy(XPS), using polymethyl methacrylate as a demonstration example. The results indicate that standard parametrizations of the quantum part (basis sets, level of correlation) and the molecular mechanics parts (decomposed charges, polarizabilities, and capping technique) are sufficient for the QM/MM model to be predictive for XPS of polymers. It is found that the polymer environment produces contributions to the XPS binding energies that are close to monotonous with the number of monomer units, totally amounting to approximately an eV decrease in binding energies. In most of the cases, the order of the shifts is maintained, and even the relative size of the differential shifts is largely preserved. The coupling of the internal core-hole relaxation to the polymer environment is found to be weak in each case, amounting only to one or two tenths of an eV. The main polymeric effect is actually well estimated already at the frozen orbital level of theory, which in turn implies a substantial computational simplification. These conclusions are best represented by the cases where the ionized monomer and its immediate surrounding are treated quantum mechanically. If the QM region includes only a single monomer, a couple of anomalies are spotted, which are referred to the QM/MM interface itself and to the neglect of a possible charge transfer.

  13. Study on NiO/Fe interface with X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Chun; Zhang, Jing-Yan; Teng, Jiao; Wang, Fu-Ming

    2010-12-01

    Different monolayers (ML) of Fe atoms were deposited on NiO (001) substrates or NiO underlayers using molecular beam epitaxy (MBE), pulse laser deposition (PLD), and magnetron sputtering (MS). The magnetic properties and microstructure of the films were studied. The apparent magnetic dead layer (MDL) is found to exist at the NiO/Fe interfaces of the MBE sample (about 2 ML MDL), the PLD sample (about 3 ML MDL), and the MS sample (about 4 ML MDL). X-ray photoelectron spectroscopy indicates the presence of ionic Fe (Fe2+ or Fe3+) and metallic Ni at the NiO/Fe interfaces, which may be due to the chemical reactions between Fe and NiO layers. This also leads to the formation of MDL. The thickness of the MDL and the reaction products are related with the deposition energy of the atoms on the substrates. The interfacial reactions are effectively suppressed by inserting a thin Pt layer at the NiO/Fe interface.

  14. Analysis of Band Offset in GaNAs/GaAs by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kitatani, Takeshi; Kondow, Masahiko; Kikawa, Takeshi; Yazawa, Yoshiaki; Okai, Makoto; Uomi, Kazuhisa

    1999-09-01

    We used X-ray photoelectron spectroscopy (XPS) to measure the energy discontinuity in the valence band (ΔEv) of Ga1-xNxAs/AlAs (x=0, 0.014, 0.034) and estimated ΔEv of GaNAs/GaAs by using the Al2p energy level as a reference. The change in ΔEv for GaNAs/GaAs with an increasing nitrogen content was -(0.019±0.053) eV/%N. This suggests that the valence-band edge (Ev) in GaNAs decreases in proportion to the nitrogen content. Based on the decrease in the bandgap energy of GaNAs, we found that the energy discontinuity in the conduction band (ΔEc) of GaNAs/GaAs is -(0.175±0.053) eV/%N. This large effect of bandgap bowing on the conduction band indicates that an ideal carrier confinement in the well can be obtained by using GaInNAs as an active layer in long-wavelength laser diodes.

  15. Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Peuckert, M.; Bonzel, H. P.

    1984-09-01

    Various adlayers were grown on the (111) surface of a platinum crystal by four different oxidizing treatments. The resulting surface phases were characterized by X-ray photoelectron spectroscopy. According to the Pt 4f and O 1s XPS spectra, treatment in 0.1 MPa O 2 at 900 K yielded about two monolayers of PtO 2; anodic polarization in 0.5M H 2SO 4 acid electrolyte at 3 V versus standard hydrogen electrode gave a thick (> 5 nm) layer of Pt(OH) 4, while by polarization in 1M NaOH base electrolyte at 3 V versus Ag/AgCl reference electrode a thick film of an oxyhydroxide (approximately PtO(OH) 2) was formed. Etching in boiling conc. HNO 3 led to a thin layer of about 1 nm of a hydrated oxide, PtO 2 · xH 2O. Identification of the different surface phases was supported by comparative experiments with bulk PtO 2. The thermal stability of all compounds was investigated by heating the samples in ultrahigh vacuum. They all decomposed at about 400 K. Initially, not a pure metal phase was formed, but a mixed phase containing Pt metal and oxide, which was stable over a wide temperature range. No oxygen could be detected on the surface at 1070 K by XPS or Auger spectroscopy.

  16. X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling

    SciTech Connect

    Black, Leon . E-mail: l.black@shu.ac.uk; Garbev, Krassimir; Beuchle, Guenter; Stemmermann, Peter; Schild, Dieter

    2006-06-15

    X-ray photoelectron spectroscopy (XPS) has been used to analyse a series of mechanochemically synthesised, nanocrystalline calcium silicate hydrates (C-S-H). The samples, with Ca/Si ratios of 0.2 to 1.5, showed structural features of C-S-H(I). XPS analysis revealed changes in the extent of silicate polymerisation. Si 2p, Ca 2p and O 1s spectra showed that, unlike for the crystalline calcium silicate hydrate phases studied previously, there was no evidence of silicate sheets (Q{sup 3}) at low Ca/Si ratios. Si 2p and O 1s spectra indicated silicate depolymerisation, expressed by decreasing silicate chain length, with increasing C/S. In all spectra, peak narrowing was observed with increasing Ca/Si, indicating increased structural ordering. The rapid changes of the slope of FWHM of Si 2p, {delta} {sub Ca-Si} and {delta} {sub NBO-BO} as function of C/S ratio indicated a possible miscibility gap in the C-S-H-solid solution series between C/S 5/6 and 1. The modified Auger parameter ({alpha}') of nanocrystalline C-S-H decreased with increasing silicate polymerisation, a trend already observed studying crystalline C-S-H. Absolute values of {alpha}' were shifted about - 0.7 eV with respect to crystalline phases of equal C/S ratio, due to reduced crystallinity.

  17. Effect of Space Radiation Processing on Lunar Soil Surface Chemistry: X-Ray Photoelectron Spectroscopy Studies

    NASA Technical Reports Server (NTRS)

    Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.

    2009-01-01

    Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.

  18. Behavior of oxygen doped SiC thin films: An x-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Avila, A.; Montero, I.; Galán, L.; Ripalda, J. M.; Levy, R.

    2001-01-01

    Thin silicon carbide films have been deposited by chemical vapor deposition on p-type (100) silicon substrates. The composition and bonds formed in these films have been analyzed by x-ray photoelectron spectroscopy (XPS) and infrared spectroscopy. The native surface oxide on the silicon carbide surface induced by air exposure has also been studied. Several phases are detected in the near-surface region: elemental Si, Si oxides (mainly SiO2), Si carbide (SiC) and Si oxicarbides (SiOxCy). Quantitative XPS analysis results indicate that, for atomic oxygen fractions <0.15, the Si-C phases are dominant in the films. Above this value no silicon oxicarbide is observed, but a multiphase material formed by elemental Si, Si oxides and Si carbides is observed. In spite of the film being a complex phase mixture, a simple relationship is found between the overall carbon and oxygen compositions. The carbon atomic fraction in the film decreases quasilinearly as the oxygen content increases, with a slope of about -1. An overall composition of SiOxC3-x in the 0.5

  19. CHARACTERIZING SURFACE LAYERS IN NITINOL USING X-RAY PHOTOELECTRON SPECTROSCOPY

    SciTech Connect

    Christopfel, R.; Mehta, A.

    2008-01-01

    Nitinol is a shape memory alloy whose properties allow for large reversible deformations and a return to its original geometry. This nickel-titanium (NiTi) alloy has become a material used widely in the biomedical fi eld as a stent to open up collapsed arteries. Both ambient and biological conditions cause surface oxidation in these devices which in turn change its biocompatibility. The thickness of oxidized layers can cause fractures in the material if too large and can allow for penetration if too thin. Depending on the type and abundance of the chemical species on or near the surface, highly toxic metal ions can leak into the body causing cell damage or even cell death. Thus, biocompatibility of such devices is crucial. By using highly surface sensitive x-ray photoelectron spectroscopy to probe the surface of these structures, it is possible to decipher both layer composition and layer thickness. Two samples, both of which were mechanically polished, were investigated. Of the two samples, one was then exposed to a phosphate buffered saline (PBS) solution to mimic the chemical properties of blood, while the other remained unexposed. Although both samples were found to have oxide layers of appropriate thickness (on the order of a few nm), it was found that the sample exposed to the saline solution had a slightly thicker oxide layer and more signifi cantly, a phosphate layer very near the surface suggesting toxic metal components are well contained within the sample. These are considerable indications of a biocompatible device.

  20. Hydrazine reduction of transition metal oxides - In situ characterization using X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Littrell, D. M.; Tatarchuk, B. J.

    1986-01-01

    The transition metal oxides (TMOs) V2O5, FeO3, Co3O4, NiO, CuO, and ZnO were exposed to hydrazine at various pressures. The metallic surfaces were surveyed by in situ X-ray photoelectron spectroscopy to determine the irrelative rate of reduction by hydrazine. The most easily reducible oxide, CuO, could be reduced to the metallic state at room temperature and 10 to the -6th torr. The reaction is first order with respect to CuO, with an activation energy of about 35 kJ/mol. Two types of adsorption were seen to occur at 295 K: (1) a reversible component in which the measured N:Cu ratio increased to 0.60 at hydrazine pressures up to 0.5 torr, and (2) an irreversible component, with a N:Cu ratio of 0.28, which could not be removed by extended vacuum pumping. The results of this study are useful for the identification of TMO's that can be used as solid neatallizers of hydrazine spills, and for the preparation of metal surfaces for electroplating and evaporative thin-film coating.

  1. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    SciTech Connect

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; Eklund, Per; Gogotsi, Yury; Rosen, Johanna; Barsoum, Michel W.

    2015-12-01

    A detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented in this work for select MXenes—a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Thus we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti3C2Tx, Ti2CTx, Ti3CNTx, Nb2CTx and Nb4C3Tx, where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, single bondO, single bondOH and single bondF, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. Moreover, from XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.

  2. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    DOE PAGES

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; ...

    2015-12-01

    A detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented in this work for select MXenes—a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Thus we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti3C2Tx, Ti2CTx, Ti3CNTx, Nb2CTx and Nb4C3Tx, where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, single bondO, single bondOHmore » and single bondF, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. Moreover, from XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.« less

  3. X-ray photoelectron spectroscopy as a probe of rhodium-ligand interaction in ionic liquids

    NASA Astrophysics Data System (ADS)

    Men, Shuang; Lovelock, Kevin R. J.; Licence, Peter

    2016-02-01

    We use X-ray photoelectron spectroscopy (XPS) to identify the interaction between the rhodium atom and phosphine ligands in six 1-octyl-3-methylimidazolium-based ionic liquids ([C8C1Im][X]). The formation of a mono-phosphine rhodium complex based upon addition of triphenylphosphine (PPh3) is confirmed by XPS in all ionic liquids studied herein. Due to the electron donation effect of the ligand, the rhodium atom becomes more negatively charged and thus exhibits a lower measured binding energy. The influence of the anion basicity on the formation of different types of rhodium complexes is also investigated. By introducing a biphosphine ligand, a chelated diphosphine rhodium complex is formed in ionic liquids with more basic anions and verified by both XPS and Infrared Spectroscopy (IR). The measured Rh 3d binding energies are correlated to the reaction selectivity of a hydroformylation reaction which inspires a method to design a metal catalyst to control the chemical reaction towards desired products in the future.

  4. [Characterization of biochar by X-ray photoelectron spectroscopy and 13C nuclear magnetic resonance].

    PubMed

    Xu, Dong-yu; Jin, Jie; Yan, Yu; Han, Lan-fang; Kang, Ming-jie; Wang, Zi-ying; Zhao, Ye; Sun, Ke

    2014-12-01

    The wood (willow branch) and grass (rice straw) materials were pyrolyzed at different temperatures (300, 450 and 600 °C) to obtain the biochars used in the present study. The biochars were characterized using elementary analysis, X-ray photoelectron spectroscopy (XPS) and solid state 13C cross-polarization and magic angle spinning nuclear magnetic resonance spectroscopy (13C NMR) to illuminate the structure and composition of the biochars which were derived from the different thermal temperatures and biomass. The results showed that the H/C, O/C and (O+N)/C ratios of the biochars decreased with the increase in the pyrolysis temperatures. The surface polarity and ash content of the grass-derived biochars were higher than those of the wood-derived biochars. The minerals of the wood-derived biochars were mainly covered by the organic matter; in contrast, parts of the mineral surfaces of the grass-derived biochars were not covered by organic matter? The 13C NMR of the low temperature-derived biochars revealed a large contribution of aromatic carbon, aliphatic carbon, carboxyl and carbonyl carbon, while the high temperature-derived biochars contained a large amount of aromatic carbon. Moreover, the wood-derived biochars produced at low heat treatment temperatures contained more lignin residues than grass-derived ones, probably due to the existence of high lignin content in the feedstock soures of wood-derived biochars. The results of the study would be useful for environmental application of biochars.

  5. A versatile instrument for ambient pressure x-ray photoelectron spectroscopy: The Lund cell approach

    NASA Astrophysics Data System (ADS)

    Knudsen, Jan; Andersen, Jesper N.; Schnadt, Joachim

    2016-04-01

    During the past one and a half decades ambient pressure x-ray photoelectron spectroscopy (APXPS) has grown to become a mature technique for the real-time investigation of both solid and liquid surfaces in the presence of a gas or vapour phase. APXPS has been or is being implemented at most major synchrotron radiation facilities and in quite a large number of home laboratories. While most APXPS instruments operate using a standard vacuum chamber as the sample environment, more recently new instruments have been developed which focus on the possibility of custom-designed sample environments with exchangeable ambient pressure cells (AP cells). A particular kind of AP cell solution has been driven by the development of the APXPS instrument for the SPECIES beamline of the MAX IV Laboratory: the solution makes use of a moveable AP cell which for APXPS measurements is docked to the electron energy analyser inside the ultrahigh vacuum instrument. Only the inner volume of the AP cell is filled with gas, while the surrounding vacuum chamber remains under vacuum conditions. The design enables the direct connection of UHV experiments to APXPS experiments, and the swift exchange of AP cells allows different custom-designed sample environments. Moreover, the AP cell design allows the gas-filled inner volume to remain small, which is highly beneficial for experiments in which fast gas exchange is required. Here we report on the design of several AP cells and use a number of cases to exemplify the utility of our approach.

  6. Chemical functionalization of nanodiamond by amino groups: an X-ray photoelectron spectroscopy study.

    PubMed

    Dhanak, V R; Butenko, Yu V; Brieva, A C; Coxon, P R; Alves, L; Siller, L

    2012-04-01

    The development of chemical functionalization techniques for diamond nanocrystallites opens up ways with a view to altering their solubility in different solvents, improve interfacial adhesion of nanodiamonds with a composite matrix in new materials, and provide new possibilities for the modification of the electronic properties of nanodiamond crystallites. In this work, we present results on the chemical functionalization of nanodiamonds by amino groups using ammonia as a nitrogenation agent. Nanodiamond material used was formed by the detonation technique with average crystallite sizes of 4-5 nm. The final materials and intermediates products were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Chemical functionalization of nanodiamonds by amino groups could enable the preparation of new nylon nano-composite materials. Presence of surface amino groups could alter pH of nanodiamond colloids towards basic values and improve colloidal stability of nanodiamond suspensions at pH close to 7. This could enable syntheses of new drug delivery systems based on nanodiamonds.

  7. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies of Lithium-Oxygen Redox Reactions

    PubMed Central

    Lu, Yi-Chun; Crumlin, Ethan J.; Veith, Gabriel M.; Harding, Jonathon R.; Mutoro, Eva; Baggetto, Loïc; Dudney, Nancy J.; Liu, Zhi; Shao-Horn, Yang

    2012-01-01

    The lack of fundamental understanding of the oxygen reduction and oxygen evolution in nonaqueous electrolytes significantly hinders the development of rechargeable lithium-air batteries. Here we employ a solid-state Li4+xTi5O12/LiPON/LixV2O5 cell and examine in situ the chemistry of Li-O2 reaction products on LixV2O5 as a function of applied voltage under ultra high vacuum (UHV) and at 500 mtorr of oxygen pressure using ambient pressure X-ray photoelectron spectroscopy (APXPS). Under UHV, lithium intercalated into LixV2O5 while molecular oxygen was reduced to form lithium peroxide on LixV2O5 in the presence of oxygen upon discharge. Interestingly, the oxidation of Li2O2 began at much lower overpotentials (~240 mV) than the charge overpotentials of conventional Li-O2 cells with aprotic electrolytes (~1000 mV). Our study provides the first evidence of reversible lithium peroxide formation and decomposition in situ on an oxide surface using a solid-state cell, and new insights into the reaction mechanism of Li-O2 chemistry. PMID:23056907

  8. Chemistry of carbon polymer composite electrode - An X-ray photoelectron spectroscopy study

    NASA Astrophysics Data System (ADS)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind

    2015-01-01

    Surface chemistry of the electrodes in a proton exchange membrane fuel cell is of great importance for the cell performance. Many groups have reported that electrode preparation condition has a direct influence on the resulting electrode properties. In this work, the oxidation state of electrode components and the composites (catalyst ionomer mixtures) in various electrode structures were systematically studied with X-ray photoelectron spectroscopy (XPS). Based on the spectra, when catalyst is physically mixed with Nafion ionomer, the resulting electrode surface chemistry is a combination of the two components. When the electrode is prepared with a lamination procedure, the ratio between fluorocarbon and graphitic carbon is decreased. Moreover, ether type oxide content is decreased although carbon oxide is slightly increased. This indicates structure change of the catalyst layer due to an interaction between the ionomer and the catalyst and possible polymer structural change during electrode fabrication. The surface of micro porous layer was found to be much more influenced by the lamination, especially when it is in contact with catalysts in the interphase. Higher amount of platinum oxide was observed in the electrode structures (catalyst ionomer mixture) compared to the catalyst powder. This also indicates a certain interaction between the functional groups in the polymer and platinum surface.

  9. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partialmore » pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less

  10. Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy

    SciTech Connect

    Newberg, John T.; Bluhm, Hendrik

    2015-08-18

    The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10-5 to 2 × 10-3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the COH alcohol group and CMe methyl groups in a 1 : 2 ratio, respectively. Coverage increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 103 Torr-1. The 1 : 2 ratio of COH : CMe remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.

  11. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    SciTech Connect

    Stoupin, Stanislav

    2016-01-25

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  12. Self-detection of x-ray Fresnel transmissivity using photoelectron-induced gas ionization

    NASA Astrophysics Data System (ADS)

    Stoupin, Stanislav

    2016-01-01

    Electric response of an x-ray mirror enclosed in a gas flow ionization chamber was studied under the conditions of total external reflection for hard x-rays. It is shown that the electric response of the system as a function of the incidence angle is defined by x-ray Fresnel transmissivity and photon-electron attenuation properties of the mirror material. A simple interpretation of quantum yield of the system is presented. The approach could serve as a basis for non-invasive in situ diagnostics of hard x-ray optics, easy access to complementary x-ray transmissivity data in x-ray reflectivity experiments, and might also pave the way to advanced schemes for angle and energy resolving x-ray detectors.

  13. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  14. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    SciTech Connect

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  15. Nonlinear Absorption of X-ray Free Electron Laser Pulses in Dense Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Cho, Min Sang; Kim, M.; Chung, H.-K.; Cho, Byoung-Ick

    2016-10-01

    XFEL provides unique opportunities to generate and investigate dense plasmas. Here, we present the intensity dependent, nonlinear x-ray absorption in dense aluminum target using the collisional-radiative population kinetic calculations. With high peak intensity of XFEL pulses, even below K-absorption edge, x-ray photons could create excited states of which absorption is larger than the ground state absorption. At the resonant energy of neutral atom, increasing x-ray absorption in the intensity range of 1016 17 W/cm2 has been observed, and it is the reverse saturable absorption in the x-ray regime. The similar observations have been also made at the other resonant energies of higher charge states. At even higher XFEL intensities, bleaching a specific charge state could lead a transition from reverse saturable absorption to saturable absorption, so thus x-ray absorption is decreasing. Detailed population kinetics of charge states relevant to the absorption of x-ray photons, and fast modulation of XFEL spectrum will be discussed. This work is supported by Institute of Basic Science (IBS-R012-D1) and National Research Foundation of Korea (No. 2015R1A5A1009962 and 2016R1A2B4009631).

  16. Isotope and temperature effects in liquid water probed by x-ray absorption and resonant x-ray emission spectroscopy.

    PubMed

    Fuchs, O; Zharnikov, M; Weinhardt, L; Blum, M; Weigand, M; Zubavichus, Y; Bär, M; Maier, F; Denlinger, J D; Heske, C; Grunze, M; Umbach, E

    2008-01-18

    High-resolution x-ray absorption and emission spectra of liquid water exhibit a strong isotope effect. Further, the emission spectra show a splitting of the 1b1 emission line, a weak temperature effect, and a pronounced excitation-energy dependence. They can be described as a superposition of two independent contributions. By comparing with gas phase, ice, and NaOH/NaOD, we propose that the two components are governed by the initial state hydrogen bonding configuration and ultrafast dissociation on the time scale of the O 1s core hole decay.

  17. ASCITOVG - FORTRAN PROGRAM FOR X-RAY PHOTOELECTRON SPECTROSCOPY DATA REFORMATTING

    NASA Technical Reports Server (NTRS)

    Able, P. B.

    1994-01-01

    It is often desirable to use a central, more powerful computer to analyze data captured on a local machine. ASCITOVG is a program for use on an IBM PC series computer which creates binary format files from columns of ASCII-format numbers. The resultant files are suitable for interactive analysis on a DEC PDP-11/73 under the Micro-RSX operating system running the VGS-5000 Enhanced Data Processing (EDP) software package. EDP performs data analysis interactively with a color graphics display, speeding up the analysis considerably when compared with batch job processing. Its interactive analysis capabilities also allow the researcher to watch for spurious data that might go undetected when some form of automatic spectrum processing is used. The incompatibility in floating-point number representations of an IBM PC and a DEC computer were resolved by a FORTRAN subroutine that correctly converts single-precision, floating-point numbers on the PC so that they can be directly read by DEC computers, such as a VAX. The subroutine also can convert binary DEC files (single-precision, floating-point numbers) to IBM PC format. This may prove a more efficient method of moving data from, for instance, a VAX-cluster down to a local IBM PC for further examination, manipulation, or display. The input data file used by ASCITOVG is simply a text file in the form of a column of ASCII numbers, with each value followed by a carriage return. These can be the output of a data collection routine or can even be keyed in through the use of a program editor. The data file header required by the EDP programs for an x-ray photoelectron spectrum is also written to the file. The spectrum parameters, entered by the user when the program is run, are coded into the header format used internally by all of the VGS-5000 series EDP packages. Any file transfer protocol having provision for binary data can be used to transmit the resulting file from the PC to the DEC machine. Each EDP data file has at least

  18. A new interpretation of the binding energies in X-ray photoelectron studies of oxides

    NASA Astrophysics Data System (ADS)

    Barr, Tery L.; Seal, Sudipta; Chen, Li Mei; Kao, Chi Chang

    1994-12-01

    Films and coatings applied to different substrates are often various types of oxides. The latter are employed for a number of reasons with particular emphasis on their lack of chemical and electrical porosity. It is generally important therefore to have some measure of the physical and chemical integrity of the resulting oxide films and their interfaces with the substrate. The latter is often realized by using X-ray photoelectron spectroscopy or electron spectroscopy for chemical analysis. In order to accomplish this, it is common practice to utilize the (now generally well accepted) binding energy data from the literature to verify and expand upon one's results. Unfortunately, close scrutiny reveals a number of major discrepancies in these literature results for certain key oxides. Thus, for example, a significant portion of the literature reports the Al 2p level of Al2O3at approximately 75.7+/-0.3 eV, whereas many others specify approximately 74.0+/-0.2 eV. Perhaps the greatest difficulty with this observation is that it can be shown that, based upon their respective methods of analysis, both results are equally valid. In the present investigation, we examine the extent and nature of this problem. We have discovered that there are particular types of oxides that exhibit this dichotomy in binding energies, whereas others do not. The role played by bonding and morphology in these differences is explored, as is the effect of the different methods of binding energy determination. Finally, we shall describe how the mechanism of the growth of oxides is the principal 'culprit' and a lack of understanding of the latter and its electronic implications may lead many to an incorrect interpretation of 'true' binding energies.

  19. Thermal desorption mass spectrometric and x-ray photoelectron studies of etched surfaces of polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Rye, R. R.; Kelber, J. A.

    1987-12-01

    The etching of polytetrafluoroethylene (PTFE) with Na solutions is known to lead to a loss of F, a loss which is correlated with enhanced adhesion. Subsequent heating partially restores surface F with a concurrent loss of adhesion strength. We have combined X-ray photoelectron spectroscopy (XPS) and gas phase mass spectroscopy for in situ measurements of the processes that occur as the fluorocarbon is heated. An array of volatile products, which vary with the specific treatment, desorb from etched PTFE. Among these are: N 2 and low molecular weight fluorocarbons, the amounts of which monotonically decrease with increasing exposure to the etching solution (and probably result from the bulk); species such as CO and CO 2, which in part result from surface impurities; and water and acetone which result from the rinse steps following the etching process. XPS measurements show that etching produces a major loss of surface F and a gain of surface O. The latter probably results from the subsequent rinse steps. Heating produces a substantial recovery in surface F with only a small decrease in the surface O, and the gain in surface F is shown to occur at a higher temperature than the desorption of any species from the surface. Thus, desorption of products from the surface is decoupled, in terms of both the distribution of products and their relative temperatures, from the surface changes as monitored by XPS. This decoupling suggests that the increase in surface F results from diffusion of low molecular weight fluorocarbons from the bulk or a transition region, or from a rearrangement of the sponge-like surface region produced in the etching process.

  20. X-ray photoelectron spectroscopy (XPS) investigation of the surface film on magnesium powders.

    PubMed

    Burke, Paul J; Bayindir, Zeynel; Kipouros, Georges J

    2012-05-01

    Magnesium (Mg) and its alloys are attractive for use in automotive and aerospace applications because of their low density and good mechanical properties. However, difficulty in forming magnesium and the limited number of available commercial alloys limit their use. Powder metallurgy may be a suitable solution for forming near-net-shape parts. However, sintering pure magnesium presents difficulties due to surface film that forms on the magnesium powder particles. The present work investigates the composition of the surface film that forms on the surface of pure magnesium powders exposed to atmospheric conditions and on pure magnesium powders after compaction under uniaxial pressing at a pressure of 500 MPa and sintering under argon at 600 °C for 40 minutes. Initially, focused ion beam microscopy was utilized to determine the thickness of the surface layer of the magnesium powder and found it to be ~10 nm. The X-ray photoelectron analysis of the green magnesium sample prior to sintering confirmed the presence of MgO, MgCO(3)·3H(2)O, and Mg(OH)(2) in the surface layer of the powder with a core of pure magnesium. The outer portion of the surface layer was found to contain MgCO(3)·3H(2)O and Mg(OH)(2), while the inner portion of the layer is primarily MgO. After sintering, the MgCO(3)·3H(2)O was found to be almost completely absent, and the amount of Mg(OH)(2) was also decreased significantly. This is postulated to occur by decomposition of the compounds to MgO and gases during the high temperature of sintering. An increase in the MgO content after sintering supports this theory.

  1. Band bending at ferroelectric surfaces and interfaces investigated by x-ray photoelectron spectroscopy

    SciTech Connect

    Apostol, Nicoleta Georgiana

    2014-11-24

    This work reports on the use of X-ray photoelectron spectroscopy to quantify band bending at ferroelectric free surfaces and at their interfaces with metals. Surfaces exhibiting out-of-plane ferroelectric polarization are characterized by a band bending, due to the formation of a dipole layer at the surface, composed by the uncompensated polarization charges (due to ionic displacement) and to the depolarization charge sheet of opposite sign, composed by mobile charge carriers, which migrate near surface, owing to the depolarization electric field. To this surface band bending due to out-of-plane polarization states, metal-semiconductor Schottky barriers must be considered additionally when ferroelectrics are covered by metal layers. It is found that the net band bending is not always an algebraic sum of the two effects discussed above, since sometimes the metal is able to provide additional charge carriers, which are able to fully compensate the surface charge of the ferroelectric, up to the vanishing of the ferroelectric band bending. The two cases which will be discussed in more detail are Au and Cu deposited by molecular beam epitaxy on PbZr{sub 0.2}Ti{sub 0.8}O{sub 3}(001) single crystal thin layers, prepared by pulsed laser deposition. Gold forms unconnected nanoparticles, and their effect on the band bending is the apparition of a Schottky band bending additional to the band bending due to the out-of-plane polarization. Copper, starting with a given thickness, forms continuous metal layers connected to the ground of the system, and provide electrons in sufficient quantity to compensate the band bending due to the out-of-plane polarization.

  2. Repair and Utilization of the Kratos XSAM 800 X-Ray Photoelectron Spectrometer (XPS)

    NASA Technical Reports Server (NTRS)

    Hampton, Michael D.

    2002-01-01

    The objectives for this summer faculty fellowship were first to repair the Kratos XSAM 800 X-ray Photoelectron Spectrometer (XPS) and then to utilize the instrument to participate in ongoing research projects at KSC and in the researcher's own laboratory at UCF. The first 6 weeks were used in repairing the instrument. Working both alone and with the Kratos service engineer, a number of hardware problems, largely associated with the sample stage control system, were corrected. Defective parts were identified and fixed in the computer driver boards, the stage power supply, and the driver interface. The power supply was completely replaced. After four weeks of work, the instrument was functional. This occurred on a Wednesday. The following Friday the instrument had to be completely shut down because the power to the O & C Building was to be turned off. The instrument was properly secured. On Monday, the instrument was powered up and the original problems returned. After another 2 weeks of work, a software problem was identified. This problem caused the computer to use a defective port for the sample stage control. It was circumvented by rewriting the startup routine. The final 3 weeks of the fellowship were spent using the XPS to analyze samples being studied in the Langley materials project (Martha Williams) and a catalyst project (Dr. Orlando Melendez). During this time, several sample analysis requests from other groups at KSC also came in and those samples were run as well. The summer faculty fellowship also allowed many contacts to be made. After meeting with the sensors group, two projects were identified for collaboration and white papers are being prepared. One project aims to develop small, very sensitive hydrogen detectors and the other to develop a broad area, easily monitored, zero power consumption hydrogen detector. In addition to the work mentioned above, the XPS was utilized in a study underway in Dr. Hampton's laboratory at UCF.

  3. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  4. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  5. X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory

    NASA Astrophysics Data System (ADS)

    Filipponi, Adriano; di Cicco, Andrea; Natoli, Calogero Renzo

    1995-12-01

    The general theoretical framework underlying the GNXAS multiple-scattering (MS) data-analysis method for x-ray absorption spectroscopy (XAS) is presented. The main approximations leading to the reduction of the many-body process in that of a photoelectron scattering in an effective potential are summarized. The methods available to expand the extended x-ray-absorption fine-structure χ(k) into physically meaningful terms are described. In particular, emphasis is given to the definition of the irreducible n-body signals γ(n) that can be calculated directly by means of linear combinations of continued fractions, or by using their respective multiple-scattering series. It is found that even for an infinite system the expansion of the χ(k) signal in terms of γ(n) has a better convergence rate than the MS series. Simple expressions for performing the configurational averages of the structural signals in the presence of thermal and structural disorder are derived. These can be used for the structural analysis of molecular, crystalline, or moderately disordered systems. It is shown that in the case of highly disordered systems the expansion in terms of the γ(n) signals is the natural framework for the interpretation of the XAS signal. General equations for the ensemble-averaged χ(k) signal as a function of a series of integrals over the n-body n>~2 distribution functions gn are provided and the possible use of advanced strategies for the inversion of the structural information is suggested.

  6. Coordination defects in bismuth-modified arsenic selenide glasses: High-resolution x-ray photoelectron spectroscopy measurements

    SciTech Connect

    Golovchak, Roman; Shpotyuk, Oleh

    2008-05-01

    The possibility of coordination defects formation in Bi-modified chalcogenide glasses is examined by high-resolution x-ray photoelectron spectroscopy. The results provide evidence for the formation of positively charged fourfold coordinated defects on As and Bi sites in glasses with low Bi concentration. At high Bi concentration, mixed As{sub 2}Se{sub 3}-Bi{sub 2}Se{sub 3} nanocrystallites are formed in the investigated Se-rich As-Se glasses.

  7. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; Fabian, A. C.; Farrah, D.; Fiore, F.; Fuerst, F.; Grefenstette, B. W.; Hailey, C. J.; Hickox, R.; Madsen, K. K.; Matt, G.; Ogle, P.; Risaliti, G.; Saez, C.; Teng, S. H.; Walton, D. J.; Zhang, W. W.

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  8. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    SciTech Connect

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Hickox, R.; Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Fabian, A. C.; Farrah, D.; Fiore, F.; Hailey, C. J.; Matt, G.; Ogle, P.; and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  9. Characterization of carbonitrided and oxidized layers on low-carbon steel by conversion electron Moessbauer spectrometry, X-ray diffractometry, and X-ray photoelectron spectrometry

    SciTech Connect

    Kurosawa, K.; Li, H.L.; Ujihira, Y.; Nomura, K.

    1999-03-01

    The structures of low-carbon steel oxidized in an aqueous saline bath at 403 K and a fused salt bath at 673 K after carbonitriding were studied using conversion electron Moessbauer spectrometry (CEMS), x-ray diffractometry (XRD), and x-ray photoelectron spectrometry (XPS). Only a doublet peak caused by poor crystallinity of iron oxyhydroxides (FeOOH) or fine particles of iron oxides such as magnetite (Fe{sub 3}O{sub 4}) and maghemite ({gamma}-Fe{sub 2}O{sub 3}) was detected in the CEMS spectra of the surface of the carbonitrided steel oxidized in the aqueous saline bath. Corrosion resistance of the carbonitrided specimens was increased by oxidizing. The oxidized layers produced in the aqueous saline bath were superior to those produced in the fused salt bath as a result of pores in the carbonitrided zone being filled with finer particles of iron oxides and the production of tight, thick oxide layers of amorphous iron oxyhydroxides or fine iron oxides. Deformation of iron nitride ({gamma}{prime}-Fe{sub 4}N) crystals in the carbonitrided zone could not be detected by oxidizing in the aqueous saline bath but were detected in the fused salt bath at 673 K.

  10. Improved self-absorption correction for extended x-ray absorption fine-structure measurements

    SciTech Connect

    Booth, C.H.; Bridges, F.

    2003-06-04

    Extended x-ray absorption fine-structure (EXAFS) data collected in the fluorescence mode are susceptible to an apparent amplitude reduction due to the self-absorption of the fluorescing photon by the sample before it reaches a detector. Previous treatments have made the simplifying assumption that the effect of the EXAFS on the correction term is negligible, and that the samples are in the thick limit. We present a nearly exact treatment that can be applied for any sample thickness or concentration, and retains the EXAFS oscillations in the correction term.

  11. X-Ray Attenuation and Absorption for Materials of Dosimetric Interest

    National Institute of Standards and Technology Data Gateway

    SRD 126 X-Ray Attenuation and Absorption for Materials of Dosimetric Interest (Web, free access)   Tables and graphs of the photon mass attenuation coefficient and the mass energy-absorption coefficient are presented for all of the elements Z = 1 to 92, and for 48 compounds and mixtures of radiological interest. The tables cover energies of the photon (x-ray, gamma ray, bremsstrahlung) from 1 keV to 20 MeV.

  12. Multiple pre-edge structures in Cu K -edge x-ray absorption spectra of high- Tc cuprates revealed by high-resolution x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gougoussis, C.; Rueff, J.-P.; Calandra, M.; D'Astuto, M.; Jarrige, I.; Ishii, H.; Shukla, A.; Yamada, I.; Azuma, M.; Takano, M.

    2010-06-01

    Using high-resolution x-ray absorption spectroscopy and state-of-the-art electronic structure calculations we demonstrate that the pre-edge region at the Cu K edge of high- Tc cuprates is composed of several excitations invisible in standard x-ray absorption spectra. We consider in detail the case of Ca2-xCuO2Cl2 and show that the many pre-edge excitations (two for c -axis polarization, four for in-plane polarization and out-of-plane incident x-ray momentum) are dominated by off-site transitions and intersite hybridization. This demonstrates the relevance of approaches beyond the single-site model for the description of the pre edges of correlated materials. Finally, we show the occurrence of a doubling of the main edge peak that is most visible when the polarization is along the c axis. This doubling, that has not been seen in any previous absorption data in cuprates, is not reproduced by first-principles calculations. We suggest that this peak is due to many-body charge-transfer excitations while all the other visible far-edge structures are single particle in origin. Our work indicates that previous interpretations of the Cu K -edge x-ray absorption spectra in high- Tc cuprates can be profitably reconsidered.

  13. X-Ray Absorption Spectroscopy of Uranium Dioxide

    SciTech Connect

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  14. Structure and Composition of Cu Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Hanif, K M; Willey, T M; Strouse, G F; Terminello, L J

    2004-06-04

    The local structure and composition of Cu ions dispersed in CdSe nanocrystals is examined using soft x-ray absorption near edge spectroscopy (XANES). Using Cu L-edge XANES and X-ray photoelectron measurements (XPS), we find that the Cu ions exist in the Cu(I) oxidation state. We also find that the observed Cu L-edge XANES signal is directly proportional to the molar percent of Cu present in our final material. Se L-edge XANES indicates changes in the Se density of states with Cu doping, due to a chemical bonding effect, and supports a statistical doping mechanism. Photoluminescence (PL) measurements indicate the Cu ions may act as deep electron traps. We show that XANES, XPS, and PL are a powerful combination of methods to study the electronic and chemical structure of dopants in nanostructured materials.

  15. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  16. Solving the Structure of Reaction Intermediates by Time-Resolved Synchrotron X-ray Absorption Spectroscopy

    SciTech Connect

    Wang, Q.; Hanson, J; Frenkel, A

    2008-01-01

    We present a robust data analysis method of time-resolved x-ray absorption spectroscopy experiments suitable for chemical speciation and structure determination of reaction intermediates. Chemical speciation is done by principal component analysis (PCA) of the time-resolved x-ray absorption near-edge structure data. Structural analysis of intermediate phases is done by theoretical modeling of their extended x-ray absorption fine-structure data isolated by PCA. The method is demonstrated using reduction and reoxidation of Cu-doped ceria catalysts where we detected reaction intermediates and measured fine details of the reaction kinetics. This approach can be directly adapted to many time-resolved x-ray spectroscopy experiments where new rapid throughput data collection and analysis methods are needed.

  17. A sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode.

    PubMed

    Schreck, Simon; Gavrila, Gianina; Weniger, Christian; Wernet, Philippe

    2011-10-01

    A novel sample holder for soft x-ray absorption spectroscopy of liquids in transmission mode based on sample cells with x-ray transparent silicon nitride membranes is introduced. The sample holder allows for a reliable preparation of ultrathin liquid films with an adjustable thickness in the nm-μm range. This enables measurements of high quality x-ray absorption spectra of liquids in transmission mode, as will be shown for the example of liquid H(2)O, aqueous solutions of 3d-transition metal ions and alcohol-water mixtures. The fine structure of the x-ray absorption spectra is not affected by the sample thickness. No effects of the silicon nitride membranes were observed in the spectra. It is shown how an inhomogeneous thickness of the sample affects the spectra and how this can be avoided.

  18. High energy X-ray phase and dark-field imaging using a random absorption mask

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  19. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  20. X-Ray Photoelectron Spectroscopy and the Role of Relaxation Energy in Understanding Chemical Shifts

    ERIC Educational Resources Information Center

    Ellison, Frank O.; White, Michael G.

    1976-01-01

    Discusses the measurement of electrons ejected from a system which is being irradiated with X-rays or ultraviolet photons, and a theoretical model for calculating core-electron ionization energies. (MLH)

  1. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  2. The electronic structure study of titanium-nickel alloys by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Seabolt, Michael A.

    2002-01-01

    Purpose of the study. The purpose of the study was to investigate the electronic structure changes of titanium-nickel (Ti-Ni) alloys. The electronic structure was correlated with the physical property of shape memory effect demonstrated by 50% atomic nickel concentration Ti-Ni crystalline alloys. Methodology. The technique of x-ray photoelectron spectroscopy was used to collect spectra using an ESCA PHI 5100 system. The spectra were analyzed by measuring binding energies, Auger parameters, Shirley and Tougaard backgrounds, and electronegativity criteria. Changes in the density of state (DOS) at the Fermi level were modeled using binding energy shifts, Auger parameter changes, the intrinsic loss structure modeled from the Shirley and Tougaard background, and the electronegativity criteria. Results. Significant changes in binding energy (BE) were noted for alloys, but changes in BE could not be with electronegativity criteria. The Auger parameter demonstrated positive values for Ti and negative values for Ni with minimum values at the 50% atomic nickel concentration. This was interpreted as a transfer of charge from nickel to titanium. Wagner plots of the Auger parameter indicated Ti and Ni were in different chemical states in each of the alloys with a minimum for the 50% atomic concentration nickel, which correlates to the shape memory effect (SME). Chemical shifts indicated a shift in charge from Ni to Ti, correlating to the results yielded by the Auger parameter. Normalized background analysis (indicative of the intrinsic loss structure) obtained from Shirley and Tougaard methods correlated well with the Auger parameter and chemical shift results, indicating that background analysis is useful for studying changes in chemical state for these materials. Conclusions. This study demonstrated that BE shifts and electronegativity criteria can not be successfully used to model changes in chemical states for Ti-Ni alloys. The results from Auger parameter analysis

  3. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    DOE PAGES

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; ...

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquidmore » and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.« less

  4. Using “Tender” x-ray ambient pressure x-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface

    SciTech Connect

    Axnanda, Stephanus; Crumlin, Ethan J.; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G.; Edwards, Mårten O. M.; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a “dip & pull” method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, “dip & pull” approach, with a “tender” X-ray synchrotron source (2 keV–7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt²⁺ and Pt⁴⁺ interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of “tender” AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  5. Using "Tender" X-ray Ambient Pressure X-Ray Photoelectron Spectroscopy as A Direct Probe of Solid-Liquid Interface.

    PubMed

    Axnanda, Stephanus; Crumlin, Ethan J; Mao, Baohua; Rani, Sana; Chang, Rui; Karlsson, Patrik G; Edwards, Mårten O M; Lundqvist, Måns; Moberg, Robert; Ross, Phil; Hussain, Zahid; Liu, Zhi

    2015-05-07

    We report a new method to probe the solid-liquid interface through the use of a thin liquid layer on a solid surface. An ambient pressure XPS (AP-XPS) endstation that is capable of detecting high kinetic energy photoelectrons (7 keV) at a pressure up to 110 Torr has been constructed and commissioned. Additionally, we have deployed a "dip &pull" method to create a stable nanometers-thick aqueous electrolyte on platinum working electrode surface. Combining the newly constructed AP-XPS system, "dip &pull" approach, with a "tender" X-ray synchrotron source (2 keV-7 keV), we are able to access the interface between liquid and solid dense phases with photoelectrons and directly probe important phenomena occurring at the narrow solid-liquid interface region in an electrochemical system. Using this approach, we have performed electrochemical oxidation of the Pt electrode at an oxygen evolution reaction (OER) potential. Under this potential, we observe the formation of both Pt(2+) and Pt(4+) interfacial species on the Pt working electrode in situ. We believe this thin-film approach and the use of "tender" AP-XPS highlighted in this study is an innovative new approach to probe this key solid-liquid interface region of electrochemistry.

  6. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  7. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems.

    PubMed

    Chergui, Majed

    2010-03-01

    The need to visualize molecular structure in the course of a chemical reaction, a phase transformation or a biological function has been a dream of scientists for decades. The development of time-resolved X-ray and electron-based methods is making this true. X-ray absorption spectroscopy is ideal for the study of structural dynamics in liquids, because it can be implemented in amorphous media. Furthermore, it is chemically selective. Using X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) in laser pump/X-ray probe experiments allows the retrieval of the local geometric structure of the system under study, but also the underlying photoinduced electronic structure changes that drive the structural dynamics. Recent developments in picosecond and femtosecond X-ray absorption spectroscopy applied to molecular systems in solution are reviewed: examples on ultrafast photoinduced processes such as intramolecular electron transfer, low-to-high spin change, and bond formation are presented.

  8. Refraction and absorption of x rays by laser-dressed atoms.

    SciTech Connect

    Buth, C.; Santra, R.; Young, L.

    2010-06-01

    X-ray refraction and absorption by neon atoms under the influence of an 800 nm laser with an intensity of 10{sup 13} W/cm{sup 2} is investigated. For this purpose, we use an ab initio theory suitable for optical strong-field problems. Its results are interpreted in terms of a three-level model. On the Ne 1s {yields} 3p resonance, we find electromagnetically induced transparency (EIT) for x rays. Our work opens novel perspectives for ultrafast x-ray pulse shaping.

  9. X-ray two-photon absorption with high fluence XFEL pulses

    DOE PAGES

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; ...

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  10. X-ray two-photon absorption with high fluence XFEL pulses

    SciTech Connect

    Hoszowska, Joanna; Szlachetko, J.; Dousse, J. -Cl.; Błachucki, W.; Kayser, Y.; Milne, Ch.; Pajek, M.; Boutet, S.; Messerschmidt, M.; Williams, G.; Chantler, C. T.

    2015-09-07

    Here, we report on nonlinear interaction of solid Fe with intense femtosecond hard x-ray free-electron laser (XFEL) pulses. The experiment was performed at the CXI end-station of the Linac Coherent Light Source (LCLS) by means of high- resolution x-ray emission spectroscopy. The focused x-ray beam provided extreme fluence of ~105 photons/Å2. Two-photon absorption leading to K-shell hollow atom formation and to single K-shell ionization of solid Fe was investigated.

  11. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  12. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  13. Oxidation of UO 2 fuel pellets in air at 503 and 543 K studied using X-ray photoelectron spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tempest, P. A.; Tucker, P. M.; Tyler, J. W.

    1988-02-01

    An understanding of the low temperature oxidation behaviour of UO 2 pellets in air is important in the unlikely event of gas ingress to a fuel can during handling or storage. The main parameter of concern is the production time of U 3O 8 particulate as a function of temperature. Factors which affect the UO2 → U3O8 transformation have been investigated by sequentially oxidising UO 2 fuel pellets in air at 503 and 543 K and monitoring the growth of U 3O and U 3O 7 using X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. Initially oxidation proceeded at a linear rate by the inward diffusion of oxygen to form a complete layer of substoichiometric U 3O 7. This phase was tetragonal with a {c}/{a} ratio of 1.015, significantly less than the value of 1.03 measured on UO 2 powder when oxidised under identical conditions. This difference and the preferred orientation exhibited by surface grains were caused by growth stresses induced in the pellet surface. Both intergranular and transgranular cracking occurred and became nucleation sites for the growth of U 3O 8. The linear oxidation period associated with U 3O 7 growth was much shorter at 543 than at 503 K and U 3O 8 nucleated earlier. Spallation and the production of particulate were only observed during the formation of U 3O 8 when a 30% increase in volume arose from the U3O7 → U3O8 phase change.

  14. Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen

    SciTech Connect

    Hoener, M.; Fang, L.; Murphy, B.; Berrah, N.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Kanter, E. P.; Guehr, M.; Bucksbaum, P. H.; Cryan, J.; Glownia, M.; McFarland, B.; Petrovic, V.; Blaga, C.; DiMauro, L.; Bostedt, C.; Bozek, J. D.; Coffee, R.; Messerschmidt, M.

    2010-06-25

    Sequential multiple photoionization of the prototypical molecule N{sub 2} is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  15. Ultraintense x-ray induced ionization, dissociation and frustrated absorption in molecular nitrogen.

    SciTech Connect

    Hoener, M.; Fang, L.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Guhr, M.; Kanter, E. P.; Blaga, C.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Buth, C.; Chen, M.; Coffee, R.; Cryan, J.; DiMauro, L.; Glownia, M.; Hosler, E.; Kukk, E.; Leone, S. R.; McFarland, B.; Messerschmidt, M.; Murphy, B.; Petrovic, V.; Rolles, D.; Berrah, N.; Chemical Sciences and Engineering Division; Western Michigan Univ.; LBNL; Ohio State Univ.; Louisiana State Univ.; LLNL; Univ. of Turku; Univ. of California at Berkeley; Max Planck Advanced Study Group, CFEL; LCLS

    2010-06-23

    Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  16. Capturing Transient Electronic and Molecular Structures in Liquids by Picosecond X-Ray Absorption Spectroscopy

    SciTech Connect

    Gawelda, W.; Pham, V. T.; El Nahhas, A.; Kaiser, M.; Zaushitsyn, Y.; Bressler, C.; Chergui, M.; Johnson, S. L.; Grolimund, D.; Abela, R.; Hauser, A.

    2007-02-02

    We describe an advanced setup for time-resolved x-ray absorption fine structure (XAFS) Spectroscopy with picosecond temporal resolution. It combines an intense femtosecond laser source synchronized to the x-ray pulses delivered into the microXAS beamline of the Swiss Light Source (SLS). The setup is applied to measure the short-lived high-spin geometric structure of photoexcited aqueous Fe(bpy)3 at room temperature.

  17. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    NASA Astrophysics Data System (ADS)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  18. XMM-Newton Spectroscopy of the X-ray Detected Broad Absorption Line QSO CSO 755

    NASA Technical Reports Server (NTRS)

    Brandt, Niel

    2005-01-01

    We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of approximately 3000 photons we find that this source has an X-ray continuum of "typical" radio-quiet quasars, with a photon index of Gamma=1.83, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=- 1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H approximately 1.2x10^22 cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe K-alpha line, less than =180 eV (less than =120 eV), and on the Compton-reflection component parameter, R less than =0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short-term and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.

  19. Prospects for X-ray absorption with the super-bright light sources of the future.

    PubMed

    Norman, D

    2001-03-01

    The immense growth in applications of X-ray absorption spectroscopy (XAS) has been enabled by the widespread availability of intense tunable X-rays from synchrotron radiation sources. Recently, new concepts have been proposed for fourth-generation light sources, such as the SASE (self-amplified stimulated emission) X-ray free-electron lasers (XFELs) being pursued at Hamburg (TESLA) and Stanford (LCLS), and the recirculator ring (MARS) at Novosibirsk. These sources offer expected gains of many orders of magnitude in instantaneous brilliance, which will unlock opportunities for qualitatively different science. Examples of new or greatly expanded techniques in XAS could include Raman X-ray absorption fine structure (XAFS), pump-probe experiments, time-resolved XAFS and small-spot X-ray spectromicroscopy, although the limited tunability of the sources might not allow conventional XAFS measurements. Multi-photon X-ray absorption could become a new field of study. There should not be a collective stampede to these new sources, however, and it is likely that storage rings will continue to be necessary for most XAFS applications. The extreme brightness of these future light sources will present difficult challenges in instrumentation, especially detectors and sample containment. Practitioners will also have to exercise caution, because the intensity of the beam will surely destroy many samples and in some cases there will be so many photons absorbed per atom that XAFS will be impossible.

  20. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Lin, Ming-Fu; Bacellar, Camila; Khurmi, Champak; Hertlein, Marcus; Guo, Jinghua; Tyliszczak, Tolek; Prendergast, David; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Schoenlein, Robert W.; Belkacem, Ali; Weber, Thorsten; Neumark, Daniel M.; Leone, Stephen R.; Nordlund, Dennis; Ogasawara, Hirohito; Nilsson, Anders R.; Krupin, Oleg; Turner, Joshua J.; Schlotter, William F.; Holmes, Michael R.; Heimann, Philip A.; Messerschmidt, Marc; Minitti, Michael P.; Beye, Martin; Gul, Sheraz; Zhang, Jin Z.; Huse, Nils; Gessner, Oliver

    2013-04-01

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  1. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A.; Lin, Ming-Fu; and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  2. An X-ray photoelectron spectroscopy study of the hydration of C{sub 2}S thin films

    SciTech Connect

    Rheinheimer, Vanessa; Casanova, Ignasi

    2014-06-01

    Electron-beam evaporation was used to produce thin films of β-dicalcium silicate. Chemical and mineralogical compositions were characterized by X-ray photoelectron spectroscopy (XPS) and grazing-angle X-ray diffraction (GAXRD), respectively. Results show that no fractionation occurs during evaporation and isostructural condensation of the material as synthesized films have the same composition as the initial bulk material. Samples were gradually hydrated under saturated water spray conditions and analyzed with XPS. Polymerization of the silicate chains due to hydration, and subsequent formation of C-S-H, has been monitored through evaluation of energy shifts on characteristic silicon peaks. Quantitative analyses show changes on the surface by the reduction of the Ca/Si ratio and an increase on the difference between binding energies of bridging and non-bridging oxygen. Finally, SEM/FIB observation shows clear differences between the surface and cross section of the initial sample and the reacted sample.

  3. Single-State Electronic Structure Measurements Using Time-Resolved X-Ray Laser Induced Photoelectron Spectroscopy

    SciTech Connect

    Nelson, A J; Dunn, J; van Buuren, T; Hunter, J

    2004-11-11

    We demonstrate single-shot x-ray laser induced time-of-flight photoelectron spectroscopy on semiconductor and metal surfaces with picosecond time resolution. The LLNL COMET compact tabletop x-ray laser source provides the necessary high photon flux (>10{sup 12}/pulse), monochromaticity, picosecond pulse duration, and coherence for probing ultrafast changes in the city, chemical and electronic structure of these materials. Static valence band and shallow core-level photoemission spectra are presented for ambient temperature Ge(100) and polycrystalline Cu foils. Surface contamination was removed by UV ozone cleaning prior to analysis. In addition, the ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials. Time-resolved electron time-of-flight photoemission results for ultra-thin Cu will be presented.

  4. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  5. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    SciTech Connect

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis; Rude, Bruce S.; Bluhm, Hendrik; Neppl, Stefan; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Fraund, Matthew W.; Khurmi, Champak; Wright, Travis W.; Schoenlein, Robert W.; Gessner, Oliver; Hertlein, Marcus P.; Tyliszczak, Tolek; Huse, Nils; and others

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular

  6. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    NASA Astrophysics Data System (ADS)

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S.; Cryan, James P.; Siefermann, Katrin R.; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P.; Zegkinoglou, Ioannis; Fraund, Matthew W.; Khurmi, Champak; Hertlein, Marcus P.; Wright, Travis W.; Huse, Nils; Schoenlein, Robert W.; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A.; Rude, Bruce S.; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ˜0.1 mm spatial resolution and ˜150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy Ep = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ˜9 ns at a pass energy of 50 eV and ˜1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  7. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources.

    PubMed

    Shavorskiy, Andrey; Neppl, Stefan; Slaughter, Daniel S; Cryan, James P; Siefermann, Katrin R; Weise, Fabian; Lin, Ming-Fu; Bacellar, Camila; Ziemkiewicz, Michael P; Zegkinoglou, Ioannis; Fraund, Matthew W; Khurmi, Champak; Hertlein, Marcus P; Wright, Travis W; Huse, Nils; Schoenlein, Robert W; Tyliszczak, Tolek; Coslovich, Giacomo; Robinson, Joseph; Kaindl, Robert A; Rude, Bruce S; Ölsner, Andreas; Mähl, Sven; Bluhm, Hendrik; Gessner, Oliver

    2014-09-01

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ~0.1 mm spatial resolution and ~150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution of (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E(p) = 150 eV and an electron kinetic energy range KE = 503-508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ~9 ns at a pass energy of 50 eV and ~1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with

  8. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  9. Non-destructive depth profiling using variable kinetic energy- x-ray photoelectron spectroscopy with maximum entropy regularization

    NASA Astrophysics Data System (ADS)

    Krajewski, James J.

    This study will describe a nondestructive method to determine compositional depth profiles of thicker films using Variable Kinetic Energy X-ray Photoelectron Spectroscopy (VKE-XPS) data by applying proven regularization methods successfully used in Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS). To demonstrate the applicability of various regularization procedures to the experimental VKE-XPS data, simulated TiO2/Si film structures of two different thicknesses and known compositional profiles were "created" and then analyzed. It is found that superior results are attained when using a maximum entropy-like method with an initial model/prior knowledge of thickness is similar to the simulated film thickness. Other regularization functions, Slopes, Curvature and Total Variance Analysis (TVA) give acceptable results when there is no prior knowledge since they do not depend on an accurate initial model. The maximum entropy algorithm is then applied to two actual films of TiO2 deposited on silicon substrate. These results will show the applicability of generating compositional depth profiles with experimental VKE-XPS data. Accuracy of the profiles is confirmed by subjecting these actual films to a variety of "alternate" analytical thin film techniques including Sputtered Angle Resolved Photoelectron Spectroscopy, Auger Electron Spectroscopy, Rutherford Backscattering Spectroscopy, Focused Ion Beam Spectroscopy, Transmission and Scanning Electron Spectroscopy and Variable Angle Spectroscopic Ellipsometry. Future work will include applying different regularizations functions to better fit the MaxEnt composition depth profile other than those described in this study.

  10. Chemical shifts of K-X-ray absorption edges on copper in different compounds by X-ray absorption spectroscopy (XAS) with Synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Joseph, D.; Basu, S.; Jha, S. N.; Bhattacharyya, D.

    2012-03-01

    Cu K X-ray absorption edges were measured in compounds such as CuO, Cu(CH3CO2)2, Cu(CO3)2, and CuSO4 where Cu is present in oxidation state of 2+, using the energy dispersive EXAFS beamline at INDUS-2 Synchrotron radiation source at RRCAT, Indore. Energy shifts of ˜4-7 eV were observed for Cu K X-ray absorption edge in the above compounds compared to its value in elemental copper. The difference in the Cu K edge energy shifts in the different compounds having same oxidation state of Cu shows the effect of different chemical environments surrounding the cation in the above compounds. The above chemical effect has been quantitatively described by determining the effective charges on Cu cations in the above compounds.

  11. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  12. Origin of resistivity change in NiO thin films studied by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Calka, P.; Martinez, E.; Lafond, D.; Minoret, S.; Tirano, S.; Detlefs, B.; Roy, J.; Zegenhagen, J.; Guedj, C.

    2011-06-01

    We investigated origins of the resistivity change during the forming of NiO based resistive random access memories in a nondestructive way using hard x-ray photoelectron spectroscopy. Energy shifts and bandgap states observed after switching suggest that oxygen vacancies are created in the low resistive state. As a result conduction may occur via defects such as electrons traps and metallic nickel impurities. Migration of oxygen atoms seems to be the driving mechanism. This provides concrete evidence of the major role played by oxygen defects in decreasing resistivity. This is a key point since oxygen vacancies are particularly unstable and thus difficult to identify by physico-chemical analyses.

  13. Application of maximum-entropy spectral estimation to deconvolution of XPS data. [X-ray Photoelectron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Klein, J. D.; Barton, J. J.; Grunthaner, F. J.

    1981-01-01

    A comparison is made between maximum-entropy spectral estimation and traditional methods of deconvolution used in electron spectroscopy. The maximum-entropy method is found to have higher resolution-enhancement capabilities and, if the broadening function is known, can be used with no adjustable parameters with a high degree of reliability. The method and its use in practice are briefly described, and a criterion is given for choosing the optimal order for the prediction filter based on the prediction-error power sequence. The method is demonstrated on a test case and applied to X-ray photoelectron spectra.

  14. Band alignment at the interface of PbTe/SnTe heterojunction determined by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Shu, Tianyu; Ye, Zhenyu; Lu, Pengqi; Chen, Lu; Xu, Gangyi; Zhou, Jie; Wu, Huizhen

    2016-11-01

    We report the determination of band alignment of PbTe/SnTe (111) heterojunction interfaces using X-ray photoelectron spectroscopy (XPS). Multiple core levels of Pb and Sn were utilized to determine the valence band offset (VBO) of the heterojunction. The XPS result shows a type-III band alignment with the VBO of 1.37+/- 0.18 \\text{eV} and the conduction band offset (CBO) of 1.23+/- 0.18 \\text{eV} . The experimental determination of the band alignment of the PbTe/SnTe heterojunction shall benefit the improvement of PbTe/SnTe-related optoelectronic and electronic devices.

  15. Variable growth modes of CaF2 on Si(111) determined by x-ray photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rotenberg, Eli; Hessinger, Uwe; Leskovar, M.; Olmstead, Marjorie A.

    1993-04-01

    Chemical discrimination of bulk and interface Ca 2p x-ray photoelectron diffraction modulations is used to identify three growth regimes during the initial stages of CaF2 epitaxy on Si(111). Low flux, high temperature conditions produce island growth atop a nonwetting, chemically reacted Ca-F interface layer. Changing the growth kinetics by increasing the flux produces more laminar growth. Lowering the substrate temperature produces a more stoichiometric CaF2 interface layer that results in immediate wetting and laminar growth.

  16. Band alignment of InN/6H-SiC heterojunction determined by x-ray photoelectron spectroscopy

    SciTech Connect

    Jing, Qiang; Wu, Guoguang; Zhang, Yuantao; Gao, Fubin; Cai, Xupu; Zhao, Yang; Li, Wancheng Du, Guotong

    2014-08-11

    The valence band offset (VBO) of InN/6H-SiC heterojunction has been directly measured by x-ray photoelectron spectroscopy. The VBO is determined to be −0.10 ± 0.23 eV and the conduction band offset is deduced to be −2.47 ± 0.23 eV, indicating that the heterojunction has a type-II band alignment. The accurate determination of the valence and conduction band offsets is important for applications and analysis of InN/6H-SiC optoelectronic devices.

  17. A table-top femtosecond time-resolved soft x-ray transient absorption spectrometer

    SciTech Connect

    Leone, Stephen; Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E.; Leone, Stephen R.

    2008-05-21

    A laser-based, table-top instrument is constructed to perform femtosecond soft x-ray transient absorption spectroscopy. Ultrashort soft x-ray pulses produced via high-order harmonic generation of the amplified output of a femtosecond Ti:sapphire laser system are used to probe atomic core-level transient absorptions in atoms and molecules. The results provide chemically specific, time-resolved dynamics with sub-50-fs time resolution. In this setup, high-order harmonics generated in a Ne-filled capillary waveguide are refocused by a gold-coated toroidal mirror into the sample gas cell, where the soft x-ray light intersects with an optical pump pulse. The transmitted high-order harmonics are spectrally dispersed with a home-built soft x-ray spectrometer, which consists of a gold-coated toroidal mirror, a uniform-line spaced plane grating, and a soft x-ray CCD camera. The optical layout of the instrument, design of the soft x-ray spectrometer, and spatial and temporal characterization of the high-order harmonics are described. Examples of static and time-resolved photoabsorption spectra collected on this apparatus are presented.

  18. Interface of x-ray absorption package (XRAP) with ANSYS code

    SciTech Connect

    Wang, Zhibi; Kuzay, T.M.

    1996-03-01

    To analyze and design beamline components for third-generation synchrotron radiation facilities, knowledge of the heat load or the heat generation rate of x-rays absorbed inside different materials is needed. The absorption depends on their frequency, penetration depth, and the absorption material. X-rays Absorption Package (XRAP) is software which can generate an x-ray spectrum for bending magnets and insertion devices at synchrotron radiation facilities. XRAP can calculate the x-ray absorption distribution in geometric space and in frequency space. For a two dimensional structure, it can also perform heat transfer and thermal stress analyses. However, for cases such as a beamline component with a complex geometry or x-ray penetration effect, three dimensional analysis using a finite element method is needed. In these cases, XRAP can interface with a finite element code, such as ANSYS, to provide precise heat-load distribution inside a medium. XRAP can be executed interactively with its own graphical user interface, and it can be invoked within ANSYS to generate heat loads for heat transfer analysis. Other sources such as lasers, etc., can also be implemented similarly. This paper will present in detail the implementation of the interface of XRAP with ANSYS, and cases will be presented to illustrate this.

  19. An x-ray absorption spectroscopy study of Mo oxidation in Pb at elevated temperatures

    SciTech Connect

    Liu, Shanshan; Olive, Daniel; Terry, Jeff; Segre, Carlo U.

    2009-06-30

    The corrosion of fuel cladding and structural materials by lead and lead-bismuth eutectic in the liquid state at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. In this work, lead corrosion studies of molybdenum were performed to investigate the interaction layer as a function of temperature by X-ray absorption spectroscopy. In situ X-ray absorption measurements on a Mo substrate with a 3-6 {micro}m layer of Pb deposited by thermal evaporation were performed at temperatures up to 900 C and at a 15{sup o} angle to the incident X-rays. The changes in the local atomic structure of the corrosion layer are visible in the difference extended X-ray absorption fine structure and the linear combination fitting of the X-ray absorption near-edge structure to as-deposited molybdenum sample and molybdenum oxide (MoO{sub 2} and MoO{sub 3}) standards. The data are consistent with the appearance of MoO{sub 3} in an intermediate temperature range (650-800 C) and the more stable MoO{sub 2} phase dominating at high and low temperatures.

  20. Photodissociation Structural Dynamics of TrirutheniumDodecacarbonyl Investigated by X-ray Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harpham, Michael R.; Stickrath, Andrew, B.; Zhang, Xiaoyi,; Huang, Jier; Mara, Michael W.; Chen, Lin X.; Liu, Di-Jia

    2013-10-01

    The molecular and electronic structures of the transient intermediates generated from the photolysis of trirutheniumdodecacarbonyl, Ru3(CO)12, by ultrafast UV (351 nm) laser excitation were investigated using X-ray transient absorption (XTA) spectroscopy. The electronic configuration change and nuclear rearrangement after the dissociation of carbonyls were observed at ruthenium K-edge X-ray absorption near edge structure and X-ray absorption fine structure spectra. Analysis of XTA data, acquired after 100, 200, and 400 ps and 300 ns time delay following the photoexcitation, identified the presence of three intermediate species with Ru3(CO)10 being the most dominating one. The results set an example of applying XTA in capturing both transient electronic and nuclear configurations in metal clusters simulating catalysts in chemical reactions.

  1. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    SciTech Connect

    Arber, J.M.; de Boer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R. )

    1989-09-19

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure data confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.

  2. An X-ray-absorbed radio-quiet QSO with an intervening strong metal absorption-line system

    NASA Astrophysics Data System (ADS)

    Page, M. J.; Mittaz, J. P. D.; Carrera, F. J.

    2000-02-01

    We find evidence for significant X-ray absorption in the QSO RXJ005734.78-272827.4, along with strong absorption lines in its optical spectrum. We propose that the absorption lines are due to an intervening metal-line system at a redshift of z=0.628, and show that this intervening system is also the probable cause of the X-ray absorption. The intervening absorber is inferred to have an X-ray column of ~1022cm-2. This is the first time that an absorption-line system has been identified with an X-ray absorber in a radio-quiet object.

  3. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  4. Ab-initio method for X-ray absorption spectra simulation of hydride molecular ions

    NASA Astrophysics Data System (ADS)

    Puglisi, Alessandra; Sisourat, Nicolas; Carniato, Stéphane

    2017-03-01

    Soft X-ray absorption spectra of molecular ions are important data for the modeling and understanding of laboratory and astrophysical plasma. In this work, we present an ab-initio method, based on the Configuration Interaction (CI) approach, for the calculations of energy positions and oscillator strengths of X-ray absorption spectra. Furthermore, we investigate the effects of the choice of the nature and number of spin-orbitals used in the CI expansion on the spectra. The method is applied on three hydride molecular ions, namely CH+, OH+ and SiH+. However, the approach proposed here is general and may thus be applied to any kind of molecular ions.

  5. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    PubMed Central

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  6. Undistorted X-ray Absorption Spectroscopy Using s-Core-Orbital Emissions.

    PubMed

    Golnak, Ronny; Xiao, Jie; Atak, Kaan; Unger, Isaak; Seidel, Robert; Winter, Bernd; Aziz, Emad F

    2016-05-12

    Detection of secondary emissions, fluorescence yield (FY), or electron yield (EY), originating from the relaxation processes upon X-ray resonant absorption has been widely adopted for X-ray absorption spectroscopy (XAS) measurements when the primary absorption process cannot be probed directly in transmission mode. Various spectral distortion effects inherent in the relaxation processes and in the subsequent transportation of emitted particles (electron or photon) through the sample, however, undermine the proportionality of the emission signals to the X-ray absorption coefficient. In the present study, multiple radiative (FY) and nonradiative (EY) decay channels have been experimentally investigated on a model system, FeCl3 aqueous solution, at the excitation energy of the Fe L-edge. The systematic comparisons between the experimental spectra taken from various decay channels, as well as the comparison with the theoretically simulated Fe L-edge XA spectrum that involves only the absorption process, indicate that the detection of the Fe 3s → 2p partial fluorescence yield (PFY) gives rise to the true Fe L-edge XA spectrum. The two key characteristics generalized from this particular decay channel-zero orbital angular momentum (i.e., s orbital) and core-level emission-set a guideline for obtaining undistorted X-ray absorption spectra in the future.

  7. Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array.

    PubMed

    O'Neil, Galen C; Miaja-Avila, Luis; Joe, Young Il; Alpert, Bradley K; Balasubramanian, Mahalingam; Sagar, D M; Doriese, William; Fowler, Joseph W; Fullagar, Wilfred K; Chen, Ning; Hilton, Gene C; Jimenez, Ralph; Ravel, Bruce; Reintsema, Carl D; Schmidt, Dan R; Silverman, Kevin L; Swetz, Daniel S; Uhlig, Jens; Ullom, Joel N

    2017-03-02

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

  8. High Resolution X-Ray Absorption Spectroscopy: Distribution of Matter in and around Galaxies

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert; MIT/CAT Team

    2015-10-01

    The chemical evolution of the Universe embraces aspects that reachdeep into modern astrophysics and cosmology. We want to know how present and past matter is affected by various levels and types of nucleo-synthesis and stellar evolution. Three major categories were be identified: 1. The study of pre-mordial star formation including periods of super-massive black hole formation, 2. The embedded evolution of the intergalactic medium IGM, 3. The status and evolution of stars and the interstellar medium ISM in galaxies. Today a fourth category relates to our understanding of dark matter in relationwith these three categories. The X-ray band is particularly sensitive to K- and L-shell absorption and scattering from high abundant elements like C, N, O, Ne, Mg, Si, S,Ar, Ca, Fe, and Ni. Like the Lyman alpha forest in the optical band, absorbers in the IGM produce an X-ray line forest along the line of sight in the X-rayspectrum of a background quasar. Similary bright X-ray sources within galaxies and the Milky Way produce a continuum, which is being absorbed by elements invarious phases of the ISM. High resolution X-ray absorption surveys are possible with technologies ready for flight within decade. == high efficiency X-ray optics with optical performance 3== high resolution X-ray gratings with R 3000 for E 1.5 keV== X-ray micro-calorimeters with R 2000 for E 1.5 keV. The vision for the next decade needs to lead to means and strategies which allows us to perform such absorption surveys as effectively as surveys are now or in very near future quite common in astronomy pursued in other wave length bands such as optical, IR, and sub-mm.

  9. Silicon nanocrystals with high boron and phosphorus concentration hydrophilic shell—Raman scattering and X-ray photoelectron spectroscopic studies

    SciTech Connect

    Fujii, Minoru Sugimoto, Hiroshi; Hasegawa, Masataka; Imakita, Kenji

    2014-02-28

    Boron (B) and phosphorus (P) codoped silicon (Si) nanocrystals, which exhibit very wide range tunable luminescence due to the donor to acceptor transitions and can be dispersed in polar liquids without organic ligands, are studied by Raman scattering and X-ray photoelectron spectroscopies. Codoped Si nanocrystals exhibit a Raman spectrum significantly different from those of intrinsic ones. First, the Raman peak energy is almost insensitive to the size and is very close to that of bulk Si crystal in the diameter range of 2.7 to 14 nm. Second, the peak is much broader than that of intrinsic ones. Furthermore, an additional broad peak, the intensity of which is about 20% of the main peak, appears around 650 cm{sup −1}. The peak can be assigned to local vibrational modes of substitutional B and B-P pairs, B clusters, B-interstitial clusters, etc. in Si crystal. The Raman and X-ray photoelectron spectroscopic studies suggest that a crystalline shell heavily doped with these species is formed at the surface of a codoped Si nanocrystal and it induces the specific properties, i.e., hydrophilicity, high-stability in water, high resistance to hydrofluoric acid, etc.

  10. X-ray photoelectron spectroscopy study of irradiation-induced amorphizaton of Gd2Ti2O7

    NASA Astrophysics Data System (ADS)

    Chen, J.; Lian, J.; Wang, L. M.; Ewing, R. C.; Boatner, L. A.

    2001-09-01

    The radiation-induced evolution of the microstructure of Gd2Ti2O7, an important pyrochlore phase in radioactive waste disposal ceramics and a potential solid electrolyte and oxygen gas sensor, has been characterized using transmission electron microscopy and x-ray photoelectron spectroscopy. Following the irradiation of a Gd2Ti2O7 single crystal with 1.5 MeV Xe+ ions at a fluence of 1.7×1014Xe+/cm2, cross-sectional transmission electron microscopy revealed a 300-nm-thick amorphous layer at the specimen surface. X-ray photoelectron spectroscopy analysis of the Ti 2p and O 1s electron binding energy shifts of Gd2Ti2O7 before and after amorphization showed that the main results of ion-irradiation-induced disorder are a decrease in the coordination number of titanium and a transformation of the Gd-O bond. These features resemble those occurring in titanate glass formation, and they have implications for the chemical stability and electronic properties of pyrochlores subjected to displacive radiation damage.

  11. X-Ray photoelectron diffraction and photoelectron holography as methods for investigating the local atomic structure of the surface of solids

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M. V.; Ogorodnikov, I. I.; Vorokh, A. S.

    2014-01-01

    The state-of-the-art theory and experimental applications of X-ray photoelectron diffraction (XPD) and photoelectron holography (PH) are discussed. These methods are rapidly progressing and serve to examine the surface atomic structure of solids, including nanostructures formed on surfaces during adsorption of gases, epitaxial film growth, etc. The depth of analysis by these methods is several nanometres, which makes it possible to characterize the positions of atoms localized both on and beneath the surface. A remarkable feature of the XPD and PH methods is their sensitivity to the type of examined atoms and, in the case of high energy resolution, to the particular chemical form of the element under study. The data on experimental applications of XPD and PH to studies of various surface structures are analyzed and generalized. The bibliography includes 121 references.

  12. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  13. Oxygen, neon, and iron X-ray absorption in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; García, Javier A.; Kallman, Timothy R.; Mendoza, Claudio

    2016-04-01

    Aims: We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods: By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results: We have determined the absorbing material distribution as a function of source distance and galactic latitude-longitude. Conclusions: Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  14. On the relation of optical obscuration and X-ray absorption in Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Burtscher, L.; Davies, R. I.; Graciá-Carpio, J.; Koss, M. J.; Lin, M.-Y.; Lutz, D.; Nandra, P.; Netzer, H.; Orban de Xivry, G.; Ricci, C.; Rosario, D. J.; Veilleux, S.; Contursi, A.; Genzel, R.; Schnorr-Müller, A.; Sternberg, A.; Sturm, E.; Tacconi, L. J.

    2016-02-01

    The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. There are many borderline cases, however, and also numerous examples where the optical and X-ray classifications appear to be in disagreement. In this article we revisit the relation between optical obscuration and X-ray absorption in active galactic nuclei (AGNs). We make use of our "dust colour" method to derive the optical obscuration AV, and consistently estimated X-ray absorbing columns using 0.3-150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column NH and derive the Seyfert subclasses of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log LX/ (erg / s) ≈ 41.5-43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen at a column NH = 1022.3 cm-2 to be consistent with the optical classification. We find that NH is related to AV and that the NH/AV ratio is approximately Galactic or higher in all sources, as indicated previously. However, in several objects we also see that deviations from the Galactic ratio are only due to a variable X-ray column, showing that (1) deviations from the Galactic NH/AV can be simply explained by dust-free neutral gas within the broad-line region in some sources; that (2) the dust properties in AGNs can be similar to Galactic dust and that (3) the dust colour method is a robust way to estimate the optical extinction towards the sublimation radius in all but the most obscured AGNs.

  15. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  16. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  17. Auger electron spectroscopy and x-ray photoelectron spectroscopy of the biocorrosion of copper by Gum Arabic, BCS and Pseudomonas atlantica exopolymer

    SciTech Connect

    Jolley, J.G.; Geesey, G.G.; Hankins, M.R.; Wright, R.B.; Wichlacz, P.L.

    1987-01-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 10% Gum Arabic aqueous solution, 1% BCS (aqueous and simulated sea water solutions) and 0.5% Pseudomonas atlantica exopolymer (aqueous and simulated sea water solutions). Pre- and post-exposure characterization were done by Auger electron spectroscopy and x-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that the copper was oxidized by the Gum Arabic and BCS, and some was removed from the Cu/Ge interface by all three polymers and incorporated into the polymer matrix. Thus biocorrosion of copper was exhibited by the Gum Arabic, BCS and Pseudomonas atlantica exopolymer. 14 refs., 4 figs., 3 tabs.

  18. Picosecond-resolved X-ray absorption spectroscopy at low signal contrast using a hard X-ray streak camera

    SciTech Connect

    Adams, Bernhard W.; Rose-Petruck, Christoph; Jiao, Yishuo

    2015-06-24

    A picosecond-resolving hard-X-ray streak camera has been in operation for several years at Sector 7 of the Advanced Photon Source (APS). Several upgrades have been implemented over the past few years to optimize integration into the beamline, reduce the timing jitter, and improve the signal-to-noise ratio. These include the development of X-ray optics for focusing the X-rays into the sample and the entrance slit of the streak camera, and measures to minimize the amount of laser light needed to generate the deflection-voltage ramp. For the latter, the photoconductive switch generating the deflection ramp was replaced with microwave power electronics. With these, the streak camera operates routinely at 88 MHz repetition rate, thus making it compatible with all of the APS fill patterns including use of all the X-rays in the 324-bunch mode. Sample data are shown to demonstrate the performance.

  19. Status of the X-Ray Absorption Spectroscopy (XAS) Beamline at the Australian Synchrotron

    NASA Astrophysics Data System (ADS)

    Glover, C.; McKinlay, J.; Clift, M.; Barg, B.; Boldeman, J.; Ridgway, M.; Foran, G.; Garret, R.; Lay, P.; Broadbent, A.

    2007-02-01

    We present herein the current status of the X-ray Absorption Spectroscopy (XAS) Beamline at the 3 GeV Australian Synchrotron. The optical design and performance, details of the insertion device (Wiggler), end station capabilities and construction and commissioning timeline are given.

  20. Sequential electronic and structural transitions in VO2 observed using X-ray absorption spectromicroscopy.

    PubMed

    Kumar, Suhas; Strachan, John Paul; Pickett, Matthew D; Bratkovsky, Alexander; Nishi, Yoshio; Williams, R Stanley

    2014-11-26

    The popular dual electronic and structural transitions in VO2 are explored using X-ray absorption spectromicroscopy with high spatial and spectral resolutions. It is found that during both heating and cooling, the electronic transition always precedes the structural Peierls transition. Between the two transitions, there are intermediate states that are spectrally isolated here.

  1. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    SciTech Connect

    Cornelius, Andrew L.

    2016-08-26

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  2. Ligand effects on the X-ray absorption of a nickel porphyrin complex: a simulation study

    NASA Astrophysics Data System (ADS)

    Campbell, Luke; Tanaka, Satoshi; Mukamel, Shaul

    2004-04-01

    We present a simulation of the X-ray absorption near-edge spectrum (XANES) of the metal porphyrin NiTPP (nickel tetraphenylporphyrin) and investigate the changes to the spectrum caused by adding piperidine ligands to the metal atom. The main features in the experimental spectrum (Chen et al., Science 292 (2001) 262) are interpreted in terms of changes in the electronic structure.

  3. LISA: the Italian CRG beamline for x-ray Absorption Spectroscopy at ESRF

    NASA Astrophysics Data System (ADS)

    d'Acapito, F.; Trapananti, A.; Puri, A.

    2016-05-01

    LISA is the acronym of Linea Italiana per la Spettroscopia di Assorbimento di raggi X (Italian beamline for X-ray Absorption Spectroscopy) and is the upgrade of the former GILDA beamline installed on the BM08 bending magnet port of European Synchrotron Radiation Facility (ESRF). Within this contribution a full description of the project is provided.

  4. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  5. Discovery of Broad Soft X-ray Absorption Lines from the Quasar Wind in PDS 456

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Braito, V.; Nardini, E.; Behar, E.; O'Brien, P. T.; Tombesi, F.; Turner, T. J.; Costa, M. T.

    2016-06-01

    High-resolution soft X-ray spectroscopy of the prototype accretion disk wind quasar, PDS 456, is presented. Here, the XMM-Newton reflection grating spectrometer spectra are analyzed from the large 2013-2014 XMM-Newton campaign, consisting of five observations of approximately 100 ks in length. During the last observation (OBS. E), the quasar is at a minimum flux level, and broad absorption line (BAL) profiles are revealed in the soft X-ray band, with typical velocity widths of {σ }{{v}}˜ {{10,000}} km s-1. During a period of higher flux in the third and fourth observations (OBS. C and D, respectively), a very broad absorption trough is also present above 1 keV. From fitting the absorption lines with models of photoionized absorption spectra, the inferred outflow velocities lie in the range ˜ 0.1{--}0.2c. The absorption lines likely originate from He and H-like neon and L-shell iron at these energies. A comparison with earlier archival data of PDS 456 also reveals a similar absorption structure near 1 keV in a 40 ks observation in 2001, and generally the absorption lines appear most apparent when the spectrum is more absorbed overall. The presence of the soft X-ray BALs is also independently confirmed by an analysis of the XMM-Newton EPIC spectra below 2 keV. We suggest that the soft X-ray absorption profiles could be associated with a lower ionization and possibly clumpy phase of the accretion disk wind, where the latter is known to be present in this quasar from its well-studied iron K absorption profile and where the wind velocity reaches a typical value of 0.3c.

  6. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  7. A ubiquitous absorption feature in the X-ray spectra of BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Madejski, Greg M.; Mushotzky, Richard F.; Weaver, Kimberly A.; Arnaud, Keith A.; Urry, C. Megan

    1991-01-01

    The paper presents the broadband (0.5-20-keV) X-ray spectra of five X-ray bright BL Lac objects observed with the Einstein Observatory Solid State Spectrometer (SSS) and Monitor Proportional Counter (MPC) detectors. The combination of moderate energy resolution and broad spectral coverage makes it possible to confirm the presence of an absorption feature at an energy of 650 eV in the BL Lac object PKS 2155-304, originally reported by Canizares and Kruper (1984) based on higher resolution Einstein Objective Grating Spectrometer (OGS) data.

  8. X-Ray Absorption Fine Structure Study for Fe60Ni40 Alloy

    SciTech Connect

    Yang, Dong-Seok; Oh, Kyuseung; Na, Wonkyung; Kim, Nayoung; Yoo, Yong-Goo; Min, Seung-Gi; Yu, Seong-Cho

    2007-02-02

    Fe60Ni40 alloys were fabricated by the mechanical alloying process with process periods of 1, 2, 4, 6, 12 and 24 hours, respectively. The formation of alloy and the structural evolution of the alloy were examined by X-ray diffraction and extended X-ray absorption fine structure methods. With increase of alloying time the BCC phase of iron was changed significantly during the mechanical alloying process. The alloying was activated in about 6 hours and completed in about 24 hours.

  9. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    DOE PAGES

    Levantino, M.; Lemke, H. T.; Schirò, G.; ...

    2015-07-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  10. X-ray absorption in GaGdN: A study of local structure

    NASA Astrophysics Data System (ADS)

    Martínez-Criado, G.; Sancho-Juan, O.; Garro, N.; Sans, J. A.; Cantarero, A.; Susini, J.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-07-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure.

  11. The magnetic field of an isolated neutron star from X-ray cyclotron absorption lines.

    PubMed

    Bignami, G F; Caraveo, P A; De Luca, A; Mereghetti, S

    2003-06-12

    Isolated neutron stars are highly magnetized, fast-rotating objects that form as an end point of stellar evolution. They are directly observable in X-ray emission, because of their high surface temperatures. Features in their X-ray spectra could in principle reveal the presence of atmospheres, or be used to estimate the strength of their magnetic fields through the cyclotron process, as is done for X-ray binaries. Almost all isolated neutron star spectra observed so far appear as featureless thermal continua. The only exception is 1E1207.4-5209 (refs 7-9), where two deep absorption features have been detected, but with insufficient definition to permit unambiguous interpretation. Here we report a long X-ray observation of the same object in which the star's spectrum shows three distinct features, regularly spaced at 0.7, 1.4 and 2.1 keV, plus a fourth feature of lower significance, at 2.8 keV. These features vary in phase with the star's rotation. The logical interpretation is that they are features from resonant cyclotron absorption, which allows us to calculate a magnetic field strength of 8 x 10(10) G, assuming the absorption arises from electrons.

  12. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  13. Simulation of X-ray transient absorption for following vibrations in coherently ionized F2 molecules

    NASA Astrophysics Data System (ADS)

    Dutoi, Anthony D.; Leone, Stephen R.

    2017-01-01

    Femtosecond and attosecond X-ray transient absorption experiments are becoming increasingly sophisticated tools for probing nuclear dynamics. In this work, we explore and develop theoretical tools needed for interpretation of such spectra,in order to characterize the vibrational coherences that result from ionizing a molecule in a strong IR field. Ab initio data for F2 is combined with simulations of nuclear dynamics, in order to simulate time-resolved X-ray absorption spectra for vibrational wavepackets after coherent ionization at 0 K and at finite temperature. Dihalogens pose rather difficult electronic structure problems, and the issues encountered in this work will be reflective of those encountered with any core-valence excitation simulation when a bond is breaking. The simulations reveal a strong dependence of the X-ray absorption maximum on the locations of the vibrational wave packets. A Fourier transform of the simulated signal shows features at the overtone frequencies of both the neutral and the cation, which reflect spatial interferences of the vibrational eigenstates. This provides a direct path for implementing ultrafast X-ray spectroscopic methods to visualize coherent nuclear dynamics.

  14. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  15. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  16. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Wilms, Joern; Baganoff, Frederick K.

    2016-04-01

    In high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. We focus in particular on the Fe L-edge at 0.7 keV, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of imaging resolution. We discuss the various astrophysical cases in which scattering effects need to be taken into account.

  17. IN SITU STUDIES OF CORROSION USING X-RAY ABSORPTION NEAR SPECTROSCOPY (XANES)

    SciTech Connect

    ISAACS, H.S.; SCHMUKI, P.; VIRTANEN, S.

    2001-03-25

    Applications of x-ray absorption near-edge spectroscopy (XANES) and the design of cells for in situ corrosion studies are reviewed. Passive films studies require very thin metal or alloy layers be used having a thickness of the order of the films formed because of penetration of the x-ray beam into the metal substrate. The depth of penetration in water also limits the thickness of solutions that can be used because of water reduces the x-ray intensity. Solution thickness must also be limited in studies of conversion layer formation studies because the masking of the Cr in solution. Illustrative examples are taken from the anodic behavior of Al-Cr alloys, the growth of passive films on Fe and stainless steels, and the formation of chromate conversion layers on Al.

  18. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: timothy.r.kallman@nasa.gov

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  19. ISMabs: A Comprehensive X-Ray Absorption Model for the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2015-02-01

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  20. X-ray emission and photoelectron spectra of Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3}

    SciTech Connect

    Kurmaev, E.Z.; Korotin, M.A.; Galakhov, V.R.; Finkelstein, L.D.; Zabolotzky, E.I.; Efremova, N.N.; Lobachevskaya, N.I.; Stadler, S.; Ederer, D.L.; Callcott, T.A.; Zhou, L.; Moewes, A.; Bartkowski, S.; Neumann, M.; Matsuno, J.; Mizokawa, T.; Fujimori, A.; Mitchell, J.

    1999-05-01

    The results of measurements of x-ray photoelectron (XPS), x-ray emission (XES), and x-ray absorption spectra and local spin-density approximation band structure (LSDA) calculations of Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} are presented. The excitation energy dependence of Mn L{sub 2,3} and O K{alpha} x-ray emission spectra of Pr{sub 0.5}Sr{sub 0.5}MnO{sub 3} is measured using tunable synchrotron radiation. The XES measurements yielded no photon energy dependence for the O K{alpha} spectra, but the Mn L{sub 2,3} spectra yielded inelastic scattering losses of 2 and 6 eV, corresponding to features in the structure of the occupied part of the valence band. Comparing XPS and XES measurements with LSDA band-structure calculations, one concludes that the electronic structure of the compound consists mainly of Mn 3d and O 2p states. States of 3d character localized at the Mn site predominate near the top of the valence band (VB). Some differences in the Mn 3d distribution in this part of the XPS valence band and Mn L{sub 3} XES with {ital d} symmetry due to spin-selection rules that govern the Mn L{sub 3} XES. In addition, the Mn 3d states distribution is hybridized with the O 2p part of the VB. Mn L{sub 3} XES spectra were determined relative to the Fermi energy by assuming normal x-ray emission begins from the lowest level of the p{sup 5}d{sup n+1}L intermediate state (which is the Mn 2p ionizatation threshold). From the local spin-density approximation, the orbital character of the Mn 3d electrons can be assigned e{sub g} symmetry at the top of the valence band T{sub 2g} in the central part of the VB, and equal contributions of e{sub g} and t{sub 2g} states at the bottom of the valence band. {copyright} {ital 1999} {ital The American Physical Society}

  1. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  2. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    PubMed

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.

  3. Investigations on surface chemical analysis using X-ray photoelectron spectroscopy and optical properties of Dy3+-doped LiNa3P2O7 phosphor

    NASA Astrophysics Data System (ADS)

    Munirathnam, K.; Dillip, G. R.; Chaurasia, Shivanand; Joo, S. W.; Deva Prasad Raju, B.; John Sushma, N.

    2016-08-01

    Near white-light emitting LiNa3P2O7:Dy3+ phosphors were prepared by a conventional solid-state reaction method. The orthorhombic crystal structure of the phosphors was confirmed using X-ray diffraction (XRD), and the valence states of the surface elements were determined from the binding energies of Li 1s, O 1s, Na 1s, P 2p, and Dy 3d by X-ray photoelectron spectroscopy (XPS). Attenuated total reflectance (ATR) - Fourier transform infrared (FT-IR) spectroscopy was employed to identify the pyrophosphate groups in the phosphors. Diffuse reflectance spectra (DRS) show the absorption bands of the Dy3+ ions in the host material. Intense blue (481 nm) and yellow (575 nm) emissions were obtained at an excitation wavelength of 351 nm and are attributed to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The combination of these two intense bands generates light emission in the near-white region of the chromaticity diagram.

  4. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    SciTech Connect

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-12-31

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time.

  5. Thermal stability of electron-irradiated poly(tetrafluoroethylene) - X-ray photoelectron and mass spectroscopic study

    NASA Technical Reports Server (NTRS)

    Wheeler, Donald R.; Pepper, Stephen V.

    1990-01-01

    Polytetrafluoroethylene (PTFE) was subjected to 3 keV electron bombardment and then heated in vacuum to 300 C. The behavior of the material as a function of radiation dose and temperature was studied by X-ray photoelectron spectroscopy (XPS) of the surface and mass spectroscopy of the species evolved. Lightly damaged material heated to 300 C evolved saturated fluorocarbon species, whereas unsaturated fluorocarbon species were evolved from heavily damaged material. After heating the heavily damaged material, those features in the XPS spectrum that were associated with damage diminished, giving the appearance that the radiation damage had annealed. The observations were interpreted by incorporating mass transport of severed chain fragments and thermal decomposition of severely damaged material into the branched and cross-linked network model of irradiated PTFE. The apparent annealing of the radiation damage was due to covering of the network by saturated fragments that easily diffused through the decomposed material to the surface region upon heating.

  6. Understanding Chemical versus Electrostatic Shifts in X-ray Photoelectron Spectra of Organic Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    The focus of the present article is on understanding the insight that X-ray photoelectron spectroscopy (XPS) measurements can provide when studying self-assembled monolayers. Comparing density functional theory calculations to experimental data on deliberately chosen model systems, we show that both the chemical environment and electrostatic effects arising from a superposition of molecular dipoles influence the measured core-level binding energies to a significant degree. The crucial role of the often overlooked electrostatic effects in polar self-assembled monolayers (SAMs) is unambiguously demonstrated by changing the dipole density through varying the SAM coverage. As a consequence of this effect, care has to be taken when extracting chemical information from the XP spectra of ordered organic adsorbate layers. Our results, furthermore, imply that XPS is a powerful tool for probing local variations in the electrostatic energy in nanoscopic systems, especially in SAMs. PMID:26937264

  7. Effects of proton irradiation on single-stranded DNA studied by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, E.; Lee, Cheol Eui; Han, J. H.

    2016-08-01

    X-ray photoelectron spectroscopy (XPS) has been employed in order to study the effects of proton irradiation on herring sperm single-stranded DNA. Systematic changes of the chemical shifts in the C, N, O, and P XPS line components as functions of the irradiation dose were observed, indicative of the bonding configurations in the DNA system. While the C 1 s XPS lines showed weak blueshifts, the N 1 s, O 1 s, and P 2 p XPS lines showed blueshifts with a marked dependence on the irradiation dose in a prominent manner. Our results show that linear energy transfer by charged particles and photons may have distinct molecular-level effects as the C 1 s, N 1 s, O 1 s, and P 2 p XPS lines showed redshifts in our previous study of effects of the γ-ray irradiation on the same system.

  8. Investigation of passive films on {alpha}{sub 2} and {gamma} titanium aluminides by X-ray photoelectron spectroscopy

    SciTech Connect

    Ziomek-Moroz, M.; Su, W.; Covino, B.S. Jr.

    1999-07-01

    Passive films on {alpha}{sub 2} and {gamma} titanium aluminide formed potentiostatically in sodium hydroxide (NaOH) and sulfuric acid (H{sub 2}SO{sub 4}) solutions were studied by x-ray photoelectron spectroscopy (XPS). In NaOH, potentiostatic experiments showed that titanium aluminides had very similar passive current densities to that of Ti. XPS sputter depth profile showed nearly no Al present in the outer layer of the passive films. In H{sub 2}SO{sub 4}, passive current densities increased for specimens with increasing Al content. XPS sputter depth profile showed that Al was enriched in outer layers of the passive films. These results indicated that the passive film dissolution rates increased with increasing amounts of Al in the passive film for titanium aluminides.

  9. Investigation of passive films on alpha2 and gamma titanium aluminides by X-ray photoelectron spectroscopy

    SciTech Connect

    Ziomek-Moroz, M.; Su, W.; Covino, Bernard S., Jr.

    1999-07-01

    Passive films on alpha2 and gamma titanium aluminide formed potentiostatically in sodium hydroxide (NaOH) and sulfuric acid (H2SO4) solutions were studied by x-ray photoelectron microscopy (XPS). In NaOH, potentiostatic experiments showed that titanium aluminides had very similar passive current densities to that of Ti. XPS sputter depth profile showed nearly no Al present in the outer layer of the passive films. In H2SO4, passive current densities increased for specimens with increasing Al content. XPS sputter depth profile showed that Al was enriched in outer layers of the passive films. These results indicated that the passive film dissolution rate increased with increasing amounts of Al in the passive film for titanium aluminides.

  10. Surface Evaluation by X-Ray Photoelectron Spectroscopy of High Performance Polyimide Foams After Exposure to Oxygen Plasma

    NASA Technical Reports Server (NTRS)

    Melendez, Orlando; Hampton, Michael D.; Williams, Martha K.; Brown, Sylvia F.; Nelson, Gordon L.; Weiser, Erik S.

    2002-01-01

    Aromatic polyimides have been attractive in the aerospace and electronics industries for applications such as cryogenic insulation, flame retardant panels and structural subcomponents. Newer to the arena of polyimides is the synthesis of polyimide foams and their applications. In the present work, three different, closely related, polyimide foams developed by NASA Langley Research Center (LaRC) are studied by X-ray Photoelectron Spectroscopy (XPS) after exposure to radio frequency generated Oxygen Plasma. Although polyimide films exposure to atomic oxygen and plasma have been studied previously and reported, the data relate to films and not foams. Foams have much more surface area and thus present new information to be explored. Understanding degradation mechanisms and properties versus structure, foam versus solid is of interest and fundamental to the application and protection of foams exposed to atomic oxygen in Low Earth Orbit (LEO).

  11. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    PubMed

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  12. Energy-dispersive and x-ray photoelectron spectroscopy and electron microscopy of new quininium-plastic membrane electrodes.

    PubMed

    Shoukry, Adel F; Maraffie, Hayat M; Al-Shatti, Laila A

    2007-10-01

    New quininium (Qn) plastic membrane electrodes of the conventional type were constructed and characterized. They are based on incorporation of Qn-reineckate (QnRn) ion-pair, Qn-phosphotungstate (Qn3-PT), or Qn-phosphomolybdate (Qn3PM) ion associate into a poly(vinyl chloride) membrane. The electrodes are selective for Qn and have been successfully used for the determination of Qn2SO4 in pharmaceutical tablets. Nevertheless, they showed, as almost all other ion-selective electrodes, limited life times. Energy dispersive- (EDS) and X-ray photoelectron spectroscopy (XPS), as well as electron microscopy were applied to investigate the cause of this limitation in the life times of the electrodes. The results indicated that the electrodes lose their activity after prolonged soaking as a result of leaching of the ion exchanger from the membranes into the test solution in addition to deformation at the surface of the expired electrode.

  13. The X-ray photoelectron spectroscopy depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    For the case of ion-plated gold, the graded interface between gold and a nickel substrate and a nickel substrate, such tribological properties as friction and microhardness are examined by means of X-ray photoelectron spectroscopy analysis and depth profiling. Sliding was conducted against SiC pins in both the adhesive process, where friction arises from adhesion between sliding surfaces, and abrasion, in which friction is due to pin indentation and groove-plowing. Both types of friction are influenced by coating depth, but with opposite trends: the graded interface exhibited the highest adhesion, but the lowest abrasion. The coefficient of friction due to abrasion is inversely related to hardness. Graded interface microhardness values are found to be the highest, due to an alloying effect. There is almost no interface gradation between the vapor-deposited gold film and the substrate.

  14. Band alignment of TiO{sub 2}/FTO interface determined by X-ray photoelectron spectroscopy: Effect of annealing

    SciTech Connect

    Fan, Haibo E-mail: liusz@snnu.edu.cn; Yang, Zhou; Ren, Xianpei; Gao, Fei; Yin, Mingli; Liu, Shengzhong E-mail: liusz@snnu.edu.cn

    2016-01-15

    The energy band alignment between pulsed-laser-deposited TiO{sub 2} and FTO was firstly characterized using high-resolution X-ray photoelectron spectroscopy. A valence band offset (VBO) of 0.61 eV and a conduction band offset (CBO) of 0.29 eV were obtained across the TiO{sub 2}/FTO heterointerface. With annealing process, the VBO and CBO across the heterointerface were found to be -0.16 eV and 1.06 eV, respectively, with the alignment transforming from type-I to type-II. The difference in the band alignment is believed to be dominated by the core level down-shift of the FTO substrate, which is a result of the oxidation of Sn. Current-voltage test has verified that the band alignment has a significant effect on the current transport of the heterojunction.

  15. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    NASA Astrophysics Data System (ADS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  16. Surface characterization of immunosensor conjugated with gold nanoparticles based on cyclic voltammetry and X-ray photoelectron spectroscopy.

    PubMed

    Lai, Lee-Jene; Yang, Yaw-Wen; Lin, Yao-Kwang; Huang, Li-Ling; Hsieh, Yi-Heui

    2009-02-01

    This investigation describes the surface characterization of rabbit immunoglobulin G (IgG) conjugated with gold nanoparticles. Goat anti-rabbit immunoglobulin G tagged with 5nm gold nanoparticles was applied to detect the IgG. Then, the autocatalyzed deposition of Au(3+) onto the surface of anti-IgGAu increased the surface area per gold nanoparticle. The immobilization chemistries and the atomic concentrations of Au(4f), P(2p), S(2p), C(1s), N(1s) and O(1s) of the resulting antibody-modified Au electrodes were determined by X-ray photoelectron spectroscopy (XPS). The sulfur that is involved in the cysteamine binding and the enlargement of the gold nanoparticles are identified using cyclic voltammetry. The results reveal that the surface area per gold particle, following the autocatalyzed deposition Au(3+) on the surface of anti-IgGAu, was approximately seven times higher than that before deposition.

  17. Application of ESCA to the determination of stoichiometry in sputtered coatings and interface regions. [X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1978-01-01

    X-ray Photoelectron Spectroscopy (XPS) was used to characterize radiofrequency sputter deposited films of several refractory compounds. Both the bulk film properties such as purity and stoichiometry and the character of the interfacial region between the film and substrate were examined. The materials were CrB2, MoS2, Mo2C, and Mo2B5 deposited on 440C steel. It was found that oxygen from the sputtering target was the primary impurity in all cases. Biasing improves the film purity. The effect of biasing on film stoichiometry is different for each compound. Comparison of the interfacial composition with friction data suggests that adhesion of these films is improved if a region of mixed film and iron oxides can be formed.

  18. Electronic structure of Al- and Ga-doped ZnO films studied by hard X-ray photoelectron spectroscopy

    SciTech Connect

    Gabás, M.; Ramos Barrado, José R.; Torelli, P.; Barrett, N. T.

    2014-01-01

    Al- and Ga-doped sputtered ZnO films (AZO, GZO) are semiconducting and metallic, respectively, despite the same electronic valence structure of the dopants. Using hard X-ray photoelectron spectroscopy we observe that both dopants induce a band in the electronic structure near the Fermi level, accompanied by a narrowing of the Zn 3d/O 2p gap in the valence band and, in the case of GZO, a substantial shift in the Zn 3d. Ga occupies substitutional sites, whereas Al dopants are in both substitutional and interstitial sites. The latter could induce O and Zn defects, which act as acceptors explaining the semiconducting character of AZO and the lack of variation in the optical gap. By contrast, mainly substitutional doping is consistent with the metallic-like behavior of GZO.

  19. XPS studies of structure-induced radiation effects at the Si/SiO2 interface. [X ray Photoelectron Spectroscopy

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.; Lewis, B. F.; Zamini, N.; Maserjian, J.; Madhukar, A.

    1980-01-01

    The interfacial structures of radiation hard and soft oxides grown by dry and wet processes on silicon substrates have been examined by high-resolution X-ray photoelectron spectroscopy. It is found that the primary difference in the local atomic structure at the Si/SiO2 interface is the significantly higher concentration of strained 120 deg SiO2 bonds and SiO interfacial species in soft samples. Results of in situ radiation damage experiments using low energy electrons (0-20 eV) are reported which correlate with the presence of a strained layer of SiO2 (20 A) at the interface. The results are interpreted in terms of a structural model for hole and electron trap generation by ionizing radiation.

  20. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers

    PubMed Central

    2016-01-01

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM–ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level. PMID:27429041

  1. Employing X-ray Photoelectron Spectroscopy for Determining Layer Homogeneity in Mixed Polar Self-Assembled Monolayers.

    PubMed

    Hehn, Iris; Schuster, Swen; Wächter, Tobias; Abu-Husein, Tarek; Terfort, Andreas; Zharnikov, Michael; Zojer, Egbert

    2016-08-04

    Self-assembled monolayers (SAMs) containing embedded dipolar groups offer the particular advantage of changing the electronic properties of a surface without affecting the SAM-ambient interface. Here we show that such systems can also be used for continuously tuning metal work functions by growing mixed monolayers consisting of molecules with different orientations of the embedded dipolar groups. To avoid injection hot-spots when using the SAM-modified electrodes in devices, a homogeneous mixing of the two components is crucial. We show that a combination of high-resolution X-ray photoelectron spectroscopy with state-of-the-art simulations is an ideal tool for probing the electrostatic homogeneity of the layers and thus for determining phase separation processes in polar adsorbate assemblies down to inhomogeneities at the molecular level.

  2. Probing buried organic-organic and metal-organic heterointerfaces by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibuta, Masahiro; Eguchi, Toyoaki; Watanabe, Yoshio; Son, Jin-Young; Oji, Hiroshi; Nakajima, Atsushi

    2012-11-01

    We present a nondestructive characterization method for buried hetero-interfaces for organic/organic and metal/organic systems using hard x-ray photoelectron spectroscopy (HAXPES) which can probe electronic states at depths deeper than ˜10 nm. A significant interface-derived signal showing a strong chemical interaction is observed for Au deposited onto a C60 film, while there is no such additional feature for copper phthalocyanine deposited onto a C60 film reflecting the weak interaction between the molecules in the latter case. A depth analysis with HAXPES reveals that a Au-C60 intermixed layer with a thickness of 5.1 nm is formed at the interface.

  3. X-ray photoelectron spectroscopy study on the chemistry involved in tin oxide film growth during chemical vapor deposition processes

    SciTech Connect

    Mannie, Gilbere J. A.; Gerritsen, Gijsbert; Abbenhuis, Hendrikus C. L.; Deelen, Joop van; Niemantsverdriet, J. W.; Thuene, Peter C.

    2013-01-15

    The chemistry of atmospheric pressure chemical vapor deposition (APCVD) processes is believed to be complex, and detailed reports on reaction mechanisms are scarce. Here, the authors investigated the reaction mechanism of monobutyl tinchloride (MBTC) and water during SnO{sub 2} thin film growth using x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). XPS results indicate an acid-base hydrolysis reaction mechanism, which is tested with multilayer experiments, demonstrating self-terminating growth. In-house developed TEM wafers are used to visualize nucleation during these multilayer experiments, and results are compared with TEM results of APCVD samples. Results show almost identical nucleation behavior implying that their growth mechanism is identical. Our experiments suggest that in APCVD, when using MBTC and water, SnO{sub 2} film growth occurs via a heterolytic bond splitting of the Sn-Cl bonds without the need to invoke gas-phase radical or coordination chemistry of the MBTC precursor.

  4. Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.

    PubMed

    Niehoff, Philip; Passerini, Stefano; Winter, Martin

    2013-05-14

    Here we provide a detailed X-ray photoelectron spectroscopy (XPS) study of the electrode/electrolyte interface of a graphite anode from commercial NMC/graphite cells by intense sputter depth profiling using a polyatomic ion gun. The uniqueness of this method lies in the approach using 13-step sputter depth profiling (SDP) to obtain a detailed model of the film structure, which forms at the electrode/electrolyte interface often noted as the solid electrolyte interphase (SEI). In addition to the 13-step SDP, several reference experiments of the untreated anode before formation with and without electrolyte were carried out to support the interpretation. Within this work, it is shown that through charging effects during X-ray beam exposure chemical components cannot be determined by the binding energy (BE) values only, and in addition, that quantification by sputter rates is complicated for composite electrodes. A rough estimation of the SEI thickness was carried out by using the LiF and graphite signals as internal references.

  5. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge.

    PubMed

    Ross, Richard B; Aeschliman, David B; Ahmad, Riaz; Brennan, John K; Brostrom, Myles L; Frankel, Kevin A; Moore, Jonathan D; Moore, Joshua D; Mountain, Raymond D; Poirier, Derrick M; Thommes, Matthias; Shen, Vincent K; Schultz, Nathan E; Siderius, Daniel W; Smith, Kenneth D

    2016-02-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison.

  6. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge*+

    PubMed Central

    Ross, Richard B.; Aeschliman, David B.; Ahmad, Riaz; Brennan, John K.; Brostrom, Myles L.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Poirier, Derrick M.; Thommes, Matthias; Shen, Vincent K.; Schultz, Nathan E.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison. PMID:27840543

  7. Reduction of Vanadium Oxide (VOx) under High Vacuum Conditions as Investigated by X-Ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chourasia, A.

    2015-03-01

    Vanadium oxide thin films were formed by depositing thin films of vanadium on quartz substrates and oxidizing them in an atmosphere of oxygen. The deposition was done by the e-beam technique. The oxide films were annealed at different temperatures for different times under high vacuum conditions. The technique of x-ray photoelectron spectroscopy has been employed to study the changes in the oxidation states of vanadium and oxygen in such films. The spectral features in the vanadium 2p, oxygen 1s, and the x-ray excited Auger regions were investigated. The Auger parameter has been utilized to study the changes. The complete oxidation of elemental vanadium to V2O5 was observed to occur at 700°C. At any other temperature, a mixture of oxides consisting of V2O5 and VO2 was observed in the films. Annealing of the films resulted in the gradual loss of oxygen followed by reduction in the oxidation state from +5 to 0. The reduction was observed to depend upon the annealing temperature and the annealing time. Organized Research, TAMU-Commerce.

  8. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    SciTech Connect

    Tilikin, I. N. Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-15

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  9. Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy.

    PubMed

    Cho, B I; Engelhorn, K; Correa, A A; Ogitsu, T; Weber, C P; Lee, H J; Feng, J; Ni, P A; Ping, Y; Nelson, A J; Prendergast, D; Lee, R W; Falcone, R W; Heimann, P A

    2011-04-22

    We use time-resolved x-ray absorption spectroscopy to investigate the unoccupied electronic density of states of warm dense copper that is produced isochorically through the absorption of an ultrafast optical pulse. The temperature of the superheated electron-hole plasma, which ranges from 4000 to 10 000 K, was determined by comparing the measured x-ray absorption spectrum with a simulation. The electronic structure of warm dense copper is adequately described with the high temperature electronic density of state calculated by the density functional theory. The dynamics of the electron temperature is consistent with a two-temperature model, while a temperature-dependent electron-phonon coupling parameter is necessary.

  10. X-ray absorption spectroscopy on the basis of hybrid X-pinch radiation

    NASA Astrophysics Data System (ADS)

    Tilikin, I. N.; Shelkovenko, T. A.; Pikuz, S. A.; Knapp, P. F.; Hammer, D. A.

    2015-07-01

    Results of experiments on X-ray absorption spectroscopy carried out at the BIN (270 kA, 100 ns) and XP (450 kA, 45 ns) facilities are presented. Continuum radiation of a Mo hybrid X-pinch was used as probing radiation, against which absorption lines of the plasma of exploded Al wires placed in the return current circuit of a hybrid X-pinch, as well as in a two- and four-wire array, were observed. The experiments have demonstrated that the radiation of a hybrid X-pinch hot spot can be used as probing radiation for X-ray absorption spectroscopy and that, in many parameters, such a source surpasses those on the basis of laser-produced plasma. The plasma parameters in arrays made of two and four Al wires were studied experimentally.

  11. Novel angular encoder for a quick-extended x-ray absorption fine structure monochromator

    SciTech Connect

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R.; Fonda, E.; De Oliveira, N.; Briois, V.

    2008-08-15

    New concepts for time-resolved x-ray absorption spectroscopy using the quick-extended x-ray absorption fine structure (QEXAFS) method are presented. QEXAFS is a powerful tool to gain structural information about, e.g., fast chemical reactions or phase transitions on a subsecond scale. This can be achieved with a monochromator design that employs a channel-cut crystal on a cam driven tilt table for rapid angular oscillations of the Bragg angle. A new angular encoder system and a new data acquisition were described and characterized that were applied to a QEXAFS monochromator to get spectra with a directly measured accurate energy scale. New electronics were designed to allow a fast acquisition of the Bragg angle values and the absorption data during the measurements simultaneously.

  12. Geometric Structure Determination of N694C Lipoxygenase: a Comparative Near-Edge X-Ray Absorption Spectroscopy And Extended X-Ray Absorption Fine Structure Study

    SciTech Connect

    Sarangi, R.; Hocking, R.K.; Neidig, M.L.; Benfatto, M.; Holman, T.R.; Solomon, E.I.; Hodgson, K.O.; Hedman, B.

    2009-05-27

    The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparigine to cystiene, the short Fe-O interaction with asparigine is replaced by a weak Fe-(H{sub 2}O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.

  13. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy

    PubMed Central

    Gilbert, P. U. P. A.; Young, Anthony; Coppersmith, Susan N.

    2011-01-01

    We demonstrate that the ability to manipulate the polarization of synchrotron radiation can be exploited to enhance the capabilities of X-ray absorption near-edge structure (XANES) spectroscopy, to include linear dichroism effects. By acquiring spectra at the same photon energies but different polarizations, and using a photoelectron emission spectromicroscope (PEEM), one can quantitatively determine the angular orientation of micro- and nanocrystals with a spatial resolution down to 10 nm. XANES-PEEM instruments are already present at most synchrotrons, hence these methods are readily available. The methods are demonstrated here on geologic calcite (CaCO3) and used to investigate the prismatic layer of a mollusk shell, Pinctada fucata. These XANES-PEEM data reveal multiply oriented nanocrystals within calcite prisms, previously thought to be monocrystalline. The subdivision into multiply oriented nanocrystals, spread by more than 50°, may explain the excellent mechanical properties of the prismatic layer, known for decades but never explained. PMID:21693647

  14. Picosecond x-ray laser photoelectron spectroscopy of room temperature and heated materials

    SciTech Connect

    Dunn, J; Nelson, A J; van Buuren, T; Hunter, J R

    2004-08-03

    An 84.5 eV Ni-like Pd ion 4d - 4p x-ray laser source generated by the LLNL Compact Multipulse Terawatt (COMET) tabletop system has been used to probe the electronic structure of various metals and semiconductors. In addition to the {approx}4 - 5 ps time resolution, the probe provides the necessary high photon flux (>10{sup 12}/pulse), narrow line width ({Delta}E/E{approx}2 x 10{sup -5}) and coherence for studying valence band and shallow core electronic structure levels in a single shot. We show some preliminary results of room temperature and heated thin foil samples consisting of 50 nm Cu coated on a 20 nm C substrate. A 527 nm wavelength 400 fs laser pulse containing 0.1 - 2.5 mJ laser energy is focused in a large 500 x 700 {micro}m{sup 2} (FWHM) spot to create heated conditions of 0.07 - 1.8 x 1012 W cm{sup -2} intensity.

  15. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  16. X-ray photoelectron spectra and electronic structure of rare-earth orthovanadates

    NASA Astrophysics Data System (ADS)

    Ryzhkov, M. V.; Kostikov, S. P.; Ivanov, I. K.; Gubanov, V. A.

    1981-08-01

    Photoelectron spectra of 4 d and valence states in RVO 4 ( R = Y, Nd, Eu, Gd, Tb, Dy, Yb) have been investigated. The experimental spectra are interpreted using the results of the Xα discrete variational method calculations for orthovanadates. Transformations of electronic structure and covalency in the RVO 4 series are discussed. It is shown that lanthanide 4 f orbitals significantly mix with the O 2 pAO's and hybridize with the rare-earths 5 pAO's. The 5 p levels spin-orbital splitting in orthovanadates has been evaluated.

  17. Electronic structure transformation in small bare Au clusters as seen by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Andersson, T.; Zhang, C.; Björneholm, O.; Mikkelä, M.-H.; Jänkälä, K.; Anin, D.; Urpelainen, S.; Huttula, M.; Tchaplyguine, M.

    2017-01-01

    Free bare gold clusters in the size range from few tens to few hundred atoms (≤1 nm dimensions) have been produced in a beam, and the size-dependent development of their full valence band including the 5d and 6s parts has been mapped ‘on the fly’ by synchrotron-based photoelectron spectroscopy. The Au 4f core level has been also probed, and the cluster-specific Au 4f ionization energies have been used to estimate the cluster size. The recorded in the present work valence spectra of the small clusters are compared with the spectra of the large clusters ( N ∼ 103) created by us using a magnetron-based gas aggregation source. The comparison shows a substantially narrower 5d valence band and the decrease in its splitting for gold clusters in the size range of few hundred atoms and below. Our DFT calculations involving the pseudopotential method show that the 5d band width of the ground state increases with the cluster size and by the size N = 20 becomes comparable with the experimental width of the valence photoelectron spectrum. Similar to the earlier observations on supported clusters we interpret our experimental and theoretical results as due to the undercoordination of a large fraction of atoms in the clusters with N ∼ 102 and below. The consequences of such electronic structure of small gold clusters are discussed in connection with their specific physical and chemical properties related to nanoplasmonics and nanocatalysis.

  18. Electronic ground states of Fe2(+) and Co2(+) as determined by x-ray absorption and x-ray magnetic circular dichroism spectroscopy.

    PubMed

    Zamudio-Bayer, V; Hirsch, K; Langenberg, A; Ławicki, A; Terasaki, A; V Issendorff, B; Lau, J T

    2015-12-28

    The (6)Π electronic ground state of the Co2 (+) diatomic molecular cation has been assigned experimentally by x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap. Three candidates, (6)Φ, (8)Φ, and (8)Γ, for the electronic ground state of Fe2 (+) have been identified. These states carry sizable orbital angular momenta that disagree with theoretical predictions from multireference configuration interaction and density functional theory. Our results show that the ground states of neutral and cationic diatomic molecules of 3d transition elements cannot generally be assumed to be connected by a one-electron process.

  19. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy.

    PubMed

    Huber, S P; Medvedev, V V; Gullikson, E; Padavala, B; Edgar, J H; van de Kruijs, R W E; Bijkerk, F; Prendergast, D

    2017-02-02

    We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

  20. Band alignment of InGaZnO4/Si interface by hard x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kyeongmi; Nomura, Kenji; Yanagi, Hiroshi; Kamiya, Toshio; Ikenaga, Eiji; Sugiyama, Takeharu; Kobayashi, Keisuke; Hosono, Hideo

    2012-08-01

    Although amorphous InGaZnO4 has intensively been studied for a semiconductor channel material of thin-film transistors in next-generation flat-panel displays, its electronic structure parameters have not been reported. In this work, the electron affinities (χ) and the ionization potentials (Ip) of crystalline and amorphous InGaZnO4 (c-IGZO and a-IGZO) were measured using bulk-sensitive hard x-ray photoelectron spectroscopy. First, the χ and Ip values of c-IGZO and a-IGZO thin films were estimated by aligning the Zn 2p3/2 core level energies to a literature value for ZnO, which provided χ = 3.90 eV and Ip = 7.58 eV for c-IGZO and 4.31 eV and 7.41 eV for a-IGZO. It was also confirmed that the escape depth of the photoelectrons excited by the photon energy of 5950.2 eV is 3.3 nm for a-IGZO and large enough for directly measuring the interface electronic structure using a-IGZO/c-Si heterojunctions. It provided the valence band offset of ˜2.3 eV, which agrees well with the above data. The present results substantiate that the a-IGZO/c-Si interface follows well the Schottky-Mott rule.

  1. Final-state effect on X-ray photoelectron spectrum of n-doped SrTiO3

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Demkov, Alexander; Demkov Team

    2015-03-01

    X-ray photoelectron spectroscopy (XPS) is a widely used technique to determine the oxidation states of chemical elements. In stoichiometric SrTiO3, the Ti4+ peak appears at a binding energy of about 459.0 eV for photoelectrons ejected from the Ti 2 p core level. In lightly n-doped SrTiO3, a weak shoulder at a binding energy of about 1.5 eV lower than the Ti4+ peak appears in the XPS spectrum that has been conventionally interpreted as a Ti3+ signal. By taking the final-state effect into account, i.e. by considering the response of the valence electrons in the presence of a core hole, we argue that such a Ti3+ peak does not necessarily imply the existence of spatially localized Ti3+ ions, and explicitly show that a spatially uniform Ti(4 - x) + distribution also leads to the multi-peak structure. Spectra from metallic n-doped SrTiO3 (e.g. La replacing Sr, Nb replacing Ti, or even oxygen vacancy doping) should be interpreted as the latter case. Several experiments based on this interpretation are discussed. Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences under award number DESC0008877.

  2. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from photoelectron X-ray spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from N1s binding energy shifts of HNO3(aq) as a function of concentration, and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO3(aq) and dissociated NO3-(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO3 interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO3 and water. We suggest that the driving force behind the more structured solvent configuration of HNO3 is the overlap of nitric acid solvent shells that sets in around 4 M concentration. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  3. Dissociation of strong acid revisited: X-ray photoelectron spectroscopy and molecular dynamics simulations of HNO3 in water.

    PubMed

    Lewis, Tanza; Winter, Bernd; Stern, Abraham C; Baer, Marcel D; Mundy, Christopher J; Tobias, Douglas J; Hemminger, John C

    2011-08-04

    Molecular-level insight into the dissociation of nitric acid in water is obtained from X-ray photoelectron spectroscopy and first-principles molecular dynamics (MD) simulations. Our combined studies reveal surprisingly abrupt changes in solvation configurations of undissociated nitric acid at approximately 4 M concentration. Experimentally, this is inferred from shifts of the N1s binding energy of HNO(3)(aq) as a function of concentration and is associated with variations in the local electronic structure of the nitrogen atom. It also shows up as a discontinuity in the degree of dissociation as a function of concentration, determined here from the N1s photoelectron signal intensity, which can be separately quantified for undissociated HNO(3)(aq) and dissociated NO(3)(-)(aq). Intermolecular interactions within the nitric acid solution are discussed on the basis of MD simulations, which reveal that molecular HNO(3) interacts remarkably weakly with solvating water molecules at low concentration; around 4 M there is a turnover to a more structured solvation shell, accompanied by an increase in hydrogen bonding between HNO(3) and water. We suggest that the driving force behind the more structured solvent configuration of HNO(3) is the overlap of nitric acid solvent shells that sets in around 4 M concentration.

  4. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  5. The nature of arsenic in uranium mill tailings by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cutler, J. N.; Chen, N.; Jiang, D. T.; Demopoulos, G. P.; Jia, Y.; Rowson, J. W.

    2003-05-01

    In order to understand the evolving world of environmental issues, the ability to characterize and predict the stability and bioavailability of heavy métal contaminants in mine waste is becoming increasingly more important. X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopies were used to characterize a series of synthetic and natural samples associated with mine tailings processing. XANES was shown to be excellent as a tool to rapidly differentiate oxidation states of arsenic within the samples. The EXAFS spectra provided information on the mineralogy of the precipitated raffinate and tailings and showed that these samples are composed of a mixture of amorphous ferric arsenates, adsorbed arsenates and a mixture of other poorly ordered arsenates.

  6. X-ray absorption fine structure study of heavily P doped (111) and (001) diamond

    NASA Astrophysics Data System (ADS)

    Shikata, Shinichi; Yamaguchi, Koji; Fujiwara, Akihiko; Tamenori, Yusuke; Yahiro, Jumpei; Kunisu, Masahiro; Yamada, Takatoshi

    2017-02-01

    X-ray absorption fine structure (XANES) measurements were carried out for P doped (111) and (001) diamond films, and the results were compared with those from simulations. For the (111) spectrum, the main strong peak observed at 2147.0 eV and three broad peaks centered at 2150 eV, 2157 eV, and 2165 eV were observed. The assignment with the estimation by the simulation of the XANES peaks showed the interstitial sites additional to the substitutional site. The Extended X-ray Absorption Fine Structure (EXAFS) result of the P doped (111) diamond showed that the first and second neighboring peaks are observed at 1.21 A and 2.0 A, respectively. The assignment with the estimation by the simulation of the EXAFS peaks also showed the interstitial sites additional to the substitutional site. Overall, P in diamonds presumably has dopant sites in both the substitutional and interstitial sites.

  7. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    SciTech Connect

    Westre, Tami E.

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  8. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy

    SciTech Connect

    Schwanke, C.; Lange, K. M.; Golnak, R.; Xiao, J.

    2014-10-15

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl{sub 2} aqueous solution by X-ray absorption and emission spectroscopy is presented.

  9. Electrochemical flowcell for in-situ investigations by soft x-ray absorption and emission spectroscopy.

    PubMed

    Schwanke, C; Golnak, R; Xiao, J; Lange, K M

    2014-10-01

    A new liquid flow-cell designed for electronic structure investigations at the liquid-solid interface by soft X-ray absorption and emission spectroscopy is presented. A thin membrane serves simultaneously as a substrate for the working electrode and solid state samples as well as for separating the liquid from the surrounding vacuum conditions. In combination with counter and reference electrodes this approach allows in-situ studies of electrochemical deposition processes and catalytic reactions at the liquid-solid interface in combination with potentiostatic measurements. As model system in-situ monitoring of the deposition process of Co metal from a 10 mM CoCl2 aqueous solution by X-ray absorption and emission spectroscopy is presented.

  10. Analytical description of partially coherent propagation and absorption losses in x-ray planar waveguides.

    PubMed

    Tsanaktsidis, K J; Paganin, D M; Pelliccia, D

    2013-06-01

    We present an analytical approach to describe field propagation along a planar x-ray waveguide (WG) in the presence of absorption losses. The method utilizes the complete expression for the complex index of refraction in solving the Helmholtz equation describing the guided modes. In this way, the propagation modes for the WG are no longer imposed to be standing waves and the energy flow from the core to the cladding, a consequence of the absorption in the cladding, can be calculated. In addition, the method accurately describes the field coupling between a plane wave and the WG, reproducing the self-imaging phenomenon. The case of partially coherent illumination has also been calculated for a realistic laboratory x-ray source.

  11. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    NASA Astrophysics Data System (ADS)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  12. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    SciTech Connect

    Hudson, E.A.; Allen, P.G.; Terminello, L.J.; Denecke, M.A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO{sub 2}{sup 2+}) in uranium {ital L}{sub 3}-edge extended x-ray-absorption fine structure (EXAFS), and {ital L}{sub 1}- and {ital L}{sub 3}-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO{sub 2}(CH{sub 3}CO{sub 2}){sub 2}{center_dot}2H{sub 2}O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the {ital ab} {ital initio} multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO{sub 2}F{sub 2}) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the {ital L}{sub 1}-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured {ital L}{sub 3}-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the {ital L}{sub 1}-edge XANES calculations, in which overlapping was required for the best agreement with experiment. {copyright} {ital 1996 The American Physical Society.}

  13. Excited state molecular structure determination in disordered media using laser pump/x-ray probe time-domain x-ray absorption spectroscopy.

    SciTech Connect

    Chen, L. X.; Chemistry

    2003-01-01

    Advances in X-ray technologies provide opportunities for solving structures of photoexcited state molecules with short lifetimes. Using X-ray pulses from a modern synchrotron source, the structure of a metal-to-ligand-charge-transfer (MLCT) excited state of CuI(dmp)2+ (dmp 1/4 2,9-dimethyl-1,10-phenanthroline) was investigated by laser pump/X-ray probe X-ray absorption fine structure (LPXP-XAFS) in fluid solution at room temperature on a nanosecond time scale. The experimental requirements for such pump-probe XAFS are described in terms of technical challenges: (1) conversion of optimal excited state population, (2) synchronization of the pump laser pulse and probe Xray pulse, and (3) timing of the detection. Using a laser pump pulse for the photoexcitation, a photoluminescent MLCT excited state of CuI(dmp)2(BArF), (dmp 1/4 2,9-dimethyl-1,10-phenanthroline), BArF 1/4 tetrakis(3,5-bis(trifluoromethylphenyl)borate) with a lifetime of 98{+-}5 ns was created. Probing the structure of this state at its optimal concentration using an X-ray pulse cluster with a total duration of 14.2 ns revealed that (1) a Cu{sup II} center was generated via a whole charge transfer; (2) the copper in the MLCT state bound an additional ligand to form a penta-coordinate complex with a likely trigonal bipyramidal geometry; and (3) the average Cu-N bond length increases in the MLCT excited state by 0.07 . In contrast to previously reported literature, the photoluminescence of this pentacoordinate MLCT state was not quenched upon ligation with the fifth ligand. On the basis of experimental results, we propose that the absorptive and emissive states have distinct geometries. The results represent X-ray characterization of a molecular excited state in fluid solution on a nanosecond time scale.

  14. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-01-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  15. X-ray absorption spectroscopy beyond the core-hole lifetime

    SciTech Connect

    Haemaelaeinen, K.; Hastings, J.B.; Siddons, D.P.; Berman, L.

    1992-10-01

    A new technique to overcome the core-hole lifetime broadening in x-ray absorption spectroscopy is presented. It utilizes a high resolution fluorescence spectrometer which can be used to analyze the fluorescence photon energy with better resolution than the natural lifetime width. Furthermore, the high resolution spectrometer can also be used to select the final state in the fluorescence process which can offer spin selectivity even without long range magnetic order in the sample.

  16. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    SciTech Connect

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  17. X-ray absorption study of ceria nanorods promoting the disproportionation of hydrogen peroxide.

    PubMed

    Wu, Tai-Sing; Zhou, Yunyun; Sabirianov, Renat F; Mei, Wai-Ning; Soo, Yun-Liang; Cheung, Chin Li

    2016-04-11

    A quasi in situ X-ray absorption study demonstrated that the disproportionation of hydrogen peroxide (H2O2) promoted by ceria nanorods was associated with a reversible Ce(3+)/Ce(4+) reaction and structural transformations in ceria. The direction of this reversible reaction was postulated to depend on the H2O2 concentration and the fraction of Ce(3+) species in ceria nanorods.

  18. Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study

    SciTech Connect

    Fischer, D.; Caseri, W.R.; Haehner, G.

    1998-02-15

    Dye molecules are frequently used to determine the specific surface area and the ion exchange capacity of high-surface-area materials such as mica. The organic molecules are often considered to be planar and to adsorb in a flat orientation. In the present study the authors have investigated the orientation and electronic structure of crystal violet (CV) and malachite green (MG) on muscovite mica, prepared by immersing the substrates for extended periods into aqueous solutions of the dyes of various concentrations. The K{sup +} ions of the mica surface are replaced by the organic cations via ion exchange. X-ray photoelectron spectroscopy reveals that only one amino group is involved in the interaction of CV and MG with the muscovite surface, i.e., certain resonance structures are abolished upon adsorption. With near edge X-ray absorption fine structure spectroscopy a significant tilt angle with respect to the surface was found for all investigated species. A flat orientation, as has often been proposed before, can effectively be ruled out. Hence, results are in marked contrast to the often quoted orientation and suggest that the specific surface areas determined with dyes may, in general, be overestimated.

  19. Synchrotron X-ray Powder Diffraction and Absorption Spectroscopy in Pulsed Magnetic Fields with Milliseconds Duration

    NASA Astrophysics Data System (ADS)

    Vanacken, J.; Detlefs, C.; Mathon, O.; Frings, P.; Duc, F.; Lorenzo, J. E.; Nardone, M.; Billette, J.; Zitouni, A.; Dominguez, M.-C.; Herczeg, J.; Bras, W.; Moshchalkov, V. V.; Rikken, G.

    2007-03-01

    X-ray Powder Diffraction and X-ray Absorption Spectroscopy experiments (WAS) and X-ray magnetic circular dichroism (XMCD) experiments were carried out at the ESRF DUBBLE beam line (BM26) and at the energy dispersive beam line (ID24), respectively. A mobile pulse generator, developed at the LNCMP, delivered 110kJ to the load coil, which was sufficient to generate peak fields of 30T with a rise time of about 5 ms. A liquid He flow cryostat allowed us to vary the sample temperature accurately between 4.2K and 300K. Powder diffraction patterns of TbVO4 were recorded in a broad temperature range using 21 keV monochromatic X-rays and using an on-line image plate detector. We observed the suppression of the Jahn-Teller structural distortion in TbVO4 due to the high magnetic pulsed field. XAS spectra could be measured and finite XMCD signals, directly proportional to the magnetic moment on the Gd absorber atom, were measured in thin Gd foils. Thanks to its element and orbital selectivity, XMCD proofs to be very useful in probing the magnetic properties and due to the strong brilliance of the synchrotron beam, the signals can be measured even in the ms range.

  20. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    PubMed Central

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-01-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements. PMID:28186190

  1. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study.

    PubMed

    Chuang, Cheng-Hao; Ray, Sekhar C; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-10

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp(2)-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  2. On the relation between X-ray absorption and optical extinction in AGN

    NASA Astrophysics Data System (ADS)

    Ordovás-Pascual, I.; Mateos, S.; Carrera, F. J.; Wiersema, K.; Caccianiga, A.; Della Ceca, R.; Severgnini, P.; Moretti, A.; Ballo, L.

    2017-03-01

    According to the Unified Model of Active Galactic Nuclei (AGN), an X-ray unabsorbed AGN should appear as unobscured in the optical band (the so called type-1 AGN). However, there is an important fraction (10–30%) of AGN whose optical and X-ray classifications do not match. To provide insight into the origin of such apparent discrepancies, we have conducted two types of analysis: 1) a detailed study of the UV-to-near-IR emission of two X-ray low absorbed AGN with high optical extinction drawn from the Bright Ultra-Hard XMM-Newton Survey (BUXS); 2) a statistical analysis of the optical obscuration and X-ray absorption properties of 159 type-1 AGN drawn from BUXS to determine the distribution of dust-to-gas ratios in AGN over a broad range of luminosities and redshifts. We have determined the impact of contamination from the AGN hosts in their optical classification (detection or lack of detection of rest-frame UV-optical broad emission lines). This is an on-going project, but our preliminary results, reported below, are very promising.

  3. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  4. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  5. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  6. Dimerization of single selenium chains confined in nanochannels of cancrinite: An x-ray absorption study

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Oyanagi, H.; Poborchii, V. V.; Tanaka, K.

    1999-04-01

    Local structure of selenium confined in nanochannels of cancrinite (Can-Se) single crystal and powder samples have been studied by polarized x-ray absorption. The spectra for a single crystal are strongly anisotropic implying linear arrangement of Se species. Polarization dependence of extended x-ray absorption fine structure (EXAFS) data provides direct evidence that dimers with the bond length of 2.40+/-0.01 Å are formed. Polarized x-ray absorption near-edge structure (XANES) spectra demonstrate that they are aligned along the channel of cancrinite. Deconvolution of XANES spectra into Lorentzians (localized states) and the remaining steplike function (continuous states) shows that two localized state peaks are present. While the one polarized parallel to the cancrinite axis is strongly polarized, the other one is essentially isotropic. Comparison of XANES peak positions for Can-Se with that for bulk selenium provides evidence for negative charge on dimers. Despite strong temperature dependence of Raman-scattering spectra found earlier, EXAFS data do not exhibit any noticeable temperature dependence. Possible mechanisms for dimer stabilization are discussed.

  7. X-ray absorption spectroscopic investigation of the electronic structure differences in solution and crystalline oxyhemoglobin

    PubMed Central

    Wilson, Samuel A.; Green, Evan; Mathews, Irimpan I.; Benfatto, Maurizio; Hodgson, Keith O.; Hedman, Britt; Sarangi, Ritimukta

    2013-01-01

    Hemoglobin (Hb) is the heme-containing O2 transport protein essential for life in all vertebrates. The resting high-spin (S = 2) ferrous form, deoxy-Hb, combines with triplet O2, forming diamagnetic (S = 0) oxy-Hb. Understanding this electronic structure is the key first step in understanding transition metal–O2 interaction. However, despite intense spectroscopic and theoretical studies, the electronic structure description of oxy-Hb remains elusive, with at least three different descriptions proposed by Pauling, Weiss, and McClure-Goddard, based on theory, spectroscopy, and crystallography. Here, a combination of X-ray absorption spectroscopy and extended X-ray absorption fine structure, supported by density functional theory calculations, help resolve this debate. X-ray absorption spectroscopy data on solution and crystalline oxy-Hb indicate both geometric and electronic structure differences suggesting that two of the previous descriptions are correct for the Fe–O2 center in oxy-Hb. These results support the multiconfigurational nature of the ground state developed by theoretical results. Additionally, it is shown here that small differences in hydrogen bonding and solvation effects can tune the ground state, tipping it into one of the two probable configurations. These data underscore the importance of solution spectroscopy and show that the electronic structure in the crystalline form may not always reflect the true ground-state description in solution. PMID:24062465

  8. Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy.

    PubMed

    Tian, Shulei; Yu, Meijuan; Wang, Wei; Wang, Qi; Wu, Ziyu

    2009-12-15

    Although some researchers have reported that chlorides may play an important part in the evaporation of copper during heat treatment of municipal solid waste incinerators (MSWI) fly ash (1, 2) , details on the copper speciation in volatile matters (secondary fly ash, SFA) are still lacking. In this work, we used in situ X-ray absorption spectroscopy (XAS) experiments involving three types of SFA, which was collected from a high-temperature tubular electric furnace by thermal treatment of municipal solid waste incinerator (MSWI) fly ash at 1000, 1150, and 1250 degrees C. The results obtained by a linear combination fit (LCF) of X-ray absorption near edge structure (XANES) spectra revealed that in MSWI fly ash copper mainly exists as CuO and CuSO(4).5H(2)O while chloride almost dominated all the content of the SFA conformation, which was more than 80%. Extended X-ray absorption fine structure (EXAFS) data analysis indicated the presence of both Cu-O and Cu-Cl bonds in the first coordination shell of Cu ions in all SFA, while only Cu-O bonds occur in the MSWI fly ash. Consequently, in the MSWI fly ash during heat treatment copper evaporated as chloride, and the latter plays an important role in the formation of copper chloride.

  9. The anomalous X-ray absorption spectrum of Vela X-1

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; White, N. E.

    1982-01-01

    The HEAO 2 satellite's Solid State Spectrometer and Monitor Proportional Counter was used to observe one orbit of the massive X-ray binary Vela X-1. Using spectral fits to the data as a function of orbital phase, the column density and state of the material along the line of sight to the X-ray source has been inferred. The spectrum near orbital phase 0.2 compares favorably with absorption by neutral material with a column density corresponding to plausible values of stellar wind velocity law and total primary mass loss rate. Spectra at later orbital phases, which show unexpected strong absorption features near 2.0 and 2.5 keV, are interpreted as due to absorption by material with suppressed opacity below 2.0 keV. The opacity required to produce the observed features implies either the presence of an intense soft X-ray flux, or altered elemental abundances in the gas near Vela X-1.

  10. Surface arsenic speciation of a drinking-water treatment residual using X-ray absorption spectroscopy.

    PubMed

    Makris, Konstantinos C; Sarkar, Dibyendu; Parsons, Jason G; Datta, Rupali; Gardea-Torresdey, Jorge L

    2007-07-15

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing >90% of the initial added As (15,000 mg kg(-1)) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg(-1)) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  11. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  12. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  13. ODS steel raw material local structure analysis using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cintins, A.; Anspoks, A.; Purans, J.; Kuzmin, A.; Timoshenko, J.; Vladimirov, P.; Gräning, T.; Hoffmann, J.

    2015-03-01

    Oxide dispersion strengthened (ODS) steels are promising materials for fusion power reactors, concentrated solar power plants, jet engines, chemical reactors as well as for hydrogen production from thermolysis of water. In this study we used X-ray absorption spectroscopy at the Fe and Cr K-edges as a tool to get insight into the local structure of ferritic and austenitic ODS steels around Fe and Cr atoms and its transformation during mechanical alloying process. Using the analysis of X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) we found that for austenitic samples a transformation of ferritic steel to austenitic steel is detectable after 10 hours of milling and proceeds till 40 hours of milling; only small amount of a-phase remains after 80 hours of milling. We found that the Cr K-edge EXAFS can be used to observe distortions inside the material and to get an impression on the formation of chromium clusters. In-situ EXAFS experiments offer a reliable method to investigate the ferritic to austenitic transformation.

  14. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    SciTech Connect

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  15. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    SciTech Connect

    Renaudin, P.; Blancard, C.; Cosse, P.; Faussurier, G.; Lecherbourg, L.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-02

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  16. X-Ray Absorption Spectroscopy Of Thin Foils Irradiated By An Ultra-short Laser Pulse

    NASA Astrophysics Data System (ADS)

    Renaudin, P.; Lecherbourg, L.; Blancard, C.; Cossé, P.; Faussurier, G.; Audebert, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Shepherd, R.

    2007-08-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum and the 2p-3d absorption lines of bromine were measured over an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. Assuming local thermodynamic equilibrium, spectral opacity calculations have been performed using the density and temperature inferred from the FDI diagnostic to compare to the measured absorption spectra. A good agreement is obtained when non-equilibrium effects due to non-stationary atomic physics are negligible at the x-ray probe time.

  17. X-Ray photoelectron study of the plasma fluorination of lignocellulose

    NASA Astrophysics Data System (ADS)

    Sapieha, S.; Verreault, M.; Klemberg-Sapieha, J. E.; Sacher, E.; Wertheimer, M. R.

    1990-04-01

    The plasma fluorination of cellulose has been shown to increase surface hydrophobicity. At CF 4/O 2 ratios in the plasma feed gas of 1.5 (60% CF 4) and above, the absorption time for water is greater than its evaporation time on the treated surface. This is shown to be due to the combination of fluorinated species present, with CF 2 being the major contributor.

  18. Direct Determination of Oxidation States of Uranium in Mixed-Valent Uranium Oxides Using Total Reflection X-ray Fluorescence X-ray Absorption Near-Edge Spectroscopy.

    PubMed

    Sanyal, Kaushik; Khooha, Ajay; Das, Gangadhar; Tiwari, M K; Misra, N L

    2017-01-03

    Total reflection X-ray fluorescence (TXRF)-based X-ray absorption near-edge spectroscopy has been used to determine the oxidation state of uranium in mixed-valent U3O8 and U3O7 uranium oxides. The TXRF spectra of the compounds were measured using variable X-ray energies in the vicinity of the U L3 edge in the TXRF excitation mode at the microfocus beamline of the Indus-2 synchrotron facility. The TXRF-based X-ray absorption near-edge spectroscopy (TXRF-XANES) spectra were deduced from the emission spectra measured using the energies below and above the U L3 edge in the XANES region. The data processing using TXRF-XANES spectra of U(IV), U(V), and U(VI) standard compounds revealed that U present in U3O8 is a mixture of U(V) and U(VI), whereas U in U3O7 is mixture of U(IV) and U(VI). The results obtained in this study are similar to that reported in literature using the U M edge. The present study has demonstrated the possibility of application of TXRF for the oxidation state determination and elemental speciation of radioactive substances in a nondestructive manner with very small amount of sample requirement.

  19. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies

    SciTech Connect

    Sutton, Kristin A.; Black, Paul J.; Mercer, Kermit R.; Garman, Elspeth F.; Owen, Robin L.; Snell, Edward H.; Bernhard, William A.

    2013-12-01

    Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage, to confirm a multi-track radiation-damage process and to develop a model of that process. Electron paramagnetic resonance (EPR) and online UV–visible absorption microspectrophotometry with X-ray crystallography have been used in a complementary manner to follow X-ray-induced disulfide-bond cleavage. Online UV–visible spectroscopy showed that upon X-irradiation, disulfide radicalization appeared to saturate at an absorbed dose of approximately 0.5–0.8 MGy, in contrast to the saturating dose of ∼0.2 MGy observed using EPR at much lower dose rates. The observations suggest that a multi-track model involving product formation owing to the interaction of two separate tracks is a valid model for radiation damage in protein crystals. The saturation levels are remarkably consistent given the widely different experimental parameters and the range of total absorbed doses studied. The results indicate that even at the lowest doses used for structural investigations disulfide bonds are already radicalized. Multi-track considerations offer the first step in a comprehensive model of radiation damage that could potentially lead to a combined computational and experimental approach to identifying when damage is likely to be present, to quantitate it and to provide the ability to recover the native unperturbed structure.

  20. X-ray absorption and diffraction study of II VI dilute oxide semiconductor alloy epilayers

    NASA Astrophysics Data System (ADS)

    Boscherini, F.; Malvestuto, M.; Ciatto, G.; D'Acapito, F.; Bisognin, G.; DeSalvador, D.; Berti, M.; Felici, M.; Polimeni, A.; Nabetani, Y.

    2007-11-01

    Dilute oxide semiconductor alloys obtained by adding oxygen to a II-VI binary compound are of potential applicative interest for blue-light emitters in which the oxygen content could be used to tune the band gap. Moreover, their properties can be usefully compared to the more thoroughly studied dilute nitrides in order to gain insight into the common mechanisms which give rise to their highly non-linear physical properties. Recently, it has been possible to deposit ZnSeO and ZnSeOS epilayers on GaAs(001), which exhibit a red-shift of the band gap and giant optical bowing. In order to provide a structural basis for an understanding of their physical properties, we have performed a study of a set of ZnSeO and ZnSeOS epilayers on GaAs by high resolution x-ray diffraction and x-ray absorption fine structure. We have found that the strain goes from compressive to tensile with increasing O and S concentration and that, while all epilayers are never found to be pseudomorphic, the ternary ones exhibit a low relaxed fraction if compared to the ZnSe/GaAs sample. O K-edge x-ray absorption near edge spectra and corresponding simulations within the full multiple-scattering regime show that O is substitutionally incorporated in the host lattice. Zn and Se K-edge extended x-ray absorption fine structure detect the formation of Zn-O and Zn-S bonds; the analysis of these spectra within multiple-scattering theory has allowed us to measure the local structural parameters. The value of Zn-Se bond length is found to be in agreement with estimates based on models of local distortions in strained and relaxed epilayers; an increase of the mean-square relative displacement is detected at high O and S concentration and is related to both intrinsic and extrinsic factors.

  1. X-Ray Modeling of the Intrinsic Absorption in NGC 4151

    NASA Astrophysics Data System (ADS)

    Denes Couto, Jullianna; Kraemer, Steven; Turner, T. Jane; Crenshaw, D. Michael

    2017-01-01

    We have investigated the relationship between the long term X-ray spectral variability in the Seyfert 1.5 galaxy NGC 4151 and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble STIS Echelle and Chandra HETGS with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. Our X-ray model consists of a broken powerlaw, neutral reflection and the two dominant absorption components identified by Kraemer et al (2005), X-High and D+Ea, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes in the intrinsic absorption resulting from variations in the ionization state of the gas in response to the variable strength of the ionizing continuum. However, the low states show evidence of larger column densities in one or both of the absorbers. Among plausible explanations for the column increase, we discuss the possibility of an expanding/contracting X-ray corona. X-High is consistent with being part of a magnetohydrodynamic (MHD) wind, while D+Ea is possibly radiatively driven, which suggests that at a sufficiently large radial distance there could be a break point between MHD-dominated and radiatively driven outflows. Preliminary results on the analysis of the AGN mass outflow rates and kinematics of the ionized gas in the extended emission region of NGC 4151 will also be presented.

  2. X-ray photoelectron spectroscopic studies of graphitic materials and interfacial interactions in carbon-fiber-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Viswanathan, Hema L.

    This dissertation involves the X-ray photoelectron spectroscopic (XPS) study of the chemistry associated with carbon fiber-reinforced composites fabricated using PAN-based carbon fibers and a thermoplastic polyimide resin. The mechanical properties of the ultimate composite are significantly affected by the nature of the fiber/matrix interface. Interfacial interaction can be promoted by the electrochemical modification of the fiber surface. The determination of carbon fiber microstructure was conducted through angle-resolved valence band photoemission studies of highly ordered graphite. The change in orientation of the basal planes and reactive edge sites with take-off angle provided a method for the determination of surface microstructure. The electronic structure of solid-state graphite was described using a band structure model and the results obtained were compared with the multiple scattered wave X a calculations. PAN-based fibers were electrochemically oxidized and studied using monochromatic X-radiation. The extremely narrow natural linewidth of the monochromatized Al K a radiation allowed previously unresolved features to be seen. In addition, sample decomposition due to radiative heat from the X-ray source is eliminated. Fibers that were pretreated by the manufacturer were subjected to further electrochemical oxidation. The fibers behaved in an erratic and non-reproducible manner. The surface treatment was removed by heating the fibers in vacuum, followed by XPS analysis and electrochemical oxidation. The fiber/matrix interface was simulated by coating a very thin layer of the polyimide resin on the surface of the fiber followed by XPS analysis. The validity of a proposed structure for the resin was confirmed by comparison with ab initio calculations conducted on the resin repeat unit. A high level of fiber/matrix interaction was observed for electrochemically oxidized fibers. The possibility of solvent interaction with the fiber surface was eliminated by

  3. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    K. C., Sanal; Nair, P. K.; Nair, M. T. S.

    2017-02-01

    Zinc oxy-sulfide, ZnOxS1-x, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnOxS1-x/SnS-CUB interface, in which the ZnOxS1-x thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (Eg) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO0.27S0.73 and -0.28 eV for SnS-CUB/ZnO0.88S0.12 interfaces. Thin films of ZnOxS1-x with 175-240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO0.27S0.73 with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO0.88S0.12. The optical band gap of the ZnOxS1-x thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  4. X-ray Photoelectron Spectroscopy Study of Indium Tin Oxide Films Deposited at Various Oxygen Partial Pressures

    NASA Astrophysics Data System (ADS)

    Peng, Shou; Cao, Xin; Pan, Jingong; Wang, Xinwei; Tan, Xuehai; Delahoy, Alan E.; Chin, Ken K.

    2017-02-01

    Here, a systematic experimental study on indium tin oxide (ITO) films is presented to investigate the effects of oxygen partial pressure on the film's electrical properties. The results of Hall measurements show that adding more oxygen in the sputtering gas has negative influences on the electrical conductivity of ITO films. As O2/(O2 + Ar)% in the sputtering gas is increased from 0 to 6.98%, the resistivity of ITO film rises almost exponentially from 7.9 × 10-4 to 4.1 × 10-2 Ω cm, with the carrier density decreasing from 4.8 × 1020 to 5.4 × 1018 cm-3. The origins of these negative effects are discussed with focuses on the concentration of ionized impurities and the scattering of grain barriers. Extensive x-ray photoelectron spectroscopy (XPS) analyses were employed to gain insight into the concentration of ionized impurities, demonstrating a strong correlation between the oxygen vacancy concentration and the carrier density in ITO films as a function of sputtering O2 partial pressure. Other microstructural characterization techniques including x-ray diffraction (XRD), high-magnification scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) analyses were used to evaluate the average grain size of ITO films. For ITO films that have carrier density above 1019 cm-3, scattering on grain boundaries and other crystallographic defects show negligible effects on the carrier transport. The results point to the oxygen vacancy concentration that dictates the carrier density and, thus, the resistivity of magnetron-sputtered ITO films.

  5. Scanning electron and atomic force microscopy, and raman and x-ray photoelectron spectroscopy characterization of near-isogenic soft and hard wheat kernels and corresponding flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) are used to investigate vitreous (hard) and non-vitreous (soft) wheat kernels and their corresponding wheat flours. AFM data reveal two different microstructures. The vitreous kernel reveals a granular text...

  6. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  7. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  8. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  9. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  10. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  11. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravel, B.; Attenkofer, K.; Bohon, J.; Muller, E.; Smedley, J.

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  12. Effects of spatially heterogeneous porosity on matrix diffusion as investigated by X-ray absorption imaging

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Meigs, Lucy C.; Christian-Frear, Tracy; Boney, Craig M.

    2000-03-01

    High-resolution X-ray absorption imaging was used to investigate the effects of spatially heterogeneous porosity on matrix diffusion. Experiments were performed on four, centimeter-scale slabs of Culebra dolomite taken from the Waste Isolation Pilot Plant (WIPP) site. These tests involved the diffusion of potassium iodide into a single edge of each brine-saturated rock slab, while X-ray absorption imaging was used to measure the two-dimensional relative concentration distribution at different times during the experiment. X-ray imaging was also used to measure the heterogeneous, two-dimensional porosity distribution of each rock slab. The resulting high-resolution data provide unique insight into the spatially varying diffusion characteristics of each heterogeneous rock sample, which traditional methods such as through-diffusion experiments cannot. In these tests, significant variations in the diffusion coefficient were calculated over the relatively small length (centimeter) and time scales (months) investigated. Results also indicated that these variations were related to the heterogeneous porosity characteristics of each rock sample. Not only were the diffusion coefficients found to depend on the magnitude of the porosity but also on its spatial distribution. Specifically, the geometry, position, and orientation of the heterogeneous porosity features populating each rock slab appeared to influence the diffusion characteristics.

  13. Simulations of X-ray absorption spectra: the effect of the solvent.

    PubMed

    Penfold, Thomas J; Curchod, Basile F E; Tavernelli, Ivano; Abela, Rafael; Rothlisberger, Ursula; Chergui, Majed

    2012-07-14

    We perform quantum mechanics/molecular mechanics molecular dynamics simulations on the [Pt(2)(P(2)O(5)H(2))(4)](4-) (abbreviated PtPOP) complex; in water, dimethylformamide and ethanol. These are used to calculate the ground state X-ray absorption spectrum of the complex. The structural parameters from X-ray spectra are usually extracted using a fit of the experimental data. In such simulations the solvent is neglected meaning that any effect of the local environment will be compensated for by structural changes of the solute, leading to possible discrepancies in the extracted structural parameters. Our simulations show a significant solvent effect on the spectra, which has important implications for the structural analysis of molecules in solution.

  14. Detection, identification and mapping of iron anomalies in brain tissue using X-ray absorption spectroscopy

    SciTech Connect

    Mikhaylova, A.; Davidson, M.; Toastmann, H.; Channell, J.E.T.; Guyodo, Y.; Batich, C.; Dobson, J.

    2008-06-16

    This work describes a novel method for the detection, identification and mapping of anomalous iron compounds in mammalian brain tissue using X-ray absorption spectroscopy. We have located and identified individual iron anomalies in an avian tissue model associated with ferritin, biogenic magnetite and haemoglobin with a pixel resolution of less than 5 {micro}m. This technique represents a breakthrough in the study of both intra- and extra-cellular iron compounds in brain tissue. The potential for high-resolution iron mapping using microfocused X-ray beams has direct application to investigations of the location and structural form of iron compounds associated with human neurodegenerative disorders - a problem which has vexed researchers for 50 years.

  15. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    PubMed Central

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  16. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopya)

    PubMed Central

    Levantino, M.; Lemke, H. T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M.

    2015-01-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs) relaxation preceding a slower (∼400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix. PMID:26798812

  17. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    SciTech Connect

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-12-15

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn{sub 1-x}Co{sub x}O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected.

  18. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  19. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  20. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  1. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H.; Holroyd, R.A.; Yang, B.X.

    1992-12-31

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH{sub 3}){sub 4},Si [(CH{sub 3}){sub 3}Si]{sub 4}Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl{sub 4} at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl{sub 4} is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  2. Photoconductivity measurements of x-ray absorption fine structures in liquids in the soft x-ray region: Si and Cl K-edge

    SciTech Connect

    Sham, T.K.; Xiong, J.Z.; Feng, X.H. . Dept. of Chemistry); Holroyd, R.A. ); Yang, B.X. )

    1992-01-01

    Photoconductivity measurements of X-ray absorption fine structures (XAFS) at the Si and Cl K-edge have been carried out in a liquid cell for (CH[sub 3])[sub 4],Si [(CH[sub 3])[sub 3]Si][sub 4]Si and eitheras a pure liquid or 2,2,4-trimethylpentane solution. It is found that for the pure liquids and their concentrated hydrocarbon solutions, all K-edge XAFS spectra are inverted as expected under the condition of total absorption. A sharp conductivity dip is also observed in CCl[sub 4] at the Cl K-edge. The concentration dependence of the XAFS spectrum of CCl[sub 4] is reported. These results are discussed in terms of soft X-ray induced ion yields of the solute and solvent molecules in liquids.

  3. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  4. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    SciTech Connect

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Ramos, A. Asensio; Almeida, C. Ramos; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  5. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  6. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  7. X-ray diffraction and absorption spectroscopic studies of copper mixed ligand complexes with aminophenol as one of the ligands

    NASA Astrophysics Data System (ADS)

    Mishra, A.; Jain, Garima; Patil, H.

    2012-05-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopic (XAS) studies have been conducted on two copper complexes, i.e., copper macrocyclic complex of succinic acid and ortho aminophenol (complex-1) and copper macrocyclic complex of pthalic acid and ortho aminophenol (complex-2). The diffraction pattern of the complexes have been recorded using Rigaku RINT-2000 X-ray diffractometer equipped with rotating anode X-ray tube operated at 40 kV and 100 mA. The X-ray absorption spectra of the complexes have been recorded at the K-edge of copper on Cauchois type bent crystal spectrograph having radius 0.4 m employing a mica crystal, oriented to reflect from (100) planes, for dispersion. The X-ray absorption near edge structure (XANES) parameters, viz., chemical shift, energy position of the principal absorption maximum and edge-width have been determined and discussed. From the extended X-ray absorption fine structure (EXAFS) data, the bond lengths have been calculated using three methods, namely, Levy's method, Lytle, Sayers and Stern's (LSS) method and Fourier transformation method. The results obtained have been compared with each other and discussed.

  8. X-ray absorption of cadmium in the L-edge region

    SciTech Connect

    Padeznik Gomilsek, J.; Kodre, A.; Arcon, I.; Bratina, G.

    2011-11-15

    Atomic x-ray absorption of cadmium in the energy region of L edges was measured on the vapor of the element, in parallel with the absorption of Cd metal foil. Ionization thresholds of the three subshells are determined from the edge profiles, through the energies of pre-edge resonances and indium optical levels in the Z + 1 approximation. A purely experimental result, without extraneous data and with an accuracy of 0.2 eV, is the energy difference between the pre-edge resonance and the threshold energy of the metallic state. Some multielectron-excitation resonances are identified within 30 eV above the edges. The metal foil absorption is used for absolute determination of Cd absorption coefficient.

  9. X-ray absorption toward the red quasar 3C 212

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Mathur, Smita; Wilkes, Belinda J.

    1994-01-01

    A Roentgen Satellite (ROSAT) X-ray spectrum of the z = 1.049 'red quasar' 3C 212 has a strong low-energy cutoff. The spectrum can be fitted with a power law (of energy index 1.4(+0.8, -0.6) with low-energy photoelectric absorption in excess of the Galactic value that, if at the redhsift of the quasar, would have a column density of (0.9(+0.8, -0.6)) x 10(exp 22) atoms/sq cm. Possible sites for the absorption are a nuclear torus, an intervening damped Lyman-alpha system, or intracluster material (e.g., a cooling flow) around the quasar. The implied absorbing column density is sufficient to redden a normal quasar spectrum to the observed steep optical slope. The observed continuum, if dereddened by this amount, can produce the observed emission line fluxes and ratios. The absence of the graphite lambda-2175 feature in 3C 212 however, requires dust different from the local Milky Way composition, or an intervening absorber with z less than 0.4. Alternative acceptable fits to the X-ray spectrum are (1) a blackbody with a temperature of 0.7 keV (in the quasar frame) modified only by Galactic absorption, and (2) an optically thin thermal plasma with excess absorption. Although a blackbody spectrum would be unprecedented, the model is consistent with all the available X-ray and optical data and cannot be ruled out. We discuss possible observations that can discriminate among the above models.

  10. X-ray photoelectron spectroscopy study of SnO2 and SnO2+x thin films.

    PubMed

    Jeong, Jin; Lee, Bong Ju

    2013-01-01

    SnO2 thin films were fabricated using low-pressure thermal chemical vapor deposition. The results of X-ray photoelectron spectroscopy revealed that the SiO2 layer with an O1S-binding energy of 531.2 eV was formed before the SnO2 layer with an O1S-binding energy of 530.5 eV was formed. In the beginning, the SnO2 thin film showed Sn3d5-binding energy peaks of 485 eV and 486.5 eV. Subsequently, it grew in the direction of 486.5 eV. The Sn3d5-binding strength of the SnO2+x thin film that was annealed in oxygen atmosphere was weaker than that of the SnO2 thin film. Additionally, the Sn3d5-binding strength decreased linearly as the depth of the thin film increased. The surface O1S-binding strength of the SnO2+x thin film annealed in oxygen atmosphere was stronger than that of the SnO2 thin film; however, this strength became weaker than that that of the SnO2 thin film when the depth of the thin film was 2500A or higher.

  11. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    PubMed Central

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-01-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation. PMID:28240300

  12. X-ray photoelectron spectroscopic depth profilometry of nitrogen implanted in materials for modification of their surface properties

    SciTech Connect

    Sarkissian, A.H.; Paynter, R.; Stansfield, B.L.; Leblanc, J.B.; Paradis, E.

    1996-12-31

    The modification of the surface properties of materials has a wide range of industrial applications. For example, the authors change the electrical characteristics of semiconductors, improve surface hardness, decrease friction, increase resistance to corrosion, improve adhesion, etc. Nitriding is one of the most common processes used in industry for surface treatment. Nitrogen ion implantation is one technique often used to achieve this goal. Ion implantation offers the power to control the deposition profile, and can be achieved by either conventional ion beam implantation or plasma assisted ion implantation. They have used the technique of plasma assisted ion implantation to implant nitrogen in several materials, including titanium, silicon and stainless steel. The plasma source is a surface ECR source developed at INRS-Energie et Materiaux. The depth profile of the implanted ions has been measured by X-ray photoelectron spectroscopy. They have also conducted simulations using the TRIM-95 code to predict the depth profile of the implanted ions. Comparisons of the measured results with those from simulations are used to deduce information regarding the plasma composition and the collisional effects in the plasma. A fast responding, current and voltage measuring circuit with fiber optic links is being developed, which allows more accurate quantitative measurements. Further experiments to study the characteristics of the plasma, and their effects on the characteristics of the implanted surfaces are in progress, and the results are presented at this meeting.

  13. Analysis of the surface of tricalcium silicate during the induction period by X-ray photoelectron spectroscopy

    SciTech Connect

    Bellmann, F.; Sowoidnich, T.; Ludwig, H.-M.; Damidot, D.

    2012-09-15

    X-ray photoelectron spectroscopy allows the analysis of surface layers with a thickness of a few nanometers. The method is sensitive to the chemical environment of the atoms since the binding energy of the electrons depends on the chemical bonds to neighboring atoms. It has been applied to the hydration of tricalcium silicate (Ca{sub 3}SiO{sub 5}, C{sub 3}S) by analyzing a sample after 30 min of hydration. Also two references have been investigated namely anhydrous C{sub 3}S and intermediate phase in order to enable a quantitative evaluation of the experimental data. In the hydrated C{sub 3}S sample, the analyzed volume (0.2 mm{sup 2} surface by 13 nm depth) contained approximately 44 wt.% of C{sub 3}S and 56 wt.% of intermediate phase whereas C-S-H was not detected. Scanning Electron Microscopy data and geometric considerations indicate that the intermediate phase forms a thin layer having a thickness of approximately 2 nm and covers the complete surface instead of forming isolated clusters.

  14. X-ray photoelectron spectroscopy analysis of boron defects in silicon crystal: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji

    2016-05-01

    We carried out a comprehensive study on the B 1s core-level X-ray photoelectron spectroscopy (XPS) binding energies and formation energies for boron defects in crystalline silicon by first-principles calculation with careful evaluation of the local potential boundary condition for the model system using the supercell corresponding to 1000 Si atoms. It is reconfirmed that the cubo-octahedral B12 cluster in silicon crystal is unstable and exists at the saddle point decaying to the icosahedral and S4 B12 clusters. The electrically active clusters without any postannealing of ion-implanted Si are identified as icosahedral B12 clusters. The experimentally proposed threefold coordinated B is also identified as a ⟨ 001 ⟩ B - Si defect. For an as-doped sample prepared by plasma doping, the calculated XPS spectra for complexes consisting of vacancies and substitutional B atoms are consistent with the experimental spectra. It is proposed that, assuming that the XPS peak at 187.1 eV is due to substitutional B (Bs), the experimental XPS peaks at 187.9 and 186.7 eV correspond to interstitial B at the H-site and ⟨ 001 ⟩ B - Si defects, respectively. In the annealed samples, the complex of Bs and interstitial Si near the T-site is proposed as a candidate for the experimental XPS peak at 188.3 eV.

  15. General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy.

    PubMed

    Gillet, Jean-Numa; Meunier, Michel

    2005-05-12

    Nanocharacterization is essential for nanoengineering of new types of core-shell (c-s) nanoparticles, which can be used to design new devices for photonics, electronics, catalysis, medicine, etc. X-ray photoelectron spectroscopy (XPS) has been widely used to study the elemental composition of the c-s nanoparticles. However, the physical and chemical properties of a c-s nanoparticle dramatically depend on the sizes of its core and shell. We therefore propose a general equation for the XPS intensity of a c-s nanoparticle, which is based on an analytical model. With this equation, XPS can now also be used for nanocharacterization of the core and shell sizes of the c-s nanoparticles (with a diameter smaller than or equal to the XPS probing depth of approximately 10 nm). To validate the new equation with experimental XPS data, we first determine the average shell thickness of a group of c-s nanoparticles by comparing the XPS intensity of reference bare cores to that of the c-s nanoparticles. Then we study the growth kinetics of the cores and shells of another group of c-s nanoparticles where the shells are obtained by oxidation.

  16. Investigation of the glidant properties of compacted colloidal silicon dioxide by angle of repose and X-ray photoelectron spectroscopy.

    PubMed

    Jonat, Stéphane; Albers, Peter; Gray, Ann; Schmidt, Peter C

    2006-07-01

    The optimal flow-enhancing effect of a new compacted, hydrophilic colloidal silicon dioxide (AEROSIL 200 VV Pharma) on microcrystalline cellulose (Avicel PH 101) and pregelatinized starch (Starch 1500) was found to be 0.25% under gentle and 0.125% under strong mixing conditions, as measured by the angle of repose. The effect could be explained by X-ray photoelectron spectroscopy (XPS) investigations. The Si 2p signals of the silicon dioxide indicated that the coverage of the excipient surface with AEROSIL was greater for all mixtures produced under strong mixing conditions and corresponded to a higher degree of de-agglomeration of the AEROSIL aggregates. The more extensive surface coverage of Avicel PH 101 as compared to Starch 1500 could be explained by the particle morphology on the one hand and by the XPS C 1s signals on the other. Due to the different conformation of the two excipients, Avicel PH 101 offers a higher density of hydroxyl groups on its surface which are available for hydrogen bonding with the surface hydroxyl groups of hydrophilic colloidal silicon dioxide.

  17. Real-time studies of the atomic layer deposition of metal oxides using Ambient pressure x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schnadt, Joachim; Head, Ashley R.; Chaudhary, Shilpi; Yngman, Sofie; Johansson, Niclas; Snezhkova, Olesia; Knudsen, Jan; Andersen, Jesper N.; Bluhm, Hendrik; Mikkelsen, Anders; Timm, Rainer

    2014-03-01

    Performing atomic layer deposition (ALD) of metal oxides at pressures around 0.01 mbar slows the half reactions of the process to allow in situ real-time probing of changes in the surface electronic structure using Ambient pressure x-ray photoelectron spectroscopy (APXPS). By monitoring the ALD process as it occurs, new details on the mechanisms of interface formation and thin film growth can be obtained. The deposition of HfO2 on InAs and the deposition of TiO2 on rutile titania from transition metal complexes and water were studied with APXPS. Predictable, cyclic chemical shifts of ligand and substrate ionizations are seen in the growth of the films, but the kinetics of the film growth differs for the two systems. Upon exposure to the titania surface, the titanium precursor reacts straightaway and gradually proceeds to completion. In contrast, the hafnium precursor does not interact with the surface immediately. Once an activation barrier is surpassed, the reaction occurs instantaneously. By understanding the reactivity of different precursors, the ALD process can be more easily optimized in applications that require thin films of metal oxides such as metal-oxide-semiconductor devices and catalytic surfaces. Support by the Swedish Research Council (grant no. 2010-5080) is gratefully acknowledged.

  18. Correlations for predicting the surface wettability for organic light-emitting-diode patterns by x-ray photoelectron spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yang, L.; Svarnas, P.; Shard, A. G.; Bradley, J. W.; Seah, M. P.

    2010-12-01

    X-ray photoelectron spectroscopy (XPS) and contact angle measurements have been made to characterize patterned organic light-emitting-diode (OLED) substrates comprising indium-tin-oxide and a photoresist, both of which are modified by treatment with oxygen and tetrafluoromethane in a radiofrequency (13.56 MHz) low-power (˜1 W) capacitively coupled plasma as a function of time. Correlations between the surface chemical compositions from XPS and the contact angle, θ, are evaluated in order that the wettability of very small areas may be predicted. Very clear correlations for both the indium-tin-oxide and the photoresist surfaces are obtained enabling the prediction of the contact angles for these plasma-treated OLED materials from XPS data to a standard uncertainty of 9% in cos θ. These correlations need to be extended to a wider range of compositions in order to establish the physicochemical properties of particular surface functional groups that control water contact angles by this method.

  19. Surface Termination Conversion during SrTiO3 Thin Film Growth Revealed by X-ray Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Baeumer, Christoph; Xu, Chencheng; Gunkel, Felix; Raab, Nicolas; Heinen, Ronja Anika; Koehl, Annemarie; Dittmann, Regina

    2015-07-01

    Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle dependent X-ray photoelectron intensity ratios provides a unique tool to determine both termination and stoichiometry simultaneously in a straightforward experiment. Fitting the experimental angle dependence with a simple analytical model directly yields both values. The model is calibrated through the determination of the termination of SrTiO3 single crystals after systematic pulsed laser deposition of sub-monolayer thin films of SrO. We then use the model to demonstrate that during homoepitaxial SrTiO3 growth, excess Sr cations are consumed in a self-organized surface termination conversion before cation defects are incorporated into the film. We show that this termination conversion results in insulating properties of interfaces between polar perovskites and SrTiO3 thin films. These insights about oxide thin film growth can be utilized for interface engineering of oxide heterostructures. In particular, they suggest a recipe for obtaining two-dimensional electron gases at thin film interfaces: SrTiO3 should be deposited slightly Ti-rich to conserve the TiO2-termination.

  20. Surface properties of hydrous manganite (gamma-MnOOH). A potentiometric, electroacoustic, and X-ray photoelectron spectroscopy study.

    PubMed

    Ramstedt, Madeleine; Andersson, Britt M; Shchukarev, Andrei; Sjöberg, Staffan

    2004-09-14

    The acid-base characteristics of the manganite (gamma-MnOOH) surface have been studied at pH above 6, where dissolution is negligible. Synthetic microcrystalline particles of manganite were used in the experiments. From potentiometric titrations, electrophoretic mobility measurements, and X-ray photoelectron spectroscopy (XPS), a one pK(a) model was constructed that describes the observed behavior. The data show no ionic strength effect at pH < 8.2, which is the pH at the isoelectric point (pH(iep)), but ionic strength effects were visible above this pH. To explain these observations, Na(+) ions were suggested to form a surface complex. The following equilibria were established: =MnOH(2)(+1/2) right harpoon over left harpoon =MnOH(-)(1/2) + H(+), log beta(0) (intr.) = -8.20; =MnOH(2)(+1/2) + Na(+) right harpoon over left harpoon =MnOHNa(+1/2) + H(+), log beta(0) (intr.) = -9.64. The excess of Na(+) at the surface was supported by XPS measurements of manganite suspensions containing 10 mM NaCl. The dielectric constant of synthetic manganite powder was also determined in this study.

  1. Quantitative determination of the oxidation state of iron in biotite using x-ray photoelectron spectroscopy: II. In situ analyses

    SciTech Connect

    Raeburn, S.P. |; Ilton, E.S.; Veblen, D.R.

    1997-11-01

    X-ray photoelectron spectroscopy (XPS) was used to determine Fe(III)/{Sigma}Fe in individual biotite crystals in thin sections of ten metapelites and one syenite. The in situ XPS analyses of Fe(III)/{Sigma}Fe in biotite crystals in the metapelites were compared with published Fe(III)/{Sigma}Fe values determined by Moessbauer spectroscopy (MS) for mineral separates from the same hand samples. The difference between Fe(III)/{Sigma}Fe by the two techniques was greatest for samples with the lowest Fe(III)/{Sigma}Fe (by MS). For eight metamorphic biotites with Fe(III)/{Sigma}Fe = 9-27% comparison of the two techniques yielded a linear correlation of r = 0.94 and a statistically acceptable fit of [Fe(III)/{Sigma}Fe]{sub xps} = [Fe(III)/{Sigma}Fe]{sub ms}. The difference between Fe(III)/{Sigma}Fe by the two techniques was greater for two samples with Fe(III)/{Sigma}Fe {le} 6% (by MS). For biotite in the syenite sample, Fe(III)/{Sigma}Fe determined by both in situ XPS and bulk wet chemistry/electron probe microanalysis were similar. This contribution demonstrates that XPS can be used to analyze bulk Fe(III)/{Sigma}Fe in minerals in thin sections when appropriate precautions taken to avoid oxidation of the near-surface during preparation of samples. 25 refs., 3 figs., 4 tabs.

  2. An XPS study of the stability of Fomblin Z25 on the native oxide of aluminum. [x ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Herrera-Fierro, Pilar; Pepper, Stephen V.; Jones, William R.

    1991-01-01

    Thin films of Fomblin Z25, a perfluoropolyalkylether lubricant, were vapor deposited onto clean, oxidized aluminum and sapphire surfaces, and their behavior at different temperatures was studied using x ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). It was found that the interfacial fluid molecules decompose on the native oxide at room temperature, and continue to decompose at elevated temperatures, as previous studies had shown to occur on clean metal. TDS indicated that different degradation mechanisms were operative for clean and oxidized aluminum. On sapphire substrates, no reaction was observed at room temperature. Our conclusion is that the native oxide of aluminum is neither passive nor protective towards Fomblin Z25. At high temperatures (150 C) degradation of the polymer on sapphire produced a debris layer at the interface with a chemical composition similar to the one formed on aluminum oxide. Rubbing a Fomblin film on a single crystal sapphire also induced the decomposition of the lubricant in contact with the interface and the formulation of a debris layer.

  3. In situ x-ray photoelectron spectroscopy studies of gas/solidinterfaces at near-ambient conditions

    SciTech Connect

    Bluhm, Hendrik; Havecker, Michael; Knop-Gericke, Axel; Kiskinova,Maya; Schlogl, Robert; Salmeron, Miquel

    2007-12-03

    X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, i.e., in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.

  4. Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and Micro-Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Achour, A.; Vizireanu, S.; Dinescu, G.; Le Brizoual, L.; Djouadi, M.-A.; Boujtita, M.

    2013-05-01

    Unintentional nitrogen doped carbon nanowall (CNW) films were oxidized through anodic polarization in different applied potential windows, in a mild neutral K2SO4 electrolyte solution. Applied potentials in the range of [0-1], [0-1.5] and [0-2] V vs. SCE were explored. The films were characterized with X-ray photoelectron (XPS) and Micro-Raman spectroscopy, in order to investigate the surface chemistry and structural changes after treatment, respectively. The XPS analysis revealed that this electrochemical treatment leads to an increase of oxygen functional groups, and influences the nitrogen proportion and bonding configuration (such as pyridinic/pyridonic nitrogen) on the film surface at room temperature. In particular, an obvious enhancement of pyrrolic/pyridonic nitrogen doping of CNWs via electrochemical cycling in the range of [0-1.5] and [0-2] V vs. SCE was achieved. Such enhancement happened, because of the oxidation of nitrogen atoms in pyridine as a result of OH ions injection upon electrochemical cycling. Micro-Raman analysis indicates structural quality degradation with increasing the applied potential window. Moreover, the electrochemical capacitance of CNW films was increased after treatment in the range of [0-1] and [0-1.5] and decreased in the range of [0-2] V vs. SCE. The results show that harsh oxidation happened in the range [0-2] V.

  5. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    SciTech Connect

    Tewell, Craig Richmond

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  6. X-ray photoelectron spectroscopy and transmission electron microscopy analysis of silver-coated gold nanorods designed for bionanotechnology applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Fumiya; Nima, Zeid A.; Honda, Takumi; Mitsuhara, Masatoshi; Nishida, Minoru; Biris, Alexandru S.

    2017-01-01

    Multicomponent nano-agents were designed and built via a core-shell approach to enhance their surface enhanced Raman scattering (SERS) signals. These nano-agents had 36 nm × 12 nm gold nanorod cores coated by 4 nm thick silver shell films and a subsequent thin bifunctional thiolated polyethylene glycol (HS-PEG-COOH) layer. Ambient time-lapsed SERS signal measurements of these functionalized nanorods taken over a two-week period indicated no signal degradation, suggesting that large portions of the silver shells remained in pure metallic form. The morphology of the nanorods was characterized by transmission electron microscopy (TEM) and ultra-high resolution scanning TEM. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were utilized to assess the oxidation states of the silver shells covered by HS-PEG-COOH. The binding energies of Ag 3d XPS spectra yielded very small chemical shifts with oxidation; however, the AES peak shapes gave meaningful information about the extent of oxidation undergone by the nano-agent. While the silver shells without HS-PEG-COOH coatings oxidized significantly, the silver shells with HS-PEG-COOH remained predominantly metallic. In fact, six month-old samples still retained mostly metallic silver shells. These findings further demonstrate the stability and longevity of the nanostructures, indicating their significant potential as plasmonically active agents for highly sensitive detection in various biological systems, including cancer cells, tissues, or even organisms.

  7. A SIMS (secondary ion mass spectrometry) and XPS (X-ray photoelectron spectroscopy) study of dissolving plagioclase

    SciTech Connect

    Muir, I.J. ); Bancroft, G.M.; Nesbitt, H.W. ); Shotyk, W. )

    1990-08-01

    In an earlier report, the authors showed that altered layers formed on the surface of dissolving labradorite feldspar grains, and that the thickness of these layers (up to hundreds of angstroms) is strongly dependent on the pH of the reactant solution. In this paper, they show that the thickness of these altered layers also depends strongly on the composition of the plagioclase feldspar. Secondary ion mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS) have been used to characterize these altered layers. During dissolution, Ca and Al are removed from the solid material to form an altered layer residually enriched in Si with very similar profiles for Ca and Al. In acidic solutions (pH 3.5) for 90 days, the altered layers increase in thickness from a few hundred angstroms to many hundred angstroms in the order: albite < oligoclase < labradorite < bytownite. These results emphasize the central role of hydrolysis of the bridging Si-O-Al bonds in the initial weathering process. Analysis by scanning electron microscopy (SEM) does not provide any evidence for the growth of secondary phases. Extensive dissolution features (etch pits) were observed on many of the reacted surfaces.

  8. Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Krishnan, Padmaja; Liu, Minghui; Itty, Pierre A.; Liu, Zhi; Rheinheimer, Vanessa; Zhang, Min-Hong; Monteiro, Paulo J. M.; Yu, Liya E.

    2017-02-01

    Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1–1.3 eV and 2.1–2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7–1.8 and 4.0–4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

  9. X-ray photoelectron and scanning Auger electron spectroscopy study of electrodeposited ZnCr coatings on steel.

    PubMed

    Itani, H; Duchoslav, J; Arndt, M; Steck, T; Gerdenitsch, J; Faderl, J; Preis, K; Winkler, W; Stifter, D

    2012-05-01

    Zn-Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn-Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating-steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.

  10. Growth kinetics of CaF2/Si(111) heteroepitaxy: An x-ray photoelectron diffraction study

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rotenberg, Eli; Hessinger, U.; Leskovar, M.; Olmstead, Marjorie A.

    1995-02-01

    Kinetic variations of the initial stages of CaF2 growth on Si(111) by molecular-beam epitaxy are studied with the in situ combination of x-ray photoelectron spectroscopy and diffraction. After the formation of a chemically reacted interface layer, the morphology of the subsequent bulk layers is found to be dependent on the substrate temperature and incident flux rate, as well as the initial interface structure. For substrate temperatures above ~600 °C, subsequent layers do not easily wet the interface layer, and a transition is observed from a three-dimensional island formation at low flux to a laminar growth following the coalescence of bilayer islands at higher flux. At lower substrate temperatures (~450 °C), a different stoichiometry and structure of the interface layer leads to laminar growth at all fluxes, but with a different bulk nucleation behavior. Crystalline heteroepitaxy is not observed when growth initiates at room temperature, but homoepitaxy does proceed at room temperature if the first few layers are deposited at a high temperature. The different growth regimes are discussed in terms of a kinetic model separating step and terrace nucleation where, contrary to homoepitaxy, step nucleation leads to islanded growth.

  11. Revealing chemical ordering in Pt-Co nanoparticles using electronic structure calculations and X-ray photoelectron spectroscopy.

    PubMed

    Kovács, Gábor; Kozlov, Sergey M; Matolínová, Iva; Vorokhta, Mykhailo; Matolín, Vladimír; Neyman, Konstantin M

    2015-11-14

    The high catalytic activity of Pt-Co nanoalloys in oxygen reduction and other reactions is usually attributed to their Pt-rich surfaces. However, identification of the precise near-surface structure is by no means easily achievable experimentally. In this work we systematically analyzed the chemical ordering and surface composition of PtXCo(79-X) and PtXCo(140-X) bimetallic nanoparticles by means of a recently developed method based on topological energy expressions and electronic structure calculations. Pt is found to segregate on the surface, especially on corner and edge sites, forming a one atomic layer thick skin independent of the size and composition of the nanoparticle. In turn, the subsurface shell of the particle is composed mostly of Co, whereas the core area has a mixed composition, which depends on the overall stoichiometry. The formation of an outer Pt shell is corroborated by thoroughly analyzed data of X-ray photoelectron spectroscopy experiments performed with various photon energies on annealed Pt-Co particles prepared in vacuum by magnetron sputtering. The core-shell structure of Pt-Co particles is calculated to be more stable than the respective L10 structure. The obtained topological energy expressions are shown to depend only very moderately on the nanoparticle size, which allowed us to apply them to determine the ordering in ∼4 nm big PtXCo(1463-X) species. The presented results deepen our understanding of the intrinsic structure of Pt-Co nanoparticles depending on their size and composition.

  12. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-11-01

    Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ2) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  13. Compositional depth profile of a native oxide LPCVD MNOS structure using X-ray photoelectron spectroscopy and chemical etching

    NASA Technical Reports Server (NTRS)

    Wurzbach, J. A.; Grunthaner, F. J.

    1983-01-01

    It is pointed out that there is no report of an unambiguous analysis of the composition and interfacial structure of MNOS (metal-nitride oxide semiconductor) systems, despite the technological importance of these systems. The present investigation is concerned with a study of an MNOS structure on the basis of a technique involving the use of X-ray photoelectron spectroscopy (XPS) with a controlled stopped-flow chemical-etching procedure. XPS is sensitive to the structure of surface layers, while stopped-flow etching permits the controlled removal of overlying material on a scale of atomic layers, to expose new surface layers as a function of thickness. Therefore, with careful analysis of observed intensities at measured depths, this combination of techniques provides depth resolution between 5 and 10 A. According to the obtained data there is intact SiO2 at the substrate interface. There appears to be a thin layer containing excess bonds to silicon on top of the SiO2.

  14. Band offsets of TiZnSnO/Si heterojunction determined by x-ray photoelectron spectroscopy

    SciTech Connect

    Sun, R. J.; Jiang, Q. J.; Yan, W. C.; Feng, L. S.; Lu, B.; Ye, Z. Z.; Li, X. F.; Li, X. D.; Lu, J. G.

    2014-09-28

    X-ray photoelectron spectroscopy (XPS) was utilized to measure the valence band offset (ΔE{sub V}) of the TiZnSnO (TZTO)/Si heterojunction. TZTO films were deposited on Si (100) substrates using magnetron sputtering at room temperature. By using the Zn 2p{sub 3/2} and Sn 3d{sub 5/2} energy levels as references, the value of ΔE{sub V} was calculated to be 2.69 ± 0.1 eV. Combining with the experimental optical energy band gap of 3.98 eV for TZTO extracted from the UV-vis transmittance spectrum, the conduction band offset (ΔE{sub C}) was deduced to be 0.17 ± 0.1 eV at the interface. Hence, the energy band alignment of the heterojunction was determined accurately, showing a type-I form. This will be beneficial for the design and application of TZTO/Si hybrid devices.

  15. Surface Termination Conversion during SrTiO3 Thin Film Growth Revealed by X-ray Photoelectron Spectroscopy

    PubMed Central

    Baeumer, Christoph; Xu, Chencheng; Gunkel, Felix; Raab, Nicolas; Heinen, Ronja Anika; Koehl, Annemarie; Dittmann, Regina

    2015-01-01

    Emerging electrical and magnetic properties of oxide interfaces are often dominated by the termination and stoichiometry of substrates and thin films, which depend critically on the growth conditions. Currently, these quantities have to be measured separately with different sophisticated techniques. This report will demonstrate that the analysis of angle dependent X-ray photoelectron intensity ratios provides a unique tool to determine both termination and stoichiometry simultaneously in a straightforward experiment. Fitting the experimental angle dependence with a simple analytical model directly yields both values. The model is calibrated through the determination of the termination of SrTiO3 single crystals after systematic pulsed laser deposition of sub-monolayer thin films of SrO. We then use the model to demonstrate that during homoepitaxial SrTiO3 growth, excess Sr cations are consumed in a self-organized surface termination conversion before cation defects are incorporated into the film. We show that this termination conversion results in insulating properties of interfaces between polar perovskites and SrTiO3 thin films. These insights about oxide thin film growth can be utilized for interface engineering of oxide heterostructures. In particular, they suggest a recipe for obtaining two-dimensional electron gases at thin film interfaces: SrTiO3 should be deposited slightly Ti-rich to conserve the TiO2-termination. PMID:26189436

  16. X-ray Photoelectron Spectroscopy of Pyridinium-Based Ionic Liquids: Comparison to Imidazolium- and Pyrrolidinium-Based Analogues.

    PubMed

    Men, Shuang; Mitchell, Daniel S; Lovelock, Kevin R J; Licence, Peter

    2015-07-20

    We investigate eight 1-alkylpyridinium-based ionic liquids of the form [Cn Py][A] by using X-ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake-up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic-liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8 Py][A] and analogues including 1-octyl-1-methylpyrrolidinium- ([C8 C1 Pyrr][A]), and 1-octyl-3-methylimidazolium- ([C8 C1 Im][A]) based samples, where X is common to all ionic liquids.

  17. Depth profiling of organic films with X-ray photoelectron spectroscopy using C60+ and Ar+ co-sputtering.

    PubMed

    Yu, Bang-Ying; Chen, Ying-Yu; Wang, Wei-Ben; Hsu, Mao-Feng; Tsai, Shu-Ping; Lin, Wei-Chun; Lin, Yu-Chin; Jou, Jwo-Huei; Chu, Chih-Wei; Shyue, Jing-Jong

    2008-05-01

    By sputtering organic films with 10 kV, 10 nA C60+ and 0.2 kV, 300 nA Ar+ ion beams concurrently and analyzing the newly exposed surface with X-ray photoelectron spectroscopy, organic thin-film devices including an organic light-emitting diode and a polymer solar cell with an inverted structure are profiled. The chemical composition and the structure of each layer are preserved and clearly observable. Although C60+ sputtering is proven to be useful for analyzing organic thin-films, thick organic-devices cannot be profiled without the low-energy Ar+ beam co-sputtering due to the nonconstant sputtering rate of the C60+ beam. Various combinations of ion-beam doses are studied in this research. It is found that a high dosage of the Ar+ beam interferes with the C60+ ion beam, and the sputtering rate decreases with increasing the total ion current. The results suggest that the low-energy single-atom projectile can disrupt the atom deposition from the cluster ion beams and greatly extend the application of the cluster ion-sputtering. By achievement of a steady sputtering rate while minimizing the damage accumulation, this research paves the way to profiling soft matter and organic electronics.

  18. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  19. Electronic structure measurements of metal-organic solar cell dyes using x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.

    The focus of this thesis is twofold: to report the results of X-ray absorption studies of metal-organic dye molecules for dye-sensitized solar cells and to provide a basic training manual on X-ray absorption spectroscopy techniques and data analysis. The purpose of our research on solar cell dyes is to work toward an understanding of the factors influencing the electronic structure of the dye: the choice of the metal, its oxidation state, ligands, and cage structure. First we study the effect of replacing Ru in several common dye structures by Fe. First-principles calculations and X-ray absorption spectroscopy at the C 1s and N 1s edges are combined to investigate transition metal dyes in octahedral and square planar N cages. Octahedral molecules are found to have a downward shift in the N 1s-to-pi* transition energy and an upward shift in C 1s-to-pi* transition energy when Ru is replaced by Fe, explained by an extra transfer of negative charge from Fe to the N ligands compared to Ru. For the square planar molecules, the behavior is more complex because of the influence of axial ligands and oxidation state. Next the crystal field parameters for a series of phthalocyanine and porphyrins dyes are systematically determined using density functional calculations and atomic multiplet calculations with polarization-dependent X-ray absorption spectra. The polarization dependence of the spectra provides information on orbital symmetries which ensures the determination of the crystal field parameters is unique. A uniform downward scaling of the calculated crystal field parameters by 5-30% is found to be necessary to best fit the spectra. This work is a part of the ongoing effort to design and test new solar cell dyes. Replacing the rare metal Ru with abundant metals like Fe would be a significant advance for dye-sensitized solar cells. Understanding the effects of changing the metal centers in these dyes in terms of optical absorption, charge transfer, and electronic

  20. Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    SciTech Connect

    Albert, Felicie

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, and institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.

  1. Compact x-ray microtomography system for element mapping and absorption imaging

    SciTech Connect

    Feldkamp, J. M.; Schroer, C. G.; Patommel, J.; Lengeler, B.; Guenzler, T. F.; Schweitzer, M.; Stenzel, C.; Dieckmann, M.; Schroeder, W. H.

    2007-07-15

    We have designed and built a compact x-ray microtomography system to perform element mapping and absorption imaging by exploiting scanning fluorescence tomography and full-field transmission microtomography, respectively. It is based on a low power microfocus tube and is potentially appropriate for x-ray diagnostics in space. Full-field transmission tomography yields the three-dimensional inner structure of an object. Fluorescence microtomography provides the element distribution on a virtual section through the sample. Both techniques can be combined for appropriate samples. Microradiography as well as fluorescence mapping are also possible. For fluorescence microtomography a small and intensive microbeam is required. It is generated using a polycapillary optic. Operating the microfocus tube with a molybdenum target at 12 W, a microbeam with a full width at half maximum lateral extension of 16 {mu}m and a flux of about 10{sup 8} photons/s is generated. As an example of application, this beam is used to determine the element distribution inside dried plant samples. For full-field scanning tomography, the x-ray optic is removed and the sample is imaged in magnifying projection onto a two-dimensional position sensitive detector. Depending on the sample size, a spatial resolution down to about 10 {mu}m is possible in this mode. The method is demonstrated by three-dimensional imaging of a rat humerus.

  2. A variable absorption feature in the X-ray spectrum of a magnetar.

    PubMed

    Tiengo, Andrea; Esposito, Paolo; Mereghetti, Sandro; Turolla, Roberto; Nobili, Luciano; Gastaldello, Fabio; Götz, Diego; Israel, Gian Luca; Rea, Nanda; Stella, Luigi; Zane, Silvia; Bignami, Giovanni F

    2013-08-15

    Soft-γ-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slowly rotating, isolated neutron stars that sporadically undergo episodes of long-term flux enhancement (outbursts) generally accompanied by the emission of short bursts of hard X-rays. This behaviour can be understood in the magnetar model, according to which these sources are mainly powered by their own magnetic energy. This is supported by the fact that the magnetic fields inferred from several observed properties of SGRs and AXPs are greater than-or at the high end of the range of-those of radio pulsars. In the peculiar case of SGR 0418+5729, a weak dipole magnetic moment is derived from its timing parameters, whereas a strong field has been proposed to reside in the stellar interior and in multipole components on the surface. Here we show that the X-ray spectrum of SGR 0418+5729 has an absorption line, the properties of which depend strongly on the star's rotational phase. This line is interpreted as a proton cyclotron feature and its energy implies a magnetic field ranging from 2 × 10(14) gauss to more than 10(15) gauss.

  3. Probing local structure of pyrochlore lead zinc niobate with synchrotron x-ray absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Kanchiang, Kanokwan; Pramchu, Sittichain; Yimnirun, Rattikorn; Pakawanit, Phakkhananan; Ananta, Supon; Laosiritaworn, Yongyut

    2013-08-01

    Local structure of lead zinc niobate (PZN) ceramic, synthesized via B-site oxide precursor route in atmospheric pressure, was investigated using synchrotron x-ray absorption spectroscopy (XAS) technique. The x-ray absorption near-edge structure (XANES) simulation was first carried out. The XANES simulation results indicate that the PZN ceramic is in pyrochlore phase having Zn2+ substituted on Nb5+ site. Afterwards, the extended x-ray absorption fine structure (EXAFS) analysis was performed to extract the bond length information between Zn2+ and its neighboring atoms. From the EXAFS fitting, the bond length between Zn2+ and Pb2+ in the pyrochlore phase was found to be longer than the previously reported bond length in the perovskite phase. Further, with the radial distribution information of Zn2+'s neighboring atoms, the formation energies along the precursor-to-pyrochlore and precursor-to-perovskite reaction paths were calculated using the density functional theory (DFT). The calculated results show that the formation energy of the perovskite phase is noticeably higher than that of the pyrochlore phase, which is influenced by the presence of energetic Pb2+ lone pair, as the perovskite phase has shorter Zn2+ to Pb2+ bonding. This therefore suggests the steric hindrance of Pb2+ lone pair and the mutual interactions between Pb2+ lone pair and Zn2+ are main causes of the instability of lead zinc niobate in the perovskite structure and confirm the efficacy of XAS and DFT analysis in revealing local structural details of complex pyrochlore materials.

  4. Quantitative Determination of Absolute Organohalogen Concentrations in Environmental Samples by X-ray Absorption Spectroscopy

    SciTech Connect

    Leri,A.; Hay, M.; Lanzirotti, A.; Rao, W.; Myneni, S.

    2006-01-01

    An in situ procedure for quantifying total organic and inorganic Cl concentrations in environmental samples based on X-ray absorption near-edge structure (XANES) spectroscopy has been developed. Cl 1s XANES spectra reflect contributions from all Cl species present in a sample, providing a definitive measure of total Cl concentration in chemically heterogeneous samples. Spectral features near the Cl K-absorption edge provide detailed information about the bonding state of Cl, whereas the absolute fluorescence intensity of the spectra is directly proportional to total Cl concentration, allowing for simultaneous determination of Cl speciation and concentration in plant, soil, and natural water samples. Absolute Cl concentrations are obtained from Cl 1s XANES spectra using a series of Cl standards in a matrix of uniform bulk density. With the high sensitivity of synchrotron-based X-ray absorption spectroscopy, Cl concentration can be reliably measured down to the 5-10 ppm range in solid and liquid samples. Referencing the characteristic near-edge features of Cl in various model compounds, we can distinguish between inorganic chloride (Cl{sub inorg}) and organochlorine (Cl{sub org}), as well as between aliphatic Cl{sub org} and aromatic Cl{sub org}, with uncertainties in the range of {approx}6%. In addition, total organic and inorganic Br concentrations in sediment samples are quantified using a combination of Br 1s XANES and X-ray fluorescence (XRF) spectroscopy. Br concentration is detected down to {approx}1 ppm by XRF, and Br 1s XANES spectra allow quantification of the Br{sub inorg} and Br{sub org} fractions. These procedures provide nondestructive, element-specific techniques for quantification of Cl and Br concentrations that preclude extensive sample preparation.

  5. Solvation structure of the halides from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Antalek, Matthew; Pace, Elisabetta; Hedman, Britt; Hodgson, Keith O.; Chillemi, Giovanni; Benfatto, Maurizio; Sarangi, Ritimukta; Frank, Patrick

    2016-07-01

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

  6. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    SciTech Connect

    Farmand, Maryam

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  7. Operando soft X-ray absorption spectroscopic study on a solid oxide fuel cell cathode during electrochemical oxygen reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-03-16

    Operando soft X-ray absorption spectroscopic technique, which could analyze electronic structures of the electrode materials at elevated temperature and controlled atmosphere under electrochemical polarization, was established and its availability was demonstrated by investigating electronic structural changes of an La2NiO4+d dense film electrode during electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K in fully atmospheric pressure of 100 ppm O2-He, 0.1% O2-He and 1% O2-He gas mixtures. By the PO2 change and the application of electrical potential, considerable spectral changes were observed in O K-edge X-ray absorption spectra while only small spectral changes were observed in Ni L-edge X-ray absorption spectra. Pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied pDOS of Ni3d-O2p hybridization, increased/deceased with cathodic/anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopy developed in this study.

  8. Small copper clusters studied by x-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Sun, Z. H.; Jiang, Y.; Uehara, M.; Nakamura, H.; Yamashita, K.; Orimoto, Y.; Zhang, L.; Lee, C.; Fukano, A.; Maeda, H.

    2012-04-01

    The local structure of copper nanoparticles grown in organic solution by reducing Cu(II) hexafluoroacetylacetonate [Cu(hfac)2] was studied as-grown by the Cu K-edge x-ray absorption near-edge structure (XANES). Comparison of the experimental XANES spectra with reference materials indicated small copper clusters are formed by ligand-exchange with oleylamine and subsequent reducing by diphenylsilane. The multiple-scattering (MS) calculation for various model clusters consisting of 13-135 atoms suggests that small (13-19 atom) Cu clusters are stabilized without a large deformation.

  9. Metal release in metallothioneins induced by nitric oxide: X-ray absorption spectroscopy study.

    PubMed

    Casero, Elena; Martín-Gago, José A; Pariente, Félix; Lorenzo, Encarnación

    2004-12-01

    Metallothioneins (MTs) are low molecular weight proteins that include metal ions in thiolate clusters. The capability of metallothioneins to bind different metals has suggested their use as biosensors for different elements. We study here the interaction of nitric oxide with rat liver MTs by using in situ X-ray absorption spectroscopy techniques. We univocally show that the presence of NO induces the release of Zn atoms from the MT structure to the solution. Zn ions transform in the presence of NO from a tetrahedral four-fold coordinated environment in the MT into a regular octahedral six-fold coordinated state, with interatomic distances compatible with those of Zn solvated in water.

  10. Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. G.; Podsukhina, S. S.; Kozinkin, A. V.; Zubavichus, Ya. V.

    2016-02-01

    The anharmonicity parameters of the interatomic potential in ~4-nm palladium nanoparticles deposited on poly(tetra)fluoroethylene microgranules 0.2-0.5 μm in average size were studied by X-ray absorption spectroscopy from an analysis of temperature-dependent EXAFS Pd K edges. The parameters of the interatomic potential obtained were used to calculate melting temperature T melt = 1591 K and Debye temperature ΘD = 257 K of palladium nanoparticles; these temperatures are significantly lower than those in metallic palladium: 277 K and 1825 K, respectively.

  11. Multiple-scattering approach to the x-ray-absorption spectra of perovskite-type compounds

    NASA Astrophysics Data System (ADS)

    Kitamura, Michihide; Muramatsu, Shinji; Sugiura, Chikara

    1988-04-01

    The metal K x-ray-absorption near-edge structure has been calculated for the first time from a multiple-scattering formalism for the perovskite-type compounds KMnF3, KFeF3, KCoF3, KNiF3, and KZnF3. The calculation includes the effects of a core hole and of Madelung corrections for crystal potentials. It is shown that the results including the lifetime-broadening effect are in good agreement with the experiment of Shulman et al.

  12. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  13. X-Ray Absorption Spectroscopy of Cuprous-Thiolate Clusters in Saccharomyces Cerevisiae Metallothionein

    SciTech Connect

    Zhang, L.; Pickering, I.J.; Winge, D.R.; George, G.N.

    2009-05-28

    Copper (Cu) metallothioneins are cuprous-thiolate proteins that contain multimetallic clusters, and are thought to have dual functions of Cu storage and Cu detoxification. We have used a combination of X-ray absorption spectroscopy (XAS) and density-functional theory (DFT) to investigate the nature of Cu binding to Saccharomyces cerevisiae metallothionein. We found that the XAS of metallothionein prepared, containing a full complement of Cu, was quantitatively consistent with the crystal structure, and that reconstitution of the apo-metallothionein with stoichiometric Cu results in the formation of a tetracopper cluster, indicating cooperative binding of the Cu ions by the metallothionein.

  14. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  15. Local structure of indium oxynitride from x-ray absorption spectroscopy

    SciTech Connect

    T-Thienprasert, J.; Onkaw, D.; Rujirawat, S.; Limpijumnong, S.; Nukeaw, J.; Sungthong, A.; Porntheeraphat, S.; Singkarat, S.

    2008-08-04

    Synchrotron x-ray absorption near edge structures (XANES) measurements of In L{sub 3} edge is used in conjunction with first principles calculations to characterize rf magnetron sputtered indium oxynitride at different O contents. Good agreement between the measured and the independently calculated spectra are obtained. Calculations show that the XANES spectra of this alloy are sensitive to the coordination numbers of the In atoms, i.e., fourfold for indium nitride-like structures and sixfold for indium oxide-like structures, but not to the substitution of nearest neighbor N by O or vice versa.

  16. The energy calibration of x-ray absorption spectra using multiple-beam diffraction

    SciTech Connect

    Hagelstein, M.; Cunis, S. ); Frahm, R. ); Rabe, P. )

    1992-01-01

    A new method for calibrating the energy scale of x-ray absorption spectra from an energy dispersive spectrometer has been developed. Distinct features in the diffracted intensity of the curved silicon crystal monochromator have been assigned to multiple-beam diffraction. The photon energies of these structures can be calculated if the precise spacing of the diffracting planes and the orientation of the crystal relative to the incident synchrotron radiation are known. The evaluation of Miller indices of operative reflections and the calculation of the corresponding photon energy is presented. The assignment of operative reflexes is simplified if the monochromator crystal can be rotated around the main diffracting vector {bold H}.

  17. L-edge X-ray absorption studies of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Bertram, S.; Kaindl, G.; Jové, J.; Pagès, M.

    1989-06-01

    The x-ray absorption near-edge structure (XANES) at the Np-L thresholds was investigated for Np compounds with formal valencies III to VII. At LIII, single and double-peaked white lines are observed corresponding to different final states that are populated through core excitation and 5f/ligand hybridization. For the non-metallic Np compounds studied, the weighted mean values of the LIII-XANES shifts relative to NpO2 exhibit a clear correlation with the isomer shifts of the 59-keV Mössbauer resonance of 237Np.

  18. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    NASA Astrophysics Data System (ADS)

    Lafitte, Bruno; Aubes, Michel; Zissis, Georges

    2007-12-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light. We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic. X-rays photons are mainly absorbed and not scattered by PCA. Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp. By comparing diagnostic methods, we put in evidence the difficulty of taking into account the scattering of light mathematically.

  19. X-ray absorption studies of uranium sorption on mineral substrates

    SciTech Connect

    Hudson, E.A.; Terminello, L.J.; Viani, B.E.

    1994-11-01

    Uranium L{sub 3}-edge x-ray absorption spectra have been measured for uranium-mineral sorption systems. An expansible layer silicate, vermiculite, was treated to obtain a collapsed and non-expanding phase, thereby limiting access to the interior cation exchange sites. Samples were prepared by exposing the finely powdered mineral, in the natural and modified form, to aqueous solutions of uranyl chloride. EXAFS spectra of the encapsulated samples were measured at the Stanford Synchrotron Radiation Laboratory. Results indicate that the uranyl ion possesses a more symmetric local structure within the interlayer regions of vermiculite than on the external surfaces.

  20. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    SciTech Connect

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-19

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge.

  1. Extended X-ray absorption fine structure (EXAFS) study of CaSO 4:Dy phosphors

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, D.; Bakshi, A. K.; Ciatto, G.; Aquilanti, G.; Pradhan, A. S.; Pascarelli, S.

    2006-03-01

    Extended X-ray absorption fine structure (EXAFS) measurements have been carried out on CaSO 4:Dy phosphors at the Dy L 3 edge with synchrotron radiation. The data have been analysed to find out the Dy-S and Dy-O bond lengths in the neighborhood of the Dy atoms. Measurements have been carried out over several samples thermally annealed for different cycles at 400 °C in air for 1 h and the change in bond lengths in samples with increasing number of annealing cycles have been studied by analyzing the EXAFS data.

  2. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  3. In-situ x-ray absorption study of copper films in ground watersolutions

    SciTech Connect

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-10-29

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl{sup -} and HCO{sub 3}{sup -} in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO{sub 3}{sup -} prevented or slowed down the corrosion processes.

  4. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  5. Improvement of filling bismuth for x-ray absorption gratings through the enhancement of wettability

    NASA Astrophysics Data System (ADS)

    Lei, Yaohu; Liu, Xin; Li, Ji; Guo, Jinchuan; Niu, Hanben

    2016-06-01

    Filling materials with high x-ray linear absorption coefficients in high aspect-ratio (HAR) structures is a key process for the fabrication of absorption gratings used in x-ray differential phase-contrast imaging. Bismuth has been chosen as an effective filling material in micro-casting technology, because of its low cost both in price and facility use. However, repellence on structure surfaces against molten bismuth leads to an obstacle in terms of completely filling bismuth into the small-aperture and HAR microstructure formed by photo-assisted electrochemical etching in 5 inch silicon wafers. We propose and implement a novel method of surface modification to completely fill bismuth into these structures with periods of 3 μm and 42 μm, respectively, and as deep as 150 μm. The modified surface with a Bi2O3 layer covering the structure surface, including the side walls, induces an enhanced bismuth filling ratio. The superiority of the method is demonstrated by micrographs which show filled microstructures compared to the previously used method, where only a layer of 100 nm SiO2 was covered. Furthermore, we have observed that the improved micro-casting makes the absorption gratings clean surfaces, and no post treatment is needed.

  6. Electronic structure of individual hybrid colloid particles studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the X-ray microscope.

    PubMed

    Henzler, Katja; Guttmann, Peter; Lu, Yan; Polzer, Frank; Schneider, Gerd; Ballauff, Matthias

    2013-02-13

    The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials.

  7. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction.

    PubMed

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-07

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  8. Thermal and magnetic anomalies of α-iron: an exploration by extended x-ray absorption fine structure spectroscopy and synchrotron x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Boccato, Silvia; Sanson, Andrea; Kantor, Innokenty; Mathon, Olivier; Dyadkin, Vadim; Chernyshov, Dmitry; Carnera, Alberto; Pascarelli, Sakura

    2016-09-01

    The local structure and dynamics of α-iron have been investigated by extended x-ray absorption fine structure (EXAFS) spectroscopy and x-ray diffraction (XRD) in order to shed light on some thermal and magnetic anomalies observed in the last decades. The quantitative EXAFS analysis of the first two coordination shells reveals a peculiar local vibrational dynamics of α-iron: the second neighbor distance exhibits anharmonicity and vibrational anisotropy larger than the first neighbor distance. We search for possible distortions of the bcc structure to justify the unexplained magnetostriction anomalies of α-iron and provide a value for the maximum dislocation of the central Fe atom. No thermal anomalies have been detected from the current XRD data. On the contrary, an intriguing thermal anomaly at about 150 K, ascribed to a stiffening of the Fe-Fe bonds, was found by EXAFS.

  9. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    SciTech Connect

    Mini, S.M. |; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of {approx}2.5{mu}{sub B} per interface Pd atom.

  10. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    SciTech Connect

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  11. Excited-state molecular structures captured by X-ray transient absorption spectroscopy: a decade and beyond.

    PubMed

    Chen, Lin X; Zhang, Xiaoyi; Lockard, Jenny V; Stickrath, Andrew B; Attenkofer, Klaus; Jennings, Guy; Liu, Di-Jia

    2010-03-01

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.

  12. Excited-state molecular structures captured by x-ray transient absorption spectroscopy : a decade and beyond.

    SciTech Connect

    Chen, L. X.; Zhang, X.; Lockard, J. V.; Stickrath, A. B.; Attenkofer, K.; Jennings, G.; Liu, D.-J.; Northwestern Univ.

    2010-03-02

    Transient molecular structures along chemical reaction pathways are important for predicting molecular reactivity, understanding reaction mechanisms, as well as controlling reaction pathways. During the past decade, X-ray transient absorption spectroscopy (XTA, or LITR-XAS, laser-initiated X-ray absorption spectroscopy), analogous to the commonly used optical transient absorption spectroscopy, has been developed. XTA uses a laser pulse to trigger a fundamental chemical process, and an X-ray pulse(s) to probe transient structures as a function of the time delay between the pump and probe pulses. Using X-ray pulses with high photon flux from synchrotron sources, transient electronic and molecular structures of metal complexes have been studied in disordered media from homogeneous solutions to heterogeneous solution-solid interfaces. Several examples from the studies at the Advanced Photon Source in Argonne National Laboratory are summarized, including excited-state metalloporphyrins, metal-to-ligand charge transfer (MLCT) states of transition metal complexes, and charge transfer states of metal complexes at the interface with semiconductor nanoparticles. Recent developments of the method are briefly described followed by a future prospective of XTA. It is envisioned that concurrent developments in X-ray free-electron lasers and synchrotron X-ray facilities as well as other table-top laser-driven femtosecond X-ray sources will make many breakthroughs and realise dreams of visualizing molecular movies and snapshots, which ultimately enable chemical reaction pathways to be controlled.

  13. Beyond structure: ultrafast X-ray absorption spectroscopy as a probe of non-adiabatic wavepacket dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Patchkovskii, Serguei; Ruberti, Marco; Yun, Renjie; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-12-16

    The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.

  14. Degradation of CH3NH3PbI3 perovskite due to soft x-ray irradiation as analyzed by an x-ray photoelectron spectroscopy time-dependent measurement method

    NASA Astrophysics Data System (ADS)

    Motoki, Keisuke; Miyazawa, Yu; Kobayashi, Daisuke; Ikegami, Masashi; Miyasaka, Tsutomu; Yamamoto, Tomoyuki; Hirose, Kazuyuki

    2017-02-01

    The effects of soft X-ray exposure on structures of CH3NH3PbI3 perovskite were investigated using an X-ray photoelectron spectroscopy (XPS) time-dependent measurement method. A crystalline sample was fabricated with the inverse-temperature crystallization method. The time evolutions of the core-level and valence-band spectra were recorded to determine the compositional ratios and valence band electronic structure of the sample, respectively. In addition, first-principles calculations were conducted to evaluate the valence band XPS spectra. The in situ XPS analysis combined with theoretical calculations demonstrated a degradation of the surface of CH3NH3PbI3 perovskite into PbI2 owing to the evaporation of methylammonium iodide.

  15. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  16. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  17. Characterization of Metalloproteins by High-throughput X-ray Absorption Spectroscopy

    SciTech Connect

    W Shi; M Punta; J Bohon; J Sauder; R DMello; M Sullivan; J Toomey; D Abel; M Lippi; et al.

    2011-12-31

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal-binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  18. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-22

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  19. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  20. Tracking the amorphous to epitaxial transition in RF-sputtered cubic BFO-STO heterojunctions by means of X-ray photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Giampietri, Alessio; Drera, Giovanni; Píš, Igor; Magnano, Elena; Sangaletti, Luigi

    2016-09-01

    The epitaxial growth of cubic BiFeO3 ultrathin films on SrTiO3 (001) substrates by off-axis RF sputtering is demonstrated, suitable to X-ray spectroscopies interface investigation. X-ray photoelectron diffraction is used as a tool to probe the long-range crystal order and to track the transition from amorphous to epitaxial growth as a function of deposition parameters. Further spectroscopic measurements, in particular, X-ray linear dichroism on the Fe L 3 , 2 edge, confirm the heteroepitaxial growth of BiFeO3 and clearly indicate a 3+ valence state for the iron cation. Finally, XPS is used to reconstruct the band alignment diagram, which results in a staggered configuration with a remarkable energy shift of the SrTiO3 band edges which can ultimately favor the n-type doping of SrTiO3.

  1. Chemical bonding and electronic structures of microcline, orthoclase and the plagioclase series by X-ray photoelectron spectroscopy.

    PubMed

    Kloprogge, J Theo; Wood, Barry J

    2015-02-25

    A detailed analysis was undertaken of the X-ray photoelectron spectra obtained from microcline, orthoclase and several samples of plagioclase with varying Na/Ca ratio. Comparison of the spectra was made based on the chemical bonding and structural differences in the Al- and Si-coordination within each specimen. The spectra for Si 2p and Al 2p vary with the change in symmetry between microcline and orthoclase, while in plagioclase an increase in Al-O-Si linkages results in a small but observable decrease in binding energy. The overall shapes of the O 1s peaks observed in all spectra are similar and show shifts similar to those observed for Si 2p and Al 2p. The lower-VB spectra for microcline and orthoclase are similar intermediate between α-SiO2 and α-Al2O3 in terms of binding energies. In the plagioclase series increasing coupled substitution of Na and Si for Ca and Al results in a change of the overall shape of the spectra, showing a distinct broadening associated with the presence of two separate but overlapping bands similar to the 21 eV band observed for quartz and the 23 eV band observed for corundum. The bonding character for microcline and orthoclase is more covalent than that of α-Al2O3, but less than that of α-SiO2. In contrast, the plagioclase samples show two distinct bonding characters that are comparable with those of α-SiO2 and α-Al2O3.

  2. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    NASA Astrophysics Data System (ADS)

    McLeod, K.; Kumar, S.; Dutta, N. K.; Smart, R. St. C.; Voelcker, N. H.; Anderson, G. I.

    2010-09-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  3. Chemical Analysis of the Interface in Bulk-Heterojunction Solar Cells by X-ray Photoelectron Spectroscopy Depth Profiling.

    PubMed

    Busby, Yan; List-Kratochvil, Emil J W; Pireaux, Jean-Jacques

    2017-02-01

    Despite the wide use of blends combining an organic p-type polymer and molecular fullerene-based electron acceptor, the proper characterization of such bulk heterojunction materials is still challenging. To highlight structure-to-function relations and improve the device performance, advanced tools and strategies need to be developed to characterize composition and interfaces with sufficient accuracy. In this work, high-resolution X-ray photoelectron spectroscopy (XPS) is combined with very low energy argon ion beam sputtering to perform a nondestructive depth profile chemical analysis on full Al/P3HT:PCBM/PEDOT:PSS/ITO (P3HT, poly(3-hexylthiophene); PCBM, [6,6]-phenyl-C61-butyric acid methyl ester; PEDOT, poly(3,4-ethylenedioxythiophene; PSS, polystyrenesulfonate; ITO, indium tin oxide) bulk-heterojunction solar cell device stacks. Key information, such as P3HT and PCBM composition profiles and Al-PCBM chemical bonding, are deduced in this basic device structure. The interface chemical analysis allows us to evidence, with unprecedented accuracy, the inhomogeneous distribution of PCBM, characterized by a strong segregation toward the top metal electrode. The chemical analysis high-resolution spectra allows us to reconstruct P3HT/PCBM ratio through the active layer depth and correlate with the device deposition protocol and performance. Results evidence an inhomogeneous P3HT/PCBM ratio and poorly controllable PCBM migration, which possibly explains the limited light-to-power conversion efficiency in this basic device structure. The work illustrates the high potential of XPS depth profile analysis for studying such organic/inorganic device stacks.

  4. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    NASA Astrophysics Data System (ADS)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  5. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  6. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    SciTech Connect

    Hassan, S. Yusof, M. S. Maksud, M. I.; Embong, Z.

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  7. Development of a technique to prevent radiation damage of chromate conversion coatings during X-ray photoelectron spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Chidambaram, Devicharan; Halada, Gary P.; Clayton, Clive R.

    2001-09-01

    Photoreduction of hydrated sodium dichromate in the presence of carbon compounds has been studied by X-ray photoelectron spectroscopy (XPS). XPS results show that sodium dichromate also undergoes thermal breakdown during analysis. The photochemical and thermal reduction appears to be prevented by cooling with liquid nitrogen and using hydrocarbon-free vacuum pumping conditions. A model for the photoreduction of dichromate has been put forward based on an earlier photoreduction model developed by this group. Using the insight gained from this work, chromium spectra obtained from XPS of chromate conversion coatings (CCCs) on AA2024-T3 aluminum alloy have for the first time been fitted with six species of chromium compounds. The Cr 2p spectra have been critically examined for photoreduction of the hexavalent species: tetravalent and trivalent decomposition products have been identified. To explain the observed photochemical breakdown in CCCs even when performed under clean pumping conditions and liquid nitrogen cooling, its has been verified that the reduction is partly due to the cyanide species present in the CCCs. Cooling with liquid nitrogen prevents the adsorbed water on the coating from reacting with Cr(IV) to form trivalent species as the water molecules are immobilized and kinetics are slowed. As the Cr(VI)/Cr(III) ratio is critical to the performance of the CCC, and its accurate determination by XPS has not formerly been possible due to the photoreduction of Cr(VI) to Cr(III), we present a reliable method by which XPS can be used in characterization of chromate conversion coatings.

  8. X-ray photoelectron spectroscopic study on interface bonding between Pt and Zn- and O-terminated ZnO

    SciTech Connect

    Yoshitake, Michiko; Nemsak, Slavomir; Blumentrit, Petr

    2013-03-15

    Interface bonding between Pt and Zn- and O-terminated ZnO surfaces was investigated by precise analysis of x-ray photoelectron spectra. The interfaces were formed by vapor depositing Pt onto the ZnO surfaces in ultrahigh vacuum. The changes in the Zn 2p{sub 3/2}, O 1s, Zn LMM Auger, and Pt 4f{sub 7/2} spectra upon Pt deposition were observed. The changes in the shape of the Zn LMM spectra and the shifts in the binding energy of Zn 2p{sub 3/2} and O 1s revealed that there was a metallic Zn component in the Zn LMM and Zn 2p{sub 3/2} spectra for Zn-terminated ZnO and a Pt-O component in the O 1s spectra for both Zn- and O-terminated ZnO. Peaks were fitted with multiple components accordingly. The binding energy shifts of Zn 2p{sub 3/2} and O 1s for the ZnO component were almost the same, which confirmed that the fitting was reasonable. From the fitting results, the interface bonding was concluded to be O-terminated, i.e., Zn-O-Pt bond formation occurred at the interface for both Zn- and O-terminated ZnO. This clearly demonstrated that the stable interface bonding occurring between Pt and ZnO is Zn-O-Pt bonding whether the ZnO substrate is initially Zn-terminated or O-terminated.

  9. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    SciTech Connect

    Andrews, J.C. |

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  10. Evolution of silver nanoparticles in the rat lung investigated by X-ray absorption spectroscopy

    SciTech Connect

    Davidson, R. Andrew; Anderson, Donald S.; Van Winkle, Laura S.; Pinkerton, Kent E.; Guo, T.

    2014-12-16

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. Furthermore, we found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period.

  11. Molybdenum speciation in uranium mine tailings using X-ray absorption spectroscopy.

    PubMed

    Essilfie-Dughan, Joseph; Pickering, Ingrid J; Hendry, M Jim; George, Graham N; Kotzer, Tom

    2011-01-15

    Uranium (U) mill tailings in northern Saskatchewan, Canada, contain elevated concentrations of molybdenum (Mo). The potential for long-term (>10,000 years) mobilization of Mo from the tailings management facilities to regional groundwater systems is an environmental concern. To assist in characterizing long-term stability, X-ray absorption spectroscopy was used to define the chemical (redox and molecular) speciation of Mo in tailings samples from the Deilmann Tailings Management Facility (DTMF) at the Key Lake operations of Cameco Corporation. Comparison of Mo K near-edge X-ray absorption spectra of tailings samples and reference compounds of known oxidation states indicates Mo exists mainly as molybdate (+6 oxidation state). Principal component analysis of tailings samples spectra followed by linear combination fitting using spectra of reference compounds indicates that various proportions of NiMoO(4) and CaMoO(4) complexes, as well as molybdate adsorbed onto ferrihydrite, are the Mo species present in the U mine tailings. Tailings samples with low Fe/Mo (<708) and high Ni/Mo (>113) molar ratios are dominated by NiMoO(4), whereas those with high Fe/Mo (>708) and low Ni/Mo (<113) molar ratios are dominated by molybdate adsorbed onto ferrihydrite. This suggests that the speciation of Mo in the tailings is dependent in part on the chemistry of the original ore.

  12. X-ray absorption spectroscopy (XAS) of toxic metal mineral transformations by fungi.

    PubMed

    Fomina, Marina; Charnock, John; Bowen, Andrew D; Gadd, Geoffrey M

    2007-02-01

    Fungi can be highly efficient biogeochemical agents and accumulators of soluble and particulate forms of metals. This work aims to understand some of the physico-chemical mechanisms involved in toxic metal transformations focusing on the speciation of metals accumulated by fungi and mycorrhizal associations. The amorphous state or poor crystallinity of metal complexes within biomass and relatively low metal concentrations make the determination of metal speciation in biological systems a challenging problem but this can be overcome by using synchrotron-based element-specific X-ray absorption spectroscopy (XAS) techniques. In this research, we have exposed fungi and ectomycorrhizas to a variety of copper-, zinc- and lead-containing minerals. X-ray absorption spectroscopy studies revealed that oxygen ligands (phosphate, carboxylate) played a major role in toxic metal coordination within the fungal and ectomycorrhizal biomass during the accumulation of mobilized toxic metals. Coordination of toxic metals within biomass depended on the fungal species, initial mineral composition, the nitrogen source, and the physiological state/age of the fungal mycelium.

  13. K-edge x-ray absorption spectra of Cs and Xe

    SciTech Connect

    Gomilsek, J. Padeznik; Kodre, A.; Arcon, I.; Hribar, M.

    2003-10-01

    X-ray absorption spectrum of cesium vapor in the K-edge region is measured in a stainless steel cell. The spectrum is free of the x-ray absorption fine structure signal and shows small features analogous to those in the spectrum of the neighbor noble gas Xe. Although the large natural width of the K vacancy (>10 eV) washes out most of the details, fingerprints of multielectron excitations can be recognized at energies close to Dirac-Fock estimates of doubly excited states 1s4(d,p,s) and 1s3(d,p). Among these, the 1s3p excitation 1000 eV above the K edge in both spectra is the deepest double excitation observed so far. Within the K-edge profile, some resolution is recovered with numerical deconvolution of the spectra, revealing the coexcitation of the 5(p,s) electrons, and even the valence 6s electron in Cs. As in homologue elements, three-electron excitations, either as separate channels or as configuration admixtures are required to explain some spectral features in detail.

  14. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2

    PubMed Central

    Santomauro, F. G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J. A.; Mariager, S. O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S.L.; Chergui, M.

    2015-01-01

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides. PMID:26437873

  15. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  16. A wavelet analysis for the X-ray absorption spectra of molecules.

    PubMed

    Penfold, T J; Tavernelli, I; Milne, C J; Reinhard, M; El Nahhas, A; Abela, R; Rothlisberger, U; Chergui, M

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO)(3)(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  17. Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO2.

    PubMed

    Santomauro, F G; Lübcke, A; Rittmann, J; Baldini, E; Ferrer, A; Silatani, M; Zimmermann, P; Grübel, S; Johnson, J A; Mariager, S O; Beaud, P; Grolimund, D; Borca, C; Ingold, G; Johnson, S L; Chergui, M

    2015-10-06

    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter's dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti(3+) centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.

  18. Adsorption of mercury on lignin: combined surface complexation modeling and X-ray absorption spectroscopy studies.

    PubMed

    Lv, Jitao; Luo, Lei; Zhang, Jing; Christie, Peter; Zhang, Shuzhen

    2012-03-01

    Adsorption of mercury (Hg) on lignin was studied at a range of pH values using a combination of batch adsorption experiments, a surface complexation model (SCM) and synchrotron X-ray absorption spectroscopy (XAS). Surface complexation modeling indicates that three types of acid sites on lignin surfaces, namely aliphatic carboxylic-, aromatic carboxylic- and phenolic-type surface groups, contributed to Hg(II) adsorption. The bond distance and coordination number of Hg(II) adsorption samples at pH 3.0, 4.0 and 5.5 were obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. The results of SCM and XAS combined reveal that the predominant adsorption species of Hg(II) on lignin changes from HgCl(2)(0) to monodentate complex -C-O-HgCl and then bidentate complex -C-O-Hg-O-C- with increasing pH value from 2.0 to 6.0. The good agreement between SCM and XAS results provides new insight into understanding the mechanisms of Hg(II) adsorption on lignin.

  19. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect

    Penfold, T. J.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Abela, R.; Reinhard, M.; Nahhas, A. El; Chergui, M.

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  20. X-ray absorption spectroscopy as a probe of dissolved polysulfides in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Pascal, Tod; Prendergast, David

    2015-03-01

    There has been enormous interest lately in lithium sulfur batteries, since they have 5 times the theoretical capacity of lithium ion batteries. Large-scale adoption of this technology has been hampered by numerous shortcomings, chiefly the poor utilization of the active cathode material and rapid capacity fading during cycling. Overcoming these limitations requires methods capable of identifying and quantifying the products of the poorly understood electrochemical reactions. One recent advance has been the use of X-ray absorption spectroscopy (XAS), an element-specific probe of the unoccupied energy levels around an excited atom upon absorption of an X-ray photon, to identify the reaction products and intermediates. In this talk, we'll present first principles molecular dynamics and spectral simulations of dissolved lithium polysulfide species, showing how finite temperature dynamics, molecular geometry, molecular charge state and solvent environment conspire to determine the peak positions and intensity of the XAS. We'll present a spectral analysis of the radical (-1e charge) species, and reveal a unique low energy feature that can be used to identify these species from their more common dianion (-2e charge) counterparts.

  1. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  2. X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Mieszczynski, Cyprian; Borca, Camelia; Grolimund, Daniel; Martin, Matthias; Bertsch, Johannes

    2014-10-01

    The analysis of krypton in irradiated uranium dioxide fuel has been successfully achieved by X-ray fluorescence and X-ray absorption. The present study focuses on the analytical challenge of sample and sub-sample production to perform the analysis with the restricted conditions dictated by the radioprotection regulations. It deals also with all potential interferences that could affect the quality of the measurement in fluorescence as well as in absorption mode. The impacts of all dissolved gases in the fuel matrix are accounted for the analytical result quantification. The krypton atomic environment is ruled by the presence of xenon. Other gases such as residual argon and traces of helium or hydrogen are negligible. The results are given in term of density for krypton (∼3 nm-3) and xenon (∼20 nm-3). The presence of dissolved, interstitial and nano-phases are discussed together with other analytical techniques that could be applied to gain information on fission gas behaviour in nuclear fuels.

  3. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  4. Strontium localization in bone tissue studied by X-ray absorption spectroscopy.

    PubMed

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Stahl, Kenny

    2014-02-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35-45% of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30% is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr(2+) in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level.

  5. Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

    SciTech Connect

    Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A.; Alivisatos, A. Paul

    2007-05-07

    We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.

  6. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  7. X-ray magnetic circular dichroism and x-ray absorption spectroscopy of novel magnetic thin films

    SciTech Connect

    Brewer, M.A.; Ju, H.L.; Krishnan, K.M.

    1997-04-01

    The optimization of the magnetic properties of materials for a wide range of applications requires a dynamic iteration between synthesis, property measurements and characterization at appropriate length scales. The authors interest arises both from the increased appreciation of the degree to which magnetic properties can be influenced by tailored microstructures and the ability to characterize them by x-ray scattering/dichroism techniques. Preliminary results of this work at the ALS on `giant` moment in {alpha}{double_prime}-Fe{sub 16}N{sub 2} and `colossal` magnetoresistance in manganite perovskites is presented here. It has recently been claimed that {alpha}{double_prime}-Fe{sub 16}N{sub 2} possesses a giant magnetization of 2.9 T ({approximately}2300 emu/cc) when grown on lattice-matched In{sub 0.2}Ga{sub 0.8}As(001) and Fe/GaAs(001). However, attempts at growth on simpler substrates have resulted in only a modest enhancement in moment and often in multiphase mixtures. Theoretical calculations based on the band structure of Fe{sub 16}N{sub 2} predict values for the magnetization around 2.3 T ({approximately}1780 emu/cc), well below Sugita`s claims, but consistent with the magnetization reported by several other workers. Using appropriate sum rules applied to the integrated MCD spectrum, they hope to determine the magnetic moment of the iron species in the {alpha}{double_prime}-Fe{sub 16}N{sub 2} films and other phases and resolve the orbital and spin contributions to the moment. There is also rapidly growing interest in the `colossal magnetoresistance` effect observed in manganese oxides for both fundamental and commercial applications. To address some of these issues the authors have measured the electron energy loss spectra (EELS) of manganese perovskites at room temperature.

  8. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-01

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  9. Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source

    NASA Astrophysics Data System (ADS)

    Pertot, Yoann; Schmidt, Cédric; Matthews, Mary; Chauvet, Adrien; Huppert, Martin; Svoboda, Vit; von Conta, Aaron; Tehlar, Andres; Baykusheva, Denitsa; Wolf, Jean-Pierre; Wörner, Hans Jakob

    2017-01-01

    Time-resolved x-ray absorption spectroscopy (TR-XAS) has so far practically been limited to large-scale facilities, to subpicosecond temporal resolution, and to the condensed phase. We report the realization of TR-XAS with a temporal resolution in the low femtosecond range by developing a tabletop high-harmonic source reaching up to 350 electron volts, thus partially covering the spectral region of 280 to 530 electron volts, where water is transmissive. We used this source to follow previously unexamined light-induced chemical reactions in the lowest electronic states of isolated CF4+ and SF6+ molecules in the gas phase. By probing element-specific core-to-valence transitions at the carbon K-edge or the sulfur L-edges, we characterized their reaction paths and observed the effect of symmetry breaking through the splitting of absorption bands and Rydberg-valence mixing induced by the geometry changes.

  10. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa

    PubMed Central

    Aquilanti, Giuliana; Trapananti, Angela; Karandikar, Amol; Kantor, Innokenty; Marini, Carlo; Mathon, Olivier; Pascarelli, Sakura; Boehler, Reinhard

    2015-01-01

    Temperature, thermal history, and dynamics of Earth rely critically on the knowledge of the melting temperature of iron at the pressure conditions of the inner core boundary (ICB) where the geotherm crosses the melting curve. The literature on this subject is overwhelming, and no consensus has been reached, with a very large disagreement of the order of 2,000 K for the ICB temperature. Here we report new data on the melting temperature of iron in a laser-heated diamond anvil cell to 103 GPa obtained by X-ray absorption spectroscopy, a technique rarely used at such conditions. The modifications of the onset of the absorption spectra are used as a reliable melting criterion regardless of the solid phase from which the solid to liquid transition takes place. Our results show a melting temperature of iron in agreement with most previous studies up to 100 GPa, namely of 3,090 K at 103 GPa. PMID:26371317

  11. Following the molecular motion of near-resonant excited CO on Pt(111): A simulated x-ray photoelectron diffraction study based on molecular dynamics calculations

    PubMed Central

    Greif, Michael; Nagy, Tibor; Soloviov, Maksym; Castiglioni, Luca; Hengsberger, Matthias; Meuwly, Markus; Osterwalder, Jürg

    2015-01-01

    A THz-pump and x-ray-probe experiment is simulated where x-ray photoelectron diffraction (XPD) patterns record the coherent vibrational motion of carbon monoxide molecules adsorbed on a Pt(111) surface. Using molecular dynamics simulations, the excitation of frustrated wagging-type motion of the CO molecules by a few-cycle pulse of 2 THz radiation is calculated. From the atomic coordinates, the time-resolved XPD patterns of the C 1s core level photoelectrons are generated. Due to the direct structural information in these data provided by the forward scattering maximum along the carbon-oxygen direction, the sequence of these patterns represents the equivalent of a molecular movie. PMID:26798798

  12. Effects of dispersion and absorption in resonant Bragg diffraction of x-rays.

    PubMed

    Lovesey, S W; Scagnoli, V; Dobrynin, A N; Joly, Y; Collins, S P

    2014-03-26

    Resonant diffraction of x-rays by crystals with anisotropic optical properties is investigated theoretically, to assess how the intensity of a Bragg spot is influenced by effects related to dispersion (birefringence) and absorption (dichroism). Starting from an exact but opaque expression, simple analytic results are found to expose how intensity depends on dispersion and absorption in the primary and secondary beams and, also, the azimuthal angle (rotation of the crystal about the Bragg wavevector). If not the full story for a given application, our results are more than adequate to explore consequences of dispersion and absorption in the intensity of a Bragg spot. Results are evaluated for antiferromagnetic copper oxide, and low quartz. For CuO, one of our results reproduces all salient features of a previously published simulation of the azimuthal-angle dependence of a magnetic Bragg peak. It is transparent in our analytic result that dispersion and absorption effects alone cannot reproduce published experimental data. Available data for the azimuthal-angle dependence of space-group forbidden reflections (0,0, l), with l ≠ 3n, of low quartz depart from symmetry imposed by the triad axis of rotation symmetry. The observed asymmetry can be induced by dispersion and absorption even though absorption coefficients are constant, independent of the azimuthal angle, in this class of reflections.

  13. Correlated Single-Crystal Electronic Absorption Spectroscopy and X-ray Crystallography at NSLS Beamline X26-C

    SciTech Connect

    A Orville; R Buono; M Cowan; A Heroux; G Shea-McCarthy; D Schneider; J Skinner; M Skinner; D Stoner-Ma; R Sweet

    2011-12-31

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  14. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    SciTech Connect

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D. K.; Skinner, J. M.; Skinner, M. J.; Stoner-Ma, D.; Sweet, R. M.

    2011-05-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  15. X-ray absorption and diffraction studies of the metal binding sites in amyloid beta-peptide.

    PubMed

    Streltsov, Victor

    2008-03-01

    A major source of neurodegeneration observed in Alzheimer's disease is believed to be caused by the toxicity from reactive oxygen species produced in the brain mediated by the A beta protein and mainly copper species. An atomic model of an amyloid beta-peptide (A beta) Cu2+ complex or at least the structure of the metal binding site is of great interest. Accurate information about the Cu-binding site of A beta protein can facilitate simulation of redox chemistry using high level quantum mechanics. Complementary X-ray diffraction and X-ray absorption techniques can be employed to obtain such accurate information. This review provides a blend of X-ray diffraction results on amyloid structures and selected works on A beta Cu2+ binding based on spectroscopic measurements with emphasis on the X-ray absorption technique.

  16. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    PubMed Central

    Orville, Allen M.; Buono, Richard; Cowan, Matt; Héroux, Annie; Shea-McCarthy, Grace; Schneider, Dieter K.; Skinner, John M.; Skinner, Michael J.; Stoner-Ma, Deborah; Sweet, Robert M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population. PMID:21525643

  17. The use of (micro)-X-ray absorption spectroscopy in cement research.

    PubMed

    Scheidegger, A M; Vespa, M; Grolimund, D; Wieland, E; Harfouche, M; Bonhoure, I; Dähn, R

    2006-01-01

    Long-term predictions on the mobility and the fate of radionuclides and contaminants in cementitious waste repositories require a molecular-level understanding of the geochemical immobilization processes involved. In this study, the use of X-ray absorption spectroscopy (XAS) for chemical speciation of trace elements in cementitious materials will be outlined presenting two examples relevant for nuclear waste management. The first example addresses the use of XAS on powdered cementitious materials to determine the local coordination environment of Sn(IV) bound to calcium silicate hydrates (C-S-H). Sn K-edge XAS data of Sn(IV) doped C-S-H can be rationalized by corner sharing binding of Sn octahedra to Si tetrahedra of the C-S-H structure. XAS was further applied to determine the binding mechanism of Sn(IV) in the complex cement matrix. The second example illustrates the potential of emerging synchrotron-based X-ray micro-probe techniques for elucidating the spatial distribution and the speciation of contaminants in highly heterogeneous cementitious materials at the micro-scale. Micro X-ray fluorescence (XRF) and micro-XAS investigations were carried out on Co(II) doped hardened cement paste. These preliminary investigations reveal a highly heterogeneous spatial Co distribution. The presence of a Co(II)-hydroxide-like phase Co(OH)2 and/or Co-Al layered double hydroxide (Co-Al LDH) or Co-phyllosilicate was observed. Surprisingly, some of the initial Co(II) was partially oxidized and incorporated into a Co(III)O(OH)-like phase or a Co-phyllomanganate.

  18. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.

    PubMed

    Lin, Fang-hsin; Doong, Ruey-an

    2014-03-01

    Gold-magnetite heterostructures are novel nanomaterials which can rapidly catalyze the reduction reaction of nitroaromatics. In this study, the interfacially structural and electronic properties of various morphologies of Au-Fe3O4 heterostructures were systematically investigated using X-ray absorbance spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The effect of change in electronic structure and charge transfer on electrochemically catalytic activity of Au-Fe3O4 heterostructures was further evaluated by oxygen reduction reaction (ORR). The shifts in binding energy of Au4f and Fe2p peaks in XPS spectra indicate the charge transfer between the Au and Fe3O4 nanoparticles. The increase in d-hole population of Au seeds after the conjugation with iron oxides follows the order flower-like Au-Fe3O4 (FLNPs)>dumbbell-like Au-Fe3O4 (DBNPs)>Au seeds. In addition, the Fe(2+) valence state increases in Au-Fe3O4 heterostructures, which provides evidence to support the hypothesis of charge transfer between Au and Fe3O4 nanoparticles. The theoretical simulation of Au L3-edge XAS further confirms the production of Au-Fe and Au-O bonds at the interface of Au/Fe3O4 and the epitaxial linkage relationship between Au and Fe3O4 nanoparticles. In addition, the electron deficient of Au seeds increases upon increasing Fe3O4 nanoparticles on a single Au seed, and subsequently decreases the catalytic activity of Au in the Au-Fe3O4 heterostructures. The catalytic activity of Au-Fe3O4 toward ORR follows the order Au seeds>Au-Fe3O4 DBNPs>Au-Fe3O4 FLNPs, which is positively correlated to the extent of electronic deficiency of Au in Au-Fe3O4 heterostructures.

  19. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect

    Devloo-Casier, Kilian Detavernier, Christophe; Dendooven, Jolien

    2014-01-15

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  20. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    SciTech Connect

    Cahill, A. D. Hoyt, C. L. Shelkovenko, T. A. Pikuz, S. A. Hammer, D. A.

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emitted by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.