Science.gov

Sample records for absorptive partitioning theory

  1. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  2. Partition density functional theory

    NASA Astrophysics Data System (ADS)

    Nafziger, Jonathan

    Partition density functional theory (PDFT) is a method for dividing a molecular electronic structure calculation into fragment calculations. The molecular density and energy corresponding to Kohn Sham density-functional theory (KS-DFT) may be exactly recovered from these fragments. Each fragment acts as an isolated system except for the influence of a global one-body 'partition' potential which deforms the fragment densities. In this work, the developments of PDFT are put into the context of other fragment-based density functional methods. We developed three numerical implementations of PDFT: One within the NWChem computational chemistry package using basis sets, and the other two developed from scratch using real-space grids. It is shown that all three of these programs can exactly reproduce a KS-DFT calculation via fragment calculations. The first of our in-house codes handles non-interacting electrons in arbitrary one-dimensional potentials with any number of fragments. This code is used to explore how the exact partition potential changes for different partitionings of the same system and also to study features which determine which systems yield non-integer PDFT occupations and which systems are locked into integer PDFT occupations. The second in-house code, CADMium, performs real-space calculations of diatomic molecules. Features of the exact partition potential are studied for a variety of cases and an analytical formula determining singularities in the partition potential is derived. We introduce an approximation for the non-additive kinetic energy and show how this quantity can be computed exactly. Finally a PDFT functional is developed to address the issues of static correlation and delocalization errors in approximations within DFT. The functional is applied to the dissociation of H2 + and H2.

  3. Quantum field theory of partitions

    SciTech Connect

    Bender, C.M.; Brody, D.C.; Meister, B.K.

    1999-07-01

    Given a sequence of numbers {l_brace}a{sub n}{r_brace}, it is always possible to find a set of Feynman rules that reproduce that sequence. For the special case of the partitions of the integers, the appropriate Feynman rules give rise to graphs that represent the partitions in a clear pictorial fashion. These Feynman rules can be used to generate the Bell numbers B(n) and the Stirling numbers S(n,k) that are associated with the partitions of the integers. {copyright} {ital 1999 American Institute of Physics.}

  4. Partition Theory for Periodic and Semi-Infinite Systems

    NASA Astrophysics Data System (ADS)

    Niffenegger, Kelsie; Wasserman, Adam

    Standard approximations to the exchange-correlation (XC) functional of Kohn-Sham Density-Functional Theory are insufficiently accurate to describe charge transfer at metal-atom interfaces and other systems requiring proper treatment of fractional electron charges. The root of the problem is connected to the lack of derivative discontinuities in the approximate XC functionals at integer numbers of electrons. Partition Theory (PT) is a promising, formally exact method to correct this issue. We study the simplest model for an atom adsorbed at a metal surface: A one-dimensional step potential separated a fixed distance from an attractive well that admits only one bound state when isolated. The semi-infinite metal is populated with non-interacting electrons up to the Fermi energy. We derive the PT-equations for this problem and indicate how the associated partition potential can be calculated. PT is also a promising method for improving the computational scaling of other large and/or periodic systems. We study the partition potential for periodic 1-D chains of identical attractive wells and comment on the uniqueness of the partition potential when going from finite to periodic systems.

  5. Dualities and Curved Space Partition Functions of Supersymmetric Theories

    NASA Astrophysics Data System (ADS)

    Agarwal, Prarit

    In this dissertation we discuss some conjectured dualities in supersymmetric field theories and provide non-trivial checks for these conjectures. A quick review of supersymmetry and related topics is provided in chapter 1. In chapter 2, we develop a method to identify the so called BPS states in the Hilbert space of a supersymmetric field theory (that preserves at least two real supercharges) on a generic curved space. As an application we obtain the superconformal index (SCI) of 4d theories. The large N SCI of quiver gauge theories has been previously noticed to factorize over the set of extremal BPS mesonic operators. In chapter 3, we reformulate this factorization in terms of the zigzag paths in the dimer model associated to the quiver and extend the factorization theorem of the index to include theories obtained from D-branes probing orbifold singularities. In chapter 4, we consider the dualities in two classes of 3 dimensional theories. The first class consist of dualities of certain necklace type Chern-Simons (CS) quiver gauge theories. A non trivial check of these dualities is provided by matching their squashed sphere partition functions. The second class consists of theories whose duals are described by a collection of free fields. In such cases, due to mixing between the superconformal R-symmetry and accidental symmetries, the matching of electric and magnetic partition functions is not straightforward. We provide a prescription to rectify this mismatch. In chapter 5, we consider some the N = 1 4d theories with orthogonal and symplectic gauge groups, arising from N = 1 preserving reduction of 6d theories on a Riemann surface. This construction allows us to dual descriptions of 4d theories. Some of the dual frames have no known Lagrangian description. We check the dualities by computing the anomaly coefficients and the superconformal indices. We also give a prescription to write the index of the theory obtained by reduction of 6d theories on a three

  6. Some Remarks on the Theory of Element Partitioning

    NASA Astrophysics Data System (ADS)

    Karato, S. I.

    2015-12-01

    Element partitioning is probably the most important concept in geochemistry. However some fundamental issues on element partitioning are poorly understood or misinterpreted or misused. In this presentation, I will discuss two issues. First, the dependence of (trace) element partitioning on the properties of trace element has been understood incompletely (or incorrectly). A strain energy model is a good approximation, but in all previous models, only the influence of the size of trace element is considered. As a result, the influence of "stiffness" of the trace element was ignored and the physical meaning of elastic constants in the theory was vaguely described as "site-elasticity". I developed a modified model in which the influence of the stiffness of the trace element is included with the correct boundary conditions. The incorporation of the influence of stiffness of trace element is critical particularly in a case where the trace element is soft, e.g., a case of noble gas. The new model provides better explanation of the observed element partitioning. Second, the influence of selective dissolution of a trace element in the melt is often ignored. It is well known that the solubility of noble gas in the melt strongly depends on its atomic size. In contrast, the dependence of trace element solubility on its size is not well known but usually ignored. I developed a conceptual model to explain why noble gas solubility is strongly size dependent but not for the solubility of other charged trace elements. These two shortcomings in the previous models are serious when the partitioning of noble gas elements is considered. Some applications of these models will be discussed including the behavior of the noble gases during melting and solidification and the evaluation of water content and its influence on the rheological properties of the lithosphere.

  7. Partition functions for heterotic WZW conformal field theories

    NASA Astrophysics Data System (ADS)

    Gannon, Terry

    1993-08-01

    Thus far in the search for, and classification of, "physical" modular invariant partition functions ΣN LRχ Lχ R∗ the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters χLand χR, are associated with the same Kac-Moody algebras ĝL = ĝR and levels κ L = κ R. In this paper we consider the more general possibility where ( ĝL, κ L) may not equal ( ĝR, κ R). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the "smallest" such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.

  8. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  9. Short Pulse Laser Absorption and Energy Partition at Relativistic Laser Intensities

    SciTech Connect

    Shepherd, R; Chen, H; Ping, Y; Dyer, G; Wilks, S; Chung, H; Kemp, A; Hanson, S; Widmann, K; Fournier, K; Faenov, A; Pikuz, T; Niles, A; Beiersdorfer, P

    2007-02-27

    We have performed experiments at the COMET and Calisto short pulse laser facilities to make the first comprehensive measurements of the laser absorption and energy partition in solid targets heated with an ultrashort laser pulse focused to relativistic laser intensities (>10 10{sup 17} W/cm{sup 2}). The measurements show an exceedingly high absorption for P polarized laser-target interactions above 10{sup 19} W/cm{sup 2}. Additionally, the hot electron population is observed to markedly increase at the same intensity range. An investigation of the relaxation process was initiated u using time sing time-resolved K{sub {alpha}} spectroscopy. Measurements of the time time-resolved K{sub {alpha}} radiation suggest a 10-20 ps relativistic electron relaxation time. However modeling difficulties of these data are apparent and a more detailed investigation on this subject matter is warranted.

  10. Partition functions of superconformal Chern-Simons theories from Fermi gas approach

    NASA Astrophysics Data System (ADS)

    Moriyama, Sanefumi; Nosaka, Tomoki

    2014-11-01

    We study the partition function of three-dimensional superconformal Chern-Simons theories of the circular quiver type, which are natural generalizations of the ABJM theory, the worldvolume theory of M2-branes. In the ABJM case, it was known that the perturbative part of the partition function sums up to the Airy function as Z( N) = e A C -1/3Ai[ C -1/3( N - B)] with coefficients C, B and A and that for the non-perturbative part the divergences coming from the coefficients of worldsheet instantons and membrane instantons cancel among themselves. We find that many of the interesting properties in the ABJM theory are extended to the general superconformal Chern-Simons theories. Especially, we find an explicit expression of B for general theories, a conjectural form of A for a special class of theories, and cancellation in the non-perturbative coefficients for the simplest theory next to the ABJM theory.

  11. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen.

    PubMed

    Kobe, Richard K; Iyer, Meera; Walters, Michael B

    2010-01-01

    Under optimal partitioning theory (OPT), plants preferentially allocate biomass to acquire the resource that most limits growth. Within this framework, higher root mass under low nutrients is often assumed to reflect an allocation response to build more absorptive surface. However, higher root mass also could result from increased storage of total nonstructural carbohydrates (TNC) without an increase in non-storage mass or root surface area. To test the relative contributions of TNC and non-storage mass as components of root mass responses to resources, we grew seedlings of seven northern hardwood tree species (black, red, and white oak, sugar and red maple, American beech, and black cherry) in a factorial light x nitrogen (N) greenhouse experiment. Because root mass is a coarse metric of absorptive surface, we also examined treatment effects on fine-root surface area (FRSA). Consistent with OPT, total root mass as a proportion of whole-plant mass generally was greater in low vs. high N. However, changes in root mass were influenced by TNC mass in all seven species and were especially strong in the three oak species. In contrast, non-storage mass contributed to increased total root mass under low N in three of the seven species. Root morphology also responded, with higher fine-root surface area (normalized to root mass) under low vs. high N in four species. Although biomass partitioning responses to resources were consistent with OPT, our results challenge the implicit assumption that increases in root mass under low nutrient levels primarily reflect allocation shifts to build more root surface area. Rather, root responses to low N included increases in: TNC, non-storage mass and fine-root surface area, with increases in TNC being the largest and most consistent of these responses. The greatest TNC accumulation occurred when C was abundant relative to N. Total nonstructural carbohydrates storage could provide seedlings a carbon buffer when respiratory or growth

  12. The partition function of the supersymmetric two-dimensional black hole and little string theory

    NASA Astrophysics Data System (ADS)

    Israel, Dan; Kounnas, Costas; Pakman, Ari; Troost, Jan

    2004-06-01

    We compute the partition function of the supersymmetric two-dimensional euclidean black hole geometry described by the SL(2,Bbb R)/U(1) superconformal field theory. We decompose the result in terms of characters of the N = 2 superconformal symmetry. We point out puzzling sectors of states besides finding expected discrete and continuous contributions to the partition function. By adding an N = 2 minimal model factor of the correct central charge and projecting on integral N = 2 charges we compute the partition function of the background dual to little string theory in a double scaling limit. We show the precise correspondence between this theory and the background for NS5-branes on a circle, due to an exact description of the background as a null gauging of SL(2,Bbb R) × SU(2). Finally, we discuss the interplay between GSO projection and target space geometry.

  13. Acoustical study on the impact of sound absorptions, distances of workstations, and height of partitions in open plan offices

    NASA Astrophysics Data System (ADS)

    Utami, Sentagi Sesotya; Al Rochmadi, Nurwachid; Sarwono, R. Sugeng Joko

    2015-09-01

    Low partitions are commonly found in open-plan offices as the boundaries of workstation islands or groups of workstations. This room layout often cause excessive speech intelligibility, which creates work distraction and reduce the quality of speech privacy. Sound absorption, distance between workstations, and height of partitions are factors that were investigated on their impact to the room acoustics condition, referred to ISO 3382-3:2012. Observed room acoustics conditions were speech intelligibility, speech privacy, and distraction to concentrate in work using parameters of T30, C50, and RASTI. Parameters of T30, C50, and RASTI were used to evaluate the speech intelligibility. The level of speech privacy was indicated by parameter of privacy distance (rP). Distraction to concentrate in work was indicated by distraction distance (rD). The results from 2 experimental setups show that sound absorption, distance between workstations, and partitions influenced the level of speech intelligibility, speech privacy, and distraction to concentration at work. The value of C50 decline, by 76.9% and 77.4%, each for scenario A and B. RASTI decline, by 18.7% and 14.8%. Difference in percentage of speech privacy, by 6% and 11%. Difference in percentage of distraction to concentration at work, by 79% and 70%.

  14. Geometry of Spin and SPINc Structures in the M-Theory Partition Function

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.

  15. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition

    SciTech Connect

    Parrish, Robert M.; Sherrill, C. David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  16. Spatial assignment of symmetry adapted perturbation theory interaction energy components: The atomic SAPT partition.

    PubMed

    Parrish, Robert M; Sherrill, C David

    2014-07-28

    We develop a physically-motivated assignment of symmetry adapted perturbation theory for intermolecular interactions (SAPT) into atom-pairwise contributions (the A-SAPT partition). The basic precept of A-SAPT is that the many-body interaction energy components are computed normally under the formalism of SAPT, following which a spatially-localized two-body quasiparticle interaction is extracted from the many-body interaction terms. For electrostatics and induction source terms, the relevant quasiparticles are atoms, which are obtained in this work through the iterative stockholder analysis (ISA) procedure. For the exchange, induction response, and dispersion terms, the relevant quasiparticles are local occupied orbitals, which are obtained in this work through the Pipek-Mezey procedure. The local orbital atomic charges obtained from ISA additionally allow the terms involving local orbitals to be assigned in an atom-pairwise manner. Further summation over the atoms of one or the other monomer allows for a chemically intuitive visualization of the contribution of each atom and interaction component to the overall noncovalent interaction strength. Herein, we present the intuitive development and mathematical form for A-SAPT applied in the SAPT0 approximation (the A-SAPT0 partition). We also provide an efficient series of algorithms for the computation of the A-SAPT0 partition with essentially the same computational cost as the corresponding SAPT0 decomposition. We probe the sensitivity of the A-SAPT0 partition to the ISA grid and convergence parameter, orbital localization metric, and induction coupling treatment, and recommend a set of practical choices which closes the definition of the A-SAPT0 partition. We demonstrate the utility and computational tractability of the A-SAPT0 partition in the context of side-on cation-π interactions and the intercalation of DNA by proflavine. A-SAPT0 clearly shows the key processes in these complicated noncovalent interactions, in

  17. Convergence behavior of multireference perturbation theory: Forced degeneracy and optimization partitioning applied to the beryllium atom

    NASA Astrophysics Data System (ADS)

    Finley, James P.; Chaudhuri, Rajat K.; Freed, Karl F.

    1996-07-01

    High-order multireference perturbation theory is applied to the 1S states of the beryllium atom using a reference (model) space composed of the \\|1s22s2> and the \\|1s22p2> configuration-state functions (CSF's), a system that is known to yield divergent expansions using Mo/ller-Plesset and Epstein-Nesbet partitioning methods. Computations of the eigenvalues are made through 40th order using forced degeneracy (FD) partitioning and the recently introduced optimization (OPT) partitioning. The former forces the 2s and 2p orbitals to be degenerate in zeroth order, while the latter chooses optimal zeroth-order energies of the (few) most important states. Our methodology employs simple models for understanding and suggesting remedies for unsuitable choices of reference spaces and partitioning methods. By examining a two-state model composed of only the \\|1s22p2> and \\|1s22s3s> states of the beryllium atom, it is demonstrated that the full computation with 1323 CSF's can converge only if the zeroth-order energy of the \\|1s22s3s> Rydberg state from the orthogonal space lies below the zeroth-order energy of the \\|1s22p2> CSF from the reference space. Thus convergence in this case requires a zeroth-order spectral overlap between the orthogonal and reference spaces. The FD partitioning is not capable of generating this type of spectral overlap and thus yields a divergent expansion. However, the expansion is actually asymptotically convergent, with divergent behavior not displayed until the 11th order because the \\|1s22s3s> Rydberg state is only weakly coupled with the \\|1s22p2> CSF and because these states are energetically well separated in zeroth order. The OPT partitioning chooses the correct zeroth-order energy ordering and thus yields a convergent expansion that is also very accurate in low orders compared to the exact solution within the basis.

  18. Towards a classification of modular invariant partition functions for theories based on N=4 superconformal algebras

    NASA Astrophysics Data System (ADS)

    Taormina, Anne

    1993-05-01

    The representation theory of the doubly extended N=4 superconformal algebra is reviewed. The modular properties of the corresponding characters can be derived, using characters sumrules for coset realizations of these N=4 algebras. Some particular combinations of massless characters are shown to transform as affine SU(2) characters under S and T, a fact used to completely classify the massless sector of the partition function.

  19. Random partitions and asymptotic theory of symmetric groups, Hecke algebras and finite Chevalley groups

    NASA Astrophysics Data System (ADS)

    Méliot, Pierre-Loïc

    2010-12-01

    In this thesis, we investigate the asymptotics of random partitions chosen according to probability measures coming from the representation theory of the symmetric groups S_n and of the finite Chevalley groups GL(n,F_q) and Sp(2n,F_q). More precisely, we prove laws of large numbers and central limit theorems for the q-Plancherel measures of type A and B, the Schur-Weyl measures and the Gelfand measures. Using the RSK algorithm, it also gives results on longest increasing subsequences in random words. We develop a technique of moments (and cumulants) for random partitions, thereby using the polynomial functions on Young diagrams in the sense of Kerov and Olshanski. The algebra of polynomial functions, or observables of Young diagrams is isomorphic to the algebra of partial permutations; in the last part of the thesis, we try to generalize this beautiful construction.

  20. Geometric model from microscopic theory for nuclear absorption

    NASA Technical Reports Server (NTRS)

    John, Sarah; Townsend, Lawrence W.; Wilson, John W.; Tripathi, Ram K.

    1993-01-01

    A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained.

  1. Octanol-Water Partition Coefficient from 3D-RISM-KH Molecular Theory of Solvation with Partial Molar Volume Correction.

    PubMed

    Huang, WenJuan; Blinov, Nikolay; Kovalenko, Andriy

    2015-04-30

    The octanol-water partition coefficient is an important physical-chemical characteristic widely used to describe hydrophobic/hydrophilic properties of chemical compounds. The partition coefficient is related to the transfer free energy of a compound from water to octanol. Here, we introduce a new protocol for prediction of the partition coefficient based on the statistical-mechanical, 3D-RISM-KH molecular theory of solvation. It was shown recently that with the compound-solvent correlation functions obtained from the 3D-RISM-KH molecular theory of solvation, the free energy functional supplemented with the correction linearly related to the partial molar volume obtained from the Kirkwood-Buff/3D-RISM theory, also called the "universal correction" (UC), provides accurate prediction of the hydration free energy of small compounds, compared to explicit solvent molecular dynamics [ Palmer , D. S. ; J. Phys.: Condens. Matter 2010 , 22 , 492101 ]. Here we report that with the UC reparametrized accordingly this theory also provides an excellent agreement with the experimental data for the solvation free energy in nonpolar solvent (1-octanol) and so accurately predicts the octanol-water partition coefficient. The performance of the Kovalenko-Hirata (KH) and Gaussian fluctuation (GF) functionals of the solvation free energy, with and without UC, is tested on a large library of small compounds with diverse functional groups. The best agreement with the experimental data for octanol-water partition coefficients is obtained with the KH-UC solvation free energy functional.

  2. Application of integral-equation theory to aqueous two-phase partitioning systems

    SciTech Connect

    Haynes, C.A.; Benitez, F.J.; Blanch, H.W.; Prausnitz, J.M. )

    1993-09-01

    A molecular-thermodynamic model is developed for representing thermodynamic properties of aqueous two-phase systems containing polymers, electrolytes, and proteins. The model is based on McMillan-Mayer solution theory and the generalized mean-spherical approximation to account for electrostatic forces between unlike ions. The Boublik-Mansoori equation of state for hard-sphere mixtures is coupled with the osmotic virial expansion truncated after the second-virial terms to account for short-range forces between molecules. Osmotic second virial coefficients are reported from low-angle laser-light scattering (LALLS) data for binary and ternary aqueous solutions containing polymers and proteins. Ion-polymer specific-interaction coefficients are determined from osmotic-pressure data for aqueous solutions containing a water-soluble polymer and an alkali chloride, phosphate or sulfate salt. When coupled with LALLS and osmotic-pressure data reported here, the model is used to predict liquid-liquid equilibria, protein partition coefficients, and electrostatic potentials between phases for both polymer-polymer and polymer-salt aqueous two-phase systems. For bovine serum albumin, lysozyme, and [alpha]-chymotrypsin, predicted partition coefficients are in excellent agreement with experiment.

  3. Current density partitioning in time-dependent current density functional theory

    SciTech Connect

    Mosquera, Martín A.; Wasserman, Adam

    2014-05-14

    We adapt time-dependent current density functional theory to allow for a fragment-based solution of the many-electron problem of molecules in the presence of time-dependent electric and magnetic fields. Regarding a molecule as a set of non-interacting subsystems that individually evolve under the influence of an auxiliary external electromagnetic vector-scalar potential pair, the partition 4-potential, we show that there are one-to-one mappings between this auxiliary potential, a sharply-defined set of fragment current densities, and the total current density of the system. The partition electromagnetic (EM) 4-potential is expressed in terms of the real EM 4-potential of the system and a gluing EM 4-potential that accounts for exchange-correlation effects and mutual interaction forces between fragments that are required to yield the correct electron dynamics. We prove the zero-force theorem for the fragmented system, establish a variational formulation in terms of action functionals, and provide a simple illustration for a charged particle in a ring.

  4. [Effect of fertilization on the absorption, partition and accumulation of carbon and nitrogen of rice under the equal N conditions].

    PubMed

    Feng, Lei; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Li, Yong; Huang, Tie-Ping; Xia, Hai-Ao

    2011-02-01

    In this study, the assimilation, partition and accumulation of carbon (C) and nitrogen (N), as well as the relationship between C and N accumulation of rice, were studied from typical paddy ecosystems under long-term fertilizer applications with equal N inputs in subtropical China. The results showed that chemical fertilizer plus low organic manure (LOM) could promote effectively the distribution of C in the rice plant. The N content in the stem-leaf and grain of rice under organic-inorganic fertilization was 8.9-10.2 g x kg(-1) and 11.9-14.8 g x kg(-1) respectively. It was much higher than under other treatments, with about 13% - 53% and 9% - 19% higher than under the chemical fertilization (NPK), separately and 12% - 77% and 23% - 32% higher than under the control treatment (CK), respectively. The C and N storages of rice were mainly accumulated in the aboveground part. Organic-inorganic fertilization treatment possessed higher storages of C (3467.8-4 323.9 kg x hm(-2)) and N (120.3-135.2 kg x hm(-2)) in the rice grain,which was about 13% - 23% of C and 26% - 45% of N higher than under NPK treatment. It indicated that rice grain was the main sink of C and N. The organic-inorganic fertilization was in favor of C accumulation and N absorption in the rice plant and it still possesses an obvious potential in C and N sequestration and absorption in subtropical paddy field. PMID:21528586

  5. Coupled metal partitioning dynamics and toxicodynamics at biointerfaces: a theory beyond the biotic ligand model framework.

    PubMed

    Duval, Jérôme F L

    2016-04-14

    A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes.

  6. On a Gopakumar-Vafa form of partition function of Chern-Simons theory on classical and exceptional lines

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, R. L.

    2014-12-01

    We show that partition function of Chern-Simons theory on three-sphere with classical and exceptional groups (actually on the whole corresponding lines in Vogel's plane) can be represented as ratio of respectively triple and double sine functions (last function is essentially a modular quantum dilogarithm). The product representation of sine functions gives Gopakumar-Vafa structure form of partition function, which in turn gives a corresponding integer invariants of manifold after geometrical transition. In this way we suggest to extend gauge/string duality to exceptional groups, although one still have to resolve few problems. In both classical and exceptional cases an additional terms, non-perturbative w.r.t. the string coupling constant, appear. The full universal partition function of ChernSimons theory on three-sphere is shown to be the ratio of quadruple sine functions. We also briefly discuss the matrix model for exceptional line.

  7. Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition.

    PubMed

    Parrish, Robert M; Parker, Trent M; Sherrill, C David

    2014-10-14

    Recently, we introduced an effective atom-pairwise partition of the many-body symmetry-adapted perturbation theory (SAPT) interaction energy decomposition, producing a method known as atomic SAPT (A-SAPT) [Parrish, R. M.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 044115]. A-SAPT provides ab initio atom-pair potentials for force field development and also automatic visualizations of the spatial contributions of noncovalent interactions, but often has difficulty producing chemically useful partitions of the electrostatic energy, due to the buildup of oscillating partial charges on adjacent functional groups. In this work, we substitute chemical functional groups in place of atoms as the relevant local quasiparticles in the partition, resulting in a functional-group-pairwise partition denoted as functional-group SAPT (F-SAPT). F-SAPT assigns integral sets of local occupied electronic orbitals and protons to chemical functional groups and linking σ bonds. Link-bond contributions can be further assigned to chemical functional groups to simplify the analysis. This approach yields a SAPT partition between pairs of functional groups with integral charge (usually neutral), preventing oscillations in the electrostatic partition. F-SAPT qualitatively matches chemical intuition and the cut-and-cap fragmentation technique but additionally yields the quantitative many-body SAPT interaction energy. The conceptual simplicity, chemical utility, and computational efficiency of F-SAPT is demonstrated in the context of phenol dimer, proflavine(+)-DNA intercalation, and a cucurbituril host-guest inclusion complex. PMID:26588139

  8. Chemical Assignment of Symmetry-Adapted Perturbation Theory Interaction Energy Components: The Functional-Group SAPT Partition.

    PubMed

    Parrish, Robert M; Parker, Trent M; Sherrill, C David

    2014-10-14

    Recently, we introduced an effective atom-pairwise partition of the many-body symmetry-adapted perturbation theory (SAPT) interaction energy decomposition, producing a method known as atomic SAPT (A-SAPT) [Parrish, R. M.; Sherrill, C. D. J. Chem. Phys. 2014, 141, 044115]. A-SAPT provides ab initio atom-pair potentials for force field development and also automatic visualizations of the spatial contributions of noncovalent interactions, but often has difficulty producing chemically useful partitions of the electrostatic energy, due to the buildup of oscillating partial charges on adjacent functional groups. In this work, we substitute chemical functional groups in place of atoms as the relevant local quasiparticles in the partition, resulting in a functional-group-pairwise partition denoted as functional-group SAPT (F-SAPT). F-SAPT assigns integral sets of local occupied electronic orbitals and protons to chemical functional groups and linking σ bonds. Link-bond contributions can be further assigned to chemical functional groups to simplify the analysis. This approach yields a SAPT partition between pairs of functional groups with integral charge (usually neutral), preventing oscillations in the electrostatic partition. F-SAPT qualitatively matches chemical intuition and the cut-and-cap fragmentation technique but additionally yields the quantitative many-body SAPT interaction energy. The conceptual simplicity, chemical utility, and computational efficiency of F-SAPT is demonstrated in the context of phenol dimer, proflavine(+)-DNA intercalation, and a cucurbituril host-guest inclusion complex.

  9. Region Graph Partition Function Expansion and Approximate Free Energy Landscapes: Theory and Some Numerical Results

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun; Wang, Chuang

    2012-08-01

    Graphical models for finite-dimensional spin glasses and real-world combinatorial optimization and satisfaction problems usually have an abundant number of short loops. The cluster variation method and its extension, the region graph method, are theoretical approaches for treating the complicated short-loop-induced local correlations. For graphical models represented by non-redundant or redundant region graphs, approximate free energy landscapes are constructed in this paper through the mathematical framework of region graph partition function expansion. Several free energy functionals are obtained, each of which use a set of probability distribution functions or functionals as order parameters. These probability distribution function/functionals are required to satisfy the region graph belief-propagation equation or the region graph survey-propagation equation to ensure vanishing correction contributions of region subgraphs with dangling edges. As a simple application of the general theory, we perform region graph belief-propagation simulations on the square-lattice ferromagnetic Ising model and the Edwards-Anderson model. Considerable improvements over the conventional Bethe-Peierls approximation are achieved. Collective domains of different sizes in the disordered and frustrated square lattice are identified by the message-passing procedure. Such collective domains and the frustrations among them are responsible for the low-temperature glass-like dynamical behaviors of the system.

  10. Exact partition functions for the Ω-deformed {N}={2}^{ast } SU(2) gauge theory

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Macorini, Guido

    2016-07-01

    We study the low energy effective action of the Ω-deformed {N}={2}^{ast } SU(2) gauge theory. It depends on the deformation parameters ɛ 1, ɛ 2, the scalar field expectation value a, and the hypermultiplet mass m. We explore the plane (m/ɛ_1,ɛ_2/ɛ_1) looking for special features in the multi-instanton contributions to the prepotential, motivated by what happens in the Nekrasov-Shatashvili limit ɛ 2 → 0. We propose a simple condition on the structure of poles of the k-instanton prepotential and show that it is admissible at a finite set of points in the above plane. At these special points, the prepotential has poles at fixed positions independent on the instanton number. Besides and remarkably, both the instanton partition function and the full prepotential, including the perturbative contribution, may be given in closed form as functions of the scalar expectation value a and the modular parameter q appearing in special combinations of Eisenstein series and Dedekind η function. As a byproduct, the modular anomaly equation can be tested at all orders at these points. We discuss these special features from the point of view of the AGT correspondence and provide explicit toroidal 1-blocks in non-trivial closed form. The full list of solutions with 1, 2, 3, and 4 poles is determined and described in details.

  11. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    PubMed

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  12. Electric-magnetic duality of Abelian gauge theory on the four-torus, from the fivebrane on T 2 × T 4, via their partition functions

    NASA Astrophysics Data System (ADS)

    Dolan, Louise; Sun, Yang

    2015-06-01

    We compute the partition function of four-dimensional abelian gauge theory on a general four-torus T 4 with flat metric using Dirac quantization. In addition to an symmetry, it possesses symmetry that is electromagnetic S-duality. We show explicitly how this S-duality of the 4 d abelian gauge theory has its origin in symmetries of the 6 d (2 , 0) tensor theory, by computing the partition function of a single fivebrane compactified on T 2 times T 4, which has symmetry. If we identify the couplings of the abelian gauge theory with the complex modulus of the T 2 torus , then in the small T 2 limit, the partition function of the fivebrane tensor field can be factorized, and contains the partition function of the 4 d gauge theory. In this way the symmetry of the 6d tensor partition function is identified with the S-duality symmetry of the 4d gauge partition function. Each partition function is the product of zero mode and oscillator contributions, where the acts suitably. For the 4d gauge theory, which has a Lagrangian, this product redistributes when using path integral quantization.

  13. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  14. Microwave Absorption in Graphene Films: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Batrakov, K. G.; Paddubskaya, A. G.; Valynets, N. I.; Voronovich-Solonevich, S. P.; Kuzhir, P. P.; Maksimenko, S. A.; Kaplas, T.; Svirko, Yu.

    2016-09-01

    The interaction of Kα microwave radiation with ultrathin graphene films is studied. Although the thickness of these films is thousands of times smaller than the skin depth, they can absorb a significant fraction of the incident radiation. The possibility of controlling the amount of absorption and reflection of waves incident on graphene is demonstrated. In particular, by choosing the substrate parameters and the angle of incidence, it is possible to increase the absorption in graphene to >50%. For certain angles of incidence it is possible to have the TE-wave reflected, while the TM-wave is transmitted. These effects can be used to create ultrathin (atomic thicknesses) absorbers and polarizers.

  15. Application of Equilibrium Partitioning Theory to Soil PAH Contamination (External Review Draft)

    EPA Science Inventory

    In March 2004, ORD's Ecological Risk Assessment Support Center (ERASC) received a request from the Ecological Risk Assessment Forum (ERAF) to provide insight into the issue of whether equilibrium partitioning (EqP) techniques can be used to predict the toxicity of polycyclic arom...

  16. Novel limiting circle theory in acoustic wave scattering and absorption

    NASA Astrophysics Data System (ADS)

    Huang, Changzheng

    Wave scattering theory is the basis for many key technologies that have important military and commercial applications. The familiar examples are radar, sonar, and various ultrasound instruments commonly used in remote sensing, target identification, non-destructive evaluation, medical diagnosis, and many other areas. Their mathematical model involves the solution of the so- called inverse scattering problem where an incident wave is used to probe a remote or inaccessible object. From the scattered field measurement, the shape and/or the material composition of the object can be determined. A new wave scattering theory, termed limiting circle theory (LCT), has been developed in this dissertation based on a novel approach of decomposing the wave scattering matrix. LCT has rigorously proved that the scattered wave field from any penetrable object (of cylinder and sphere geometries) is composed of three contributions: a rigid background, a soft background, and a pure resonance. This is a significant modification to the existing resonance scattering theory (RST) which states that the scattered field is made up of only two components: a proper background (either rigid or soft), and a pure resonance. LCT formalism led to the discovery of the limiting circle patterns associated with all normal modes or partial waves. These patterns provide a clear understanding of the resonance behavior such as the resonance period and the resonance intensity. The analytical LCT approach could also be the key to solving the background problems for shell structures that have remained unsolved for many years in acoustics.

  17. Theory of absorption rate of carriers in fused silica under intense laser irradiation

    SciTech Connect

    Deng, Hongxiang; Xiang, Xia; Zheng, WG; Yuan, XD; Wu, SY; Jiang, XD; Gao, Fei; Zu, Xiaotao T.; Sun, Kai

    2010-11-15

    A quantum non-perturbation theory for phonon-assisted photon absorption of conduction band electron in intense laser was developed. By carrying out the calculation in fused silica at wavelengths from ultraviolet to infrared in terawatt intensity laser, we show that the Non-perturbation approach can make a uniform description of energy absorption rate at both short wavelengths and long wavelengths on TW / cm2 intensity laser.

  18. Ice-crystal absorption: a comparison between theory and implications for remote sensing.

    PubMed

    Baran, A J; Foot, J S; Mitchell, D L

    1998-04-20

    The problem of the disagreement between cirrus crystal sizes determined remotely and by in situ measurements is shown to be due to inappropriate application of Mie theory. We retrieved the absorption optical depth at 8.3 and 11.1 mum from 11 tropical anvil cirrus clouds, using data from the High Resolution Infrared Radiation Sounder (HIRS). We related the absorption optical depth ratio between the two wavelengths to crystal size (the size was defined in terms of the crystal median mass dimension) by assuming Mie theory applied to ice spheres and anomalous diffraction theory (ADT) applied to hexagonal columns, hexagonal plates, bullet rosettes, and aggregates (polycrystals). The application of Mie theory to retrievals yielded crystal sizes approximately one third those obtained with ADT. The retrievals of crystal size by use of HIRS data are compared with measurements of habit and crystal size obtained from in situ measurements of tropical anvil cirrus particles. The results of the comparison show that ADT provides the more realistic retrieval. Moreover, we demonstrate that at infrared wavelengths retrieval of crystal size depends on assumed habit. The reason why Mie theory predicts smaller sizes than ADT is shown to result from particle geometry and enhanced absorption owing to the capture of photons from above the edge of the particle (tunneling). The contribution of particle geometry to absorption is three times greater than from tunneling, but this process enhances absorption by a further 35%. The complex angular momentum and T-matrix methods are used to show that the contribution to absorption by tunneling is diminished as the asphericity of spheroidal particles is increased. At an aspect ratio of 6 the contribution to the absorption that is due to tunneling is substantially reduced for oblate particles, whereas for prolate particles the tunneling contribution is reduced by 50% relative to the sphere.

  19. Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms: Assessment of equilibrium partitioning theory in in situ studies and water experiments

    SciTech Connect

    Ma, W.; Kleunen, A. van; Immerzeel, J.; Maagd, P.G.J. de

    1998-09-01

    The purpose of this study was to assess the suitability of applying equilibrium partitioning (EqP) theory to predict the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) by earthworms when these are exposed to contaminated soils in the field. Studies carried out in situ in various contaminated floodplain sites showed the presence of linear relationships with intercept zero between the lipid-normalized concentration of different PAHs in the earthworm, Lumbricus rubellus and the organic-matter-normalized concentration of the compounds in soil. The demonstration of such an isometric relationship is in agreement with the prediction of EqP theory that the biota-soil accumulation factor (BSAF) should be independent of the octanol/water partition coefficient, log K{sub ow}. The average BSAF of PAH compounds in the sampled 20-cm top layer of soil was 0.10. The present study also investigated the route of uptake of PAHs for earthworms in soil. The bioconcentration factor of low-molecular-weight PAHs, such as phenanthrene, fluoranthene, and pyrene, was derived from bioconcentration kinetic modeling of water-only experiments and found to be of the same order of magnitude as the bioaccumulation factor in the field when the latter was normalized to calculated concentrations in soil pore water. The results indicated that the exposure of earthworms to PAHs in soil is mediated through direct contact of the worms with the dissolved interstitial soil-water phase, further supporting the applicability of EqP theory to PAHs. The experimental data on the biotransformation of PAHs suggest that earthworms possess some capacity of metabolization, although this does not seem to be a major factor in the total elimination of these compounds. Even though the EqP approach was found to be applicable to low-molecular-weight PAHs with respect to the prediction of bioaccumulation by earthworms in the field, the results were less conclusive for high-molecular-weight compounds, such as

  20. Electron-ion energy partition when a charged particle slows in a plasma: theory.

    PubMed

    Brown, Lowell S; Preston, Dean L; Singleton, Robert L

    2012-07-01

    The preceding paper [Brown, Preston, and Singleton Jr., Phys. Rev. E 86, 016406 (2012)] presented precise results for the partition of the initial energy E(0) of a fast particle into the ions and electrons--E(I)/E(0) and E(e)/E(0)--when the fast particle slows in a plasma whose ion and electron temperatures may differ. As emphasized in that paper, this is an important problem because nuclear fusion reactions, such as those that occur in an inertial confinement fusion capsule, involve ion temperatures that run away from the electron temperatures. As also noted in the preceding paper, a precise evaluation entails the use of a well-defined Fokker-Planck equation for the phase-space evolution of initially fast projectile particles. When the plasma has differing ion and electron temperatures, the projectiles must slow into a "schizophrenic" final ensemble of particles that has neither the electron nor the ion temperature. This is not a simple Maxwell-Boltzmann distribution since the electrons are not in thermal equilibrium with the ions. Thus, detailed calculations are required for the solution of the problem. These we provide here for a weakly to moderately coupled plasma. The Fokker-Planck equation holds to first subleading order in the dimensionless plasma coupling constant, which translates to computing to order n ln n (leading) and n (subleading) in the plasma density n. The energy partitions for a background plasma in thermal equilibrium have been previously computed, but the order n terms have not been calculated, only estimated. The "schizophrenic" final ensemble of slowed particles gives a new mechanism to bring the electron and ion temperatures together. The rate at which this new mechanism brings the electrons and ions in the plasma into thermal equilibrium will be computed. PMID:23005550

  1. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zheng, Guangming; Stramski, Dariusz; DiGiacomo, Paul M.

    2015-04-01

    We present a model, referred to as Generalized Stacked-Constraints Model (GSCM), for partitioning the total light absorption coefficient of natural water (with pure-water contribution subtracted), anw(λ), into phytoplankton, aph(λ), nonalgal particulate, ad(λ), and CDOM, ag(λ), components. The formulation of the model is based on the so-called stacked-constraints approach, which utilizes a number of inequality constraints that must be satisfied simultaneously by the model outputs of component absorption coefficients. A major advancement is that GSCM provides a capability to separate the ad(λ) and ag(λ) coefficients from each other using only weakly restrictive assumptions about the component absorption coefficients. In contrast to the common assumption of exponential spectral shape of ad(λ) and ag(λ) in previous models, in our model these two coefficients are parameterized in terms of several distinct spectral shapes. These shapes are determined from field data collected in the Chesapeake Bay with an ultimate goal to adequately account for the actual variability in spectral shapes of ad(λ) and ag(λ) in the study area. Another advancement of this model lies in its capability to account for potentially nonnegligible magnitude of ad(λ) in the near-infrared spectral region. Evaluation of model performance demonstrates good agreement with measurements in the Chesapeake Bay. For example, the median ratio of the model-derived to measured ad(λ), ag(λ), and aph(λ) at 443 nm is 0.913, 1.064, and 1.056, respectively. Whereas our model in its present form can be a powerful tool for regional studies in the Chesapeake Bay, the overall approach is readily adaptable to other regions or bio-optical water types.

  2. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  3. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  4. Ex situ remediation of polluted soils by absorptive polymers, and a comparison of slurry and two-phase partitioning bioreactors for ultimate contaminant degradation.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Annesini, M Cristina; Daugulis, Andrew J

    2013-11-15

    The present study has provided a comparison between a conventional ex situ method for the treatment of contaminated soil, a soil slurry bioreactor, with a novel technology in which a contaminant is rapidly and effectively removed from the soil by means of absorptive polymer beads, which are then added to a two-phase partitioning bioreactor (TPPB) for biodegradation of the target molecule. 4-nitrophenol (4NP) was selected as a model contaminant, being representative of a large class of xenobiotics, and the DuPont thermoplastic Hytrel™ 8206 was utilized for its extraction from soil over ranges of soil contamination level, soil moisture content, and polymer:soil ratios. Since the polymers were able to rapidly (up to 77% and 85% in 4 and 24h respectively) and selectively remove the contaminant, the soil retained its nutrient and microflora content, which is in contrast to soil washing which can remove these valuable soil resources. After 4h of reaction time, the TPPB system demonstrated removal efficiency four times higher (77% vs 20%) than the slurry system, with expected concomitant savings in time and energy. A volumetric removal rate of 75 mg4NPh(-1) L(-1) was obtained in the TPPB, significantly greater than the value of 1.7 obtained in the slurry bioreactor. The polymers were readily regenerated for subsequent reuse, demonstrating the versatility of the polymer-based soil treatment technology.

  5. Rethinking first-principles electron transport theories with projection operators: the problems caused by partitioning the basis set.

    PubMed

    Reuter, Matthew G; Harrison, Robert J

    2013-09-21

    We revisit the derivation of electron transport theories with a focus on the projection operators chosen to partition the system. The prevailing choice of assigning each computational basis function to a region causes two problems. First, this choice generally results in oblique projection operators, which are non-Hermitian and violate implicit assumptions in the derivation. Second, these operators are defined with the physically insignificant basis set and, as such, preclude a well-defined basis set limit. We thus advocate for the selection of physically motivated, orthogonal projection operators (which are Hermitian) and present an operator-based derivation of electron transport theories. Unlike the conventional, matrix-based approaches, this derivation requires no knowledge of the computational basis set. In this process, we also find that common transport formalisms for nonorthogonal basis sets improperly decouple the exterior regions, leading to a short circuit through the system. We finally discuss the implications of these results for first-principles calculations of electron transport.

  6. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles < 75° with a well known photon path, we assume that the retrieved total column NO2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T

  7. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  8. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  9. Excited State Absorption from Real-Time Time-Dependent Density Functional Theory.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2015-09-01

    The optical response of excited states is a key property used to probe photophysical and photochemical dynamics. Additionally, materials with a large nonlinear absorption cross-section caused by two-photon (TPA) and excited state absorption (ESA) are desirable for optical limiting applications. The ability to predict the optical response of excited states would help in the interpretation of transient absorption experiments and aid in the search for and design of optical limiting materials. We have developed an approach to obtain excited state absorption spectra by combining real-time (RT) and linear-response (LR) time-dependent density functional theory (TDDFT). Being based on RT-TDDFT, our method is aimed at tackling larger molecular complexes and materials systems where excited state absorption is predominantly seen and many time-resolved experimental efforts are focused. To demonstrate our method, we have calculated the ground and excited state spectra of H₂⁺ and H₂ due to the simplicity in the interpretation of the spectra. We have validated our new approach by comparing our results for butadiene with previously published results based on quadratic response (QR). We also present results for oligofluorenes, where we compare our results with both QR-TDDFT and experimental measurements. Because our method directly measures the response of an excited state, stimulated emission features are also captured; although, these features are underestimated in energy which could be attributed to a change of the reference from the ground to the excited state.

  10. Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa: Quantitative partitioning by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Formenti, P.; Caquineau, S.; Chevaillier, S.; Klaver, A.; Desboeufs, K.; Rajot, J. L.; Belin, S.; Briois, V.

    2014-11-01

    This paper reports on the X-ray absorption analysis of samples of mineral dust emitted from or transported to Western Africa. We found that iron oxides account, by mass, for 38% to 72% of the total elemental iron. They are composed of minerals in the Fe(III) oxidation state: goethite (FeO·OH) and hematite (Fe2O3). The apparent fraction of iron oxide attributed to goethite is higher than hematite regardless of the source region from which the dust originated. The goethite percent content of iron oxides is in the range 52-78% (by mass), the highest values being measured for dust originating in the Sahel. The limited number of samples analyzed and the sample-to-sample variability prevent us from concluding firmly on the regional variability of the goethite-to-hematite ratio. Based on the experimental data on mineralogical composition and on concurrent measurements of the number size distribution, the optical properties of mineral dust have been calculated in a Mie approximation for homogeneous spherical particles. At 550 nm, the single-scattering albedo ω0 ranges between 0.89 and 0.93, the asymmetry factor g ranges between 0.76 and 0.8 and the mass extinction efficiency kext varies between 0.5 and 1.1 m2 g-1; these values are all in the range of those from independent direct measurements. Neglecting the partitioning between hematite and goethite and the assimilation of iron oxides by hematite, as it is often done with models, lowers the single-scattering albedo and increases the asymmetry factor in the UV-visible spectral region below 550 nm. The mass extinction efficiency is insensitive to the nature of the iron oxides but rather responds to variations in the number size distribution. The mineralogy of iron oxides should therefore be taken into account when assessing the effect of mineral dust on climate and atmospheric chemistry, in particular via interactions involving photolysis.

  11. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  12. Theory of Half-Space Light Absorption Enhancement for Leaky Mode Resonant Nanowires.

    PubMed

    Jia, Yiming; Qiu, Min; Wu, Hui; Cui, Yi; Fan, Shanhui; Ruan, Zhichao

    2015-08-12

    Semiconductor nanowires supporting leaky mode resonances have been used to increase light absorption in optoelectronic applications from solar cell to photodetector and sensor. The light conventionally illuminates these devices with a wide range of different incident angles from half space. Currently, most of the investigated nanowires have centrosymmetric geometry cross section, such as circle, hexagon, and rectangle. Here we show that the absorption capability of these symmetrical nanowires has an upper limit under the half-space illumination. Based on the temporal coupled-mode equation, we develop a reciprocity theory for leaky mode resonances in order to connect the angle-dependent absorption cross section and the radiation pattern. We show that in order to exceed such a half-space limit the radiation pattern should be noncentrosymmetric and dominate in the direction reciprocal to the illumination. As an example, we design a metal trough structure to achieve the desired radiation pattern for an embedded nanowire. In comparison to a single nanowire case the trough structure indeed overcomes the half-space limit and leads to 39% and 64% absorption enhancement in TM and TE polarizations, respectively. Also the trough structure enables the enhancement over a broad wavelength range.

  13. Universal model based on the mobile order and disorder theory for predicting lipophilicity and partition coefficients in all mutually immiscible two-phase liquid systems

    PubMed

    Ruelle

    2000-05-01

    The quantitative thermodynamic development of the mobile order and disorder theory in H-bonded liquids has been extended in order to predict partition coefficients. The model enables "a priori" estimation of the partition coefficient (log P) of neutral solutes, not only in the conventional 1-octanol/water reference but also in all mutually saturated two-phase systems made up of largely immiscible solvents. The model is obtained from the thermodynamic treatment of the various physicochemical free energy processes encoded in the overall distribution process and accordingly provides a useful tool for better understanding both the origin and the factors, such as the solute molar volume, that determine the partition coefficient of nonelectrolytes in a given system. From the comparison of the relative magnitude of the processes contributing to the log P value, a lot of information can also be gained regarding the variation in log P of the same substance partitioned between different solvent systems. As a demonstration, the model has been successfully applied to predict the log P of a great number of chemicals of varying structure, size, and chemical nature partitioned in a large set of essentially immiscible solvent pairs, differing either by their nonpolar or by their polar phase. In the systems involving water as the polar phase, the hydrophobic effect is always the driving force that governs the distribution process irrespective of the interacting or noninteracting nature of the substances studied. In the other two-phase systems, the partitioning of complexing solutes in particular appears to be ruled rather by their hydrogen-bonding capabilities than by their hydrophobicities.

  14. Quantitative first-principles theory of interface absorption in multilayer heterostructures

    SciTech Connect

    Hachtel, Jordan A.; Sachan, Ritesh; Mishra, Rohan; Pantelides, Sokrates T.

    2015-08-31

    The unique chemical bonds and electronic states of interfaces result in optical properties that are different from those of the constituting bulk materials. In the nanoscale regime, the interface effects can be dominant and impact the optical response of devices. Using density functional theory (DFT), the interface effects can be calculated, but DFT is computationally limited to small systems. We describe a method to combine DFT with macroscopic methodologies to extract the interface effect on absorption in a consistent and quantifiable manner. The extracted interface effects are an independent parameter and can be applied to more complicated systems. We demonstrate, using NiSi{sub 2}/Si heterostructures, that by varying the relative volume fractions of interface and bulk, we can tune the spectral range of the heterostructure absorption.

  15. Theory of triplet optical absorption in oligoacenes: From naphthalene to heptacene

    SciTech Connect

    Chakraborty, Himanshu Shukla, Alok

    2014-10-28

    In this paper, we present a detailed theory of the triplet states of oligoacenes containing up to seven rings, i.e., starting from naphthalene all the way up to heptacene. In particular, we present results on the optical absorption from the first triplet excited state 1{sup 3}B{sub 2u}{sup +} of these oligomers, computed using the Pariser-Parr-Pople model Hamiltonian, and a correlated electron approach employing the configuration-interaction methodology at various levels. Excitation energies of various triplets states obtained by our calculations are in good agreement with the experimental results, where available. The computed triplet spectra of oligoacenes exhibits rich structure dominated by two absorption peaks of high intensities, which are well separated in energy, and are caused by photons polarized along the conjugation direction. This prediction of ours can be tested in future experiments performed on oriented samples of oligoacenes.

  16. Absorption microspectroscopy, theory and applications in the case of the photosynthetic compartment.

    PubMed

    Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Vesentini, Nicoletta; Passarelli, Vincenzo; Gualtieri, Paolo

    2007-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of both algae and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions, and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  17. Absorption spectra of blue-light-emitting oligoquinolines from time-dependent density functional theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2008-11-01

    Recently, it has been discovered that a series of four conjugated oligomers, oligoquinolines, exhibits many desirable properties of organic materials for developing high-performance light-emitting diodes: good blue color purity, high brightness, high efficiency, and high glass-transition temperatures. In this work, we investigate the optical absorption of oligoquinolines in the gas phase and chloroform (CHCl3) solution, respectively, using time-dependent density functional theory with the adiabatic approximation for the dynamical exchange-correlation potential. Our calculations show that the first peak of optical absorption corresponds to the lowest singlet excited state, whereas several quasi-degenerate excited states contribute to the experimentally observed higher-frequency peak. We find that, compared with the gas phase, there is a moderate red shift in excitation energy in solution due to the solute-solvent interaction simulated using the polarizable continuum model. Our results show that the lowest singlet excitation energies of oligoquinolines in chloroform solution calculated with the adiabatic hybrid functional PBE0 are in a good agreement with experiments. Our simulated optical absorption agrees well with the experimental data. Finally, analysis of the natural transition orbitals corresponding to the excited states in question underscores the underlying electronic delocalization properties. PMID:18844398

  18. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.

    PubMed

    Rashidian Vaziri, Mohammad Reza

    2013-07-10

    In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.

  19. Calculation of vibrational and electronic excited state absorption spectra of arsenic-water complexes using density functional theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.

    2016-05-01

    Calculations are presented of vibrational and electronic excited-state absorption spectra for As-H2O complexes using density function theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within the IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and TD-DFT calculated absorption spectra represent quantitative estimates that can be correlated with additional information obtained from laboratory measurements and other types of theory based calculations. The DFT software GAUSSIAN was used for the calculations of excitation states presented here.

  20. Partition search

    SciTech Connect

    Ginsberg, M.L.

    1996-12-31

    We introduce a new form of game search called partition search that incorporates dependency analysis, allowing substantial reductions in the portion of the tree that needs to be expanded. Both theoretical results and experimental data are presented. For the game of bridge, partition search provides approximately as much of an improvement over existing methods as {alpha}-{beta} pruning provides over minimax.

  1. Absorption, autoionization, and predissociation in molecular hydrogen: High-resolution spectroscopy and multichannel quantum defect theory.

    PubMed

    Sommavilla, M; Merkt, F; Mezei, J Zs; Jungen, Ch

    2016-02-28

    Absorption and photoionization spectra of H2 have been recorded at a resolution of 0.09 and 0.04 cm(-1), respectively, between 125,600 cm(-1) and 126,000 cm(-1). The observed Rydberg states belong to series (n = 10 - 14) converging on the first vibrationally excited level of the X (2)Σ(g)(+) state of H2(+), and of lower members of series converging on higher vibrational levels. The observed resonances are characterized by the competition between autoionization, predissociation, and fluorescence. The unprecedented resolution of the present experimental data leads to a full characterization of the predissociation/autoionization profiles of many resonances that had not been resolved previously. Multichannel quantum defect theory is used to predict the line positions, widths, shapes, and intensities of the observed spectra and is found to yield quantitative agreement using previously determined quantum defect functions as the unique set of input parameters.

  2. Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development

    SciTech Connect

    Ackerman, J.P.; Johnson, T.R.

    1993-10-01

    The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

  3. THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Huang, L.; Lambrakos, S. G.; Shabaev, A.; Massa, L.; Yapijakis, C.

    2013-05-01

    The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article.

  4. Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures.

    PubMed

    Yu, Yiling; Cao, Linyou

    2012-06-18

    We present an intuitive, simple theoretical model, coupled leaky mode theory (CLMT), to analyze the light absorption of 2D, 1D, and 0D semiconductor nanostructures. This model correlates the light absorption of nanostructures to the optical coupling between incident light and leaky modes of the nanostructure. Unlike conventional methods such as Mie theory that requests specific physical features of nanostructures to evaluate the absorption, the CLMT model provides an unprecedented capability to analyze the absorption using eigen values of the leaky modes. Because the eigenvalue shows very mild dependence on the physical features of nanostructures, we can generally apply one set of eigenvalues calculated using a real, constant refractive index to calculations for the absorption of various nanostructures with different sizes, different materials, and wavelength-dependent complex refractive index. This CLMT model is general, simple, yet reasonably accurate, and offers new intuitive physical insights that the light absorption of nanostructures is governed by the coupling efficiency between incident light and leaky modes of the structure.

  5. Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory

    SciTech Connect

    Hudson, E.A.; Allen, P.G.; Terminello, L.J.; Denecke, M.A.; Reich, T.

    1996-07-01

    The x-ray linear dichroism of the uranyl ion (UO{sub 2}{sup 2+}) in uranium {ital L}{sub 3}-edge extended x-ray-absorption fine structure (EXAFS), and {ital L}{sub 1}- and {ital L}{sub 3}-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO{sub 2}(CH{sub 3}CO{sub 2}){sub 2}{center_dot}2H{sub 2}O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the {ital ab} {ital initio} multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO{sub 2}F{sub 2}) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the {ital L}{sub 1}-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured {ital L}{sub 3}-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the {ital L}{sub 1}-edge XANES calculations, in which overlapping was required for the best agreement with experiment. {copyright} {ital 1996 The American Physical Society.}

  6. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert's Variational Perturbation Theory.

    PubMed

    Wong, Kin-Yiu; Gao, Jiali

    2008-09-01

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert's variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H(3) reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H(2), HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property

  7. A Systematic Approach for Computing Zero-Point Energy, Quantum Partition Function, and Tunneling Effect Based on Kleinert’s Variational Perturbation Theory

    PubMed Central

    Wong, Kin-Yiu; Gao, Jiali

    2009-01-01

    In this paper, we describe an automated integration-free path-integral (AIF-PI) method, based on Kleinert’s variational perturbation (KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed an analytical method to obtain the centroid potential as a function of the variational parameter in the KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics simulations, especially at the limit of zero-temperature. Consequently, the variational calculations using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the approximation of independent instantaneous normal modes (INM), the AIF-PI method can readily be applied to many-body systems. Previously, we have shown that in the INM approximation, the AIF-PI method is accurate for computing the quantum partition function of a water molecule (3 degrees of freedom) and the quantum correction factor for the collinear H3 reaction rate (2 degrees of freedom). In this work, the accuracy and properties of the KP theory are further investigated by using the first three order perturbations on an asymmetric double-well potential, the bond vibrations of H2, HF, and HCl represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential. The zero-point energy, quantum partition function, and tunneling factor for these systems have been determined and are found to be in excellent agreement with the exact quantum results. Using our new analytical results at the zero-temperature limit, we show that the minimum value of the computed centroid potential in the KP theory is in excellent agreement with the ground state energy (zero-point energy) and the position of the centroid potential minimum is the expectation value of particle position in wave mechanics. The fast convergent property of

  8. Theory of the electronic states and absorption spectrum of the LiCl:Ag+ impurity system

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar A.; Lin, Chun C.

    1990-01-01

    The impurity absorption spectra of Ag+ and Cu+ impurities in alkali halide hosts show characteristically different features, despite the similar nature of the corresponding free ions. We use the self-interaction-corrected local-spin-density (SIC-LSD) theory to calculate the electronic structure of the ground state (4d) and the 5s and 5p excited states of the LiCl:Ag+ impurity ion. The method of linear combinations of atomic orbitals is used to determine the wave functions and energy levels. By comparing with previous calculations for LiCl:Cu+, we are able to attribute the differences in the d-->s and d-->p transitions in the ultraviolet spectra of these systems to the increased bonding between host crystal and impurity orbitals in LiCl:Ag+, due to the more extensive nature of the Ag+ 4d orbitals. A modification of the earlier SIC-LSD impurity-crystal procedure is introduced to treat the strongly mixed impurity states.

  9. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy.

    PubMed

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl(2)O(4):Cr(3+) for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr(3+) cations among the two different octahedral sites of the alexandrite structure (70% in the C(s) site-30% in the C(i) site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  10. Site partitioning of Cr3+ in the trichroic alexandrite BeAl2O4:Cr3+ crystal: contribution from x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bordage, Amélie; Rossano, Stéphanie; Horn, Adolf Heinrich; Fuchs, Yves

    2012-06-01

    X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl2O4:Cr3+ for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr3+ cations among the two different octahedral sites of the alexandrite structure (70% in the Cs site-30% in the Ci site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

  11. Excited-State Absorption from Real-Time Time-Dependent Density Functional Theory: Optical Limiting in Zinc Phthalocyanine.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2016-04-01

    Optical-limiting materials are capable of attenuating light to protect delicate equipment from high-intensity light sources. Phthalocyanines have attracted a lot of attention for optical-limiting applications due to their versatility and large nonlinear absorption. With excited-state absorption (ESA) being the primary mechanism for optical limiting behavior in phthalocyanines, the ability to tune the optical absorption of ground and excited states in phthalocyanines would allow for the development of advanced optical limiters. We recently developed a method for the calculation of ESA based on real-time time-dependent density functional theory propagation of an excited-state density. In this work, we apply the approach to zinc phthalocyanine, demonstrating the ability of our method to efficiently identify the optical limiting potential of a molecular complex.

  12. Charge Transport and Light Absorption in Conjugated Systems from Extended HÜCKEL Method and Marcus Theory

    NASA Astrophysics Data System (ADS)

    To, Tran Thinh; Adams, Stefan

    2012-06-01

    A simple first principle model was developed based on extended Hückel-type orbital calculation, Marcus electron transport theory and two-dimensional-electron-gas model for the treatment of charge transport in conjugated polymers. Though simple and easy to compute, the effect of the applied electric-field is factored in. Based on this, a complete one-dimensional device model with a single layer of conjugated polymer sandwiched between two electrodes was developed with poly(3-hexylthiophene) (P3HT) as a case study. Simulated J-V curves show that π-π charge transport is much more pronounced than intra-chain transport, hence agree with previous findings. Using the same framework, we also calculated the absorption spectra of P3HT by considering the electronic energy barrier for electronic transitions that would satisfy Franck-Condon principle. Absorption spectra closely harmonize to experimental UV-Vis result. The model also reveals intra-chain electronic transitions to be the dominant absorption mechanism. All parameters of the model are obtained from either ab-initio Density Functional Theory (DFT) or Molecular Dynamics (MD) calculations, so that this model is capable of predicting charge transport and light absorption properties of new conjugated polymers without introducing fit parameters.

  13. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  14. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique

    2016-10-01

    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.

  15. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications.

    PubMed

    Sugano, Kiyohiko; Terada, Katsuhide

    2015-09-01

    The oral absorption of drugs has been represented by various concepts such as the absorption potential, the maximum absorbable dose, the biopharmaceutics classification system, and in vitro-in vivo correlation. The aim of this article is to provide an overview of the theoretical relationships between these concepts. It shows how a simple analytical solution for the fraction of a dose absorbed (Fa equation) can offer a theoretical base to tie together the various concepts, and discusses how this solution relates to the rate-limiting cases of oral drug absorption. The article introduces the Fa classification system as a framework in which all the above concepts were included, and discusses its applications for food effect prediction, active pharmaceutical ingredient form selection, formulation design, and biowaiver strategy.

  16. Theory of absorption bands in molecular dimers: Interpolating between optical asymmetries

    SciTech Connect

    Wagenknecht, Hans; Esser, Bernd

    2003-02-01

    Absorption band shapes of an asymmetric dimer system constituted by monomers with different excitation energies and optical transition matrix elements are considered in the semiclassical parameter region. Optical transition matrix elements originating from arbitrary initial vibrational states are analyzed on the basis of a spin representation of the eigenstates of an associated symmetry broken spin-boson Hamiltonian. Correlations between the spin-down and spin-up coefficients of these eigenstates are shown to exist and investigated in detail. Using these correlations, an asymmetry interpolation of the intensity of absorption lines between dimer configurations with different optical monomer transition matrix elements is proposed.

  17. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  18. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  19. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    NASA Astrophysics Data System (ADS)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  20. Theory of dynamic absorption spectroscopy of nonstationary states. 4. Application to 12-fs resonant impulsive Raman spectroscopy of bacteriorhodopsin

    SciTech Connect

    Pollard, W.T.; Peteanu, L.A.; Mathies, R.A.

    1992-07-23

    A time-dependent theory for femtosecond dynamic absorption spectroscopy is used to describe the creation and observation of molecular ground-state vibrational coherence through the resonance impulsive stimulated Raman mechanism. Model calculations show that the oscillatory absorption signal that arises from this ground-state coherence is maximized for a limited range of pulse lengths and that there is a complex relationship between the probe wavelength and the strength of the spectral oscillations. The generalized time-dependent linear susceptibility of the nonstationary system created by the impulsive pump pulse is defined and used to discuss the strong dependence of the measured signals on the properties of the probe pulse. Finally, calculations are presented to analyze the high-frequency oscillations ({approximately}20-fs period) recently observed in the transient absorption spectra of light-adapted bacteriorhodopsin (BR{sub 568}) following excitation with a 12-fs optical pulse. At the probe wavelengths used in this experiment, the contribution of stimulated emission is negligible at long times because of the extremely rapid excited-state isomerization; as a result, the spectral oscillations observed after this time are due to the impulsive excitation of coherent vibrations in the ground state. The transient response observed for BR{sub 568} is calculated using a 29-mode harmonic potential surface derived from a prior resonance Raman intensity analysis. Both the oscillatory signals and their dependence on the probe wavelength are satisfactorily reproduced. 68 refs., 11 figs.

  1. The energy of the vacuum related to the theory of energy absorption

    NASA Astrophysics Data System (ADS)

    Danilov, A. P.

    2016-07-01

    The primary objective in this article is to investigate a new source of renewable energy, the existence of the vacuum in five environments, and the possibility of absorption of the explosion. The study has also addressed the development of new principles in the motor industry, protection against explosions, new principles of mineral processing and new types of explosives. Also, this study may offer some insight into new approaches in solving problems in thermodynamics, the development of gravity waves, the basis of renewable energy source, and the mechanism of the emergence of gravitational waves.

  2. Absorption-edge singularities for a nonequilibrium Fermi sea. III. Determinantal nonperturbative theory

    SciTech Connect

    Tanguy, C.; Combescot, M.

    1995-10-15

    The nonperturbative solution to the problem of threshold singularities for a ({mu}{sub 1},{mu}{sub 2}) nonequilibrium Fermi sea is obtained using the determinantal method of Ohtaka and Tanabe. The critical exponents of the absorption power-law behavior we find agree with those estimated from the perturbative treatment of the problem given in papers I and II. A family of possibly diverging singularities is found at energies {mu}{sub 2}+{ital n}({mu}{sub 1}{minus}{mu}{sub 2}), for {ital n}{ge}1.

  3. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  4. Exact Abjm Partition Function from Tba

    NASA Astrophysics Data System (ADS)

    Putrov, Pavel; Yamazaki, Masahito

    2012-11-01

    We report on the exact computation of the S3 partition function of U(N)k × U(N)-k ABJM theory for k = 1, N = 1, …, 19. The result is a polynomial in π-1 with rational coefficients. As an application of our results, we numerically determine the coefficient of the membrane 1-instanton correction to the partition function.

  5. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  6. Theory of x-ray absorption by laser-dressed atoms

    SciTech Connect

    Buth, Christian; Santra, Robin

    2007-03-15

    An ab initio theory is devised for the x-ray photoabsorption cross section of atoms in the field of a moderately intense optical laser (800 nm, 10{sup 13} W/cm{sup 2}). The laser dresses the core-excited atomic states, which introduces a dependence of the cross section on the angle between the polarization vectors of the two linearly polarized radiation sources. We use the Hartree-Fock-Slater approximation to describe the atomic many-particle problem in conjunction with a nonrelativistic quantum-electrodynamic approach to treat the photon-electron interaction. The continuum wave functions of ejected electrons are treated with a complex absorbing potential that is derived from smooth exterior complex scaling. The solution to the two-color (x-ray plus laser) problem is discussed in terms of a direct diagonalization of the complex symmetric matrix representation of the Hamiltonian. Alternative treatments with time-independent and time-dependent non-Hermitian perturbation theories are presented that exploit the weak interaction strength between x rays and atoms. We apply the theory to study the photoabsorption cross section of krypton atoms near the K edge. A pronounced modification of the cross section is found in the presence of the optical laser.

  7. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-01-01

    In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples. PMID:24517510

  8. Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver.

    PubMed

    Xie, Mingjie; Hannigan, Michael P; Barsanti, Kelley C

    2014-01-01

    In this study, a medium volume sampler incorporating quartz fiber filters (QFFs) and a polyurethane foam (PUF)/XAD/PUF sandwich (PXP) was used to collect 2-methyltetrols (isoprene tracer) and levoglucosan (biomass burning tracer) in gaseous and particle (PM2.5) phases. The measured gas/particle (G/P) partitioning coefficients (Kp,OMm) of 2-methyltetrols and levoglucosan were calculated and compared to their predicted G/P partitioning coefficients (Kp,OMt) based on an absorptive partitioning theory. The breakthrough experiments showed that gas-phase 2-methyltetrols and levoglucosan could be collected using the PXP or PUF adsorbent alone, with low breakthrough; however, the recoveries of levoglucosan in PXP samples were lower than 70% (average of 51.9–63.3%). The concentration ratios of 2-methyltetrols and levoglucosan in the gas phase to those in the particle phase were often close to or higher than unity in summer, indicating that these polar species are semi-volatile and their G/P partitioning should be considered when applying particle-phase data for source apportionment. The Kp,OMm values of 2-methyltetrols had small variability in summer Denver, which was ascribed to large variations in concentrations of particulate organic matter (5.14 ± 3.29 μg m–3) and small changes in ambient temperature (21.8 ± 4.05 °C). The regression between log Kp,OMm and log Kp,OMt suggested that the absorptive G/P partitioning theory could reasonably predict the measured G/P partitioning of levoglucosan in ambient samples.

  9. Young Children's Partitioning Strategies.

    ERIC Educational Resources Information Center

    Charles, Kathy; Nason, Rod

    2000-01-01

    Studies knowledge of young children's partitioning strategies by setting out not only to identify new partitioning strategies, but also to develop taxonomy for classifying young children's partitioning strategies in terms of their abilities. Provides taxonomy utilizing children's informal partitioning strategies as the foundation upon which to…

  10. Zinc cysteine active sites of metalloproteins: a density functional theory and x-ray absorption fine structure study.

    PubMed

    Dimakis, Nicholas; Farooqi, Mohammed Junaid; Garza, Emily Sofia; Bunker, Grant

    2008-03-21

    Density functional theory (DFT) and x-ray absorption fine structure (XAFS) spectroscopy are complementary tools for the biophysical study of active sites in metalloproteins. DFT is used to compute XAFS multiple scattering Debye Waller factors, which are then employed in genetic algorithm-based fitting process to obtain a global fit to the XAFS in the space of fitting parameters. Zn-Cys sites, which serve important functions as transcriptional switches in Zn finger proteins and matrix metalloproteinases, previously have proven intractable by this method; here these limitations are removed. In this work we evaluate optimal DFT nonlocal functionals and basis sets for determining optimal geometries and vibrational densities of states of mixed ligation Zn(His)(4-n)(Cys)(n) sites. Theoretical results are compared to experimental XAFS measurements and Raman spectra from the literature and tabulated for use.

  11. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  12. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    PubMed

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  13. Complexation of Neptunium(V) with Glutaroimide Dioxime: A Study by Absorption Spectroscopy, Microcalorimetry, and Density Functional Theory Calculations.

    PubMed

    Ansari, Seraj A; Bhattacharyya, Arunasis; Zhang, Zhicheng; Rao, Linfeng

    2015-09-01

    Complexation of NpO2(+) ions with glutaroimide dioxime (H2L), a cyclic imide dioxime ligand that has been shown to form strong complexes with UO2(2+) in aqueous solutions, was studied by absorption spectroscopy and microcalorimetry in 1.0 M NaClO4 aqueous solutions. NpO2(+) forms two successive complexes, NpO2(HL)(aq) and NpO2(HL)2(-) (where HL(-) stands for the partially deprotonated glutaroimide dioxime ligand), with stability constants of log β111 = 17.8 ± 0.1 and log β122 = 33.0 ± 0.2, respectively. The complexation is both enthalpy- and entropy-driven, with negative enthalpies (ΔH111 = -52.3 ± 1.0 kJ/mol and ΔH122 = -96.1 ± 1.4 kJ/mol) and positive entropies (ΔS111 = 164 ± 3 J/mol/K and ΔS122 = 310 ± 4 J/mol/K). The thermodynamic parameters suggest that, similar to complexation of UO2(2+), the ligand coordinates with NpO2(+) in a tridentate mode, via the two oxygen atoms of the oxime groups and the nitrogen atom of the imide group. Density functional theory calculations have helped to interpret the optical absorption properties of the NpO2(HL)2(-) complex, by showing that the cis and trans configurations of the complex have very similar energies so that both configurations could be present in the aqueous solutions. It is the noncentrosymmetric cis configuration that makes the 5f → 5f transition allowable so that the NpO2(HL)2(-) complex absorbs in the near-IR region.

  14. Seismic scattering and absorption parameters in the W-Bohemia/Vogtland region from elastic and acoustic radiative transfer theory

    NASA Astrophysics Data System (ADS)

    Gaebler, Peter J.; Eulenfeld, Tom; Wegler, Ulrich

    2015-12-01

    In this study, frequency-dependent seismic scattering and intrinsic attenuation parameters for the crustal structure beneath the W-Bohemia/Vogtland swarm earthquake region close to the border of Czech Republic and Germany are estimated. Synthetic seismogram envelopes are modelled using elastic and acoustic radiative transfer theory. Scattering and absorption parameters are determined by fitting these synthetic envelopes to observed seismogram envelopes from 14 shallow local events from the October 2008 W-Bohemia/Vogtland earthquake swarm. The two different simulation approaches yield similar results for the estimated crustal parameters and show a comparable frequency dependence of both transport mean free path and intrinsic absorption path length. Both methods suggest that intrinsic attenuation is dominant over scattering attenuation in the W-Bohemia/Vogtland region for the investigated epicentral distance range and frequency bands from 3 to 24 Hz. Elastic simulations of seismogram envelopes suggest that forward scattering is required to explain the data, however, the degree of forward scattering is not resolvable. Errors in the parameter estimation are smaller in the elastic case compared to results from the acoustic simulations. The frequency decay of the transport mean free path suggests a random medium described by a nearly exponential autocorrelation function. The fluctuation strength and correlation length of the random medium cannot be estimated independently, but only a combination of the parameters related to the transport mean free path of the medium can be computed. Furthermore, our elastic simulations show, that using our numerical method, it is not possible to resolve the value of the mean free path of the random medium.

  15. Collision-induced absorption with exchange effects and anisotropic interactions: Theory and application to H{sub 2} − H{sub 2}

    SciTech Connect

    Karman, Tijs; Avoird, Ad van der; Groenenboom, Gerrit C.

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  16. Hydrolysis and gas-particle partitioning of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Bean, J. K.; Hildebrandt Ruiz, L.

    2015-07-01

    Gas-particle partitioning and hydrolysis of organic nitrates (ON) influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol (OA). Organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments under varying conditions. A hydrolysis rate of 2 day-1 was found for particle-phase ONs at a relative humidity of 22 % or higher; no significant ON hydrolysis was observed at lower relative humidity. The ON gas-particle partitioning is dependent on total OA concentration and temperature, consistent with absorptive partitioning theory. In a volatility basis set the ON partitioning is consistent with mass fractions of [0 0.19 0.29 0.52] at saturations mass concentrations (C*) of [1 10 100 1000] μg m-3.

  17. Determination of the ground albedo and the index of absorption of atmospheric particulates by remote sensing. I - Theory

    NASA Technical Reports Server (NTRS)

    King, M. D.; Herman, B. M.

    1979-01-01

    A statistical technique is developed for inferring the optimum values of the ground albedo and the effective imaginary term of the complex refractive index of atmospheric particulates. The procedure compares measurements of the ratio of the hemispheric diffuse to directly transmitted solar flux density at the earth's surface with radiative transfer computations of the same as suggested by Herman et al. (1975). A detailed study is presented which shows the extent to which the ratio of diffuse to direct solar radiation is sensitive to many of the radiative transfer parameters. Results indicate that the optical depth and size distribution of atmospheric aerosol particles are the two parameters which uniquely specify the radiation field to the point where ground albedo and index of absorption can be inferred. Varying the real part of the complex refractive index of atmospheric particulates as well as their vertical distribution is found to have a negligible effect on the diffuse-direct ratio. The statistical procedure utilizes a semi-analytic gradient search method from least-squares theory and includes a detailed error analysis.

  18. High-temperature asymptotics of supersymmetric partition functions

    NASA Astrophysics Data System (ADS)

    Ardehali, Arash Arabi

    2016-07-01

    We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S 3 × S β 1 , with S 3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index.

  19. On the Theory of the Ballistic Linear Photovoltaic Effect in Semiconductors of Tetrahedral Symmetry Under Two-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Rasulov, R. Ya.; Rasulov, V. R.; Eshboltaev, I.

    2016-07-01

    The ballistic contribution to the current of linear photovoltaic effect under two-photon absorption of light is calculated and theoretically analyzed for the semiconductors of a tetrahedral symmetry with a complex band structure consisting of two closely spaced subbands. The transitions between the branches of one band in cases of the simultaneous absorption of two photons and successive absorption of two single photons are taken into account.

  20. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems.

  1. Partitioning ecosystems for sustainability.

    PubMed

    Murray, Martyn G

    2016-03-01

    Decline in the abundance of renewable natural resources (RNRs) coupled with increasing demands of an expanding human population will greatly intensify competition for Earth's natural resources during this century, yet curiously, analytical approaches to the management of productive ecosystems (ecological theory of wildlife harvesting, tragedy of the commons, green economics, and bioeconomics) give only peripheral attention to the driving influence of competition on resource exploitation. Here, I apply resource competition theory (RCT) to the exploitation of RNRs and derive four general policies in support of their sustainable and equitable use: (1) regulate resource extraction technology to avoid damage to the resource base; (2) increase efficiency of resource use and reduce waste at every step in the resource supply chain and distribution network; (3) partition ecosystems with the harvesting niche as the basic organizing principle for sustainable management of natural resources by multiple users; and (4) increase negative feedback between consumer and resource to bring about long-term sustainable use. A simple policy framework demonstrates how RCT integrates with other elements of sustainability science to better manage productive ecosystems. Several problem areas of RNR management are discussed in the light of RCT, including tragedy of the commons, overharvesting, resource collapse, bycatch, single species quotas, and simplification of ecosystems. PMID:27209800

  2. Modular properties of full 5D SYM partition function

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Tizzano, Luigi; Winding, Jacob; Zabzine, Maxim

    2016-03-01

    We study properties of the full partition function for the U(1) 5D N = {2}^{ast } gauge theory with adjoint hypermultiplet of mass M . This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition function on toric Sasaki-Einstein manifolds by gluing flat copies of the Nekrasov partition function and we express the full partition function in terms of the generalized double elliptic gamma function G 2 C associated with a certain moment map cone C. The answer exhibits a curious SL(4 , ℤ) modular property. Finally, we propose a set of rules to construct the partition function that resembles the calculation of 5d supersymmetric partition function with the insert ion of defects of various co-dimensions.

  3. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  4. Molecular structure and vibrations of NTCDA monolayers on Ag(111) from density-functional theory and infrared absorption spectroscopy.

    PubMed

    Tonner, Ralf; Rosenow, Phil; Jakob, Peter

    2016-02-17

    The structure and vibrational properties of the metal-organic interface of 1,4,5,8-naphthalene-tetracarboxylic dianhydride (NTCDA) on Ag(111) were analysed using Fourier-transform infrared absorption spectroscopy in conjunction with density functional theory calculations including dispersion forces (PBE-D3). Mode assignments and polarizations as well as molecular distortions were determined for four adsorption geometries of NTCDA on top and bridge sites aligned either parallel or perpendicular to the Ag rows and compared to accurate calculations of the free molecule. This enables an in-depth understanding of surface effects on the computed and experimental vibrational spectra of the adsorbed NTCDA molecule. The molecule-substrate interaction comprises two major and equally important contributions: non-directional van der Waals forces between molecule and surface, and covalent bonding of the acyl oxygen atoms with underlying Ag atoms, which is quantified by charge-transfer analysis. Furthermore, adsorption energy calculations showed that the molecular axis of flat-lying NTCDA is oriented preferably in parallel to the Ag rows. The molecule is subject to particular distortions from the planar gas phase structure with covalent bonding leading to downward bending of the acyl oxygen atoms and Pauli repulsion to upward bending of the carbon core. In parallel, strong buckling of the silver surface was identified. As found in previous studies, the lowest unoccupied molecular orbital (LUMO) of the molecule slips below the Fermi level and becomes partially populated upon adsorption. Excitation of totally symmetric vibrational modes then leads to substantial interfacial dynamical charge transfer, which is convincingly reproduced in the calculated IR spectra.

  5. Nickel Sorption to Bacteriogenic Manganese Oxides: Insights from X-ray Absorption Spectroscopy and Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Pena, J.; Kwon, K.; Refson, K.; Bargar, J. R.; Sposito, G.

    2008-12-01

    Bacteriogenic Mn oxides are ubiquitous, highly reactive minerals with a remarkable capacity to scavenge metals due to their nanoparticulate dimensions and abundant structural defects. These minerals are commonly deposited in a matrix of bacterial cells and extracellular polymeric substances, forming geosymbiotic systems whose reactivity with contaminant metals is not fully characterized. In the current study, a synergistic experimental-computational approach was used to study the mechanism of Ni adsorption at varying loadings and at pH 6-8 using the Mn oxide produced by Pseudomonas putida GB-1. Extended X-ray absorption fine structure (EXAFS) spectra showed two dominant coordination environments: Ni bound as a triple corner sharing (TCS) complex at octahedral vacancy sites and Ni incorporated into the octahedral sheet. The proportion of adsorbed and incorporated Ni varied as a function of surface coverage and pH, with the latter form of Ni being favored at higher loadings and decreased proton activity. These two coordination environments, although consistent with data published for Ni sorbed by synthetic MnO2(s), did not describe fully all of our EXAFS spectra, leading us to consider the binding of Ni at particle edges or via a non-specific sorption mechanism. In parallel to the spectral analysis, density functional theory (DFT) calculations were performed to test different adsorbate-adsorbent configurations and the pH dependence of the adsorption mechanism. Geometry optimized structures for Ni sorbed above vacancies (i.e., TCS) or incorporated into the Mn oxide structure were in excellent agreement with corresponding structural parameters obtained from EXAFS analysis. The calculated energy barriers for the transition from adsorbed TCS to incorporated Ni were consistent with the hypothesis that the TCS complex is a precursor for Ni incorporation and that incorporation is favored by decreased proton activity. The combined perspectives obtained from these two

  6. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  7. Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.; Gordon, Timothy D.; Robinson, Allen L.

    2013-10-01

    The gas-particle partitioning of the primary organic aerosol (POA) emissions from fifty-one light-duty gasoline vehicles (model years 1987-2012) was investigated at the California Air Resources Board Haagen-Smit Laboratory. Each vehicle was operated over the cold-start unified cycle on a chassis dynamometer and its emissions were sampled using a constant volume sampler. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: sampling artifact correction of quartz filter data, dilution from the constant volume sampler into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry analysis of quartz filter samples. This combination of techniques allowed gas-particle partitioning measurements to be made across a wide range of atmospherically relevant conditions - temperatures of 25-100 °C and organic aerosol concentrations of <1-600 μg m-3. The gas-particle partitioning of the POA emissions varied continuously over this entire range of conditions and essentially none of the POA should be considered non-volatile. Furthermore, for most vehicles, the low levels of dilution used in the constant volume sampler created particle mass concentrations that were greater than a factor of 10 or higher than typical ambient levels. This resulted in large and systematic partitioning biases in the POA emission factors compared to more dilute atmospheric conditions, as the POA emission rates may be over-estimated by nearly a factor of four due to gas-particle partitioning at higher particle mass concentrations. A volatility distribution was derived to quantitatively describe the measured gas-particle partitioning data using absorptive partitioning theory. Although the POA emission factors varied by more than two orders of magnitude across the test fleet, the vehicle-to-vehicle differences in gas-particle partitioning were modest. Therefore, a single volatility distribution

  8. Dense Subgraph Partition of Positive Hypergraphs.

    PubMed

    Liu, Hairong; Latecki, Longin Jan; Yan, Shuicheng

    2015-03-01

    In this paper, we present a novel partition framework, called dense subgraph partition (DSP), to automatically, precisely and efficiently decompose a positive hypergraph into dense subgraphs. A positive hypergraph is a graph or hypergraph whose edges, except self-loops, have positive weights. We first define the concepts of core subgraph, conditional core subgraph, and disjoint partition of a conditional core subgraph, then define DSP based on them. The result of DSP is an ordered list of dense subgraphs with decreasing densities, which uncovers all underlying clusters, as well as outliers. A divide-and-conquer algorithm, called min-partition evolution, is proposed to efficiently compute the partition. DSP has many appealing properties. First, it is a nonparametric partition and it reveals all meaningful clusters in a bottom-up way. Second, it has an exact and efficient solution, called min-partition evolution algorithm. The min-partition evolution algorithm is a divide-and-conquer algorithm, thus time-efficient and memory-friendly, and suitable for parallel processing. Third, it is a unified partition framework for a broad range of graphs and hypergraphs. We also establish its relationship with the densest k-subgraph problem (DkS), an NP-hard but fundamental problem in graph theory, and prove that DSP gives precise solutions to DkS for all kin a graph-dependent set, called critical k-set. To our best knowledge, this is a strong result which has not been reported before. Moreover, as our experimental results show, for sparse graphs, especially web graphs, the size of critical k-set is close to the number of vertices in the graph. We test the proposed partition framework on various tasks, and the experimental results clearly illustrate its advantages.

  9. Polymers as Reference Partitioning Phase: Polymer Calibration for an Analytically Operational Approach To Quantify Multimedia Phase Partitioning.

    PubMed

    Gilbert, Dorothea; Witt, Gesine; Smedes, Foppe; Mayer, Philipp

    2016-06-01

    Polymers are increasingly applied for the enrichment of hydrophobic organic chemicals (HOCs) from various types of samples and media in many analytical partitioning-based measuring techniques. We propose using polymers as a reference partitioning phase and introduce polymer-polymer partitioning as the basis for a deeper insight into partitioning differences of HOCs between polymers, calibrating analytical methods, and consistency checking of existing and calculation of new partition coefficients. Polymer-polymer partition coefficients were determined for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs) by equilibrating 13 silicones, including polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) in methanol-water solutions. Methanol as cosolvent ensured that all polymers reached equilibrium while its effect on the polymers' properties did not significantly affect silicone-silicone partition coefficients. However, we noticed minor cosolvent effects on determined polymer-polymer partition coefficients. Polymer-polymer partition coefficients near unity confirmed identical absorption capacities of several PDMS materials, whereas larger deviations from unity were indicated within the group of silicones and between silicones and LDPE. Uncertainty in polymer volume due to imprecise coating thickness or the presence of fillers was identified as the source of error for partition coefficients. New polymer-based (LDPE-lipid, PDMS-air) and multimedia partition coefficients (lipid-water, air-water) were calculated by applying the new concept of a polymer as reference partitioning phase and by using polymer-polymer partition coefficients as conversion factors. The present study encourages the use of polymer-polymer partition coefficients, recognizing that polymers can serve as a linking third phase for a quantitative understanding of equilibrium partitioning of HOCs between any two phases.

  10. Chiral partition functions of quantum Hall droplets

    SciTech Connect

    Cappelli, Andrea Viola, Giovanni; Zemba, Guillermo R.

    2010-02-15

    Chiral partition functions of conformal field theory describe the edge excitations of isolated Hall droplets. They are characterized by an index specifying the quasiparticle sector and transform among themselves by a finite-dimensional representation of the modular group. The partition functions are derived and used to describe electron transitions leading to Coulomb blockade conductance peaks. We find the peak patterns for Abelian hierarchical states and non-Abelian Read-Rezayi states, and compare them. Experimental observation of these features can check the qualitative properties of the conformal field theory description, such as the decomposition of the Hilbert space into sectors, involving charged and neutral parts, and the fusion rules.

  11. The Benefits of Adaptive Partitioning for Parallel AMR Applications

    SciTech Connect

    Steensland, Johan

    2008-07-01

    Parallel adaptive mesh refinement methods potentially lead to realistic modeling of complex three-dimensional physical phenomena. However, the dynamics inherent in these methods present significant challenges in data partitioning and load balancing. Significant human resources, including time, effort, experience, and knowledge, are required for determining the optimal partitioning technique for each new simulation. In reality, scientists resort to using the on-board partitioner of the computational framework, or to using the partitioning industry standard, ParMetis. Adaptive partitioning refers to repeatedly selecting, configuring and invoking the optimal partitioning technique at run-time, based on the current state of the computer and application. In theory, adaptive partitioning automatically delivers superior performance and eliminates the need for repeatedly spending valuable human resources for determining the optimal static partitioning technique. In practice, however, enabling frameworks are non-existent due to the inherent significant inter-disciplinary research challenges. This paper presents a study of a simple implementation of adaptive partitioning and discusses implied potential benefits from the perspective of common groups of users within computational science. The study is based on a large set of data derived from experiments including six real-life, multi-time-step adaptive applications from various scientific domains, five complementing and fundamentally different partitioning techniques, a large set of parameters corresponding to a wide spectrum of computing environments, and a flexible cost function that considers the relative impact of multiple partitioning metrics and diverse partitioning objectives. The results show that even a simple implementation of adaptive partitioning can automatically generate results statistically equivalent to the best static partitioning. Thus, it is possible to effectively eliminate the problem of determining the

  12. Constraining the volatility distribution and gas-particle partitioning of combustion aerosols using isothermal dilution and thermodenuder measurements.

    PubMed

    Grieshop, Andrew P; Miracolo, Marissa A; Donahue, Niel M; Robinson, Allen L

    2009-07-01

    The gas-particle partitioning of primary organic aerosol (POA) emissions from a diesel engine and the combustion of hard- and soft-woods in a stove was investigated by isothermally diluting them in a smog chamber or by passing them through a thermodenuder and measuring the extent of evaporation. The experiments were conducted at atmospherically relevant conditions: low concentrations and small temperature perturbations. The partitioning of the POA emissions from both sources varied continuously with changing concentration and temperature. Although the POA emissions are semivolatile, they do not completely evaporate at typical atmospheric conditions. The overall partitioning characteristics of diesel and wood smoke POA are similar, with wood smoke being somewhat less volatile than the diesel exhaust. The gas-particle partitioning of aerosols formed from flash-vaporized engine lubricating oil was also studied; diesel POA is somewhat more volatile than the oil aerosol. The experimental data from the dilution- and thermodenuder-based techniques were fit using absorptive partitioning theory to derive a volatility distribution of the POA emissions from each source. These distributions are suitable for use in chemical transport models that simulate POA concentrations.

  13. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  14. Structure of Hydrated Zn2+ at the Rutile TiO2 (110)-Aqueous Solution Interface: Comparison of X-ray Standing Wave, X-ray Absorption Spectroscopy, and Density Functional Theory Results

    SciTech Connect

    Zhang, Zhan; Fenter, Paul; Kelly, Shelly D; Catalano, Jeffery G.; Bandura, Andrei V.; Kubicki, James D.; Sofo, Jorge O.; Wesolowski, David J; Machesky, Michael L.; Sturchio, N. C.; Bedzyk, Michael J.

    2006-01-01

    Adsorption of Zn{sup 2+} at the rutile TiO{sub 2} (110)-aqueous interface was studied with Bragg-reflection X-ray standing waves (XSW), polarization-dependent surface extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations to understand the interrelated issues of adsorption site, its occupancy, ion-oxygen coordination and hydrolysis. At pH 8, Zn{sup 2+} was found to adsorb as an inner-sphere complex at two different sites, i.e., monodentate above the bridging O site and bidentate between two neighboring terminal O sites. EXAFS results directly revealed a four or fivefold first shell coordination environment for adsorbed Zn{sup 2+} instead of the sixfold coordination found for aqueous species at this pH. DFT calculations confirmed the energetic stability of a lower coordination environment for the adsorbed species and revealed that the change to this coordination environment is correlated with the hydrolysis of adsorbed Zn{sup 2+}. In addition, the derived adsorption locations and the occupancy factors of both sites from three methods agree well, with some quantitative discrepancies in the minor site location among the XSW, EXAFS, and DFT methods. Additional XSW measurements showed that the adsorption sites of Zn{sup 2+} were unchanged at pH 6. However, the Zn{sup 2+} partitioning between the two sites changed substantially, with an almost equal distribution between the two types of sites at pH 6 compared to predominantly monodentate occupation at pH 8.

  15. Toward panchromatic organic functional molecules: density functional theory study on the electronic absorption spectra of substituted tetraanthracenylporphyrins.

    PubMed

    Qi, Dongdong; Jiang, Jianzhuang

    2011-12-01

    To achieve full solar spectrum absorption of organic dyes for organic solar cells and organic solar antenna collectors, a series of tetraanthracenylporphyrin derivatives including H(2)(TAnP), H(2)(α-F(4)TAnP), H(2)(β,β'-F(8)TAnP), H(2)(γ,γ'-F(8)TAnP), H(2)(δ,δ'-F(8)TAnP), H(2)[α-(NH(2))(4)TAnP], H(2)[β,β'-(NH(2))(8)TAnP], H(2)[γ,γ'-(NH(2))(8)TAnP], and H(2)[δ,δ'-(NH(2))(8)TAnP] was designed and their electronic absorption spectra were systematically studied on the basis of TDDFT calculations. The nature of the broad and intense electronic absorptions of H(2)(TAnP) in the range of 500-1700 nm is clearly revealed, and different types of π → π* electronic transitions associated with different absorption bands are revealed to correspond to different electron density moving direction between peripherally fused 14-electron-π-conjugated anthracene units and the central 18-electron-π-conjugated porphyrin core. Introduction of electron-donating groups onto the periphery of the H(2)(TAnP) macrocycle is revealed to be able to lead to novel NIR dyes such as H(2)[α-(NH(2))(4)TAnP] and H(2)[δ,δ'-(NH(2))(8)TAnP] with regulated UV-vis-NIR absorption bands covering the full solar spectrum in the range of 300-2400 nm.

  16. Investigation of coupling mechanisms in attosecond transient absorption of autoionizing states: comparison of theory and experiment in xenon

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Bernhardt, Birgitta; Beck, Annelise R.; Warrick, Erika R.; Pfeiffer, Adrian N.; Justine Bell, M.; Haxton, Daniel J.; McCurdy, C. William; Neumark, Daniel M.; Leone, Stephen R.

    2015-06-01

    Attosecond transient absorption spectra near the energies of autoionizing states are analyzed in terms of the photon coupling mechanisms to other states. In a recent experiment, the autoionization lifetimes of highly excited states of xenon were determined and compared to a simple expression based on a model of how quantum coherence determines the decay of a metastable state in the transient absorption spectrum. Here it is shown that this procedure for extracting lifetimes is more general and can be used in cases involving either resonant or nonresonant coupling of the attosecond-probed autoionizing state to either continua or discrete states by a time-delayed near infrared (NIR) pulse. The fits of theoretically simulated absorption signals for the 6p resonance in xenon (lifetime = 21.1 fs) to this expression yield the correct decay constant for all the coupling mechanisms considered, properly recovering the time signature of twice the autoionization lifetime due to the coherent nature of the transient absorption experiment. To distinguish between these two coupling cases, the characteristic dependencies of the transient absorption signals on both the photon energy and time delay are investigated. Additional oscillations versus delay-time in the measured spectrum are shown and quantum beat analysis is used to pinpoint the major photon-coupling mechanism induced by the NIR pulse in the current xenon experiment: the NIR pulse resonantly couples the attosecond-probed state, 6p, to an intermediate 8s (at 22.563 eV), and this 8s state is also coupled to a neighboring state (at 20.808 eV).

  17. Fuzzy Partition Models for Fitting a Set of Partitions.

    ERIC Educational Resources Information Center

    Gordon, A. D.; Vichi, M.

    2001-01-01

    Describes methods for fitting a fuzzy consensus partition to a set of partitions of the same set of objects. Describes and illustrates three models defining median partitions and compares these methods to an alternative approach to obtaining a consensus fuzzy partition. Discusses interesting differences in the results. (SLD)

  18. Carbon partitioning in photosynthesis.

    PubMed

    Melis, Anastasios

    2013-06-01

    The work seeks to raise awareness of a fundamental problem that impacts the renewable generation of fuels and chemicals via (photo)synthetic biology. At issue is regulation of the endogenous cellular carbon partitioning between different biosynthetic pathways, over which the living cell exerts stringent control. The regulation of carbon partitioning in photosynthesis is not understood. In plants, microalgae and cyanobacteria, methods need be devised to alter photosynthetic carbon partitioning between the sugar, terpenoid, and fatty acid biosynthetic pathways, to lower the prevalence of sugar biosynthesis and correspondingly upregulate terpenoid and fatty acid hydrocarbons production in the cell. Insight from unusual but naturally occurring carbon-partitioning processes can help in the design of blueprints for improved photosynthetic fuels and chemicals production.

  19. A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints

    SciTech Connect

    Xu, You; Chen, Yixin

    2008-06-28

    We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.

  20. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  1. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: theory and experiment.

    PubMed

    Xie, Rui-Hua; Bryant, Garnett W; Sun, Guangyu; Nicklaus, Marc C; Heringer, David; Frauenheim, Th; Manaa, M Riad; Smith, Vedene H; Araki, Yasuyuki; Ito, Osamu

    2004-03-15

    Low-energy excitations and optical absorption spectrum of C(60) are computed by using time-dependent (TD) Hartree-Fock, TD-density functional theory (TD-DFT), TD DFT-based tight-binding (TD-DFT-TB), and a semiempirical Zerner intermediate neglect of diatomic differential overlap method. A detailed comparison of experiment and theory for the excitation energies, optical gap, and absorption spectrum of C(60) is presented. It is found that electron correlations and correlation of excitations play important roles in accurately assigning the spectral features of C(60), and that the TD-DFT method with nonhybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C(60) justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C(59)N(+), to serve as a spectroscopy reference for the characterization of carborane anion salts. Although it is an isoelectronic analogue to C(60), C(59)N(+) exhibits distinguishing spectral features different from C(60): (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C(59)N(+) characterize and explain well the measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C(59)N][Ag(CB(11)H(6)Cl(6))(2)] [Kim et al., J. Am. Chem. Soc. 125, 4024 (2003)]. For the most stable isomer of C(48)N(12), we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C(60), and optical absorption maxima occur at 585, 528, 443, 363, 340, 314, and 303 nm. We point out that the characterization of the UV-vis and transient absorption

  2. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C60, C59N+, and C48N12: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Xie, Rui-Hua; Bryant, Garnett W.; Sun, Guangyu; Nicklaus, Marc C.; Heringer, David; Frauenheim, Th.; Manaa, M. Riad; Smith, Vedene H.; Araki, Yasuyuki; Ito, Osamu

    2004-03-01

    Low-energy excitations and optical absorption spectrum of C60 are computed by using time-dependent (TD) Hartree-Fock, TD-density functional theory (TD-DFT), TD DFT-based tight-binding (TD-DFT-TB), and a semiempirical Zerner intermediate neglect of diatomic differential overlap method. A detailed comparison of experiment and theory for the excitation energies, optical gap, and absorption spectrum of C60 is presented. It is found that electron correlations and correlation of excitations play important roles in accurately assigning the spectral features of C60, and that the TD-DFT method with nonhybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C60 justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C59N+, to serve as a spectroscopy reference for the characterization of carborane anion salts. Although it is an isoelectronic analogue to C60, C59N+ exhibits distinguishing spectral features different from C60: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C59N+ characterize and explain well the measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C59N][Ag(CB11H6Cl6)2] [Kim et al., J. Am. Chem. Soc. 125, 4024 (2003)]. For the most stable isomer of C48N12, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C60, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314, and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C48N12 isomers is helpful in

  3. Optical Absorptions of New Blue-Light Emitting Oligoquinolines Bearing Pyrenyl and Triphenyl Endgroups Investigated with Time-Dependent Density Functional Theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei

    2009-04-14

    The optical absorption spectra of a family of four n-type conjugated oligomers, oligoquinolines, which can be commercially used to develop high-performance light-emitting diodes for their many desirable properties, have been recently calculated from time-depedent density functional theory (TDDFT) within the adiabatic approximation for the dynamical exchange-correlation potential. In this work, we investigate the optical absorption of two new family members of the blue-light emitting oligoquinolines bearing pyrenyl and triphenyl endgroups in gas phase and chloroform (CHCl3) solution employing the adiabatic TDDFT. The ionization potentials and electron affinities of these two oligoquinoline molecules are also calculated with the ground-state DFT, from which the adiabatic dynamical exchange-correlation potential is constructed. We show that the calculated optical absorptions are in good agreement with experiments. The ionization potentials obtained with the DFT methods agree well with the experimental estimates, while the electron affinities are significantly underestimated in comparison with experiments. A natural transition orbital analysis for selected excited states with the largest oscillator strengths shows that the electronic charge is slightly redistributed in the process of electronic excitations. PMID:26609594

  4. Response to "Comment on 'Rethinking first-principles electron transport theories with projection operators: the problems caused by partitioning the basis set'" [J. Chem. Phys. 140, 177103 (2014)].

    PubMed

    Reuter, Matthew G; Harrison, Robert J

    2014-05-01

    The thesis of Brandbyge's comment [J. Chem. Phys. 140, 177103 (2014)] is that our operator decoupling condition is immaterial to transport theories, and it appeals to discussions of nonorthogonal basis sets in transport calculations in its arguments. We maintain that the operator condition is to be preferred over the usual matrix conditions and subsequently detail problems in the existing approaches. From this operator perspective, we conclude that nonorthogonal projectors cannot be used and that the projectors must be selected to satisfy the operator decoupling condition. Because these conclusions pertain to operators, the choice of basis set is not germane.

  5. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation

    SciTech Connect

    List, Nanna Holmgaard Jensen, Hans Jørgen Aagaard; Kauczor, Joanna; Norman, Patrick; Saue, Trond

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  6. Beyond the electric-dipole approximation: A formulation and implementation of molecular response theory for the description of absorption of electromagnetic field radiation.

    PubMed

    List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick

    2015-06-28

    We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.

  7. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-01

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  8. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  9. A brief history of partitions of numbers, partition functions and their modern applications

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2016-04-01

    'Number rules the universe.' The Pythagoras 'If you wish to forsee the future of mathematics our course is to study the history and present conditions of the science.' Henri Poincaré 'The primary source (Urqell) of all mathematics are integers.' Hermann Minkowski This paper is written to commemorate the centennial anniversary of the Mathematical Association of America. It deals with a short history of different kinds of natural numbers including triangular, square, pentagonal, hexagonal and k-gonal numbers, and their simple properties and their geometrical representations. Included are Euclid's and Pythagorean's main contributions to elementary number theory with the main contents of the Euclid Elements of the 13-volume masterpiece of mathematical work. This is followed by Euler's new discovery of the additive number theory based on partitions of numbers. Special attention is given to many examples, Euler's theorems on partitions of numbers with geometrical representations of Ferrers' graphs, Young's diagrams, Lagrange's four-square theorem and the celebrated Waring problem. Included are Euler's generating functions for the partitions of numbers, Euler's pentagonal number theorem, Gauss' triangular and square number theorems and the Jacobi triple product identity. Applications of the theory of partitions of numbers to different statistics such as the Bose- Einstein, Fermi- Dirac, Gentile, and Maxwell- Boltzmann statistics are briefly discussed. Special attention is given to pedagogical information through historical approach to number theory so that students and teachers at the school, college and university levels can become familiar with the basic concepts of partitions of numbers, partition functions and their modern applications, and can pursue advanced study and research in analytical and computational number theory.

  10. Comment on "Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set" [J. Chem. Phys. 139, 114104 (2013)

    NASA Astrophysics Data System (ADS)

    Brandbyge, Mads

    2014-05-01

    In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an "implicit decoupling assumption," leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, and that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.

  11. QED Theory of Radiation Emission and Absorption Lines for Atoms and Ions in a Strong Laser Field

    SciTech Connect

    Glushkov, A. V.

    2008-10-22

    The results of numerical calculating the multi-photon resonance shift and width for transition 6S-6F in the atom of Cs (wavelength 1059nm) in a laser pulse of the Gaussian and soliton-like shapes are presented. QED theory of radiation atomic lines is used.

  12. FNAS phase partitions

    NASA Technical Reports Server (NTRS)

    Vanalstine, James M.

    1993-01-01

    Project NAS8-36955 D.O. #100 initially involved the following tasks: (1) evaluation of various coatings' ability to control wall wetting and surface zeta potential expression; (2) testing various methods to mix and control the demixing of phase systems; and (3) videomicroscopic investigation of cell partition. Three complementary areas were identified for modification and extension of the original contract. They were: (1) identification of new supports for column cell partition; (2) electrokinetic detection of protein adsorption; and (3) emulsion studies related to bioseparations.

  13. Partitioning technique for open systems

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2010-11-01

    The focus of the present contribution is essentially confined to three research areas carried out during the author's turns as visiting (assistant, associate and full) professor at the University of Florida's Quantum Theory Project, QTP. The first two topics relate to perturbation theory and spectral theory for self-adjoint operators in Hilbert space. The third subject concerns analytic extensions to non-self-adjoint problems, where particular consequences of the occurrence of continuous energy spectra are measured. In these studies general partitioning methods serve as general cover for perturbation-, variational- and general matrix theory. In addition we follow up associated inferences for the time dependent problem as well as recent results and conclusions of a rather general yet surprising character. Although the author spent most of his times at QTP during visits in the 1970s and 1980s, collaborations with department members and shorter stays continued through later decades. Nevertheless the impact must be somewhat fragmentary, yet it is hoped that the present account is sufficiently self-contained to be realistic and constructive.

  14. [Simulation of TDLAS direct absorption based on HITRAN database].

    PubMed

    Qi, Ru-birn; He, Shu-kai; Li, Xin-tian; Wang, Xian-zhong

    2015-01-01

    Simulating of the direct absorption TDLAS spectrum can help to comprehend the process of the absorbing and understand the influence on the absorption signal with each physical parameter. Firstly, the basic theory and algorithm of direct absorption TDLAS is studied and analyzed thoroughly, through giving the expressions and calculating steps of parameters based on Lambert-Beer's law, such as line intensity, absorption cross sections, concentration, line shape and gas total partition functions. The process of direct absorption TDLAS is simulated using MATLAB programs based on HITRAN spectra database, with which the absorptions under a certain temperature, pressure, concentration and other conditions were calculated, Water vapor is selected as the target gas, the absorptions of which under every line shapes were simulated. The results were compared with that of the commercial simulation software, Hitran-PC, which showed that, the deviation under Lorentz line shape is less than 0. 5%, and that under Gauss line shape is less than 2. 5%, while under Voigt line shape it is less than 1%. It verified that the algorithm and results of this work are correct and accurate. The absorption of H2O in v2 + v3 band under different pressure and temperature is also simulated. In low pressure range, the Doppler broadening dominant, so the line width changes little with varied.pressure, while the line peak increases with rising pressure. In high pressure range, the collision broadening dominant, so the line width changes wider with increasing pressure, while the line peak approaches to a constant value with rising pressure. And finally, the temperature correction curve in atmosphere detection is also given. The results of this work offer the reference and instruction for the application of TDLAS direct absorption. PMID:25993843

  15. Experimental determination of partition coefficient for β-pinene ozonolysis products in SOA

    NASA Astrophysics Data System (ADS)

    Gensch, Iulia; Hohaus, Thorsten; Kimmel, Joel; Jayne, John T.; Worsnop, Douglas R.; Kiendler-Scharr, Astrid

    2013-04-01

    In the present study, simultaneous measurement of β-pinene ozonolysis products in the gas phase by Proton Transfer Reaction - Time of Flight Mass Spectrometry (PTR-ToFMS) and particle phase by using an Aerosol Collection Module coupled to a Gas Chromatograph - Mass Spectrometer (ACM-GC-MS) were employed to determine the equilibrium partitioning coefficient (Kp) of several semi-volatile organic species. Mean Kp values of 6.7 10-5 ± 2.5 10-5 for nopinone, 4.8 10-4 ± 1.7 10-4 for apoverbenone, 7.0 10-4 ± 1.7 10-4 for oxonopinone and 1.9 10-3 ± 1.1 10-3 for hydroxynopinone were obtained. The results were compared with calculations arising from studies on the gas-particle partitioning, based on the Pankow absorption model. The experimental partition coefficients are two to three orders of magnitudes higher than the calculated values, leading to the conclusion that the amount of semi-volatile organic compounds in secondary organic aerosol (SOA) is currently underestimated by the theory, thus impacting on the modeling of the organic matter in the atmosphere.

  16. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-12-01

    This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.

  17. The 4He Total Photo-Absorption Cross Section With Two- Plus Three-Nucleon Interactions From Chiral Effective Field Theory

    SciTech Connect

    Quaglioni, S; Navratil, P

    2007-03-09

    The total photo-absorption cross section of {sup 4}He is evaluated microscopically using two- (NN) and three-nucleon (NNN) interactions based upon chiral effective field theory ({chi}EFT). The calculation is performed using the Lorentz integral transform method along with the ab initio no-core shell model approach. An important feature of the present study is the consistency of the NN and NNN interactions and also, through the Siegert theorem, of the two- and three-body current operators. This is due to the application of the {chi}EFT framework. The inclusion of the NNN interaction produces a suppression of the peak height and enhancement of the tail of the cross section. We compare to calculations obtained using other interactions and to representative experiments. The rather confused experimental situation in the giant resonance region prevents discrimination among different interaction models.

  18. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    PubMed

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C

    2013-08-01

    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  19. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  20. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    SciTech Connect

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  1. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    SciTech Connect

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia; Christiansen, Ove

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this

  2. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  3. Analysis of fractals with combined partition

    NASA Astrophysics Data System (ADS)

    Dedovich, T. G.; Tokarev, M. V.

    2016-03-01

    The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.

  4. Quasiparticle electronic structure and optical absorption of diamond nanoparticles from ab initio many-body perturbation theory

    SciTech Connect

    Yin, Huabing; Ma, Yuchen Mu, Jinglin; Liu, Chengbu; Hao, Xiaotao; Yi, Zhijun

    2014-06-07

    The excited states of small-diameter diamond nanoparticles in the gas phase are studied using the GW method and Bethe-Salpeter equation (BSE) within the ab initio many-body perturbation theory. The calculated ionization potentials and optical gaps are in agreement with experimental results, with the average error about 0.2 eV. The electron affinity is negative and the lowest unoccupied molecular orbital is rather delocalized. Precise determination of the electron affinity requires one to take the off-diagonal matrix elements of the self-energy operator into account in the GW calculation. BSE calculations predict a large exciton binding energy which is an order of magnitude larger than that in the bulk diamond.

  5. Combinatorics, partitions, and many-body physics

    SciTech Connect

    Polyzou, W.N.

    1980-03-01

    Some combinatorial techniques are presented which streamline the graphical analysis used in N-body scattering theory. The basic results are derived using properties of the lattice of partitions of N particles, which naturally arises on classifying translational symmetry properties of N-body operators. Classical cumulant expansions are recovered, previously obtained results are presented from a unified point of view, and some new theorems concerning connectivity of N-body equations are presented.

  6. Simulation and Theory of Speckle Noise for an Annular Aperture Frequency-Modulation Differential-Absorption LIDAR (FM-DIAL) System

    SciTech Connect

    Keller, Paul E.; Batdorf, Michael T.; Strasburg, Jana D.; Harper, Warren W.

    2009-05-28

    This paper presents theory of speckle noise for a frequency-modulation differential-absorption LIDAR system along with simulation results. These results show an unexpected relationship between the signal-to-noise ratio (SNR) of the speckle and the distance to the retro-reflector or target. In simulation, the use of an annular aperture in the system results in a higher SNR at midrange distances than at short or long distances. This peak in SNR occurs in the region where the laser’s Gaussian beam profile approximately fills the target. This was unexpected since it does not occur in the theory or simulations of the same system with a circular aperture. By including the autocorrelation of this annular aperture and expanding the complex correlation factor used in speckle models to include conditions not generally covered, a more complete theoretical model is derived for this system. Obscuration of the center of the beam at near distances is also a major factor in this relationship between SNR and distance. We conclude by comparing the resulting SNR as a function of distance from this expanded theoretical model to the simulations of the system over a double-pass horizontal range of 10 meters to 10 km at a wavelength of 1.28 micrometers

  7. Multimedia partitioning of dioxin

    SciTech Connect

    Travis, C.C.; Hattemer-Frey, H.A.

    1988-01-01

    The general population is continuously being exposed to trace amounts of dioxin as exemplified by the fact that virtually all human adipose tissue samples contain dioxin levels of three parts per trillion (ppT) or greater. The purpose of this study is to investigate how 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is partitioned in the environment and to identify the major pathways of human exposure. 61 refs., 6 tabs.

  8. Enumeration of plane partitions with a restricted number of parts

    NASA Astrophysics Data System (ADS)

    Rovenchak, A. A.

    2014-11-01

    We use the quantum statistical approach to estimate the number of restricted plane partitions of an integer n with the number of parts not exceeding some finite N. We use the analogy between this number theory problem and the enumeration of microstates of the ideal two-dimensional Bose gas. The numbers of restricted plane partitions calculated with the conjectured expression agree well with the exact values for n from 10 to 20.

  9. Exact instanton expansion of the ABJM partition function

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Moriyama, Sanefumi; Okuyama, Kazumi

    2015-11-01

    We review recent progress in determining the partition function of the ABJM theory in the large-N expansion, including all of the perturbative and non-perturbative corrections. In particular, we focus on how these exact expansions are obtained from various beautiful relations to the Fermi gas system, topological string theory, the integrable model, and the supergroup.

  10. Spatially-partitioned many-body vortices

    NASA Astrophysics Data System (ADS)

    Klaiman, S.; Alon, O. E.

    2016-02-01

    A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.

  11. Adsorption of formic acid on rutile TiO{sub 2} (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study

    SciTech Connect

    Mattsson, A.; Österlund, L.; Hu, Shuanglin Hermansson, K.

    2014-01-21

    Formic acid (HCOOH) adsorption on rutile TiO{sub 2} (110) has been studied by s- and p-polarized infrared reflection-absorption spectroscopy (IRRAS) and spin-polarized density functional theory together with Hubbard U contributions (DFT+U) calculations. To compare with IRRAS spectra, the results from the DFT+U calculations were used to simulate IR spectra by employing a three-layer model, where the adsorbate layer was modelled using Lorentz oscillators with calculated dielectric constants. To account for the experimental observations, four possible formate adsorption geometries were calculated, describing both the perfect (110) surface, and surfaces with defects; either O vacancies or hydroxyls. The majority species seen in IRRAS was confirmed to be the bridging bidentate formate species with associated symmetric and asymmetric frequencies of the ν(OCO) modes measured to be at 1359 cm{sup −1} and 1534 cm{sup −1}, respectively. The in-plane δ(C–H) wagging mode of this species couples to both the tangential and the normal component of the incident p-polarized light, which results in absorption and emission bands at 1374 cm{sup −1} and 1388 cm{sup −1}. IRRAS spectra measured on surfaces prepared to be either reduced, stoichiometric, or to contain surplus O adatoms, were found to be very similar. By comparisons with computed spectra, it is proposed that in our experiments, formate binds as a minority species to an in-plane Ti{sub 5c} atom and a hydroxyl, rather than to O vacancy sites, the latter to a large extent being healed even at our UHV conditions. Excellent agreement between calculated and experimental IRRAS spectra is obtained. The results emphasize the importance of protonation and reactive surface hydroxyls – even under UHV conditions – as reactive sites in e.g., catalytic applications.

  12. PREFERENTIAL PARTITIONING OF A PAH AND PCB TO A MARINE SEDIMENT AMENDED WITH SEVERAL SOURCES OF SOOT CARBON

    EPA Science Inventory

    Over the last decade, several studies reported that the partitioning of PAHs to sediments, in some cases, did not follow predictions based on equilibrium partitioning theory. One explanation for these differences is the presence of a second sedimentary phase with partitioning cha...

  13. Chemical amplification based on fluid partitioning

    SciTech Connect

    Anderson, Brian L.; Colston, Jr., Billy W.; Elkin, Chris

    2006-05-09

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  14. A Thermodynamic Model for Predicting Phosphorus Partition between CaO-based Slags and Hot Metal during Hot Metal Dephosphorization Pretreatment Process Based on the Ion and Molecule Coexistence Theory

    NASA Astrophysics Data System (ADS)

    Yang, Xue-min; Li, Jin-yan; Chai, Guo-ming; Duan, Dong-ping; Zhang, Jian

    2016-08-01

    A thermodynamic model for predicting phosphorus partition L P between a CaO-based slags and hot metal during hot metal dephosphorization pretreatment process has been developed based on the ion and molecule coexistence theory (IMCT), i.e., the IMCT- L P model. The reaction abilities of structural units or ion couples in the CaO-based slags have been represented by the calculated mass action concentrations N i through the developed IMCT- N i model based on the IMCT. The developed IMCT- L P model has been verified to be valid through comparing with the measured L P as well as the predicted L P by two reported L P models from the literature. Besides the total phosphorus partition L P between the CaO-based slag and hot metal, the respective phosphorus partitions L P, i of nine dephosphorization products as P2O5, 3FeO·P2O5, 4FeO·P2O5, 2CaO·P2O5, 3CaO·P2O5, 4CaO·P2O5, 2MgO·P2O5, 3MgO·P2O5, and 3MnO·P2O5 can also be accurately predicted by the developed IMCT- L P model. The formed 3CaO·P2O5 accounts for 99.20 pct of dephosphorization products comparing with the generated 4CaO·P2O5 for 0.08 pct. The comprehensive effect of CaO+Fe t O, which can be described by the mass percentage ratio (pct Fe t O)/(pct CaO) or the mass action concentration ratio N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}} as well as the mass percentage product (pct Fe t O) × (pct CaO) or the mass action concentration product N_{{{{Fe}}t {{O}}}}5 × N_{{CaO}}3 , controls dephosphorization ability of the CaO-based slags. A linear relationship of L P against (pct Fe t O)/(pct CaO) can be correlated compared with a parabolic relationship of L P against N_{Fe}t O/N_{Fe}t O N_{CaO}. N_{CaO}, while the linear relationship of L P against (pct Fe t O) × (pct CaO) or N_{Fe}t O5 × N_{CaO}3 can be established. Thus, the mass percentage product (pct Fe t O) × (pct CaO) and the mass action concentration product N_{Fe}t O5 × N_{CaO}3 are recommended to represent the comprehensive effect of CaO+Fe t O on

  15. Partitioning the Quaternary

    NASA Astrophysics Data System (ADS)

    Gibbard, Philip L.; Lewin, John

    2016-11-01

    We review the historical purposes and procedures for stratigraphical division and naming within the Quaternary, and summarize the current requirements for formal partitioning through the International Commission on Stratigraphy (ICS). A raft of new data and evidence has impacted traditional approaches: quasi-continuous records from ocean sediments and ice cores, new numerical dating techniques, and alternative macro-models, such as those provided through Sequence Stratigraphy and Earth-System Science. The practical usefulness of division remains, but there is now greater appreciation of complex Quaternary detail and the modelling of time continua, the latter also extending into the future. There are problems both of commission (what is done, but could be done better) and of omission (what gets left out) in partitioning the Quaternary. These include the challenge set by the use of unconformities as stage boundaries, how to deal with multiphase records in ocean and terrestrial sediments, what happened at the 'Early-Mid- (Middle) Pleistocene Transition', dealing with trends that cross phase boundaries, and the current controversial focus on how to subdivide the Holocene and formally define an 'Anthropocene'.

  16. Optical absorption spectra of boron clusters Bn (n = 2-5) for application in nano scintillator - a time dependent density functional theory study

    NASA Astrophysics Data System (ADS)

    Shivade, Rajendra K.; Chakraborty, Brahmananda

    2016-09-01

    Boron nano-clusters of various shapes and sizes have potential applications as scintillating detector and hydrogen storage material. Using time dependent density functional theory (TDDFT) as implemented in CASIDA we have studied the linear optical absorption spectra for boron clusters B n ( n = 2-5) and compared with previously reported results using Hatree-Fock (H-F) based method where the spectrum is limited to 8 eV due to exclusion of excitation into very high energy unoccupied orbital. The optical spectra fall in the visible and near UV region and are very much dependent on the shape of the isomer. We have obtained additional peaks for B2 linear, B3 triangular, B4 rhombus and square shaped isomers beyond 8 eV which were missing in the previous H-F based study and has significance as they fall below the ionization potential. We correlate the optical spectrum with the shape of the Kohn-Sham orbitals and HUMO-LUMO gap and assess comparative stability of various B n ( n = 2-5) clusters in terms of HUMO-LUMO gap, bond-length and relative energy. TDDFT computed optical spectroscopy correlated with Kohn-Sham orbitals and HUMO-LUMO gap and its comparison with H-F based method may give significant knowledge regarding geometry and optical properties of B n ( n = 2-5) clusters enabling to distingush between various isomers of B n clusters.

  17. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  18. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  19. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  20. Deformed topological partition function and Nekrasov backgrounds

    NASA Astrophysics Data System (ADS)

    Antoniadis, I.; Hohenegger, S.; Narain, K. S.; Taylor, T. R.

    2010-10-01

    A deformation of the N=2 topological string partition function is analyzed by considering higher-dimensional F-terms of the type W2gϒ, where W is the chiral Weyl superfield and each ϒ factor stands for the chiral projection of a real function of N=2 vector multiplets. These terms generate physical amplitudes involving two anti-self-dual Riemann tensors, 2g-2 anti-self-dual graviphoton field strengths and 2 n self-dual field strengths from the matter vector multiplets. Their coefficients F generalizing the genus g partition function F of the topological twisted type II theory, can be used to define a generating functional by introducing deformation parameters besides the string coupling. Choosing all matter field strengths to be that of the dual heterotic dilaton supermultiplet, one obtains two parameters that we argue should correspond to the deformation parameters of the Nekrasov partition function in the field theory limit, around the conifold singularity. Its perturbative part can be obtained from the one loop analysis on the heterotic side. This has been computed in Morales and Serone (1996) [1] and in the field theory limit shown to be given by the radius deformation of c=1 CFT coupled to two-dimensional gravity. Quite remarkably this result reproduces the gauge theory answer up to a phase difference that may be attributed to the regularization procedure. The type II results are expected to be exact and should also capture the part that is non-perturbative in heterotic dilaton.

  1. Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): A combination of infrared reflection absorption spectroscopy and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Dostert, Karl-Heinz; O'Brien, Casey P.; Liu, Wei; Riedel, Wiebke; Savara, Aditya; Tkatchenko, Alexandre; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-08-01

    Understanding the interaction of α,β-unsaturated carbonyl compounds with late transition metals is a key prerequisite for rational design of new catalysts with desired selectivity towards C = C or C = O bond hydrogenation. The interaction of the α,β-unsaturated ketone isophorone and the saturated ketone TMCH (3,3,5-trimethylcyclohexanone) with Pd(111) was investigated in this study as a prototypical system. Infrared reflection-absorption spectroscopy (IRAS) and density functional theory calculations including van der Waals interactions (DFT + vdWsurf) were combined to form detailed assignments of IR vibrational modes in the range from 3000 cm- 1 to 1000 cm- 1 in order to obtain information on the binding of isophorone and TMCH to Pd(111) as well as to study the effect of co-adsorbed hydrogen. IRAS measurements were performed with deuterium-labeled (d5-) isophorone, in addition to unlabeled isophorone and unlabeled TMCH. Experimentally observed IR absorption features and calculated vibrational frequencies indicate that isophorone and TMCH molecules in multilayers have a mostly unperturbed structure with random orientation. At sub-monolayer coverages, strong perturbation and preferred orientations of the adsorbates were found. At low coverage, isophorone interacts strongly with Pd(111) and adsorbs in a flat-lying geometry with the C = C and C = O bonds parallel, and a CH3 group perpendicular, to the surface. At intermediate sub-monolayer coverage, the C = C bond is strongly tilted, while the C = O bond remains flat-lying, which indicates a prominent perturbation of the conjugated π system. Pre-adsorbed hydrogen leads to significant changes in the adsorption geometry of isophorone, which suggests a weakening of its binding to Pd(111). At low coverage, the structure of the CH3 groups seems to be mostly unperturbed on the hydrogen pre-covered surface. With increasing coverage, a conservation of the in-plane geometry of the conjugated π system was observed in the

  2. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  3. Gas-particle partitioning and hydrolysis of organic nitrates formed from the oxidation of α-pinene in environmental chamber experiments

    NASA Astrophysics Data System (ADS)

    Bean, Jeffrey K.; Hildebrandt Ruiz, Lea

    2016-02-01

    Gas-particle partitioning and hydrolysis of organic nitrates (ON) influences their role as sinks and sources of NOx and their effects on the formation of tropospheric ozone and organic aerosol (OA). In this work, organic nitrates were formed from the photo-oxidation of α-pinene in environmental chamber experiments under different conditions. Particle-phase ON hydrolysis rates, consistent with observed ON decay, exhibited a nonlinear dependence on relative humidity (RH): an ON decay rate of 2 day-1 was observed when the RH ranged between 20 and 60 %, and no significant ON decay was observed at RH lower than 20 %. In experiments when the highest observed RH exceeded the deliquescence RH of the ammonium sulfate seed aerosol, the particle-phase ON decay rate was as high as 7 day-1 and more variable. The ON gas-particle partitioning was dependent on total OA concentration and temperature, consistent with absorptive partitioning theory. In a volatility basis set, the ON partitioning was consistent with mass fractions of [0 0.11 0.03 0.86] at saturation mass concentrations (C*) of [1 10 100 1000] µg m-3.

  4. Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ.

    PubMed

    Krechmer, Jordan E; Pagonis, Demetrios; Ziemann, Paul J; Jimenez, Jose L

    2016-06-01

    Partitioning of gas-phase organic compounds to the walls of Teflon environmental chambers is a recently reported phenomenon than can affect the yields of reaction products and secondary organic aerosol (SOA) measured in laboratory experiments. Reported time scales for reaching gas-wall partitioning (GWP) equilibrium (τGWE) differ by up to 3 orders of magnitude, however, leading to predicted effects that vary from substantial to negligible. A new technique is demonstrated here in which semi- and low-volatility oxidized organic compounds (saturation concentration c* < 100 μg m(-3)) were photochemically generated in rapid bursts in situ in an 8 m(3) environmental chamber, and then their decay in the absence of aerosol was measured using a high-resolution chemical ionization mass spectrometer (CIMS) equipped with an "inlet-less" NO3(-) ion source. Measured τGWE were 7-13 min (rel. std. dev. 33%) for all compounds. The fraction of each compound that partitioned to the walls at equilibrium follows absorptive partitioning theory with an equivalent wall mass concentration in the range 0.3-10 mg m(-3). Measurements using a CIMS equipped with a standard ion-molecule reaction region showed large biases due to the contact of compounds with walls. On the basis of these results, a set of parameters is proposed for modeling GWP in chamber experiments. PMID:27138683

  5. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  6. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  7. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    PubMed

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-01

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  8. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  9. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    EPA Science Inventory

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  10. Kinetic limitations on tracer partitioning in ganglia dominated source zones.

    PubMed

    Ervin, Rhiannon E; Boroumand, Ali; Abriola, Linda M; Ramsburg, C Andrew

    2011-11-01

    Quantification of the relationship between dense nonaqueous phase liquid (DNAPL) source strength, source longevity and spatial distribution is increasingly recognized as important for effective remedial design. Partitioning tracers are one tool that may permit interrogation of DNAPL architecture. Tracer data are commonly analyzed under the assumption of linear, equilibrium partitioning, although the appropriateness of these assumptions has not been fully explored. Here we focus on elucidating the nonlinear and nonequilibrium partitioning behavior of three selected alcohol tracers - 1-pentanol, 1-hexanol and 2-octanol in a series of batch and column experiments. Liquid-liquid equilibria for systems comprising water, TCE and the selected alcohol illustrate the nonlinear distribution of alcohol between the aqueous and organic phases. Complete quantification of these equilibria facilitates delineation of the limits of applicability of the linear partitioning assumption, and assessment of potential inaccuracies associated with measurement of partition coefficients at a single concentration. Column experiments were conducted under conditions of non-equilibrium to evaluate the kinetics of the reversible absorption of the selected tracers in a sandy medium containing a uniform entrapped saturation of TCE-DNAPL. Experimental tracer breakthrough data were used, in conjunction with mathematical models and batch measurements, to evaluate alternative hypotheses for observed deviations from linear equilibrium partitioning behavior. Analyses suggest that, although all tracers accumulate at the TCE-DNAPL/aqueous interface, surface accumulation does not influence transport at concentrations typically employed for tracer tests. Moreover, results reveal that the kinetics of the reversible absorption process are well described using existing mass transfer correlations originally developed to model aqueous boundary layer resistance for pure-component NAPL dissolution. PMID:22115085

  11. Temporal stability of network partitions.

    PubMed

    Petri, Giovanni; Expert, Paul

    2014-08-01

    We present a method to find the best temporal partition at any time scale and rank the relevance of partitions found at different time scales. This method is based on random walkers coevolving with the network and as such constitutes a generalization of partition stability to the case of temporal networks. We show that, when applied to a toy model and real data sets, temporal stability uncovers structures that are persistent over meaningful time scales as well as important isolated events, making it an effective tool to study both abrupt changes and gradual evolution of a network mesoscopic structures.

  12. Temporal stability of network partitions.

    PubMed

    Petri, Giovanni; Expert, Paul

    2014-08-01

    We present a method to find the best temporal partition at any time scale and rank the relevance of partitions found at different time scales. This method is based on random walkers coevolving with the network and as such constitutes a generalization of partition stability to the case of temporal networks. We show that, when applied to a toy model and real data sets, temporal stability uncovers structures that are persistent over meaningful time scales as well as important isolated events, making it an effective tool to study both abrupt changes and gradual evolution of a network mesoscopic structures. PMID:25215787

  13. Graph Partitioning and Sequencing Software

    1995-09-19

    Graph partitioning is a fundemental problem in many scientific contexts. CHACO2.0 is a software package designed to partition and sequence graphs. CHACO2.0 allows for recursive application of several methods for finding small edge separators in weighted graphs. These methods include inertial, spectral, Kernighan Lin and multilevel methods in addition to several simpler strategies. Each of these approaches can be used to partition the graph into two, four, or eight pieces at each level of recursion.more » In addition, the Kernighan Lin method can be used to improve partitions generated by any of the other algorithms. CHACO2.0 can also be used to address various graph sequencing problems, with applications to scientific computing, database design, gene sequencing and other problems.« less

  14. Electromagnetic heating of tissue-equivalent phantoms with thin, insulating partitions.

    PubMed

    Schaubert, D H

    1984-01-01

    The electromagnetic power absorption in tissue-equivalent phantoms that are used for evaluation of diathermy and hyperthermia applicators is analyzed for the purpose of determining the effect of an insulating partition that is frequently used to facilitate separation of the phantom for thermographic analysis of heating distributions. An analysis that is based on the plane wave spectrum decomposition of the electromagnetic field is applied to a simplified model of the medium. The simplified model is valid whenever the insulating partition does not significantly alter the fields in the medium. The curves that are presented indicate that thin partitions do not significantly alter the power absorption for most situations of therapeutic interest. Data on the effects of partition thickness and electrical parameters are presented for microwave and radiofrequencies of interest for diathermy and hyperthermia.

  15. High-temperature asymptotics of supersymmetric partition functions

    DOE PAGES

    Ardehali, Arash Arabi

    2016-07-05

    We study the supersymmetric partition function of 4d supersymmetric gauge theories with a U(1) R-symmetry on Euclidean S3 × Sβ1, with S3 the unit-radius squashed three-sphere, and β the circumference of the circle. For superconformal theories, this partition function coincides (up to a Casimir energy factor) with the 4d superconformal index. The partition function can be computed exactly using the supersymmetric localization of the gauge theory path-integral. It takes the form of an elliptic hypergeometric integral, which may be viewed as a matrix-integral over the moduli space of the holonomies of the gauge fields around Sβ1. At high temperatures (βmore » → 0, corresponding to the hyperbolic limit of the elliptic hypergeometric integral) we obtain from the matrix-integral a quantum effective potential for the holonomies. The effective potential is proportional to the temperature. Therefore the high-temperature limit further localizes the matrix-integral to the locus of the minima of the potential. If the effective potential is positive semi-definite, the leading high-temperature asymptotics of the partition function is given by the formula of Di Pietro and Komargodski, and the subleading asymptotics is connected to the Coulomb branch dynamics on R3 × S1. In theories where the effective potential is not positive semi-definite, the Di Pietro-Komargodski formula needs to be modified. In particular, this modification occurs in the SU(2) theory of Intriligator-Seiberg-Shenker, and the SO(N) theory of Brodie-Cho-Intriligator, both believed to exhibit “misleading” anomaly matchings, and both believed to yield interacting superconformal field theories with c < a. Lastly, two new simple tests for dualities between 4d supersymmetric gauge theories emerge as byproducts of our analysis.« less

  16. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Partition. 152.33 Section 152.33 Indians BUREAU OF INDIAN..., REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152.33 Partition. (a) Partition without application. If the Secretary of the Interior shall find that...

  17. 25 CFR 152.33 - Partition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Partition. 152.33 Section 152.33 Indians BUREAU OF INDIAN..., REMOVAL OF RESTRICTIONS, AND SALE OF CERTAIN INDIAN LANDS Partitions in Kind of Inherited Allotments § 152.33 Partition. (a) Partition without application. If the Secretary of the Interior shall find that...

  18. The Parameterization of Solid Metal-Liquid Metal Partitioning of Siderophile Elements

    NASA Technical Reports Server (NTRS)

    Chabot, N. L.; Jones, J. H.

    2003-01-01

    The composition of a metallic liquid can significantly affect the partitioning behavior of elements. For example, some experimental solid metal-liquid metal partition coefficients have been shown to increase by three orders of magnitude with increasing S-content of the metallic liquid. Along with S, the presence of other light elements, such as P and C, has also been demonstrated to affect trace element partitioning behavior. Understanding the effects of metallic composition on partitioning behavior is important for modeling the crystallization of magmatic iron meteorites and the chemical effects of planetary differentiation. It is thus useful to have a mathematical expression that parameterizes the partition coefficient as a function of the composition of the metal. Here we present a revised parameterization method, which builds on the theory of the current parameterization of Jones and Malvin and which better handles partitioning in multi-light-element systems.

  19. Supersymmetric partition functions in the AdS/CFT conjecture

    NASA Astrophysics Data System (ADS)

    Raju, Suvrat

    We study supersymmetric partition functions in several versions of the AdS/CFT correspondence. We present an Index for superconformal field theories in d = 3, 4, 5, 6. This captures all information about the spectrum that is protected, under continuous deformations of the theory, purely by group theory. We compute our Index in N = 4 SYM at weak coupling using gauge theory and at strong coupling using supergravity and find perfect agreement at large N. We also compute this Index for supergravity on AdS4 x S7 and AdS7 x S4 and for the recently constructed Chern Simons matter theories. We count 1/16 BPS states in the free gauge theory and find qualitative agreement with the entropy of big black holes in AdS5. We note that the near horizon geometry of some small supersymmetric black holes is an extremal BTZ black holes fibered on a compact base and propose a possible explanation for this, based on giant gravitons. We also find the partition function of the chiral ring of the N = 4 SYM theory at finite coupling and finite N. Turning to AdS3, we study the low energy 1/4 and 1/2 BPS partition functions by finding all classical supersymmetric probe brane solutions of string theory on this background. If the background BNS field and theta angle vanish, AdS3 x S 3 x T4/K3 supports supersymmetric probes: D1 branes, D5 branes and bound states of D5 and D1 branes. In global AdS, upon quantization, these solutions give rise to states in discrete representations of the SL(2,R) WZW model on AdS 3. We conclude that (a) the 1/4 BPS partition function jumps if we turn on a theta angle or NS-NS field (b) generic 1/2 BPS states are protected. We successfully compare our 1/2 BPS partition function with that of the symmetric product. We also discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the symmetric product. Finally, we comment on the spectrum of particles in the theory of gravity dual to non-supersymmetric Yang Mills theory on S3 x time.

  20. Revisiting noninteracting string partition functions in Rindler space

    NASA Astrophysics Data System (ADS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2016-05-01

    We revisit noninteracting string partition functions in Rindler space by summing over fields in the spectrum. In field theory, the total partition function splits in a natural way into a piece that does not contain surface terms and a piece consisting of solely the so-called edge states. For open strings, we illustrate that surface contributions to the higher-spin fields correspond to open strings piercing the Rindler origin, unifying the higher-spin surface contributions in string language. For closed strings, we demonstrate that the string partition function is not quite the same as the sum over the partition functions of the fields in the spectrum: an infinite overcounting is present for the latter. Next we study the partition functions obtained by excluding the surface terms. Using recent results of He et al. [J. High Energy Phys. 05 (2015) 106], this construction, first done by Emparan [arXiv:hep-th/9412003], can be put on much firmer ground. We generalize to type II and heterotic superstrings and demonstrate modular invariance. All of these exhibit an IR divergence that can be interpreted as a maximal acceleration close to the black hole horizon. Ultimately, since these partition functions are only part of the full story, divergences here should not be viewed as a failure of string theory: maximal acceleration is a feature of a faulty treatment of the higher-spin fields in the string spectrum. We comment on the relevance of this to Solodukhin's recent proposal [Phys. Rev. D 91, 084028 (2015)]. A possible link with the firewall paradox is apparent.

  1. Ferrous iron partitioning in the lower mantle

    NASA Astrophysics Data System (ADS)

    Muir, Joshua M. R.; Brodholt, John P.

    2016-08-01

    We used density functional theory (DFT) to examine the partitioning of ferrous iron between periclase and bridgmanite under lower mantle conditions. To study the effects of the three major variables - pressure, temperature and concentration - these have been varied from 0 to 150 GPa, from 1000 to 4000 K and from 0 to 100% total iron content. We find that increasing temperature increases KD, increasing iron concentration decreases KD, while pressure can both increase and decrease KD. We find that KD decreases slowly from about 0.32 to 0.06 with depth under lower mantle conditions. We also find that KD increases sharply to 0.15 in the very lowermost mantle due to the strong temperature increases near the CMB. Spin transitions have a large effect on the activity of ferropericlase which causes KD to vary with pressure in a peak-like fashion. Despite the apparently large changes in KD through the mantle, this actually results in relatively small changes in total iron content in the two phases, with XFefp ranging from about 0.20 to 0.35, before decreasing again to about 0.28 at the CMB, and XFebd has a pretty constant value of about 0.04-0.07 throughout the lower mantle. For the very high Fe concentrations suggested for ULVZs, Fe partitions very strongly into ferropericlase.

  2. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, Dexuan

    1996-12-31

    In this paper, we propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning together with an interprocessor data-communication technique. For the 5-point approximation to the Poisson equation on a square, we show that the ordering of the PSOR based on the strip partition leads to a consistently ordered matrix, and hence the PSOR and the SOR using the row-wise ordering have the same convergence rate. However, in general, the ordering used in PSOR may not be {open_quote}consistently ordered{close_quotes}. So, there is a need to analyze the convergence of PSOR directly. In this paper, we present a PSOR theory, and show that the PSOR method can have the same asymptotic rate of convergence as the corresponding sequential SOR method for a wide class of linear systems in which the matrix is {open_quotes}consistently ordered{close_quotes}. Finally, we demonstrate the parallel performance of the PSOR method on four different message passing multiprocessors (a KSR1, the Intel Delta, an Intel Paragon and an IBM SP2), along with a comparison with the point Red-Black and four-color SOR methods.

  3. Rectilinear partitioning of irregular data parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1991-01-01

    New mapping algorithms for domain oriented data-parallel computations, where the workload is distributed irregularly throughout the domain, but exhibits localized communication patterns are described. Researchers consider the problem of partitioning the domain for parallel processing in such a way that the workload on the most heavily loaded processor is minimized, subject to the constraint that the partition be perfectly rectilinear. Rectilinear partitions are useful on architectures that have a fast local mesh network. Discussed here is an improved algorithm for finding the optimal partitioning in one dimension, new algorithms for partitioning in two dimensions, and optimal partitioning in three dimensions. The application of these algorithms to real problems are discussed.

  4. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  5. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  6. METAL PARTITIONING IN COMBUSTION PROCESSES

    EPA Science Inventory

    This article summarizes ongoing research efforts at the National Risk Management Research Laboratory of the U.S. Environmental Protection Agency examining [high temperature] metal behavior within combustion environments. The partitioning of non-volatile (Cr and Ni), semi-volatil...

  7. Some trees with partition dimension three

    NASA Astrophysics Data System (ADS)

    Fredlina, Ketut Queena; Baskoro, Edy Tri

    2016-02-01

    The concept of partition dimension of a graph was introduced by Chartrand, E. Salehi and P. Zhang (1998) [2]. Let G(V, E) be a connected graph. For S ⊆ V (G) and v ∈ V (G), define the distance d(v, S) from v to S is min{d(v, x)|x ∈ S}. Let Π be an ordered partition of V (G) and Π = {S1, S2, ..., Sk }. The representation r(v|Π) of vertex v with respect to Π is (d(v, S1), d(v, S2), ..., d(v, Sk)). If the representations of all vertices are distinct, then the partition Π is called a resolving partition of G. The partition dimension of G is the minimum k such that G has a resolving partition with k partition classes. In this paper, we characterize some classes of trees with partition dimension three, namely olive trees, weeds, and centipedes.

  8. 3D-partition functions on the sphere: exact evaluation and mirror symmetry

    NASA Astrophysics Data System (ADS)

    Benvenuti, Sergio; Pasquetti, Sara

    2012-05-01

    We study {N} = {4} quiver theories on the three-sphere. We compute partition functions using the localisation method by Kapustin et al. solving exactly the matrix integrals at finite N, as functions of mass and Fayet-Iliopoulos parameters. We find a simple explicit formula for the partition function of the quiver tail T(SU( N)). This formula opens the way for the analysis of star-shaped quivers and their mirrors (that are the Gaiotto-type theories arising from M5 branes on punctured Riemann surfaces). We provide non-perturbative checks of mirror symmetry for infinite classes of theories and find the partition functions of the T N theory, the building block of generalised quiver theories.

  9. Terminology for trace-element partitioning

    SciTech Connect

    Beattie, P. ); Drake, M. ); Jones, J.; McKay, G. ); Leeman, W. ); Longhi, J. ); Nielsen, R. ); Palme, H. ); Shaw, D. ); Takahashi, E. ); Watson, B. )

    1993-04-01

    A self-consistent terminology for partitioning data is presented. Ratios of the concentration of a component in two phases are termed partition coefficients and given the symbol D. Ratios of partition coefficients are termed exchange coefficients and given the symbol K[sub D]. The prefix bulk implies that these coefficients are weighted according to the proportions of coexisting phases. Bulk partition and bulk exchange coefficients are denoted by [bar D] and [ovr K[sub D

  10. 25 CFR 158.56 - Partition records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Partition records. 158.56 Section 158.56 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER OSAGE LANDS § 158.56 Partition records. Upon completion of an action in partition, a copy of the judgment roll showing schedule of costs...

  11. 25 CFR 158.56 - Partition records.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Partition records. 158.56 Section 158.56 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER OSAGE LANDS § 158.56 Partition records. Upon completion of an action in partition, a copy of the judgment roll showing schedule of costs...

  12. Metaporous layer to overcome the thickness constraint for broadband sound absorption

    SciTech Connect

    Yang, Jieun; Lee, Joong Seok; Kim, Yoon Young

    2015-05-07

    The sound absorption of a porous layer is affected by its thickness, especially in a low-frequency range. If a hard-backed porous layer contains periodical arrangements of rigid partitions that are coordinated parallel and perpendicular to the direction of incoming sound waves, the lower bound of the effective sound absorption can be lowered much more and the overall absorption performance enhanced. The consequence of rigid partitioning in a porous layer is to make the first thickness resonance mode in the layer appear at much lower frequencies compared to that in the original homogeneous porous layer with the same thickness. Moreover, appropriate partitioning yields multiple thickness resonances with higher absorption peaks through impedance matching. The physics of the partitioned porous layer, or the metaporous layer, is theoretically investigated in this study.

  13. Determination of descriptors for fragrance compounds by gas chromatography and liquid-liquid partition.

    PubMed

    Karunasekara, Thushara; Poole, Colin F

    2012-04-27

    Retention factors on a minimum of eight stationary phases at various temperatures by gas-liquid chromatography and liquid-liquid partition coefficients for five totally organic biphasic systems were combined to estimate descriptors for 28 fragrance compounds with an emphasis on compounds that are known or potential allergens. The descriptors facilitated the estimation of several properties of biological and environmental interest (sensory irritation threshold, odor detection threshold, nasal pungency threshold, skin permeability from water, skin-water partition coefficients, octanol-water partition coefficients, absorption by air particles, adsorption by diesel soot particles, air-water partition coefficients, and adsorption by film water). The descriptors are suitable for use in the solvation parameter model and facilitate the estimation of a wide range of physicochemical, chromatographic, biological, and environmental properties using existing models.

  14. Paths and partitions: Combinatorial descriptions of the parafermionic states

    NASA Astrophysics Data System (ADS)

    Mathieu, Pierre

    2009-09-01

    The Zk parafermionic conformal field theories, despite the relative complexity of their modes algebra, offer the simplest context for the study of the bases of states and their different combinatorial representations. Three bases are known. The classic one is given by strings of the fundamental parafermionic operators whose sequences of modes are in correspondence with restricted partitions with parts at distance k -1 differing at least by 2. Another basis is expressed in terms of the ordered modes of the k -1 different parafermionic fields, which are in correspondence with the so-called multiple partitions. Both types of partitions have a natural (Bressoud) path representation. Finally, a third basis, formulated in terms of different paths, is inherited from the solution of the restricted solid-on-solid model of Andrews-Baxter-Forrester. The aim of this work is to review, in a unified and pedagogical exposition, these four different combinatorial representations of the states of the Zk parafermionic models. The first part of this article presents the different paths and partitions and their bijective relations; it is purely combinatorial, self-contained, and elementary; it can be read independently of the conformal-field-theory applications. The second part links this combinatorial analysis with the bases of states of the Zk parafermionic theories. With the prototypical example of the parafermionic models worked out in detail, this analysis contributes to fix some foundations for the combinatorial study of more complicated theories. Indeed, as we briefly indicate in ending, generalized versions of both the Bressoud and the Andrews-Baxter-Forrester paths emerge naturally in the description of the minimal models.

  15. ARSENIC SOLID-PHASE PARTITIONING IN REDUCING SEDIMENTS OF CONTAMINATED WETLAND

    EPA Science Inventory

    The geochemical partitioning of arsenic in organic-rich sediments from a contaminated wetland is examined using X-ray absorption spectroscopy and selective chemical extraction procedures, and evaluated in context to the anoxic diagenesis of iron and sulfur. The interaction betwe...

  16. "K"-Balance Partitioning: An Exact Method with Applications to Generalized Structural Balance and Other Psychological Contexts

    ERIC Educational Resources Information Center

    Brusco, Michael; Steinley, Douglas

    2010-01-01

    Structural balance theory (SBT) has maintained a venerable status in the psychological literature for more than 5 decades. One important problem pertaining to SBT is the approximation of structural or generalized balance via the partitioning of the vertices of a signed graph into "K" clusters. This "K"-balance partitioning problem also has more…

  17. Twisted sectors from plane partitions

    NASA Astrophysics Data System (ADS)

    Datta, Shouvik; Gaberdiel, Matthias R.; Li, Wei; Peng, Cheng

    2016-09-01

    Twisted sectors arise naturally in the bosonic higher spin CFTs at their free points, as well as in the associated symmetric orbifolds. We identify the coset representations of the twisted sector states using the description of W_{∞} representations in terms of plane partitions. We confirm these proposals by a microscopic null-vector analysis, and by matching the excitation spectrum of these representations with the orbifold prediction.

  18. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin

    PubMed Central

    Aksoyoglu, M. Alphan; Podgornik, Rudolf; Bezrukov, Sergey M.; Gurnev, Philip A.; Muthukumar, Murugappan; Parsegian, V. Adrian

    2016-01-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of “polymers pushing polymers” is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  19. Size-dependent forced PEG partitioning into channels: VDAC, OmpC, and α-hemolysin.

    PubMed

    Aksoyoglu, M Alphan; Podgornik, Rudolf; Bezrukov, Sergey M; Gurnev, Philip A; Muthukumar, Murugappan; Parsegian, V Adrian

    2016-08-01

    Nonideal polymer mixtures of PEGs of different molecular weights partition differently into nanosize protein channels. Here, we assess the validity of the recently proposed theoretical approach of forced partitioning for three structurally different β-barrel channels: voltage-dependent anion channel from outer mitochondrial membrane VDAC, bacterial porin OmpC (outer membrane protein C), and bacterial channel-forming toxin α-hemolysin. Our interpretation is based on the idea that relatively less-penetrating polymers push the more easily penetrating ones into nanosize channels in excess of their bath concentration. Comparison of the theory with experiments is excellent for VDAC. Polymer partitioning data for the other two channels are consistent with theory if additional assumptions regarding the energy penalty of pore penetration are included. The obtained results demonstrate that the general concept of "polymers pushing polymers" is helpful in understanding and quantification of concrete examples of size-dependent forced partitioning of polymers into protein nanopores. PMID:27466408

  20. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  1. Information-theoretic indices usage for the prediction and calculation of octanol-water partition coefficient.

    PubMed

    Persona, Marek; Kutarov, Vladimir V; Kats, Boris M; Persona, Andrzej; Marczewska, Barbara

    2007-01-01

    The paper describes the new prediction method of octanol-water partition coefficient, which is based on molecular graph theory. The results obtained using the new method are well correlated with experimental values. These results were compared with the ones obtained by use of ten other structure correlated methods. The comparison shows that graph theory can be very useful in structure correlation research.

  2. The effect of glycerol, propylene glycol and polyethylene glycol 400 on the partition coefficient of benzophenone-3 (oxybenzone).

    PubMed

    Mbah, C J

    2007-01-01

    Sunscreen products are widely used to protect the skin from sun-related deleterious effects. The objective of the study was to investigate the potential effect of glycerol, propylene glycol and polyethylene glycol 400 on dermal absorption of oxybenzone by studying their effects on its partition coefficient. The partition coefficient was evaluated in a chloroform-water system at room temperature. It was found that glycerol and propylene glycol decreased the partition coefficient of oxybenzone, while an increase in partition coefficient was observed with polyethylene glycol 400. The findings suggest that polyethylene glycol 400 in contrast to glycerol and propylene glycol has the potential of increasing the vehicle-skin partition coefficient of oxybenzone when cosmetic products containing such an UV absorber are topically applied to the skin. PMID:17294811

  3. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  4. Effective absorption in cladding-pumped fibers

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.; Marshall, Andy; Kim, Jaesun

    2011-02-01

    We investigate experimentally and theoretically the wavelength dependence of the pump absorption along Yb3+-doped fibers, for cladding-pumped single as well as coupled multimode (GTWaveTM) fibers. We show that significant spectral absorption distortions occur along the length with the 976nm absorption peak affected the most. We have developed a novel theoretical approach, based on coupled mode theory, to explain the observed effects. We have also investigated the mode mixing requirements in order to improve the absorption spectral distribution along the increase the overall absorption efficiency and discuss the implications on fiber laser performance.

  5. X-ray-absorption near-edge structure of CuGaSe2 and ZnSe: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Šipr, O.; Machek, P.; Šimůnek, A.; Vackář, J.; Horák, J.

    1997-11-01

    X-ray-absorption near-edge structure (XANES) spectra of a ternary semiconductor CuGaSe2 at the Cu, Ga, and Se edges were measured and compared with Zn and Se spectra of ZnSe, taken from the literature. Having all five absorbing atoms in nearly identical coordination environments, we investigate the influence of the electronic structure on the XANES spectra. The spectra of CuGaSe2 and of ZnSe were calculated using a real-space multiple-scattering approach and using a pseudopotential band-structure technique. Both computational methods yield spectra that are in a good agreement with experiment. The effect of the size of the cluster involved in the real-space calculation on the calculated XANES spectra is investigated. Using self-consistent muffin-tin potentials does not lead to significantly different CuGaSe2 spectra than using non-self-consistent potentials. Real-space multiple-scattering spectra calculated without core holes exhibit only minor differences with respect to those obtained for relaxed screened core holes, the largest effect being found for Zn spectrum of ZnSe. Employing unrelaxed or unscreened core hole potentials resulted in spectra that did not agree with experiment. Contrary to earlier reports, no effect of charge transfer on the calculated XANES spectra of ZnSe was found.

  6. Nitrogen partitioning along the equine digestive tract.

    PubMed

    Glade, M J

    1983-10-01

    Twelve adult horses were fed a corn-oats-timothy hay diet containing 2.87% nitrogen (N) for 4 wk and were then killed. Fresh digesta samples were immediately harvested from the stomach, duodenum, jejunum, ileum, cecum, large colon, small colon, rectum and feces. Total N content of the digesta (on a dry matter basis) increased from the stomach (2.74%) to the duodenum (5.58%; P less than .01), decreased in the cecum (3.10%, P less than .01), remained constant through the large intestine and decreased in the feces (2.10%; P less than .01). High-speed centrifugation of wet digesta and low-speed centrifugation following tungstic acid treatment of wet digesta were comparable in their effectiveness in separating water soluble N-containing compounds (S-N) from insoluble N-containing compounds (P-N). The P-N was further partitioned into neutral detergent soluble (NDS-N) and neutral detergent insoluble (NDF-N) fractions. The NDF-N constituted from 6 to 17% of the total digesta N at any location along the digestive tract. The S-N constituted about 20% of the total digesta N in the stomach, increased to about 80% at mid-jejunum (P less than .01), decreased to 30% in the cecum (P less than .01) and increased throughout the large intestine. The calculation of cumulative apparent digestibilities indicated that total digesta N underwent net disappearance along the entire tract, except in the duodenum. Dietary NDF-N underwent net disappearance throughout the digestive tract. The NDS-N portion of the P-N disappeared in the duodenum, jejunum and small colon, but underwent net appearance in the ileum, cecum and large colon. There was a net appearance of S-N in the duodenum and net disappearances in the ileum and cecum. The shifts in N partitioning along the lower digestive tract and the decreases in N concentrations suggest that the jejunum, ileum, cecum and small colon are major sites of the net absorption of N and that much of the N absorbed in the small colon was supplied by the

  7. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  8. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  9. On some trees having partition dimension four

    NASA Astrophysics Data System (ADS)

    Ida Bagus Kade Puja Arimbawa, K.; Baskoro, Edy Tri

    2016-02-01

    In 1998, G. Chartrand, E. Salehi and P. Zhang introduced the notion of partition dimension of a graph. Since then, the study of this graph parameter has received much attention. A number of results have been obtained to know the values of partition dimensions of various classes of graphs. However, for some particular classes of graphs, finding of their partition dimensions is still not completely solved, for instances a class of general tree. In this paper, we study the properties of trees having partition dimension 4. In particular, we show that, for olive trees O(n), its partition dimension is equal to 4 if and only if 8 ≤ n ≤ 17. We also characterize all centipede trees having partition dimension 4.

  10. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  11. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  12. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d. PMID:26733312

  13. Thermodynamics of sodium dodecyl sulfate partitioning into lipid membranes.

    PubMed

    Tan, Anmin; Ziegler, André; Steinbauer, Bernhard; Seelig, Joachim

    2002-09-01

    The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at

  14. Entanglement resonances of driven multi-partite quantum systems

    NASA Astrophysics Data System (ADS)

    Sauer, Simeon; Mintert, Florian; Gneiting, Clemens; Buchleitner, Andreas

    2012-08-01

    We show how to create maximally entangled dressed states of a weakly interacting multi-partite quantum system by suitably tuning an external, periodic driving field. Floquet theory allows us to relate, in a transparent manner, the occurrence of entanglement resonances to avoided crossings in the spectrum of quasi-energies, tantamount of well-defined conditions for the controlled, resonant interaction of particles. We demonstrate the universality of the phenomenon for periodically driven, weakly interacting two-level systems, by considering different interaction mechanisms and driving profiles. In particular, we show that entanglement resonances are a generic feature of driven, multi-partite systems, widely independent of the details of the interaction mechanism. Our results are therefore particularly relevant for experiments on interacting two-level systems, in which the microscopic realization of the inter-particle coupling is unknown.

  15. β-deformed matrix model and Nekrasov partition function

    NASA Astrophysics Data System (ADS)

    Nishinaka, Takahiro; Rim, Chaiho

    2012-02-01

    We study Penner type matrix models in relation with the Nekrasov partition function of four dimensional mathcal{N} = {2} , SU(2) supersymmetric gauge theories with N F = 2 , 3 and 4. By evaluating the resolvent using the loop equation for general β, we explicitly construct the first half-genus correction to the free energy and demonstrate the result coincides with the corresponding Nekrasov partition function with general Ω-background, including higher instanton contributions after modifying the relation of the Coulomb branch parameter with the filling fraction. Our approach complements the proof using the Selberg integrals directly which is useful to find the contribution in the series of instanton numbers for a given deformation parameter.

  16. Mass partitioning effects in diffusion transport.

    PubMed

    Kojic, Milos; Milosevic, Miljan; Wu, Suhong; Blanco, Elvin; Ferrari, Mauro; Ziemys, Arturas

    2015-08-28

    Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes.

  17. Mass partitioning effects in diffusion transport.

    PubMed

    Kojic, Milos; Milosevic, Miljan; Wu, Suhong; Blanco, Elvin; Ferrari, Mauro; Ziemys, Arturas

    2015-08-28

    Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes. PMID:26204522

  18. Effect of Polycyclic Aromatic Hydrocarbon Source Materials and Soil Components on Partitioning and Dermal Uptake.

    PubMed

    Xia, Huan; Gomez-Eyles, Jose L; Ghosh, Upal

    2016-04-01

    The bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soils can be influenced by the source material they are emitted within, the properties of the receiving soil, weathering processes, and the concentration of PAHs. In this study 30 contaminated soils were constructed with common PAH sources (fuel oil, soot, coal tar based skeet particles) and direct spike with a solvent added to different types and contents of soil organic matter and minerals to achieve PAH concentrations spanning 4 orders of magnitude. Source material had the greatest impact on PAH partitioning. Soils containing skeet generally exhibited the highest KD values, followed by soot, fuel oil, and solvent spiked soils. Among all soil compositions, the presence of 2% charcoal had the largest enhancement of KD. Partitioning behavior could not be predicted by an organic carbon and black carbon partitioning model. Including independently measured partitioning behavior of the soil components and PAH sources allowed better prediction but still suffered from issues of interaction (oil sorption in peat) and highly nonlinear partitioning with depletion (for skeet). Dermal absorption of PAHs measured using pig skin was directly related to the freely dissolved aqueous concentration in soil and not the total concentration in the soil. Overall, we show that PAH source materials have a dominating influence on partitioning, highlighting the importance of using native field soils in bioavailability and risk assessments. PMID:26964018

  19. RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.

    PubMed

    Kim, Namhee; Zheng, Zhe; Elmetwaly, Shereef; Schlick, Tamar

    2014-01-01

    Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest

  20. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reductase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E.; Jr.; Adams, M.W.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2009-06-02

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  1. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  2. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    SciTech Connect

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  3. Terahertz absorption spectrum of triacetone triperoxide (TATP)

    NASA Astrophysics Data System (ADS)

    Wilkinson, John; Konek, Christopher T.; Moran, Jesse S.; Witko, Ewelina M.; Korter, Timothy M.

    2009-08-01

    We report here, for the first time, the terahertz absorption spectrum of triacetone triperoxide (TATP). The experimental spectra are coupled with solid-state density functional theory, and preliminary assignments are provided to gain physical insight into the experimental spectrum. The calculated absorption coefficients are in excellent agreement with experiment.

  4. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    NASA Astrophysics Data System (ADS)

    Verma, Prakash; Bartlett, Rodney J.

    2016-07-01

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  5. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reduc Tase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E., Jr.; Adams, M.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Athens U. /SLAC, SSRL

    2007-10-26

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN{sup -} bound low-spin Fe{sup III} forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin Fe{sup III}-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the Fe{sup III} bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pK{sub a} of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin Fe{sup III}-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C Fe{sup III} product. Additionally, the presence of the dianionic porphyrin {pi} ring in cytochrome P450 allows O-O heterolysis, forming an Fe{sup IV}-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand

  6. Kinetic partitioning mechanism of HDV ribozyme folding

    SciTech Connect

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-14

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  7. Kinetic partitioning mechanism of HDV ribozyme folding

    NASA Astrophysics Data System (ADS)

    Chen, Jiawen; Gong, Sha; Wang, Yujie; Zhang, Wenbing

    2014-01-01

    RNA folding kinetics is directly tied to RNA biological functions. We introduce here a new approach for predicting the folding kinetics of RNA secondary structure with pseudoknots. This approach is based on our previous established helix-based method for predicting the folding kinetics of RNA secondary structure. In this approach, the transition rates for an elementary step: (1) formation, (2) disruption of a helix stem, and (3) helix formation with concomitant partial melting of an incompatible helix, are calculated with the free energy landscape. The folding kinetics of the Hepatitis delta virus (HDV) ribozyme and the mutated sequences are studied with this method. The folding pathways are identified by recursive searching the states with high net flux-in(out) population starting from the native state. The theory results are in good agreement with that of the experiments. The results indicate that the bi-phasic folding kinetics for the wt HDV sequence is ascribed to the kinetic partitioning mechanism: Part of the population will quickly fold to the native state along the fast pathway, while another part of the population will fold along the slow pathway, in which the population is trapped in a non-native state. Single mutation not only changes the folding rate but also the folding pathway.

  8. Assimilate partitioning during reproductive growth

    SciTech Connect

    Finazzo, S.F.; Davenport, T.L.

    1987-04-01

    Leaves having various phyllotactic relationships to fruitlets were labeled for 1 hour with 10/sub r/Ci of /sup 14/CO/sub 2/. Fruitlets were also labeled. Fruitlets did fix /sup 14/CO/sub 2/. Translocation of radioactivity from the peel into the fruit occurred slowly and to a limited extent. No evidence of translocation out of the fruitlets was observed. Assimilate partitioning in avocado was strongly influenced by phyllotaxy. If a fruit and the labeled leaf had the same phyllotaxy then greater than 95% of the radiolabel was present in this fruit. When the fruit did not have the same phyllotaxy as the labeled leaf, the radiolabel distribution was skewed with 70% of the label going to a single adjacent position. Avocado fruitlets exhibit uniform labeling throughout a particular tissue. In avocado, assimilates preferentially move from leaves to fruits with the same phyllotaxy.

  9. HPAM: Hirshfeld partitioned atomic multipoles

    NASA Astrophysics Data System (ADS)

    Elking, Dennis M.; Perera, Lalith; Pedersen, Lee G.

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l=0 (atomic charges) to l=4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l are shown to exactly reproduce ab initio molecular multipole moments of rank L for L⩽l. In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only ( l=0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used. Program summaryProgram title: HPAM Catalogue identifier: AEKP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v2 No. of lines in distributed program, including test data, etc.: 500 809 No. of bytes in distributed program, including test data, etc.: 13 424 494 Distribution format: tar.gz Programming language: C Computer: Any Operating system: Linux RAM: Typically, a few hundred megabytes Classification: 16.13 External routines: The program requires 'formatted checkpoint' files obtained from the Gaussian 03 or Gaussian 09 quantum chemistry program. Nature of problem: An ab initio

  10. MULTIVARIATE KERNEL PARTITION PROCESS MIXTURES

    PubMed Central

    Dunson, David B.

    2013-01-01

    Mixtures provide a useful approach for relaxing parametric assumptions. Discrete mixture models induce clusters, typically with the same cluster allocation for each parameter in multivariate cases. As a more flexible approach that facilitates sparse nonparametric modeling of multivariate random effects distributions, this article proposes a kernel partition process (KPP) in which the cluster allocation varies for different parameters. The KPP is shown to be the driving measure for a multivariate ordered Chinese restaurant process that induces a highly-flexible dependence structure in local clustering. This structure allows the relative locations of the random effects to inform the clustering process, with spatially-proximal random effects likely to be assigned the same cluster index. An exact block Gibbs sampler is developed for posterior computation, avoiding truncation of the infinite measure. The methods are applied to hormone curve data, and a dependent KPP is proposed for classification from functional predictors. PMID:24478563

  11. Trace element partition coefficient in ionic crystals.

    PubMed

    Nagasawa, H

    1966-05-01

    Partition coefficient monovalent trace ions between liquids and either solid NaNO(2) or KCl were determined. The isotropic elastic model of ionic crystals was used for calculating the energy change caused by the ionic substitutions. The observed values of partition coefficients in KCl good agreement with calculate values.

  12. [On the partition of acupuncture academic schools].

    PubMed

    Yang, Pengyan; Luo, Xi; Xia, Youbing

    2016-05-01

    Nowadays extensive attention has been paid on the research of acupuncture academic schools, however, a widely accepted method of partition of acupuncture academic schools is still in need. In this paper, the methods of partition of acupuncture academic schools in the history have been arranged, and three typical methods of"partition of five schools" "partition of eighteen schools" and "two-stage based partition" are summarized. After adeep analysis on the disadvantages and advantages of these three methods, a new method of partition of acupuncture academic schools that is called "three-stage based partition" is proposed. In this method, after the overall acupuncture academic schools are divided into an ancient stage, a modern stage and a contemporary stage, each schoolis divided into its sub-school category. It is believed that this method of partition can remedy the weaknesses ofcurrent methods, but also explore a new model of inheritance and development under a different aspect through thedifferentiation and interaction of acupuncture academic schools at three stages.

  13. Building Ecology and Partition Design. Technical Bulletin.

    ERIC Educational Resources Information Center

    Maryland State Dept. of Education, Baltimore.

    This bulletin is intended as a resource for school system facility planners and architects who design schools. Ways in which decision makers can incorporate environmental concerns in the design of school buildings are detailed. Focus is on the design of interior partition systems. Partition systems in schools serve several purposes; they define…

  14. Isoperimetric graph partitioning for image segmentation.

    PubMed

    Grady, Leo; Schwartz, Eric L

    2006-03-01

    Spectral graph partitioning provides a powerful approach to image segmentation. We introduce an alternate idea that finds partitions with a small isoperimetric constant, requiring solution to a linear system rather than an eigenvector problem. This approach produces the high quality segmentations of spectral methods, but with improved speed and stability.

  15. Parallel hypergraph partitioning for scientific computing.

    SciTech Connect

    Heaphy, Robert; Devine, Karen Dragon; Catalyurek, Umit; Bisseling, Robert; Hendrickson, Bruce Alan; Boman, Erik Gunnar

    2005-07-01

    Graph partitioning is often used for load balancing in parallel computing, but it is known that hypergraph partitioning has several advantages. First, hypergraphs more accurately model communication volume, and second, they are more expressive and can better represent nonsymmetric problems. Hypergraph partitioning is particularly suited to parallel sparse matrix-vector multiplication, a common kernel in scientific computing. We present a parallel software package for hypergraph (and sparse matrix) partitioning developed at Sandia National Labs. The algorithm is a variation on multilevel partitioning. Our parallel implementation is novel in that it uses a two-dimensional data distribution among processors. We present empirical results that show our parallel implementation achieves good speedup on several large problems (up to 33 million nonzeros) with up to 64 processors on a Linux cluster.

  16. Cell partition in two phase polymer systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Aqueous phase-separated polymer solutions can be used as support media for the partition of biological macromolecules, organelles and cells. Cell separations using the technique have proven to be extremely sensitive to cell surface properties but application of the systems are limited to cells or aggregates which do not significantly while the phases are settling. Partition in zero g in principle removes this limitation but an external driving force must be applied to induce the phases to separate since their density difference disappears. We have recently shown that an applied electric field can supply the necessary driving force. We are proposing to utilize the NASA FES to study field-driven phase separation and cell partition on the ground and in zero g to help define the separation/partition process, with the ultimate goal being to develop partition as a zero g cell separation technique.

  17. Determination of melt influence on divalent element partitioning between anorthite and CMAS melts

    NASA Astrophysics Data System (ADS)

    Miller, Sarah A.; Asimow, P. D.; Burnett, D. S.

    2006-08-01

    We propose a theory for crystal-melt trace element partitioning that considers the energetic consequences of crystal-lattice strain, of multi-component major-element silicate liquid mixing, and of trace-element activity coefficients in melts. We demonstrate application of the theory using newly determined partition coefficients for Ca, Mg, Sr, and Ba between pure anorthite and seven CMAS liquid compositions at 1330 °C and 1 atm. By selecting a range of melt compositions in equilibrium with a common crystal composition at equal liquidus temperature and pressure, we have isolated the contribution of melt composition to divalent trace element partitioning in this simple system. The partitioning data are fit to Onuma curves with parameterizations that can be thermodynamically rationalized in terms of the melt major element activity product (aO)(a)2 and lattice strain theory modeling. Residuals between observed partition coefficients and the lattice strain plus major oxide melt activity model are then attributed to non-ideality of trace constituents in the liquids. The activity coefficients of the trace species in the melt are found to vary systematically with composition. Accounting for the major and trace element thermodynamics in the melt allows a good fit in which the parameters of the crystal-lattice strain model are independent of melt composition.

  18. Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    PubMed Central

    Benson, Austin R.; Gleich, David F.; Leskovec, Jure

    2016-01-01

    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.

  19. Do Psychological Sex Differences Reflect Evolutionary Bisexual Partitioning?

    PubMed

    Trofimova, Irina

    2015-01-01

    This article analyzes sex differences in communicative and exploratory abilities and mental disabilities from the rarely discussed perspective of sex differences in the shape of phenotypic distributions. The article reviews the most consistent findings related to such differences and compares them with the evolutionary theory of sex (ETS). The ETS considers sexual dimorphism as a functional specialization of a species into 2 partitions: variational and conservational. The analysis suggests that male superiority in risk and sensation seeking and physical abilities; higher rates of psychopathy, dyslexia, and autism; and higher birth and accidental death rates reflects the systemic variational function of the male sex. Female superiority in verbal abilities, lawfulness, socialization, empathy, and agreeableness is presented as a reflection of the systemic conservational function of the female sex. From this perspective psychological sex differences in communicative and exploratory abilities might not just be an accidental result of sexual selection or labor distribution in early humans. It might reflect a global functional differentiation tendency within a species to expand its phenotypic diversity and at the same time to conserve beneficial features in the species' behavior. The article also offers an addition to the ETS by suggesting that the male sex (variable partition) plays an evolutionary role in pruning of the redundant excesses in a species' bank of beneficial characteristics despite resistance from the conservational partition. PMID:26721176

  20. Automorphic instanton partition functions on Calabi-Yau threefolds

    NASA Astrophysics Data System (ADS)

    Persson, Daniel

    2012-02-01

    We survey recent results on quantum corrections to the hypermultiplet moduli space Script M in type IIA/B string theory on a compact Calabi-Yau threefold X, or, equivalently, the vector multiplet moduli space in type IIB/A on X × S1. Our main focus lies on the problem of resumming the infinite series of D-brane and NS5-brane instantons, using the mathematical machinery of automorphic forms. We review the proposal that when the theory in three dimensions exhibits an arithmetic "U-duality" symmetry G(Bbb Z) the total instanton partition function arises from a certain unitary automorphic representation of G, whose Fourier coefficients reproduce the BPS-degeneracies. In the case of four-dimensional Script N = 2 theories on Bbb R × S1 we argue that the relevant automorphic representation falls in the quaternionic discrete series of G, and that the partition function is a holomorphic section on the twistor space over Script M.

  1. Understanding viral partitioning in two-phase aqueous nonionic micellar systems: 2. Effect of entrained micelle-poor domains.

    PubMed

    Kamei, Daniel T; King, Jonathan A; Wang, Daniel I C; Blankschtein, Daniel

    2002-04-20

    Unlike the partitioning behavior of hydrophilic, water-soluble proteins, the partitioning behavior of viruses in the two-phase aqueous nonionic n-decyl tetra(ethylene oxide) (C10E4) micellar system cannot be fully explained using the excluded-volume theory developed recently by our group. A central assumption underlying the excluded-volume theory--that macroscopic phase separation equilibrium is attained--was therefore challenged experimentally and theoretically. Photographs of the two-phase aqueous C10E4 micellar system were taken for different volume ratios to demonstrate that the entrainment of micelle-poor (virus-rich) domains in the macroscopic, top, micelle-rich phase decreases with a decrease in the volume ratio. Partitioning experiments were then conducted with the model virus bacteriophage P22 and the model protein cytochrome c at different operating temperatures for different volume ratios. For bacteriophage P22, the measured viral partition coefficient at each temperature decreased by about an order of magnitude when the volume ratio was decreased from 10 to 0.1, which clearly indicated that entrainment is an important factor influencing viral partitioning. For cytochrome c, the measured protein partition coefficient did not change, which demonstrated that this entrainment effect negligibly influences protein partitioning. A new theoretical description of partitioning was also developed that combines the excluded-volume theory with this entrainment effect. In this theory, one fitted parameter--the volume fraction of entrained micelle-poor domains in the macroscopic, top, micelle-rich phase--is used to account for the entrainment. To fit this parameter, only a single partitioning experiment is required for a given volume ratio, irrespectively of the partitioning solute. The new theoretical description of partitioning yielded very good quantitative predictions of the viral partition coefficients. Accordingly, it can be concluded that the primary mechanisms

  2. Partition noise and statistics in the fractional quantum hall effect.

    PubMed

    Safi, I; Devillard, P; Martin, T

    2001-05-14

    A microscopic theory of current partition in fractional quantum Hall liquids, described by chiral Luttinger liquids, is developed to compute the noise correlations, using the Keldysh technique. In this Hanbury-Brown and Twiss geometry, at Laughlin filling factors nu = 1/3, the real time noise correlator exhibits oscillations which persist over larger time scales than that of an uncorrelated Hall fluid. The zero frequency noise correlations are negative at filling factor 1/3 as for bare electrons (antibunching), but are strongly reduced in amplitude. These correlations become positive (bunching) for nu < or = 1/5, suggesting a tendency towards bosonic behavior.

  3. Stress partition and microstructure in size-segregating granular flows

    NASA Astrophysics Data System (ADS)

    Staron, L.; Phillips, J. C.

    2015-08-01

    When a granular mixture involving grains of different sizes is shaken, sheared, mixed, or left to flow, grains tend to separate by sizes in a process known as size segregation. In this study, we explore the size segregation mechanism in granular chute flows in terms of the pressure distribution and granular microstructure. Therefore, two-dimensional discrete numerical simulations of bidisperse granular chute flows are systematically analyzed. Based on the theoretical models of J. M. N. T. Gray and A. R. Thornton [Proc. R. Soc. A 461, 1447 (2005), 10.1098/rspa.2004.1420] and K. M. Hill and D. S. Tan [J. Fluid Mech. 756, 54 (2014), 10.1017/jfm.2014.271], we explore the stress partition in the phases of small and large grains, discriminating between contact stresses and kinetic stresses. Our results support both gravity-induced and shear-gradient-induced segregation mechanisms. However, we show that the contact stress partition is extremely sensitive to the definition of the partial stress tensors and, more specifically, to the way mixed contacts (i.e., involving a small grain and a large grain) are handled, making conclusions on gravity-induced segregation uncertain. By contrast, the computation of the partial kinetic stress tensors is robust. The kinetic pressure partition exhibits a deviation from continuum mixture theory of a significantly higher amplitude than the contact pressure and displays a clear dependence on the flow dynamics. Finally, using a simple approximation for the contact partial stress tensors, we investigate how the contact stress partition relates to the flow microstructure and suggest that the latter may provide an interesting proxy for studying gravity-induced segregation.

  4. Stress partition and microstructure in size-segregating granular flows.

    PubMed

    Staron, L; Phillips, J C

    2015-08-01

    When a granular mixture involving grains of different sizes is shaken, sheared, mixed, or left to flow, grains tend to separate by sizes in a process known as size segregation. In this study, we explore the size segregation mechanism in granular chute flows in terms of the pressure distribution and granular microstructure. Therefore, two-dimensional discrete numerical simulations of bidisperse granular chute flows are systematically analyzed. Based on the theoretical models of J. M. N. T. Gray and A. R. Thornton [Proc. R. Soc. A 461, 1447] and K. M. Hill and D. S. Tan [J. Fluid Mech. 756, 54 (2014)], we explore the stress partition in the phases of small and large grains, discriminating between contact stresses and kinetic stresses. Our results support both gravity-induced and shear-gradient-induced segregation mechanisms. However, we show that the contact stress partition is extremely sensitive to the definition of the partial stress tensors and, more specifically, to the way mixed contacts (i.e., involving a small grain and a large grain) are handled, making conclusions on gravity-induced segregation uncertain. By contrast, the computation of the partial kinetic stress tensors is robust. The kinetic pressure partition exhibits a deviation from continuum mixture theory of a significantly higher amplitude than the contact pressure and displays a clear dependence on the flow dynamics. Finally, using a simple approximation for the contact partial stress tensors, we investigate how the contact stress partition relates to the flow microstructure and suggest that the latter may provide an interesting proxy for studying gravity-induced segregation. PMID:26382397

  5. How pervasive is the Hirshfeld partitioning?

    SciTech Connect

    Heidar-Zadeh, Farnaz; Ayers, Paul W.

    2015-01-28

    One can partition the molecular density into its atomic contributions by minimizing the divergence of the atom-in-molecule densities from their corresponding reference pro-atomic densities, subject to the constraint that the sum of the atom-in-molecule densities is the total molecular density. We expose conditions on the divergence measure that are necessary, and sufficient, to recover the popular Hirshfeld partitioning. Specifically, among all local measures of the divergence between two probability distribution functions, the Hirshfeld partitioning is obtained only for f-divergences.

  6. Convex Regression with Interpretable Sharp Partitions

    PubMed Central

    Petersen, Ashley; Simon, Noah; Witten, Daniela

    2016-01-01

    We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set.

  7. Partitioning of regular computation on multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Lee, Fung Fung

    1988-01-01

    Problem partitioning of regular computation over two dimensional meshes on multiprocessor systems is examined. The regular computation model considered involves repetitive evaluation of values at each mesh point with local communication. The computational workload and the communication pattern are the same at each mesh point. The regular computation model arises in numerical solutions of partial differential equations and simulations of cellular automata. Given a communication pattern, a systematic way to generate a family of partitions is presented. The influence of various partitioning schemes on performance is compared on the basis of computation to communication ratio.

  8. Convex Regression with Interpretable Sharp Partitions

    PubMed Central

    Petersen, Ashley; Simon, Noah; Witten, Daniela

    2016-01-01

    We consider the problem of predicting an outcome variable on the basis of a small number of covariates, using an interpretable yet non-additive model. We propose convex regression with interpretable sharp partitions (CRISP) for this task. CRISP partitions the covariate space into blocks in a data-adaptive way, and fits a mean model within each block. Unlike other partitioning methods, CRISP is fit using a non-greedy approach by solving a convex optimization problem, resulting in low-variance fits. We explore the properties of CRISP, and evaluate its performance in a simulation study and on a housing price data set. PMID:27635120

  9. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components.

  10. HPAM: Hirshfeld Partitioned Atomic Multipoles.

    PubMed

    Elking, Dennis M; Perera, Lalith; Pedersen, Lee G

    2012-02-01

    An implementation of the Hirshfeld (HD) and Hirshfeld-Iterated (HD-I) atomic charge density partitioning schemes is described. Atomic charges and atomic multipoles are calculated from the HD and HD-I atomic charge densities for arbitrary atomic multipole rank l(max) on molecules of arbitrary shape and size. The HD and HD-I atomic charges/multipoles are tested by comparing molecular multipole moments and the electrostatic potential (ESP) surrounding a molecule with their reference ab initio values. In general, the HD-I atomic charges/multipoles are found to better reproduce ab initio electrostatic properties over HD atomic charges/multipoles. A systematic increase in precision for reproducing ab initio electrostatic properties is demonstrated by increasing the atomic multipole rank from l(max) = 0 (atomic charges) to l(max) = 4 (atomic hexadecapoles). Both HD and HD-I atomic multipoles up to rank l(max) are shown to exactly reproduce ab initio molecular multipole moments of rank L for L ≤ l(max). In addition, molecular dipole moments calculated by HD, HD-I, and ChelpG atomic charges only (l(max) = 0) are compared with reference ab initio values. Significant errors in reproducing ab initio molecular dipole moments are found if only HD or HD-I atomic charges used.

  11. Energy partitioning schemes: a dilemma.

    PubMed

    Mayer, I

    2007-01-01

    Two closely related energy partitioning schemes, in which the total energy is presented as a sum of atomic and diatomic contributions by using the "atomic decomposition of identity", are compared on the example of N,N-dimethylformamide, a simple but chemically rich molecule. Both schemes account for different intramolecular interactions, for instance they identify the weak C-H...O intramolecular interactions, but give completely different numbers. (The energy decomposition scheme based on the virial theorem is also considered.) The comparison of the two schemes resulted in a dilemma which is especially striking when these schemes are applied for molecules distorted from their equilibrium structures: one either gets numbers which are "on the chemical scale" and have quite appealing values at the equilibrium molecular geometries, but exhibiting a counter-intuitive distance dependence (the two-center energy components increase in absolute value with the increase of the interatomic distances)--or numbers with too large absolute values but "correct" distance behaviour. The problem is connected with the quick decay of the diatomic kinetic energy components. PMID:17328441

  12. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  13. Spectral partitioning in diffraction tomography

    SciTech Connect

    Lehman, S K; Chambers, D H; Candy, J V

    1999-06-14

    The scattering mechanism of diffraction tomography is described by the integral form of the Helmholtz equation. The goal of diffraction tomography is to invert this equation in order to reconstruct the object function from the measured scattered fields. During the forward propagation process, the spatial spectrum of the object under investigation is ''smeared,'' by a convolution in the spectral domain, across the propagating and evanescent regions of the received field. Hence, care must be taken in performing the reconstruction, as the object's spectral information has been moved into regions where it may be considered to be noise rather than useful information. This will reduce the quality and resolution of the reconstruction. We show haw the object's spectrum can be partitioned into resolvable and non-resolvable parts based upon the cutoff between the propagating and evanescent fields. Operating under the Born approximation, we develop a beam-forming on transmit approach to direct the energy into either the propagating or evanescent parts of the spectrum. In this manner, we may individually interrogate the propagating and evanescent regions of the object spectrum.

  14. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  15. Seasonality and interspecies differences in particle/gas partitioning of PAHs observed by the Integrated Atmospheric Deposition Network (IADN)

    NASA Astrophysics Data System (ADS)

    Galarneau, Elisabeth; Bidleman, Terry F.; Blanchard, Pierrette

    This study presents partitioning data from eight locations in the Laurentian Great Lakes region collected by the Integrated Atmospheric Deposition Network (IADN) over periods ranging from 1 to 6 years. Particle/gas partitioning varies sufficiently between sites in the Great Lakes region to preclude the use of a uniform temperature dependence for its description. Site-specific parameters for describing partitioning as a function of inverse temperature are presented. Relationships between partitioning of appreciably semivolatile PAHs and saturated vapour pressure at Chicago (IIT) and Sturgeon Point (STP) demonstrate that anthracene, benz[a]anthracene and retene behave differently than phenanthrene, fluoranthene, pyrene and chrysene+triphenylene. Possible reasons for these differences include interspecies variations in the fraction of atmospherically non-exchangeable, though analytically extractable, PAHs on particles and differences in soot-air partition coefficients as they relate to saturated vapour pressure. The observed interspecies differences are not consistent with sampling artefacts such as filter adsorption or sorbent breakthrough. At IIT, but not at STP, values of the slope of the relationship between the log partition coefficient and log vapour pressure vary in a manner opposing the annual temperature cycle. A comparison of partitioning calculated by a combined absorption/adsorption model shows good predictability at Chicago but underestimates values at a rural site (Eagle Harbor, EGH) by an order of magnitude.

  16. Ambient Gas-Particle Partitioning of Tracers for Biogenic Oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Yee, Lindsay D; Kreisberg, Nathan M; Wernis, Rebecca; Moss, Joshua A; Hering, Susanne V; de Sá, Suzane S; Martin, Scot T; Alexander, M Lizabeth; Palm, Brett B; Hu, Weiwei; Campuzano-Jost, Pedro; Day, Douglas A; Jimenez, Jose L; Riva, Matthieu; Surratt, Jason D; Viegas, Juarez; Manzi, Antonio; Edgerton, Eric; Baumann, Karsten; Souza, Rodrigo; Artaxo, Paulo; Goldstein, Allen H

    2016-09-20

    Exchange of atmospheric organic compounds between gas and particle phases is important in the production and chemistry of particle-phase mass but is poorly understood due to a lack of simultaneous measurements in both phases of individual compounds. Measurements of particle- and gas-phase organic compounds are reported here for the southeastern United States and central Amazonia. Polyols formed from isoprene oxidation contribute 8% and 15% on average to particle-phase organic mass at these sites but are also observed to have substantial gas-phase concentrations contrary to many models that treat these compounds as nonvolatile. The results of the present study show that the gas-particle partitioning of approximately 100 known and newly observed oxidation products is not well explained by environmental factors (e.g., temperature). Compounds having high vapor pressures have higher particle fractions than expected from absorptive equilibrium partitioning models. These observations support the conclusion that many commonly measured biogenic oxidation products may be bound in low-volatility mass (e.g., accretion products, inorganic-organic adducts) that decomposes to individual compounds on analysis. However, the nature and extent of any such bonding remains uncertain. Similar conclusions are reach for both study locations, and average particle fractions for a given compound are consistent within ∼25% across measurement sites. PMID:27552285

  17. Novel structures for optimal space partitions

    NASA Astrophysics Data System (ADS)

    Opsomer, E.; Vandewalle, N.

    2016-10-01

    Partitioning space into polyhedra with a minimum total surface area is a fundamental question in science and mathematics. In 1887, Lord Kelvin conjectured that the optimal partition of space is obtained with a 14-faced space-filling polyhedron, called tetrakaidecahedron. Kelvin’s conjecture resisted a century until Weaire and Phelan proposed in 1994 a new structure, made of eight polyhedra, obtained from numerical simulations. Herein, we propose a stochastic method for finding efficient polyhedral structures, maximizing the mean isoperimeter Q, instead of minimizing total area. We show that novel optimal structures emerge with non-equal cell volumes and uncurved facets. A partition made of 24 polyhedra, is found to surpass the previous known structures. Our work suggests that other structures with high isoperimeter values are still to be discovered in the pursuit of optimal space partitions.

  18. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  19. Connections between groundwater flow and transpiration partitioning.

    PubMed

    Maxwell, Reed M; Condon, Laura E

    2016-07-22

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes. PMID:27463671

  20. Connections between groundwater flow and transpiration partitioning

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.

    2016-07-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land-energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. Both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47 ± 13 to 62 ± 12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in Earth system models, may provide a missing link for reconciling observations and global models of terrestrial water fluxes.

  1. Reducing variance in batch partitioning measurements

    SciTech Connect

    Mariner, Paul E.

    2010-08-11

    The partitioning experiment is commonly performed with little or no attention to reducing measurement variance. Batch test procedures such as those used to measure K{sub d} values (e.g., ASTM D 4646 and EPA402 -R-99-004A) do not explain how to evaluate measurement uncertainty nor how to minimize measurement variance. In fact, ASTM D 4646 prescribes a sorbent:water ratio that prevents variance minimization. Consequently, the variance of a set of partitioning measurements can be extreme and even absurd. Such data sets, which are commonplace, hamper probabilistic modeling efforts. An error-savvy design requires adjustment of the solution:sorbent ratio so that approximately half of the sorbate partitions to the sorbent. Results of Monte Carlo simulations indicate that this simple step can markedly improve the precision and statistical characterization of partitioning uncertainty.

  2. Merging Groups to Maximize Object Partition Comparison.

    ERIC Educational Resources Information Center

    Klastorin, T. D.

    1980-01-01

    The problem of objectively comparing two independently determined partitions of N objects or variables is discussed. A similarity measure based on the simple matching coefficient is defined and related to previously suggested measures. (Author/JKS)

  3. Partition function zeros and finite size scaling for polymer adsorption

    SciTech Connect

    Taylor, Mark P.; Luettmer-Strathmann, Jutta

    2014-11-28

    The zeros of the canonical partition functions for a flexible polymer chain tethered to an attractive flat surface are computed for chains up to length N = 1536. We use a bond-fluctuation model for the polymer and obtain the density of states for the tethered chain by Wang-Landau sampling. The partition function zeros in the complex e{sup β}-plane are symmetric about the real axis and densest in a boundary region that has the shape of a nearly closed circle, centered at the origin, terminated by two flaring tails. This structure defines a root-free zone about the positive real axis and follows Yang-Lee theory. As the chain length increases, the base of each tail moves toward the real axis, converging on the phase-transition point in the thermodynamic limit. We apply finite-size scaling theory of partition-function zeros and show that the crossover exponent defined through the leading zero is identical to the standard polymer adsorption crossover exponent ϕ. Scaling analysis of the leading zeros locates the polymer adsorption transition in the thermodynamic (N → ∞) limit at reduced temperature T{sub c}{sup *}=1.027(3) [β{sub c}=1/T{sub c}{sup *}=0.974(3)] with crossover exponent ϕ = 0.515(25). Critical exponents for the order parameter and specific heat are determined to be β{sup ~}=0.97(5) and α = 0.03(4), respectively. A universal scaling function for the average number of surface contacts is also constructed.

  4. Partition function zeros and finite size scaling for polymer adsorption

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Luettmer-Strathmann, Jutta

    2014-11-01

    The zeros of the canonical partition functions for a flexible polymer chain tethered to an attractive flat surface are computed for chains up to length N = 1536. We use a bond-fluctuation model for the polymer and obtain the density of states for the tethered chain by Wang-Landau sampling. The partition function zeros in the complex eβ-plane are symmetric about the real axis and densest in a boundary region that has the shape of a nearly closed circle, centered at the origin, terminated by two flaring tails. This structure defines a root-free zone about the positive real axis and follows Yang-Lee theory. As the chain length increases, the base of each tail moves toward the real axis, converging on the phase-transition point in the thermodynamic limit. We apply finite-size scaling theory of partition-function zeros and show that the crossover exponent defined through the leading zero is identical to the standard polymer adsorption crossover exponent ϕ. Scaling analysis of the leading zeros locates the polymer adsorption transition in the thermodynamic (N → ∞) limit at reduced temperature T_c^*=1.027(3) [β _c=1/T_c^*=0.974(3)] with crossover exponent ϕ = 0.515(25). Critical exponents for the order parameter and specific heat are determined to be widetilde{β }=0.97(5) and α = 0.03(4), respectively. A universal scaling function for the average number of surface contacts is also constructed.

  5. Three dimensional mirror symmetry and partition function on S 3

    NASA Astrophysics Data System (ADS)

    Dey, Anindya; Distler, Jacques

    2013-10-01

    We provide non-trivial checks of = 4 , D = 3 mirror symmetry in a large class of quiver gauge theories whose Type IIB (Hanany-Witten) descriptions involve D3 branes ending on orbifold/orientifold 5-planes at the boundary. From the M-theory perspective, such theories can be understood in terms of coincident M2 branes sitting at the origin of a product of an A-type and a D-type ALE (Asymtotically Locally Euclidean) space with G-fluxes. Families of mirror dual pairs, which arise in this fashion, can be labeled as ( A m-1 , D n ), where m and n are integers. For a large subset of such infinite families of dual theories, corresponding to generic values of n ≥ 4, arbitrary ranks of the gauge groups and varying m, we test the conjectured duality by proving the precise equality of the S 3 partition functions for dual gauge theories in the IR as functions of masses and FI parameters. The mirror map for a given pair of mirror dual theories can be read off at the end of this computation and we explicitly present these for the aforementioned examples. The computation uses non-trivial identities of hyperbolic functions including certain generalizations of Cauchy determinant identity and Schur's Pfaffian identity, which are discussed in the paper.

  6. Isorropia Partitioning and Load Balancing Package

    2006-09-01

    Isorropia is a partitioning and load balancing package which interfaces with the Zoltan library. Isorropia can accept input objects such as matrices and matrix-graphs, and repartition/redistribute them into a better data distribution on parallel computers. Isorropia is primarily an interface package, utilizing graph and hypergraph partitioning algorithms that are in the Zoltan library which is a third-party library to Tilinos.

  7. Deriving the Hirshfeld partitioning using distance metrics

    SciTech Connect

    Heidar-Zadeh, Farnaz; Ayers, Paul W.; Bultinck, Patrick

    2014-09-07

    The atoms in molecules associated with the Hirshfeld partitioning minimize the generalized Hellinger-Bhattacharya distance to the reference pro-atom densities. Moreover, the reference pro-atoms can be chosen by minimizing the distance between the pro-molecule density and the true molecular density. This provides an alternative to both the heuristic “stockholder” and the mathematical information-theoretic interpretations of the Hirshfeld partitioning. These results extend to any member of the family of f-divergences.

  8. Superconformal Chern-Simons partition functions of affine D-type quiver from Fermi gas

    NASA Astrophysics Data System (ADS)

    Moriyama, Sanefumi; Nosaka, Tomoki

    2015-09-01

    We consider the partition function of the superconformal Chern-Simons theories with the quiver diagram being the affine D-type Dynkin diagram. Rewriting the partition function into that of a Fermi gas system, we show that the perturbative expansions in 1 /N are summed up to an Airy function, as in the ABJM theory or more generally the theories of the affine A-type quiver. As a corollary, this provides a proof for the previous proposal in the large N limit. For special values of the Chern-Simons levels, we further identify three species of the membrane instantons and also conjecture an exact expression of the overall constant, which corresponds to the constant map in the topological string theory. [Figure not available: see fulltext.

  9. Boundary conditions and partition functions in higher spin AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    de Boer, Jan; Jottar, Juan I.

    2016-04-01

    We discuss alternative definitions of the semiclassical partition function in two-dimensional CFTs with higher spin symmetry, in the presence of sources for the higher spin currents. Theories of this type can often be described via Hamiltonian reduction of current algebras, and a holographic description in terms of three-dimensional Chern-Simons theory with generalized AdS boundary conditions becomes available. By studying the CFT Ward identities in the presence of sources, we determine the appropriate choice of boundary terms and boundary conditions in Chern-Simons theory for the various types of partition functions considered. In particular, we compare the Chern-Simons description of deformations of the field theory Hamiltonian versus those encoding deformations of the CFT action. Our analysis clarifies various issues and confusions that have permeated the literature on this subject.

  10. Toward a Self-Referential Theory of Partitioning: Methodological Considerations.

    ERIC Educational Resources Information Center

    Sawada, Daiyo; Pothier, Yvonne

    A new framework for designing qualitative studies is described to optimize the emergence, representation and presentation of insights. The framework, called Reflection Methodology, is presented as a "Conversational Paradigm" that includes four components--interviewer (researcher as participant); child, task situation, and observing technology…

  11. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  12. Software Partitioning Schemes for Advanced Simulation Computer Systems. Final Report.

    ERIC Educational Resources Information Center

    Clymer, S. J.

    Conducted to design software partitioning techniques for use by the Air Force to partition a large flight simulator program for optimal execution on alternative configurations, this study resulted in a mathematical model which defines characteristics for an optimal partition, and a manually demonstrated partitioning algorithm design which…

  13. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...) MVDDS licensees may apply to the Commission to partition their licensed geographic service areas to eligible entities and are free to partition their licensed spectrum at any time following the grant of...

  14. DEVELOPMENT AND AVAILABILITY OF EQUILIBRIUM PARTITIONING SEDIMENT GUIDELINES (ESGS) FOR NONIONIC ORGANIC CONTAMINANTS, METALS MIXTURES, AND POLYCYCLIC AROMATIC HYDROCARBON (PAH) MIXTURES

    EPA Science Inventory

    Collaborative efforts between EPA's Office of Water and Office of Research and Development have resulted in the development of sediment guidelines based on equilibrium partitioning theory (EqP). The guidance available includes a technical support document, describing the derivat...

  15. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    SciTech Connect

    Dey, Abhishek; Hocking, Rosalie K.; Larsen, Peter; Borovik, Andrew S.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  16. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  17. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  18. Compactified strings as quantum statistical partition function on the Jacobian torus.

    PubMed

    Matone, Marco; Pasti, Paolo; Shadchin, Sergey; Volpato, Roberto

    2006-12-31

    We show that the solitonic contribution of toroidally compactified strings corresponds to the quantum statistical partition function of a free particle living on higher dimensional spaces. In the simplest case of compactification on a circle, the Hamiltonian is the Laplacian on the 2g-dimensional Jacobian torus associated with the genus g Riemann surface corresponding to the string world sheet. T duality leads to a symmetry of the partition function mixing time and temperature. Such a classical-quantum correspondence and T duality shed some light on the well-known interplay between time and temperature in quantum field theory and classical statistical mechanics.

  19. Fluctuation sound absorption in quark matter

    NASA Astrophysics Data System (ADS)

    Kerbikov, B. O.; Lukashov, M. S.

    2016-09-01

    We investigate the sound absorption in quark matter due to the interaction of the sound wave with the precritical fluctuations of the diquark-pair field above Tc. The soft collective mode of the pair field is derived using the time-dependent Ginzburg-Landau functional with random Langevin forces. The strong absorption near the phase transition line may be viewed as a manifestation of Mandelshtam-Leontovich slow relaxation time theory.

  20. Screening of pesticides for environmental partitioning tendency.

    PubMed

    Gramatica, Paola; Di Guardo, Antonio

    2002-06-01

    The partitioning tendency of chemicals, in this study pesticides in particular, into different environmental compartments depends mainly on the concurrent relevance of the physico-chemical properties of the chemical itself. To rank the pesticides according to their distribution tendencies in the different environmental compartments we propose a multivariate approach: the combination, by principal component analysis, of those physico-chemical properties like organic carbon partition coefficient (Koc), n-octanol/water partition coefficient (Kow), water solubility (Sw), vapour pressure and Henry's law constant (H) that are more relevant to the determination of environmental partitioning. The resultant macrovariables, the PC1 and PC2 scores here named leaching index (LIN) and volatality index (VIN), are proposed as preliminary environmental partitioning indexes in different media. These two indexes are modeled by theoretical molecular descriptors with satisfactory predictive power. Such an approach allows a rapid pre-determination and screening of the environmental distribution of pesticides starting only from the molecular structure of the pesticide, without any a priori knowledge of the physico-chemical properties.

  1. Photosynthate Partitioning into Starch in Soybean Leaves

    PubMed Central

    Chatterton, N. Jerry; Silvius, John E.

    1979-01-01

    Photosynthesis, photosynthate partitioning into foliar starch, and translocation were investigated in soybean plants (Glycine max (L.) Merr. cv. Amsoy 71), grown under different photoperiods and photosynthetic periods to determine the controls of leaf starch accumulation. Starch accumulation rates in soybean leaves were inversely related to the length of the daily photosynthetic period under which the plants were grown. Photosynthetic period and not photoperiod per se appears to be the important factor. Plants grown in a 14-hour photosynthetic period partitioned approximately 60% of the daily foliar accumulation into starch whereas 7-hour plants partitioned about 90% of their daily foliar accumulation into starch. The difference in starch accumulation resulted from a change in photosynthate partitioning between starch and leaf residual dry weight. Residual dry weight is defined as leaf dry weight minus the weight of total nonstructural carbohydrates. Differences in photosynthate partitioning into starch were also associated with changes in photosynthetic and translocation rates, as well as with leaf and whole plant morphology. It is concluded that leaf starch accumulation is a programmed process and not simply the result of a limitation in translocation. PMID:16661047

  2. Multi-A Graph Patrolling and Partitioning

    NASA Astrophysics Data System (ADS)

    Elor, Y.; Bruckstein, A. M.

    2012-12-01

    We introduce a novel multi agent patrolling algorithm inspired by the behavior of gas filled balloons. Very low capability ant-like agents are considered with the task of patrolling an unknown area modeled as a graph. While executing the proposed algorithm, the agents dynamically partition the graph between them using simple local interactions, every agent assuming the responsibility for patrolling his subgraph. Balanced graph partition is an emergent behavior due to the local interactions between the agents in the swarm. Extensive simulations on various graphs (environments) showed that the average time to reach a balanced partition is linear with the graph size. The simulations yielded a convincing argument for conjecturing that if the graph being patrolled contains a balanced partition, the agents will find it. However, we could not prove this. Nevertheless, we have proved that if a balanced partition is reached, the maximum time lag between two successive visits to any vertex using the proposed strategy is at most twice the optimal so the patrol quality is at least half the optimal. In case of weighted graphs the patrol quality is at least (1)/(2){lmin}/{lmax} of the optimal where lmax (lmin) is the longest (shortest) edge in the graph.

  3. Computational prediction of solubilizers' effect on partitioning.

    PubMed

    Hoest, Jan; Christensen, Inge T; Jørgensen, Flemming S; Hovgaard, Lars; Frokjaer, Sven

    2007-02-01

    A computational model for the prediction of solubilizers' effect on drug partitioning has been developed. Membrane/water partitioning was evaluated by means of immobilized artificial membrane (IAM) chromatography. Four solubilizers were used to alter the partitioning in the IAM column. Two types of molecular descriptors were calculated: 2D descriptors using the MOE software and 3D descriptors using the Volsurf software. Structure-property relationships between each of the two types of descriptors and partitioning were established using partial least squares, projection to latent structures (PLS) statistics. Statistically significant relationships between the molecular descriptors and the IAM data were identified. Based on the 2D descriptors structure-property relationships R(2)Y=0. 99 and Q(2)=0.82-0.83 were obtained for some of the solubilizers. The most important descriptor was related to logP. For the Volsurf 3D descriptors models with R(2)Y=0.53-0.64 and Q(2)=0.40-0.54 were obtained using five descriptors. The present study showed that it is possible to predict partitioning of substances in an artificial phospholipid membrane, with or without the use of solubilizers.

  4. Comparison of the composition and gas/particle partitioning of organic acids in monoterpene and isoprene dominated environments

    NASA Astrophysics Data System (ADS)

    Thompson, S.; Yatavelli, L. R.; Stark, H.; Kimmel, J.; Krechmer, J.; Hu, W.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2013-12-01

    Gas and particle-phase organic acids measurements from two different regions with different biogenic volatile organic compound emissions are used to understand gas/particle partitioning principles. A Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS), with acetate (CH3COO-) as the reagent ion was used to selectively detect acids. Hundreds of gas and particle-phase organic acids were measured in both locations, a monoterpene and MBO-dominated environment (ponderosa pine forest in Colorado, BEACHON-RoMBAS 2011) and isoprene and terpene-dominated environment (mixed deciduous and pine forest in Alabama, SOAS 2013). Time series of gas/particle partitioning for ions consistent with tracers for isoprene oxidation such as methacrylic acid epoxide (MAE) and isoprene epoxydiol (IEPOX) and tracers for α-pinene oxidation such as pinic and pinonic acid will be presented. Gas/particle partitioning, represented as the fraction of each species in the particle-phase, Fp, was calculated for C1-C18 alkanoic acids and biogenic VOC oxidation tracers and compared to an absorptive partitioning model. These results are compared with those of two other instruments that can also quantify gas/particle partitioning with high time resolution: a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG) and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS). Data from both environments were consistent with the values and trends predicted by the absorptive partitioning model for the tracer acids. However, for low carbon number alkanoic acids we report a higher fraction in the particle phase than predicted by the model. The Fp for the bulk-averaged acids and its relationship to the degree of oxidation and carbon number will also be presented. Temporal patterns and correlations with atmospheric conditions and composition will be explored for individual and bulk acids. We will discuss atmospheric implications of the gas/particle partitioning

  5. Iterating free-field AdS/CFT: higher spin partition function relations

    NASA Astrophysics Data System (ADS)

    Beccaria, Matteo; Tseytlin, Arkady A.

    2016-07-01

    We find a simple relation between a free higher spin partition function on the thermal quotient of {{AdS}}d+1 and the partition function of the associated d-dimensional conformal higher spin field defined on the thermal quotient of {{AdS}}d. Starting with a conformal higher spin field defined in {{AdS}}d, one may also associate to with another conformal field in d-1 dimensions, thus iterating AdS/CFT. We observe that in the case of d=4, this iteration leads to a trivial 3d higher spin conformal theory with parity-even non-local action: it describes a zero total number of dynamical degrees of freedom and the corresponding partition function is equal to 1.

  6. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  7. New parallel SOR method by domain partitioning

    SciTech Connect

    Xie, D.; Adams, L.

    1999-07-01

    In this paper the authors propose and analyze a new parallel SOR method, the PSOR method, formulated by using domain partitioning and interprocessor data communication techniques. They prove that the PSOR method has the same asymptotic rate of convergence as the Red/Black (R/B) SOR method for the five-point stencil on both strip and block partitions, and as the four-color (R/B/G/O) SOR method for the nine-point stencil on strip partitions. They also demonstrate the parallel performance of the PSOR method on four different MIMD multiprocessors (a KSR1, an Intel Delta, a Paragon, and an IBM SP2). Finally, they compare the parallel performance of PSOR, R/B SOR, and R/B/G/O SOR. Numerical results on the Paragon indicate that PSOR is more efficient than R/B SOR and R/B/G/O SOR in both computation and interprocessor data communication.

  8. Parallel algorithms for dynamically partitioning unstructured grids

    SciTech Connect

    Diniz, P.; Plimpton, S.; Hendrickson, B.; Leland, R.

    1994-10-01

    Grid partitioning is the method of choice for decomposing a wide variety of computational problems into naturally parallel pieces. In problems where computational load on the grid or the grid itself changes as the simulation progresses, the ability to repartition dynamically and in parallel is attractive for achieving higher performance. We describe three algorithms suitable for parallel dynamic load-balancing which attempt to partition unstructured grids so that computational load is balanced and communication is minimized. The execution time of algorithms and the quality of the partitions they generate are compared to results from serial partitioners for two large grids. The integration of the algorithms into a parallel particle simulation is also briefly discussed.

  9. Light absorption in conical silicon particles.

    PubMed

    Bogdanowicz, J; Gilbert, M; Innocenti, N; Koelling, S; Vanderheyden, B; Vandervorst, W

    2013-02-11

    The problem of the absorption of light by a nanoscale dielectric cone is discussed. A simplified solution based on the analytical Mie theory of scattering and absorption by cylindrical objects is proposed and supported by the experimental observation of sharply localized holes in conical silicon tips after high-fluence irradiation. This study reveals that light couples with tapered objects dominantly at specific locations, where the local radius corresponds to one of the resonant radii of a cylindrical object, as predicted by Mie theory.

  10. 1-loop partition function in AdS 3/ CFT 2

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wu, Jie-qiang

    2015-12-01

    The 1-loop partition function of the handlebody solutions in the AdS3 gravity have been derived some years ago using the heat kernel techniques and the method of images. In the semiclassical limit, such partition function should correspond to the order O( c 0) part in the partition function of dual conformal field theory(CFT) on the boundary Riemann surface. The higher genus partition function could be computed by the multi-point functions in the Riemann sphere via sewing prescription. In the large central charge limit, the CFT is effectively free in the sense that to the leading order of c the multi-point function is further simplified to be a summation over the products of two-point functions of single-particle states. Correspondingly in the bulk, the graviton is freely propagating without interaction. Furthermore the product of the two-point functions may define the links, each of which is in one-to-one correspondence with the conjugacy class of the Schottky group of the Riemann surface. Moreover, the value of a link is determined by the multiplier of the element in the conjugacy class. This allows us to reproduce exactly the gravitational 1-loop partition function. The proof can be generalized to the higher spin gravity and its dual CFT.

  11. Coexistence via resource partitioning fails to generate an increase in community function.

    PubMed

    DeLong, John P; Vasseur, David A

    2012-01-01

    Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.

  12. Density-based partitioning methods for ground-state molecular calculations.

    PubMed

    Nafziger, Jonathan; Wasserman, Adam

    2014-09-11

    With the growing complexity of systems that can be treated with modern electronic-structure methods, it is critical to develop accurate and efficient strategies to partition the systems into smaller, more tractable fragments. We review some of the various recent formalisms that have been proposed to achieve this goal using fragment (ground-state) electron densities as the main variables, with an emphasis on partition density-functional theory (PDFT), which the authors have been developing. To expose the subtle but important differences between alternative approaches and to highlight the challenges involved with density partitioning, we focus on the simplest possible systems where the various methods can be transparently compared. We provide benchmark PDFT calculations on homonuclear diatomic molecules and analyze the associated partition potentials. We derive a new exact condition determining the strength of the singularities of the partition potentials at the nuclei, establish the connection between charge-transfer and electronegativity equalization between fragments, test different ways of dealing with fractional fragment charges and spins, and finally outline a general strategy for overcoming delocalization and static-correlation errors in density-functional calculations.

  13. Coexistence via Resource Partitioning Fails to Generate an Increase in Community Function

    PubMed Central

    DeLong, John P.; Vasseur, David A.

    2012-01-01

    Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states. PMID:22253888

  14. Partitioning SAT Instances for Distributed Solving

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Antti E. J.; Junttila, Tommi; Niemelä, Ilkka

    In this paper we study the problem of solving hard propositional satisfiability problem (SAT) instances in a computing grid or cloud, where run times and communication between parallel running computations are limited.We study analytically an approach where the instance is partitioned iteratively into a tree of subproblems and each node in the tree is solved in parallel.We present new methods for constructing partitions which combine clause learning and lookahead. The methods are incorporated into the iterative approach and its performance is demonstrated with an extensive comparison against the best sequential solvers in the SAT competition 2009 as well as against two efficient parallel solvers.

  15. Sorption: Equilibrium partitioning and QSAR development using molecular predictors

    SciTech Connect

    Means, J.C.

    1994-12-31

    Sorption of chemical contaminants to sediments and soils has long been a subject of intensive investigation and QSAR development. Progressing the development of organic carbon-normalized, equilibrium partition constants (Koc) have greatly advanced the prediction of environmental fate. Integration of observed experimental results with thermodynamic modeling of compound behavior, based upon concepts of phase activities and fugacity have placed these QSARs on a firm theoretical base. An increasing spectrum of compound properties such as solubility, chemical activity, molecular surface area and other molecular topological indices have been evaluated for their utility as predictors of sorption properties. Questions concerning the effects of nonequilibrium states, hysteresis or irreversibility in desorption kinetics and equilibria, and particle-concentrations effects upon equilibrium constants as they affect fate predictions remain areas of contemporary investigation. These phenomena are considered and reviewed. The effects of modifying factors such as the effects of salinity or the presence of co-solvents may alter predicted fate of a compound. Competitive sorption with mobile microparticulate or colloidal phases may also impact OSAR predictions. Research on the role of both inorganic and organic-rich colloidal phases as a modifying influence on soil/sediment equilibrium partitioning theory is summarized.

  16. An in silico skin absorption model for fragrance materials.

    PubMed

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data.

  17. Airy Equation for the Topological String Partition Function in a Scaling Limit

    NASA Astrophysics Data System (ADS)

    Alim, Murad; Yau, Shing-Tung; Zhou, Jie

    2016-06-01

    We use the polynomial formulation of the holomorphic anomaly equations governing perturbative topological string theory to derive the free energies in a scaling limit to all orders in perturbation theory for any Calabi-Yau threefold. The partition function in this limit satisfies an Airy differential equation in a rescaled topological string coupling. One of the two solutions of this equation gives the perturbative expansion and the other solution provides geometric hints of the non-perturbative structure of topological string theory. Both solutions can be expanded naturally around strong coupling.

  18. Characterization of Ternary Protein Systems In Vivo with Tricolor Heterospecies Partition Analysis.

    PubMed

    Hur, Kwang-Ho; Chen, Yan; Mueller, Joachim D

    2016-03-01

    Tools and assays that characterize protein-protein interactions are of fundamental importance to biology, because protein assemblies play a critical role in the control and regulation of nearly every cellular process. The availability of fluorescent proteins has facilitated the direct and real-time observation of protein-protein interactions inside living cells, but existing methods are mostly limited to binary interactions between two proteins. Because of the scarcity of techniques capable of identifying ternary interactions, we developed tricolor heterospecies partition analysis. The technique is based on brightness analysis of fluorescence fluctuations from three fluorescent proteins that serve as protein labels. We identified three fluorescent proteins suitable for tricolor brightness experiments. In addition, we developed the theory of identifying interactions in a ternary protein system using tricolor heterospecies partition analysis. The theory was verified by experiments on well-characterized protein systems. A graphical representation of the heterospecies partition data was introduced to visualize interactions in ternary protein systems. Lastly, we performed fluorescence fluctuation experiments on cells expressing a coactivator and two nuclear receptors and applied heterospecies partition analysis to explore the interactions of this ternary protein system.

  19. UNCERTAINTY IN SOURCE PARTITIONING USING STABLE ISOTOPES

    EPA Science Inventory

    Stable isotope analyses are often used to quantify the contribution of multiple sources to a mixture, such as proportions of food sources in an animal's diet, C3 vs. C4 plant inputs to soil organic carbon, etc. Linear mixing models can be used to partition two sources with a sin...

  20. Lipid metabolism and nutrient partitioning strategies.

    PubMed

    Morris, A M; Calsbeek, D J; Eckel, R H

    2004-10-01

    The increasing prevalence of overweight and obesity worldwide is daunting and requires prompt attention by the affected, health care profession, government and the pharmaceutical industry. Because overweight/obesity are defined as an excess of adipose tissue mass, all approaches in prevention and treatment must consider redirecting lipid storage in adipose tissue to oxidative metabolism. Lipid partitioning is a complex process that involves interaction between fat and other macronutrients, particularly carbohydrate. In an isocaloric environment, when fat is stored carbohydrate is oxidized and vice versa. Processes that influence fat partitioning in a manner in which weight is maintained must be modified by changes in organ-specific fat transport and metabolism. When therapy is considered, however, changes in lipid partitioning alone will be ineffective unless a negative energy balance is also achieved, i.e. energy expenditure exceeds energy intake. The intent of this review is to focus on molecules including hormones, enzymes, cytokines, membrane transport proteins, and transcription factors directly involved in fat trafficking and partitioning that could be potential drug targets. Some examples of favorably altering body composition by systemic and/or tissue specific modification of these molecules have already been provided with gene knockout and/or transgenic approaches in mice. The translation of this science to humans remains a challenging task. PMID:15544448

  1. Partitioning of penoxsulam, a new sulfonamide herbicide.

    PubMed

    Jabusch, Thomas W; Tjeerdema, Ronald S

    2005-09-01

    Penoxsulam (trade name Granite) is a new acetolactate synthase (ALS) inhibitor herbicide for postemergence control of annual grasses, sedges, and broadleaf weeds in rice culture. This study was done to understand the equilibrium phase partitioning of penoxsulam to soil and air under conditions simulating California rice field conditions. Partitioning of penoxsulam was determined between soil and water (Kd) by the batch equilibrium method and between air and water (K(H)) by the gas-purge method. In four representative soils from the Sacramento Valley, the Kd values ranged from 0.14 to 5.05 and displayed a modest increase with soil pH. In soil amended with manure compost, soil sorption increased 4-fold with increasing soil organic matter content, but was still low with a Kd of 0.4 in samples with high organic carbon contents of 15%. Penoxsulam was confirmed to be extremely nonvolatile and did not partition into air at any measurable rate at 20 or 40 degrees C. K(H) (pH 7) was estimated at 4.6 x 10(-15) Pa x L x mol(-1) on the basis of available water solubility and vapor pressure data. The results imply that soil and air partitioning of penoxsulam do not significantly affect its potential for degradation or offsite movement in water.

  2. Hydrologic transport and partitioning of phosphorus fractions

    NASA Astrophysics Data System (ADS)

    Berretta, C.; Sansalone, J.

    2011-06-01

    SummaryPhosphorus (P) in rainfall-runoff partitions between dissolved and particulate matter (PM) bound phases. This study investigates the transport and partitioning of P to PM fractions in runoff from a landscaped and biogenically-loaded carpark in Gainesville, FL (GNV). Additionally, partitioning and concentration results are compared to a similarly-sized concrete-paved source area of a similar rainfall depth frequency distribution in Baton Rouge, LA (BTR), where in contrast vehicular traffic represents the main source of pollutants. Results illustrate that concentrations of P fractions (dissolved, suspended, settleable and sediment) for GNV are one to two orders of magnitude higher than BTR. Despite these differences the dissolved fraction ( f d) and partitioning coefficient ( K d) distributions are similar, illustrating that P is predominantly bound to PM fractions. Examining PM size fractions, specific capacity for P (PSC) indicates that the P concentration order is suspended > settleable > sediment for GNV, similarly to BTR. For GNV the dominant PM mass fraction is sediment (>75 μm), while the mass of P is distributed predominantly between sediment and suspended (<25 μm) fractions since these PM mass fractions dominated the settleable one. With respect to transport of PM and P fractions the predominance of events for both areas is mass-limited first-flush, although each fraction illustrated unique washoff parameters. However, while transport is predominantly mass-limited, the transport of each PM and P fraction is influenced by separate hydrologic parameters.

  3. hydrogen partitioning between postperovskite and bridgmanite

    NASA Astrophysics Data System (ADS)

    Townsend, J. P.; Jacobsen, S. D.; Bina, C. R.; Tsuchiya, J.

    2015-12-01

    We present new results from first-principles calculations of phonon spectra of lower mantle phases of MgSiO3 bridgmanite (brg) and postperovskite (ppv) including hydrous defects, and alumino-hydrous defects. We compute the partition coefficient of hydrogen between ppv and brg for hydrous and alumino-hydrous compositions at D" pressures and temperatures from first-principles lattice dynamics simulations and free energy calculations computed under the quasiharmonic approximation. We find that for aluminum free hydrous conditions the hydrogen partition coefficient between ppv and brg ranges from 0.2-0.8 within D". However, in the presence of aluminum the aluminum-hydrogen partition coefficient between ppv and brg is approximately 1.5. In general for a given pressure, lower temperature increases the partitioning of hydrogen into ppv for the aluminous models, but not for the aluminum free models. Because aluminum is is expected to occur in both natural slab and mantle compositions this suggests aluminous-hydrous ppv may be a host for water in D".

  4. Partitioning of selected antioxidants in mayonnaise.

    PubMed

    Jacobsen, C; Schwarz, K; Stöckmann, H; Meyer, A S; Adler-Nissen, J

    1999-09-01

    This study examined partitioning of alpha-, beta-, and gamma-tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase" and the "precipitate" (7-34% and 2-7%, respectively). This indicated entrapment of antioxidants at the oil-water interface in mayonnaise. The results signify that antioxidants partitioning into different phases of real food emulsions may vary widely.

  5. Set Partitions and the Multiplication Principle

    ERIC Educational Resources Information Center

    Lockwood, Elise; Caughman, John S., IV

    2016-01-01

    To further understand student thinking in the context of combinatorial enumeration, we examine student work on a problem involving set partitions. In this context, we note some key features of the multiplication principle that were often not attended to by students. We also share a productive way of thinking that emerged for several students who…

  6. Measure-theoretic sensitivity via finite partitions

    NASA Astrophysics Data System (ADS)

    Li, Jian

    2016-07-01

    For every positive integer n≥slant 2 , we introduce the concept of measure-theoretic n-sensitivity for measure-theoretic dynamical systems via finite measurable partitions, and show that an ergodic system is measure-theoretically n-sensitive but not (n  +  1)-sensitive if and only if its maximal pattern entropy is log n .

  7. Application of partition technology to particle electrophoresis

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Harris, J. Milton; Karr, Laurel J.; Bamberger, Stephan; Matsos, Helen C.; Snyder, Robert S.

    1989-01-01

    The effects of polymer-ligand concentration on particle electrophoretic mobility and partition in aqueous polymer two-phase systems are investigated. Polymer coating chemistry and affinity ligand synthesis, purification, and analysis are conducted. It is observed that poly (ethylene glycol)-ligands are effective for controlling particle electrophoretic mobility.

  8. Open software tools for eddy covariance flux partitioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agro-ecosystem management and assessment will benefit greatly from the development of reliable techniques for partitioning evapotranspiration (ET) into evaporation (E) and transpiration (T). Among other activities, flux partitioning can aid in evaluating consumptive vs. non-consumptive agricultural...

  9. Optimising query execution time in LHCb Bookkeeping System using partition pruning and Partition-Wise joins

    NASA Astrophysics Data System (ADS)

    Mathe, Zoltan; Charpentier, Philippe

    2014-06-01

    The LHCb experiment produces a huge amount of data which has associated metadata such as run number, data taking condition (detector status when the data was taken), simulation condition, etc. The data are stored in files, replicated on the Computing Grid around the world. The LHCb Bookkeeping System provides methods for retrieving datasets based on their metadata. The metadata is stored in a hybrid database model, which is a mixture of Relational and Hierarchical database models and is based on the Oracle Relational Database Management System (RDBMS). The database access has to be reliable and fast. In order to achieve a high timing performance, the tables are partitioned and the queries are executed in parallel. When we store large amounts of data the partition pruning is essential for database performance, because it reduces the amount of data retrieved from the disk and optimises the resource utilisation. This research presented here is focusing on the extended composite partitioning strategy such as range-hash partition, partition pruning and usage of the Partition-Wise joins. The system has to serve thousands of queries per minute, the performance and capability of the system is measured when the above performance optimization techniques are used.

  10. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    NASA Astrophysics Data System (ADS)

    Xu, Shuwu; Huang, Yunxia; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong

    2015-07-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye.

  11. 33. Elevation of Doors / Typical Cement Toilet Partitions / ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Elevation of Doors / Typical Cement Toilet Partitions / Typical Cement Shower Bath Partitions / Typical Marble Shower Bath Partitions / Dispensary Cupboard Supply Room Cupboard Similar / Section / Kitchen Cupboard and Sink / Screened Porch Cupboard (drawing 10) - Whittier State School, Hospital & Receiving Building, 11850 East Whittier Boulevard, Whittier, Los Angeles County, CA

  12. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., regional, and MTA licensees may apply to partition their authorized geographic service area or disaggregate their authorized spectrum at any time following grant of their geographic area authorizations. (a... partitioned service area on a schedule to the application. The partitioned service area shall be defined by...

  13. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., regional, and MTA licensees may apply to partition their authorized geographic service area or disaggregate their authorized spectrum at any time following grant of their geographic area authorizations. (a... partitioned service area on a schedule to the application. The partitioned service area shall be defined by...

  14. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., regional, and MTA licensees may apply to partition their authorized geographic service area or disaggregate their authorized spectrum at any time following grant of their geographic area authorizations. (a... partitioned service area on a schedule to the application. The partitioned service area shall be defined by...

  15. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., regional, and MTA licensees may apply to partition their authorized geographic service area or disaggregate their authorized spectrum at any time following grant of their geographic area authorizations. (a... partitioned service area on a schedule to the application. The partitioned service area shall be defined by...

  16. 47 CFR 24.104 - Partitioning and disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., regional, and MTA licensees may apply to partition their authorized geographic service area or disaggregate their authorized spectrum at any time following grant of their geographic area authorizations. (a... partitioned service area on a schedule to the application. The partitioned service area shall be defined by...

  17. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  18. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  19. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  20. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  1. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  2. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  3. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  4. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  5. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  6. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  7. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  8. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  9. 47 CFR 95.823 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Geographic partitioning and spectrum... Geographic partitioning and spectrum disaggregation. (a) Eligibility. Parties seeking Commission approval of geographic partitioning or spectrum disaggregation of 218-219 MHz Service system licenses shall request...

  10. 47 CFR 90.813 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.813 Partitioned licenses and disaggregated spectrum. (a) Eligibility.... Spectrum may be disaggregated in any amount. (3) Combined partitioning and disaggregation. The...

  11. 47 CFR 90.911 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Specialized Mobile Radio Service § 90.911 Partitioned licenses and disaggregated spectrum. (a) Eligibility...) that constitute the partitioned area. (2) Disaggregation. Spectrum may be disaggregated in any...

  12. 25 CFR 158.55 - Institution of partition proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Institution of partition proceedings. 158.55 Section 158... Institution of partition proceedings. (a) Prior authorization should be obtained from the Secretary, or his authorized representative, before the institution of proceedings to partition the lands of deceased...

  13. 47 CFR 90.1019 - Eligibility for partitioned licenses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and disaggregation. (1) Phase I non-nationwide licensees may apply to partition their licensed.... (2) Phase I nationwide licensees may apply to partition their licensed geographic service area or... licensees may apply to partition their licensed geographic service area or disaggregate their...

  14. 25 CFR 158.55 - Institution of partition proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Institution of partition proceedings. 158.55 Section 158... Institution of partition proceedings. (a) Prior authorization should be obtained from the Secretary, or his authorized representative, before the institution of proceedings to partition the lands of deceased...

  15. 47 CFR 90.1019 - Eligibility for partitioned licenses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and disaggregation. (1) Phase I non-nationwide licensees may apply to partition their licensed.... (2) Phase I nationwide licensees may apply to partition their licensed geographic service area or... licensees may apply to partition their licensed geographic service area or disaggregate their...

  16. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  17. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  18. Non-parametric partitioning of SAR images

    NASA Astrophysics Data System (ADS)

    Delyon, G.; Galland, F.; Réfrégier, Ph.

    2006-09-01

    We describe and analyse a generalization of a parametric segmentation technique adapted to Gamma distributed SAR images to a simple non parametric noise model. The partition is obtained by minimizing the stochastic complexity of a quantized version on Q levels of the SAR image and lead to a criterion without parameters to be tuned by the user. We analyse the reliability of the proposed approach on synthetic images. The quality of the obtained partition will be studied for different possible strategies. In particular, one will discuss the reliability of the proposed optimization procedure. Finally, we will precisely study the performance of the proposed approach in comparison with the statistical parametric technique adapted to Gamma noise. These studies will be led by analyzing the number of misclassified pixels, the standard Hausdorff distance and the number of estimated regions.

  19. Number Partitioning via Quantum Adiabatic Computation

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Toussaint, Udo; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We study both analytically and numerically the complexity of the adiabatic quantum evolution algorithm applied to random instances of combinatorial optimization problems. We use as an example the NP-complete set partition problem and obtain an asymptotic expression for the minimal gap separating the ground and exited states of a system during the execution of the algorithm. We show that for computationally hard problem instances the size of the minimal gap scales exponentially with the problem size. This result is in qualitative agreement with the direct numerical simulation of the algorithm for small instances of the set partition problem. We describe the statistical properties of the optimization problem that are responsible for the exponential behavior of the algorithm.

  20. Grid-based partitioning for comparing attractors

    NASA Astrophysics Data System (ADS)

    Carroll, T. L.; Byers, J. M.

    2016-04-01

    Stationary dynamical systems have invariant measures (or densities) that are characteristic of the particular dynamical system. We develop a method to characterize this density by partitioning the attractor into the smallest regions in phase space that contain information about the structure of the attractor. To accomplish this, we develop a statistic that tells us if we get more information about our data by dividing a set of data points into partitions rather than just lumping all the points together. We use this method to show that not only can we detect small changes in an attractor from a circuit experiment, but we can also distinguish between a large set of numerically generated chaotic attractors designed by Sprott. These comparisons are not limited to chaotic attractors—they should work for signals from any finite-dimensional dynamical system.

  1. Bipartite graph partitioning and data clustering

    SciTech Connect

    Zha, Hongyuan; He, Xiaofeng; Ding, Chris; Gu, Ming; Simon, Horst D.

    2001-05-07

    Many data types arising from data mining applications can be modeled as bipartite graphs, examples include terms and documents in a text corpus, customers and purchasing items in market basket analysis and reviewers and movies in a movie recommender system. In this paper, the authors propose a new data clustering method based on partitioning the underlying biopartite graph. The partition is constructed by minimizing a normalized sum of edge weights between unmatched pairs of vertices of the bipartite graph. They show that an approximate solution to the minimization problem can be obtained by computing a partial singular value decomposition (SVD) of the associated edge weight matrix of the bipartite graph. They point out the connection of their clustering algorithm to correspondence analysis used in multivariate analysis. They also briefly discuss the issue of assigning data objects to multiple clusters. In the experimental results, they apply their clustering algorithm to the problem of document clustering to illustrate its effectiveness and efficiency.

  2. Metal partitioning and toxicity in sewage sludge

    SciTech Connect

    Carlson-Ekvall, C.E.A.; Morrison, G.M.

    1995-12-31

    Over 20 years of research has failed to provide an unequivocal correlation between chemically extracted metals in sewage sludge applied to agricultural soil and either metal toxicity to soil organisms or crop uptake. Partitioning of metals between phases and species can provide a better estimation of mobility and potential bioavailability. Partition coefficients, K{sub D} for Cd, Cu, Pb and Zn in a sludge/water solution were determined considering the sludge/water solution as a three-phase system (particulate, colloidal and electrochemically available) over a range of pH values, ionic strengths, contact times and sludge/water ratios and compared with the KD values for sludge/water solution as a two-phase system (aqueous phase and particulate phase). Partitioning results were interpreted in terms of metal mobility from sludge to colloids and in terms of potential bioavailability from colloids to electrochemically available. The results show that both mobility and potential bioavailability are high for Zn, while Cu partitions into the mobile colloidal phase which is relatively non-bioavailable. Lead is almost completely bound to the solid phase, and is neither mobile nor bioavailable. A comparison between K, values and toxicity shows that Zn in sludge is more toxic than can be accounted for in the aqueous phase, which can be due to synergistic effects between sludge organics and Zn. Copper demonstrates clear synergism which can be attributed to the formation of lipid-soluble Cu complexes with known sludge components such as LAS, caffeine, myristic acid and nonylphenol.

  3. Environment Partitioning and Reactivity of Polybrominated Diphenylethers

    NASA Technical Reports Server (NTRS)

    Hua, Inez; Iraci, Laura T.; Jafvert, Chad; Bezares-Cruz, Juan

    2004-01-01

    Polybrominated diphenyl ethers (PBDEs) are an important class of flame retardants. Annual global demand for these compounds was over 67,000 metric tons in 2001. PBDEs have recently been extensively investigated as environmental contaminants because they have been detected in air, sediment, and tissue samples from urban and remote areas. Important issues include quantifying PBDE partitioning in various environmental compartments, and elucidating transformation pathways. The partitioning of PBDE congeners to aerosols was estimated for 16 sites in the United States, Canada, and Mexico. The aerosol particles were PM2.5, the total suspended particle (TSP) concentration varied between 3.0 - 55.4 micro g/cubic meter, and the organic fraction ranged from 11 - 41%; these data are published values for each site. It is estimated that the largest fraction of each PBDE associated with the aerosol particles occurs in Mexico City, and the smallest fraction in Colorado Plateau. Although the organic fraction in Mexico City is about 60% of that observed in the Colorado Plateau, the TSP is larger by a factor of about 18.5, and it is the difference in TSP that strongly influences the fraction of particle-bound PBDE in this case. PBDE partitioning to PM2.5 particles also varies seasonally because of temperature variations. For the less brominated congeners the percentage that is particle-bound is relatively low, regardless of air temperature. In contrast, the heavier congeners exhibit a significant temperature dependence: as the temperature decreases (fall, winter) the percentage of PBDE that is particle-bound increases. The partitioning calculations complement experimental data indicating that decabromodiphenyl ether (DBDE) dissolved in hexane transforms very rapidly when irradiated with solar light. DBDE is the most highly brominated PBDE congener (10 bromine atoms) and occurs in the commercial formulation which is subject to the largest global demand.

  4. Time-dependent nucleation in partitioning systems

    SciTech Connect

    Kelton, K.F.; Narayan, K.L.

    1998-12-31

    Nucleation in multi-component systems is poorly understood, particularly when the rates of long-range diffusion are comparable with the rates of attachment at the cluster interface. For illustration, measurements of the time-dependent nucleation rates in silicate and metallic glasses are discussed. A new model for nucleation in partitioning systems, which explains many of devitrification microstructural features in bulk metallic glasses, is presented.

  5. Partitioned-field uniaxial holographic lenses.

    PubMed

    López, Ana M; Atencia, Jesús; Tornos, José; Quintanilla, Manuel

    2002-04-01

    The efficiency and aberration of partitioned-field uniaxial volume holographic compound lenses are theoretically and experimentally studied. These systems increase the image fields of holographic volume lenses, limited by the angular selectivity that is typical of these elements. At the same time, working with uniaxial systems has led to a decrease in aberration because two recording points (that behave as aberration-free points) are used. The extension of the image field is experimentally proved.

  6. REE Partition Coefficients from Synthetic Diogenite-Like Enstatite and the Implications of Petrogenetic Modeling

    NASA Technical Reports Server (NTRS)

    Schwandt, C. S.; McKay, G. A.

    1996-01-01

    Determining the petrogenesis of eucrites (basaltic achondrites) and diogenites (orthopyroxenites) and the possible links between the meteorite types was initiated 30 years ago by Mason. Since then, most investigators have worked on this question. A few contrasting theories have emerged, with the important distinction being whether or not there is a direct genetic link between eucrites and diogenites. One theory suggests that diogenites are cumulates resulting from the fractional crystallization of a parent magma with the eucrites crystallizing, from the residual magma after separation from the diogenite cumulates. Another model proposes that diogenites are cumulates formed from partial melts derived from a source region depleted by the prior generation of eucrite melts. It has also been proposed that the diogenites may not be directly linked to the eucrites and that they are cumulates derived from melts that are more orthopyroxene normative than the eucrites. This last theory has recently received more analytical and experimental support. One of the difficulties with petrogenetic modeling is that it requires appropriate partition coefficients for modeling because they are dependent on temperature, pressure, and composition. For this reason, we set out to determine minor- and trace-element partition coefficients for diogenite-like orthopyroxene. We have accomplished this task and now have enstatite/melt partition coefficients for Al, Cr, Ti, La, Ce, Nd, Sm, Eu, Dy, Er, Yb, and La.

  7. Introduction to computational oral absorption simulation.

    PubMed

    Sugano, Kiyohiko

    2009-03-01

    Computational oral absorption simulation (COAS) is anticipated to be a powerful tool in improving the productivity of drug discovery and development. This article reviews the theories of pharmaceutical sciences that consist of COAS. Although most of these theories are classical, they are revisited from the context of modern drug discovery and development. The theories of solubility, diffusion, dissolution, precipitation, intestinal membrane permeation and gastrointestinal transit are comprehensively described. Prediction strategy is then discussed based on the biopharmaceutical classification system. In the final part, good simulation practice is proposed and many frequently asked questions answered.

  8. Biogeography of time partitioning in mammals

    PubMed Central

    Bennie, Jonathan J.; Duffy, James P.; Inger, Richard; Gaston, Kevin J.

    2014-01-01

    Many animals regulate their activity over a 24-h sleep–wake cycle, concentrating their peak periods of activity to coincide with the hours of daylight, darkness, or twilight, or using different periods of light and darkness in more complex ways. These behavioral differences, which are in themselves functional traits, are associated with suites of physiological and morphological adaptations with implications for the ecological roles of species. The biogeography of diel time partitioning is, however, poorly understood. Here, we document basic biogeographic patterns of time partitioning by mammals and ecologically relevant large-scale patterns of natural variation in “illuminated activity time” constrained by temperature, and we determine how well the first of these are predicted by the second. Although the majority of mammals are nocturnal, the distributions of diurnal and crepuscular species richness are strongly associated with the availability of biologically useful daylight and twilight, respectively. Cathemerality is associated with relatively long hours of daylight and twilight in the northern Holarctic region, whereas the proportion of nocturnal species is highest in arid regions and lowest at extreme high altitudes. Although thermal constraints on activity have been identified as key to the distributions of organisms, constraints due to functional adaptation to the light environment are less well studied. Global patterns in diversity are constrained by the availability of the temporal niche; disruption of these constraints by the spread of artificial lighting and anthropogenic climate change, and the potential effects on time partitioning, are likely to be critical influences on species’ future distributions. PMID:25225371

  9. Diversity partitioning during the Cambrian radiation.

    PubMed

    Na, Lin; Kiessling, Wolfgang

    2015-04-14

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  10. Airborne phthalate partitioning to cotton clothing

    NASA Astrophysics Data System (ADS)

    Morrison, Glenn; Li, Hongwan; Mishra, Santosh; Buechlein, Melissa

    2015-08-01

    Accumulation on indoor surfaces and fabrics can increase dermal uptake and non-dietary ingestion of semi-volatile organic compounds. To better understand the potential for dermal uptake of phthalates from clothing, we measured the mass accumulation on cotton fabrics of two phthalate esters commonly identified in indoor air: diethylphthalate (DEP) and di-n-butyl phthalate (DnBP). In 10-day chamber experiments, we observed strong air-to-cloth partitioning of these phthalates to shirts and jean material. Area-normalized partition coefficients ranged from 209 to 411 (μg/m2)/(μg/m3) for DEP and 2850 to 6580 (μg/m2)/(μg/m3) for DnBP. Clothing volume-normalized partition coefficients averaged 2.6 × 105 (μg/m3)/(μg/m3) for DEP and 3.9 × 106 (μg/m3)/(μg/m3) for DnBP. At equilibrium, we estimate that a typical set of cotton clothing can sorb DnBP from the equivalent of >10,000 m3 of indoor air, thereby substantially decreasing external mass-transfer barriers to dermal uptake. Further, we estimate that a significant fraction of a child's body burden of DnBP may come from mouthing fabric material that has been equilibrated with indoor air.

  11. Diversity partitioning during the Cambrian radiation

    PubMed Central

    Na, Lin; Kiessling, Wolfgang

    2015-01-01

    The fossil record offers unique insights into the environmental and geographic partitioning of biodiversity during global diversifications. We explored biodiversity patterns during the Cambrian radiation, the most dramatic radiation in Earth history. We assessed how the overall increase in global diversity was partitioned between within-community (alpha) and between-community (beta) components and how beta diversity was partitioned among environments and geographic regions. Changes in gamma diversity in the Cambrian were chiefly driven by changes in beta diversity. The combined trajectories of alpha and beta diversity during the initial diversification suggest low competition and high predation within communities. Beta diversity has similar trajectories both among environments and geographic regions, but turnover between adjacent paleocontinents was probably the main driver of diversification. Our study elucidates that global biodiversity during the Cambrian radiation was driven by niche contraction at local scales and vicariance at continental scales. The latter supports previous arguments for the importance of plate tectonics in the Cambrian radiation, namely the breakup of Pannotia. PMID:25825755

  12. Absorption lineshapes of molecular aggregates revisited

    SciTech Connect

    Gelzinis, Andrius; Valkunas, Leonas; Abramavicius, Darius

    2015-04-21

    Linear absorption is the most basic optical spectroscopy technique that provides information about the electronic and vibrational degrees of freedom of molecular systems. In simulations of absorption lineshapes, often diagonal fluctuations are included using the cumulant expansion, and the off-diagonal fluctuations are accounted for either perturbatively, or phenomenologically. The accuracy of these methods is limited and their range of validity is still questionable. In this work, a systematic study of several such methods is presented by comparing the lineshapes with exact results. It is demonstrated that a non-Markovian theory for off-diagonal fluctuations, termed complex time dependent Redfield theory, gives good agreement with exact lineshapes over a wide parameter range. This theory is also computationally efficient. On the other hand, accounting for the off-diagonal fluctuations using the modified Redfield lifetimes was found to be inaccurate.

  13. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  14. δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down

    NASA Astrophysics Data System (ADS)

    Good, Stephen P.; Soderberg, Keir; Guan, Kaiyu; King, Elizabeth G.; Scanlon, Todd M.; Caylor, Kelly K.

    2014-02-01

    The partitioning of surface vapor flux (FET) into evaporation (FE) and transpiration (FT) is theoretically possible because of distinct differences in end-member stable isotope composition. In this study, we combine high-frequency laser spectroscopy with eddy covariance techniques to critically evaluate isotope flux partitioning of FET over a grass field during a 15 day experiment. Following the application of a 30 mm water pulse, green grass coverage at the study site increased from 0 to 10% of ground surface area after 6 days and then began to senesce. Using isotope flux partitioning, transpiration increased as a fraction of total vapor flux from 0% to 40% during the green-up phase, after which this ratio decreased while exhibiting hysteresis with respect to green grass coverage. Daily daytime leaf-level gas exchange measurements compare well with daily isotope flux partitioning averages (RMSE = 0.0018 g m-2 s-1). Overall the average ratio of FT to FET was 29%, where uncertainties in Keeling plot intercepts and transpiration composition resulted in an average of uncertainty of ˜5% in our isotopic partitioning of FET. Flux-variance similarity partitioning was partially consistent with the isotope-based approach, with divergence occurring after rainfall and when the grass was stressed. Over the average diurnal cycle, local meteorological conditions, particularly net radiation and relative humidity, are shown to control partitioning. At longer time scales, green leaf area and available soil water control FT/FET. Finally, we demonstrate the feasibility of combining isotope flux partitioning and flux-variance similarity theory to estimate water use efficiency at the landscape scale.

  15. Staggered chiral random matrix theory

    SciTech Connect

    Osborn, James C.

    2011-02-01

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  16. Computational oral absorption simulation for low-solubility compounds.

    PubMed

    Sugano, Kiyohiko

    2009-11-01

    Bile micelles play an important role in oral absorption of low-solubility compounds. Bile micelles can affect solubility, dissolution rate, and permeability. For the pH-solubility profile in bile micelles, the Henderson-Hasselbalch equation should be modified to take bile-micelle partition into account. For the dissolution rate, in the Nernst-Brunner equation, the effective diffusion coefficient in bile-micelle media should be used instead of the monomer diffusion coefficient. The diffusion coefficient of bile micelles is 8- to 18-fold smaller than that of monomer molecules. For permeability, the effective diffusion coefficient in the unstirred water layer adjacent to the epithelial membrane, and the free fraction at the epithelial membrane surface should be taken into account. The importance of these aspects is demonstrated here using several in vivo and clinical oral-absorption data of low-solubility model compounds. Using the theoretical equations, the food effect on oral absorption is further discussed.

  17. Hybrid silencers with micro-perforated panels and internal partitions.

    PubMed

    Yu, Xiang; Cheng, Li; You, Xiangyu

    2015-02-01

    A sub-structuring approach, along with a unit cell treatment, is proposed to model expansion chamber silencers with internal partitions and micro-perforated panels (MPPs) in the absence of internal flow. The side-branch of the silencer is treated as a combination of unit cells connected in series. It is shown that, by connecting multiple unit cells with varying parameters, the noise attenuation bandwidth can be enlarged. With MPPs, the hybrid noise attenuation mechanism of the silencer is revealed. Depending on the size of the perforation hole, noise attenuation can be dominated by dissipative, reactive, or combined effects together. For a broadband sound absorption, the hole size, together with the perforation ratio and other parameters, can be optimized to strike a balance between the dissipative and reactive effect, for ultimately achieving the desired noise attenuation performance within a prescribed frequency region. The modular nature of the proposed formulation allows doing this in a flexible, accurate, and cost effective manner. The accuracy of the proposed approach is validated through comparisons with finite element method and experiments. PMID:25698027

  18. Energy loss partitioning during ballistic impact of polymer composites

    NASA Technical Reports Server (NTRS)

    Zee, Ralph H.; Hsieh, Chung Y.

    1993-01-01

    The objective of this study is to determine the energy dissipation processes in polymer-matrix composites during impact of ballistic projectiles. These processes include heat, fiber deformation and breakage, matrix deformation and fracture, and interfacial delamination. In this study, experimental measurements were made, using specialized specimen designs and test methods, to isolate the energy consumed by each of these processes during impact in the ballistic range. Using these experiments, relationships between material parameters and energy dissipation were examined. Composites with the same matrix but reinforced with Kevlar, PE, and graphite fabric were included in this study. These fibers were selected based on the differences in their intrinsic properties. Matrix cracking was found to be one of the most important energy absorption mechanisms during impact, especially in ductile samples such as Spectra-900 PE and Kevlar-49 reinforced polymer. On the contrary, delamination dominated the energy dissipation in brittle composites such as graphite reinforced materials. The contribution from frictional forces was also investigated and the energy partitioning among the different processes evaluated.

  19. Hybrid silencers with micro-perforated panels and internal partitions.

    PubMed

    Yu, Xiang; Cheng, Li; You, Xiangyu

    2015-02-01

    A sub-structuring approach, along with a unit cell treatment, is proposed to model expansion chamber silencers with internal partitions and micro-perforated panels (MPPs) in the absence of internal flow. The side-branch of the silencer is treated as a combination of unit cells connected in series. It is shown that, by connecting multiple unit cells with varying parameters, the noise attenuation bandwidth can be enlarged. With MPPs, the hybrid noise attenuation mechanism of the silencer is revealed. Depending on the size of the perforation hole, noise attenuation can be dominated by dissipative, reactive, or combined effects together. For a broadband sound absorption, the hole size, together with the perforation ratio and other parameters, can be optimized to strike a balance between the dissipative and reactive effect, for ultimately achieving the desired noise attenuation performance within a prescribed frequency region. The modular nature of the proposed formulation allows doing this in a flexible, accurate, and cost effective manner. The accuracy of the proposed approach is validated through comparisons with finite element method and experiments.

  20. Photodissociation of N{sub 2}O: Energy partitioning

    SciTech Connect

    Schmidt, J. A.; Johnson, M. S.; Lorenz, U.; McBane, G. C.; Schinke, R.

    2011-07-14

    The energy partitioning in the UV photodissociation of N{sub 2}O is investigated by means of quantum mechanical wave packet and classical trajectory calculations using recently calculated potential energy surfaces. Vibrational excitation of N{sub 2} is weak at the onset of the absorption spectrum, but becomes stronger with increasing photon energy. Since the NNO equilibrium angles in the ground and the excited state differ by about 70 degree sign , the molecule experiences an extraordinarily large torque during fragmentation producing N{sub 2} in very high rotational states. The vibrational and rotational distributions obtained from the quantum mechanical and the classical calculations agree remarkably well. The shape of the rotational distributions is semi-quantitatively explained by a two-dimensional version of the reflection principle. The calculated rotational distribution for excitation with {lambda}= 204 nm and the translational energy distribution for 193 nm agree well with experimental results, except for the tails of the experimental distributions corresponding to excitation of the highest rotational states. Inclusion of nonadiabatic transitions from the excited to the ground electronic state at relatively large N{sub 2}-O separations, studied by trajectory surface hopping, improves the agreement at high j.

  1. Calculating partition coefficients of organic vapors in unsaturated soil and clays

    SciTech Connect

    Chen, D.; Rolston, D.E.; Yamaguchi, Toshiko

    2000-03-01

    Sorption of organic vapors on soil increases dramatically as soil-water content decreases in a dry region. Equations for calculating organic vapor partition coefficients in unsaturated soils as a function of soil-water content are proposed. The equations were based on the hypothesis that organic vapor in soils are found adsorbed onto water-solid and air-solid interfaces and dissolved in the soil solution. In the dry range, where water in soils can be considered the sorbate, water vapor and organic vapor compete for sorption sites with water vapor adsorbed preferentially at the air-solid interfaces because of the higher polarity of water molecules. The air-solid interfaces that are not covered by water molecules and are available for sorption of organic vapor can be estimated according to the Brunauer-Emmett-Teller adsorption theory. The predictions made by the proposed equations were compared with partition coefficients of three volatile organic compounds (VOCs)--benzene, toluene, and trichloroethylene--and a pesticide, diazinon (O,O diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate) in Yolo silt loam, and with partition coefficients of the same three VOCs for two clay minerals. The measured and predicted partition coefficients agreed reasonably well. All parameters of the proposed equations are measurable, and no curve-fitting is needed.

  2. High dimensional data clustering by partitioning the hypergraphs using dense subgraph partition

    NASA Astrophysics Data System (ADS)

    Sun, Xili; Tian, Shoucai; Lu, Yonggang

    2015-12-01

    Due to the curse of dimensionality, traditional clustering methods usually fail to produce meaningful results for the high dimensional data. Hypergraph partition is believed to be a promising method for dealing with this challenge. In this paper, we first construct a graph G from the data by defining an adjacency relationship between the data points using Shared Reverse k Nearest Neighbors (SRNN). Then a hypergraph is created from the graph G by defining the hyperedges to be all the maximal cliques in the graph G. After the hypergraph is produced, a powerful hypergraph partitioning method called dense subgraph partition (DSP) combined with the k-medoids method is used to produce the final clustering results. The proposed method is evaluated on several real high-dimensional datasets, and the experimental results show that the proposed method can improve the clustering results of the high dimensional data compared with applying k-medoids method directly on the original data.

  3. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  5. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  6. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  7. Intestinal absorption and biomagnification of organochlorines

    SciTech Connect

    Gobas, F.A.P.C. ); McCorquodale, J.R.; Haffner, G.D. )

    1993-03-01

    Dietary uptake rates of several organochlorines from diets with different lipid contents were measured in goldfish (Carassius auratus) to investigate the mechanism of intestinal absorption and biomagnification of organic chemical. The results suggest that intestinal absorption is predominantly controlled by chemical diffusion rather than lipid cotransport. Data for chemical uptake in human infants are presented to illustrate that biomagnification is caused by the digestion of food in the gastrointestinal tract. The findings are discussed in the context of two conflicting theories for the mechanism of biomagnification, and a mechanistic model is presented for the dietary uptake and biomagnification of organic chemicals in fish and mammals.

  8. PARTITIONING SPECTRAL ABSORPTION IN CASE 2 WATERS: DISCRIMINATION OF DISSOLVED AND PARTICULATE COMPONENTS. (R826943)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. A comparison of ethanol partitioning in biological and model membranes: nonideal partitioning is enhanced in synaptosomal membranes.

    PubMed

    Sarasua, M M; Faught, K R; Steedman, S L; Gordin, M D; Washington, M K

    1989-10-01

    The partitioning of ethanol into mouse brain synaptosomes at 37 degrees C was characterized as a function of ethanol concentration. In addition, the partitioning of ethanol into multilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles was characterized as a function of ethanol concentration and temperature. DPPC liposomes provided a model for ethanol partitioning into a phospholipid bilayer of defined composition allowing comparison to the more complex synaptosomal membrane. The values of the partition coefficients for ethanol depend on the convention used to express concentration in the partition coefficient ratio. We express these concentrations as mole fractions as ethanol in the membrane and aqueous phases. Ethanol partitioning is nonideal (ethanol membrane: buffer partition coefficients vary with total ethanol concentration). In synaptosomes, the partition coefficients vary markedly with concentration and asymptotically approach zero at higher concentrations. In the DPPC system, the variation of the partition coefficient is less pronounced, but significant. The ethanol: DPPC partition coefficients decrease by a factor of 2 at ethanol concentrations above 3.2 x 10(-3) M. This suggests a model involving at least two distinguishable types of interactions of ethanol with the membrane. Ethanol appears to undergo both bulk phase partitioning into the membrane bilayer core and nonspecific binding to the membrane surface. In pure DPPC, bulk phase hydrophobic partitioning predominates. In synaptosomes, nonspecific surface binding appears to be a major interaction. Temperature studies indicate ethanol partitioning into DPPC increases above the phospholipid gel to liquid crystalline phase transition temperature. This suggests a preferred partitioning of ethanol into fluid state lipid. However, significant membrane concentrations of ethanol are found in gel state DPPC.

  10. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  11. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  12. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  13. Proposed human stratum corneum water domain in chemical absorption.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Compounds with varying physical and chemical properties may have different affinities to the stratum corneum (SC) and/or its intercellular lipids, keratin protein, and possible water domains. To better understand the mechanism of percutaneous absorption, we utilized 21 carbon-14 labeled chemicals, with wide hydrophilicity (log P = -0.05 to 6.17), and quantified their absorption/adsorption properties for a short incubation time (15 min) with regards to intact SC membrane, delipidized SC membrane and SC lipid. A facile method was developed for SC/lipid absorption, providing a more equivalent procedure and comparable data. SC lipid absorption of chemical solutes positively correlated with the octanol/water partition coefficient (log P). Differences between the percent dose of chemical absorption to intact SC and the total percent dose contributed by the protein and lipid domains suggest the possibility and significance of a water domain. Absorption rate experiments showed a longer lag time for intact SC than for delipidized SC or SC lipid, suggesting that the water domain may delay chemical binding to protein and lipid domains, and may be a factor in the resistance of many chemicals to current decontamination methods. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Partitioning of organophosphorus pesticides into phosphatidylcholine small unilamellar vesicles studied by second-derivative spectrophotometry.

    PubMed

    Takegami, Shigehiko; Kitamura, Keisuke; Ohsugi, Mayuko; Ito, Aya; Kitade, Tatsuya

    2015-06-15

    In order to quantitatively examine the lipophilicity of the widely used organophosphorus pesticides (OPs) chlorfenvinphos (CFVP), chlorpyrifos-methyl (CPFM), diazinon (DZN), fenitrothion (FNT), fenthion (FT), isofenphos (IFP), profenofos (PFF) and pyraclofos (PCF), their partition coefficient (Kp) values between phosphatidylcholine (PC) small unilamellar vesicles (SUVs) and water (liposome-water system) were determined by second-derivative spectrophotometry. The second-derivative spectra of these OPs in the presence of PC SUV showed a bathochromic shift according to the increase in PC concentration and distinct derivative isosbestic points, demonstrating the complete elimination of the residual background signal effects that were observed in the absorption spectra. The Kp values were calculated from the second-derivative intensity change induced by addition of PC SUV and obtained with a good precision of R.S.D. below 10%. The Kp values were in the order of CPFM>FT>PFF>PCF>IFP>CFVP>FNT⩾DZN and did not show a linear correlation relationship with the reported partition coefficients obtained using an n-octanol-water system (R(2)=0.530). Also, the results quantitatively clarified the effect of chemical-group substitution in OPs on their lipophilicity. Since the partition coefficient for the liposome-water system is more effective for modeling the quantitative structure-activity relationship than that for the n-octanol-water system, the obtained results are toxicologically important for estimating the accumulation of these OPs in human cell membranes.

  15. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  16. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  17. Kinetic energy decomposition scheme based on information theory.

    PubMed

    Imamura, Yutaka; Suzuki, Jun; Nakai, Hiromi

    2013-12-15

    We proposed a novel kinetic energy decomposition analysis based on information theory. Since the Hirshfeld partitioning for electron densities can be formulated in terms of Kullback-Leibler information deficiency in information theory, a similar partitioning for kinetic energy densities was newly proposed. The numerical assessments confirm that the current kinetic energy decomposition scheme provides reasonable chemical pictures for ionic and covalent molecules, and can also estimate atomic energies using a correction with viral ratios.

  18. Boron, beryllium, and lithium, partitioning in olivine

    SciTech Connect

    Neroda, Elizabeth

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  19. The minimal length and quantum partition functions

    NASA Astrophysics Data System (ADS)

    Abbasiyan-Motlaq, M.; Pedram, P.

    2014-08-01

    We study the thermodynamics of various physical systems in the framework of the generalized uncertainty principle that implies a minimal length uncertainty proportional to the Planck length. We present a general scheme to analytically calculate the quantum partition function of the physical systems to first order of the deformation parameter based on the behavior of the modified energy spectrum and compare our results with the classical approach. Also, we find the modified internal energy and heat capacity of the systems for the anti-Snyder framework.

  20. Entanglement concentration of three-partite states

    SciTech Connect

    Groisman, Berry; Linden, Noah; Popescu, Sandu

    2005-12-15

    We investigate the concentration of multiparty entanglement by focusing on a simple family of three-partite pure states, superpositions of Greenberger-Horne-Zeilinger states and singlets. Despite the simplicity of the states, we show that they cannot be reversibly concentrated by the standard entanglement concentration procedure, to which they seem ideally suited. Our results cast doubt on the idea that for each N there might be a finite set of N-party states into which any pure state can be reversibly transformed. We further relate our results to the concept of locking of entanglement of formation.

  1. Light period regulation of carbohydrate partitioning

    NASA Technical Reports Server (NTRS)

    Janes, Harry W.

    1994-01-01

    We have shown that the photosynthetic period is important in regulating carbon partitioning. Even when the same amount of carbon is fixed over a 24h period considerably more is translocated out of the leaf under the longer photosynthetic period. This is extremely important when parts of the plant other than the leaves are to be sold. It is also important to notice the amount of carbon respired in the short photosynthetic period. The light period effect on carbohydrate fixation, dark respiration, and translocation is shown in this report.

  2. Partitioning technique for discrete quantum systems

    SciTech Connect

    Jin, L.; Song, Z.

    2011-06-15

    We develop the partitioning technique for quantum discrete systems. The graph consists of several subgraphs: a central graph and several branch graphs, with each branch graph being rooted by an individual node on the central one. We show that the effective Hamiltonian on the central graph can be constructed by adding additional potentials on the branch-root nodes, which generates the same result as does the the original Hamiltonian on the entire graph. Exactly solvable models are presented to demonstrate the main points of this paper.

  3. Partitioning structural VHDL circuits for parallel execution on hypercubes

    NASA Astrophysics Data System (ADS)

    Kapp, Kevin L.

    1993-12-01

    Distributing simulations among multiple processors is one approach to reducing VHDL simulation time for large VLSI circuit designs. However, parallel simulation introduces the problem of how to partition the logic gates and system behaviors among the available processors in order to obtain maximum speedup. This research investigates deliberate partitioning algorithms that account for the complex inter-dependency structure of the circuit behaviors. Once an initial partition has been obtained, a border annealing algorithm is used to iteratively improve the partition. In addition, methods of measuring the cost of a partition and relating it to the resulting simulation performance are investigated. Structural circuits ranging from one thousand to over four thousand behaviors are simulated. The deliberate partitions consistently provided superior speedup to a random distribution of the circuit behaviors.

  4. Effect of water saturation in soil organic matter on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chlou, G.T.

    1992-01-01

    The sorption of benzene, trichloroethylene, and carbon tetrachloride at room temperature from water solution and from vapor on two high-organic-content soils (peat and muck) was determined in order to evaluate the effect of water saturation on the solute partition in soil organic matter (SOM). The uptake of water vapor was similarly determined to define the amounts of water in the saturated soil samples. In such high-organic-content soils the organic vapor sorption and the respective solute sorption from water exhibit linear isotherms over a wide range of relative concentrations. This observation, along with the low BET surface areas of the samples, suggests that partition in the SOM of the samples is the dominant process in the uptake of these liquids. A comparison of the sorption from water solution and from vapor phase shows that water saturation reduces the sorption (partition) efficiency of SOM by ?? 42%; the saturated water content is ??38% by weight of dry SOM. This reduction is relatively small when compared with the almost complete suppression by water of organic compound adsorption on soil minerals. While the effect of water saturation on solute uptake by SOM is much expected in terms of solute partition in SOM, the influence of water on the solubility behavior of polar SOM can be explained only qualitatively by regular solution theory. The results suggest that the major effect of water in a drying-wetting cycle on the organic compound uptake by normal low-organic-content soils (and the associated compound's activity) is the suppression of adsorption by minerals rather than the mitigation of the partition effect in SOM.

  5. Subwavelength total acoustic absorption with degenerate resonators

    NASA Astrophysics Data System (ADS)

    Yang, Min; Meng, Chong; Fu, Caixing; Li, Yong; Yang, Zhiyu; Sheng, Ping

    2015-09-01

    We report the experimental realization of perfect sound absorption by sub-wavelength monopole and dipole resonators that exhibit degenerate resonant frequencies. This is achieved through the destructive interference of two resonators' transmission responses, while the matching of their averaged impedances to that of air implies no backscattering, thereby leading to total absorption. Two examples, both using decorated membrane resonators (DMRs) as the basic units, are presented. The first is a flat panel comprising a DMR and a pair of coupled DMRs, while the second one is a ventilated short tube containing a DMR in conjunction with a sidewall DMR backed by a cavity. In both examples, near perfect absorption, up to 99.7%, has been observed with the airborne wavelength up to 1.2 m, which is at least an order of magnitude larger than the composite absorber. Excellent agreement between theory and experiment is obtained.

  6. Evapotranspiration Partitioning with Sub-Daily Isotopic Measurement in a Sub-Humid Grassland Ecosystem

    NASA Astrophysics Data System (ADS)

    Sun, X.; Wilcox, B. P.; Zou, C.; Stebler, E.; West, J. B.

    2015-12-01

    Evapotranspiration (ET) interweaves water, energy, and biogeochemical interactions between the land surface and atmospheric system. Stable isotopic measurement, especially field deployable laser absorption spectrometers, provides a promising tool for ET partitioning with its direct and efficient measurement on isotopic components of water vapor. This isotopic approach, however, is still facing some uncertainties in quantifying ET and its constituents according to assumptions and empirical formula involved. In this study, we combined high-time resolution measurement with laser absorption spectrometers and eddy covariance techniques to quantify ET and its two components, namely soil water Evaporation (E) and plant transpiration (T) for a sub-humid grassland in southern US. Direct chamber measurement on these two end-members was compared with revised Craig-Gordon model for the quantification consistency assessment. Our results indicate the daily ratio of T/ET and its sub-daily dynamics for different soil moisture and micro-climate conditions. We investigated the controlling factors for ET and its partitioning dynamics for this grassland ecosystem. The uncertainties involved in the quantification were also assessed by comparison between direct chamber and empirical approaches.

  7. Bioavailability of endocrine disrupting chemicals (EDCs): Liposome-water partitioning and lipid membrane permeation

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Hwan

    The bioavailability of endocrine disrupting chemicals (EDCs) is a function of a number of parameters including the ability of the chemical to partition into organic tissue and reach receptor sites within an organism. In this dissertation, equilibrium partition coefficients between water and lipid membrane vesicles and artificial lipid membrane permeability were investigated for evaluating bioavailability of aqueous pollutants. Structurally diverse endocrine disrupting chemicals were chosen as model compounds for partitioning experiments and simple hydrophobic organic chemicals were used for the evaluation of a parallel artificial membrane device developed to mimic bioconcentration rates in fish. Hydrophobic interactions represented by octanol/water partition coefficients (KOWs) were not appropriate for estimating lipid membrane/water partition coefficients (Klipws) for the selected EDCs having a relatively large molar liquid volume (MLV) and containing polar functional groups. Correlations that include MLV and polar surface area (PSA) reduce the predicted value of log K lipw, suggesting that lipid membranes are less favorable than 1-octanol for a hydrophobic solute because of the changes in membrane fluidity and the amount of cholesterol in the lipid bilayers. These results suggested that KOW alone has limited potential for estimating K lipw, and MLV or PSA may be used as additional descriptors for developing quantitative structure-activity relationships (QSARs). The poor correlations between KOW and Klipw observed in this research may be due to the highly organized structure of lipid bilayers. Measured thermodynamic constants demonstrated that the entropy contribution becomes more dominant for more organized liposomes having saturated lipid tails. This implies that entropy-driven partitioning process makes Klipw different from KOW especially for more saturated lipid bilayer membranes. In the parallel artificial membrane system developed, a membrane filter

  8. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  9. Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2012-05-08

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  10. Automatic partitioning of unstructured grids into connected components

    NASA Technical Reports Server (NTRS)

    Dagum, Leonardo

    1993-01-01

    This paper presents two partitioning schemes that guarantee connected components given a connected initial grid. Connected components are important for convergence of methods such as domain decomposition or multigrid. For many of the grids tested, the schemes produce partitions as good (in terms of number of cut edges) or better than spectral partitioning and require only modest computational resources. This paper describes the two schemes in detail and presents comparison results from a number of two and three dimensional unstructured grids.

  11. TAP - Tools for Adaptive Partitioning v. 0.99 Beta

    2008-11-19

    TAP is a set of tools which are essential for conducting research on adaptive partitioners. The basic premise is that a single partitioner may not be a good choice for adaptive mesh simulations; rather one must match a partitioner (obtained from a partitioning package like Zoltan, ParMetis etc) with the mesh being partitioned. TAP provides the tools that can judge the suitability of a partitioning algorithm to a given mesh.

  12. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    PubMed

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water.

  13. Kinetics and equilibrium partitioning of dissolved BTEX in PDMS and POM sheets.

    PubMed

    Nam, Go-Un; Bonifacio, Riza Gabriela; Kwon, Jung-Hwan; Hong, Yongseok

    2016-09-01

    Passive sampling of volatile organic chemicals from soil and groundwater is primarily important in assessing the status of environmental contamination. A group of low molecular weight pollutants usually found in petroleum fuels, benzene, toluene, ethylbenzene, and xylenes (BTEX) was studied for its kinetics and equilibrium partitioning with single-phase passive samplers using polydimethylsiloxane (PDMS) and polyoxymethylene (POM) as sorbing phase. PDMS (1 mm) and POM (0.076 mm) sheets were used for sorption of BTEX and concentrations were analyzed using GC-FID. The equilibrium absorption and desorption of PDMS in water was achieved after 120 min while POM sheets absorbed up to 35 days and desorbed in 7 days. The kinetic rate constants in PDMS is higher than in POM up to 3 orders of magnitude. Logarithms of partition coefficient were determined to be in the range of 1.6-2.8 for PDMS and 2.1-3.1 for POM. The results indicate that POM is a stronger sorbent for BTEX and has slower equilibration time than PDMS. The partitioning process for both polymers was found to be enthalpy-driven by measurement of K d values at varying temperatures. K d values increase at low temperature and high ionic strength conditions. Presence of other gasoline components, as well as dissolved organic matter, did not significantly affect equilibrium partitioning. A good 1:1 correlation between the measured and the predicted concentrations was established on testing the potential application of the constructed PDMS sampler on natural soils and artificial soils spiked with gasoline-contaminated water. PMID:27335013

  14. Structural Determinants of Drug Partitioning in n-Hexadecane/Water System

    PubMed Central

    Natesan, Senthil; Wang, Zhanbin; Lukacova, Viera; Peng, Ming; Subramaniam, Rajesh; Lynch, Sandra; Balaz, Stefan

    2013-01-01

    Surrogate phases have been widely used as correlates for modeling transport and partitioning of drugs in biological systems, taking advantage of chemical similarity between the surrogate and the phospholipid bilayer as the elementary unit of biological phases, which is responsible for most of transport and partitioning. Solvation in strata of the phospholipid bilayer is an important drug characteristics because it affects the rates of absorption and distribution, as well as the interactions with the membrane proteins having the binding sites located inside the bilayer. The bilayer core can be emulated by n-hexadecane (C16), and the headgroup stratum is often considered a hydrophilic phase because of the high water content. Therefore, we tested the hypothesis that the C16/water partition coefficients (P) can predict the bilayer locations of drugs and other small molecules better than other surrogate systems. Altogether 514 PC16/W values for nonionizable (458) and completely ionized (56) compounds were collected from the literature or measured, when necessary. With the intent to create a fragment-based prediction system, the PC16/W values were factorized into the fragment solvation parameters (f) and correction factors based on the ClogP fragmentation scheme. A script for the PC16/W prediction using the ClogP output is provided. To further expand the prediction system and reveal solvation differences, the fC16/W values were correlated with their more widely available counterparts for the 1-octanol/water system (O/W) using solvatochromic parameters. The analysis for 50 compounds with known bilayer location shows that the available and predicted PC16/W and PO/W values alone or the PC16/O values representing their ratio do not satisfactorily predict the preference for drug accumulation in bilayer strata. These observations indicate that the headgroups stratum, albeit well hydrated, does not have solvation characteristics similar to water and is also poorly described by

  15. Hadronic density of states from string theory.

    PubMed

    Pando Zayas, Leopoldo A; Vaman, Diana

    2003-09-12

    We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.

  16. Gait Partitioning Methods: A Systematic Review

    PubMed Central

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  17. Inversion of hematocrit partition at microfluidic bifurcations.

    PubMed

    Shen, Zaiyi; Coupier, Gwennou; Kaoui, Badr; Polack, Benoît; Harting, Jens; Misbah, Chaouqi; Podgorski, Thomas

    2016-05-01

    Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions.

  18. Approximate algorithms for partitioning and assignment problems

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.

    1986-01-01

    The problem of optimally assigning the modules of a parallel/pipelined program over the processors of a multiple computer system under certain restrictions on the interconnection structure of the program as well as the multiple computer system was considered. For a variety of such programs it is possible to find linear time if a partition of the program exists in which the load on any processor is within a certain bound. This method, when combined with a binary search over a finite range, provides an approximate solution to the partitioning problem. The specific problems considered were: a chain structured parallel program over a chain-like computer system, multiple chain-like programs over a host-satellite system, and a tree structured parallel program over a host-satellite system. For a problem with m modules and n processors, the complexity of the algorithm is no worse than O(mnlog(W sub T/epsilon)), where W sub T is the cost of assigning all modules to one processor and epsilon the desired accuracy.

  19. Unsupervised image categorization by hypergraph partition.

    PubMed

    Huang, Yuchi; Liu, Qingshan; Lv, Fengjun; Gong, Yihong; Metaxas, Dimitris N

    2011-06-01

    We present a framework for unsupervised image categorization in which images containing specific objects are taken as vertices in a hypergraph and the task of image clustering is formulated as the problem of hypergraph partition. First, a novel method is proposed to select the region of interest (ROI) of each image, and then hyperedges are constructed based on shape and appearance features extracted from the ROIs. Each vertex (image) and its k-nearest neighbors (based on shape or appearance descriptors) form two kinds of hyperedges. The weight of a hyperedge is computed as the sum of the pairwise affinities within the hyperedge. Through all of the hyperedges, not only the local grouping relationships among the images are described, but also the merits of the shape and appearance characteristics are integrated together to enhance the clustering performance. Finally, a generalized spectral clustering technique is used to solve the hypergraph partition problem. We compare the proposed method to several methods and its effectiveness is demonstrated by extensive experiments on three image databases. PMID:21282850

  20. Gait Partitioning Methods: A Systematic Review.

    PubMed

    Taborri, Juri; Palermo, Eduardo; Rossi, Stefano; Cappa, Paolo

    2016-01-01

    In the last years, gait phase partitioning has come to be a challenging research topic due to its impact on several applications related to gait technologies. A variety of sensors can be used to feed algorithms for gait phase partitioning, mainly classifiable as wearable or non-wearable. Among wearable sensors, footswitches or foot pressure insoles are generally considered as the gold standard; however, to overcome some inherent limitations of the former, inertial measurement units have become popular in recent decades. Valuable results have been achieved also though electromyography, electroneurography, and ultrasonic sensors. Non-wearable sensors, such as opto-electronic systems along with force platforms, remain the most accurate system to perform gait analysis in an indoor environment. In the present paper we identify, select, and categorize the available methodologies for gait phase detection, analyzing advantages and disadvantages of each solution. Finally, we comparatively examine the obtainable gait phase granularities, the usable computational methodologies and the optimal sensor placements on the targeted body segments. PMID:26751449

  1. Partitioning kinetic energy during freewheeling wheelchair maneuvers.

    PubMed

    Medola, Fausto O; Dao, Phuc V; Caspall, Jayme J; Sprigle, Stephen

    2014-03-01

    This paper describes a systematic method to partition the kinetic energy (KE) of a free-wheeling wheelchair. An ultralightweight rigid frame wheelchair was instrumented with two axle-mounted encoders and data acquisition equipment to accurately measure the velocity of the drive wheels. A mathematical model was created combining physical specifications and geometry of the wheelchair and its components. Two able-bodied subjects propelled the wheelchair over four courses that involved straight and turning maneuvers at differing speeds. The KE of the wheelchair was divided into three components: translational, rotational, and turning energy. This technique was sensitive to the changing contributions of the three energy components across maneuvers. Translational energy represented the major component of total KE in all maneuvers except a zero radius turn in which turning energy was dominant. Both translational and rotational energies are directly related to wheelchair speed. Partitioning KE offers a useful means of investigating the dynamics of a moving wheelchair. The described technique permits analysis of KE imparted to the wheelchair during maneuvers involving changes in speed and direction, which are most representative of mobility in everyday life. This technique can be used to study the effort required to maneuver different types and configurations of wheelchairs.

  2. Partitioning of on-demand electron pairs

    NASA Astrophysics Data System (ADS)

    Ubbelohde, Niels; Hohls, Frank; Kashcheyevs, Vyacheslavs; Wagner, Timo; Fricke, Lukas; Kästner, Bernd; Pierz, Klaus; Schumacher, Hans W.; Haug, Rolf J.

    2015-01-01

    The on-demand generation and separation of entangled photon pairs are key components of quantum information processing in quantum optics. In an electronic analogue, the decomposition of electron pairs represents an essential building block for using the quantum state of ballistic electrons in electron quantum optics. The scattering of electrons has been used to probe the particle statistics of stochastic sources in Hanbury Brown and Twiss experiments and the recent advent of on-demand sources further offers the possibility to achieve indistinguishability between multiple sources in Hong-Ou-Mandel experiments. Cooper pairs impinging stochastically at a mesoscopic beamsplitter have been successfully partitioned, as verified by measuring the coincidence of arrival. Here, we demonstrate the splitting of electron pairs generated on demand. Coincidence correlation measurements allow the reconstruction of the full counting statistics, revealing regimes of statistically independent, distinguishable or correlated partitioning, and have been envisioned as a source of information on the quantum state of the electron pair. The high pair-splitting fidelity opens a path to future on-demand generation of spin-entangled electron pairs from a suitably prepared two-electron quantum-dot ground state.

  3. A Combinatorial Partitioning Method to Identify Multilocus Genotypic Partitions That Predict Quantitative Trait Variation

    PubMed Central

    Nelson, M.R.; Kardia, S.L.R.; Ferrell, R.E.; Sing, C.F.

    2001-01-01

    Recent advances in genome research have accelerated the process of locating candidate genes and the variable sites within them and have simplified the task of genotype measurement. The development of statistical and computational strategies to utilize information on hundreds — soon thousands — of variable loci to investigate the relationships between genome variation and phenotypic variation has not kept pace, particularly for quantitative traits that do not follow simple Mendelian patterns of inheritance. We present here the combinatorial partitioning method (CPM) that examines multiple genes, each containing multiple variable loci, to identify partitions of multilocus genotypes that predict interindividual variation in quantitative trait levels. We illustrate this method with an application to plasma triglyceride levels collected on 188 males, ages 20–60 yr, ascertained without regard to health status, from Rochester, Minnesota. Genotype information included measurements at 18 diallelic loci in six coronary heart disease–candidate susceptibility gene regions: APOA1-C3-A4, APOB, APOE, LDLR, LPL, and PON1. To illustrate the CPM, we evaluated all possible partitions of two-locus genotypes into two to nine partitions (∼106 evaluations). We found that many combinations of loci are involved in sets of genotypic partitions that predict triglyceride variability and that the most predictive sets show nonadditivity. These results suggest that traditional methods of building multilocus models that rely on statistically significant marginal, single-locus effects, may fail to identify combinations of loci that best predict trait variability. The CPM offers a strategy for exploring the high-dimensional genotype state space so as to predict the quantitative trait variation in the population at large that does not require the conditioning of the analysis on a prespecified genetic model. PMID:11230170

  4. Relation between the 4d superconformal index and the S 3 partition function

    NASA Astrophysics Data System (ADS)

    Imamura, Yosuke

    2011-09-01

    A relation between the 4d superconformal index and the S 3 partition function is studied with focus on the 4d and 3d actions used in localization. In the case of vanishing Chern-Simons levels and round S 3 we explicitly show that the 3d action is obtained from the4d action by dimensional reduction up to terms which do not affect the exact results. By combining this fact and a recent proposal concerning a squashing of S 3 and SU(2) Wilson line, we obtain a formula which gives the partition function depending on the Weyl weight of chiral multiplets, real mass parameters, FI parameters, and a squashing parameter as a limit of the index of a parent 4d theory.

  5. Molecular partitioning based on the kinetic energy density

    NASA Astrophysics Data System (ADS)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  6. A partitioning strategy for nonuniform problems on multiprocessors

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Bokhari, S.

    1985-01-01

    The partitioning of a problem on a domain with unequal work estimates in different subddomains is considered in a way that balances the work load across multiple processors. Such a problem arises for example in solving partial differential equations using an adaptive method that places extra grid points in certain subregions of the domain. A binary decomposition of the domain is used to partition it into rectangles requiring equal computational effort. The communication costs of mapping this partitioning onto different microprocessors: a mesh-connected array, a tree machine and a hypercube is then studied. The communication cost expressions can be used to determine the optimal depth of the above partitioning.

  7. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.

  8. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.

  9. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C. PMID:27152992

  10. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    SciTech Connect

    Liekhus, K.; Grandy, J.; Chambers, A.

    1997-03-01

    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  11. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  12. Dietary overlap and niche partitioning of sympatric harbour porpoises and Dall's porpoises in the Salish Sea

    NASA Astrophysics Data System (ADS)

    Nichol, Linda M.; Hall, Anna M.; Ellis, Graeme M.; Stredulinsky, Eva; Boogaards, Melissa; Ford, John K. B.

    2013-08-01

    Ecological theory regarding the coexistence of similar species predicts resource partitioning will arise through competition and lead to different ecological niches. The diets of harbour porpoises (Phocoena phocoena) and Dall's porpoises (Phocoenoides dalli) in the Salish Sea were investigated for evidence of resource partitioning between these ecologically similar species. Stomach contents of 36 harbour porpoises and 11 Dall's porpoises were analysed and ten and six fish taxa were identified in each, respectively. Pacific herring (Clupea pallasi) was important in the diet of both porpoise species and walleye pollock (Theragra chalcogramma) was second in importance in the Dall's porpoises. Pacific herring was estimated to contribute 60% to the total caloric intake of harbour porpoises. In addition to herring, Pacific hake (Merluccius productus), walleye pollock and a species of Pyschrolutidae were present in the diet of both porpoise species. Pianka's Index of niche overlap indicated substantial dietary overlap between the porpoise species based on measures of prey frequency of occurrence and prey percent numerical abundance. These results seem contrary to predictions from ecological theory. However, habitat and activity pattern differences between the two porpoise species exist and represent other dimensions of niche that likely contribute to resource partitioning in ways that were not strongly evident in stomach contents. Dall's porpoises, which prefer deeper water habitat in the Salish Sea than harbour porpoises, may feed more on walleye pollock which spawn in deep water. Dall's porpoises are also known to feed at night when lipid-rich mesopelagic prey such as Myctophidae and Bathylagidae, both present in the Dall's porpoise samples, migrate upwards from depths in excess of 200 m. In contrast shiner perch, present only in harbour porpoise samples, is a species associated with shallow nearshore habitats. Resource partitioning is also likely to occur in accordance

  13. Statistical mechanics of partially ionized stellar plasma - The Planck-Larkin partition function, polarization shifts, and simulations of optical spectra

    NASA Astrophysics Data System (ADS)

    Dappen, Werner; Anderson, Lawrence; Mihalas, Dimitri

    1987-08-01

    We discuss a recent controversy about the Planck-Larkin partition function, and present optical simulations of high-quality spectra from laboratory hydrogen plasmas (Wiese, Kelleher, and Paquette) using several partition function formalisms. We point out that the controversy has arisen from a misunderstanding about the use of the Planck-Larkin partition function. A Planck-Larkin cancellation may still have its place in equations of state that are based on quantum-statistical many-body theory (i.e., the "physical picture"). However, experimental evidence shows that it is inconsistent to use the Planck-Larkin partition function as the internal partition function in simple models of reacting gases (i.e., the "chemical picture"). Moreover, the more sophisticated equations of state of the physical picture will have to be subjected to the same comparison with experimental data. We also address the question of plasma polarization shifts of bound-state energies. We discuss the static-screened Coulomb potential (SSCP) as an atomic potential: from theoretical considerations and observational constraints we conclude that it should not be used. The only useful result of the SSCP potential its prediction of the number of excited be obtained by alternative means, e.g., by an occupation probability formalism.

  14. Interspecific resource partitioning in sympatric ursids

    USGS Publications Warehouse

    Belant, J.L.; Kielland, K.; Follmann, E.H.; Adams, L.G.

    2006-01-01

    The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in southcentral Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (>53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black bears

  15. Interspecific resource partitioning in sympatric ursids.

    PubMed

    Belant, Jerrold L; Kielland, Knut; Follmann, Erich H; Adams, Layne G

    2006-12-01

    The fundamental niche of a species is rarely if ever realized because the presence of other species restricts it to a narrower range of ecological conditions. The effects of this narrower range of conditions define how resources are partitioned. Resource partitioning has been inferred but not demonstrated previously for sympatric ursids. We estimated assimilated diet in relation to body condition (body fat and lean and total body mass) and reproduction for sympatric brown bears (Ursus arctos) and American black bears (U. americanus) in south-central Alaska, 1998-2000. Based on isotopic analysis of blood and keratin in claws, salmon (Oncorhynchus spp.) predominated in brown bear diets (> 53% annually) whereas black bears assimilated 0-25% salmon annually. Black bears did not exploit salmon during a year with below average spawning numbers, probably because brown bears deterred black bear access to salmon. Proportion of salmon in assimilated diet was consistent across years for brown bears and represented the major portion of their diet. Body size of brown bears in the study area approached mean body size of several coastal brown bear populations, demonstrating the importance of salmon availability to body condition. Black bears occurred at a comparable density (mass:mass), but body condition varied and was related directly to the amount of salmon assimilated in their diet. Both species gained most lean body mass during spring and all body fat during summer when salmon were present. Improved body condition (i.e., increased percentage body fat) from salmon consumption reduced catabolism of lean body mass during hibernation, resulting in better body condition the following spring. Further, black bear reproduction was directly related to body condition; reproductive rates were reduced when body condition was lower. High body fat content across years for brown bears was reflected in consistently high reproductive levels. We suggest that the fundamental niche of black

  16. Traceds: An Experimental Trace Element Partitioning Database

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.

    2014-12-01

    The goal of this project, which is part of the EARTHCHEM initiative, is to compile the existing experimental trace element partitioning data, and to develop a transparent, accessible resource for the community. The primary goal of experimental trace element partitioning studies is to create a database that can be used to develop models of how trace elements behave in natural geochemical systems. The range of approaches as to how this is accomplished and how the data are reported differs dramatically from one system to another and one investigator to another. This provides serious challenges to the creation of a coherent database - and suggests the need for a standard format for data presentation and reporting. The driving force for this compilation is to provide community access to the complete database for trace element experiments. Our new effort includes all the published analytical results from experimental determinations. In compiling the data, we have set a minimum standard for the data to be included. The threshold criteria include: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without a knowledge of the actual concentrations or the temperature and pressure of formation. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. Our ultimate goal is to produce a database together with a flexible user interface that will be useful for experimentalists to set up their work and to build

  17. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  18. Absorption driven focus shift

    NASA Astrophysics Data System (ADS)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  19. Two-Phonon Absorption

    ERIC Educational Resources Information Center

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  20. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  1. A physico-chemical properties based model for estimating evaporation and absorption rates of perfumes from skin.

    PubMed

    Kasting, G B; Saiyasombati, P

    2001-02-01

    Because of their potential for inducing allergic contact dermatitis (ACD) if used improperly, perfumes are carefully assessed for dermal safety prior to incorporation into cosmetic products. Exposure assessment for these materials often involves the conservative assumption of 100% absorption of each component. This report describes an improved method to estimate the absorption and evaporation of perfume ingredients from skin, based on their physico-chemical properties. The effect of environmental variables such as temperature and wind velocity can be accounted for in a logical way. This was accomplished using a first-order kinetic approach expected to be applicable for small doses applied to skin. Skin penetration rate was calculated as a fraction of the maximum flux estimated from the compound's lipid solubility, S(lip) (represented by the product of octanol/water partition coefficient, K(octt), and water solubility, S(w)), and molecular weight, MW. Evaporation rates were estimated from a modified Henry's Law approach with a stagnant boundary layer whose thickness is a function of surface airflow, v. At a given value of v, evaporation rate was assumed proportional to the ratio P(vp)/S(lip), where P(vp) is the vapour pressure of the ingredient at skin temperature, T. The model predicts a relationship for total evaporation from skin of the form %evap = 100x/(k+x) where x = P(vp)MW(2.7)/(K(oct)S(w)) and k is a parameter which depends only on v and T. Comparison with published data on perfume evaporation from human skin in vivo showed good agreement between theory and experiment for two closely related perfume mixtures (r(2) = 0.52-0.74, s = 12-14%, n = 10). Thus, the method would seem to have a good prospect of providing skin absorption estimates suitable for use in exposure assessment and improved understanding of dose-related contact allergy.

  2. Reduced partition function ratios of iron and oxygen in goethite

    NASA Astrophysics Data System (ADS)

    Blanchard, M.; Dauphas, N.; Hu, M. Y.; Roskosz, M.; Alp, E. E.; Golden, D. C.; Sio, C. K.; Tissot, F. L. H.; Zhao, J.; Gao, L.; Morris, R. V.; Fornace, M.; Floris, A.; Lazzeri, M.; Balan, E.

    2015-02-01

    First-principles calculations based on the density functional theory (DFT) with or without the addition of a Hubbard U correction, are performed on goethite in order to determine the iron and oxygen reduced partition function ratios (β-factors). The calculated iron phonon density of states (pDOS), force constant and β-factor are compared with reevaluated experimental β-factors obtained from Nuclear Resonant Inelastic X-ray Scattering (NRIXS) measurements. The reappraisal of old experimental data is motivated by the erroneous previous interpretation of the low- and high-energy ends of the NRIXS spectrum of goethite and jarosite samples (Dauphas et al., 2012). Here the NRIXS data are analyzed using the SciPhon software that corrects for non-constant baseline. New NRIXS measurements also demonstrate the reproducibility of the results. Unlike for hematite and pyrite, a significant discrepancy remains between DFT, NRIXS and the existing Mössbauer-derived data. Calculations suggest a slight overestimation of the NRIXS signal possibly related to the baseline definition. The intrinsic features of the samples studied by NRIXS and Mössbauer spectroscopy may also contribute to the discrepancy (e.g., internal structural and/or chemical defects, microstructure, surface contribution). As for oxygen, DFT results indicate that goethite and hematite have similar β-factors, which suggests almost no fractionation between the two minerals at equilibrium.

  3. Exometabolite niche partitioning among sympatric soil bacteria

    SciTech Connect

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.

  4. Exometabolite niche partitioning among sympatric soil bacteria

    PubMed Central

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-01-01

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13−26% of available metabolites, with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. These results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity. PMID:26392107

  5. Partitional Classification: A Complement to Phylogeny

    PubMed Central

    Salomon, Marc; Dassy, Bruno

    2016-01-01

    The tree of life is currently an active object of research, though next to vertical gene transmission non vertical gene transfers proved to play a significant role in the evolutionary process. To overcome this difficulty, trees of life are now constructed from genes hypothesized vital, on the assumption that these are all transmitted vertically. This view has been challenged. As a frame for this discussion, we developed a partitional taxonomical system clustering taxa at a high taxonomical rank. Our analysis (1) selects RNase P RNA sequences of bacterial, archaeal, and eucaryal genera from genetic databases, (2) submits the sequences, aligned, to k-medoid analysis to obtain clusters, (3) establishes the correspondence between clusters and taxa, (4) constructs from the taxa a new type of taxon, the genetic community (GC), and (5) classifies the GCs: Archaea–Eukaryotes contrastingly different from the six others, all bacterial. The GCs would be the broadest frame to carry out the phylogenies. PMID:27346943

  6. Exometabolite niche partitioning among sympatric soil bacteria

    DOE PAGES

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Hummel, Eric; Da Rocha, Ulisses Nunes; Chakraborty, Romy; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; et al

    2015-09-22

    Soils are arguably the most microbially diverse ecosystems. Physicochemical properties have been associated with the maintenance of this diversity. Yet, the role of microbial substrate specialization is largely unexplored since substrate utilization studies have focused on simple substrates, not the complex mixtures representative of the soil environment. Here we examine the exometabolite composition of desert biological soil crusts (biocrusts) and the substrate preferences of seven biocrust isolates. The biocrust's main primary producer releases a diverse array of metabolites, and isolates of physically associated taxa use unique subsets of the complex metabolite pool. Individual isolates use only 13-26% of available metabolites,more » with only 2 out of 470 used by all and 40% not used by any. An extension of this approach to a mesophilic soil environment also reveals high levels of microbial substrate specialization. In conclusion, these results suggest that exometabolite niche partitioning may be an important factor in the maintenance of microbial diversity.« less

  7. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  8. Partitioned-Interval Quantum Optical Communications Receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2013-01-01

    The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.

  9. Recursive Partitioning Method on Competing Risk Outcomes

    PubMed Central

    Xu, Wei; Che, Jiahua; Kong, Qin

    2016-01-01

    In some cancer clinical studies, researchers have interests to explore the risk factors associated with competing risk outcomes such as recurrence-free survival. We develop a novel recursive partitioning framework on competing risk data for both prognostic and predictive model constructions. We define specific splitting rules, pruning algorithm, and final tree selection algorithm for the competing risk tree models. This methodology is quite flexible that it can corporate both semiparametric method using Cox proportional hazards model and parametric competing risk model. Both prognostic and predictive tree models are developed to adjust for potential confounding factors. Extensive simulations show that our methods have well-controlled type I error and robust power performance. Finally, we apply both Cox proportional hazards model and flexible parametric model for prognostic tree development on a retrospective clinical study on oropharyngeal cancer patients. PMID:27486300

  10. Recursive Partitioning Method on Competing Risk Outcomes.

    PubMed

    Xu, Wei; Che, Jiahua; Kong, Qin

    2016-01-01

    In some cancer clinical studies, researchers have interests to explore the risk factors associated with competing risk outcomes such as recurrence-free survival. We develop a novel recursive partitioning framework on competing risk data for both prognostic and predictive model constructions. We define specific splitting rules, pruning algorithm, and final tree selection algorithm for the competing risk tree models. This methodology is quite flexible that it can corporate both semiparametric method using Cox proportional hazards model and parametric competing risk model. Both prognostic and predictive tree models are developed to adjust for potential confounding factors. Extensive simulations show that our methods have well-controlled type I error and robust power performance. Finally, we apply both Cox proportional hazards model and flexible parametric model for prognostic tree development on a retrospective clinical study on oropharyngeal cancer patients. PMID:27486300

  11. Recursive partitioning for heterogeneous causal effects

    PubMed Central

    Athey, Susan; Imbens, Guido

    2016-01-01

    In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach enables the construction of valid confidence intervals for treatment effects, even with many covariates relative to the sample size, and without “sparsity” assumptions. We propose an “honest” approach to estimation, whereby one sample is used to construct the partition and another to estimate treatment effects for each subpopulation. Our approach builds on regression tree methods, modified to optimize for goodness of fit in treatment effects and to account for honest estimation. Our model selection criterion anticipates that bias will be eliminated by honest estimation and also accounts for the effect of making additional splits on the variance of treatment effect estimates within each subpopulation. We address the challenge that the “ground truth” for a causal effect is not observed for any individual unit, so that standard approaches to cross-validation must be modified. Through a simulation study, we show that for our preferred method honest estimation results in nominal coverage for 90% confidence intervals, whereas coverage ranges between 74% and 84% for nonhonest approaches. Honest estimation requires estimating the model with a smaller sample size; the cost in terms of mean squared error of treatment effects for our preferred method ranges between 7–22%. PMID:27382149

  12. The partition of regional sea level variability

    NASA Astrophysics Data System (ADS)

    Forget, Gaël; Ponte, Rui M.

    2015-09-01

    The existing altimetric record offers an unprecedented view of sea level (ζ) variability on a global scale for more than 2 decades. Optimal inference from the data involves appropriate partition of signal and noise, in terms of relevant scales, physical processes and forcing mechanisms. Such partition is achieved here through fitting a general circulation model to altimeter and other datasets to produce a "best" estimate of ζ variability directly forced by the atmosphere-the signal of primary interest here. In this context noise comes primarily from instrument errors and meso-scale eddies, as expected, but spatial smoothing effectively reduces this noise. A separate constraint is thus formulated to measure the fit to monthly, large-scale altimetric variability that unlike the daily, pointwise constraint shows a high signal-to-noise ratio. The estimate is explored to gain insight into dynamics, forcing, and other factors controlling ζ variability. Contributions from thermo-steric, halo-steric and bottom pressure terms are all important depending on region, but slopes of steric spectra (red) and bottom pressure spectra (white) are nearly invariant with latitude. Much ζ variability can be represented by a seasonal cycle and linear trend, plus a few EOFs that can be associated with known modes of climate variability and/or with topographic controls. Both wind and buoyancy forcing are important. The response is primarily basin-bound in nature, but uneven patterns of propagation across basin boundaries are clearly present, with the Pacific being able to affect large portions of the Indian and Atlantic basins, but the Atlantic affecting mostly the Arctic.

  13. Trace-element partitioning in pantellerites and trachytes

    SciTech Connect

    Mahood, G.A.; Stimac, J.A. )

    1990-08-01

    In order to investigate the effect of increasing melt peralkalinity on partitioning, partition coefficients have been determined using neutron activation analyses of coexisting phenocrysts and glass of five samples from Pantelleria spanning the range trachyte to pantellerite. Alkali feldspar partition coefficients for Fe, Rb, Ba, Sr, and Eu vary with melt peralkalinity due to changes in melt polymerization and to the systematic increase in X{sub or} and decrease in X{sub an} of the feldspar. In going from trachyte to pantellerite, Fe partition coefficients increase from 0.04 to 0.10, presumably because Fe{sup +3} increasingly substitutes in the feldspar tetrahedral site as melt activity of Al declines and Fe concentrations increase. Partition coefficients for trivalent light REEs (rare earth elements) decrease and the partitioning pattern becomes flatter, the most evolved samples having some of the lowest published values for feldspar. The hundredfold decline in Eu partition coefficients (2.5 to 0.024) and the decrease in the size of the positive partitioning anomaly are attributed to increasing Eu{sup 3+}/Eu{sup 2+} in the melt as it becomes more peralkaline, as well as to concomitant decrease in the Ca content of feldspar. As a result, the behavior of Eu during fractional crystallization of peralkaline suites is fundamentally different from that in metaluminous suites; absolute abundances rise and the size of the negative Eu anomaly changes little with fractionation beyond pantelleritic trachyte.

  14. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  15. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  16. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  17. 47 CFR 101.1111 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioning and disaggregation. 101.1111 Section 101.1111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Competitive Bidding Procedures for LMDS § 101.1111 Partitioning...

  18. Simple partitions of a hyperbolic plane of positive curvature

    SciTech Connect

    Romakina, Lyudmila N

    2012-09-30

    We construct special monohedral isotropic partitions with symmetries of the hyperbolic plane H of positive curvature with a simple 4-contour as a cell. An analogue of mosaic in these partitions called a tiling is introduced. Also we consider some fractal tilings. The existence of band tilings in each homological series with code (m, n) is proved. Bibliography: 14 titles.

  19. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  20. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  1. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  2. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  3. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  4. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  5. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  6. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  7. 47 CFR 24.714 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Parties seeking approval for... § 24.839. (2) Broadband PCS licensees in spectrum blocks A, B, D, and E and broadband PCS C and F...

  8. 47 CFR 22.948 - Partitioning and Disaggregation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... partition or disaggregate their spectrum to other qualified entities. (2) Partitioning. During the five year... obtaining disaggregated spectrum may only use such spectrum in that portion of the cellular market encompassed by the original licensee's CGSA and may not use such spectrum to provide service to...

  9. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  10. PARTITION COEFFICIENTS FOR METALS IN SURFACE WATER, SOIL, AND WASTE

    EPA Science Inventory

    This report presents metal partition coefficients for the surface water pathway and for the source model used in the Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment (3MRA) technology under development by the U.S. Environmental Protection Agency. Partition ...

  11. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their... 47 Telecommunication 5 2014-10-01 2014-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1)...

  12. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  13. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their... 47 Telecommunication 5 2013-10-01 2013-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1)...

  14. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  15. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.805 Geographic partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and...

  16. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  17. 47 CFR 101.1415 - Partitioning and disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... GHz Band § 101.1415 Partitioning and disaggregation. (a) MVDDS licensees are permitted to partition...). Disaggregation will not be permitted by MVDDS licensees in the 12.2-12.7 GHz band. “Partitioning” is the... the assignment of discrete portions or “blocks” of spectrum licensed to a geographic licensee...

  18. 47 CFR 27.805 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.805 Geographic partitioning and spectrum disaggregation. An entity that acquires a portion of a 1.4 GHz band licensee's... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and...

  19. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their... 47 Telecommunication 5 2012-10-01 2012-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1)...

  20. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1)...

  1. 47 CFR 90.365 - Partitioned licenses and disaggregated spectrum.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Partitioned licenses and disaggregated spectrum... § 90.365 Partitioned licenses and disaggregated spectrum. (a) Eligibility. (1) Party seeking approval... disaggregate their licensed spectrum at any time following the grant of their licenses. Multilateration...

  2. 47 CFR 101.1323 - Spectrum aggregation, disaggregation, and partitioning.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... aggregate spectrum in any MAS bands, but may not disaggregate their licensed spectrum or partition their... 47 Telecommunication 5 2010-10-01 2010-10-01 false Spectrum aggregation, disaggregation, and... Requirements § 101.1323 Spectrum aggregation, disaggregation, and partitioning. (a) Eligibility. (1)...

  3. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1670-1675 MHz Band § 27.904 Geographic partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's... 47 Telecommunication 2 2013-10-01 2013-10-01 false Geographic partitioning and...

  4. 47 CFR 27.904 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1670-1675 MHz Band § 27.904 Geographic partitioning and spectrum disaggregation. An entity that acquires a portion of a 1670-1675 MHz band licensee's... 47 Telecommunication 2 2014-10-01 2014-10-01 false Geographic partitioning and...

  5. The Emergence of DP in the Partitive Structure

    ERIC Educational Resources Information Center

    Stickney, Helen

    2009-01-01

    This dissertation is a first look at English-speaking children's acquisition of the syntax of the partitive. It presents four experiments that contrast three types of structures and examines how they interact with adjectival modification: the partitive, the pseudopartitive and complex nouns with prepositional adjuncts. The experimentation…

  6. DOES NITROGEN PARTITIONING PROMOTE SPECIES DIVERSITY IN ARCTIC TUSSOCK TUNDRA?

    EPA Science Inventory

    We used 15N soil-labeling techniques to examine how the dominant species in a N-limited, tussock tundra plant community partitioned soil N, and how such partitioning may contribute to community organization. The five most productive species were well differentiated with respect ...

  7. REE and Strontium Partition Coefficients for Nakhla Pyroxenes

    NASA Technical Reports Server (NTRS)

    Oe, K.; McKay, G.; Le, L.

    2001-01-01

    We present new partition coefficients for REE and Sr determined using a synthetic melt that crystallizes pyroxenes very similar in composition to Nakhla pyroxene cores. We believe these are the most appropriate partition coefficients to use in studying Nakhla Additional information is contained in the original extended abstract..

  8. Cell partitioning during the directional solidification of trehalose solutions.

    PubMed

    Hubel, A; Darr, T B; Chang, A; Dantzig, J

    2007-12-01

    Previous studies have demonstrated that ice/cell interaction influences post thaw viability and specific cryoprotective agents can affect those interactions. Trehalose, a disaccharide, has been shown to have a protective benefit during conventional slow freezing. Existing theories have been put forth to explain the protective benefit of trehalose during desiccation and vitrification, but these theories do not explain the protective benefit observed during conventional freezing protocols. The overall objective of this investigation was to characterize cell/ice interactions in the presence of trehalose using non-planar freezing conditions. To that end, lymphoblasts suspended in phosphate buffered saline solution with various levels of trehalose (0, 10, 100, and 300 mM) were frozen on a directional solidification stage. The partitioning of cells into the interdendritic space or engulfment by an advancing dendrite was determined as a function of velocity and solution composition. For a given temperature gradient, the fraction of cells entrapped into the interdendritic region increased with increasing velocity. With small additions of trehalose (10 mM), the velocity at which cells were entrapped in the interdendritic region increased. At high trehalose concentrations (100, 300 mM), interface morphology was significantly different and cells were engulfed by the advancing interface. Dehydration of cells in the region shortly before and after the interface was significant and depended upon of the type of interaction experienced by the cell (entrapped vs. engulfed). These studies suggest that one potential mechanism for the action of trehalose involves changing the ice/cell interactions during conventional slow freezing.

  9. Surprising Connections between Partitions and Divisors

    ERIC Educational Resources Information Center

    Osler, Thomas J.; Hassen, Abdulkadir; Chandrupatla, Tirupathi R.

    2007-01-01

    The sum of the divisors of a positive integer is one of the most interesting concepts in multiplicative number theory, while the number of ways of expressing a number as a sum is a primary topic in additive number theory. In this article, we describe some of the surprising connections between and similarities of these two concepts.

  10. Bacterial partition complexes segregate within the volume of the nucleoid

    PubMed Central

    Le Gall, Antoine; Cattoni, Diego I.; Guilhas, Baptiste; Mathieu-Demazière, Céline; Oudjedi, Laura; Fiche, Jean-Bernard; Rech, Jérôme; Abrahamsson, Sara; Murray, Heath; Bouet, Jean-Yves; Nollmann, Marcelo

    2016-01-01

    Precise and rapid DNA segregation is required for proper inheritance of genetic material. In most bacteria and archaea, this process is assured by a broadly conserved mitotic-like apparatus in which a NTPase (ParA) displaces the partition complex. Competing observations and models imply starkly different 3D localization patterns of the components of the partition machinery during segregation. Here we use super-resolution microscopies to localize in 3D each component of the segregation apparatus with respect to the bacterial chromosome. We show that Par proteins locate within the nucleoid volume and reveal that proper volumetric localization and segregation of partition complexes requires ATPase and DNA-binding activities of ParA. Finally, we find that the localization patterns of the different components of the partition system highly correlate with dense chromosomal regions. We propose a new mechanism in which the nucleoid provides a scaffold to guide the proper segregation of partition complexes. PMID:27377966

  11. Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis.

    PubMed

    Zangle, Thomas A; Teitell, Michael A; Reed, Jason

    2014-01-01

    The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning. PMID:25531652

  12. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance

    NASA Technical Reports Server (NTRS)

    Rushby, John

    1999-01-01

    Automated aircraft control has traditionally been divided into distinct "functions" that are implemented separately (e.g., autopilot, autothrottle, flight management); each function has its own fault-tolerant computer system, and dependencies among different functions are generally limited to the exchange of sensor and control data. A by-product of this "federated" architecture is that faults are strongly contained within the computer system of the function where they occur and cannot readily propagate to affect the operation of other functions. More modern avionics architectures contemplate supporting multiple functions on a single, shared, fault-tolerant computer system where natural fault containment boundaries are less sharply defined. Partitioning uses appropriate hardware and software mechanisms to restore strong fault containment to such integrated architectures. This report examines the requirements for partitioning, mechanisms for their realization, and issues in providing assurance for partitioning. Because partitioning shares some concerns with computer security, security models are reviewed and compared with the concerns of partitioning.

  13. Nutrient partitioning and seedling development in the genus Leucaena

    SciTech Connect

    Dovel, R.L.

    1987-01-01

    Slow establishment of the genus Leucaena from seed has been attributed to law seedling vigor and late nodulation. Observation of early seedling growth indicated that partitioning of a large proportion of resources to the root of young Leucaena seedlings could account, in part, for the slow initial shoot growth observed in this genus. Therefore, a series of experiments were conducted to examine the partitioning of stored seed reserves, photosynthate, and nitrogen in developing Leucaena seedlings. The effects of nodulation and nitrogen fertilization on partitioning of nutrients in the seedling were also examined. Seed reserves were initially used for radicle growth in dark grown seedlings; however, partitioning soon shifted to the hypocotyl. By four days after imbibition, hypocotyl weight exceeded radicle weight in both species tested (L. leucocephala and L. retusa), at all temperatures above 20/sup 0/C. Two experiments were conducted examining the carbon partitioning of L. leucocephala cultivar K-8 using /sup 14/CO/sub 2/ pulse labeling techniques.

  14. Time and Space Partitioning the EagleEye Reference Misson

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  15. Dominant partition method. [based on a wave function formalism

    NASA Technical Reports Server (NTRS)

    Dixon, R. M.; Redish, E. F.

    1979-01-01

    By use of the L'Huillier, Redish, and Tandy (LRT) wave function formalism, a partially connected method, the dominant partition method (DPM) is developed for obtaining few body reductions of the many body problem in the LRT and Bencze, Redish, and Sloan (BRS) formalisms. The DPM maps the many body problem to a fewer body one by using the criterion that the truncated formalism must be such that consistency with the full Schroedinger equation is preserved. The DPM is based on a class of new forms for the irreducible cluster potential, which is introduced in the LRT formalism. Connectivity is maintained with respect to all partitions containing a given partition, which is referred to as the dominant partition. Degrees of freedom corresponding to the breakup of one or more of the clusters of the dominant partition are treated in a disconnected manner. This approach for simplifying the complicated BRS equations is appropriate for physical problems where a few body reaction mechanism prevails.

  16. Recent developments in time-dependent density-functional theory within and beyond linear response

    NASA Astrophysics Data System (ADS)

    Gross, E. K. U.

    2013-03-01

    Time-dependent density functional theory (TDDFT) is a popular and rather successful method in the description of photo-absorption spectra of atoms and molecules in the linear response regime. In extended solids, however, a satisfactory description of excitonic effects has become possible only recently with the advent of advanced approximations for the exchange-correlation kernel fxc. One of these advanced approximations is the so-called bootstrap kernel [S. Sharma et al, PRL 107, 186401 (2011)]. We shall explore the performance of this kernel in the long-wavelength limit and for finite values of q, looking at electron-loss as well as photo-absorption spectra. We find, in particular, that excitonic effects in LiF and Ar are enhanced for values of q away from the Γ-point [S. Sharma et al, New J Phys 14, 053052 (2012)]. Then we present two recent developments in TDDFT beyond the linear-response regime: (i) By using a geometrical partitioning, we calculate the angle and energy resolved photo-electron spectra of finite systems including multi-photon effects [De Giovannini, et al, A. Rubio, PRA 86, 062515 (2012)]. (ii) Finally we show how the dynamics of many-electron systems can be controlled with lasers by marrying TDDFT with optimal control theory [A. Castro et al, PRL 109, 153603 (2012)].

  17. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  18. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    PubMed

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  19. Particulate matter, gaseous and particulate polycyclic aromatic hydrocarbons (PAHs) in an urban traffic tunnel of China: Emission from on-road vehicles and gas-particle partitioning.

    PubMed

    Liu, Ying; Gao, Yi; Yu, Na; Zhang, Chenkai; Wang, Siyao; Ma, Limin; Zhao, Jianfu; Lohmann, Rainer

    2015-09-01

    Traffic vehicles are a main source of polycyclic aromatic hydrocarbon (PAH) emission in urban area. It is vital to understand PAH gas-particle partitioning in real traffic environment and assess PAH vehicular emission factors in developing China. Concentrations of particulate matter, carbonaceous products, gaseous and particulate PAHs were measured during 2011-2012 in a road tunnel of Shanghai, China. Time variation of them reflected basic traffic operation of the tunnel. PAHs approached equilibrium between gas and particle phases and the partitioning was predicted better by a dual sorption model combining absorption into organic matter and adsorption onto black carbon. The influence of black carbon adsorption on the partitioning behavior of PAHs was important. The difference in isomer ratios of gaseous and particulate PAHs was attributed to PAH contributions from different traffic-related PAHs sources. Real-world vehicle emission factors of gaseous and particulate PAHs were quantified based on fuel burned model and vehicle kilometer traveled model. PMID:25911047

  20. Vaginal Absorption of Penicillin.

    PubMed

    Rock, J; Barker, R H; Bacon, W B

    1947-01-01

    Except during the last two months of pregnancy, penicillin is easily absorbed from cocoa butter suppositories in the vagina, ordinarily to give therapeutic blood levels for from 4 to 6 hours. Penicillin in the dosage used seems to have a good effect on vaginal infections. In nonpregnant women, during the ovulation phase, considered as including days 14 +/- 2 in the ordinary menstrual cycle of about 28 days, absorption seemed to be somewhat diminished. Higher levels were found in patients who were near the end of their menstrual cycles and in two patients who were menopausal. Patients who were very near term absorbed little or no penicillin, whereas patients 10 days post partum showed excellent absorption.

  1. Photothermal absorption correlation spectroscopy.

    PubMed

    Octeau, Vivien; Cognet, Laurent; Duchesne, Laurence; Lasne, David; Schaeffer, Nicolas; Fernig, David G; Lounis, Brahim

    2009-02-24

    Fluorescence correlation spectroscopy (FCS) is a popular technique, complementary to cell imaging for the investigation of dynamic processes in living cells. Based on fluorescence, this single molecule method suffers from artifacts originating from the poor fluorophore photophysics: photobleaching, blinking, and saturation. To circumvent these limitations we present here a new correlation method called photothermal absorption correlation spectroscopy (PhACS) which relies on the absorption properties of tiny nano-objects. PhACS is based on the photothermal heterodyne detection technique and measures akin FCS, the time correlation function of the detected signals. Application of this technique to the precise determination of the hydrodynamic sizes of different functionalized gold nanoparticles are presented, highlighting the potential of this method. PMID:19236070

  2. THE ABSORPTION OF ADRENALIN

    PubMed Central

    Lyon, D. Murray

    1923-01-01

    1. Adrenalin solution given subcutaneously is usually rapidly absorbed, probably by lymphatic channels. 2. The speed of this process may be influenced by the circulation rate. 3. The relative amounts of adrenalin at any moment unabsorbed at the site of inoculation, carried in the circulating fluids, and taken up by the reacting tissues can be calculated from figures extracted from the curve of the blood pressure changes. The relative rates of transference of adrenalin into the blood and from the circulation into the tissues can also be estimated. 4. When absorption takes place rapidly a large quantity of the drug comes into action at once and the maximum occurs early, the curve of blood pressure reaches a considerable height, and subsides quickly. When absorption is slow the apex appears later and does not reach so high a level. 5. The response to adrenalin bears a logarithmic relationship to the dose employed and a method of allowing for this is indicated. PMID:19868816

  3. Comparison of percutaneous absorption of fragrances by humans and monkeys.

    PubMed

    Bronaugh, R L; Stewart, R F; Wester, R C; Bucks, D; Mailbach, H I; Anderson, J

    1985-01-01

    The percutaneous absorption of two cosmetic fragrance materials, safrole and cinnamyl anthranilate, as well as of cinnamic alcohol and cinnamic acid, has been measured at occluded and non-occluded application sites. Absorption values were determined in the rhesus monkey in vivo. Absorption through human skin was measured by using excised skin in diffusion cells. Because of the insolubility in water of safrole and cinnamyl anthranilate, a nonionic surfactant solution (6% oleth 20) was used in the receptor chamber of the diffusion cell in order to facilitate the partitioning of the compounds from the skin into the receptor fluid. The relative volatility of the compounds was determined in order to aid in the interpretation of the absorption results. The greatest difference between in vivo and in vitro absorption values occurred with safrole, which was the least well absorbed and the most volatile compound. Cinnamic acid absorption through non-occluded human skin (17.8 +/- 4.9%, mean +/- SEM) was significantly lower than through monkey skin (38.6 +/- 8.3%). The values for absorption through human and monkey skin did not differ significantly for cinnamyl anthranilate (24.0 +/- 5.1% v. 26.1 +/- 2.3%) or cinnamic alcohol (33.9 +/- 7.3% v. 25.4 +/- 4.4%). Occlusion of the skin resulted in greater permeation of all of the compounds; a significant difference in permeability between the two types of skin occurred only with safrole. The fragrances were absorbed well, but their volatility must be considered in a toxicity evaluation. There was reasonable agreement between the values obtained from the studies of the human skin in vitro and the monkey skin in vivo.

  4. Experimental chlorine partitioning between forsterite, enstatite and aqueous fluid at upper mantle conditions☆

    PubMed Central

    Fabbrizio, Alessandro; Stalder, Roland; Hametner, Kathrin; Günther, Detlef

    2013-01-01

    Cl partition coefficients between forsterite, enstatite and coexisting Cl-bearing aqueous fluids were determined in a series of high pressure and temperature piston cylinder experiments at 2 GPa between 900 and 1300 °C in the system MgO–SiO2–H2O–NaCl–BaO–C±CaCl2±TiO2±Al2O3±F. Diamond aggregates were added to the experimental capsule set-up in order to separate the fluid from the solid residue and enable in situ analysis of the quenched solute by LA-ICP-MS. The chlorine content of forsterite and enstatite was measured by electron microprobe, and the nature of hydrous defects was investigated by infrared spectroscopy. Partition coefficients show similar incompatibility for Cl in forsterite and enstatite, with DClfo/fl = 0.0012 ± 0.0006, DClen/fl = 0.0018 ± 0.0008 and DClfo/en = 1.43 ± 0.71. The values determined for mineral/fluid partitioning are very similar to previously determined values for mineral/melt. Applying the new mineral/fluid partition coefficients to fluids in subduction zones, a contribution between 0.15% and 20% of the total chlorine from the nominally anhydrous minerals is estimated. Infrared spectra of experimental forsterite show absorption bands at 3525 and 3572 cm−1 that are characteristic for hydroxyl point defects associated with trace Ti substitutions, and strongly suggest that the TiO2 content of the system can influence the chlorine and OH incorporation via the stabilization of Ti-clinohumite-like point defects. The water contents for coexisting forsterite and enstatite in some runs were determined using unpolarized IR spectra and calculated water partition coefficients DH2Ofo/en are between 0.01 and 0.5. PMID:25843971

  5. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences

    PubMed Central

    Eren, A Murat; Morrison, Hilary G; Lescault, Pamela J; Reveillaud, Julie; Vineis, Joseph H; Sogin, Mitchell L

    2015-01-01

    Molecular microbial ecology investigations often employ large marker gene datasets, for example, ribosomal RNAs, to represent the occurrence of single-cell genomes in microbial communities. Massively parallel DNA sequencing technologies enable extensive surveys of marker gene libraries that sometimes include nearly identical sequences. Computational approaches that rely on pairwise sequence alignments for similarity assessment and de novo clustering with de facto similarity thresholds to partition high-throughput sequencing datasets constrain fine-scale resolution descriptions of microbial communities. Minimum Entropy Decomposition (MED) provides a computationally efficient means to partition marker gene datasets into ‘MED nodes', which represent homogeneous operational taxonomic units. By employing Shannon entropy, MED uses only the information-rich nucleotide positions across reads and iteratively partitions large datasets while omitting stochastic variation. When applied to analyses of microbiomes from two deep-sea cryptic sponges Hexadella dedritifera and Hexadella cf. dedritifera, MED resolved a key Gammaproteobacteria cluster into multiple MED nodes that are specific to different sponges, and revealed that these closely related sympatric sponge species maintain distinct microbial communities. MED analysis of a previously published human oral microbiome dataset also revealed that taxa separated by less than 1% sequence variation distributed to distinct niches in the oral cavity. The information theory-guided decomposition process behind the MED algorithm enables sensitive discrimination of closely related organisms in marker gene amplicon datasets without relying on extensive computational heuristics and user supervision. PMID:25325381

  6. Partitioning of Evapotranspiration Using a Stable Water Isotope Technique in a High Temperature Agricultural Production System

    NASA Astrophysics Data System (ADS)

    Lu, X.; Liang, L.; Wang, L.; Jenerette, D.; Grantz, D. A.

    2015-12-01

    Agricultural production in the hot and arid low desert systems of southern California relies heavily on irrigation. A better understanding of how much and to what extent the irrigation water is transpired by crops relative to being lost through evaporation will contribute to better management of increasingly limited agricultural water resources. In this study, we examined the evapotranspiration (ET) partitioning over a field of forage sorghum (S. bicolor) during a growing season with several irrigation cycles. In several field campaigns we used continuous measurements of near-surface variations in the stable isotopic composition of water vapor (δ2H). We employed custom built transparent chambers coupled with a laser-based isotope analyzer and used Keeling plot and mass balance methods for surface flux partitioning. The preliminary results show that δT is more enriched than δE in the early growing season, and becomes less enriched than δE later in the season as canopy cover increases. There is an increase in the contribution of transpiration to ET as (1) leaf area index increases, and (2) as soil surface moisture declines. These results are consistent with theory, and extend these measurements to an environment that experiences extreme soil surface temperatures. The data further support the use of chamber based methods with stable isotopic analysis for characterization of ET partitioning in challenging field environments.

  7. Prediction of Phospholipid-Water Partition Coefficients of Ionic Organic Chemicals Using the Mechanistic Model COSMOmic.

    PubMed

    Bittermann, Kai; Spycher, Simon; Endo, Satoshi; Pohler, Larissa; Huniar, Uwe; Goss, Kai-Uwe; Klamt, Andreas

    2014-12-26

    The partition coefficient of chemicals from water to phospholipid membrane, K(lipw), is of central importance for various fields. For neutral organic molecules, log K(lipw) correlates with the log of bulk solvent-water partition coefficients such as the octanol-water partition coefficient. However, this is not the case for charged compounds, for which a mechanistic modeling approach is highly necessary. In this work, we extend the model COSMOmic, which adapts the COSMO-RS theory for anisotropic phases and has been shown to reliably predict K(lipw) for neutral compounds, to the use of ionic compounds. To make the COSMOmic model applicable for ionic solutes, we implemented the internal membrane dipole potential in COSMOmic. We empirically optimized the potential with experimental K(lipw) data of 161 neutral and 75 ionic compounds, yielding potential shapes that agree well with experimentally determined potentials from the literature. This model refinement has no negative effect on the prediction accuracy of neutral compounds (root-mean-square error, RMSE = 0.62 log units), while it highly improves the prediction of ions (RMSE = 0.70 log units). The refined COSMOmic is, to our knowledge, the first mechanistic model that predicts K(lipw) of both ionic and neutral species with accuracies better than 1 log unit.

  8. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  9. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  10. Corrosion Problems in Absorption Chillers

    ERIC Educational Resources Information Center

    Stetson, Bruce

    1978-01-01

    Absorption chillers use a lithium bromide solution as the medium of absorption and water as the refrigerant. Discussed are corrosion and related problems, tests and remedies, and cleaning procedures. (Author/MLF)

  11. The use of CNDO in spectroscopy. XV. Two photon absorption

    NASA Astrophysics Data System (ADS)

    Marchese, Francis T.; Seliskar, C. J.; Jaffé, H. H.

    1980-04-01

    Two-photon absorptivities have been calculated within the CNDO/S-CI molecular orbital framework of Del Bene and Jaffé utilizing the second order time dependent perturbation equations of Göppert-Mayer and polarization methods of McClain. Good agreement is found between this theory and experiment for transition energies, symmetries, and two-photon absorptivities for the following molecules: biphenyl, terphenyl, 2,2'-difluorobiphenyl, 2,2'-bipyridyl, phenanthrene, and the isoelectronic series: fluorene, carbazole, dibenzofuran.

  12. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates

  13. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis

    PubMed Central

    Stefan, Laura M.; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C.; McCoy, Karen D.; González-Solís, Jacob

    2015-01-01

    According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory’s shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in

  14. Niche Partitioning of Feather Mites within a Seabird Host, Calonectris borealis.

    PubMed

    Stefan, Laura M; Gómez-Díaz, Elena; Elguero, Eric; Proctor, Heather C; McCoy, Karen D; González-Solís, Jacob

    2015-01-01

    According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory's shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in

  15. Rovibrational energies, partition functions and equilibrium fractionation of the CO2 isotopologues

    NASA Astrophysics Data System (ADS)

    Cerezo, J.; Bastida, A.; Requena, A.; Zúñiga, J.

    2014-11-01

    Rovibrational energy levels, partition functions and relative abundances of the stable isotopologues of CO2 in gas phase at equilibrium are calculated using an empirical Morse-cosine potential energy surface (PES) refined by fitting to the updated pure (l2=0) vibrational frequencies observed for the main 12C16O2 isotopologue. The rovibrational energy levels are calculated variationally using a system of optimized hyperspherical normal coordinates, and from these the vibrational terms Gv and rotational constants Bv of the isotopologues are determined. The refined potential surface is shown to be clearly superior to the original potential surface, with the former reproducing the observed values of the spectroscopic constants Gv and Bv with accuracies of about 0.1 cm-1 and 0.00020 cm-1, respectively, for levels with l2≥0 up to 10,000 cm-1 above the ground state. The internal partition functions of the isotopologues are calculated by approximated direct summation over the rovibrational energies and compared with both previous partition sums and values obtained from analytical expressions based on the harmonic oscillator and rigid rotor models. The partition functions calculated by approximated direct summation are then used to determine the abundances of the CO2 isotopologues at thermodynamic equilibrium using the method developed by Wang et al. [74]. Significant variations in the relative abundances of some of the CO2 multiple substituted isotopologues at terrestrial temperatures with respect to those provided by the classical harmonic-based Urey theory are found, which may be of relevance in geochemical processes.

  16. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules

    PubMed Central

    Smyth, Jeremy T.; Schoborg, Todd A.; Bergman, Zane J.; Riggs, Blake; Rusan, Nasser M.

    2015-01-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  17. Isotope-based evapotranspiration partition in semi-arid environments

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Parkes, Stephen; McCabe, Matthew; Azcurra, Cecilia; Wang, Jin; Graham, Peter

    2013-04-01

    Evapotranspiration (ET) partitioning is important for quantifying the water budget and understanding vegetation control on water cycles in various ecosystems. With the development of spectroscopy-based techniques for in-situ isotope measurements, the use of stable isotope based ET partition is rising rapidly. The sub-daily scale ET partition, however, is still rarely seen in the literature. In this study, we conducted an intensive field campaign measuring ET partition using laser-based isotope and chamber techniques in a pasture system between May and June 2012 in eastern Australia. Six soil collars were used, three of which had natural vegetation and the other three were bare soil collars where vegetation was artificially removed. The vegetated and bare soil collars were used to determine the isotopic composition of ET and evaporation, respectively. The isotopic composition of the transpiration flux was determined using a Licor leaf chamber for grasses inside the vegetated collars. The diurnal patterns in dET, dE and dT are observed. In the morning, they are depleted and became more enriched and level off during mid-day. Overall the total ET flux is dominated by evaporation, though transpiration contributions are relatively higher between 10am and 12pm. D-excess is a conservative tracer of ET components and may not be useful in ET partition. This study demonstrated the use of chamber-based measurements for direct partitioning of ET at sub-daily scale and showed a rarely observed diurnal pattern of ET partition.

  18. Proper symmetric and asymmetric endoplasmic reticulum partitioning requires astral microtubules.

    PubMed

    Smyth, Jeremy T; Schoborg, Todd A; Bergman, Zane J; Riggs, Blake; Rusan, Nasser M

    2015-08-01

    Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species. PMID:26289801

  19. Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.

  20. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…