Science.gov

Sample records for absorptive partitioning theory

  1. Partition density functional theory

    NASA Astrophysics Data System (ADS)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  2. Quantum field theory of partitions

    SciTech Connect

    Bender, C.M.; Brody, D.C.; Meister, B.K.

    1999-07-01

    Given a sequence of numbers {l_brace}a{sub n}{r_brace}, it is always possible to find a set of Feynman rules that reproduce that sequence. For the special case of the partitions of the integers, the appropriate Feynman rules give rise to graphs that represent the partitions in a clear pictorial fashion. These Feynman rules can be used to generate the Bell numbers B(n) and the Stirling numbers S(n,k) that are associated with the partitions of the integers. {copyright} {ital 1999 American Institute of Physics.}

  3. A model for partitioning particulate absorption into phytoplanktonic and detrital components

    NASA Astrophysics Data System (ADS)

    Cleveland, J. S.; Perry, M. J.

    1994-01-01

    A model for partitioning total particulate absorption, measured on glass fiber filters, into phytoplanktonic and detrital components is developed. The model reconstructs absorption spectra for living phytoplankton using total particulate absorption at the red absorption maxima for chlorophylls a and b, concentrations of chlorophyll a and pheopigment, and mean normalized absorption spectra for laboratory-grown algal cultures. The model was developed in stages for two types of phytoplankton assemblages. Section A of the model applies to waters dominated by eukaryotic algae and is based on absorption spectra for chromophytic (phytoplankton containing chlorophyll c) and chlorophytic (containing chlorophyll b) species. Section B of the model, allowing more variability in spectral shape, was developed for algal communities with more diverse pigmentation. All spectra are processed through Section A, with an internal evaluation determining whether processing continues through Section B. Detrital spectra, generated as the difference between total particulate and modelled phytoplanktonic spectra, included pheopigment absorption and had high blue absorption. Blind tests on samples of known composition predicted absorption within 8-10% at 436 nm and 1-13% when averaged from 400 to 700 nm, which is within the expected accuracy of the glass fiber filter method. No true measure of phytoplankton absorption in field samples is available for testing the model, but results from methanol-extractions were used for comparison despite inclusion of pheopigment absorption as "phytoplankton". For samples collected from coastal waters of Washington State, the Sargasso Sea and coastal waters of Norway, modelled absorption (averaged over 400-700 nm) ranged from 25% lower to 0.5% higher than the methanol-extraction results; pheopigment absorption inappropriately included in the phytoplankton component accounts for the higher phytoplanktonic absorption estimated by the methanol technique

  4. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.

    PubMed

    Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian

    2015-03-01

    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling. PMID:26353267

  5. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  6. Problems with the process partitioning theory of stratocumulus entrainment

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    Three different approaches to partitioning were proposed. Ball (1960), Lilly (1968), and Deardorff et al. (1969, 1974) considered the sign of the net buoyancy flux at each level. If the net flux is positive, it is counted as TKE producing; otherwise, it is counted as TKE consuming. This approach can be called Eulerian partitioning. The second approach can be called process partitioning. It is assumed that the various processes acting in concert each produce and consume the same energy as if they acted independently (Manins and Turner, 1978). The total rates of TKE production and consumption are obtained by summing the effects of all the forcing processes. The third approach is Lagrangian partitioning. Each air parcel is considered as either producing or consuming TKE, according to the sign of the product of its density and vertical velocity anomalies. Stage and Businger (1981a,b) have applied process partitioning to the cloud topped mixed layer. One of the most important processes influencing entrainment into such a layer is cloud top radiative cooling. The production and consumption due to entrainment and radiative cooling are thus closely related. Model results are sensitive to the choice of formulation.

  7. Consequences of partitioning the photon into its electrical and magnetic vectors upon absorption by an electron

    NASA Astrophysics Data System (ADS)

    Szumski, Daniel S.

    2013-10-01

    This research uses classical arguments to develop a blackbody spectral equation that provides useful insights into heat processes. The theory unites in a single equation, the heat radiation theory of Planck and the heat of molecular motion theory of Maxwell and Boltzmann. Light absorption is considered a two-step process. The first is an adiabatic reversible step, wherein one-dimensional light energy is absorbed in a quantum amount, ! h" , by an electron. The absorbed quanta is still 1-dimensional(1-D), and remains within the domain of reversible thermodynamics. There is no recourse to the Second Law during this first step. The absorption process' second step is a dimensional restructuring wherein the electrical and magnetic vectors evolve separately. The 1-D electrical quanta transforms into its 3-D equivalent, electrical charge density. The resulting displacement of the generalized coordinates translates to 3-D motion, the evolution of Joule heat, and irreversible thermodynamics. The magnetic vector has no 3-D equivalent, and can only transform to 1-D paramagnetic spin. Accordingly, photon decoupling distorts time's fabric, giving rise to the characteristic blackbody spectral emittance. This study's spectral equation introduces a new quantity to physics, the radiation temperature. Where it is identical to the classical thermodynamic temperature, the blackbody spectral curves are consistent with Planck's. However, by separating these two temperatures in a stable far-from-equilibrium manner, new energy storage modes become possible at the atomic level, something that could have profound implications in understanding matter's living state.

  8. A Theory of Institutional Change and Control: Tri-Partite Power. Revised.

    ERIC Educational Resources Information Center

    Shapiro, Arthur

    This paper describes the Tri-Partite Theory of institutional change, which proposes that organizations in general and educational institutions in particular pass through three phases, each dominated by a specific personality type: person-orientation (loyalty to a charismatic leader as the basis of motivation); plan-orientation (functions…

  9. Acoustical study on the impact of sound absorptions, distances of workstations, and height of partitions in open plan offices

    NASA Astrophysics Data System (ADS)

    Utami, Sentagi Sesotya; Al Rochmadi, Nurwachid; Sarwono, R. Sugeng Joko

    2015-09-01

    Low partitions are commonly found in open-plan offices as the boundaries of workstation islands or groups of workstations. This room layout often cause excessive speech intelligibility, which creates work distraction and reduce the quality of speech privacy. Sound absorption, distance between workstations, and height of partitions are factors that were investigated on their impact to the room acoustics condition, referred to ISO 3382-3:2012. Observed room acoustics conditions were speech intelligibility, speech privacy, and distraction to concentrate in work using parameters of T30, C50, and RASTI. Parameters of T30, C50, and RASTI were used to evaluate the speech intelligibility. The level of speech privacy was indicated by parameter of privacy distance (rP). Distraction to concentrate in work was indicated by distraction distance (rD). The results from 2 experimental setups show that sound absorption, distance between workstations, and partitions influenced the level of speech intelligibility, speech privacy, and distraction to concentration at work. The value of C50 decline, by 76.9% and 77.4%, each for scenario A and B. RASTI decline, by 18.7% and 14.8%. Difference in percentage of speech privacy, by 6% and 11%. Difference in percentage of distraction to concentration at work, by 79% and 70%.

  10. Geometry of Spin and SPINc Structures in the M-Theory Partition Function

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.

  11. Convergence behavior of multireference perturbation theory: Forced degeneracy and optimization partitioning applied to the beryllium atom

    NASA Astrophysics Data System (ADS)

    Finley, James P.; Chaudhuri, Rajat K.; Freed, Karl F.

    1996-07-01

    High-order multireference perturbation theory is applied to the 1S states of the beryllium atom using a reference (model) space composed of the \\|1s22s2> and the \\|1s22p2> configuration-state functions (CSF's), a system that is known to yield divergent expansions using Mo/ller-Plesset and Epstein-Nesbet partitioning methods. Computations of the eigenvalues are made through 40th order using forced degeneracy (FD) partitioning and the recently introduced optimization (OPT) partitioning. The former forces the 2s and 2p orbitals to be degenerate in zeroth order, while the latter chooses optimal zeroth-order energies of the (few) most important states. Our methodology employs simple models for understanding and suggesting remedies for unsuitable choices of reference spaces and partitioning methods. By examining a two-state model composed of only the \\|1s22p2> and \\|1s22s3s> states of the beryllium atom, it is demonstrated that the full computation with 1323 CSF's can converge only if the zeroth-order energy of the \\|1s22s3s> Rydberg state from the orthogonal space lies below the zeroth-order energy of the \\|1s22p2> CSF from the reference space. Thus convergence in this case requires a zeroth-order spectral overlap between the orthogonal and reference spaces. The FD partitioning is not capable of generating this type of spectral overlap and thus yields a divergent expansion. However, the expansion is actually asymptotically convergent, with divergent behavior not displayed until the 11th order because the \\|1s22s3s> Rydberg state is only weakly coupled with the \\|1s22p2> CSF and because these states are energetically well separated in zeroth order. The OPT partitioning chooses the correct zeroth-order energy ordering and thus yields a convergent expansion that is also very accurate in low orders compared to the exact solution within the basis.

  12. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    NASA Astrophysics Data System (ADS)

    Parrish, Robert M.; Sherrill, C. David

    2014-07-01

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  13. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    SciTech Connect

    Parrish, Robert M.; Sherrill, C. David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  14. Towards a classification of modular invariant partition functions for theories based on N=4 superconformal algebras

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1993-05-01

    The representation theory of the doubly extended N=4 superconformal algebra is reviewed. The modular properties of the corresponding characters can be derived, using characters sumrules for coset realizations of these N=4 algebras. Some particular combinations of massless characters are shown to transform as affine SU(2) characters under S and T, a fact used to completely classify the massless sector of the partition function.

  15. A theory for optimal heat transfer in a partitioned convection cell

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Bao, Yun; She, Zhen-Su

    2015-11-01

    We report a theory explaining recent observation of significant enhancement of heat transfer in a partitioned Rayleigh-Bénard convection (RBC), where vertical adiabatic boards are inserted into the enclosure with narrow channel left open between partition boards and the cooling/heating plates. An enhancement of heat transfer of up to 2.7 times is observed compared to normal RBC cell without partitions. It is found that laminar wall jet is formed in the narrow horizontal channel, which makes the thermal boundary layer thinner. Two asymptotic trends, a channel flow and a boundary layer, describe the motions of the jets in the horizontal channel, and the competition between them gives rise to an optimized state for the global heat transfer, with an optimal width of the sub-cell W/H =0.038-0.083 for Γ = 1, and an optimal spacing of the horizontal channel b/H =0.011 for Γ = 5. The former (channel) yields a heat flux linearly proportional to b for small b, whereas the latter (boundary layer) follows -2/3-law for large b. We suggest that the partitioned RBC provides a vehicle for heat enhancement with a wide range of industrial applications. This work was supported by National Nature Science Fund of China under Grant No. 11372362.

  16. Random partitions and asymptotic theory of symmetric groups, Hecke algebras and finite Chevalley groups

    NASA Astrophysics Data System (ADS)

    Méliot, Pierre-Loïc

    2010-12-01

    In this thesis, we investigate the asymptotics of random partitions chosen according to probability measures coming from the representation theory of the symmetric groups S_n and of the finite Chevalley groups GL(n,F_q) and Sp(2n,F_q). More precisely, we prove laws of large numbers and central limit theorems for the q-Plancherel measures of type A and B, the Schur-Weyl measures and the Gelfand measures. Using the RSK algorithm, it also gives results on longest increasing subsequences in random words. We develop a technique of moments (and cumulants) for random partitions, thereby using the polynomial functions on Young diagrams in the sense of Kerov and Olshanski. The algebra of polynomial functions, or observables of Young diagrams is isomorphic to the algebra of partial permutations; in the last part of the thesis, we try to generalize this beautiful construction.

  17. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  18. Mean-field theory of planar absorption of RNA molecules

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan; Bruinsma, Robijn; Gelbart, William

    2006-03-01

    Interaction between the viral RNA and the protective protein capsid plays a very important role in the cell infection and self-assembly process of a virus. To better understand this interaction, we study a similar problem of absorption of RNA on an attractive wall. It is known that the secondary structure of a folded RNA molecules without pseudo-knots has the same topology as that of a branched polymer. We use a mean-field theory for branched polymers to analytically calculate the RNA concentration profile. The results are compared to known exact scaling calculations and computer simulations.

  19. Current density partitioning in time-dependent current density functional theory

    SciTech Connect

    Mosquera, Martín A.; Wasserman, Adam; Department of Physics, Purdue University, West Lafayette, Indiana 47907

    2014-05-14

    We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.

  20. Coupled metal partitioning dynamics and toxicodynamics at biointerfaces: a theory beyond the biotic ligand model framework.

    PubMed

    Duval, Jérôme F L

    2016-04-14

    A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes. PMID:26980542

  1. Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting

    NASA Astrophysics Data System (ADS)

    Bélanger, S.; Cizmeli, S. A.; Ehn, J.; Matsuoka, A.; Doxaran, D.; Hooker, S.; Babin, M.

    2013-10-01

    Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie River-influenced waters and polar mixed layer waters. We found that melting multiyear ice released significant amount of non-algal particulates (NAP) near the sea surface relative to subsurface waters. NAP absorption coefficients at 440 nm (aNAP(440)) immediately below the sea surface were on average 3-fold (up to 10-fold) higher compared to subsurface values measured at 2-3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs) was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR) by ∼6 and ∼8%, respectively, relative to a fully homogenous water column with low particle concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400-550 nm). These results highlight the impact of meltwater on the concentration of particles at sea surface, and the need for considering non-uniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV (ultraviolet) domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM (particulate organic matter) photobleaching).

  2. Light absorption and partitioning in Arctic Ocean surface waters: impact of multi year ice melting

    NASA Astrophysics Data System (ADS)

    Bélanger, S.; Cizmeli, S. A.; Ehn, J.; Matsuoka, A.; Doxaran, D.; Hooker, S.; Babin, M.

    2013-03-01

    Ice melting in the Arctic Ocean exposes the surface water to more radiative energy with poorly understood effects on photo-biogeochemical processes and heat deposition in the upper ocean. In August 2009, we documented the vertical variability of light absorbing components at 37 stations located in the southeastern Beaufort Sea including both Mackenzie river-influenced waters and polar mixed layer waters. We found that melting multi-year ice released significant amount of non-algal particulates (NAP) near the sea surface relative to sub-surface waters. NAP absorption coefficients at 440 nm (aNAP(440)) immediately below the sea surface (0-) were on average 3-fold (up to 10-fold) higher compared to sub-surface values measured at 2-3 m depth. The impact of this unusual feature on the light transmission and remote sensing reflectance (Rrs) was further examined using a radiative transfer model. A 10-fold particle enrichment homogeneously distributed in the first meter of the water column slightly reduced photosynthetically available and usable radiation (PAR and PUR) by ~6% and ~8%, respectively, relative to a fully homogenous water column with low particles concentration. In terms of Rrs, the particle enrichment significantly flattered the spectrum by reducing the Rrs by up to 20% in the blue-green spectral region (400-550 nm). These results highlight the impact of melt water on the concentration of particles at sea surface, and the need for considering nonuniform vertical distribution of particles in such systems when interpreting remotely sensed ocean color. Spectral slope of aNAP spectra calculated in the UV domain decreased with depth suggesting that this parameter is sensitive to detritus composition and/or diagenesis state (e.g., POM photobleaching).

  3. On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, R. L.

    2014-12-01

    We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel's plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.

  4. Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets.

    PubMed

    Levnajić, Zoran; Mezić, Igor

    2010-09-01

    We present a computational study of a visualization method for invariant sets based on ergodic partition theory, first proposed by Mezić (Ph.D. thesis, Caltech, 1994) and Mezić and Wiggins [Chaos 9, 213 (1999)]. The algorithms for computation of the time averages of observables on phase space are developed and used to provide an approximation of the ergodic partition of the phase space. We term the graphical representation of this approximation--based on time averages of observables--a mesochronic plot (from Greek: meso--mean, chronos--time). The method is useful for identifying low-dimensional projections (e.g., two-dimensional slices) of invariant structures in phase spaces of dimensionality bigger than two. We also introduce the concept of the ergodic quotient space, obtained by assigning a point to every ergodic set, and provide an embedding method whose graphical representation we call the mesochronic scatter plot. We use the Chirikov standard map as a well-known and dynamically rich example in order to illustrate the implementation of our methods. In addition, we expose applications to other higher dimensional maps such as the Froéschle map for which we utilize our methods to analyze merging of resonances and, the three-dimensional extended standard map for which we study the conjecture on its ergodicity [I. Mezić, Physica D 154, 51 (2001)]. We extend the study in our next paper [Z. Levnajić and I. Mezić, e-print arXiv:0808.2182] by investigating the visualization of periodic sets using harmonic time averages. Both of these methods are related to eigenspace structure of the Koopman operator [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)]. PMID:20887054

  5. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  6. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  7. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  8. Theory of strong-field attosecond transient absorption

    NASA Astrophysics Data System (ADS)

    Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J.; Gaarde, Mette B.

    2016-03-01

    Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser-matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption

  9. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory.

    PubMed

    Yang, Yihong; Mandehgar, Mahboubeh; Grischkowsky, D

    2014-02-24

    Determination of the water vapor continuum absorption from 0.35 to 1 THz is reported. The THz pulses propagate though a 137 m long humidity-controlled chamber and are measured by THz time-domain spectroscopy (THz-TDS). The average relative humidity along the entire THz path is precisely obtained by measuring the difference between transit times of the sample and reference THz pulses to an accuracy of 0.1 ps. Using the measured total absorption and the calculated resonance line absorption with the Molecular Response Theory lineshape, based on physical principles and measurements, an accurate continuum absorption is obtained within four THz absorption windows, that agrees well with the empirical theory. The absorption is significantly smaller than that obtained using the van Vleck-Weisskopf lineshape with a 750 GHz cut-off. PMID:24663762

  10. Application of Equilibrium Partitioning Theory to Soil PAH Contamination (External Review Draft)

    EPA Science Inventory

    In March 2004, ORD's Ecological Risk Assessment Support Center (ERASC) received a request from the Ecological Risk Assessment Forum (ERAF) to provide insight into the issue of whether equilibrium partitioning (EqP) techniques can be used to predict the toxicity of polycyclic arom...

  11. Evaluation of carbon isotope flux partitioning theory under simplified and controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of the photosynthetic (Fp) and respiratory (Fr) fluxes of net CO2 exchange (Fn)remains a necessary step toward understanding the biological and physical controls on carbon cycling between the soil, biomass, and atmosphere. Despite recent advancements in stable carbon isotope partitioning ...

  12. Single-dot absorption spectroscopy and theory of silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Sychugov, Ilya; Pevere, Federico; Luo, Jun-Wei; Zunger, Alex; Linnros, Jan

    2016-04-01

    Photoluminescence excitation measurements have been performed on single, unstrained oxide-embedded Si nanocrystals. Having overcome the challenge of detecting weak emission, we observe four broad peaks in the absorption curve above the optically emitting state. Atomistic calculations of the Si nanocrystal energy levels agree well with the experimental results and allow identification of some of the observed transitions. An analysis of their physical nature reveals that they largely retain the indirect band-gap structure of the bulk material with some intermixing of direct band-gap character at higher energies.

  13. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption

    NASA Astrophysics Data System (ADS)

    Patrick, Christopher E.; Giustino, Feliciano

    2014-09-01

    We present a theory of electronic excitation energies and optical absorption spectra which incorporates energy-level renormalization and phonon-assisted optical absorption within a unified framework. Using time-independent perturbation theory we show how the standard approaches for studying vibronic effects in molecules and those for addressing electron-phonon interactions in solids correspond to slightly different choices for the non-interacting Hamiltonian. Our present approach naturally leads to the Allen-Heine theory of temperature-dependent energy levels, the Franck-Condon principle, the Herzberg-Teller effect and to phonon-assisted optical absorption in indirect band gap materials. In addition, our theory predicts sub-gap phonon-assisted optical absorption in direct gap materials, as well as an exponential edge which we tentatively assign to the Urbach tail. We also consider a semiclassical approach to the calculation of optical absorption spectra which simultaneously captures energy-level renormalization and phonon-assisted transitions and is especially suited to first-principles electronic structure calculations. We demonstrate this approach by calculating the phonon-assisted optical absorption spectrum of bulk silicon.

  14. Dipole Theory of Heat Production and Absorption in Nerve Axon

    PubMed Central

    Wei, Ling Y.

    1972-01-01

    Exact formulas are derived for the energy change of a dipole system with two energy states (or bands) in a changing field in two cases: (a) no dipole flip-flop and (b) dipole flip-flop caused by stimulation. Based on these formulas, the positive and negative heats are calculated. The results are in good agreement with experiment in case b but are 60-180% larger in case a. Furthermore, the theory shows that the negative heat cannot be less than the positive heat in case a but can be either way in case b, the latter result being found prevalent in experiment. It is concluded that nerve excitation is most likely to involve dipole flip-flop at the membrane surface. The theory is consistent in the interpretations and correlations of the electrical, optical, and thermal effects observed in nerve axon. PMID:5056960

  15. Absolute absorption on the potassium D lines: theory and experiment

    NASA Astrophysics Data System (ADS)

    Hanley, Ryan K.; Gregory, Philip D.; Hughes, Ifan G.; Cornish, Simon L.

    2015-10-01

    We present a detailed study of the absolute Doppler-broadened absorption of a probe beam scanned across the potassium D lines in a thermal vapour. Spectra using a weak probe were measured on the 4S \\to 4P transition and compared to the theoretical model of the electric susceptibility detailed by Zentile et al (2015 Comput. Phys. Commun. 189 162-74) in the code named ElecSus. Comparisons were also made on the 4S \\to 5P transition with an adapted version of ElecSus. This is the first experimental test of ElecSus on an atom with a ground state hyperfine splitting smaller than that of the Doppler width. An excellent agreement was found between ElecSus and experimental measurements at a variety of temperatures with rms errors ˜ {10}-3. We have also demonstrated the use of ElecSus as an atomic vapour thermometry tool, and present a possible new measurement technique of transition decay rates which we predict to have a precision of ˜3 {kHz}.

  16. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  17. Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: Assessment of equilibrium partitioning theory in in situ studies and water experiments

    SciTech Connect

    Ma, W.; Kleunen, A. van; Immerzeel, J.; Maagd, P.G.J. de

    1998-09-01

    The purpose of this study was to assess the suitability of applying equilibrium partitioning (EqP) theory to predict the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by earthworms when these are exposed to contaminated soils in the field. Studies carried out in situ in various contaminated floodplain sites showed the presence of linear relationships with intercept zero between the lipid-normalized concentration of different PAHs in the earthworm, Lumbricus rubellus and the organic-matter-normalized concentration of the compounds in soil. The demonstration of such an isometric relationship is in agreement with the prediction of EqP theory that the biota-soil accumulation factor (BSAF) should be independent of the octanol/water partition coefficient, log K{sub ow}. The average BSAF of PAH compounds in the sampled 20-cm top layer of soil was 0.10. The present study also investigated the route of uptake of PAHs for earthworms in soil. The bioconcentration factor of low-molecular-weight PAHs, such as phenanthrene, fluoranthene, and pyrene, was derived from bioconcentration kinetic modeling of water-only experiments and found to be of the same order of magnitude as the bioaccumulation factor in the field when the latter was normalized to calculated concentrations in soil pore water. The results indicated that the exposure of earthworms to PAHs in soil is mediated through direct contact of the worms with the dissolved interstitial soil-water phase, further supporting the applicability of EqP theory to PAHs. The experimental data on the biotransformation of PAHs suggest that earthworms possess some capacity of metabolization, although this does not seem to be a major factor in the total elimination of these compounds. Even though the EqP approach was found to be applicable to low-molecular-weight PAHs with respect to the prediction of bioaccumulation by earthworms in the field, the results were less conclusive for high-molecular-weight compounds, such as

  18. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  19. Production of 4-valerolactone by an equilibrium-limited transformation in a partitioning bioreactor: impact of absorptive polymer properties.

    PubMed

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The biotransformation of levulinic acid to 4-valerolactone (4VL) is pH-dependent and equilibrium limited, distinct from the more common irreversible biotransformations that are constrained by product toxicity or biocatalyst inhibition. Our processing strategy for this system was to selectively remove the product, 4VL, which is in equilibrium with its precursor, 4-hydroxyvalerate (4HV), to pull the reaction to a greater extent of conversion. 4VL is challenging to separate from the aqueous phase due to its water miscibility, necessitating the use of water-absorbing polymers to provide affinity toward the hydrophilic product. Manipulating the composition of copolymers, thereby varying the architecture of polymer chains, conferred drastically different extents of water absorption and caused different biotransformation outcomes. A custom-synthesized random copolymer designed to maximize the proportion of material with affinity for the solute had high water uptake, which resulted in the poor selectivity for the target molecule relative to its precursor. Conversely, a moderately water-absorbing commercial segmented block copolymer, Hytrel(®) 8206, demonstrated selectivity toward 4VL relative to its precursor, 4HV, and increased 4VL production by approximately 30 % by shifting the equilibrium toward the product. This work has shown that water absorption is an important, previously neglected criterion in evaluating polymer affinity and selectivity toward hydrophilic target molecules. PMID:23907719

  20. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  1. Theory of x-ray absorption by laser-aligned symmetric-top molecules.

    SciTech Connect

    Buth, C.; Santra, R.; Chemical Sciences and Engineering Division

    2008-01-01

    We devise a theory of x-ray absorption by symmetric-top molecules which are aligned by an intense optical laser. Initially, the density matrix of the system is composed of the electronic ground state of the molecules and a thermal ensemble of rigid-rotor eigenstates. We formulate equations of motion of the two-color (laser plus x rays) rotational-electronic problem. The interaction with the laser is assumed to be nonresonant; it is described by an electric dipole polarizability tensor. X-ray absorption is approximated as a one-photon process. It is shown that the equations can be separated such that the interaction with the laser can be treated independently of the x rays. The laser-only density matrix is propagated numerically. After each time step, the x-ray absorption is calculated. We apply our theory to study adiabatic alignment of bromine molecules (Br2). The required dynamic polarizabilities are determined using the ab initio linear response methods coupled-cluster singles (CCS), second-order approximate coupled-cluster singles and doubles (CC2), and coupled-cluster singles and doubles (CCSD). For the description of x-ray absorption on the {sigma}g1s-->{sigma}u4p resonance, a parameter-free two-level model is used for the electronic structure of the molecules. Our theory opens up novel perspectives for the quantum control of x-ray radiation.

  2. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases. PMID:26565352

  3. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  4. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  5. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles < 75° with a well known photon path, we assume that the retrieved total column NO2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T

  6. Quantifying garnet-melt trace element partitioning using lattice-strain theory: assessment of statistically significant controls and a new predictive model

    NASA Astrophysics Data System (ADS)

    Draper, David S.; van Westrenen, Wim

    2007-12-01

    As a complement to our efforts to update and revise the thermodynamic basis for predicting garnet-melt trace element partitioning using lattice-strain theory (van Westrenen and Draper in Contrib Mineral Petrol, this issue), we have performed detailed statistical evaluations of possible correlations between intensive and extensive variables and experimentally determined garnet-melt partitioning values for trivalent cations (rare earth elements, Y, and Sc) entering the dodecahedral garnet X-site. We applied these evaluations to a database containing over 300 partition coefficient determinations, compiled both from literature values and from our own work designed in part to expand that database. Available data include partitioning measurements in ultramafic to basaltic to intermediate bulk compositions, and recent studies in Fe-rich systems relevant to extraterrestrial petrogenesis, at pressures sufficiently high such that a significant component of majorite, the high-pressure form of garnet, is present. Through the application of lattice-strain theory, we obtained best-fit values for the ideal ionic radius of the dodecahedral garnet X-site, r 0(3+), its apparent Young’s modulus E(3+), and the strain-free partition coefficient D 0(3+) for a fictive REE element J of ionic radius r 0(3+). Resulting values of E, D 0, and r 0 were used in multiple linear regressions involving sixteen variables that reflect the possible influence of garnet composition and stoichiometry, melt composition and structure, major-element partitioning, pressure, and temperature. We find no statistically significant correlations between fitted r 0 and E values and any combination of variables. However, a highly robust correlation between fitted D 0 and garnet-melt Fe Mg exchange and D Mg is identified. The identification of more explicit melt-compositional influence is a first for this type of predictive modeling. We combine this statistically-derived expression for predicting D 0 with the new

  7. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  8. Interferometric control of absorption in thin plasmonic metamaterials: general two port theory and broadband operation.

    PubMed

    Baldacci, L; Zanotto, S; Biasiol, G; Sorba, L; Tredicucci, A

    2015-04-01

    In order to extend the Coherent Perfect Absorption (CPA) phenomenology to broadband operation, the interferometric control of absorption is investigated in two-port systems without port permutation symmetry. Starting from the two-port theory of CPA treated within the Scattering Matrix formalism, we demonstrate that for all linear two-port systems with reciprocity the absorption is represented by an ellipse as function of the relative phase and intensity of the two input beams, and it is uniquely determined by the device single-beam reflectance and transmittance, and by the dephasing of the output beams. The basic properties of the phenomenon in systems without port permutation symmetry show that CPA conditions can still be found in such asymmetric devices, while the asymmetry can be beneficial for broadband operation. As experimental proof, we performed transmission measurements on a metal-semiconductor metamaterial, employing a Mach-Zehnder interferometer. The experimental results clearly evidence the elliptical feature of absorption and trace a route towards broadband operation. PMID:25968754

  9. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Berggren, Lars; Jonsson, Jacob C.; Niklasson, Gunnar A.

    2007-10-01

    Amorphous tungsten oxide exhibits electrochromism when intercalated with protons, lithium, sodium, and other ions. Thin films of the material were prepared by dc magnetron sputtering and then electrochemically intercalated with lithium. The optical absorption in the wavelength range of 300-2500nm was measured for a number of lithium concentrations. The optical absorption shows a maximum for lithium/tungsten ratios of 0.3-0.5. The optical spectra can be fitted by a superposition of three Gaussian peaks, representing the three possible electronic transitions between W6+, W5+, and W4+ sites. The variation of the peak strength with lithium concentration is consistent with an extended site-saturation theory.

  10. Quantitative first-principles theory of interface absorption in multilayer heterostructures

    SciTech Connect

    Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; Pantelides, Sokrates T.

    2015-08-31

    The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. We describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicated systems. We demonstrate, using NiSi{sub 2}/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.

  11. Absorption microspectroscopy, theory and applications in the case of the photosynthetic compartment.

    PubMed

    Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Vesentini, Nicoletta; Passarelli, Vincenzo; Gualtieri, Paolo

    2007-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of both algae and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions, and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories. PMID:16904900

  12. X-ray absorption spectroscopy study of prototype chemical systems: Theory vs. experiment

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig Philip

    Understanding the details of the intensities and spectral shapes of x-ray absorption spectra is a long-standing problem in chemistry and physics. Here, I present detailed studies of x-ray absorption for prototypical liquids, solids and gases with the goal of enhancing our general understanding of core-level spectroscopy via comparisons of modern theory and experiment. In Chapter 2, I investigate the importance of quantum motions in the x-ray absorption spectra of simple gases. It is found that rare fluctuations in atomic positions can be a cause of features in the spectra of gaseous molecules. In Chapter 3, I explore a novel quantization scheme for the excited and ground state potential surfaces for an isolated nitrogen molecule. This allows for the explicit calculation of the "correct" transition energies and peak widths (i.e. without any adjustable parameters). In Chapter 4, the importance of nuclear motion in molecular solids is investigated for glycine. We find that the inclusion of these motions permits the spectrum to be accurately calculated without any additional adjustable parameters. In Chapter 5, I provide a detailed study of the hydroxide ion solvated in water. There has been recent controversy as to how hydroxide is solvated, with two principal models invoked. I show that some of the computational evidence favoring one model of solvation over the other has been either previously obtained with inadequate precision or via a method that is systematically biased. In Chapter 6, the measured and computed x-ray absorption spectra of pyrrole in both the gas phase and when solvated by water are compared. We are able to accurately predict the spectra in both cases. In Chapter 7, the measured x-ray absorption of a series of highly charged cationic salts (YBr3, CrCl3, SnCl4 , LaCl3 and InCl3) solvated in water are presented and explained. In Chapter 8, the measured x-ray absorption spectrum at the nitrogen K-edge of aqueous triglycine is presented, including

  13. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1991-01-01

    The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.

  14. Partition search

    SciTech Connect

    Ginsberg, M.L.

    1996-12-31

    We introduce a new form of game search called partition search that incorporates dependency analysis, allowing substantial reductions in the portion of the tree that needs to be expanded. Both theoretical results and experimental data are presented. For the game of bridge, partition search provides approximately as much of an improvement over existing methods as {alpha}-{beta} pruning provides over minimax.

  15. Theory of x-ray absorption: a Bethe-Salpeter approach

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.

    2002-03-01

    First-principles calculations of x-ray absorption spectra of solids is a well-established field. The best known and most used treatments are probably those based on real-space multiple-scattering theory. Such Green's Function approaches are particular useful for incorporating electron damping effects (self-energy effects) that broaden spectral features at high electron kinetic energy. Near-edge structure can also be treated, and it can also be treated in super-cell calculations. In this talk, I will present results obtained using an alternative, reciprocal-space approach based on solving the Bethe-Salpeter equation, which is related to the Bethe-Salpeter method used to treat valence excitation signatures in optical absorption spectra. This amounts to solving the coupling equations of motion for the electron-core hole pair that is produced by x-ray absorption. Mutual localization of the electron and core hole in real space is realized by permitting the electron to exist as a wave-packet of Bloch states peaked near the core hole, governed by the excitation process and ensuing electron core-hole attraction. Because this approach permits state-of-the-art electron band structure calculations to be used to evaluate the electron wave function, this approach is particularly well suited for detailed near-edge structure. In presenting the approach and results obtained, particular attention is focused on (1) the role of the electron-hole interaction, (2) the need to deal with core-hole screening accurately, (3) the evaluation of accurate transition matrix elements between core states and Bloch states, and (4) computational-time scaling issues. This work has been done in collaboration with J.A. Soininen, J.J. Rehr, E.K. Chang, and others. This work was supported in part by the U.S. Deparment of Energy (DOE) Grant DE-FG03-97ER45623 and facilitated by the DOE Computational Materials Science Network (CMSN).

  16. Absorption and resonance Raman study of the pyromellitic diahydride anion via density functional theory

    NASA Astrophysics Data System (ADS)

    Andruniow, T.; Pawlikowski, M.

    2000-05-01

    The electronic structure of the low-energy states of the pyromellitic diahydride (PMDA) anion is investigated in terms of the VWN (Vosco-Wilk-Nusair) the BP (Becke-Perdew) and the B3LYP density functional (DF) methods employed with 6-31G * basis sets. All the methods are shown to reproduce correctly the absorption and resonance Raman spectra in the region corresponding to the low-energy 1 2Au→1 2B3g transition. The discrepancies between the theory and experiment are attributed to a (weak) Dushinsky effect predominately due to a mixing of the ν3=1593 cm -1 and ν4=1342 cm -1 vibrations in the 1 2B3 g state of the PMDA radical.

  17. Absorption of scalars by nonextremal charged black holes in string theory

    NASA Astrophysics Data System (ADS)

    Moura, Filipe

    2015-12-01

    We analyze the low frequency absorption cross section of minimally coupled massless scalar fields by different kinds of charged static black holes in string theory, namely the D1-D5 system in d=5 and a four dimensional dyonic four-charged black hole. In each case we show that this cross section always has the form of some parameter of the solution divided by the black hole Hawking temperature. We also verify in each case that, despite its explicit temperature dependence, such quotient is finite in the extremal limit, giving a well defined cross section. We show that this precise explicit temperature dependence also arises in the same cross section for black holes with string α ' corrections: it is actually induced by them.

  18. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    SciTech Connect

    Ackerman, J.P.; Johnson, T.R.

    1993-10-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

  19. Theory and interpretation of L-shell X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Nesvizhskii, Alexey I.

    X-ray absorption near edge structure (XANES) directly reflects the electronic structure in a material. However, despite significant progress in XANES theory, the quantitative analysis of XANES is not fully developed and remains a challenge. In this work, a detailed analysis of the L2,3 edge XANES in transition metals was performed using relativistic, self-consistent real space Green's function code FEFFS. Several prescriptions for taking into account core hole in calculations of x-ray absorption spectra (XAS) were discussed. It was found that in most cases of L2,3 edge XANES in transition metals, the initial state (ground state) calculations were in the best agreement with experimental data. A procedure was developed for quantitative applications of the sum rules for XAS, e.g., for x-ray magnetic circular dichroism and for obtaining hole counts. The approach is based on theoretical atomic calculations of transformations relating various experimental spectra to corresponding operator-spectral densities. This approach overcomes the difficulties of background subtraction and hole-count normalization of other sum rule analysis methods and yields quantitative values for spin- and orbital-moments from experimental absorption spectra. The developed approach was theoretically tested and applied to experimental XAS data in Cu, Ni, Co, Fe, and other materials. Hole counts obtained from XAS are often interpreted in terms of free-atom occupation numbers or Mulliken counts. We demonstrated that renormalized-atom (RA) counts are a better choice to characterize the configuration of occupied electron states in molecules and condensed matter. A projection-operator approach was introduced to subtract delocalized states and to determine such hole counts from XAS quantitatively. Theoretical tests for the s- and d-electrons in transition metals showed that the approach works well. A formalism was developed based on time dependent local density approximation (TDLDA) theory that takes

  20. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    SciTech Connect

    Hudson, E.A.; Allen, P.G.; Terminello, L.J.; Denecke, M.A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO{sub 2}{sup 2+}) in uranium {ital L}{sub 3}-edge extended x-ray-absorption fine structure (EXAFS), and {ital L}{sub 1}- and {ital L}{sub 3}-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO{sub 2}(CH{sub 3}CO{sub 2}){sub 2}{center_dot}2H{sub 2}O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the {ital ab} {ital initio} multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO{sub 2}F{sub 2}) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the {ital L}{sub 1}-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured {ital L}{sub 3}-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the {ital L}{sub 1}-edge XANES calculations, in which overlapping was required for the best agreement with experiment. {copyright} {ital 1996 The American Physical Society.}

  1. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    NASA Astrophysics Data System (ADS)

    Hudson, E. A.; Allen, P. G.; Terminello, L. J.; Denecke, M. A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO2+2) in uranium L3-edge extended x-ray-absorption fine structure (EXAFS), and L1- and L3-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO2(CH3CO2)2.2H2O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the ab initio multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO2F2) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the L1-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured L3-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the L1-edge XANES calculations, in which overlapping was required for the best agreement with experiment.

  2. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert’s Variational Perturbation Theory

    PubMed Central

    Wong, Kin-Yiu; Gao, Jiali

    2009-01-01

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert’s variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H3 reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H2, HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of

  3. Absorption of light by excitons and trions in monolayers of metal dichalcogenide MoS2: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Zhang, Changjian; Wang, Haining; Chan, Weimin; Manolatou, Christina; Rana, Farhan

    2014-05-01

    We measure the optical-absorption spectra and optical conductivities of excitons and trions in monolayers of metal dichalcogenide MoS2 and compare the results with theoretical models. Our results show that the Wannier-Mott model for excitons with modifications to account for small exciton radii and large exciton relative wave function spread in momentum space, phase space blocking due to Pauli exclusion in doped materials, and wave-vector-dependent dielectric constant gives results that agree well with experiments. The measured exciton optical-absorption spectra are used to obtain experimental estimates for the exciton radii that fall in the 7-10Å range and agree well with theory. The measured trion optical-absorption spectra are used to obtain values for the trion radii that also agree well with theory. The measured values of the exciton and trion radii correspond to binding energies that are in good agreement with values obtained from first-principles calculations.

  4. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    SciTech Connect

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.

  5. Theory of the electronic states and absorption spectrum of the LiCl:Ag+ impurity system

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar A.; Lin, Chun C.

    1990-01-01

    The impurity absorption spectra of Ag+ and Cu+ impurities in alkali halide hosts show characteristically different features, despite the similar nature of the corresponding free ions. We use the self-interaction-corrected local-spin-density (SIC-LSD) theory to calculate the electronic structure of the ground state (4d) and the 5s and 5p excited states of the LiCl:Ag+ impurity ion. The method of linear combinations of atomic orbitals is used to determine the wave functions and energy levels. By comparing with previous calculations for LiCl:Cu+, we are able to attribute the differences in the d-->s and d-->p transitions in the ultraviolet spectra of these systems to the increased bonding between host crystal and impurity orbitals in LiCl:Ag+, due to the more extensive nature of the Ag+ 4d orbitals. A modification of the earlier SIC-LSD impurity-crystal procedure is introduced to treat the strongly mixed impurity states.

  6. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  7. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1992-01-01

    The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.

  8. Excited-State Absorption from Real-Time Time-Dependent Density Functional Theory: Optical Limiting in Zinc Phthalocyanine.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2016-04-01

    Optical-limiting materials are capable of attenuating light to protect delicate equipment from high-intensity light sources. Phthalocyanines have attracted a lot of attention for optical-limiting applications due to their versatility and large nonlinear absorption. With excited-state absorption (ESA) being the primary mechanism for optical limiting behavior in phthalocyanines, the ability to tune the optical absorption of ground and excited states in phthalocyanines would allow for the development of advanced optical limiters. We recently developed a method for the calculation of ESA based on real-time time-dependent density functional theory propagation of an excited-state density. In this work, we apply the approach to zinc phthalocyanine, demonstrating the ability of our method to efficiently identify the optical limiting potential of a molecular complex. PMID:27007445

  9. Charge Transport and Light Absorption in Conjugated Systems from Extended HÜCKEL Method and Marcus Theory

    NASA Astrophysics Data System (ADS)

    To, Tran Thinh; Adams, Stefan

    2012-06-01

    A simple first principle model was developed based on extended Hückel-type orbital calculation, Marcus electron transport theory and two-dimensional-electron-gas model for the treatment of charge transport in conjugated polymers. Though simple and easy to compute, the effect of the applied electric-field is factored in. Based on this, a complete one-dimensional device model with a single layer of conjugated polymer sandwiched between two electrodes was developed with poly(3-hexylthiophene) (P3HT) as a case study. Simulated J-V curves show that π-π charge transport is much more pronounced than intra-chain transport, hence agree with previous findings. Using the same framework, we also calculated the absorption spectra of P3HT by considering the electronic energy barrier for electronic transitions that would satisfy Franck-Condon principle. Absorption spectra closely harmonize to experimental UV-Vis result. The model also reveals intra-chain electronic transitions to be the dominant absorption mechanism. All parameters of the model are obtained from either ab-initio Density Functional Theory (DFT) or Molecular Dynamics (MD) calculations, so that this model is capable of predicting charge transport and light absorption properties of new conjugated polymers without introducing fit parameters.

  10. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy.

    PubMed

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl(2)O(4):Cr(3+) for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr(3+) cations among the two different octahedral sites of the alexandrite structure (70% in the C(s) site-30% in the C(i) site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions. PMID:22551549

  11. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl2O4:Cr3+ for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr3+ cations among the two different octahedral sites of the alexandrite structure (70% in the Cs site-30% in the Ci site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  12. Theory of x-ray absorption and linear dichroism at the Ca L23-edge of CaCO3

    NASA Astrophysics Data System (ADS)

    Krüger, Peter; Natoli, Calogero R.

    2016-05-01

    X-ray absorption calculations of Ca L23-edge spectra of calcium carbonate in its two main crystal phases, calcite and aragonite, are reported. The multichannel multiple scattering theory with a correlated particle-hole wave function and a partially screened core-hole potential is used. Very good agreement with experiment for both CaCO3 phases is obtained, while the independent particle approximation completely fails. For aragonite, appreciable linear dichroism is predicted in agreement with recent observations.

  13. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  14. Satellite Retrieval of the Absorption Coefficient of Phytoplankton Phycoerythrin Pigment: Theory and Feasibility Status

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Lyon, Paul E.; Swift, Robert N.; Yungel, James K.

    1999-12-01

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual big three inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM) detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite

  15. Evidence for strong electron correlations in graphene molecular fragments: Theory and experiments on two-photon absorptions

    NASA Astrophysics Data System (ADS)

    Aryanpour, Karan; Roberts, Adam; Sandhu, Arvinder; Shukla, Alok; Mazumdar, Sumit

    2013-03-01

    Historically, the occurrence of the lowest two-photon state below the optical one-photon state in linear polyenes, polyacetylenes and polydiacetylenes provided the strongest evidence for strong electron correlations in these linear π-conjugated systems. We demonstrate similar behavior in several molecular fragments of graphene with D6 h symmetry, theoretically and experimentally. Theoretically, we have calculated one versus two-photon absorptions in coronene, two different hexabenzocoronenes and circumcoronene, within the Pariser-Parr-Pople π-electron Hamiltonian using high order configuration interaction. Experimentally, we have performed z-scan measurements using a white light super-continuum source on coronene and hexa-peri-hexabenzocoronene to determine frequency-dependent two-photon absorption coefficients, for comparison to the ground state absorptions. Excellent agreement between experiment and theory in our work gives strong evidence for significant electron correlations between the π-electrons in the graphene molecular fragments. We particularly benchmark high order electron-hole excitations in graphene fragments as a key element behind the agreement between theory and experiment in this work. We acknowledge NSF-CHE-1151475 grant as our funding source.

  16. Partitioning the Controls on Carbon Flux Between Light Absorption and Light Use Efficiency: Insights From High Spatial and Temporal Resolution Remote Sensing.

    NASA Astrophysics Data System (ADS)

    Sims, D. A.; Kwon, H.; Luo, H.; Oechel, W.; Gamon, J.

    2001-12-01

    Comparisons between eddy covariance measurements of CO2 flux and remotely sensed spectral reflectance are often limited by mis-matches in temporal and spatial scales. Eddy flux measurements are made continuously through time whereas satellite sensors typically measure only once per day or less and many days may be lost because of cloud cover. In addition, satellite sensors such as MODIS have pixel sizes as large as a whole eddy flux footprint, making precise spatial correlation difficult. In order to better match the temporal and spatial scales of remote sensing measurements to those of eddy flux, we installed automated systems (optical sampling instruments on a tram system) within eddy covariance tower footprints at Sky Oaks field station near San Diego, CA. This system measured hyperspectral (narrow-band) reflectance over a 100 m transect throughout diurnal and seasonal cycles. These data were used to explore the controls on carbon flux and to develop models for scaling eddy flux measurements to the surrounding region. Fractional absorbed radiation (estimated from NDVI) varied dramatically over the diurnal cycle but was relatively constant across seasons in this evergreen shrub dominated system. By contrast, seasonal carbon flux varied more closely with optical signals of light-use efficiency. Consequently, large seasonal changes in carbon flux were primarily a function of light-use efficiency rather than light absorption. These data suggest that models based solely on light absorption by vegetation may miss large fluctuations in carbon exchange resulting from downregulation of photosynthesis. Although this ecosystem may be an extreme case, there are many evergreen ecosystems in which photosynthetic downregulation could play a large role. Application of this optical measuring system at other FLUXNET sites would greatly increase our understanding of the role of photosynthetic downregulation in global carbon cycles.

  17. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.

    PubMed

    Sugano, Kiyohiko; Terada, Katsuhide

    2015-09-01

    The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy. PMID:25712830

  18. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  19. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  20. In vitro prediction of human intestinal absorption and blood-brain barrier partitioning: development of a lipid analog for micellar liquid chromatography.

    PubMed

    De Vrieze, Mike; Janssens, Pieter; Szucs, Roman; Van der Eycken, Johan; Lynen, Frédéric

    2015-09-01

    Over the past decades, several in vitro methods have been tested for their ability to predict either human intestinal absorption (HIA) or penetration across the blood-brain barrier (BBB) of drugs. Micellar liquid chromatography (MLC) has been a successful approach for retention time measurements of drugs to establish models together with other molecular descriptors. Thus far, MLC approaches have only made use of commercial surfactants such as sodium dodecyl sulfate (SDS) and polyoxyethylene (23) lauryl ether (Brij35), which are not representative for the phospholipids present in human membranes. Miltefosine, a phosphocholine-based lipid, is presented here as an alternative surfactant for MLC measurements. By using the obtained retention factors and several computed descriptors for a set of 48 compounds, two models were constructed: one for the prediction of HIA and another for the prediction of penetration across the BBB expressed as log BB. All data were correlated to experimental HIA and log BB values, and the performance of the models was evaluated. Log BB prediction performed better than HIA prediction, although HIA prediction was also improved a lot (from 0.5530 to 0.7175) compared to in silico predicted HIA values. PMID:26277183

  1. Absorption and diffusion of hydrogen in palladium-silver alloys by density functional theory

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kramer, Gert Jan

    2002-11-01

    The vibrational states, absorption energies, and diffusions of H in Pd and Pd1-xAgx(0<~x<~1) have been studied by first-principle calculations. All results compare favorably to experiment. The zero-point motion of H is important in the determination of the H site occupation, in the estimation of the diffusion barrier, and in the explanation of the reversed isotope effect. The interesting anomalous isotope effect is explored, and a diffusion mechanism is proposed for tritium. The preferred diffusion paths of H in Pd and Pd1-xAgx are “indirect” paths. According to the absorption energies and diffusion barriers, H diffusion in Pd-Ag alloys should avoid the Ag-rich areas.

  2. Theory of the anomalous resonant absorption of DNA at microwave frequencies.

    PubMed

    Van Zandt, L L; Davis, M E

    1986-04-01

    Aqueous solutions of oligopolymer DNA have been observed by Edwards, Davis, Swicord & Saffer to show structured absorption of microwave energy in the region of several gigahertz characteristic of an ordered series of compressional normal mode vibrations propagating on the polymer chain. Hydrodynamic coupling of such vibrations to the surrounding solvent would preclude the existence of sharp resonances. The inclusion of electromagnetic interactions with surrounding counter ions yields a richer space of possibilities for complex behavior of the combined system. A well defined resonant absorption peak appears when the molecular motion and the nearby solvent motion are even slightly decoupled. The microwave electric fields in the vicinity of the molecule provide a mechanism for such a decoupling not present for the case of electrically neutral solvent. PMID:3271413

  3. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    NASA Astrophysics Data System (ADS)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  4. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin

    SciTech Connect

    Pollard, W.T.; Peteanu, L.A.; Mathies, R.A.

    1992-07-23

    A time-dependent theory for femtosecond dynamic absorption spectroscopy is used to describe the creation and observation of molecular ground-state vibrational coherence through the resonance impulsive stimulated Raman mechanism. Model calculations show that the oscillatory absorption signal that arises from this ground-state coherence is maximized for a limited range of pulse lengths and that there is a complex relationship between the probe wavelength and the strength of the spectral oscillations. The generalized time-dependent linear susceptibility of the nonstationary system created by the impulsive pump pulse is defined and used to discuss the strong dependence of the measured signals on the properties of the probe pulse. Finally, calculations are presented to analyze the high-frequency oscillations ({approximately}20-fs period) recently observed in the transient absorption spectra of light-adapted bacteriorhodopsin (BR{sub 568}) following excitation with a 12-fs optical pulse. At the probe wavelengths used in this experiment, the contribution of stimulated emission is negligible at long times because of the extremely rapid excited-state isomerization; as a result, the spectral oscillations observed after this time are due to the impulsive excitation of coherent vibrations in the ground state. The transient response observed for BR{sub 568} is calculated using a 29-mode harmonic potential surface derived from a prior resonance Raman intensity analysis. Both the oscillatory signals and their dependence on the probe wavelength are satisfactorily reproduced. 68 refs., 11 figs.

  5. Classical microscopic theory of dispersion, emission and absorption of light in dielectrics. Classical microscopic theory of dielectric susceptibility

    NASA Astrophysics Data System (ADS)

    Carati, Andrea; Galgani, Luigi

    2014-10-01

    This paper is a continuation of a recent one in which, apparently for the first time, the existence of polaritons in ionic crystals was proven in a microscopic electrodynamic theory. This was obtained through an explicit computation of the dispersion curves. Here the main further contribution consists in studying electric susceptibility, from which the spectrum can be inferred. We show how susceptibility is obtained by the Green-Kubo methods of Hamiltonian statistical mechanics, and give for it a concrete expression in terms of time-correlation functions. As in the previous paper, here too we work in a completely classical framework, in which the electrodynamic forces acting on the charges are all taken into account, both the retarded forces and the radiation reaction ones. So, in order to apply the methods of statistical mechanics, the system has to be previously reduced to a Hamiltonian one. This is made possible in virtue of two global properties of classical electrodynamics, namely, the Wheeler-Feynman identity and the Ewald resummation properties, the proofs of which were already given for ordered system. The second contribution consists in formulating the theory in a completely general way, so that in principle it applies also to disordered systems such as glasses, or liquids or gases, provided the two general properties mentioned above continue to hold. A first step in this direction is made here by providing a completely general proof of the Wheeler-Feynman identity, which is shown to be the counterpart of a general causality property of classical electrodynamics. Finally it is shown how a line spectrum can appear at all in classical systems, as a counterpart of suitable stability properties of the motions, with a broadening due to a coexistence of chaoticity. The relevance of some recent results of the theory of dynamical systems in this connection is also pointed out.

  6. The energy of the vacuum related to the theory of energy absorption

    NASA Astrophysics Data System (ADS)

    Danilov, A. P.

    2016-07-01

    The primary objective in this article is to investigate a new source of renewable energy, the existence of the vacuum in five environments, and the possibility of absorption of the explosion. The study has also addressed the development of new principles in the motor industry, protection against explosions, new principles of mineral processing and new types of explosives. Also, this study may offer some insight into new approaches in solving problems in thermodynamics, the development of gravity waves, the basis of renewable energy source, and the mechanism of the emergence of gravitational waves.

  7. Near-Edge X-ray Absorption Fine Structure within Multilevel Coupled Cluster Theory.

    PubMed

    Myhre, Rolf H; Coriani, Sonia; Koch, Henrik

    2016-06-14

    Core excited states are challenging to calculate, mainly because they are embedded in a manifold of high-energy valence-excited states. However, their locality makes their determination ideal for local correlation methods. In this paper, we demonstrate the performance of multilevel coupled cluster theory in computing core spectra both within the core-valence separated and the asymmetric Lanczos implementations of coupled cluster linear response theory. We also propose a visualization tool to analyze the excitations using the difference between the ground-state and excited-state electron densities. PMID:27182829

  8. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  9. Theory of microwave absorption by the spin-1/2 Heisenberg-Ising magnet.

    PubMed

    Brockmann, Michael; Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Weisse, Alexander

    2011-07-01

    We analyze the problem of microwave absorption by the Heisenberg-Ising magnet in terms of shifted moments of the imaginary part of the dynamical susceptibility. When both the Zeeman field and the wave vector of the incident microwave are parallel to the anisotropy axis, the first four moments determine the shift of the resonance frequency and the linewidth in a situation where the frequency is varied for fixed Zeeman field. For the one-dimensional model we can calculate the moments exactly. This provides exact data for the resonance shift and the linewidth at arbitrary temperatures and magnetic fields. In current ESR experiments the Zeeman field is varied for fixed frequency. We show how in this situation the moments give perturbative results for the resonance shift and for the integrated intensity at small anisotropy as well as an explicit formula connecting the linewidth with the anisotropy parameter in the high-temperature limit. PMID:21797567

  10. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  11. Theory of x-ray absorption by laser-dressed atoms

    SciTech Connect

    Buth, Christian; Santra, Robin

    2007-03-15

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800 nm, 10{sup 13} W/cm{sup 2}). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.

  12. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-01-01

    In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples. PMID:24517510

  13. Zinc cysteine active sites of metalloproteins: A density functional theory and x-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-01

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)4-n(Cys)n sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  14. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    NASA Astrophysics Data System (ADS)

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-01

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the

  15. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  16. Theory of Jahn Teller signatures in the infrared absorption of C603-

    NASA Astrophysics Data System (ADS)

    Naghavi, S. Shahab; Fabrizio, Michele; Tosatti, Erio; Condensed Matter Physics Team

    2014-03-01

    Among the molecular superconductors, trivalent fullerides such as Cs3C60, with three folded degenerate HOMO and a fully ordered pressure induced superconductor-insulator are still intriguing. The orbital degeneracy of the fulleride ion C60-3 implies that besides a Jahn-Teller distorted state with S=1/2 and high-lying spin (S=3/2) excitation known from NMR, another undetected orbital excitation with S=1/2 should exist. Building upon accurate density hybrid functional theory calculations where properties such as the infrared (IR) spectrum and its Jahn-Teller features are well described, we extracted the ab-initio orbital and spin spectrum of a C60-3 ion in different spin and orbital states including a new low lying L=2 S=1/2 excitation. Despite a Jahn-Teller distortion so small to be observable in its IR spectrum, this state is found to gain a large zero-point energy, placing it just above the L=1, S=1/2 ion ground state, and way below the L=0, S=3/2 high lying excitation. We can now elegantly explain the surprising early thermal disappearance of the low-temperature Jahn-Teller IR spectral features and splitting without a concurrent rise of spin susceptibility that would instead be required by population of the high spin S=3/2 excitation. Sponsored by EU LEMSUPER Grant 283214.

  17. Complexation of Neptunium(V) with Glutaroimide Dioxime: A Study by Absorption Spectroscopy, Microcalorimetry, and Density Functional Theory Calculations.

    PubMed

    Ansari, Seraj A; Bhattacharyya, Arunasis; Zhang, Zhicheng; Rao, Linfeng

    2015-09-01

    Complexation of NpO2(+) ions with glutaroimide dioxime (H2L), a cyclic imide dioxime ligand that has been shown to form strong complexes with UO2(2+) in aqueous solutions, was studied by absorption spectroscopy and microcalorimetry in 1.0 M NaClO4 aqueous solutions. NpO2(+) forms two successive complexes, NpO2(HL)(aq) and NpO2(HL)2(-) (where HL(-) stands for the partially deprotonated glutaroimide dioxime ligand), with stability constants of log β111 = 17.8 ± 0.1 and log β122 = 33.0 ± 0.2, respectively. The complexation is both enthalpy- and entropy-driven, with negative enthalpies (ΔH111 = -52.3 ± 1.0 kJ/mol and ΔH122 = -96.1 ± 1.4 kJ/mol) and positive entropies (ΔS111 = 164 ± 3 J/mol/K and ΔS122 = 310 ± 4 J/mol/K). The thermodynamic parameters suggest that, similar to complexation of UO2(2+), the ligand coordinates with NpO2(+) in a tridentate mode, via the two oxygen atoms of the oxime groups and the nitrogen atom of the imide group. Density functional theory calculations have helped to interpret the optical absorption properties of the NpO2(HL)2(-) complex, by showing that the cis and trans configurations of the complex have very similar energies so that both configurations could be present in the aqueous solutions. It is the noncentrosymmetric cis configuration that makes the 5f → 5f transition allowable so that the NpO2(HL)2(-) complex absorbs in the near-IR region. PMID:26263050

  18. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  19. Collision-induced absorption with exchange effects and anisotropic interactions: Theory and application to H{sub 2} − H{sub 2}

    SciTech Connect

    Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C.

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  20. On the Theory of the Shift Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-05-01

    An occurrence of the current of the shift linear photovoltaic effect under two-photon absorption of light in semiconductors without a center of symmetry with a complex band structure is theoretically analyzed. The contributions both from the simultaneous absorption of two photons and successive absorption of two single photons to the photocurrent are taken into account.

  1. Inner-Shell Absorption Lines of Fe 6-Fe 16: a Many-Body Perturbation Theory Approach

    SciTech Connect

    Gu, Ming F.; Holczer, Tomer; Behar, Ehud; Kahn, Steven M.; /KIPAC, Menlo Park

    2006-01-17

    We provide improved atomic calculation of wavelengths, oscillator strengths, and autoionization rates relevant to the 2 -> 3 inner-shell transitions of Fe VI-XVI, the so-called Fe M-shell unresolved transition array (UTA). A second order many-body perturbation theory is employed to obtain accurate transition wavelengths, which are systematically larger than previous theoretical results by 15-45 mA. For a few transitions of Fe XVI and Fe XV where laboratory measurements exist, our new wavelengths are accurate to within a few mA. Using these new calculations, the apparent discrepancy in the velocities between the Fe M-shell UTA and other highly ionized absorption lines in the outflow of NGC 3783 disappears. The oscillator strengths in our new calculation agree well with the previous theoretical data, while the new autoionization rates are significantly larger, especially for lower charge states. We attribute this discrepancy to the missing autoionization channels in the previous calculation. The increased autoionization rates may slightly affect the column density analysis of the Fe M-shell UTA for sources with high column density and very low turbulent broadening. The complete set of atomic data is provided as an electronic table.

  2. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems. PMID:24197060

  3. High-temperature asymptotics of supersymmetric partition functions

    NASA Astrophysics Data System (ADS)

    Ardehali, Arash Arabi

    2016-07-01

    We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S 3 × S β 1 , with S 3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index.

  4. On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-07-01

    The ballistic contribution to the current of linear photovoltaic effect under two-photon absorption of light is calculated and theoretically analyzed for the semiconductors of a tetrahedral symmetry with a complex band structure consisting of two closely spaced subbands. The transitions between the branches of one band in cases of the simultaneous absorption of two photons and successive absorption of two single photons are taken into account.

  5. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  6. Modular properties of full 5D SYM partition function

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2016-03-01

    We study properties of the full partition function for the U(1) 5D N = {2}^{ast } gauge theory with adjoint hypermultiplet of mass M . This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function G 2 C associated with a certain moment map cone C. The answer exhibits a curious SL(4 , ℤ) modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5d supersymmetric partition function with the insert ion of defects of various co-dimensions.

  7. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  8. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  9. Nickel Sorption to Bacteriogenic Manganese Oxides: Insights from X-ray Absorption Spectroscopy and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Pena, J.; Kwon, K.; Refson, K.; Bargar, J. R.; Sposito, G.

    2008-12-01

    Bacteriogenic Mn oxides are ubiquitous, highly reactive minerals with a remarkable capacity to scavenge metals due to their nanoparticulate dimensions and abundant structural defects. These minerals are commonly deposited in a matrix of bacterial cells and extracellular polymeric substances, forming geosymbiotic systems whose reactivity with contaminant metals is not fully characterized. In the current study, a synergistic experimental-computational approach was used to study the mechanism of Ni adsorption at varying loadings and at pH 6-8 using the Mn oxide produced by Pseudomonas putida GB-1. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple corner sharing (TCS) complex at octahedral vacancy sites and Ni incorporated into the octahedral sheet. The proportion of adsorbed and incorporated Ni varied as a function of surface coverage and pH, with the latter form of Ni being favored at higher loadings and decreased proton activity. These two coordination environments, although consistent with data published for Ni sorbed by synthetic MnO2(s), did not describe fully all of our EXAFS spectra, leading us to consider the binding of Ni at particle edges or via a non-specific sorption mechanism. In parallel to the spectral analysis, density functional theory (DFT) calculations were performed to test different adsorbate-adsorbent configurations and the pH dependence of the adsorption mechanism. Geometry optimized structures for Ni sorbed above vacancies (i.e., TCS) or incorporated into the Mn oxide structure were in excellent agreement with corresponding structural parameters obtained from EXAFS analysis. The calculated energy barriers for the transition from adsorbed TCS to incorporated Ni were consistent with the hypothesis that the TCS complex is a precursor for Ni incorporation and that incorporation is favored by decreased proton activity. The combined perspectives obtained from these two

  10. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.; Smith, J. D.; Kolesar, K.

    2010-12-01

    VUV mass spectra for two distinct aerosol types as they are passed through a thermodenuder at different temperatures have been measured. The two aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct, T-dependent changes in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In stark contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in good agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP particles is not governed by partitioning theory. We postulate that this difference arises from the αP particles existing as a glass instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth experiments, which indicate that OA formation is describable through equilibrium partitioning, we put forward a sequential partitioning model wherein secondary OA is rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable through equilibrium partitioning theory, the thermodynamic properties of formed OA particles may differ significantly from the properties determined in the equilibrium framework.

  11. Dense Subgraph Partition of Positive Hypergraphs.

    PubMed

    Liu, Hairong; Latecki, Longin Jan; Yan, Shuicheng

    2015-03-01

    In this paper, we present a novel partition framework, called dense subgraph partition (DSP), to automatically, precisely and efficiently decompose a positive hypergraph into dense subgraphs. A positive hypergraph is a graph or hypergraph whose edges, except self-loops, have positive weights. We first define the concepts of core subgraph, conditional core subgraph, and disjoint partition of a conditional core subgraph, then define DSP based on them. The result of DSP is an ordered list of dense subgraphs with decreasing densities, which uncovers all underlying clusters, as well as outliers. A divide-and-conquer algorithm, called min-partition evolution, is proposed to efficiently compute the partition. DSP has many appealing properties. First, it is a nonparametric partition and it reveals all meaningful clusters in a bottom-up way. Second, it has an exact and efficient solution, called min-partition evolution algorithm. The min-partition evolution algorithm is a divide-and-conquer algorithm, thus time-efficient and memory-friendly, and suitable for parallel processing. Third, it is a unified partition framework for a broad range of graphs and hypergraphs. We also establish its relationship with the densest k-subgraph problem (DkS), an NP-hard but fundamental problem in graph theory, and prove that DSP gives precise solutions to DkS for all kin a graph-dependent set, called critical k-set. To our best knowledge, this is a strong result which has not been reported before. Moreover, as our experimental results show, for sparse graphs, especially web graphs, the size of critical k-set is close to the number of vertices in the graph. We test the proposed partition framework on various tasks, and the experimental results clearly illustrate its advantages. PMID:26353260

  12. Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning.

    PubMed

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp

    2016-06-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases. PMID:27115830

  13. Continuous partition lattice

    PubMed Central

    Björner, Anders

    1987-01-01

    A continuous analogue to the partition lattices is presented. This is the metric completion of the direct limit of a system of embeddings of the finite partition lattices. The construction is analogous to von Neumann's construction of a continuous geometry over a field F from the finite-dimensional projective geometries over F. PMID:16593874

  14. Insights into secondary organic aerosol formation mechanisms from measured gas/particle partitioning of specific organic tracer compounds.

    PubMed

    Zhao, Yunliang; Kreisberg, Nathan M; Worton, David R; Isaacman, Gabriel; Weber, Robin J; Liu, Shang; Day, Douglas A; Russell, Lynn M; Markovic, Milos Z; VandenBoer, Trevor C; Murphy, Jennifer G; Hering, Susanne V; Goldstein, Allen H

    2013-04-16

    In situ measurements of organic compounds in both gas and particle phases were made with a thermal desorption aerosol gas chromatography (TAG) instrument. The gas/particle partitioning of phthalic acid, pinonaldehyde, and 6,10,14-trimethyl-2-pentadecanone is discussed in detail to explore secondary organic aerosol (SOA) formation mechanisms. Measured fractions in the particle phase (f(part)) of 6,10,14-trimethyl-2-pentadecanone were similar to those expected from the absorptive gas/particle partitioning theory, suggesting that its partitioning is dominated by absorption processes. However, f(part) of phthalic acid and pinonaldehyde were substantially higher than predicted. The formation of low-volatility products from reactions of phthalic acid with ammonia is proposed as one possible mechanism to explain the high f(part) of phthalic acid. The observations of particle-phase pinonaldehyde when inorganic acids were fully neutralized indicate that inorganic acids are not required for the occurrence of reactive uptake of pinonaldehyde on particles. The observed relationship between f(part) of pinonaldehyde and relative humidity suggests that the aerosol water plays a significant role in the formation of particle-phase pinonaldehyde. Our results clearly show it is necessary to include multiple gas/particle partitioning pathways in models to predict SOA and multiple SOA tracers in source apportionment models to reconstruct SOA. PMID:23448102

  15. Parameters of photosynthetic energy partitioning.

    PubMed

    Lazár, Dušan

    2015-03-01

    Almost every laboratory dealing with plant physiology, photosynthesis research, remote sensing, and plant phenotyping possesses a fluorometer to measure a kind of chlorophyll (Chl) fluorescence induction (FLI). When the slow Chl FLI is measured with addition of saturating pulses and far-red illumination, the so-called quenching analysis followed by the so-called relaxation analysis in darkness can be realized. These measurements then serve for evaluation of the so-called energy partitioning, that is, calculation of quantum yields of photochemical and of different types of non-photochemical processes. Several theories have been suggested for photosynthetic energy partitioning. The current work aims to summarize all the existing theories, namely their equations for the quantum yields, their meaning and their assumptions. In the framework of these theories it is also found here that the well-known NPQ parameter ( [Formula: see text] ; Bilger and Björkman, 1990) equals the ratio of the quantum yield of regulatory light-induced non-photochemical quenching to the quantum yield of constitutive non-regulatory non-photochemical quenching (ΦNPQ/Φf,D). A similar relationship is also found here for the PQ parameter (ΦP/Φf,D). PMID:25569797

  16. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  17. Mass Absorption Coefficient of Tungsten and Tantalum, 1450 eV to 2350 eV: Experiment, Theory, and Application

    PubMed Central

    Levine, Zachary H.; Grantham, Steven; Tarrio, Charles; Paterson, David J.; McNulty, Ian; Levin, T. M.; Ankudinov, Alexei L.; Rehr, John J.

    2003-01-01

    The mass absorption coefficients of tungsten and tantalum were measured with soft x-ray photons from 1450 eV to 2350 eV using an undulator source. This region includes the M3, M4, and M5 absorption edges. X-ray absorption fine structure was calculated within a real-space multiple scattering formalism; the predicted structure was observed for tungsten and to a lesser degree tantalum as well. Separately, the effects of dynamic screening were observed as shown by an atomic calculation within the relativistic time-dependent local-density approximation. Dynamic screening effects influence the spectra at the 25 % level and are observed for both tungsten and tantalum. We applied these results to characterize spatially-resolved spectra of a tungsten integrated circuit interconnect obtained using a scanning transmission x-ray microscope. The results indicate tungsten fiducial markers were deposited into silica trenches with a depths of 50 % and 60 % of the markers’ heights.

  18. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  19. Investigation of coupling mechanisms in attosecond transient absorption of autoionizing states: comparison of theory and experiment in xenon

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Bernhardt, Birgitta; Beck, Annelise R.; Warrick, Erika R.; Pfeiffer, Adrian N.; Justine Bell, M.; Haxton, Daniel J.; McCurdy, C. William; Neumark, Daniel M.; Leone, Stephen R.

    2015-06-01

    Attosecond transient absorption spectra near the energies of autoionizing states are analyzed in terms of the photon coupling mechanisms to other states. In a recent experiment, the autoionization lifetimes of highly excited states of xenon were determined and compared to a simple expression based on a model of how quantum coherence determines the decay of a metastable state in the transient absorption spectrum. Here it is shown that this procedure for extracting lifetimes is more general and can be used in cases involving either resonant or nonresonant coupling of the attosecond-probed autoionizing state to either continua or discrete states by a time-delayed near infrared (NIR) pulse. The fits of theoretically simulated absorption signals for the 6p resonance in xenon (lifetime = 21.1 fs) to this expression yield the correct decay constant for all the coupling mechanisms considered, properly recovering the time signature of twice the autoionization lifetime due to the coherent nature of the transient absorption experiment. To distinguish between these two coupling cases, the characteristic dependencies of the transient absorption signals on both the photon energy and time delay are investigated. Additional oscillations versus delay-time in the measured spectrum are shown and quantum beat analysis is used to pinpoint the major photon-coupling mechanism induced by the NIR pulse in the current xenon experiment: the NIR pulse resonantly couples the attosecond-probed state, 6p, to an intermediate 8s (at 22.563 eV), and this 8s state is also coupled to a neighboring state (at 20.808 eV).

  20. Fuzzy Partition Models for Fitting a Set of Partitions.

    ERIC Educational Resources Information Center

    Gordon, A. D.; Vichi, M.

    2001-01-01

    Describes methods for fitting a fuzzy consensus partition to a set of partitions of the same set of objects. Describes and illustrates three models defining median partitions and compares these methods to an alternative approach to obtaining a consensus fuzzy partition. Discusses interesting differences in the results. (SLD)

  1. A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints

    SciTech Connect

    Xu, You; Chen, Yixin

    2008-06-28

    We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.

  2. Partitioning and parallel radiosity

    NASA Astrophysics Data System (ADS)

    Merzouk, S.; Winkler, C.; Paul, J. C.

    1996-03-01

    This paper proposes a theoretical framework, based on domain subdivision for parallel radiosity. Moreover, three various implementation approaches, taking advantage of partitioning algorithms and global shared memory architecture, are presented.

  3. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.

    2011-03-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from diffusivity within the αP particles being sufficiently slow that they do not exhibit the expected liquid-like behavior and perhaps exist in a glassy state. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that, although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  4. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    NASA Astrophysics Data System (ADS)

    Cappa, C. D.; Wilson, K. R.

    2010-11-01

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the α-pinene + O3 reaction (αP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the αP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the αP spectra suggest that the evaporation of αP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the αP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  5. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  6. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.

    PubMed

    Xie, Rui-Hua; Bryant, Garnett W; Sun, Guangyu; Nicklaus, Marc C; Heringer, David; Frauenheim, Th; Manaa, M Riad; Smith, Vedene H; Araki, Yasuyuki; Ito, Osamu

    2004-03-15

    Low-energy excitations and optical absorption spectrum of C(60) are computed by using time-dependent (TD) Hartree-Fock, TD-density functional theory (TD-DFT), TD DFT-based tight-binding (TD-DFT-TB), and a semiempirical Zerner intermediate neglect of diatomic differential overlap method. A detailed comparison of experiment and theory for the excitation energies, optical gap, and absorption spectrum of C(60) is presented. It is found that electron correlations and correlation of excitations play important roles in accurately assigning the spectral features of C(60), and that the TD-DFT method with nonhybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C(60) justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C(59)N(+), to serve as a spectroscopy reference for the characterization of carborane anion salts. Although it is an isoelectronic analogue to C(60), C(59)N(+) exhibits distinguishing spectral features different from C(60): (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C(59)N(+) characterize and explain well the measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C(59)N][Ag(CB(11)H(6)Cl(6))(2)] [Kim et al., J. Am. Chem. Soc. 125, 4024 (2003)]. For the most stable isomer of C(48)N(12), we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C(60), and optical absorption maxima occur at 585, 528, 443, 363, 340, 314, and 303 nm. We point out that the characterization of the UV-vis and transient absorption

  7. DNA Partitioning in Confining Nanofluidic Slits

    NASA Astrophysics Data System (ADS)

    Greenier, Madeline; Levy, Stephen

    We measure the partitioning of double stranded DNA molecules in moderately and strongly confining nanofluidic slit-like structures. Using fluorescent microscopy, the free energy penalty of confinement is inferred by comparing the concentration of DNA molecules in adjoining slits of different depths. These depths range in size from several persistence lengths to the DNA molecule's radius of gyration. The partition coefficient is determined as a function of the slit depth, DNA contour length, and DNA topology. We compare our results to theory and Monte Carlo simulations that predict the loss of free energy for ideal and semiflexible excluded volume polymers confined between parallel plates.

  8. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation

    SciTech Connect

    List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kauczor, Joanna; Norman, Patrick; Saue, Trond

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  9. Time-Dependent Density Functional Theory Study of Low-Lying Absorption and Fluorescence Band Shapes for Phenylene-Containing Oligoacenes.

    PubMed

    Jun, Ye

    2015-12-24

    Low-lying band shapes of absorption and fluorescence spectra for a member of a newly synthesized family of phenylene-containing oligoacenes (POA 6) reported in J. Am. Chem. Soc. 2012 , 134 , 15351 are studied theoretically with two different approaches with TIPS-anthracene as a comparison. Underlying photophysics and exciton-phonon interactions in both molecules are investigated in details with the aid of the time-dependent density functional theory and multimode Brownian oscillator model. The first two low-lying excited-states of POA 6 were found to exhibit excitation characteristics spanning entire conjugated backbone despite the presence of antiaromatic phenylene section. Absorption and fluorescence spectra calculated from both time-dependent density functional theory and multimode Brownian oscillator model are shown to reach good agreement with experimental ones. The coupling between phonon modes and optical transitions is generally weak as suggested by the multimode Brownian oscillator model. Broader peaks of POA 6 spectra are found to relate to stronger coupling between low frequency phonon modes such as backbone twisting (with frequency <300 cm(-1)) and optical transitions. Furthermore, POA 6 exhibits weaker exciton-phonon coupling for the phonon modes above 1000 cm(-1) compared to TIPS-anthracene owing to extended conjugated backbone. A significant coupling between an in-plane breathing mode localized around the antiaromatic phenylene segment with frequency at 1687 cm(-1) and optical transitions for the first two excited-states of POA 6 is also observed. PMID:26611665

  10. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation.

    PubMed

    List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore. PMID:26133414

  11. Comment on “Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set” [J. Chem. Phys. 139, 114104 (2013)

    SciTech Connect

    Brandbyge, Mads

    2014-05-07

    In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, and that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.

  12. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  13. A brief history of partitions of numbers, partition functions and their modern applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  14. Partitioning Breaks Communities

    NASA Astrophysics Data System (ADS)

    Reid, Fergal; McDaid, Aaron; Hurley, Neil

    Considering a clique as a conservative definition of community structure, we examine how graph partitioning algorithms interact with cliques. Many popular community-finding algorithms partition the entire graph into non-overlapping communities. We show that on a wide range of empirical networks, from different domains, significant numbers of cliques are split across the separate partitions produced by these algorithms. We then examine the largest connected component of the subgraph formed by retaining only edges in cliques, and apply partitioning strategies that explicitly minimise the number of cliques split. We further examine several modern overlapping community finding algorithms, in terms of the interaction between cliques and the communities they find, and in terms of the global overlap of the sets of communities they find. We conclude that, due to the connectedness of many networks, any community finding algorithm that produces partitions must fail to find at least some significant structures. Moreover, contrary to traditional intuition, in some empirical networks, strong ties and cliques frequently do cross community boundaries; much community structure is fundamentally overlapping and unpartitionable in nature.

  15. Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; Jain, Manish; Sharifzadeh, Sahar; Neaton, Jeffrey B.; Kronik, Leeor

    2015-08-01

    We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.

  16. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

    PubMed Central

    Shawahna, R.; Rahman, NU.

    2011-01-01

    Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645

  17. Partitioning technique for open systems

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2010-11-01

    The focus of the present contribution is essentially confined to three research areas carried out during the author's turns as visiting (assistant, associate and full) professor at the University of Florida's Quantum Theory Project, QTP. The first two topics relate to perturbation theory and spectral theory for self-adjoint operators in Hilbert space. The third subject concerns analytic extensions to non-self-adjoint problems, where particular consequences of the occurrence of continuous energy spectra are measured. In these studies general partitioning methods serve as general cover for perturbation-, variational- and general matrix theory. In addition we follow up associated inferences for the time dependent problem as well as recent results and conclusions of a rather general yet surprising character. Although the author spent most of his times at QTP during visits in the 1970s and 1980s, collaborations with department members and shorter stays continued through later decades. Nevertheless the impact must be somewhat fragmentary, yet it is hoped that the present account is sufficiently self-contained to be realistic and constructive.

  18. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  19. Cumulants of partitions

    NASA Astrophysics Data System (ADS)

    Weiss, Christoph; Block, Martin; Holthaus, Martin; Schmieder, Gerald

    2003-02-01

    We utilize the formal equivalence between the number-partitioning problem and a harmonically trapped ideal Bose gas within the microcanonical ensemble for characterizing the probability distribution which governs the number of addends occurring in an unrestricted partition of a natural number n. By deriving accurate asymptotic formulae for its coefficients of skewness and excess, it is shown that this distribution remains non-Gaussian even when n is made arbitrarily large. Both skewness and excess vary substantially before settling to their constant-limiting values for n > 1010.

  20. Theory and experiment of coherent wave packet dynamics in rare earth solids: Absorption spectrum vs femtosecond fringe-resolved interferogram

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Dai, D. C.; Wang, G. Q.; Ninulescu, V.; Yu, X. Y.; Luo, L.; Zhou, J. Y.; Yan, YiJing

    2001-01-01

    Coherent dynamic property of neodymium yttrium aluminum garnet (Nd:YAG) crystal at 77 K is studied via the conventional absorption, the femtosecond fringe-resolved wave packet interferometry, and the related difference-phase spectrum. The recorded interferogram exhibits beatings in subpicosecond time scale arising from the interferences among various weakly split 4f-electronic states and the coupled vibronic optical phonon sidebands. The electron-phonon coupling in Nd:YAG can be well described by multiple Brownian oscillators model involving in each individual electronic transition. The parameters for characterizing material coherence and relaxation are determined via the theoretical modelings of both the frequency and the time-domain experimental signals.

  1. Solid-state optical absorption from optimally tuned time-dependent range-separated hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Refaely-Abramson, Sivan; Jain, Manish; Sharifzadeh, Sahar; Neaton, Jeffrey B.; Kronik, Leeor

    We present a framework for obtaining solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory, which allows for the accurate prediction of exciton binding energies. We demonstrate our approach through calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where we find excellent agreement with experiments and prior computations. We show that with one adjustable parameter, our method accurately predicts band structures and optical spectra of Si and LiF, prototypical covalent and ionic solids. For a range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity [Phys. Rev. B 92, 081204(R), 2015]. This work was supported by DOE.

  2. New Aperture Partitioning Element

    NASA Astrophysics Data System (ADS)

    Griffin, S.; Calef, B.; Williams, S.

    Postprocessing in an optical system can be aided by adding an optical element to partition the pupil into a number of segments. When imaging through the atmosphere, the recorded data are blurred by temperature-induced variations in the index of refraction along the line of sight. Using speckle imaging techniques developed in the astronomy community, this blurring can be corrected to some degree. The effectiveness of these techniques is diminished by redundant baselines in the pupil. Partitioning the pupil reduces the degree of baseline redundancy, and therefore improves the quality of images that can be obtained from the system. It is possible to implement the described approach on an optical system with a segmented primary mirror, but not very practical. This is because most optical systems do not have segmented primary mirrors, and those that do have relatively low bandwidth positioning of segments due to their large mass and inertia. It is much more practical to position an active aperture partitioning element at an aft optics pupil of the optical system. This paper describes the design, implementation and testing of a new aperture partitioning element that is completely reflective and reconfigurable. The device uses four independent, annular segments that can be positioned with a high degree of accuracy without impacting optical wavefront of each segment. This mirror has been produced and is currently deployed and working on the 3.6 m telescope.

  3. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  4. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    SciTech Connect

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  5. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of 1(ππ*), while the dipole-forbidden 1(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  6. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    PubMed

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed. PMID:25005288

  7. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  8. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-12-01

    This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.

  9. Analysis of fractals with combined partition

    NASA Astrophysics Data System (ADS)

    Dedovich, T. G.; Tokarev, M. V.

    2016-03-01

    The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.

  10. Simulation and Theory of Speckle Noise for an Annular Aperture Frequency-Modulation Differential-Absorption LIDAR (FM-DIAL) System

    SciTech Connect

    Keller, Paul E.; Batdorf, Michael T.; Strasburg, Jana D.; Harper, Warren W.

    2009-05-28

    This paper presents theory of speckle noise for a frequency-modulation differential-absorption LIDAR system along with simulation results. These results show an unexpected relationship between the signal-to-noise ratio (SNR) of the speckle and the distance to the retro-reflector or target. In simulation, the use of an annular aperture in the system results in a higher SNR at midrange distances than at short or long distances. This peak in SNR occurs in the region where the laser’s Gaussian beam profile approximately fills the target. This was unexpected since it does not occur in the theory or simulations of the same system with a circular aperture. By including the autocorrelation of this annular aperture and expanding the complex correlation factor used in speckle models to include conditions not generally covered, a more complete theoretical model is derived for this system. Obscuration of the center of the beam at near distances is also a major factor in this relationship between SNR and distance. We conclude by comparing the resulting SNR as a function of distance from this expanded theoretical model to the simulations of the system over a double-pass horizontal range of 10 meters to 10 km at a wavelength of 1.28 micrometers

  11. On the monogamy of holographic n -partite information

    NASA Astrophysics Data System (ADS)

    Mirabi, S.; Tanhayi, M. Reza; Vazirian, R.

    2016-05-01

    We investigate the monogamy of holographic n -partite information for a system consisting of n disjoint parallel strips with the same width and separation in AdS and AdS black brane geometries. More precisely, we study the sign of this quantity, e.g., for n =4 , 5, in various dimensions and for different parameters. Our results show that for quantum field theories with holographic duals, the holographic 4-partite information is always positive, and the sign of holographic 5-partite information is found to be negative in the dual strongly coupled 1 +1 dimensional conformal field theory. This latter result indicates that the holographic 4-partite information is monogamous. We also find the critical points corresponding to the possible phase transitions of these quantities.

  12. Spatially-partitioned many-body vortices

    NASA Astrophysics Data System (ADS)

    Klaiman, S.; Alon, O. E.

    2016-02-01

    A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.

  13. Adsorption of formic acid on rutile TiO{sub 2} (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study

    SciTech Connect

    Mattsson, A.; Österlund, L.; Hu, Shuanglin Hermansson, K.

    2014-01-21

    Formic acid (HCOOH) adsorption on rutile TiO{sub 2} (110) has been studied by s- and p-polarized infrared reflection-absorption spectroscopy (IRRAS) and spin-polarized density functional theory together with Hubbard U contributions (DFT+U) calculations. To compare with IRRAS spectra, the results from the DFT+U calculations were used to simulate IR spectra by employing a three-layer model, where the adsorbate layer was modelled using Lorentz oscillators with calculated dielectric constants. To account for the experimental observations, four possible formate adsorption geometries were calculated, describing both the perfect (110) surface, and surfaces with defects; either O vacancies or hydroxyls. The majority species seen in IRRAS was confirmed to be the bridging bidentate formate species with associated symmetric and asymmetric frequencies of the ν(OCO) modes measured to be at 1359 cm{sup −1} and 1534 cm{sup −1}, respectively. The in-plane δ(C–H) wagging mode of this species couples to both the tangential and the normal component of the incident p-polarized light, which results in absorption and emission bands at 1374 cm{sup −1} and 1388 cm{sup −1}. IRRAS spectra measured on surfaces prepared to be either reduced, stoichiometric, or to contain surplus O adatoms, were found to be very similar. By comparisons with computed spectra, it is proposed that in our experiments, formate binds as a minority species to an in-plane Ti{sub 5c} atom and a hydroxyl, rather than to O vacancy sites, the latter to a large extent being healed even at our UHV conditions. Excellent agreement between calculated and experimental IRRAS spectra is obtained. The results emphasize the importance of protonation and reactive surface hydroxyls – even under UHV conditions – as reactive sites in e.g., catalytic applications.

  14. A Thermodynamic Model for Predicting Phosphorus Partition between CaO-based Slags and Hot Metal during Hot Metal Dephosphorization Pretreatment Process Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on

  15. PREFERENTIAL PARTITIONING OF A PAH AND PCB TO A MARINE SEDIMENT AMENDED WITH SEVERAL SOURCES OF SOOT CARBON

    EPA Science Inventory

    Over the last decade, several studies reported that the partitioning of PAHs to sediments, in some cases, did not follow predictions based on equilibrium partitioning theory. One explanation for these differences is the presence of a second sedimentary phase with partitioning cha...

  16. Chemical amplification based on fluid partitioning

    DOEpatents

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  17. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes. PMID:26584082

  18. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  19. Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): A combination of infrared reflection absorption spectroscopy and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Dostert, Karl-Heinz; O'Brien, Casey P.; Liu, Wei; Riedel, Wiebke; Savara, Aditya; Tkatchenko, Alexandre; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-08-01

    Understanding the interaction of α,β-unsaturated carbonyl compounds with late transition metals is a key prerequisite for rational design of new catalysts with desired selectivity towards C = C or C = O bond hydrogenation. The interaction of the α,β-unsaturated ketone isophorone and the saturated ketone TMCH (3,3,5-trimethylcyclohexanone) with Pd(111) was investigated in this study as a prototypical system. Infrared reflection-absorption spectroscopy (IRAS) and density functional theory calculations including van der Waals interactions (DFT + vdWsurf) were combined to form detailed assignments of IR vibrational modes in the range from 3000 cm- 1 to 1000 cm- 1 in order to obtain information on the binding of isophorone and TMCH to Pd(111) as well as to study the effect of co-adsorbed hydrogen. IRAS measurements were performed with deuterium-labeled (d5-) isophorone, in addition to unlabeled isophorone and unlabeled TMCH. Experimentally observed IR absorption features and calculated vibrational frequencies indicate that isophorone and TMCH molecules in multilayers have a mostly unperturbed structure with random orientation. At sub-monolayer coverages, strong perturbation and preferred orientations of the adsorbates were found. At low coverage, isophorone interacts strongly with Pd(111) and adsorbs in a flat-lying geometry with the C = C and C = O bonds parallel, and a CH3 group perpendicular, to the surface. At intermediate sub-monolayer coverage, the C = C bond is strongly tilted, while the C = O bond remains flat-lying, which indicates a prominent perturbation of the conjugated π system. Pre-adsorbed hydrogen leads to significant changes in the adsorption geometry of isophorone, which suggests a weakening of its binding to Pd(111). At low coverage, the structure of the CH3 groups seems to be mostly unperturbed on the hydrogen pre-covered surface. With increasing coverage, a conservation of the in-plane geometry of the conjugated π system was observed in the

  20. Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ.

    PubMed

    Krechmer, Jordan E; Pagonis, Demetrios; Ziemann, Paul J; Jimenez, Jose L

    2016-06-01

    Partitioning of gas-phase organic compounds to the walls of Teflon environmental chambers is a recently reported phenomenon than can affect the yields of reaction products and secondary organic aerosol (SOA) measured in laboratory experiments. Reported time scales for reaching gas-wall partitioning (GWP) equilibrium (τGWE) differ by up to 3 orders of magnitude, however, leading to predicted effects that vary from substantial to negligible. A new technique is demonstrated here in which semi- and low-volatility oxidized organic compounds (saturation concentration c* < 100 μg m(-3)) were photochemically generated in rapid bursts in situ in an 8 m(3) environmental chamber, and then their decay in the absence of aerosol was measured using a high-resolution chemical ionization mass spectrometer (CIMS) equipped with an "inlet-less" NO3(-) ion source. Measured τGWE were 7-13 min (rel. std. dev. 33%) for all compounds. The fraction of each compound that partitioned to the walls at equilibrium follows absorptive partitioning theory with an equivalent wall mass concentration in the range 0.3-10 mg m(-3). Measurements using a CIMS equipped with a standard ion-molecule reaction region showed large biases due to the contact of compounds with walls. On the basis of these results, a set of parameters is proposed for modeling GWP in chamber experiments. PMID:27138683

  1. Hourly Measurement of the Concentration and Gas-Particle Partitioning of Oxygenated Organic Tracers in Ambient Aerosol: First Results from Berkeley, CA and Rural Alabama

    NASA Astrophysics Data System (ADS)

    Isaacman, G. A.; Kreisberg, N. M.; Yee, L.; Chan, A.; Worton, D. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Hourly and bi-hourly time-resolved measurements of organic tracer compounds in ambient aerosols have been successfully used to elucidate sources and formation pathways of atmospheric particulate matter. Here we extend the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SVTAG), a custom in-situ instrument that collects, desorbs, and analyzes ambient aerosol and semi-volatile compounds with hourly time resolution, to include on-line derivatization and a second, parallel collection cell that provides simultaneous collection of both particle-phase and particle-plus-gas-phase organic compounds. By introducing a silylating agent upon desorption, SVTAG can measure highly oxygenated compounds that are not easily detected using traditional gas chromatography including most of the previously reported oxygenated tracers for biogenic and anthropogenic secondary organic aerosol. The use of a pair of matched collection cells with parallel sampling and serial analysis provides direct gas-particle partitioning information. One cell collects the total organic fraction of compounds with volatilities lower than a C13 hydrocarbon, while the other cell samples through an activated carbon denuder to selectively remove the gas-phase components. Taken together these provide a direct measurement of gas-particle partitioning to yield a check on classical absorption based partitioning theory while deviations from this theory provide constraints on other driving factors in aerosol formation chemistry, such as oligomerization, salt formation, and acidity. We present here the capabilities and utility of the dual cell SVTAG with derivatization, with chemical insights gained from initial tests on ambient Berkeley air and the first results from a rural site in Alabama obtained during the Southern Oxidant and Aerosol Study (SOAS). Tracers for varying isoprene oxidation pathways are used to explore the influence of anthropogenic emissions; concentrations of 2-methyltetrols and 2-methyl

  2. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. Tetrahalide Complexes of the [U(NR)(2)]2+ Ion: Synthesis, Theory, and Chlorine K-Edge X-ray Absorption Spectroscopy

    SciTech Connect

    Spencer, Liam P.; Yang, Ping; Minasian, Stefan G.; Jilek, Robert E.; Batista, Enrique R.; Boland, Kevin S.; Boncella, James M.; Conradson, S. D.; Clark, David L.; Hayton, Trevor W.; Kozimor, Stosh A.; Martin, Richard L.; MacInnes, Molly M.; Olson, Angela C.; Scott, Brian L.; Shuh, D. K.; Wilkerson, Marianne P.

    2013-02-13

    Synthetic routes to salts containing uranium bisimido tetrahalide anions [U(NR)(2)X-4](2-) (X = Cl-, Br-) and non-coordinating NEt4+ and PPh4+ countercations are reported. In general, these compounds can be prepared from U(NR)(2)I-2(THF)(x) (x = 2 and R = 'Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl-, the [U(NMe)(2)](2 +) cation also reacts with Br- to form stable [NEt4](2)[U(NMe)(2)Br-4] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO2](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh4](2)[U((NBu)-Bu-t)(2)Cl-4] and [PPh4](2)[UO2Cl4]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  4. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  5. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  6. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  8. Probabilistic framework for network partition

    NASA Astrophysics Data System (ADS)

    Li, Tiejun; Liu, Jian; E, Weinan

    2009-08-01

    Given a large and complex network, we would like to find the partition of this network into a small number of clusters. This question has been addressed in many different ways. In a previous paper, we proposed a deterministic framework for an optimal partition of a network as well as the associated algorithms. In this paper, we extend this framework to a probabilistic setting, in which each node has a certain probability of belonging to a certain cluster. Two classes of numerical algorithms for such a probabilistic network partition are presented and tested. Application to three representative examples is discussed.

  9. Inquiry Calculus and Information Theory

    NASA Astrophysics Data System (ADS)

    Center, Julian L.

    2009-12-01

    We consider the relationship between information theory and a calculus of inquiries. We show how an inquiry calculus can be constructed using lattice theory, and how the inquiry calculus relates to information theory. The key idea is to identify both inquiries and variables with partitions of the state space. We also show an approach to extending information theory that deals with the problem of negative entropies on questions that do not correspond to partitions.

  10. Optimal Partitioning of Testing Time: Theoretical Properties and Practical Implications

    ERIC Educational Resources Information Center

    Wang, Tianyou; Zhang, Jiawei

    2006-01-01

    This paper deals with optimal partitioning of limited testing time in order to achieve maximum total test score. Nonlinear optimization theory was used to analyze this problem. A general case using a generic item response model is first presented. A special case that applies a response time model proposed by Wang and Hanson (2005) is also…

  11. Graph Partitioning and Sequencing Software

    1995-09-19

    Graph partitioning is a fundemental problem in many scientific contexts. CHACO2.0 is a software package designed to partition and sequence graphs. CHACO2.0 allows for recursive application of several methods for finding small edge separators in weighted graphs. These methods include inertial, spectral, Kernighan Lin and multilevel methods in addition to several simpler strategies. Each of these approaches can be used to partition the graph into two, four, or eight pieces at each level of recursion.more » In addition, the Kernighan Lin method can be used to improve partitions generated by any of the other algorithms. CHACO2.0 can also be used to address various graph sequencing problems, with applications to scientific computing, database design, gene sequencing and other problems.« less

  12. A diffusion-diffusion model for percutaneous drug absorption.

    PubMed

    Kubota, K; Ishizaki, T

    1986-08-01

    Several theories describing percutaneous drug absorption have been proposed, incorporating the mathematical solutions of differential equations describing percutaneous drug absorption processes where the vehicle and skin are regarded as simple diffusion membranes. By a solution derived from Laplace transforms, the mean residence time MRT and the variance of the residence time VRT in the vehicle are expressed as simple elementary functions of the following five pharmacokinetic parameters characterizing the percutaneous drug absorption: kd, which is defined as the normalized diffusion coefficient of the skin, kc, which is defined as the normalized skin-capillary boundary clearance, the apparent length of diffusion of the skin 1d, the effective length of the vehicle lv, and the diffusion coefficient of the vehicle Dv. All five parameters can be obtained by the methods proposed here. Results of numerical computation indicate that: concentration-distance curves in the vehicle and skin approximate two curves which are simply expressed using trigonometric functions when sufficient time elapses after an ointment application; the most suitable condition for the assumption that the concentration of a drug in the uppermost epidermis can be considered unchanged is the case where the partition coefficient between vehicle and skin is small, and the constancy of drug concentration is even more valid when the effective length of the vehicle is large; and the amount of a drug in the vehicle or skin and the flow rate of the drug from vehicle into skin or from skin into blood becomes linear on a semilogarithmic scale, and the slopes of those lines are small when Dv is small, when the partition coefficient between vehicle and skin is small, when lv is large, or when kc is small. A simple simulation method is also proposed using a biexponential for the concentration-time curve for the skin near the skin-capillary boundary, that is, the flow rate-time curve for drug passing from skin

  13. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  14. LASER APPLICATIONS AND OTHER TOPICS: Theory and optimization of the parameters of a polarization method for the measurement of weak absorption in optical materials

    NASA Astrophysics Data System (ADS)

    Glebov, L. B.; Dokuchaev, V. G.; Petrovskiĭ, G. T.

    1987-06-01

    A theoretical analysis is made of a polarization calorimetric method for the determination of weak absorption in optical materials. Several variants of the method are considered and the optimal conditions for its application are identified. The sensitivity of the method is ~1 dB/km for a sample 1 cm thick. It is shown that the method can be used to determine absorption in optically anisotropic materials.

  15. Line defects and 5d instanton partition functions

    NASA Astrophysics Data System (ADS)

    Kim, Hee-Cheol

    2016-03-01

    We consider certain line defect operators in five-dimensional SUSY gauge theories, whose interaction with the self-dual instantons is described by 1d ADHM-like gauged quantum mechanics constructed by Tong and Wong. The partition function in the presence of these operators is known to be a generating function of BPS Wilson loops in skew symmetric tensor representations of the gauge group. We calculate the partition function and explicitly prove that it is a finite polynomial of the defect mass parameter x, which is an essential property of the defect operator and the Wilson loop generating function. The relation between the line defect partition function and the qq-character defined by N . Nekrasov is briefly discussed.

  16. Supersymmetric partition functions in the AdS/CFT conjecture

    NASA Astrophysics Data System (ADS)

    Raju, Suvrat

    We study supersymmetric partition functions in several versions of the AdS/CFT correspondence. We present an Index for superconformal field theories in d = 3, 4, 5, 6. This captures all information about the spectrum that is protected, under continuous deformations of the theory, purely by group theory. We compute our Index in N = 4 SYM at weak coupling using gauge theory and at strong coupling using supergravity and find perfect agreement at large N. We also compute this Index for supergravity on AdS4 x S7 and AdS7 x S4 and for the recently constructed Chern Simons matter theories. We count 1/16 BPS states in the free gauge theory and find qualitative agreement with the entropy of big black holes in AdS5. We note that the near horizon geometry of some small supersymmetric black holes is an extremal BTZ black holes fibered on a compact base and propose a possible explanation for this, based on giant gravitons. We also find the partition function of the chiral ring of the N = 4 SYM theory at finite coupling and finite N. Turning to AdS3, we study the low energy 1/4 and 1/2 BPS partition functions by finding all classical supersymmetric probe brane solutions of string theory on this background. If the background BNS field and theta angle vanish, AdS3 x S 3 x T4/K3 supports supersymmetric probes: D1 branes, D5 branes and bound states of D5 and D1 branes. In global AdS, upon quantization, these solutions give rise to states in discrete representations of the SL(2,R) WZW model on AdS 3. We conclude that (a) the 1/4 BPS partition function jumps if we turn on a theta angle or NS-NS field (b) generic 1/2 BPS states are protected. We successfully compare our 1/2 BPS partition function with that of the symmetric product. We also discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the symmetric product. Finally, we comment on the spectrum of particles in the theory of gravity dual to non-supersymmetric Yang Mills theory on S3 x time.

  17. Revisiting noninteracting string partition functions in Rindler space

    NASA Astrophysics Data System (ADS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2016-05-01

    We revisit noninteracting string partition functions in Rindler space by summing over fields in the spectrum. In field theory, the total partition function splits in a natural way into a piece that does not contain surface terms and a piece consisting of solely the so-called edge states. For open strings, we illustrate that surface contributions to the higher-spin fields correspond to open strings piercing the Rindler origin, unifying the higher-spin surface contributions in string language. For closed strings, we demonstrate that the string partition function is not quite the same as the sum over the partition functions of the fields in the spectrum: an infinite overcounting is present for the latter. Next we study the partition functions obtained by excluding the surface terms. Using recent results of He et al. [J. High Energy Phys. 05 (2015) 106], this construction, first done by Emparan [arXiv:hep-th/9412003], can be put on much firmer ground. We generalize to type II and heterotic superstrings and demonstrate modular invariance. All of these exhibit an IR divergence that can be interpreted as a maximal acceleration close to the black hole horizon. Ultimately, since these partition functions are only part of the full story, divergences here should not be viewed as a failure of string theory: maximal acceleration is a feature of a faulty treatment of the higher-spin fields in the string spectrum. We comment on the relevance of this to Solodukhin's recent proposal [Phys. Rev. D 91, 084028 (2015)]. A possible link with the firewall paradox is apparent.

  18. Mechanism and kinetics of peptide partitioning into membranes

    SciTech Connect

    Ulmschneider, Martin; Killian, J Antoinette; Doux, Jacques P. F.; Smith, Jeremy C; Ulmschneider, Jakob

    2010-02-01

    Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required to capture partitioning. Elevating temperatures to accelerate the dynamics has been avoided, as this was thought to lead to rapid denaturing. However, we show here that model TM peptides (WALP) are exceptionally thermostable. Circular dichroism experiments reveal that the peptides remain inserted into the lipid bilayer and are fully helical, even at 90 C. At these temperatures, sampling is 50 500 times faster, sufficient to directly simulate spontaneous partitioning at atomic resolution. A folded insertion pathway is observed, consistent with three-stage partitioning theory. Elevated temperature simulation ensembles further allow the direct calculation of the insertion kinetics, which is found to be first-order for all systems. Insertion barriers are Hin = 15 kcal/mol for a general hydrophobic peptide and 23 kcal/mol for the tryptophan-flanked WALP peptides. The corresponding insertion times at room temperature range from 8.5 s to 163 ms. High-temperature simulations of experimentally validated thermostable systems suggest a new avenue for systematic exploration of peptide partitioning properties.

  19. New Instrumentation for Phase Partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Cells and molecules can be purified by partitioning between the two immiscible liquid phases formed by aqueous solutions of poly/ethylene glycol and dextran. Such purification can be more selective, higher yielding, and less destructive to sensitive biological materials than other available techniques. Earth's gravitational field is a hindering factor as it causes sedimentation of particles to be purified and shear-induced particle randomization. The present proposal is directed toward developing new instrumentation for performing phase partitioning both on Earth and in microgravity.

  20. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, Dexuan

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  1. Ferrous iron partitioning in the lower mantle

    NASA Astrophysics Data System (ADS)

    Muir, Joshua M. R.; Brodholt, John P.

    2016-08-01

    We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.

  2. Rectilinear partitioning of irregular data parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  3. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  4. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  5. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  6. Monomial Crystals and Partition Crystals

    NASA Astrophysics Data System (ADS)

    Tingley, Peter

    2010-04-01

    Recently Fayers introduced a large family of combinatorial realizations of the fundamental crystal B(Λ0) for ^sln, where the vertices are indexed by certain partitions. He showed that special cases of this construction agree with the Misra-Miwa realization and with Berg's ladder crystal. Here we show that another special case is naturally isomorphic to a realization using Nakajima's monomial crystal.

  7. Set covering, partition and packing

    SciTech Connect

    Hulme, B.L.; Baca, L.S.

    1984-03-01

    Set covering problems are known to be solvable by Boolean algebraic methods. This report shows that set partition and set packing problems can be solved by the same algebraic methods because these problems can be converted into covering problems. Many applications are possible including security patrol assignment which is used as an example.

  8. METAL PARTITIONING IN COMBUSTION PROCESSES

    EPA Science Inventory

    This article summarizes ongoing research efforts at the National Risk Management Research Laboratory of the U.S. Environmental Protection Agency examining [high temperature] metal behavior within combustion environments. The partitioning of non-volatile (Cr and Ni), semi-volatil...

  9. Some trees with partition dimension three

    NASA Astrophysics Data System (ADS)

    Fredlina, Ketut Queena; Baskoro, Edy Tri

    2016-02-01

    The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ..., Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ..., d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.

  10. Terminology for trace-element partitioning

    SciTech Connect

    Beattie, P. ); Drake, M. ); Jones, J.; McKay, G. ); Leeman, W. ); Longhi, J. ); Nielsen, R. ); Palme, H. ); Shaw, D. ); Takahashi, E. ); Watson, B. )

    1993-04-01

    A self-consistent terminology for partitioning data is presented. Ratios of the concentration of a component in two phases are termed partition coefficients and given the symbol D. Ratios of partition coefficients are termed exchange coefficients and given the symbol K[sub D]. The prefix bulk implies that these coefficients are weighted according to the proportions of coexisting phases. Bulk partition and bulk exchange coefficients are denoted by [bar D] and [ovr K[sub D

  11. "K"-Balance Partitioning: An Exact Method with Applications to Generalized Structural Balance and Other Psychological Contexts

    ERIC Educational Resources Information Center

    Brusco, Michael; Steinley, Douglas

    2010-01-01

    Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…

  12. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    SciTech Connect

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2015-05-07

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.

  13. ARSENIC SOLID-PHASE PARTITIONING IN REDUCING SEDIMENTS OF CONTAMINATED WETLAND

    EPA Science Inventory

    The geochemical partitioning of arsenic in organic-rich sediments from a contaminated wetland is examined using X-ray absorption spectroscopy and selective chemical extraction procedures, and evaluated in context to the anoxic diagenesis of iron and sulfur. The interaction betwe...

  14. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin

    PubMed Central

    Aksoyoglu, M. Alphan; Podgornik, Rudolf; Bezrukov, Sergey M.; Gurnev, Philip A.; Muthukumar, Murugappan; Parsegian, V. Adrian

    2016-01-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of “polymers pushing polymers” is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  15. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.

    PubMed

    Aksoyoglu, M Alphan; Podgornik, Rudolf; Bezrukov, Sergey M; Gurnev, Philip A; Muthukumar, Murugappan; Parsegian, V Adrian

    2016-08-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  16. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  17. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory

    SciTech Connect

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-07-07

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.

  18. Theory of X-ray absorption and resonant X-ray emission spectra by electric quadrupole excitation in light rare-earth systems

    NASA Astrophysics Data System (ADS)

    Nakazawa, M.; Fukui, K.; Kotani, A.

    2003-02-01

    We have made precise theoretical calculations for both 2 p3/2→4 f X-ray absorption spectroscopy (XAS) and 4 d→2 p3/2 resonant X-ray emission spectroscopy (RXES) by electric quadrupole excitations at the L3 edge of light rare-earth elements, by means of atomic model with full multiplet effects. The calculation is based on the second-order optical formula, and the effect of the incident photon polarization is taken into account. It is shown that the 4 d-4 f interaction plays a more important role in 4 d→2 p3/2 RXES than the 4 f-4 f interaction does. Moreover, the calculated results of 4 d→2 p3/2 RXES show the strong polarization dependence, and it is originated from the spin multiplicity, which is derived from the 4 d-4 f interaction, of the RXES final states.

  19. Equilibrium partitioning of Ficoll in composite hydrogels.

    PubMed

    Kosto, Kimberly B; Panuganti, Swapna; Deen, William M

    2004-09-15

    Equilibrium partition coefficients (phi, the concentration in the gel divided by that in free solution) of fluorescein-labeled Ficolls in pure agarose and agarose-dextran composite gels were measured as a function of gel composition and Ficoll size. The four narrow fractions of Ficoll, a spherical polysaccharide, had Stokes-Einstein radii ranging from 2.7 to 5.9 nm. Gels with agarose volume fractions of 0.040 and 0.080 were studied, with dextran volume fractions (calculated as if the chain were a long fiber) up to 0.011. As expected, phi generally decreased as the Ficoll size increased (for a given gel composition) or as the amount of dextran incorporated into the gel increased (for a given agarose concentration and Ficoll size). The decrease in phi that accompanied dextran addition was predicted well by an excluded volume theory in which agarose and dextran were both treated as rigid, straight, randomly positioned and oriented fibers. Modeling dextran as a spherical coil within a fibrous agarose gel produced much less accurate predictions. The diffusional permeabilities of these gels were assessed by combining the current partitioning data with relative diffusivities (Kd, the diffusivity in the gel divided by that in free solution) reported previously. The values of phi Kd for a synthetic gel with 8.0% agarose and 1.1% dextran (by volume) were found to be very similar to those for the glomerular basement membrane, a physiologically important material which also has a total solids content of approximately 10%. PMID:15341852

  20. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin. PMID:17294811

  1. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  2. Response to “Comment on ‘Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set’” [J. Chem. Phys. 140, 177103 (2014)

    SciTech Connect

    Reuter, Matthew G.; Harrison, Robert J.

    2014-05-07

    The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.

  3. Scattering with absorptive interaction

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  4. About Thinning Invariant Partition Structures

    NASA Astrophysics Data System (ADS)

    Starr, Shannon; Vermesi, Brigitta; Wei, Ang

    2012-08-01

    Bernoulli- p thinning has been well-studied for point processes. Here we consider three other cases: (1) sequences ( X 1, X 2,…); (2) gaps of such sequences ( X n+1- X 1) n∈ℕ; (3) partition structures. For the first case we characterize the distributions which are simultaneously invariant under Bernoulli- p thinning for all p∈(0,1]. Based on this, we make conjectures for the latter two cases, and provide a potential approach for proof. We explain the relation to spin glasses, which is complementary to important previous work of Aizenman and Ruzmaikina, Arguin, and Shkolnikov.

  5. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  6. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  7. On some trees having partition dimension four

    NASA Astrophysics Data System (ADS)

    Ida Bagus Kade Puja Arimbawa, K.; Baskoro, Edy Tri

    2016-02-01

    In 1998, G. Chartrand, E. Salehi and P. Zhang introduced the notion of partition dimension of a graph. Since then, the study of this graph parameter has received much attention. A number of results have been obtained to know the values of partition dimensions of various classes of graphs. However, for some particular classes of graphs, finding of their partition dimensions is still not completely solved, for instances a class of general tree. In this paper, we study the properties of trees having partition dimension 4. In particular, we show that, for olive trees O(n), its partition dimension is equal to 4 if and only if 8 ≤ n ≤ 17. We also characterize all centipede trees having partition dimension 4.

  8. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  9. An Alternative Formation Theory of Beat. (II) Revelations of Recursion Formulas of the Reflected X-rays and the Anomalous Transmission and Absorption by the Binomial Theorem

    NASA Astrophysics Data System (ADS)

    Nakajima, Tetsuo

    2008-11-01

    The recursion formulas for the photon paths in the Borrmann triangle, which satisfy a new modified Pascal triangle can be derived from the binomial theorem by regarding the permutation of the stochastic variables of the diffracted and transmitted X-ray photons. The Borrmann triangle for the n-multiple X-ray reflections expanded by the n-degree binomial distribution consists of the two sub-triangles given by the ( n-1)-degree binomial distribution of the diffracted and transmitted photons. The former sub-triangle shows perfectly flawless symmetry but the latter one shows inevitable asymmetry. A reasonable understanding of both the high intense and very weak photon flows in the Borrmann triangle, which are popularly known as the anomalous transmission and absorption, respectively, are derived from the binomial theorem. Incident photons irradiated at a point O that forms the vertex of the Borrmann triangle propagate through the bypasses parallel to only the complementary half of the integral whole median with the high probabilities from the binomial theorem and emanate them from a short width slit of overline{O'O''} on the base of the high intense photon flow Borrmann triangle ▵ OO' O″, which can be defined by the standard deviation of the normal distribution. The parallel paths to the whole median also pass the very weak photon flows from the high power exponent of d multinomials through the triangle ▵ OO' O″. Both the above contrastive photon flows could coexist in ▵ OO' O″ based upon the complementary rivalry duality from the binomial theorem of ( d+ t) n =1, including the very weak photon flows from the high power exponent of t multinomials near both sides of the Borrmann triangle.

  10. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d. PMID:26733312

  11. Displaying multimedia environmental partitioning by triangular diagrams

    SciTech Connect

    Lee, S.C.; Mackay, D.

    1995-11-01

    It is suggested that equilateral triangular diagrams are a useful method of depicting the equilibrium partitioning of organic chemicals among the three primary environmental media of the atmosphere, the hydrosphere, and the organosphere (natural organic matter and biotic lipids and waxes). The technique is useful for grouping chemicals into classes according to their partitioning tendencies, for depicting the incremental effects of substituents such as alkyl groups and chlorine, and for showing how partitioning changes in response to changes in temperature.

  12. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  13. Mass partitioning effects in diffusion transport.

    PubMed

    Kojic, Milos; Milosevic, Miljan; Wu, Suhong; Blanco, Elvin; Ferrari, Mauro; Ziemys, Arturas

    2015-08-28

    Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes. PMID:26204522

  14. Effect of Polycyclic Aromatic Hydrocarbon Source Materials and Soil Components on Partitioning and Dermal Uptake.

    PubMed

    Xia, Huan; Gomez-Eyles, Jose L; Ghosh, Upal

    2016-04-01

    The bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soils can be influenced by the source material they are emitted within, the properties of the receiving soil, weathering processes, and the concentration of PAHs. In this study 30 contaminated soils were constructed with common PAH sources (fuel oil, soot, coal tar based skeet particles) and direct spike with a solvent added to different types and contents of soil organic matter and minerals to achieve PAH concentrations spanning 4 orders of magnitude. Source material had the greatest impact on PAH partitioning. Soils containing skeet generally exhibited the highest KD values, followed by soot, fuel oil, and solvent spiked soils. Among all soil compositions, the presence of 2% charcoal had the largest enhancement of KD. Partitioning behavior could not be predicted by an organic carbon and black carbon partitioning model. Including independently measured partitioning behavior of the soil components and PAH sources allowed better prediction but still suffered from issues of interaction (oil sorption in peat) and highly nonlinear partitioning with depletion (for skeet). Dermal absorption of PAHs measured using pig skin was directly related to the freely dissolved aqueous concentration in soil and not the total concentration in the soil. Overall, we show that PAH source materials have a dominating influence on partitioning, highlighting the importance of using native field soils in bioavailability and risk assessments. PMID:26964018

  15. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    SciTech Connect

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  16. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  17. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reductase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E.; Jr.; Adams, M.W.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2009-06-02

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  18. Impact of gas/particle partitioning of semivolatile organic compounds on source apportionment with positive matrix factorization.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-08-19

    To quantify and minimize the influence of gas/particle (G/P) partitioning on receptor-based source apportionment using particle-phase semivolatile organic compound (SVOC) data, positive matrix factorization (PMF) coupled with a bootstrap technique was applied to three data sets mainly composed of "measured-total" (measured particle- + gas-phase), "particle-only" (measured particle-phase) and "predicted-total" (measured particle-phase + predicted gas-phase) SVOCs to apportion carbonaceous aerosols. Particle- (PM2.5) and gas-phase SVOCs were collected using quartz fiber filters followed by PUF/XAD-4/PUF adsorbents and measured using gas chromatography-mass spectrometry (GC-MS). Concentrations of gas-phase SVOCs were also predicted from their particle-phase concentrations using absorptive partitioning theory. Five factors were resolved for each data set, and the factor profiles were generally consistent across the three PMF solutions. Using a previous source apportionment study at the same receptor site, those five factors were linked to summertime biogenic emissions (odd n-alkane factor), unburned fossil fuels (light SVOC factor), road dust and/or cooking (n-alkane factor), motor vehicle emissions (PAH factor), and lubricating oil combustion (sterane factor). The "measured-total" solution was least influenced by G/P partitioning and used as reference. Two out of the five factors (odd n-alkane and PAH factors) exhibited consistent contributions for "particle-only" vs "measured-total" and "predicted-total" vs "measured-total" solutions. Factor contributions of light SVOC and n-alkane factors were more consistent for "predicted-total" vs "measured-total" than "particle-only" vs "measured-total" solutions. The remaining factor (sterane factor) underestimated the contribution by around 50% from both "particle-only" and "predicted-total" solutions. The results of this study confirm that when measured gas-phase SVOCs are not available, "predicted-total" SVOCs should be used

  19. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Bartlett, Rodney J.

    2016-07-01

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  20. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.

    PubMed

    Verma, Prakash; Bartlett, Rodney J

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis. PMID:27448875

  1. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reduc Tase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E., Jr.; Adams, M.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Athens U. /SLAC, SSRL

    2007-10-26

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN{sup -} bound low-spin Fe{sup III} forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin Fe{sup III}-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the Fe{sup III} bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pK{sub a} of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin Fe{sup III}-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C Fe{sup III} product. Additionally, the presence of the dianionic porphyrin {pi} ring in cytochrome P450 allows O-O heterolysis, forming an Fe{sup IV}-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand

  2. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  3. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  4. Acoustic power absorption and enhancement generated by slow and fast MHD waves. Evidence of solar cycle velocity/intensity amplitude changes consistent with the mode conversion theory

    NASA Astrophysics Data System (ADS)

    Simoniello, R.; Finsterle, W.; García, R. A.; Salabert, D.; Jiménez, A.; Elsworth, Y.; Schunker, H.

    2010-06-01

    We used long duration, high quality, unresolved (Sun-as-a star) observations collected by the ground based network BiSON and by the instruments GOLF and VIRGO on board the ESA/NASA SOHO satellite to search for solar-cycle-related changes in mode characteristics in velocity and continuum intensity for the frequency range between 2.5 mHz <ν< 6.8 mHz. Over the ascending phase of solar cycle 23 we found a suppression in the p-mode amplitudes both in the velocity and intensity data between 2.5 mHz <ν< 4.5 mHz with a maximum suppression for frequencies in the range between 2.5 mHz <ν< 3.5 mHz. The size of the amplitude suppression is 13 ± 2 per cent for the velocity and 9 ± 2 per cent for the intensity observations. Over the range of 4.5 mHz <ν< 5.5 mHz the findings hint within the errors to a null change both in the velocity and intensity amplitudes. At still higher frequencies, in the so called High-frequency Interference Peaks (HIPs) between 5.8 mHz <ν< 6.8 mHz, we found an enhancement in the velocity amplitudes with the maximum 36 ± 7 per cent occurring for 6.3 mHz <ν< 6.8 mHz. However, in intensity observations we found a rather smaller enhancement of about 5 ± 2 per cent in the same interval. There is evidence that the frequency dependence of solar-cycle velocity amplitude changes is consistent with the theory behind the mode conversion of acoustic waves in a non-vertical magnetic field, but there are some problems with the intensity data, which may be due to the height in the solar atmosphere at which the VIRGO data are taken.

  5. A general approach to association using cluster partition functions

    NASA Astrophysics Data System (ADS)

    Hendriks, E. M.; Walsh, J.; van Bergen, A. R. D.

    1997-06-01

    A systematic and fundamental approach to associating mixtures is presented. It is shown how the thermodynamic functions may be computed starting from a partition function based on the cluster concept such as occurs in chemical theory. The theory provides a basis for and an extension of the existing chemical theory of (continuous) association. It is applicable to arbitrary association schemes. Analysis of separate cases is not necessary. The assumptions that were made to allow the development were chosen such as to make the principle of reactivity valid. It is this same principle that links various theories: the chemical theory of continuous association, the lattice fluid hydrogen bonding model, and first-order perturbation theory. The equivalence between these theories in appropriate limits is shown in a general and rigorous way. The theory is believed to provide a practical framework for engineering modeling work. Binary interaction parameters can be incorporated. The association scheme is accounted for by a set of generic equations, which should facilitate robust implementation in computer programs.

  6. Assimilate partitioning during reproductive growth

    SciTech Connect

    Finazzo, S.F.; Davenport, T.L.

    1987-04-01

    Leaves having various phyllotactic relationships to fruitlets were labeled for 1 hour with 10/sub r/Ci of /sup 14/CO/sub 2/. Fruitlets were also labeled. Fruitlets did fix /sup 14/CO/sub 2/. Translocation of radioactivity from the peel into the fruit occurred slowly and to a limited extent. No evidence of translocation out of the fruitlets was observed. Assimilate partitioning in avocado was strongly influenced by phyllotaxy. If a fruit and the labeled leaf had the same phyllotaxy then greater than 95% of the radiolabel was present in this fruit. When the fruit did not have the same phyllotaxy as the labeled leaf, the radiolabel distribution was skewed with 70% of the label going to a single adjacent position. Avocado fruitlets exhibit uniform labeling throughout a particular tissue. In avocado, assimilates preferentially move from leaves to fruits with the same phyllotaxy.

  7. Building Ecology and Partition Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This bulletin is intended as a resource for school system facility planners and architects who design schools. Ways in which decision makers can incorporate environmental concerns in the design of school buildings are detailed. Focus is on the design of interior partition systems. Partition systems in schools serve several purposes; they define…

  8. A Partitioning Technique for Defining Instructional Groups.

    ERIC Educational Resources Information Center

    Baker, Frank B.; Hubert, Lawrence J.

    1979-01-01

    A technique is presented for partitioning N students into K groups of fixed sizes using a given measure of proximity for all student pairs. The measure of proximity is typically calculated from a set of variables and constitutes the data needed for a criterion of partition "fit." (Author)

  9. Purification of biomaterials by phase partitioning

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1984-01-01

    A technique which is particularly suited to microgravity environments and which is potentially more powerful than electrophoresis is phase partitioning. Phase partitioning is purification by partitioning between the two immiscible aqueous layers formed by solution of the polymers poly(ethylene glycol) and dextran in water. This technique proved to be very useful for separations in one-g but is limited for cells because the cells are more dense than the phase solutions thus tend to sediment to the bottom of the container before reaching equilibrium with the preferred phase. There are three phases to work in this area: synthesis of new polymers for affinity phase partitioning; development of automated apparatus for ground-based separations; and design of apparatus for performing simple phase partitioning space experiments, including examination of mechanisms for separating phases in the absence of gravity.

  10. Bicriterion methods for partitioning dissimilarity matrices.

    PubMed

    Brusco, Michael J; Cradit, J Dennis

    2005-11-01

    Partitioning indices associated with the within-cluster sums of pairwise dissimilarities often exhibit a systematic bias towards clusters of a particular size, whereas minimization of the partition diameter (i.e. the maximum dissimilarity element across all pairs of objects within the same cluster) does not typically have this problem. However, when the partition-diameter criterion is used, there is often a myriad of alternative optimal solutions that can vary significantly with respect to their substantive interpretation. We propose a bicriterion partitioning approach that considers both diameter and within-cluster sums in the optimization problem and facilitates selection from among the alternative optima. We developed several MATLAB-based exchange algorithms that rapidly provide excellent solutions to bicriterion partitioning problems. These algorithms were evaluated using synthetic data sets, as well as an empirical dissimilarity matrix. PMID:16293203

  11. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  12. IRON DISSOCIATES FROM THE NAFEEDTA COMPLEX PRIOR TO OR DURING INTESTINAL ABSORPTION IN RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium Iron EDTA (NaFeEDTA) has superior iron bioavailability especially in foods containing iron absorption inhibitors. However, mechanisms involved in the absorption and subsequent partitioning of iron complexed with EDTA are poorly understood. Our objectives were to compare retention and tissue...

  13. Partition function of N={2}^{ast } SYM on a large four-sphere

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.; Kumar, S. Prem

    2015-12-01

    We examine the partition function of N={2}^{ast } supersymmetric SU( N) Yang-Mills theory on the four-sphere in the large radius limit. We point out that the large radius partition function, at fixed N, is computed by saddle-points lying on walls of marginal stability on the Coulomb branch of the theory on {R}^4 . For N an even (odd) integer and θ YM = 0( π), these include a point of maximal degeneration of the Donagi-Witten curve to a torus where BPS dyons with electric charge [N/2] become massless. We argue that the dyon singularity is the lone saddle-point in the SU(2) theory, while for SU( N) with N > 2, we characterize potentially competing saddle-points by obtaining the relations between the Seiberg-Witten periods at such points. Using Nekrasov's instanton partition function, we solve for the maximally degenerate saddle-point and obtain its free energy as a function of g YM and N, and show that the results are "large- N exact". In the large- N theory our results provide analytical expressions for the periods/eigenvalues at the maximally degenerate saddle-point, precisely matching previously known formulae following from the correspondence between N={2}^{ast } theory and the elliptic Calogero-Moser integrable model. The maximally singular point ceases to be a saddle-point of the partition function above a critical value of the coupling, in agreement with the recent findings of Russo and Zarembo.

  14. Do Psychological Sex Differences Reflect Evolutionary Bisexual Partitioning?

    PubMed

    Trofimova, Irina

    2015-01-01

    This article analyzes sex differences in communicative and exploratory abilities and mental disabilities from the rarely discussed perspective of sex differences in the shape of phenotypic distributions. The article reviews the most consistent findings related to such differences and compares them with the evolutionary theory of sex (ETS). The ETS considers sexual dimorphism as a functional specialization of a species into 2 partitions: variational and conservational. The analysis suggests that male superiority in risk and sensation seeking and physical abilities; higher rates of psychopathy, dyslexia, and autism; and higher birth and accidental death rates reflects the systemic variational function of the male sex. Female superiority in verbal abilities, lawfulness, socialization, empathy, and agreeableness is presented as a reflection of the systemic conservational function of the female sex. From this perspective psychological sex differences in communicative and exploratory abilities might not just be an accidental result of sexual selection or labor distribution in early humans. It might reflect a global functional differentiation tendency within a species to expand its phenotypic diversity and at the same time to conserve beneficial features in the species' behavior. The article also offers an addition to the ETS by suggesting that the male sex (variable partition) plays an evolutionary role in pruning of the redundant excesses in a species' bank of beneficial characteristics despite resistance from the conservational partition. PMID:26721176

  15. Automorphic instanton partition functions on Calabi-Yau threefolds

    NASA Astrophysics Data System (ADS)

    Persson, Daniel

    2012-02-01

    We survey recent results on quantum corrections to the hypermultiplet moduli space Script M in type IIA/B string theory on a compact Calabi-Yau threefold X, or, equivalently, the vector multiplet moduli space in type IIB/A on X × S1. Our main focus lies on the problem of resumming the infinite series of D-brane and NS5-brane instantons, using the mathematical machinery of automorphic forms. We review the proposal that when the theory in three dimensions exhibits an arithmetic "U-duality" symmetry G(Bbb Z) the total instanton partition function arises from a certain unitary automorphic representation of G, whose Fourier coefficients reproduce the BPS-degeneracies. In the case of four-dimensional Script N = 2 theories on Bbb R × S1 we argue that the relevant automorphic representation falls in the quaternionic discrete series of G, and that the partition function is a holomorphic section on the twistor space over Script M.

  16. Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Effect of entrained micelle-poor domains.

    PubMed

    Kamei, Daniel T; King, Jonathan A; Wang, Daniel I C; Blankschtein, Daniel

    2002-04-20

    Unlike the partitioning behavior of hydrophilic, water-soluble proteins, the partitioning behavior of viruses in the two-phase aqueous nonionic n-decyl tetra(ethylene oxide) (C10E4) micellar system cannot be fully explained using the excluded-volume theory developed recently by our group. A central assumption underlying the excluded-volume theory--that macroscopic phase separation equilibrium is attained--was therefore challenged experimentally and theoretically. Photographs of the two-phase aqueous C10E4 micellar system were taken for different volume ratios to demonstrate that the entrainment of micelle-poor (virus-rich) domains in the macroscopic, top, micelle-rich phase decreases with a decrease in the volume ratio. Partitioning experiments were then conducted with the model virus bacteriophage P22 and the model protein cytochrome c at different operating temperatures for different volume ratios. For bacteriophage P22, the measured viral partition coefficient at each temperature decreased by about an order of magnitude when the volume ratio was decreased from 10 to 0.1, which clearly indicated that entrainment is an important factor influencing viral partitioning. For cytochrome c, the measured protein partition coefficient did not change, which demonstrated that this entrainment effect negligibly influences protein partitioning. A new theoretical description of partitioning was also developed that combines the excluded-volume theory with this entrainment effect. In this theory, one fitted parameter--the volume fraction of entrained micelle-poor domains in the macroscopic, top, micelle-rich phase--is used to account for the entrainment. To fit this parameter, only a single partitioning experiment is required for a given volume ratio, irrespectively of the partitioning solute. The new theoretical description of partitioning yielded very good quantitative predictions of the viral partition coefficients. Accordingly, it can be concluded that the primary mechanisms

  17. Stress partition and microstructure in size-segregating granular flows.

    PubMed

    Staron, L; Phillips, J C

    2015-08-01

    When a granular mixture involving grains of different sizes is shaken, sheared, mixed, or left to flow, grains tend to separate by sizes in a process known as size segregation. In this study, we explore the size segregation mechanism in granular chute flows in terms of the pressure distribution and granular microstructure. Therefore, two-dimensional discrete numerical simulations of bidisperse granular chute flows are systematically analyzed. Based on the theoretical models of J. M. N. T. Gray and A. R. Thornton [Proc. R. Soc. A 461, 1447] and K. M. Hill and D. S. Tan [J. Fluid Mech. 756, 54 (2014)], we explore the stress partition in the phases of small and large grains, discriminating between contact stresses and kinetic stresses. Our results support both gravity-induced and shear-gradient-induced segregation mechanisms. However, we show that the contact stress partition is extremely sensitive to the definition of the partial stress tensors and, more specifically, to the way mixed contacts (i.e., involving a small grain and a large grain) are handled, making conclusions on gravity-induced segregation uncertain. By contrast, the computation of the partial kinetic stress tensors is robust. The kinetic pressure partition exhibits a deviation from continuum mixture theory of a significantly higher amplitude than the contact pressure and displays a clear dependence on the flow dynamics. Finally, using a simple approximation for the contact partial stress tensors, we investigate how the contact stress partition relates to the flow microstructure and suggest that the latter may provide an interesting proxy for studying gravity-induced segregation. PMID:26382397

  18. Stress partition and microstructure in size-segregating granular flows

    NASA Astrophysics Data System (ADS)

    Staron, L.; Phillips, J. C.

    2015-08-01

    When a granular mixture involving grains of different sizes is shaken, sheared, mixed, or left to flow, grains tend to separate by sizes in a process known as size segregation. In this study, we explore the size segregation mechanism in granular chute flows in terms of the pressure distribution and granular microstructure. Therefore, two-dimensional discrete numerical simulations of bidisperse granular chute flows are systematically analyzed. Based on the theoretical models of J. M. N. T. Gray and A. R. Thornton [Proc. R. Soc. A 461, 1447 (2005), 10.1098/rspa.2004.1420] and K. M. Hill and D. S. Tan [J. Fluid Mech. 756, 54 (2014), 10.1017/jfm.2014.271], we explore the stress partition in the phases of small and large grains, discriminating between contact stresses and kinetic stresses. Our results support both gravity-induced and shear-gradient-induced segregation mechanisms. However, we show that the contact stress partition is extremely sensitive to the definition of the partial stress tensors and, more specifically, to the way mixed contacts (i.e., involving a small grain and a large grain) are handled, making conclusions on gravity-induced segregation uncertain. By contrast, the computation of the partial kinetic stress tensors is robust. The kinetic pressure partition exhibits a deviation from continuum mixture theory of a significantly higher amplitude than the contact pressure and displays a clear dependence on the flow dynamics. Finally, using a simple approximation for the contact partial stress tensors, we investigate how the contact stress partition relates to the flow microstructure and suggest that the latter may provide an interesting proxy for studying gravity-induced segregation.

  19. Selecting optimal partitioning schemes for phylogenomic datasets

    PubMed Central

    2014-01-01

    Background Partitioning involves estimating independent models of molecular evolution for different subsets of sites in a sequence alignment, and has been shown to improve phylogenetic inference. Current methods for estimating best-fit partitioning schemes, however, are only computationally feasible with datasets of fewer than 100 loci. This is a problem because datasets with thousands of loci are increasingly common in phylogenetics. Methods We develop two novel methods for estimating best-fit partitioning schemes on large phylogenomic datasets: strict and relaxed hierarchical clustering. These methods use information from the underlying data to cluster together similar subsets of sites in an alignment, and build on clustering approaches that have been proposed elsewhere. Results We compare the performance of our methods to each other, and to existing methods for selecting partitioning schemes. We demonstrate that while strict hierarchical clustering has the best computational efficiency on very large datasets, relaxed hierarchical clustering provides scalable efficiency and returns dramatically better partitioning schemes as assessed by common criteria such as AICc and BIC scores. Conclusions These two methods provide the best current approaches to inferring partitioning schemes for very large datasets. We provide free open-source implementations of the methods in the PartitionFinder software. We hope that the use of these methods will help to improve the inferences made from large phylogenomic datasets. PMID:24742000

  20. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia trachomatis Ribonucleotide Reductase by Extended X-ray Absorption Fine Structure Spectroscopy and Density Functional Theory Calculations

    PubMed Central

    Younker, Jarod M.; Krest, Courtney M.; Jiang, Wei; Krebs, Carsten; Bollinger, J. Martin; Green, Michael T.

    2009-01-01

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (Ct) uses a stable Mn(IV)/Fe(III) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of ~2.92 Å. The Mn data also suggest the presence of a short 1.74 Å Mn—O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(III/III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OHX ligands as well as the location of the Mn(IV) ion (site 1 or 2). The models that agree best with experimental observation feature a µ-1,3-carboxylate bridge (E120), terminal solvent (H2O/OH) to site 1, one µ-O bridge, and one µ-OH bridge. The site-placement of the metal ions cannot be discerned from the available data. PMID:18937466

  1. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  2. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung Fung

    1988-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  3. Convex Regression with Interpretable Sharp Partitions

    PubMed Central

    Petersen, Ashley; Simon, Noah; Witten, Daniela

    2016-01-01

    We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set.

  4. Quantum Dilogarithms and Partition q-Series

    NASA Astrophysics Data System (ADS)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  5. How pervasive is the Hirshfeld partitioning?

    SciTech Connect

    Heidar-Zadeh, Farnaz; Ayers, Paul W.

    2015-01-28

    One can partition the molecular density into its atomic contributions by minimizing the divergence of the atom-in-molecule densities from their corresponding reference pro-atomic densities, subject to the constraint that the sum of the atom-in-molecule densities is the total molecular density. We expose conditions on the divergence measure that are necessary, and sufficient, to recover the popular Hirshfeld partitioning. Specifically, among all local measures of the divergence between two probability distribution functions, the Hirshfeld partitioning is obtained only for f-divergences.

  6. Lipid partitioning during cardiac stress.

    PubMed

    Kolwicz, Stephen C

    2016-10-01

    It is well documented that fatty acids serve as the primary fuel substrate for the contracting myocardium. However, extensive research has identified significant changes in the myocardial oxidation of fatty acids during acute or chronic cardiac stress. As a result, the redistribution or partitioning of fatty acids due to metabolic derangements could have biological implications. Fatty acids can be stored as triacylglycerols, serve as critical components for biosynthesis of phospholipid membranes, and form the potent signaling molecules, diacylglycerol and ceramides. Therefore, the contribution of lipid metabolism to health and disease is more intricate than a balance of uptake and oxidation. In this review, the available data regarding alterations that occur in endogenous cardiac lipid pathways during the pathological stressors of ischemia-reperfusion and pathological hypertrophy/heart failure are highlighted. In addition, changes in endogenous lipids observed in exercise training models are presented for comparison. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:27040509

  7. HPAM: Hirshfeld Partitioned Atomic Multipoles

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2011-01-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank lmax on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from lmax = 0 (atomic charges) to lmax = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank lmax are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ lmax. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (lmax = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. PMID:22140274

  8. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  9. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441

  10. Seasonality and interspecies differences in particle/gas partitioning of PAHs observed by the Integrated Atmospheric Deposition Network (IADN)

    NASA Astrophysics Data System (ADS)

    Galarneau, Elisabeth; Bidleman, Terry F.; Blanchard, Pierrette

    This study presents partitioning data from eight locations in the Laurentian Great Lakes region collected by the Integrated Atmospheric Deposition Network (IADN) over periods ranging from 1 to 6 years. Particle/gas partitioning varies sufficiently between sites in the Great Lakes region to preclude the use of a uniform temperature dependence for its description. Site-specific parameters for describing partitioning as a function of inverse temperature are presented. Relationships between partitioning of appreciably semivolatile PAHs and saturated vapour pressure at Chicago (IIT) and Sturgeon Point (STP) demonstrate that anthracene, benz[a]anthracene and retene behave differently than phenanthrene, fluoranthene, pyrene and chrysene+triphenylene. Possible reasons for these differences include interspecies variations in the fraction of atmospherically non-exchangeable, though analytically extractable, PAHs on particles and differences in soot-air partition coefficients as they relate to saturated vapour pressure. The observed interspecies differences are not consistent with sampling artefacts such as filter adsorption or sorbent breakthrough. At IIT, but not at STP, values of the slope of the relationship between the log partition coefficient and log vapour pressure vary in a manner opposing the annual temperature cycle. A comparison of partitioning calculated by a combined absorption/adsorption model shows good predictability at Chicago but underestimates values at a rural site (Eagle Harbor, EGH) by an order of magnitude.

  11. Beyond simple linear mixing models: process-based isotope partitioning of ecological processes.

    PubMed

    Ogle, Kiona; Tucker, Colin; Cable, Jessica M

    2014-01-01

    Stable isotopes are valuable tools for partitioning the components contributing to ecological processes of interest, such as animal diets and trophic interactions, plant resource use, ecosystem gas fluxes, streamflow, and many more. Stable isotope data are often analyzed with simple linear mixing (SLM) models to partition the contributions of different sources, but SLM models cannot incorporate a mechanistic understanding of the underlying processes and do not accommodate additional data associated with these processes (e.g., environmental covariates, flux data, gut contents). Thus, SLM models lack predictive ability. We describe a process-based mixing (PBM) model approach for integrating stable isotopes, other data sources, and process models to partition different sources or process components. This is accomplished via a hierarchical Bayesian framework that quantifies multiple sources of uncertainty and enables the incorporation of process models and prior information to help constrain the source-specific proportional contributions, thereby potentially avoiding identifiability issues that plague SLM models applied to "too many" sources. We discuss the application of the PBM model framework to three diverse examples: temporal and spatial partitioning of streamflow, estimation of plant rooting profiles and water uptake profiles (or water sources) with extension to partitioning soil and ecosystem CO2 fluxes, and reconstructing animal diets. These examples illustrate the advantages of the PBM modeling approach, which facilitates incorporation of ecological theory and diverse sources of information into the mixing model framework, thus enabling one to partition key process components across time and space. PMID:24640543

  12. Boundary conditions and partition functions in higher spin AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Jottar, Juan I.

    2016-04-01

    We discuss alternative definitions of the semiclassical partition function in two-dimensional CFTs with higher spin symmetry, in the presence of sources for the higher spin currents. Theories of this type can often be described via Hamiltonian reduction of current algebras, and a holographic description in terms of three-dimensional Chern-Simons theory with generalized AdS boundary conditions becomes available. By studying the CFT Ward identities in the presence of sources, we determine the appropriate choice of boundary terms and boundary conditions in Chern-Simons theory for the various types of partition functions considered. In particular, we compare the Chern-Simons description of deformations of the field theory Hamiltonian versus those encoding deformations of the CFT action. Our analysis clarifies various issues and confusions that have permeated the literature on this subject.

  13. Reducing variance in batch partitioning measurements

    SciTech Connect

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  14. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Harris, J. M.

    1985-01-01

    Partition of biological cells in two phase aqueous polymer systems is recognized as a powerful separation technique which is limited by gravity. The synthesis of new, selective polymer ligand conjugates to be used in affinity partition separations is of interest. The two most commonly used polymers in two phase partitioning are dextran and polyethylene glycol. A thorough review of the chemistry of these polymers was begun, particularly in the area of protein attachment. Preliminary studies indicate the importance in affinity partitioning of minimizing gravity induced randomizing forces in the phase separation process. The PEG-protein conjugates that were prepared appear to be ideally suited for achieving high quality purifications in a microgravity environment. An interesting spin-off of this synthetic work was the observation of catalytic activity for certain of our polymer derivatives.

  15. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes. PMID:27463671

  16. Connections between groundwater flow and transpiration partitioning

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  17. Deriving the Hirshfeld partitioning using distance metrics

    SciTech Connect

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-09-07

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic “stockholder” and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences.

  18. Isorropia Partitioning and Load Balancing Package

    2006-09-01

    Isorropia is a partitioning and load balancing package which interfaces with the Zoltan library. Isorropia can accept input objects such as matrices and matrix-graphs, and repartition/redistribute them into a better data distribution on parallel computers. Isorropia is primarily an interface package, utilizing graph and hypergraph partitioning algorithms that are in the Zoltan library which is a third-party library to Tilinos.

  19. Deriving the Hirshfeld partitioning using distance metrics

    NASA Astrophysics Data System (ADS)

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-09-01

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic "stockholder" and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences.

  20. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  1. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  2. DEVELOPMENT AND AVAILABILITY OF EQUILIBRIUM PARTITIONING SEDIMENT GUIDELINES (ESGS) FOR NONIONIC ORGANIC CONTAMINANTS, METALS MIXTURES, AND POLYCYCLIC AROMATIC HYDROCARBON (PAH) MIXTURES

    EPA Science Inventory

    Collaborative efforts between EPA's Office of Water and Office of Research and Development have resulted in the development of sediment guidelines based on equilibrium partitioning theory (EqP). The guidance available includes a technical support document, describing the derivat...

  3. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  4. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions. PMID:25311904

  5. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    SciTech Connect

    Dey, Abhishek; Hocking, Rosalie K.; Larsen, Peter; Borovik, Andrew S.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  6. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches.

    PubMed

    Maganas, Dimitrios; Roemelt, Michael; Hävecker, Michael; Trunschke, Annette; Knop-Gericke, Axel; Schlögl, Robert; Neese, Frank

    2013-05-21

    A detailed study of the electronic and geometric structure of V2O5 and its X-ray spectroscopic properties is presented. Cluster models of increasing size were constructed in order to represent the surface and the bulk environment of V2O5. The models were terminated with hydrogen atoms at the edges or embedded in a Madelung field. The structure and interlayer binding energies were studied with dispersion-corrected local, hybrid and double hybrid density functional theory as well as the local pair natural orbital coupled cluster method (LPNO-CCSD). Convergence of the results with respect to cluster size was achieved by extending the model to up to 20 vanadium centers. The O K-edge and the V L2,3-edge NEXAFS spectra of V2O5 were calculated on the basis of the newly developed Restricted Open shell Configuration Interaction with Singles (DFT-ROCIS) method. In this study the applicability of the method is extended to the field of solid-state catalysis. For the first time excellent agreement between theoretically predicted and experimentally measured vanadium L-edge NEXAFS spectra of V2O5 was achieved. At the same time the agreement between experimental and theoretical oxygen K-edge spectra is also excellent. Importantly, the intensity distribution between the oxygen K-edge and vanadium L-edge spectra is correctly reproduced, thus indicating that the covalency of the metal-ligand bonds is correctly described by the calculations. The origin of the spectral features is discussed in terms of the electronic structure using both quasi-atomic jj coupling and molecular LS coupling schemes. The effects of the bulk environment driven by weak interlayer interactions were also studied, demonstrating that large clusters are important in order to correctly calculate core level absorption spectra in solids. PMID:23575467

  7. Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.; Tureanu, A.

    2013-08-01

    Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.

  8. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  9. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  10. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  11. Iterating free-field AdS/CFT: higher spin partition function relations

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Tseytlin, Arkady A.

    2016-07-01

    We find a simple relation between a free higher spin partition function on the thermal quotient of {{AdS}}d+1 and the partition function of the associated d-dimensional conformal higher spin field defined on the thermal quotient of {{AdS}}d. Starting with a conformal higher spin field defined in {{AdS}}d, one may also associate to with another conformal field in d-1 dimensions, thus iterating AdS/CFT. We observe that in the case of d=4, this iteration leads to a trivial 3d higher spin conformal theory with parity-even non-local action: it describes a zero total number of dynamical degrees of freedom and the corresponding partition function is equal to 1.

  12. Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water

    NASA Astrophysics Data System (ADS)

    Decarreau, Alain

    1985-07-01

    Using trioctahedral smectites synthesized at low temperature (25 and 75°C). partition coefficients have been determined for M2+ transition metals (Mn, Fe, Co, Ni, Cu, Zn) between octahedral sheets of smectites and water. These coefficients D( M2+- Mg) = ( M2+)/( Mg) solid/( M2+)/( Mg) liquid have high values near 10 4 for Cu, 1000 for Ni, Co, Zn, 300 for Fe and 30 for Mn. All transition metals are strongly stabilized in the magnesian solid phase, even Mn which leads to noncrystallized products. Within the range of experimental uncertainties, it is found that tetrahedral substitution of Si by Al and differences in temperature (from 25 to 75°C) have no influence on partition coefficients. Experimental data are closely related to thermodynamic properties of the cations and on this basis other partition coefficients can be calculated, for the ( M2+ - Fe2+) pair for instance. The behaviour of transition metals is explained using crystal field theory.

  13. Identification of global data and partitioning scheme for modeling biological data within the electronic medical record.

    PubMed Central

    Doller, H.; Peterson, L. L.

    2000-01-01

    Using "Black Box" theory we analyzed human physiology. The major physiological means of communication are the vascular and nervous systems. The fundamental partitions of physiology are the vascular capillary fields and efferent and afferent fields of the nervous system. These fields are generally associated with organs and organ systems. Such analysis leads to the conclusion that the global biological data are information carried within the vascular and nervous systems. Data elements and processes within organs are important to other organs only through their effects on these global elements. Incorporation of these concepts into medical databases would allow the partitioning of the software around physiological systems. As a result of partitioning the utility of the electronic medical record, software could be greatly expanded. PMID:11079872

  14. Protein partition between the different phases comprising poly(ethylene glycol)-salt aqueous two-phase systems, hydrophobic interaction chromatography and precipitation: a generic description in terms of salting-out effects.

    PubMed

    Huddleston, J; Abelaira, J C; Wang, R; Lyddiatt, A

    1996-05-17

    The solution behaviour of selected proteins has been studied under conditions promoting precipitation, binding to mildly hydrophobic adsorbents or partition. Solvophobic theory may be used to describe these forms of protein partition. The tendency of a protein to partition therein is dependent upon surface properties of the protein solute mediated by the concentration and nature of added salts. As applied to partitioning in poly(ethylene glycol) (PEG)-salt systems this implies that linear (Brönsted) relationships apply only to proteins partitioned close to the critical point. At longer tie-line lengths protein partitioning is increasingly influenced by salting-out forces. This is confirmed by the observed behaviour of the proteins. The point at which this behaviour changes has been unambiguously defined enabling the direct comparison of phase transition of proteins during partition in all systems. The results obtained show that phase transition during adsorption and partition occur at similar concentrations of salt. This is less than that required to promote precipitation. It appears, from these limited studies, that top-phase preferring proteins are partitioned at salt concentrations above those required to cause adsorption. Proteins preferring the lower phase are partitioned at salt concentrations close to or below those required for adsorption. This raises questions regarding the solvated molecular form of the partitioned proteins and the definition of the partition coefficient. PMID:8798879

  15. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  16. Analytical modeling of degradation product partitioning kinetics in source zones containing entrapped DNAPL

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. Andrew; Christ, John A.; Douglas, Scott R.; Boroumand, Ali

    2011-03-01

    Liquid-liquid equilibrium experiments indicate that there is a strong thermodynamic driving force for the reversible sequestration of cis-dichloroethene (DCE) within microbially active dense nonaqueous phase liquid (DNAPL) source zones containing chlorinated ethene solvents. Assessment of the importance of degradation product sequestration, however, requires accurate description of the mass transfer kinetics. Partitioning kinetics of cis-DCE were assessed in a series of transport experiments conducted in sandy columns containing uniformly entrapped tetrachloroethene (PCE)-nonaqueous phase liquids (NAPL). Effluent data from these experiments were simulated using an analytical solution adapted from the sorption literature. The solution permits interrogation of the relative importance of mass transfer resistance in the aqueous phase and NAPL. Column data and simulations suggest that the kinetic exchange of cis-DCE may be described with mass transfer correlations developed for the dissolution of pure component NAPLs. Diffusive transport within the entrapped ganglia was relatively fast, offering limited resistance to mass exchange. These results (1) establish the applicability of dissolution-based mass transfer correlations for modeling both absorption and dissolution of degradation products, (2) quantify the thermodynamic driving force for the partitioning of cis-DCE in PCE-NAPL by assessing the ternary phase behavior, and (3) guide incorporation and deployment of partitioning kinetics into multiphase compositional simulators when assessing or designing metabolic reductive dechlorination within DNAPL source zones. While focus is placed on examining degradation product partitioning in DNAPL source zones, results may also be useful when considering rate limitations in other liquid-liquid partitioning processes, such as partitioning tracer tests.

  17. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  18. Wave resonances and the partition of energy in ideal compressible magnetohydrodynamic fluids

    SciTech Connect

    Zorzan, C.; Cally, P. S.

    2012-11-15

    Phase mixing and resonant absorption are two processes that have been under scrutiny for some time because of their role in wave damping and in providing a mechanism for heating space and laboratory plasmas. The accumulation or absorption of energy that develops within a resonant layer is usually attributed to a logarithmic singularity, but it will be shown that this build up of energy is inextricably tied to a discontinuity in the fluid displacement at the resonant point. This change in the dynamics of the problem will be examined by establishing a partition of energy that identifies and isolates the individual resonances within the fluid. The partition is based on a variational description of the Fourier transformed equations and is guided by an electrical model of the MHD system that not only illustrates the resonant structure threading the fluid but also exposes the mechanism driving the resonant absorption process. A simplified version of this model is then constructed to help determine the approximate rate of energy absorption.

  19. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, D.; Adams, L.

    1999-07-01

    In this paper the authors propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning and interprocessor data communication techniques. They prove that the PSOR method has the same asymptotic rate of convergence as the Red/Black (R/B) SOR method for the five-point stencil on both strip and block partitions, and as the four-color (R/B/G/O) SOR method for the nine-point stencil on strip partitions. They also demonstrate the parallel performance of the PSOR method on four different MIMD multiprocessors (a KSR1, an Intel Delta, a Paragon, and an IBM SP2). Finally, they compare the parallel performance of PSOR, R/B SOR, and R/B/G/O SOR. Numerical results on the Paragon indicate that PSOR is more efficient than R/B SOR and R/B/G/O SOR in both computation and interprocessor data communication.

  20. Fourier transform spectrometer controller for partitioned architectures

    NASA Astrophysics Data System (ADS)

    Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.

    The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.

  1. Parallel algorithms for dynamically partitioning unstructured grids

    SciTech Connect

    Diniz, P.; Plimpton, S.; Hendrickson, B.; Leland, R.

    1994-10-01

    Grid partitioning is the method of choice for decomposing a wide variety of computational problems into naturally parallel pieces. In problems where computational load on the grid or the grid itself changes as the simulation progresses, the ability to repartition dynamically and in parallel is attractive for achieving higher performance. We describe three algorithms suitable for parallel dynamic load-balancing which attempt to partition unstructured grids so that computational load is balanced and communication is minimized. The execution time of algorithms and the quality of the partitions they generate are compared to results from serial partitioners for two large grids. The integration of the algorithms into a parallel particle simulation is also briefly discussed.

  2. Some comments on molecular partition functions

    SciTech Connect

    Sharp, C.M.

    1987-03-01

    In models of cool stellar atmospheres where molecules are important, molecular spectroscopic data can be used to calculate partition functions, from which equilibrium constants hence abundances can be obtained. In this report, it is shown that simple analytic approximations can be used to calculate very easily the partition functions of diatomic molecules, and comparisons are made for the two particularly important astrophysical molecules, H/sub 2/ and CO, with other work where the partition functions are calculated by explicitly summing over a very large number of energy levels. It is found that these analytic approximations give excellent agreement with more detailed calculations and are certainly adequate for many purposes. This method is very convenient, as only a few spectroscopic constants are needed, and the analytic formulae are very easily evaluated.

  3. 1-loop partition function in AdS 3/ CFT 2

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wu, Jie-qiang

    2015-12-01

    The 1-loop partition function of the handlebody solutions in the AdS3 gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O( c 0) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  4. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  5. Partition signed social networks via clustering dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Jianshe; Zhang, Long; Li, Yong; Jiao, Yang

    2016-02-01

    Inspired by the dynamics phenomenon occurred in social networks, the WJJLGS model is modified to imitate the clustering dynamics of signed social networks. Analyses show that the clustering dynamics of the model can be applied to partition signed social networks. Traditionally, blockmodel is applied to partition signed networks. In this paper, a detailed dynamics-based algorithm for signed social networks (DBAS) is presented. Simulations on several typical real-world and illustrative networks that have been analyzed by the blockmodel verify the correctness of the proposed algorithm. The efficiency of the algorithm is verified on large scale synthetic networks.

  6. Partitioning SAT Instances for Distributed Solving

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Antti E. J.; Junttila, Tommi; Niemelä, Ilkka

    In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.

  7. Nonlinear microwave absorption in weak-link Josephson junctions

    SciTech Connect

    Xie, L.M.; Wosik, J.; Wolfe, J.C.

    1996-12-01

    A model, based on the resistively shunted junction theory, is developed and used to study microwave absorption in weak-link Josephson junctions in high-{ital T}{sub {ital c}} superconductors. Both linear and nonlinear cases of microwave absorption in Josephson junctions are analyzed. A comparison of the model with microwave absorption loop theory is presented along with a general condition for the applicability of both models. The nonlinear case was solved numerically and the threshold points of sharp microwave absorption are presented. At these points, a 2{pi} phase quantization takes place within each microwave cycle, leading to an onset of a sharp rise of absorption. Existence of the 2{pi} dynamic quantization is the key to the interpretation of nonlinear microwave absorption data. The nonlinear microwave absorption model is extended to the study of nonuniformly coupled junctions, and a general statement for the applicability of such a model is presented. {copyright} {ital 1996 The American Physical Society.}

  8. Influence of carbon partitioning kinetics on final Austenite fraction during quenching and partitioning

    SciTech Connect

    Clarke, Amy J; Speer, John G; Matlock, David K; Rizzo, F C; Edmonds, David V; Santofimia, Maria J

    2009-01-01

    The quenching and partitioning (Q&P) process is a two-stage heat-treatment procedure proposed for producing steel microstructures that contain carbon-enriched retained austenite. In Q&P processing, austenite stabilization is accomplished by carbon partitioning from supersaturated martensite. A quench temperature selection methodology was developed to predict an optimum process quench temperature; extension of this methodology to include carbon partitioning kinetics is developed here. Final austenite fraction is less sensitive to quench temperature than previously predicted, in agreement with experimental results.

  9. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-04-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  10. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-06-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  11. Partitioning and lipophilicity in quantitative structure-activity relationships.

    PubMed Central

    Dearden, J C

    1985-01-01

    The history of the relationship of biological activity to partition coefficient and related properties is briefly reviewed. The dominance of partition coefficient in quantitation of structure-activity relationships is emphasized, although the importance of other factors is also demonstrated. Various mathematical models of in vivo transport and binding are discussed; most of these involve partitioning as the primary mechanism of transport. The models describe observed quantitative structure-activity relationships (QSARs) well on the whole, confirming that partitioning is of key importance in in vivo behavior of a xenobiotic. The partition coefficient is shown to correlate with numerous other parameters representing bulk, such as molecular weight, volume and surface area, parachor and calculated indices such as molecular connectivity; this is especially so for apolar molecules, because for polar molecules lipophilicity factors into both bulk and polar or hydrogen bonding components. The relationship of partition coefficient to chromatographic parameters is discussed, and it is shown that such parameters, which are often readily obtainable experimentally, can successfully supplant partition coefficient in QSARs. The relationship of aqueous solubility with partition coefficient is examined in detail. Correlations are observed, even with solid compounds, and these can be used to predict solubility. The additive/constitutive nature of partition coefficient is discussed extensively, as are the available schemes for the calculation of partition coefficient. Finally the use of partition coefficient to provide structural information is considered. It is shown that partition coefficient can be a valuable structural tool, especially if the enthalpy and entropy of partitioning are available. PMID:3905374

  12. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  13. PARTITIONING OF METALS IN ROTARY KILN INCINERATION

    EPA Science Inventory

    This research project investigated the fate of trace metals in rotary kiln incineration with venturi- and packed tower-scrubber particulate- and acid gas-control. est plan was developed, using a factorial experimental design, to study the partitioning of metals among kiln ash, sc...

  14. Lipid metabolism and nutrient partitioning strategies.

    PubMed

    Morris, A M; Calsbeek, D J; Eckel, R H

    2004-10-01

    The increasing prevalence of overweight and obesity worldwide is daunting and requires prompt attention by the affected, health care profession, government and the pharmaceutical industry. Because overweight/obesity are defined as an excess of adipose tissue mass, all approaches in prevention and treatment must consider redirecting lipid storage in adipose tissue to oxidative metabolism. Lipid partitioning is a complex process that involves interaction between fat and other macronutrients, particularly carbohydrate. In an isocaloric environment, when fat is stored carbohydrate is oxidized and vice versa. Processes that influence fat partitioning in a manner in which weight is maintained must be modified by changes in organ-specific fat transport and metabolism. When therapy is considered, however, changes in lipid partitioning alone will be ineffective unless a negative energy balance is also achieved, i.e. energy expenditure exceeds energy intake. The intent of this review is to focus on molecules including hormones, enzymes, cytokines, membrane transport proteins, and transcription factors directly involved in fat trafficking and partitioning that could be potential drug targets. Some examples of favorably altering body composition by systemic and/or tissue specific modification of these molecules have already been provided with gene knockout and/or transgenic approaches in mice. The translation of this science to humans remains a challenging task. PMID:15544448

  15. Hydrologic transport and partitioning of phosphorus fractions

    NASA Astrophysics Data System (ADS)

    Berretta, C.; Sansalone, J.

    2011-06-01

    SummaryPhosphorus (P) in rainfall-runoff partitions between dissolved and particulate matter (PM) bound phases. This study investigates the transport and partitioning of P to PM fractions in runoff from a landscaped and biogenically-loaded carpark in Gainesville, FL (GNV). Additionally, partitioning and concentration results are compared to a similarly-sized concrete-paved source area of a similar rainfall depth frequency distribution in Baton Rouge, LA (BTR), where in contrast vehicular traffic represents the main source of pollutants. Results illustrate that concentrations of P fractions (dissolved, suspended, settleable and sediment) for GNV are one to two orders of magnitude higher than BTR. Despite these differences the dissolved fraction ( f d) and partitioning coefficient ( K d) distributions are similar, illustrating that P is predominantly bound to PM fractions. Examining PM size fractions, specific capacity for P (PSC) indicates that the P concentration order is suspended > settleable > sediment for GNV, similarly to BTR. For GNV the dominant PM mass fraction is sediment (>75 μm), while the mass of P is distributed predominantly between sediment and suspended (<25 μm) fractions since these PM mass fractions dominated the settleable one. With respect to transport of PM and P fractions the predominance of events for both areas is mass-limited first-flush, although each fraction illustrated unique washoff parameters. However, while transport is predominantly mass-limited, the transport of each PM and P fraction is influenced by separate hydrologic parameters.

  16. Set Partitions and the Multiplication Principle

    ERIC Educational Resources Information Center

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  17. UNCERTAINTY IN SOURCE PARTITIONING USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, C3 vs. C4 plant inputs to soil organic carbon, etc. Linear mixing models can be used to partition two sources with a sin...

  18. A review of approaches for evapotranspiration partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partitioning of evapotranspiration (ET) into evaporation from the soil surface (E) and transpiration (T) is challenging but important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally T is the desired component with the water being used to enh...

  19. Measure-theoretic sensitivity via finite partitions

    NASA Astrophysics Data System (ADS)

    Li, Jian

    2016-07-01

    For every positive integer n≥slant 2 , we introduce the concept of measure-theoretic n-sensitivity for measure-theoretic dynamical systems via finite measurable partitions, and show that an ergodic system is measure-theoretically n-sensitive but not (n  +  1)-sensitive if and only if its maximal pattern entropy is log n .

  20. hydrogen partitioning between postperovskite and bridgmanite

    NASA Astrophysics Data System (ADS)

    Townsend, J. P.; Jacobsen, S. D.; Bina, C. R.; Tsuchiya, J.

    2015-12-01

    We present new results from first-principles calculations of phonon spectra of lower mantle phases of MgSiO3 bridgmanite (brg) and postperovskite (ppv) including hydrous defects, and alumino-hydrous defects. We compute the partition coefficient of hydrogen between ppv and brg for hydrous and alumino-hydrous compositions at D" pressures and temperatures from first-principles lattice dynamics simulations and free energy calculations computed under the quasiharmonic approximation. We find that for aluminum free hydrous conditions the hydrogen partition coefficient between ppv and brg ranges from 0.2-0.8 within D". However, in the presence of aluminum the aluminum-hydrogen partition coefficient between ppv and brg is approximately 1.5. In general for a given pressure, lower temperature increases the partitioning of hydrogen into ppv for the aluminous models, but not for the aluminum free models. Because aluminum is is expected to occur in both natural slab and mantle compositions this suggests aluminous-hydrous ppv may be a host for water in D".

  1. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  2. Creep-fatigue analysis by Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschbere, M. H.

    1973-01-01

    Strainrange Partitioning provides unifying framework for characterizing high-temperature, low-cycle, creep-fatigue properties of metals and alloys. Method offers distinct advantage to designers of immediately providing reliable upper and lower bounds on cyclic life for any type of inelastic strain cycle that may be encountered in service.

  3. Uranium and rare earth partitioning in Synroc

    SciTech Connect

    Smith, K.L.; Lumpkin, G.R.; Blackford, M.G.

    1993-12-31

    Improved AEM techniques were used to investigate three Synrocs containing 10 wt% simulated HLW and a fourth sample with {approximately}18 wt% simulated HLW. One of the 10 wt% loaded Synrocs also contained an addition of 1.0 wt% Na{sub 2}O and another contained an addition of 2.0 wt% Fe{sub 2}O{sub 3}. This work is part of a larger study initiated with the objective of determining if the bulk composition of Synroc affects the partitioning of elements between individual phases. Results from the four samples in this study show that, as expected, elemental partitioning is mainly controlled by the ionic radius criterion, with smaller Y, Gd, and U ions having a preference for zirconolite and the larger Ce and Nd ions favouring perovskite. Additions of Na and Fe lead to the formation of CAT and loveringite at the expense of rutile or Magneli phases, but only have minor effects on partitioning coefficients. Partitioning coefficients, D{sup Z/P}, for REE, Y, and U in the four Synrocs are the same (within experimental error).

  4. Partition function of interacting calorons ensemble

    NASA Astrophysics Data System (ADS)

    Deldar, S.; Kiamari, M.

    2016-01-01

    We present a method for computing the partition function of a caloron ensemble taking into account the interaction of calorons. We focus on caloron-Dirac string interaction and show that the metric that Diakonov and Petrov offered, works well in the limit where this interaction occurs. We suggest computing the correlation function of two polyakov loops by applying Ewald's method.

  5. Open software tools for eddy covariance flux partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  6. Fermi-Dirac statistics and the number theory

    NASA Astrophysics Data System (ADS)

    Kubasiak, Anna; Korbicz, Jaroslaw K.; Zakrzewski, Jakub; Lewenstein, Maciej

    2005-11-01

    We relate the Fermi-Dirac statistics of an ideal Fermi gas in a harmonic trap to partitions of given integers into distinct parts, studied in number theory. Using methods of quantum statistical physics we derive analytic expressions for cumulants of the probability distribution of the number of different partitions.

  7. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    NASA Astrophysics Data System (ADS)

    Mathe, Zoltan; Charpentier, Philippe

    2014-06-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.

  8. Membrane potential and ion partitioning in an erythrocyte using the Poisson-Boltzmann equation.

    PubMed

    Barbosa, Nathalia S V; Lima, Eduardo R A; Boström, Mathias; Tavares, Frederico W

    2015-05-28

    In virtually all mammal cells, we can observe a much higher concentration of potassium ions inside the cell and vice versa for sodium ions. Classical theories ignore the specific ion effects and the difference in the thermodynamic reference states between intracellular and extracellular environments. Usually, this differential ion partitioning across a cell membrane is attributed exclusively to the active ion transport. Our aim is to investigate how much the dispersion forces contribute to active ion pumps in an erythrocyte (red blood cell) as well as the correction of chemical potential reference states between intracellular and extracellular environments. The ionic partition and the membrane potential in an erythrocyte are analyzed by the modified Poisson-Boltzmann equation, considering nonelectrostatic interactions between ions and macromolecules. Results show that the nonelectrostatic potential calculated by Lifshitz theory has only a small influence with respect to the high concentration of K(+) in the intracellular environment in comparison with Na(+). PMID:25941952

  9. 33. Elevation of Doors / Typical Cement Toilet Partitions / ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Elevation of Doors / Typical Cement Toilet Partitions / Typical Cement Shower Bath Partitions / Typical Marble Shower Bath Partitions / Dispensary Cupboard Supply Room Cupboard Similar / Section / Kitchen Cupboard and Sink / Screened Porch Cupboard (drawing 10) - Whittier State School, Hospital & Receiving Building, 11850 East Whittier Boulevard, Whittier, Los Angeles County, CA

  10. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  11. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  12. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  13. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  14. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  15. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  16. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  17. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  18. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  19. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  20. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  1. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  2. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  3. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  4. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  5. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  6. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  7. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  8. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  9. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  10. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  11. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's geographic area or spectrum subject to a geographic partitioning or spectrum disaggregation agreement...

  12. Phase Fluctuation Absorption Spectroscopy of Small Particles

    NASA Astrophysics Data System (ADS)

    Fluckiger, David Ulrich

    The purpose of this dissertation is to establish a viable mass measurement technique for in situ aerosol. Adaptation of the photothermal effect in a Mach-Zehnder interferometer provided high mass sensitivity in an instrument employing Phase Fluctuation Laser Optical Heterodyne (PFLOH) absorption spectroscopy. The theory of aerosol absorption of electromagnetic energy and subsequent thermalization in continuum, Rayleigh regime region is presented. From this theory the general behavior of PFLOH detection of aerosol is described and shown to give a signal proportional to the absorption species mass. Furthermore the signal is shown to be linear in excitation energy and modulation frequency, and scalable. The instrument is calibrated and shown to behave as predicted. PFLOH detection is then used in determining the mass size distribution of the aerosol component of the ozone-isoprene and ozone -(alpha)-pinene products as a function of isoprene and (alpha) -pinene concentration.

  13. Probing the defect nanostructure of helium and proton tracks in LiF:Mg,Ti using optical absorption: Implications to track structure theory calculations of heavy charged particle relative efficiency

    NASA Astrophysics Data System (ADS)

    Eliyahu, I.; Horowitz, Y. S.; Oster, L.; Weissman, L.; Kreisel, A.; Girshevitz, O.; Marino, S.; Druzhyna, S.; Biderman, S.; Mardor, I.

    2015-04-01

    A major objective of track structure theory (TST) is the calculation of heavy charged particle (HCP) induced effects. Previous calculations have been based exclusively on the radiation action/dose response of the released secondary electrons during the HCP slowing down. The validity of this presumption is investigated herein using optical absorption (OA) measurements on LiF:Mg,Ti (TLD-100) samples following irradiation with 1.4 MeV protons and 4 MeV He ions at levels of fluence from 1010 cm-2 to 2 × 1014 cm-2. The major bands in the OA spectrum are the 5.08 eV (F band), 4.77 eV, 5.45 eV and the 4.0 eV band (associated with the trapping structure leading to composite peak 5 in the thermoluminescence (TL) glow curve). The maximum intensity of composite peak 5 occurs at a temperature of ∼200 °C in the glow curve and is the glow peak used for most dosimetric applications. The TST calculations use experimentally measured OA dose response following low ionization density (LID) 60Co photon irradiation over the dose-range 10-105 Gy for the simulation of the radiation action of the HCP induced secondary electron spectrum. Following proton and He irradiation the saturation levels of concentration for the F band and the 4.77 eV band are approximately one order of magnitude greater than following LID irradiation indicating enhanced HCP creation of the relevant defects. Relative HCP OA efficiencies, ηHCP, are calculated by TST and are compared with experimentally measured values, ηm, at levels of fluence from 1010 cm-2 to 1011 cm-2 where the response is linear due to negligible track overlap. For the F band, values of ηm/ηHCP = 2.0 and 2.6 for the He ions and protons respectively arise from the neglect of enhanced Fluorine vacancy/F center creation by the HCPs in the TST calculations. It is demonstrated that kinetic analysis simulating LID F band dose response with enhanced Fluorine vacancy creation, and incorporated into the TST calculation, can lead to values of

  14. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  15. Bipartite graph partitioning and data clustering

    SciTech Connect

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D.

    2001-05-07

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.

  16. Partition coefficients of three new anticonvulsants.

    PubMed

    Hernandez-Gallegos, Z; Lehmann, P A

    1990-11-01

    The partition coefficients of three homologous anticonvulsant phenylalkylamides [racemic alpha-hydroxy-alpha-ethyl-alpha-phenylacetamide (HEPA); beta-hydroxy-beta-ethyl-beta-phenylpropionamide (HEPP); and gamma-hydroxy-gamma-ethyl-gamma-phenylbutyramide (HEPB)] were determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The system was calibrated with a series of simple amines and amides, using their published log P values. The log kw values (methanol:water, extrapolated to 100% water) were 1.260 for HEPA, 1.670 for HEPP, and 1.852 for HEPB. From these results, the partition coefficients (log P) were calculated by regression as 1.20, 1.83, and 2.11, respectively. The log P values were essentially equal to those calculated by the Leo-Hansch fragmental method. Since the potency of the three anticonvulsants is approximately the same in a variety of tests, no dependence on lipophilicity could be established. PMID:2292764

  17. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  18. Rotational partition functions for linear molecules

    NASA Astrophysics Data System (ADS)

    McDowell, Robin S.

    1988-01-01

    An accurate closed-form expression for the rotational partition function of linear polyatomic molecules in 1Sigma electronic states is derived, including the effect of nuclear spin (significant at very low temperatures) and of quartic and sextic centrifugal distortion terms (significant at moderate and high temperatures). The proper first-order quantum correction to the classical rigid-rotator partition function is shown to yield Qr = about 1/beta exp beta/3, where beta is defined as hcB / kT and B is the rotational constant in per cm; for beta of 0.2 or greater additional power-series terms in beta are necessary. Comparison between the results of this treatment and exact summations are made for HCN and C2H2 at temperatures from 2 to 5000 K, including separate evaluation of the conributions of nuclear spin and centrifugal distortion.

  19. Mantle Mineral/Silicate Melt Partitioning

    NASA Astrophysics Data System (ADS)

    McFarlane, E. A.; Drake, M. J.

    1992-07-01

    Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully

  20. Grid-based partitioning for comparing attractors

    NASA Astrophysics Data System (ADS)

    Carroll, T. L.; Byers, J. M.

    2016-04-01

    Stationary dynamical systems have invariant measures (or densities) that are characteristic of the particular dynamical system. We develop a method to characterize this density by partitioning the attractor into the smallest regions in phase space that contain information about the structure of the attractor. To accomplish this, we develop a statistic that tells us if we get more information about our data by dividing a set of data points into partitions rather than just lumping all the points together. We use this method to show that not only can we detect small changes in an attractor from a circuit experiment, but we can also distinguish between a large set of numerically generated chaotic attractors designed by Sprott. These comparisons are not limited to chaotic attractors—they should work for signals from any finite-dimensional dynamical system.

  1. Partition algebraic design of asynchronous sequential circuits

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Chen, Kristen Q.; Gopalakrishnan, Suresh K.

    1993-01-01

    Tracey's Theorem has long been recognized as essential in generating state assignments for asynchronous sequential circuits. This paper shows that partitioning variables derived from Tracey's Theorem also has a significant impact in generating the design equations. Moreover, this theorem is important to the fundamental understanding of asynchronous sequential operation. The results of this work simplify asynchronous logic design. Moreover, detection of safe circuits is made easier.

  2. Metal partitioning and toxicity in sewage sludge

    SciTech Connect

    Carlson-Ekvall, C.E.A.; Morrison, G.M.

    1995-12-31

    Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.

  3. Pure Partition Functions of Multiple SLEs

    NASA Astrophysics Data System (ADS)

    Kytölä, Kalle; Peltola, Eveliina

    2016-08-01

    Multiple Schramm-Loewner Evolutions (SLE) are conformally invariant random processes of several curves, whose construction by growth processes relies on partition functions—Möbius covariant solutions to a system of second order partial differential equations. In this article, we use a quantum group technique to construct a distinguished basis of solutions, which conjecturally correspond to the extremal points of the convex set of probability measures of multiple SLEs.

  4. GPS/INS integration by functional partitioning

    NASA Astrophysics Data System (ADS)

    Diesel, John W.

    It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.

  5. Pure Partition Functions of Multiple SLEs

    NASA Astrophysics Data System (ADS)

    Kytölä, Kalle; Peltola, Eveliina

    2016-05-01

    Multiple Schramm-Loewner Evolutions (SLE) are conformally invariant random processes of several curves, whose construction by growth processes relies on partition functions—Möbius covariant solutions to a system of second order partial differential equations. In this article, we use a quantum group technique to construct a distinguished basis of solutions, which conjecturally correspond to the extremal points of the convex set of probability measures of multiple SLEs.

  6. Partitioning networks into communities by message passing.

    PubMed

    Lai, Darong; Nardini, Christine; Lu, Hongtao

    2011-01-01

    Community structures are found to exist ubiquitously in a number of systems conveniently represented as complex networks. Partitioning networks into communities is thus important and crucial to both capture and simplify these systems' complexity. The prevalent and standard approach to meet this goal is related to the maximization of a quality function, modularity, which measures the goodness of a partition of a network into communities. However, it has recently been found that modularity maximization suffers from a resolution limit, which prevents its effectiveness and range of applications. Even when neglecting the resolution limit, methods designed for detecting communities in undirected networks cannot always be easily extended, and even less directly applied, to directed networks (for which specifically designed community detection methods are very limited). Furthermore, real-world networks are frequently found to possess hierarchical structure and the problem of revealing such type of structure is far from being addressed. In this paper, we propose a scheme that partitions networks into communities by electing community leaders via message passing between nodes. Using random walk on networks, this scheme derives an effective similarity measure between nodes, which is closely related to community memberships of nodes. Importantly, this approach can be applied to a very broad range of networks types. In fact, the successful validation of the proposed scheme on real and synthetic networks shows that this approach can effectively (i) address the problem of resolution limit and (ii) find communities in both directed and undirected networks within a unified framework, including revealing multiple levels of robust community partitions. PMID:21405752

  7. Scheduling and process migration in partitioned multiprocessors

    SciTech Connect

    Gait, J. )

    1990-03-01

    A partitioned multiprocessor (PM) has a shared global bus and nonshared local memories. This paper studies a process scheduler, called the two-tier scheduler (TTS), for a PM. In a PM local scheduling amortizes the cost of loading processes in local memory. Global scheduling migrates processes to balance load. A tunable time quantum is adjusted so the average process completes execution on the processor on which it is first scheduled, and only relatively long lived processes are rescheduled globally.

  8. Phase partitioning in space and on earth

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Karr, Laurel J.; Snyder, Robert S.; Matsos, Helen C.; Curreri, Peter A.; Harris, J. Milton; Bamberger, Stephan B.; Boyce, John; Brooks, Donald E.

    1987-01-01

    The influence of gravity on the efficiency and quality of the impressive separations achievable by bioparticle partitioning is investigated by demixing polymer phase systems in microgravity. The study involves the neutral polymers dextran and polyethylene glycol, which form a two-phase system in aqueous solution at low concentrations. It is found that demixing in low-gravity occurs primarily by coalescence, whereas on earth the demixing occurs because of density differences between the phases.

  9. Environment Partitioning and Reactivity of Polybrominated Diphenylethers

    NASA Technical Reports Server (NTRS)

    Hua, Inez; Iraci, Laura T.; Jafvert, Chad; Bezares-Cruz, Juan

    2004-01-01

    Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Annual global demand for these compounds was over 67,000 metric tons in 2001. PBDEs have recently been extensively investigated as environmental contaminants because they have been detected in air, sediment, and tissue samples from urban and remote areas. Important issues include quantifying PBDE partitioning in various environmental compartments, and elucidating transformation pathways. The partitioning of PBDE congeners to aerosols was estimated for 16 sites in the United States, Canada, and Mexico. The aerosol particles were PM2.5, the total suspended particle (TSP) concentration varied between 3.0 - 55.4 micro g/cubic meter, and the organic fraction ranged from 11 - 41%; these data are published values for each site. It is estimated that the largest fraction of each PBDE associated with the aerosol particles occurs in Mexico City, and the smallest fraction in Colorado Plateau. Although the organic fraction in Mexico City is about 60% of that observed in the Colorado Plateau, the TSP is larger by a factor of about 18.5, and it is the difference in TSP that strongly influences the fraction of particle-bound PBDE in this case. PBDE partitioning to PM2.5 particles also varies seasonally because of temperature variations. For the less brominated congeners the percentage that is particle-bound is relatively low, regardless of air temperature. In contrast, the heavier congeners exhibit a significant temperature dependence: as the temperature decreases (fall, winter) the percentage of PBDE that is particle-bound increases. The partitioning calculations complement experimental data indicating that decabromodiphenyl ether (DBDE) dissolved in hexane transforms very rapidly when irradiated with solar light. DBDE is the most highly brominated PBDE congener (10 bromine atoms) and occurs in the commercial formulation which is subject to the largest global demand.

  10. Airborne phthalate partitioning to cotton clothing

    NASA Astrophysics Data System (ADS)

    Morrison, Glenn; Li, Hongwan; Mishra, Santosh; Buechlein, Melissa

    2015-08-01

    Accumulation on indoor surfaces and fabrics can increase dermal uptake and non-dietary ingestion of semi-volatile organic compounds. To better understand the potential for dermal uptake of phthalates from clothing, we measured the mass accumulation on cotton fabrics of two phthalate esters commonly identified in indoor air: diethylphthalate (DEP) and di-n-butyl phthalate (DnBP). In 10-day chamber experiments, we observed strong air-to-cloth partitioning of these phthalates to shirts and jean material. Area-normalized partition coefficients ranged from 209 to 411 (μg/m2)/(μg/m3) for DEP and 2850 to 6580 (μg/m2)/(μg/m3) for DnBP. Clothing volume-normalized partition coefficients averaged 2.6 × 105 (μg/m3)/(μg/m3) for DEP and 3.9 × 106 (μg/m3)/(μg/m3) for DnBP. At equilibrium, we estimate that a typical set of cotton clothing can sorb DnBP from the equivalent of >10,000 m3 of indoor air, thereby substantially decreasing external mass-transfer barriers to dermal uptake. Further, we estimate that a significant fraction of a child's body burden of DnBP may come from mouthing fabric material that has been equilibrated with indoor air.

  11. Diversity partitioning during the Cambrian radiation.

    PubMed

    Na, Lin; Kiessling, Wolfgang

    2015-04-14

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  12. Biogeography of time partitioning in mammals

    PubMed Central

    Bennie, Jonathan J.; Duffy, James P.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Many animals regulate their activity over a 24-h sleep–wake cycle, concentrating their peak periods of activity to coincide with the hours of daylight, darkness, or twilight, or using different periods of light and darkness in more complex ways. These behavioral differences, which are in themselves functional traits, are associated with suites of physiological and morphological adaptations with implications for the ecological roles of species. The biogeography of diel time partitioning is, however, poorly understood. Here, we document basic biogeographic patterns of time partitioning by mammals and ecologically relevant large-scale patterns of natural variation in “illuminated activity time” constrained by temperature, and we determine how well the first of these are predicted by the second. Although the majority of mammals are nocturnal, the distributions of diurnal and crepuscular species richness are strongly associated with the availability of biologically useful daylight and twilight, respectively. Cathemerality is associated with relatively long hours of daylight and twilight in the northern Holarctic region, whereas the proportion of nocturnal species is highest in arid regions and lowest at extreme high altitudes. Although thermal constraints on activity have been identified as key to the distributions of organisms, constraints due to functional adaptation to the light environment are less well studied. Global patterns in diversity are constrained by the availability of the temporal niche; disruption of these constraints by the spread of artificial lighting and anthropogenic climate change, and the potential effects on time partitioning, are likely to be critical influences on species’ future distributions. PMID:25225371

  13. Diversity partitioning during the Cambrian radiation

    PubMed Central

    Na, Lin; Kiessling, Wolfgang

    2015-01-01

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  14. On bottleneck partitioning k-ary n-cubes

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Mao, Weizhen

    1994-01-01

    Graph partitioning is a topic of extensive interest, with applications to parallel processing. In this context graph nodes typically represent computation, and edges represent communication. One seeks to distribute the workload by partitioning the graph so that every processor has approximately the same workload, and the communication cost (measured as a function of edges exposed by the partition) is minimized. Measures of partition quality vary; in this paper we consider a processor's cost to be the sum of its computation and communication costs, and consider the cost of a partition to be the bottleneck, or maximal processor cost induced by the partition. For a general graph the problem of finding an optimal partitioning is intractable. In this paper we restrict our attention to the class of k-art n-cube graphs with uniformly weighted nodes. Given mild restrictions on the node weight and number of processors, we identify partitions yielding the smallest bottleneck. We also demonstrate by example that some restrictions are necessary for the partitions we identify to be optimal. In particular, there exist cases where partitions that evenly partition nodes need not be optimal.

  15. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  16. Absorption of laser radiation in a H-He plasma. II - Experimental measurement of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Stallcop, J. R.; Presley, L.

    1974-01-01

    The absorption coefficients of 0.633-, 1.15-, and 3.39-micron laser radiation for a homogeneous H-He plasma have been measured in the temperature range from 12.2 to 21.7 (x 1000 K) and in the electron number density range 0.45 to 6.5 (x 10 to the 17th power per cu cm). Good agreement is found between the experimentally determined total absorption for each of the wavelengths and that calculated from theory. Furthermore, because the 3.39-micron absorption is dominated by inverse bremsstrahlung, while the 0.633-micron absorption is dominated by photoionization and resonance absorption, the experiment indicates a correct assessment by the theory of these individual absorption mechanisms.

  17. Safety-Critical Partitioned Software Architecture: A Partitioned Software Architecture for Robotic

    NASA Technical Reports Server (NTRS)

    Horvath, Greg; Chung, Seung H.; Cilloniz-Bicchi, Ferner

    2011-01-01

    The flight software on virtually every mission currently managed by JPL has several major flaws that make it vulnerable to potentially fatal software defects. Many of these problems can be addressed by recently developed partitioned operating systems (OS). JPL has avoided adopting a partitioned operating system on its flight missions, primarily because doing so would require significant changes in flight software design, and the risks associated with changes of that magnitude cannot be accepted by an active flight project. The choice of a partitioned OS can have a dramatic effect on the overall system and software architecture, allowing for realization of benefits far beyond the concerns typically associated with the choice of OS. Specifically, we believe that a partitioned operating system, when coupled with an appropriate architecture, can provide a strong infrastructure for developing systems for which reusability, modifiability, testability, and reliability are essential qualities. By adopting a partitioned OS, projects can gain benefits throughout the entire development lifecycle, from requirements and design, all the way to implementation, testing, and operations.

  18. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  19. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  20. Script N = 8 dyon partition function and walls of marginal stability

    NASA Astrophysics Data System (ADS)

    Sen, Ashoke

    2008-07-01

    We construct the partition function of 1/8 BPS dyons in type II string theory on T6 from counting of microstates of a D1-D5 system in Taub-NUT space. Our analysis extends the earlier ones by Shih, Strominger and Yin and by Pioline by taking into account the walls of marginal stability on which a 1/8 BPS dyon can decay into a pair of half-BPS dyons. Across these walls the dyon spectrum changes discontinuously, and as a result the spectrum is not manifestly invariant under S-duality transformation of the charges. However the partition function is manifestly S-duality invariant and takes the same form in all domains of the moduli space separated by walls of marginal stability, the spectra in different domains being obtained by choosing different integration contours along which we carry out the Fourier transform of the partition function. The jump in the spectrum across a wall of marginal stability, calculated from the behaviour of the partition function at an appropriate pole, reproduces the expected wall crossing formula.

  1. Flux Partitioning by Isotopic Eddy Covariance

    NASA Astrophysics Data System (ADS)

    Wehr, R.; Munger, J. W.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wofsy, S. C.; Saleska, S. R.

    2011-12-01

    Net ecosystem-atmosphere exchange of CO2 is routinely measured by eddy covariance at sites around the world, but studies of ecosystem processes are more interested in the gross photosynthetic and respiratory fluxes that comprise the net flux. The standard method of partitioning the net flux into these components has been to extrapolate nighttime respiration into daytime based on a relationship between nighttime respiration, temperature, and sometimes moisture. However, such relationships generally account for only a small portion of the variation in nighttime respiration, and the assumption that they can predict respiration throughout the day is dubious. A promising alternate method, known as isotopic flux partitioning, works by identifying the stable isotopic signatures of photosynthesis and respiration in the CO2 flux. We have used this method to partition the net flux at Harvard Forest, MA, based on eddy covariance measurements of the net 12CO2 and 13CO2 fluxes (as well as measurements of the sensible and latent heat fluxes and other meteorological variables). The CO2 isotopologues were measured at 4 Hz by an Aerodyne quantum cascade laser spectrometer with a δ13C precision of 0.4 % in 0.25 sec and 0.02 % in 100 sec. In the absence of such high-frequency, high-precision isotopic measurements, past attempts at isotopic flux partitioning have combined isotopic flask measurements with high-frequency (total) CO2 measurements to estimate the isoflux (the EC/flask approach). Others have used a conditional flask sampling approach called hyperbolic relaxed eddy accumulation (HREA). We 'sampled' our data according to each of these approaches, for comparison, and found disagreement in the calculated fluxes of ~10% for the EC/flask approach, and ~30% for HREA, at midday. To our knowledge, this is the first example of flux partitioning by isotopic eddy covariance. Wider use of this method, enabled by a new generation of laser spectrometers, promises to open a new window

  2. Energy loss partitioning during ballistic impact of polymer composites

    NASA Technical Reports Server (NTRS)

    Zee, Ralph H.; Hsieh, Chung Y.

    1993-01-01

    The objective of this study is to determine the energy dissipation processes in polymer-matrix composites during impact of ballistic projectiles. These processes include heat, fiber deformation and breakage, matrix deformation and fracture, and interfacial delamination. In this study, experimental measurements were made, using specialized specimen designs and test methods, to isolate the energy consumed by each of these processes during impact in the ballistic range. Using these experiments, relationships between material parameters and energy dissipation were examined. Composites with the same matrix but reinforced with Kevlar, PE, and graphite fabric were included in this study. These fibers were selected based on the differences in their intrinsic properties. Matrix cracking was found to be one of the most important energy absorption mechanisms during impact, especially in ductile samples such as Spectra-900 PE and Kevlar-49 reinforced polymer. On the contrary, delamination dominated the energy dissipation in brittle composites such as graphite reinforced materials. The contribution from frictional forces was also investigated and the energy partitioning among the different processes evaluated.

  3. Photodissociation of N{sub 2}O: Energy partitioning

    SciTech Connect

    Schmidt, J. A.; Johnson, M. S.; Lorenz, U.; McBane, G. C.; Schinke, R.

    2011-07-14

    The energy partitioning in the UV photodissociation of N{sub 2}O is investigated by means of quantum mechanical wave packet and classical trajectory calculations using recently calculated potential energy surfaces. Vibrational excitation of N{sub 2} is weak at the onset of the absorption spectrum, but becomes stronger with increasing photon energy. Since the NNO equilibrium angles in the ground and the excited state differ by about 70 degree sign , the molecule experiences an extraordinarily large torque during fragmentation producing N{sub 2} in very high rotational states. The vibrational and rotational distributions obtained from the quantum mechanical and the classical calculations agree remarkably well. The shape of the rotational distributions is semi-quantitatively explained by a two-dimensional version of the reflection principle. The calculated rotational distribution for excitation with {lambda}= 204 nm and the translational energy distribution for 193 nm agree well with experimental results, except for the tails of the experimental distributions corresponding to excitation of the highest rotational states. Inclusion of nonadiabatic transitions from the excited to the ground electronic state at relatively large N{sub 2}-O separations, studied by trajectory surface hopping, improves the agreement at high j.

  4. Hybrid silencers with micro-perforated panels and internal partitions.

    PubMed

    Yu, Xiang; Cheng, Li; You, Xiangyu

    2015-02-01

    A sub-structuring approach, along with a unit cell treatment, is proposed to model expansion chamber silencers with internal partitions and micro-perforated panels (MPPs) in the absence of internal flow. The side-branch of the silencer is treated as a combination of unit cells connected in series. It is shown that, by connecting multiple unit cells with varying parameters, the noise attenuation bandwidth can be enlarged. With MPPs, the hybrid noise attenuation mechanism of the silencer is revealed. Depending on the size of the perforation hole, noise attenuation can be dominated by dissipative, reactive, or combined effects together. For a broadband sound absorption, the hole size, together with the perforation ratio and other parameters, can be optimized to strike a balance between the dissipative and reactive effect, for ultimately achieving the desired noise attenuation performance within a prescribed frequency region. The modular nature of the proposed formulation allows doing this in a flexible, accurate, and cost effective manner. The accuracy of the proposed approach is validated through comparisons with finite element method and experiments. PMID:25698027

  5. Percutaneous absorption of drugs.

    PubMed

    Wester, R C; Maibach, H I

    1992-10-01

    The skin is an evolutionary masterpiece of living tissue which is the final control unit for determining the local and systemic availability of any drug which must pass into and through it. In vivo in humans, many factors will affect the absorption of drugs. These include individual biological variation and may be influenced by race. The skin site of the body will also influence percutaneous absorption. Generally, those body parts exposed to the open environment (and to cosmetics, drugs and hazardous toxic substances) are most affected. Treating patients may involve single daily drug treatment or multiple daily administration. Finally, the body will be washed (normal daily process or when there is concern about skin decontamination) and this will influence percutaneous absorption. The vehicle of a drug will affect release of drug to skin. On skin, the interrelationships of this form of administration involve drug concentration, surface area exposed, frequency and time of exposure. These interrelationships determine percutaneous absorption. Accounting for all the drug administered is desirable in controlled studies. The bioavailability of the drug then is assessed in relationship to its efficacy and toxicity in drug development. There are methods, both quantitative and qualitative, in vitro and in vivo, for studying percutaneous absorption of drugs. Animal models are substituted for humans to determine percutaneous absorption. Each of these methods thus becomes a factor in determining percutaneous absorption because they predict absorption in humans. The relevance of these predictions to humans in vivo is of intense research interest. The most relevant determination of percutaneous absorption of a drug in humans is when the drug in its approved formulation is applied in vivo to humans in the intended clinical situation. Deviation from this scenario involves the introduction of variables which may alter percutaneous absorption. PMID:1296607

  6. Absorption lineshapes of molecular aggregates revisited

    SciTech Connect

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius

    2015-04-21

    Linear absorption is the most basic optical spectroscopy technique that provides information about the electronic and vibrational degrees of freedom of molecular systems. In simulations of absorption lineshapes, often diagonal fluctuations are included using the cumulant expansion, and the off-diagonal fluctuations are accounted for either perturbatively, or phenomenologically. The accuracy of these methods is limited and their range of validity is still questionable. In this work, a systematic study of several such methods is presented by comparing the lineshapes with exact results. It is demonstrated that a non-Markovian theory for off-diagonal fluctuations, termed complex time dependent Redfield theory, gives good agreement with exact lineshapes over a wide parameter range. This theory is also computationally efficient. On the other hand, accounting for the off-diagonal fluctuations using the modified Redfield lifetimes was found to be inaccurate.

  7. Topological field theory amplitudes for A N-1 fibration

    NASA Astrophysics Data System (ADS)

    Iqbal, Amer; Khan, Ahsan Z.; Qureshi, Babar A.; Shabbir, Khurram; Shehper, Muhammad A.

    2015-12-01

    We study the partition function N=1 5D U( N) gauge theory with g adjoint hypermultiplets and show that for massless adjoint hypermultiplets it is equal to the partition function of a two dimensional topological field on a genus g Riemann surface. We describe the topological field theory by its amplitudes associated with cap, propagator and pair of pants. These basic amplitudes are open topological string amplitudes associated with certain Calabi-Yau threefolds in the presence of Lagrangian branes.

  8. Niche partitioning in a sympatric cryptic species complex.

    PubMed

    Scriven, Jessica J; Whitehorn, Penelope R; Goulson, Dave; Tinsley, Matthew C

    2016-03-01

    Competition theory states that multiple species should not be able to occupy the same niche indefinitely. Morphologically, similar species are expected to be ecologically alike and exhibit little niche differentiation, which makes it difficult to explain the co-occurrence of cryptic species. Here, we investigated interspecific niche differentiation within a complex of cryptic bumblebee species that co-occur extensively in the United Kingdom. We compared the interspecific variation along different niche dimensions, to determine how they partition a niche to avoid competitive exclusion. We studied the species B. cryptarum, B. lucorum, and B. magnus at a single location in the northwest of Scotland throughout the flight season. Using mitochondrial DNA for species identification, we investigated differences in phenology, response to weather variables and forage use. We also estimated niche region and niche overlap between different castes of the three species. Our results show varying levels of niche partitioning between the bumblebee species along three niche dimensions. The species had contrasting phenologies: The phenology of B. magnus was delayed relative to the other two species, while B. cryptarum had a relatively extended phenology, with workers and males more common than B. lucorum early and late in the season. We found divergent thermal specialisation: In contrast to B. cryptarum and B. magnus, B. lucorum worker activity was skewed toward warmer, sunnier conditions, leading to interspecific temporal variation. Furthermore, the three species differentially exploited the available forage plants: In particular, unlike the other two species, B. magnus fed predominantly on species of heather. The results suggest that ecological divergence in different niche dimensions and spatio-temporal heterogeneity in the environment may contribute to the persistence of cryptic species in sympatry. Furthermore, our study suggests that cryptic species provide distinct

  9. High dimensional data clustering by partitioning the hypergraphs using dense subgraph partition

    NASA Astrophysics Data System (ADS)

    Sun, Xili; Tian, Shoucai; Lu, Yonggang

    2015-12-01

    Due to the curse of dimensionality, traditional clustering methods usually fail to produce meaningful results for the high dimensional data. Hypergraph partition is believed to be a promising method for dealing with this challenge. In this paper, we first construct a graph G from the data by defining an adjacency relationship between the data points using Shared Reverse k Nearest Neighbors (SRNN). Then a hypergraph is created from the graph G by defining the hyperedges to be all the maximal cliques in the graph G. After the hypergraph is produced, a powerful hypergraph partitioning method called dense subgraph partition (DSP) combined with the k-medoids method is used to produce the final clustering results. The proposed method is evaluated on several real high-dimensional datasets, and the experimental results show that the proposed method can improve the clustering results of the high dimensional data compared with applying k-medoids method directly on the original data.

  10. Identification of four-hydrogen complexes in In-rich InxGa1-xN (x>0.4) alloys using photoluminescence, x-ray absorption, and density functional theory

    NASA Astrophysics Data System (ADS)

    De Luca, M.; Pettinari, G.; Ciatto, G.; Amidani, L.; Filippone, F.; Polimeni, A.; Fonda, E.; Boscherini, F.; Bonapasta, A. Amore; Giubertoni, D.; Knübel, A.; Lebedev, V.; Capizzi, M.

    2012-11-01

    Postgrowth hydrogen incorporation in In-rich InxGa1-xN (x>0.4) alloys strongly modifies the optical and structural properties of the material: A large blueshift of the emission and absorption energies is accompanied by a remarkable broadening of the interatomic-distance distribution, as probed by synchrotron radiation techniques. Both effects vanish at a finite In-concentration value (x ˜ 0.5). Synergic x-ray absorption measurements and first-principle calculations unveil two different defective species forming upon hydrogenation: one due to the high chemical reactivity of H, the other ascribed to mere lattice damage. In the former species, four H atoms bind to as many N atoms, all nearest-neighbors of a same In atom. The stability of this peculiar complex, which is predicted to behave as a donor, stems from atomic displacements cooperating to reduce local strain.

  11. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  12. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiment of the N K-edge and Ga M{sub 2,3} edges

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.; Lawniczak-Jablonska, K.; Suski, T.; Gullikson, E.M.; Underwood, J.H.; Perera, R.C.C.; Rife, J.C.

    1997-12-31

    X-ray absorption and glancing angle reflectivity measurements in the energy range of the Nitrogen K-edge and Gallium M{sub 2,3} edges are reported. Linear muffin-tin orbital band-structure and spectral function calculations are used to interpret the data. Polarization effects are evidenced for the N-K-edge spectra by comparing X-ray reflectivity in s- and p-polarized light.

  13. A Partitioning Algorithm for Block-Diagonal Matrices With Overlap

    SciTech Connect

    Guy Antoine Atenekeng Kahou; Laura Grigori; Masha Sosonkina

    2008-02-02

    We present a graph partitioning algorithm that aims at partitioning a sparse matrix into a block-diagonal form, such that any two consecutive blocks overlap. We denote this form of the matrix as the overlapped block-diagonal matrix. The partitioned matrix is suitable for applying the explicit formulation of Multiplicative Schwarz preconditioner (EFMS) described in [3]. The graph partitioning algorithm partitions the graph of the input matrix into K partitions, such that every partition {Omega}{sub i} has at most two neighbors {Omega}{sub i-1} and {Omega}{sub i+1}. First, an ordering algorithm, such as the reverse Cuthill-McKee algorithm, that reduces the matrix profile is performed. An initial overlapped block-diagonal partition is obtained from the profile of the matrix. An iterative strategy is then used to further refine the partitioning by allowing nodes to be transferred between neighboring partitions. Experiments are performed on matrices arising from real-world applications to show the feasibility and usefulness of this approach.

  14. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge. PMID:14525414

  15. PARTITIONING SPECTRAL ABSORPTION IN CASE 2 WATERS: DISCRIMINATION OF DISSOLVED AND PARTICULATE COMPONENTS. (R826943)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Accumulation, distribution and cellular partitioning of mercury in several halophytes of a contaminated salt marsh.

    PubMed

    Castro, Rita; Pereira, Sofia; Lima, Ana; Corticeiro, Sofia; Válega, Mónica; Pereira, Eduarda; Duarte, Armando; Figueira, Etelvina

    2009-09-01

    This work evaluates the role of a plant community in mercury (Hg) stabilization and mobility in a contaminated Portuguese salt marsh. With this aim, the distribution of Hg in below and aboveground tissues, as well as the metal partitioning between cellular fractions (soluble and insoluble) in four different species (Triglochin maritima L., Juncus maritimus Lam, Sarcocornia perennis (Miller) A.J. Scott, and Halimione portulacoides (L.) Aellen) was assessed. Mercury accumulation, translocation and compartmentation between organs and cellular fractions were related to the plant species. Results showed that the degree of Hg absorption and retention was influenced both by environmental parameters and metal translocation/partitioning strategies. Different plant species presented different allocation patterns, with marked differences between monocots (T. maritima and J. maritimus) and dicots (S. perennis, H. portulacoides). Overall, the two monocots, in particular T. maritima showed higher Hg retention in the belowground organs whereas the dicots, particularly S. perennis presented a more pronounced translocation to the aboveground tissues. Considering cellular Hg partitioning, all species showed a higher Hg binding to cell walls and membranes rather than in the soluble fractions. This strategy can be related to the high degree of tolerance observed in the studied species. These results indicate that the composition of salt marsh plant communities can be very important in dictating the Hg mobility within the marsh ecosystem and in the rest of the aquatic system as well as providing important insights to future phytoremediation approaches in Hg contaminated salt marshes. PMID:19595432

  17. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry

    NASA Astrophysics Data System (ADS)

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-01

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM > FT > PFF > PCF > IFP > CFVP > FNT ⩾ DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R2 = 0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  18. Down the rabbit hole with theories of class

    NASA Astrophysics Data System (ADS)

    Razamat, Shlomo S.; Willett, Brian

    2014-10-01

    We review some of the properties of 3 d theories obtained by dimensionally reducing theories of class . We study 3 d partition functions, and certain limits thereof, for such theories, and the properties implied for these by 3 d mirror symmetry.

  19. Intestinal absorption and biomagnification of organochlorines

    SciTech Connect

    Gobas, F.A.P.C. ); McCorquodale, J.R.; Haffner, G.D. )

    1993-03-01

    Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organic chemicals in fish and mammals.

  20. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  1. Knowledge base rule partitioning design for CLIPS

    NASA Technical Reports Server (NTRS)

    Mainardi, Joseph D.; Szatkowski, G. P.

    1990-01-01

    This describes a knowledge base (KB) partitioning approach to solve the problem of real-time performance using the CLIPS AI shell when containing large numbers of rules and facts. This work is funded under the joint USAF/NASA Advanced Launch System (ALS) Program as applied research in expert systems to perform vehicle checkout for real-time controller and diagnostic monitoring tasks. The Expert System advanced development project (ADP-2302) main objective is to provide robust systems responding to new data frames of 0.1 to 1.0 second intervals. The intelligent system control must be performed within the specified real-time window, in order to meet the demands of the given application. Partitioning the KB reduces the complexity of the inferencing Rete net at any given time. This reduced complexity improves performance but without undo impacts during load and unload cycles. The second objective is to produce highly reliable intelligent systems. This requires simple and automated approaches to the KB verification & validation task. Partitioning the KB reduces rule interaction complexity overall. Reduced interaction simplifies the V&V testing necessary by focusing attention only on individual areas of interest. Many systems require a robustness that involves a large number of rules, most of which are mutually exclusive under different phases or conditions. The ideal solution is to control the knowledge base by loading rules that directly apply for that condition, while stripping out all rules and facts that are not used during that cycle. The practical approach is to cluster rules and facts into associated 'blocks'. A simple approach has been designed to control the addition and deletion of 'blocks' of rules and facts, while allowing real-time operations to run freely. Timing tests for real-time performance for specific machines under R/T operating systems have not been completed but are planned as part of the analysis process to validate the design.

  2. Boron, beryllium, and lithium, partitioning in olivine

    SciTech Connect

    Neroda, Elizabeth

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  3. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  4. Entanglement concentration of three-partite states

    SciTech Connect

    Groisman, Berry; Linden, Noah; Popescu, Sandu

    2005-12-15

    We investigate the concentration of multiparty entanglement by focusing on a simple family of three-partite pure states, superpositions of Greenberger-Horne-Zeilinger states and singlets. Despite the simplicity of the states, we show that they cannot be reversibly concentrated by the standard entanglement concentration procedure, to which they seem ideally suited. Our results cast doubt on the idea that for each N there might be a finite set of N-party states into which any pure state can be reversibly transformed. We further relate our results to the concept of locking of entanglement of formation.

  5. The minimal length and quantum partition functions

    NASA Astrophysics Data System (ADS)

    Abbasiyan-Motlaq, M.; Pedram, P.

    2014-08-01

    We study the thermodynamics of various physical systems in the framework of the generalized uncertainty principle that implies a minimal length uncertainty proportional to the Planck length. We present a general scheme to analytically calculate the quantum partition function of the physical systems to first order of the deformation parameter based on the behavior of the modified energy spectrum and compare our results with the classical approach. Also, we find the modified internal energy and heat capacity of the systems for the anti-Snyder framework.

  6. Evaporative partitioning in a unified land model

    NASA Astrophysics Data System (ADS)

    Livneh, B.; Lettenmaier, D. P.; Restrepo, P. J.

    2009-12-01

    Accurate partitioning of precipitation into evapotranspiration and runoff, and more generally estimation of the surface water balance, is crucial both for hydrologic forecasting and numerical weather and climate prediction. One important aspect of this issue is the partitioning of evapotranspiration into soil evaporation, canopy evaporation, and plant transpiration, which in turn has implications for other terms in the surface water balance. In the first part of the study, we tested several well known land surface models in multi-year simulations over the continental U.S. Among the models, which included the Variable Infiltration Capacity (VIC) model, the Community Land Model (CLM), the Noah Land Surface Model (Noah LSM), and the NASA Catchment model, there were substantial variations in the partitioning. These results motivated a more detailed evaluation, using data for two catchments that were a part of the second phase of the Distributed Model Intercomparison Project (DMIP-2), the East Fork Carson River Basin and the Illinois River Basin. In this portion of the study, we evaluated a unified land model (ULM) which is a merger of the NWS Sacramento Soil Moisture Accounting model (SAC-SMA), which is used operationally for flood and seasonal streamflow prediction, and the Noah LSM, which is the land scheme used in NOAA’s suite of weather and climate prediction models. Our overall objective is to leverage the operational strengths of each model, specifically to improve streamflow prediction and soil moisture states within the Noah LSM framework, and to add a vegetation component to the SAC-SMA model. Partitioning of evapotranspiration into its three components is a key part of the ULM performance, and controls our ability to use calibrated SAC-SMA parameters within the ULM framework. In our evaluations at the DMIP-2 sites, we examined sensitivities of soil moisture and evaporative components in ULM to changes in vegetation cover, root zone depth, canopy

  7. Partitioning technique for discrete quantum systems

    SciTech Connect

    Jin, L.; Song, Z.

    2011-06-15

    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.

  8. Light period regulation of carbohydrate partitioning

    NASA Technical Reports Server (NTRS)

    Janes, Harry W.

    1994-01-01

    We have shown that the photosynthetic period is important in regulating carbon partitioning. Even when the same amount of carbon is fixed over a 24h period considerably more is translocated out of the leaf under the longer photosynthetic period. This is extremely important when parts of the plant other than the leaves are to be sold. It is also important to notice the amount of carbon respired in the short photosynthetic period. The light period effect on carbohydrate fixation, dark respiration, and translocation is shown in this report.

  9. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  10. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  11. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Dipeptide absorption in man

    PubMed Central

    Hellier, M. D.; Holdsworth, C. D.; McColl, I.; Perrett, D.

    1972-01-01

    A quantitative perfusion method has been used to study intestinal absorption of two dipeptides—glycyl-glycine and glycyl-l-alanine—in normal subjects. In each case, the constituent amino acids were absorbed faster when presented as dipeptides than as free amino acids, suggesting intact dipeptide transport. During absorption constituent amino acids were measured within the lumen and it is suggested that these represent amino acids which have diffused back to the lumen after absorption as dipeptide. Portal blood analyses during absorption of a third dipeptide, glycyl-l-lysine, have shown that this dipeptide, known to be transported intact from the intestinal lumen, is hydrolysed to its constitutent amino acids before it reaches portal venous blood. PMID:4652039

  13. Effect of water saturation in soil organic matter on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chlou, G.T.

    1992-01-01

    The sorption of benzene, trichloroethylene, and carbon tetrachloride at room temperature from water solution and from vapor on two high-organic-content soils (peat and muck) was determined in order to evaluate the effect of water saturation on the solute partition in soil organic matter (SOM). The uptake of water vapor was similarly determined to define the amounts of water in the saturated soil samples. In such high-organic-content soils the organic vapor sorption and the respective solute sorption from water exhibit linear isotherms over a wide range of relative concentrations. This observation, along with the low BET surface areas of the samples, suggests that partition in the SOM of the samples is the dominant process in the uptake of these liquids. A comparison of the sorption from water solution and from vapor phase shows that water saturation reduces the sorption (partition) efficiency of SOM by ?? 42%; the saturated water content is ??38% by weight of dry SOM. This reduction is relatively small when compared with the almost complete suppression by water of organic compound adsorption on soil minerals. While the effect of water saturation on solute uptake by SOM is much expected in terms of solute partition in SOM, the influence of water on the solubility behavior of polar SOM can be explained only qualitatively by regular solution theory. The results suggest that the major effect of water in a drying-wetting cycle on the organic compound uptake by normal low-organic-content soils (and the associated compound's activity) is the suppression of adsorption by minerals rather than the mitigation of the partition effect in SOM.

  14. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  15. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  16. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  17. A Robustness Testing Campaign for IMA-SP Partitioning Kernels

    NASA Astrophysics Data System (ADS)

    Grixti, Stephen; Lopez Trecastro, Jorge; Sammut, Nicholas; Zammit-Mangion, David

    2015-09-01

    With time and space partitioned architectures becoming increasingly appealing to the European space sector, the dependability of partitioning kernel technology is a key factor to its applicability in European Space Agency projects. This paper explores the potential of the data type fault model, which injects faults through the Application Program Interface, in partitioning kernel robustness testing. This fault injection methodology has been tailored to investigate its relevance in uncovering vulnerabilities within partitioning kernels and potentially contributing towards fault removal campaigns within this domain. This is demonstrated through a robustness testing case study of the XtratuM partitioning kernel for SPARC LEON3 processors. The robustness campaign exposed a number of vulnerabilities in XtratuM, exhibiting the potential benefits of using such a methodology for the robustness assessment of partitioning kernels.

  18. Intestinal absorption of dolichol from emulsions and liposomes in rats.

    PubMed

    Kimura, T; Takeda, K; Kageyu, A; Toda, M; Kurosaki, Y; Nakayama, T

    1989-02-01

    The intestinal absorption of dolichol from various dosage forms was investigated using the intestinal loop and everted sac methods in the rat. The in situ loop experiments showed that the absorption of dolichol from a triglyceride emulsion was dependent on the chain-length of the triglyceride; the absorption from a tri-n-butyrin emulsion in 1 h was 18.0% of the dose; and the absorption from an HCO-60 suspension was 4.3%. The liposomal preparation enhanced the absorption up to 39.1% of the dose. In in vitro experiments, 25.0% and 13.2% of dolichol were taken up by everted sacs of the jejunum and the ileum, respectively. On the other hand, phospholipids composing liposomes were not absorbed under these conditions. The above results suggest that the absorption mechanism from liposomal preparations may be as follows: dolichol is released from the liposomes into the aqueous phase adjacent to the surface of the intestine and is subsequently partitioned into the intestinal tissue. PMID:2743494

  19. Proposed human stratum corneum water domain in chemical absorption.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Compounds with varying physical and chemical properties may have different affinities to the stratum corneum (SC) and/or its intercellular lipids, keratin protein, and possible water domains. To better understand the mechanism of percutaneous absorption, we utilized 21 carbon-14 labeled chemicals, with wide hydrophilicity (log P = -0.05 to 6.17), and quantified their absorption/adsorption properties for a short incubation time (15 min) with regards to intact SC membrane, delipidized SC membrane and SC lipid. A facile method was developed for SC/lipid absorption, providing a more equivalent procedure and comparable data. SC lipid absorption of chemical solutes positively correlated with the octanol/water partition coefficient (log P). Differences between the percent dose of chemical absorption to intact SC and the total percent dose contributed by the protein and lipid domains suggest the possibility and significance of a water domain. Absorption rate experiments showed a longer lag time for intact SC than for delipidized SC or SC lipid, suggesting that the water domain may delay chemical binding to protein and lipid domains, and may be a factor in the resistance of many chemicals to current decontamination methods. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26206725

  20. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  1. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  2. TAP - Tools for Adaptive Partitioning v. 0.99 Beta

    2008-11-19

    TAP is a set of tools which are essential for conducting research on adaptive partitioners. The basic premise is that a single partitioner may not be a good choice for adaptive mesh simulations; rather one must match a partitioner (obtained from a partitioning package like Zoltan, ParMetis etc) with the mesh being partitioned. TAP provides the tools that can judge the suitability of a partitioning algorithm to a given mesh.

  3. Bioavailability of endocrine disrupting chemicals (EDCs): Liposome-water partitioning and lipid membrane permeation

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Hwan

    The bioavailability of endocrine disrupting chemicals (EDCs) is a function of a number of parameters including the ability of the chemical to partition into organic tissue and reach receptor sites within an organism. In this dissertation, equilibrium partition coefficients between water and lipid membrane vesicles and artificial lipid membrane permeability were investigated for evaluating bioavailability of aqueous pollutants. Structurally diverse endocrine disrupting chemicals were chosen as model compounds for partitioning experiments and simple hydrophobic organic chemicals were used for the evaluation of a parallel artificial membrane device developed to mimic bioconcentration rates in fish. Hydrophobic interactions represented by octanol/water partition coefficients (KOWs) were not appropriate for estimating lipid membrane/water partition coefficients (Klipws) for the selected EDCs having a relatively large molar liquid volume (MLV) and containing polar functional groups. Correlations that include MLV and polar surface area (PSA) reduce the predicted value of log K lipw, suggesting that lipid membranes are less favorable than 1-octanol for a hydrophobic solute because of the changes in membrane fluidity and the amount of cholesterol in the lipid bilayers. These results suggested that KOW alone has limited potential for estimating K lipw, and MLV or PSA may be used as additional descriptors for developing quantitative structure-activity relationships (QSARs). The poor correlations between KOW and Klipw observed in this research may be due to the highly organized structure of lipid bilayers. Measured thermodynamic constants demonstrated that the entropy contribution becomes more dominant for more organized liposomes having saturated lipid tails. This implies that entropy-driven partitioning process makes Klipw different from KOW especially for more saturated lipid bilayer membranes. In the parallel artificial membrane system developed, a membrane filter

  4. Structural Determinants of Drug Partitioning in n-Hexadecane/Water System

    PubMed Central

    Natesan, Senthil; Wang, Zhanbin; Lukacova, Viera; Peng, Ming; Subramaniam, Rajesh; Lynch, Sandra; Balaz, Stefan

    2013-01-01

    Surrogate phases have been widely used as correlates for modeling transport and partitioning of drugs in biological systems, taking advantage of chemical similarity between the surrogate and the phospholipid bilayer as the elementary unit of biological phases, which is responsible for most of transport and partitioning. Solvation in strata of the phospholipid bilayer is an important drug characteristics because it affects the rates of absorption and distribution, as well as the interactions with the membrane proteins having the binding sites located inside the bilayer. The bilayer core can be emulated by n-hexadecane (C16), and the headgroup stratum is often considered a hydrophilic phase because of the high water content. Therefore, we tested the hypothesis that the C16/water partition coefficients (P) can predict the bilayer locations of drugs and other small molecules better than other surrogate systems. Altogether 514 PC16/W values for nonionizable (458) and completely ionized (56) compounds were collected from the literature or measured, when necessary. With the intent to create a fragment-based prediction system, the PC16/W values were factorized into the fragment solvation parameters (f) and correction factors based on the ClogP fragmentation scheme. A script for the PC16/W prediction using the ClogP output is provided. To further expand the prediction system and reveal solvation differences, the fC16/W values were correlated with their more widely available counterparts for the 1-octanol/water system (O/W) using solvatochromic parameters. The analysis for 50 compounds with known bilayer location shows that the available and predicted PC16/W and PO/W values alone or the PC16/O values representing their ratio do not satisfactorily predict the preference for drug accumulation in bilayer strata. These observations indicate that the headgroups stratum, albeit well hydrated, does not have solvation characteristics similar to water and is also poorly described by

  5. Strainrange partitioning: A total strain range version

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Saltsman, J. F.

    1983-01-01

    Procedures are presented for expressing the Strainrange Partitioning (SRP) method for creep fatigue life prediction in terms of total strain range. Inelastic and elastic strain-range - life relations are summed to give total strain-range - life relations. The life components due to inelastic strains are dealt with using conventional SRP procedures while the life components due to elastic strains are expressed as families of time-dependent terms for each type of SRP cycle. Cyclic constitutive material behavior plays an important role in establishing the elastic strain-range - life relations as well as the partitioning of the inelastic strains. To apply the approach, however, it is not necessary to have to determine the magnitude of the inelastic strain range. The total strain SRP approach is evaluated and verified using two nickel base superalloys, AF2-1DA and Rene 95. Excellent agreement is demonstrated between observed and predicted cyclic lifetimes with 70 to 80 percent of the predicted lives falling within factors of two of the observed lives. The total strain-range SRP approach should be of considerable practical value to designers who are faced with creep-fatigue problems for which the inelastic strains cannot be calculated with sufficient accuracy to make reliable life predictions by the conventional inelastic strain range SRP approach.

  6. Gait Partitioning Methods: A Systematic Review.

    PubMed

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  7. Inversion of hematocrit partition at microfluidic bifurcations.

    PubMed

    Shen, Zaiyi; Coupier, Gwennou; Kaoui, Badr; Polack, Benoît; Harting, Jens; Misbah, Chaouqi; Podgorski, Thomas

    2016-05-01

    Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions. PMID:26744089

  8. Approximate algorithms for partitioning and assignment problems

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.

    1986-01-01

    The problem of optimally assigning the modules of a parallel/pipelined program over the processors of a multiple computer system under certain restrictions on the interconnection structure of the program as well as the multiple computer system was considered. For a variety of such programs it is possible to find linear time if a partition of the program exists in which the load on any processor is within a certain bound. This method, when combined with a binary search over a finite range, provides an approximate solution to the partitioning problem. The specific problems considered were: a chain structured parallel program over a chain-like computer system, multiple chain-like programs over a host-satellite system, and a tree structured parallel program over a host-satellite system. For a problem with m modules and n processors, the complexity of the algorithm is no worse than O(mnlog(W sub T/epsilon)), where W sub T is the cost of assigning all modules to one processor and epsilon the desired accuracy.

  9. Unsupervised image categorization by hypergraph partition.

    PubMed

    Huang, Yuchi; Liu, Qingshan; Lv, Fengjun; Gong, Yihong; Metaxas, Dimitris N

    2011-06-01

    We present a framework for unsupervised image categorization in which images containing specific objects are taken as vertices in a hypergraph and the task of image clustering is formulated as the problem of hypergraph partition. First, a novel method is proposed to select the region of interest (ROI) of each image, and then hyperedges are constructed based on shape and appearance features extracted from the ROIs. Each vertex (image) and its k-nearest neighbors (based on shape or appearance descriptors) form two kinds of hyperedges. The weight of a hyperedge is computed as the sum of the pairwise affinities within the hyperedge. Through all of the hyperedges, not only the local grouping relationships among the images are described, but also the merits of the shape and appearance characteristics are integrated together to enhance the clustering performance. Finally, a generalized spectral clustering technique is used to solve the hypergraph partition problem. We compare the proposed method to several methods and its effectiveness is demonstrated by extensive experiments on three image databases. PMID:21282850

  10. Partitioning of on-demand electron pairs

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Hohls, Frank; Kashcheyevs, Vyacheslavs; Wagner, Timo; Fricke, Lukas; Kästner, Bernd; Pierz, Klaus; Schumacher, Hans W.; Haug, Rolf J.

    2015-01-01

    The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

  11. Determining Peptide Partitioning Properties via Computer Simulation

    PubMed Central

    Ulmschneider, Jakob P.; Ulmschneider, Martin B.

    2010-01-01

    The transfer of polypeptide segments into lipid bilayers to form transmembrane helices represents the crucial first step in cellular membrane protein folding and assembly. This process is driven by complex and poorly understood atomic interactions of peptides with the lipid bilayer environment. The lack of suitable experimental techniques that can resolve these processes both at atomic resolution and nanosecond timescales has spurred the development of computational techniques. In this review, we summarize the significant progress achieved in the last few years in elucidating the partitioning of peptides into lipid bilayer membranes using atomic detail molecular dynamics simulations. Indeed, partitioning simulations can now provide a wealth of structural and dynamic information. Furthermore, we show that peptide-induced bilayer distortions, insertion pathways, transfer free energies, and kinetic insertion barriers are now accurate enough to complement experiments. Further advances in simulation methods and force field parameter accuracy promise to turn molecular dynamics simulations into a powerful tool for investigating a wide range of membrane active peptide phenomena. PMID:21107546

  12. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  13. Life prediction modeling based on strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1988-01-01

    Strainrange partitioning (SRP) is an integrated low-cycle-fatigue life predicting system. It was created specifically for calculating cyclic crack initiation life under severe high-temperature fatigue conditions. The key feature of the SRP system is its recognition of the interacting mechanisms of cyclic inelastic deformation that govern cyclic life at high temperatures. The SRP system bridges the gap between the mechanistic level of understanding that breeds new and better materials and the phenomenological level wherein workable engineering life prediction methods are in great demand. The system was recently expanded to address engineering fatigue problems in the low-strain, long-life, nominally elastic regime. This breakthrough, along with other advances in material behavior and testing technology, has permitted the system to also encompass low-strain thermomechanical loading conditions. Other important refinements of the originally proposed method include procedures for dealing with life-reducing effects of multiaxial loading, ratcheting, mean stresses, nonrepetitive (cumulative loading) loading, and environmental and long-time exposure. Procedure were also developed for partitioning creep and plastic strain and for estimating strainrange versus life relations from tensile and creep rupture properties. Each of the important engineering features of the SRP system are discussed and examples shown of how they help toward predicting high-temperature fatigue life under practical, although complex, loading conditions.

  14. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  15. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  16. A partitioning strategy for nonuniform problems on multiprocessors

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Bokhari, S.

    1985-01-01

    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning.

  17. Diffusive isothermal partitioning in a layered medium with geologic applications

    NASA Technical Reports Server (NTRS)

    Hopper, R. W.; Uhlmann, D. R.

    1976-01-01

    The diffusive isothermal partitioning of solute in a layered two-phase material has been analyzed to help elucidate the phenomenon of solute partitioning in multiphase lunar and terrestrial materials and to estimate the cooling history of samples. After reviewing the physical chemistry of partitioning and the case of an infinite one-dimensional diffusion couple, we solve in analytic form the case of a finite one-dimensional couple. The solution can be used to estimate cooling histories or to interpret laboratory experiments on partitioning. A sample calculation is included.

  18. Molecular partitioning based on the kinetic energy density

    NASA Astrophysics Data System (ADS)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  19. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system. PMID:26810802

  20. Partition Coefficients at High Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Righter, K.; Drake, M. J.

    2003-12-01

    Differentiation of terrestrial planets includes separation of a metallic core and possible later fractionation of mineral phases within either a solid or molten mantle (Figure 1). Lithophile and siderophile elements can be used to understand these two different physical processes, and ascertain whether they operated in the early Earth. The distribution of elements in planets can be understood by measuring the partition coefficient, D (ratio of concentrations of an element in different phases (minerals, metals, or melts)). (14K)Figure 1. Schematic cross-section through the Earth, showing: (a) an early magma ocean stage and (b) a later cool and differentiated stage. The siderophile elements (iron-loving) encompass over 30 elements and are defined as those elements for which D(metal/silicate)>1, and are useful for deciphering the details of core formation. This group of elements is commonly broken up into several subclasses, including the slightly siderophile elements (1104). Because these three groups encompass a wide range of partition coefficient values, they can be very useful in trying to determine the conditions under which metal may have equilibrated with the mantle (or a magma ocean). Because metal and silicate may equilibrate by several different mechanisms, such as at the base of a deep magma ocean, or as metal droplets descend through a molten mantle, partition coefficients can potentially shed light on which mechanism may be most important, thus linking the physics and chemistry of core formation. In this chapter, we summarize metal/silicate partitioning of siderophile elements and show how they may be used to understand planetary core formation.Once a planet is differentiated into core and mantle, a mantle will cool during convection, and can start in either a molten or solid state, depending upon the initial thermal conditions. If hot enough, minerals will

  1. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  2. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C. PMID:27152992

  3. Dietary overlap and niche partitioning of sympatric harbour porpoises and Dall's porpoises in the Salish Sea

    NASA Astrophysics Data System (ADS)

    Nichol, Linda M.; Hall, Anna M.; Ellis, Graeme M.; Stredulinsky, Eva; Boogaards, Melissa; Ford, John K. B.

    2013-08-01

    Ecological theory regarding the coexistence of similar species predicts resource partitioning will arise through competition and lead to different ecological niches. The diets of harbour porpoises (Phocoena phocoena) and Dall's porpoises (Phocoenoides dalli) in the Salish Sea were investigated for evidence of resource partitioning between these ecologically similar species. Stomach contents of 36 harbour porpoises and 11 Dall's porpoises were analysed and ten and six fish taxa were identified in each, respectively. Pacific herring (Clupea pallasi) was important in the diet of both porpoise species and walleye pollock (Theragra chalcogramma) was second in importance in the Dall's porpoises. Pacific herring was estimated to contribute 60% to the total caloric intake of harbour porpoises. In addition to herring, Pacific hake (Merluccius productus), walleye pollock and a species of Pyschrolutidae were present in the diet of both porpoise species. Pianka's Index of niche overlap indicated substantial dietary overlap between the porpoise species based on measures of prey frequency of occurrence and prey percent numerical abundance. These results seem contrary to predictions from ecological theory. However, habitat and activity pattern differences between the two porpoise species exist and represent other dimensions of niche that likely contribute to resource partitioning in ways that were not strongly evident in stomach contents. Dall's porpoises, which prefer deeper water habitat in the Salish Sea than harbour porpoises, may feed more on walleye pollock which spawn in deep water. Dall's porpoises are also known to feed at night when lipid-rich mesopelagic prey such as Myctophidae and Bathylagidae, both present in the Dall's porpoise samples, migrate upwards from depths in excess of 200 m. In contrast shiner perch, present only in harbour porpoise samples, is a species associated with shallow nearshore habitats. Resource partitioning is also likely to occur in accordance

  4. Mapping absorption processes onto a Markov chain, conserving the mean first passage time

    NASA Astrophysics Data System (ADS)

    Biswas, Katja

    2013-04-01

    The dynamics of a multidimensional system is projected onto a discrete state master equation using the transition rates W(k → k‧ t, t + dt) between a set of states {k} represented by the regions {ζk} in phase or discrete state space. Depending on the dynamics Γi(t) of the original process and the choice of ζk, the discretized process can be Markovian or non-Markovian. For absorption processes, it is shown that irrespective of these properties of the projection, a master equation with time-independent transition rates \\bar{W}(k\\rightarrow k^{\\prime }) can be obtained, which conserves the total occupation time of the partitions of the phase or discrete state space of the original process. An expression for the transition probabilities \\bar{p}(k^{\\prime }|k) is derived based on either time-discrete measurements {ti} with variable time stepping Δ(i + 1)i = ti + 1 - ti or the theoretical knowledge at continuous times t. This allows computational methods of absorbing Markov chains to be used to obtain the mean first passage time (MFPT) of the system. To illustrate this approach, the procedure is applied to obtain the MFPT for the overdamped Brownian motion of particles subject to a system with dichotomous noise and the escape from an entropic barrier. The high accuracy of the simulation results confirms with the theory.

  5. Empathic features of absorption and incongruence.

    PubMed

    Wickramasekera, Ian E

    2007-07-01

    A study was undertaken to examine whether empathy could be related to absorption and incongruence (repressive coping). The participants were 71 graduate students who completed measures of empathy, absorption, and incongruence (repressive coping). The results confirmed a previous finding that empathy appears positively related to absorption (r = .42, p < .001). The results also suggest that affective components of empathy are inversely related to repressive coping (r = -.29, p < .05) while cognitive components are positively related to the social desirability aspects of incongruence (r = .31, p < .01). The findings are collectively discussed in terms of the Empathic Involvement Hypothesis of Hypnosis (Wickramasekera II, 2001), the Four-factor theory of Repressive Coping (Eysenck, 1997), Incongruence (Rogers, 1957), and the High Risk Model of Threat Perception (I. E. Wickramasekera I, 1998). PMID:17685245

  6. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  7. Interspecific resource partitioning in sympatric ursids

    USGS Publications Warehouse

    Belant, J.L.; Kielland, K.; Follmann, E.H.; Adams, L.G.

    2006-01-01

    The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in southcentral Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (>53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black bears

  8. Interspecific resource partitioning in sympatric ursids.

    PubMed

    Belant, Jerrold L; Kielland, Knut; Follmann, Erich H; Adams, Layne G

    2006-12-01

    The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in south-central Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (> 53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black

  9. Traceds: An Experimental Trace Element Partitioning Database

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.

    2014-12-01

    The goal of this project, which is part of the EARTHCHEM initiative, is to compile the existing experimental trace element partitioning data, and to develop a transparent, accessible resource for the community. The primary goal of experimental trace element partitioning studies is to create a database that can be used to develop models of how trace elements behave in natural geochemical systems. The range of approaches as to how this is accomplished and how the data are reported differs dramatically from one system to another and one investigator to another. This provides serious challenges to the creation of a coherent database - and suggests the need for a standard format for data presentation and reporting. The driving force for this compilation is to provide community access to the complete database for trace element experiments. Our new effort includes all the published analytical results from experimental determinations. In compiling the data, we have set a minimum standard for the data to be included. The threshold criteria include: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without a knowledge of the actual concentrations or the temperature and pressure of formation. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. Our ultimate goal is to produce a database together with a flexible user interface that will be useful for experimentalists to set up their work and to build

  10. Percutaneous absorption from soil.

    PubMed

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  11. Reduced partition function ratios of iron and oxygen in goethite

    NASA Astrophysics Data System (ADS)

    Blanchard, M.; Dauphas, N.; Hu, M. Y.; Roskosz, M.; Alp, E. E.; Golden, D. C.; Sio, C. K.; Tissot, F. L. H.; Zhao, J.; Gao, L.; Morris, R. V.; Fornace, M.; Floris, A.; Lazzeri, M.; Balan, E.

    2015-02-01

    First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (β-factors). The calculated iron phonon density of states (pDOS), force constant and β-factor are compared with reevaluated experimental β-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data are analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mössbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mössbauer spectroscopy may also contribute to the discrepancy (e.g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar β-factors, which suggests almost no fractionation between the two minerals at equilibrium.

  12. Multiplasmon Absorption in Graphene

    NASA Astrophysics Data System (ADS)

    Jablan, Marinko; Chang, Darrick E.

    2015-06-01

    We show that graphene possesses a strong nonlinear optical response in the form of multiplasmon absorption, with exciting implications in classical and quantum nonlinear optics. Specifically, we predict that graphene nanoribbons can be used as saturable absorbers with low saturation intensity in the far-infrared and terahertz spectrum. Moreover, we predict that two-plasmon absorption and extreme localization of plasmon fields in graphene nanodisks can lead to a plasmon blockade effect, in which a single quantized plasmon strongly suppresses the possibility of exciting a second plasmon.

  13. Chaotic Systems with Absorption

    NASA Astrophysics Data System (ADS)

    Altmann, Eduardo G.; Portela, Jefferson S. E.; Tél, Tamás

    2013-10-01

    Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general formula for the escape rate κ in terms of the natural conditionally invariant measure of the system, (ii) an increased multifractality when compared to the spectrum of dimensions Dq obtained without taking absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that expresses D1 in terms of κ, the positive Lyapunov exponent, the average return time, and a new quantity, the reflection rate. Simulations in the cardioid billiard confirm these results.

  14. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Three-phase partitioning of hydrolyzed levan.

    PubMed

    Coimbra, Cynthia Gisele de Oliveira; Lopes, Carlos Edison; Calazans, Glícia Maria Torres

    2010-06-01

    During the fructose and polymerization to synthesize levan, smaller fructooligosaccharide (FOS) molecules are produced. FOS can also be obtained by levan hydrolysis. Three-phase partitioning (TPP) is a separation technique that has been used for polysaccharide precipitation and gathers t-butanol and ammonium sulphate to exclude the polymer from the aqueous solution. In this work TPP was tested to separate levan and FOS from aqueous solution. The FOS used was obtained from Zymomonas mobilis levan acid hydrolysis and fractionation with ethanol. The yield of low TPP fractions was higher than those obtained from the native levan. The F-90 exhibited a higher yield than other fractions. However, when applying the TPP technique to lightest fraction not precipitated by ethanol at 90% (F>90), the intermediate phase was not possible to be visualize. These results have potential application because they show that by using the levan TPP separation it is possible to separate low-molecular weight sugar. PMID:20163956

  16. Hypergraph Partitioning for Automatic Memory Hierarchy Management

    SciTech Connect

    Krishnamoorthy, Sriram; Catalyurek, Umit; Nieplocha, Jarek; Rountev, Atanas; Sadayappan, Ponnuswamy

    2007-11-15

    The paper presents present a mechanism for automatic management of the memory hierarchy, including secondary storage, in the context of a global address space parallel programming framework. The programmer specifies the parallelism and locality in the computation. The scheduling of the computation into stages, together with the movement of the associated data between secondary storage and global memory, and between global memory and local memory, is automatically managed by the framework. A novel formulation of hypergraph partitioning is used to model the optimization problem of minimizing disk I/O by improving locality of access. Experimental evaluation of the proposed approach using a sub-computation from the quantum chemistry domain shows a reduction in the disk I/O cost by upto a factor of 11, and a reduction in turnaround time by upto 97%, as compared to alternatives used in state-of-the-art quantum chemistry codes.

  17. Exometabolite niche partitioning among sympatric soil bacteria

    DOE PAGESBeta

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; et al

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less

  18. Metal separations using aqueous biphasic partitioning systems

    SciTech Connect

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-05-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation.

  19. Multicore Software Architectures on Virtualized Partitioned Systems

    NASA Astrophysics Data System (ADS)

    Carrascosa, E.; Masmano, M.; Balbastre, P.; Crespo, A.; Galizzi, J.

    2014-08-01

    Embedded system design is evolving in terms of complexity towards the use of multiprocessor architectures, increasing performance and reducing costs while presenting a low impact on critical design aspects. However, the use of multi-core technologies entails an increment in the level of indeterminism that is not acceptable for safety critical applications where predictability is crucial. This paper focuses on analysing the factors related to indeterminism on multicore systems and the methods to attenuate their impact, providing a series of guidelines aimed to obtain on-board software qualification. Time and space partitioning (TSP) is presented as a suitable mean to handle indeterminism, while XtratuM, an open source TSP hyper-visor designed to comply with safety critical real-time requirements, has been selected to adopt a practical approach to the subject.

  20. Energy Partition and Variability of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kanamori, H.

    2003-12-01

    During an earthquake the potential energy (strain energy + gravitational energy + rotational energy) is released, and the released potential energy (Δ W) is partitioned into radiated energy (ER), fracture energy (EG), and thermal energy (E H). How Δ W is partitioned into these energies controls the behavior of an earthquake. The merit of the slip-weakening concept is that only ER and EG control the dynamics, and EH can be treated separately to discuss the thermal characteristics of an earthquake. In general, if EG/E_R is small, the event is ``brittle", if EG /ER is large, the event is ``quasi static" or, in more common terms, ``slow earthquakes" or ``creep". If EH is very large, the event may well be called a thermal runaway rather than an earthquake. The difference in energy partition has important implications for the rupture initiation, evolution and excitation of long-period ground motions from very large earthquakes. We review the current state of knowledge on this problem in light of seismological observations and the basic physics of fracture. With seismological methods, we can measure only ER and the lower-bound of Δ W, Δ W0, and estimation of other energies involves many assumptions. ER: Although ER can be directly measured from the radiated waves, its determination is difficult because a large fraction of energy radiated at the source is attenuated during propagation. With the commonly used teleseismic and regional methods, only for events with MW>7 and MW>4, respectively, we can directly measure more than 10% of the total radiated energy. The rest must be estimated after correction for attenuation. Thus, large uncertainties are involved, especially for small earthquakes. Δ W0: To estimate Δ W0, estimation of the source dimension is required. Again, only for large earthquakes, the source dimension can be estimated reliably. With the source dimension, the static stress drop, Δ σ S, and Δ W0, can be estimated. EG: Seismologically, EG is the energy

  1. Recursive Partitioning Method on Competing Risk Outcomes

    PubMed Central

    Xu, Wei; Che, Jiahua; Kong, Qin

    2016-01-01

    In some cancer clinical studies, researchers have interests to explore the risk factors associated with competing risk outcomes such as recurrence-free survival. We develop a novel recursive partitioning framework on competing risk data for both prognostic and predictive model constructions. We define specific splitting rules, pruning algorithm, and final tree selection algorithm for the competing risk tree models. This methodology is quite flexible that it can corporate both semiparametric method using Cox proportional hazards model and parametric competing risk model. Both prognostic and predictive tree models are developed to adjust for potential confounding factors. Extensive simulations show that our methods have well-controlled type I error and robust power performance. Finally, we apply both Cox proportional hazards model and flexible parametric model for prognostic tree development on a retrospective clinical study on oropharyngeal cancer patients. PMID:27486300

  2. Exometabolite niche partitioning among sympatric soil bacteria

    SciTech Connect

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. Partitioned-Interval Quantum Optical Communications Receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2013-01-01

    The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.

  5. Partitional Classification: A Complement to Phylogeny

    PubMed Central

    Salomon, Marc; Dassy, Bruno

    2016-01-01

    The tree of life is currently an active object of research, though next to vertical gene transmission non vertical gene transfers proved to play a significant role in the evolutionary process. To overcome this difficulty, trees of life are now constructed from genes hypothesized vital, on the assumption that these are all transmitted vertically. This view has been challenged. As a frame for this discussion, we developed a partitional taxonomical system clustering taxa at a high taxonomical rank. Our analysis (1) selects RNase P RNA sequences of bacterial, archaeal, and eucaryal genera from genetic databases, (2) submits the sequences, aligned, to k-medoid analysis to obtain clusters, (3) establishes the correspondence between clusters and taxa, (4) constructs from the taxa a new type of taxon, the genetic community (GC), and (5) classifies the GCs: Archaea–Eukaryotes contrastingly different from the six others, all bacterial. The GCs would be the broadest frame to carry out the phylogenies. PMID:27346943

  6. Exometabolite niche partitioning among sympatric soil bacteria.

    PubMed

    Baran, Richard; Brodie, Eoin L; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R

    2015-01-01

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107

  7. Exometabolite niche partitioning among sympatric soil bacteria

    PubMed Central

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-01-01

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107

  8. REE and Strontium Partition Coefficients for Nakhla Pyroxenes

    NASA Technical Reports Server (NTRS)

    Oe, K.; McKay, G.; Le, L.

    2001-01-01

    We present new partition coefficients for REE and Sr determined using a synthetic melt that crystallizes pyroxenes very similar in composition to Nakhla pyroxene cores. We believe these are the most appropriate partition coefficients to use in studying Nakhla Additional information is contained in the original extended abstract..

  9. The Emergence of DP in the Partitive Structure

    ERIC Educational Resources Information Center

    Stickney, Helen

    2009-01-01

    This dissertation is a first look at English-speaking children's acquisition of the syntax of the partitive. It presents four experiments that contrast three types of structures and examines how they interact with adjectival modification: the partitive, the pseudopartitive and complex nouns with prepositional adjuncts. The experimentation…

  10. Knowledge Partitioning in Categorization: Constraints on Exemplar Models

    ERIC Educational Resources Information Center

    Yang, Lee-Xieng; Lewandowsky, Stephan

    2004-01-01

    The authors present 2 experiments that establish the presence of knowledge partitioning in perceptual categorization. Many participants learned to rely on a context cue, which did not predict category membership but identified partial boundaries, to gate independent partial categorization strategies. When participants partitioned their knowledge,…

  11. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  12. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  13. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Geographic partitioning and spectrum disaggregation. 27.15 Section 27.15 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Applications and Licenses § 27.15 Geographic partitioning and spectrum disaggregation....

  14. Simple partitions of a hyperbolic plane of positive curvature

    SciTech Connect

    Romakina, Lyudmila N

    2012-09-30

    We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane H of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code (m, n) is proved. Bibliography: 14 titles.

  15. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioning and disaggregation. 101.1415 Section 101.1415 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning...

  16. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioning and disaggregation. 101.1415 Section 101.1415 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Multichannel Video Distribution and Data Service Rules for the 12.2-12.7 GHz Band § 101.1415 Partitioning...

  17. PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE

    EPA Science Inventory

    This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...

  18. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  19. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  20. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition...

  1. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition...

  2. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. Link to an amendment published at 79 FR 48537, Aug. 15... licensed spectrum at any time following the grant of their licenses. (b) Technical...

  3. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  4. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  5. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  6. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  7. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... their authorized spectrum at any time following grant of their geographic area authorizations. (a... names that constitute the partitioned area. (c) Disaggregation. Spectrum may be disaggregated in any... for a partitioned license area and for disaggregated spectrum shall be the remainder of the...

  8. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  9. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition...

  10. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  11. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. (1) Parties seeking approval for... service area or disaggregate their licensed spectrum at any time following the grant of their licenses....

  12. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... their authorized spectrum at any time following grant of their geographic area authorizations. (a... names that constitute the partitioned area. (c) Disaggregation. Spectrum may be disaggregated in any... for a partitioned license area and for disaggregated spectrum shall be the remainder of the...

  13. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition...

  14. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1) Parties... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition...

  15. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  16. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  17. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  18. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  19. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  20. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. (1) Parties seeking approval for... service area or disaggregate their licensed spectrum at any time following the grant of their licenses....

  1. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  2. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... their authorized spectrum at any time following grant of their geographic area authorizations. (a... names that constitute the partitioned area. (c) Disaggregation. Spectrum may be disaggregated in any... for a partitioned license area and for disaggregated spectrum shall be the remainder of the...

  3. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  4. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  5. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  6. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  7. Trace-element partitioning in pantellerites and trachytes

    SciTech Connect

    Mahood, G.A.; Stimac, J.A. )

    1990-08-01

    In order to investigate the effect of increasing melt peralkalinity on partitioning, partition coefficients have been determined using neutron activation analyses of coexisting phenocrysts and glass of five samples from Pantelleria spanning the range trachyte to pantellerite. Alkali feldspar partition coefficients for Fe, Rb, Ba, Sr, and Eu vary with melt peralkalinity due to changes in melt polymerization and to the systematic increase in X{sub or} and decrease in X{sub an} of the feldspar. In going from trachyte to pantellerite, Fe partition coefficients increase from 0.04 to 0.10, presumably because Fe{sup +3} increasingly substitutes in the feldspar tetrahedral site as melt activity of Al declines and Fe concentrations increase. Partition coefficients for trivalent light REEs (rare earth elements) decrease and the partitioning pattern becomes flatter, the most evolved samples having some of the lowest published values for feldspar. The hundredfold decline in Eu partition coefficients (2.5 to 0.024) and the decrease in the size of the positive partitioning anomaly are attributed to increasing Eu{sup 3+}/Eu{sup 2+} in the melt as it becomes more peralkaline, as well as to concomitant decrease in the Ca content of feldspar. As a result, the behavior of Eu during fractional crystallization of peralkaline suites is fundamentally different from that in metaluminous suites; absolute abundances rise and the size of the negative Eu anomaly changes little with fractionation beyond pantelleritic trachyte.

  8. Recursive partitioning for heterogeneous causal effects.

    PubMed

    Athey, Susan; Imbens, Guido

    2016-07-01

    In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach enables the construction of valid confidence intervals for treatment effects, even with many covariates relative to the sample size, and without "sparsity" assumptions. We propose an "honest" approach to estimation, whereby one sample is used to construct the partition and another to estimate treatment effects for each subpopulation. Our approach builds on regression tree methods, modified to optimize for goodness of fit in treatment effects and to account for honest estimation. Our model selection criterion anticipates that bias will be eliminated by honest estimation and also accounts for the effect of making additional splits on the variance of treatment effect estimates within each subpopulation. We address the challenge that the "ground truth" for a causal effect is not observed for any individual unit, so that standard approaches to cross-validation must be modified. Through a simulation study, we show that for our preferred method honest estimation results in nominal coverage for 90% confidence intervals, whereas coverage ranges between 74% and 84% for nonhonest approaches. Honest estimation requires estimating the model with a smaller sample size; the cost in terms of mean squared error of treatment effects for our preferred method ranges between 7-22%. PMID:27382149

  9. Nonsense codons trigger an RNA partitioning shift.

    PubMed

    Bhalla, Angela D; Gudikote, Jayanthi P; Wang, Jun; Chan, Wai-Kin; Chang, Yao-Fu; Olivas, O Renee; Wilkinson, Miles F

    2009-02-13

    T-cell receptor-beta (TCRbeta) genes naturally acquire premature termination codons (PTCs) as a result of programmed gene rearrangements. PTC-bearing TCRbeta transcripts are dramatically down-regulated to protect T-cells from the deleterious effects of the truncated proteins that would otherwise be produced. Here we provide evidence that two responses collaborate to elicit this dramatic down-regulation. One is rapid mRNA decay triggered by the nonsense-mediated decay (NMD) RNA surveillance pathway. We demonstrate that this occurs in highly purified nuclei lacking detectable levels of three different cytoplasmic markers, but containing an outer nuclear membrane marker, suggesting that decay occurs either in the nucleoplasm or at the outer nuclear membrane. The second response is a dramatic partitioning shift in the nuclear fraction-to-cytoplasmic fraction mRNA ratio that results in few TCRbeta transcripts escaping to the cytoplasmic fraction of cells. Analysis of TCRbeta mRNA kinetics after either transcriptional repression or induction suggested that this nonsense codon-induced partitioning shift (NIPS) response is not the result of cytoplasmic NMD but instead reflects retention of PTC(+) TCRbeta mRNA in the nuclear fraction of cells. We identified TCRbeta sequences crucial for NIPS but found that NIPS is not exclusively a property of TCRbeta transcripts, and we identified non-TCRbeta sequences that elicit NIPS. RNA interference experiments indicated that NIPS depends on the NMD factors UPF1 and eIF4AIII but not the NMD factor UPF3B. We propose that NIPS collaborates with NMD to retain and degrade a subset of PTC(+) transcripts at the outer nuclear membrane and/or within the nucleoplasm. PMID:19091751

  10. Recursive partitioning for heterogeneous causal effects

    PubMed Central

    Athey, Susan; Imbens, Guido

    2016-01-01

    In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach enables the construction of valid confidence intervals for treatment effects, even with many covariates relative to the sample size, and without “sparsity” assumptions. We propose an “honest” approach to estimation, whereby one sample is used to construct the partition and another to estimate treatment effects for each subpopulation. Our approach builds on regression tree methods, modified to optimize for goodness of fit in treatment effects and to account for honest estimation. Our model selection criterion anticipates that bias will be eliminated by honest estimation and also accounts for the effect of making additional splits on the variance of treatment effect estimates within each subpopulation. We address the challenge that the “ground truth” for a causal effect is not observed for any individual unit, so that standard approaches to cross-validation must be modified. Through a simulation study, we show that for our preferred method honest estimation results in nominal coverage for 90% confidence intervals, whereas coverage ranges between 74% and 84% for nonhonest approaches. Honest estimation requires estimating the model with a smaller sample size; the cost in terms of mean squared error of treatment effects for our preferred method ranges between 7–22%. PMID:27382149

  11. The partition of regional sea level variability

    NASA Astrophysics Data System (ADS)

    Forget, Gaël; Ponte, Rui M.

    2015-09-01

    The existing altimetric record offers an unprecedented view of sea level (ζ) variability on a global scale for more than 2 decades. Optimal inference from the data involves appropriate partition of signal and noise, in terms of relevant scales, physical processes and forcing mechanisms. Such partition is achieved here through fitting a general circulation model to altimeter and other datasets to produce a "best" estimate of ζ variability directly forced by the atmosphere-the signal of primary interest here. In this context noise comes primarily from instrument errors and meso-scale eddies, as expected, but spatial smoothing effectively reduces this noise. A separate constraint is thus formulated to measure the fit to monthly, large-scale altimetric variability that unlike the daily, pointwise constraint shows a high signal-to-noise ratio. The estimate is explored to gain insight into dynamics, forcing, and other factors controlling ζ variability. Contributions from thermo-steric, halo-steric and bottom pressure terms are all important depending on region, but slopes of steric spectra (red) and bottom pressure spectra (white) are nearly invariant with latitude. Much ζ variability can be represented by a seasonal cycle and linear trend, plus a few EOFs that can be associated with known modes of climate variability and/or with topographic controls. Both wind and buoyancy forcing are important. The response is primarily basin-bound in nature, but uneven patterns of propagation across basin boundaries are clearly present, with the Pacific being able to affect large portions of the Indian and Atlantic basins, but the Atlantic affecting mostly the Arctic.

  12. Surprising Connections between Partitions and Divisors

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Hassen, Abdulkadir; Chandrupatla, Tirupathi R.

    2007-01-01

    The sum of the divisors of a positive integer is one of the most interesting concepts in multiplicative number theory, while the number of ways of expressing a number as a sum is a primary topic in additive number theory. In this article, we describe some of the surprising connections between and similarities of these two concepts.

  13. Bacterial partition complexes segregate within the volume of the nucleoid

    PubMed Central

    Le Gall, Antoine; Cattoni, Diego I.; Guilhas, Baptiste; Mathieu-Demazière, Céline; Oudjedi, Laura; Fiche, Jean-Bernard; Rech, Jérôme; Abrahamsson, Sara; Murray, Heath; Bouet, Jean-Yves; Nollmann, Marcelo

    2016-01-01

    Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. PMID:27377966

  14. Equilibration timescale of atmospheric secondary organic aerosol partitioning

    NASA Astrophysics Data System (ADS)

    Shiraiwa, Manabu; Seinfeld, John H.

    2012-12-01

    Secondary organic aerosol (SOA) formed from partitioning of oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs) accounts for a substantial portion of atmospheric particulate matter. In describing SOA formation, it is generally assumed that VOC oxidation products rapidly adopt gas-aerosol equilibrium. Here we estimate the equilibration timescale, τeq, of SOA gas-particle partitioning using a state-of-the-art kinetic flux model. τeq is found to be of order seconds to minutes for partitioning of relatively high volatility organic compounds into liquid particles, thereby adhering to equilibrium gas-particle partitioning. However, τeq increases to hours or days for organic aerosol associated with semi-solid particles, low volatility, large particle size, and low mass loadings. Instantaneous equilibrium partitioning may lead to substantial overestimation of particle mass concentration and underestimation of gas-phase concentration.

  15. Live Cell Interferometry Quantifies Dynamics of Biomass Partitioning during Cytokinesis

    PubMed Central

    Zangle, Thomas A.; Teitell, Michael A.; Reed, Jason

    2014-01-01

    The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning. PMID:25531652

  16. Bacterial partition complexes segregate within the volume of the nucleoid.

    PubMed

    Le Gall, Antoine; Cattoni, Diego I; Guilhas, Baptiste; Mathieu-Demazière, Céline; Oudjedi, Laura; Fiche, Jean-Bernard; Rech, Jérôme; Abrahamsson, Sara; Murray, Heath; Bouet, Jean-Yves; Nollmann, Marcelo

    2016-01-01

    Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. PMID:27377966

  17. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1999-01-01

    Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.

  18. Crystal/liquid partitioning in augite - Effects of cooling rate

    NASA Technical Reports Server (NTRS)

    Gamble, R. P.; Taylor, L. A.

    1980-01-01

    The partitioning of major and minor elements between augite and melt was determined as a function of cooling rate for two high-titanium basalt compositions. The results of this study of lunar rock systems 10017 and 75055 were compared with the results of other kinetic studies of augite-liquid partitioning in other rock systems. It was found that the partitioning of major elements (i.e., Ca, Fe, Mg) is essentially rate independent and is insensitive to bulk rock composition and to the nature and order of appearance of coexisting phases for cooling rates of less than 100 C/hr. The partitioning behavior of minor elements (i.e., Al, Cr, Ti) for the same range of cooling rates is complex, being dependent on cooling rate and bulk rock composition. Consideration of these factors is important when augite chemistry and/or partitioning behavior are used in modeling certain magmatic processes or in estimating the thermal history of basaltic rocks.

  19. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  20. Total absorption Cherenkov spectrometers

    NASA Astrophysics Data System (ADS)

    Malinovski, E. I.

    2015-05-01

    A short review of 50 years of work done with Cherenkov detectors in laboratories at the Lebedev Physical Institute is presented. The report considers some issues concerning the use of Cherenkov total absorption counters based on lead glass and heavy crystals in accelerator experiments.