Science.gov

Sample records for abstract coral bleaching

  1. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water and that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.

  2. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  3. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  4. Coral reef bleaching: ecological perspectives

    NASA Astrophysics Data System (ADS)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  5. Ultraviolet radiation and coral bleaching

    NASA Astrophysics Data System (ADS)

    Gleason, Daniel F.; Wellington, Gerard M.

    1993-10-01

    EPISODES of coral bleaching resulting from dissociation of endosymbiotic algae (zooxanthellae) from host coral tissues have occurred with increasing frequency over the past decade on reefs throughout the tropics1,2. These episodes have usually been attributed to increases in sea water temperatures3-10, but the mass bleaching events that occurred throughout the Caribbean during 1987 and 1990 were not readily explained by temperature alone11,12. An additional factor that may have contributed to these bleaching episodes is ultraviolet radiation in the 280-400-nm band. At many localities where bleaching occurred in 1987 and 1990, sea conditions were described as extremely calm with exceptionally clear water13. In the absence of suspended organic and inorganic matter in the water column, higher than average intensities of ultraviolet radiation probably reached all depths within the photic zone for several consecutive months. Evidence for a possible link between ultraviolet radiation and coral bleaching has not been forthcoming2. Here we report results of a field experiment showing that, irrespective of high water temperatures, short-term (three weeks) increases in ultraviolet radiation of a magnitude possible under calm, clear water column conditions can readily induce bleaching in reef-building corals.

  6. Coral bleaching: the role of the host.

    PubMed

    Baird, Andrew H; Bhagooli, Ranjeet; Ralph, Peter J; Takahashi, Shunichi

    2009-01-01

    Coral bleaching caused by global warming is one of the major threats to coral reefs. Very recently, research has focused on the possibility of corals switching symbionts as a means of adjusting to accelerating increases in sea surface temperature. Although symbionts are clearly of fundamental importance, many aspects of coral bleaching cannot be readily explained by differences in symbionts among coral species. Here we outline several potential mechanisms by which the host might influence the bleaching response, and conclude that predicting the fate of corals in response to climate change requires both members of the symbiosis to be considered equally.

  7. Patterns of coral bleaching: Modeling the adaptive bleaching hypothesis

    USGS Publications Warehouse

    Ware, J.R.; Fautin, D.G.; Buddemeier, R.W.

    1996-01-01

    Bleaching - the loss of symbiotic dinoflagellates (zooxanthellae) from animals normally possessing them - can be induced by a variety of stresses, of which temperature has received the most attention. Bleaching is generally considered detrimental, but Buddemeier and Fautin have proposed that bleaching is also adaptive, providing an opportunity for recombining hosts with alternative algal types to form symbioses that might be better adapted to altered circumstances. Our mathematical model of this "adaptive bleaching hypothesis" provides insight into how animal-algae symbioses might react under various circumstances. It emulates many aspects of the coral bleaching phenomenon including: corals bleaching in response to a temperature only slightly greater than their average local maximum temperature; background bleaching; bleaching events being followed by bleaching of lesser magnitude in the subsequent one to several years; higher thermal tolerance of corals subject to environmental variability compared with those living under more constant conditions; patchiness in bleaching; and bleaching at temperatures that had not previously resulted in bleaching. ?? 1996 Elsevier Science B.V. All rights reserved.

  8. Local Stressors Reduce Coral Resilience to Bleaching

    PubMed Central

    Carilli, Jessica E.; Norris, Richard D.; Black, Bryan A.; Walsh, Sheila M.; McField, Melanie

    2009-01-01

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2–3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change. PMID:19623250

  9. Local stressors reduce coral resilience to bleaching.

    PubMed

    Carilli, Jessica E; Norris, Richard D; Black, Bryan A; Walsh, Sheila M; McField, Melanie

    2009-07-22

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.

  10. Oxidative stress and seasonal coral bleaching.

    PubMed

    Downs, C A; Fauth, John E; Halas, John C; Dustan, Phillip; Bemiss, John; Woodley, Cheryl M

    2002-08-15

    During the past two decades, coral reefs have experienced extensive degradation worldwide. One etiology for this global degradation is a syndrome known as coral bleaching. Mass coral bleaching events are correlated with increased sea-surface temperatures, however, the cellular mechanism underlying this phenomenon is uncertain. To determine if oxidative stress plays a mechanistic role in the process of sea-surface temperature-related coral bleaching, we examined corals along a depth transect in the Florida Keys over a single season that was characterized by unusually high sea-surface temperatures. We observed strong positive correlations between accumulation of oxidative damage products and bleaching in corals over a year of sampling. High levels of antioxidant enzymes and small heat-shock proteins were negatively correlated with levels of oxidative damage products. Corals that experienced oxidative stress had higher chaperonin levels and protein turnover activity. Our results indicate that coral bleaching is tightly coupled to the antioxidant and cellular stress capacity of the symbiotic coral, supporting the mechanistic model that coral bleaching (zooxanthellae loss) may be a final strategy to defend corals from oxidative stress.

  11. The role of microorganisms in coral bleaching.

    PubMed

    Rosenberg, Eugene; Kushmaro, Ariel; Kramarsky-Winter, Esti; Banin, Ehud; Yossi, Loya

    2009-02-01

    Coral bleaching is the disruption of the symbiosis between the coral host and its endosymbiotic algae. The prevalence and severity of the disease have been correlated with high seawater temperature. During the last decade, the major hypothesis to explain coral bleaching is that high water temperatures cause irreversible damage to the symbiotic algae resulting in loss of pigment and/or algae from the holobiont. Here, we discuss the evidence for an alternative but not mutually exclusive concept, the microbial hypothesis of coral bleaching.

  12. Coral bleaching: thermal adaptation in reef coral symbionts.

    PubMed

    Rowan, Rob

    2004-08-12

    Many corals bleach as a result of increased seawater temperature, which causes them to lose their vital symbiotic algae (Symbiodinium spp.) - unless these symbioses are able to adapt to global warming, bleaching threatens coral reefs worldwide. Here I show that some corals have adapted to higher temperatures, at least in part, by hosting specifically adapted Symbiodinium. If other coral species can host these or similar Symbiodinium taxa, they might adapt to warmer habitats relatively easily.

  13. Heterotrophic plasticity and resilience in bleached corals.

    PubMed

    Grottoli, Andréa G; Rodrigues, Lisa J; Palardy, James E

    2006-04-27

    Mass coral bleaching events caused by elevated seawater temperatures have resulted in extensive coral mortality throughout the tropics over the past few decades. With continued global warming, bleaching events are predicted to increase in frequency and severity, causing up to 60% coral mortality globally within the next few decades. Although some corals are able to recover and to survive bleaching, the mechanisms underlying such resilience are poorly understood. Here we show that the coral host has a significant role in recovery and resilience. Bleached and recovering Montipora capitata (branching) corals met more than 100% of their daily metabolic energy requirements by markedly increasing their feeding rates and CHAR (per cent contribution of heterotrophically acquired carbon to daily animal respiration), whereas Porites compressa (branching) and Porites lobata (mounding) corals did not. These findings suggest that coral species with high-CHAR capability during bleaching and recovery, irrespective of morphology, will be more resilient to bleaching events over the long term, could become the dominant coral species on reefs, and may help to safeguard affected reefs from potential local and global extinction.

  14. Coral bleaching independent of photosynthetic activity.

    PubMed

    Tolleter, Dimitri; Seneca, François O; DeNofrio, Jan C; Krediet, Cory J; Palumbi, Stephen R; Pringle, John R; Grossman, Arthur R

    2013-09-23

    The global decline of reef-building corals is due in part to the loss of algal symbionts, or "bleaching," during the increasingly frequent periods of high seawater temperatures. During bleaching, endosymbiotic dinoflagellate algae (Symbiodinium spp.) either are lost from the animal tissue or lose their photosynthetic pigments, resulting in host mortality if the Symbiodinium populations fail to recover. The >1,000 studies of the causes of heat-induced bleaching have focused overwhelmingly on the consequences of damage to algal photosynthetic processes, and the prevailing model for bleaching invokes a light-dependent generation of toxic reactive oxygen species (ROS) by heat-damaged chloroplasts as the primary trigger. However, the precise mechanisms of bleaching remain unknown, and there is evidence for involvement of multiple cellular processes. In this study, we asked the simple question of whether bleaching can be triggered by heat in the dark, in the absence of photosynthetically derived ROS. We used both the sea anemone model system Aiptasia and several species of reef-building corals to demonstrate that symbiont loss can occur rapidly during heat stress in complete darkness. Furthermore, we observed damage to the photosynthetic apparatus under these conditions in both Aiptasia endosymbionts and cultured Symbiodinium. These results do not directly contradict the view that light-stimulated ROS production is important in bleaching, but they do show that there must be another pathway leading to bleaching. Elucidation of this pathway should help to clarify bleaching mechanisms under the more usual conditions of heat stress in the light.

  15. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    PubMed

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  16. Chronic parrotfish grazing impedes coral recovery after bleaching

    NASA Astrophysics Data System (ADS)

    Rotjan, Randi D.; Dimond, James L.; Thornhill, Daniel J.; Leichter, James J.; Helmuth, Brian; Kemp, Dustin W.; Lewis, Sara M.

    2006-08-01

    Coral bleaching, in which corals become visibly pale and typically lose their endosymbiotic zooxanthellae ( Symbiodinium spp.), increasingly threatens coral reefs worldwide. While the proximal environmental triggers of bleaching are reasonably well understood, considerably less is known concerning physiological and ecological factors that might exacerbate coral bleaching or delay recovery. We report a bleaching event in Belize during September 2004 in which Montastraea spp. corals that had been previously grazed by corallivorous parrotfishes showed a persistent reduction in symbiont density compared to intact colonies. Additionally, grazed corals exhibited greater diversity in the genetic composition of their symbiont communities, changing from uniform ITS2 type C7 Symbiodinium prior to bleaching to mixed assemblages of Symbiodinium types post-bleaching. These results suggest that chronic predation may exacerbate the influence of environmental stressors and, by altering the coral-zooxanthellae symbiosis, such abiotic-biotic interactions may contribute to spatial variation in bleaching processes.

  17. In Brief: Coral bleaching likely in Caribbean and other regions

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2009-08-01

    Conditions are favorable for significant coral bleaching and infectious coral disease outbreaks in the Caribbean, especially in the Lesser Antilles, scientists from the U.S. National Oceanic and Atmospheric Administration's (NOAA) Coral Reef Watch Program indicated in a 22 July announcement. Scientists are concerned that bleaching could reach or exceed the levels recorded in 2005, when up to 90% of corals there were bleached and more than half of those died. The forecast is based on the agency's July Coral Reef Watch outlook, which expects continued high water temperatures through October 2009. Other areas of concern are the central Pacific region including the equatorial Line Islands and Kiribati, according to NOAA. Coral bleaching is associated with increased ocean temperatures, among other factors, which causes the coral to expel symbiotic microalgae and causes coral tissue to appear to be bleached. For more information, visit http://coralreefwatch.noaa.gov.

  18. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    PubMed

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  19. Does coral bleaching mean global warming

    SciTech Connect

    Miller, J.A.

    1991-02-01

    This article discusses the implications of global warming on the marine ecosystems. In recent hearings of the US Senate Committee on Commerce, Science and Transportation, plans were made to introduce legislation for control of greenhouse-gas emissions, conservation of biological diversity, forest conservation, world population planning, sustainable economic development , increased fuel efficiency, and increased research into Earth-system processes. Research is required to ascertain the meaning of coral bleaching, which is the mass expulsion of symbiotic algae, called zooxanthellae, which gives the coral its color. Many scientists think that the death of the algae is an early indicator for massive destruction of the marine ecosystem.

  20. Coral Bleaching: Coral 'refugia' amid heating seas

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken

    2013-05-01

    The Earth is getting hotter as carbon dioxide, predominantly from the burning of fossil fuels, continues to accumulate in the atmosphere. It is widely recognized that increasing temperatures pose a threat to coral reefs, but just how large a risk are these reefs facing?

  1. The cumulative impact of annual coral bleaching can turn some coral species winners into losers.

    PubMed

    Grottoli, Andréa G; Warner, Mark E; Levas, Stephen J; Aschaffenburg, Matthew D; Schoepf, Verena; McGinley, Michael; Baumann, Justin; Matsui, Yohei

    2014-12-01

    Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long-term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species 'winners' into 'losers', and can also facilitate acclimation and turn some coral species 'losers' into 'winners'. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long-term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean.

  2. Coral community response to bleaching on a highly disturbed reef

    PubMed Central

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  3. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  4. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  5. Incorporating adaptive responses into future projections of coral bleaching.

    PubMed

    Logan, Cheryl A; Dunne, John P; Eakin, C Mark; Donner, Simon D

    2014-01-01

    Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming-induced bleaching remains largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the preindustrial period through 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a preindustrial climatology to the NOAA Coral Reef Watch bleaching prediction method overpredicts the present-day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the 'no adaptive response' prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high-frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high-frequency bleaching by ca. 10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and

  6. Coral bleaching at Little Cayman, Cayman Islands 2009

    NASA Astrophysics Data System (ADS)

    van Hooidonk, Ruben J.; Manzello, Derek P.; Moye, Jessica; Brandt, Marilyn E.; Hendee, James C.; McCoy, Croy; Manfrino, Carrie

    2012-06-01

    The global rise in sea temperature through anthropogenic climate change is affecting coral reef ecosystems through a phenomenon known as coral bleaching; that is, the whitening of corals due to the loss of the symbiotic zooxanthellae which impart corals with their characteristic vivid coloration. We describe aspects of the most prevalent episode of coral bleaching ever recorded at Little Cayman, Cayman Islands, during the fall of 2009. The most susceptible corals were found to be, in order, Siderastrea siderea, Montastraea annularis, and Montastraea faveolata, while Diplora strigosa and Agaricia spp. were less so, yet still showed considerable bleaching prevalence and severity. Those found to be least susceptible were Porites porites, Porites astreoides, and Montastraea cavernosa. These observations and other reported observations of coral bleaching, together with 29 years (1982-2010) of satellite-derived sea surface temperatures, were used to optimize bleaching predictions at this location. To do this a Degree Heating Weeks (DHW) and Peirce Skill Score (PSS) analysis was employed to calculate a local bleaching threshold above which bleaching was expected to occur. A threshold of 4.2 DHW had the highest skill, with a PSS of 0.70. The method outlined here could be applied to other regions to find the optimal bleaching threshold and improve bleaching predictions.

  7. Coral reef bleaching at Agatti Island of Lakshadweep atolls, India

    NASA Astrophysics Data System (ADS)

    Vinoth, Ramar; Gopi, Mohan; Kumar, Thipramalai Thankappanpillai Ajith; Thangaradjou, Thirunavukarassu; Balasubramanian, Thangavel

    2012-03-01

    A survey on coral bleaching was carried out at Agatti Island of Lakshadweep from May to June 2010. Elevated sea surface temperatures (SSTs) of the region exceeded the seasonal average and delayed the onset of monsoon, which triggered widespread bleaching of corals. The Agatti reefs showed an average of 73% bleached corals with apparent bleaching-related mortality of sea anemones (87%) and giant clams (83%). The SST increased up to 34 °C with an average maximum SST of 32.5 during the study °C period between May and June 2010. Coral reefs on the southern side of the island are fully or partially exposed to sun light during low tide in contrast to the other side. This suggests that the mortality is more likely due to the low tide exposure than exclusively due to the elevated SST. Observations indicated a clear increase in coral bleaching during April 2010, at levels higher than that in normal summer.

  8. Monitoring coral bleaching using a colour reference card

    NASA Astrophysics Data System (ADS)

    Siebeck, U. E.; Marshall, N. J.; Klüter, A.; Hoegh-Guldberg, Ove

    2006-08-01

    Assessment of the extent of coral bleaching has become an important part of studies that aim to understand the condition of coral reefs. In this study a reference card that uses differences in coral colour was developed as an inexpensive, rapid and non-invasive method for the assessment of bleaching. The card uses a 6 point brightness/saturation scale within four colour hues to record changes in bleaching state. Changes on the scale of 2 units or more reflect a change in symbiont density and chlorophyll a content, and therefore the bleaching state of the coral. When used by non-specialist observers in the field (here on an intertidal reef flat), there was an inter-observer error of ± 1 colour score. This technique improves on existing subjective assessment of bleaching state by visual observation and offers the potential for rapid, wide-area assessment of changing coral condition.

  9. Mass coral bleaching in 2010 in the southern Caribbean.

    PubMed

    Alemu I, Jahson Berhane; Clement, Ysharda

    2014-01-01

    Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching.

  10. Mass Coral Bleaching in 2010 in the Southern Caribbean

    PubMed Central

    Alemu I, Jahson Berhane; Clement, Ysharda

    2014-01-01

    Ocean temperatures are increasing globally and the Caribbean is no exception. An extreme ocean warming event in 2010 placed Tobago's coral reefs under severe stress resulting in widespread coral bleaching and threatening the livelihoods that rely on them. The bleaching response of four reef building taxa was monitored over a six month period across three major reefs systems in Tobago. By identifying taxa resilient to bleaching we propose to assist local coral reef managers in the decision making process to cope with mass bleaching events. The bleaching signal (length of exposure to high ocean temperatures) varied widely between the Atlantic and Caribbean reefs, but regardless of this variation most taxa bleached. Colpophyllia natans, Montastraea faveolata and Siderastrea siderea were considered the most bleaching vulnerable taxa. Interestingly, reefs with the highest coral cover showed the greatest decline reef building taxa, and conversely, reefs with the lowest coral cover showed the most bleaching but lowest change in coral cover with little algal overgrowth post-bleaching. PMID:24400078

  11. Bacteria associated with the bleached and cave coral Oculina patagonica.

    PubMed

    Koren, Omry; Rosenberg, Eugene

    2008-04-01

    The relative abundance of bacteria in the mucus and tissues of Oculina patagonica taken from bleached and cave (azooxanthellae) corals was determined by analyses of the 16S rRNA genes from cloned libraries of extracted DNA and from isolated colonies. The results were compared to previously published data on healthy O. patagonica. The bacterial community of bleached, cave, and healthy corals were completely different from each other. A tight cluster (>99.5% identity) of bacteria, showing 100% identity to Acinetobacter species, dominated bleached corals, comprising 25% of the 316 clones sequenced. The dominant bacterial cluster found in cave corals, representing 29% of the 97 clones sequenced, showed 98% identity to an uncultured bacterium from the Great Barrier Reef. Vibrio splendidus was the most dominant species in healthy O. patagonica. The culturable bacteria represented 0.1-1.0% of the total bacteria (SYBR Gold staining) of the corals. The most abundant culturable bacteria in bleached, cave, and healthy corals were clusters that most closely matched Microbulbifer sp., an alpha-proteobacterium previously isolated from healthy corals and an alpha-protobacterium (AB026194), respectively. Three generalizations emerge from this study on O. patagonica: (1) More bacteria are associated with coral tissue than mucus; (2) tissue and mucus populations are different; (3) bacterial populations associated with corals change dramatically when corals lack their symbiotic zooxanthellae, either as a result of the bleaching disease or when growing in the absence of light.

  12. Through bleaching and tsunami: Coral reef recovery in the Maldives.

    PubMed

    Morri, Carla; Montefalcone, Monica; Lasagna, Roberta; Gatti, Giulia; Rovere, Alessio; Parravicini, Valeriano; Baldelli, Giuseppe; Colantoni, Paolo; Bianchi, Carlo Nike

    2015-09-15

    Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet. PMID:26228070

  13. Through bleaching and tsunami: Coral reef recovery in the Maldives.

    PubMed

    Morri, Carla; Montefalcone, Monica; Lasagna, Roberta; Gatti, Giulia; Rovere, Alessio; Parravicini, Valeriano; Baldelli, Giuseppe; Colantoni, Paolo; Bianchi, Carlo Nike

    2015-09-15

    Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet.

  14. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events

    NASA Astrophysics Data System (ADS)

    Dishon, G.; Fisch, J.; Horn, I.; Kaczmarek, K.; Bijma, J.; Gruber, D. F.; Nir, O.; Popovich, Y.; Tchernov, D.

    2015-06-01

    Coral reefs occupy only ~0.1% of the oceans habitat, but are the most biologically diverse marine ecosystem. In recent decades, coral reefs have experienced significant global declines due to a variety of causes, one of the major being widespread coral bleaching events. During bleaching the coral expels its symbiotic algae losing its main source of nutrition generally obtained through photosynthesis. While recent coral bleaching events have been extensively investigated, there is no scientific data on historical coral bleaching prior to 1979. In this study, we employ high-resolution femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) to demonstrate a distinct biologically-induced decline of boron (B) isotopic composition (δ11B) as a result of coral bleaching. These findings and methodology offer a new use for a previously developed isotopic proxy to reconstruct paleo-coral bleaching events. Based on a literature review of published δ11B data and our recorded "vital effect" of coral bleaching on the δ11B signal, we also describe at least two possible coral bleaching events since the Last Glacial Maximum. The implementation of this bleaching proxy holds the potential of identifying occurrences of coral bleaching throughout the geological record. A deeper temporal view of coral bleaching will enable scientists to determine if it occurred in the past during times of environmental change and what outcome it may have had on coral population structure.

  15. Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce

    NASA Astrophysics Data System (ADS)

    Stella, J. S.; Munday, P. L.; Jones, G. P.

    2011-09-01

    Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.

  16. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    EPA Science Inventory

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  17. The effects of habitat on coral bleaching responses in Kenya.

    PubMed

    Grimsditch, Gabriel; Mwaura, Jelvas M; Kilonzo, Joseph; Amiyo, Nassir

    2010-06-01

    This study examines the bleaching responses of scleractinian corals at four sites in Kenya (Kanamai, Vipingo, Mombasa and Nyali) representing two distinct lagoon habitats (relatively shallow and relatively deep). Bleaching incidence was monitored for the whole coral community, while zooxanthellae densities and chlorophyll levels were monitored for target species (Pocillopora damicornis, Porites lutea, and Porites cylindrica) during a non-bleaching year (2006) and a year of mild-bleaching (2007). Differences in bleaching responses between habitats were observed, with shallower sites Kanamai and Vipingo exhibiting lower bleaching incidence than deeper sites Nyali and Mombasa. These shallower lagoons display more fluctuating thermal and light environments than the deeper sites, suggesting that corals in the shallower lagoons have acclimatized and/or adapted to the fluctuating environmental conditions they endure on a daily basis and have become more resistant to bleaching stress. In deeper sites that did exhibit higher bleaching (Mombasa and Nyali), it was found that coral recovery occurred more quickly in the protected area than in the non-protected area.

  18. INDICATORS OF UV EXPOSURE IN CORALS AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Through interactions with other factors such as sedimentation, pollution, and bacterial infection, bleaching can impact large areas of a reef with limited recovery, and it might be induc...

  19. INDICATORS OF UV EXPOSURE IN CORAL AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Bleaching can destroy large areas of a reef with limited recovery or recruitment, and it may be induced by a variety of stressors ranging from exposure to temperature and salinity extrem...

  20. The effects of coral bleaching on settlement preferences and growth of juvenile butterflyfishes.

    PubMed

    Cole, A J; Lawton, R J; Pisapia, C; Pratchett, M S

    2014-07-01

    Coral bleaching and associated mortality is an increasingly prominent threat to coral reef ecosystems. Although the effects of bleaching-induced coral mortality on reef fishes have been well demonstrated, corals can remain bleached for several weeks prior to recovery or death and little is known about how bleaching affects resident fishes during this time period. This study compared growth rates of two species of juvenile butterflyfishes (Chaetodon aureofasciatus and Chaetodon lunulatus) that were restricted to feeding upon either bleached or healthy coral tissue of Acropora spathulata or Pocillopora damicornis. Coral condition (bleached vs. unbleached) had no significant effects on changes in total length or weight over a 23-day period. Likewise, in a habitat choice experiment, juvenile butterflyfishes did not discriminate between healthy and bleached corals, but actively avoided using recently dead colonies. These results indicate that juvenile coral-feeding fishes are relatively robust to short term effects of bleaching events, provided that the corals do recover.

  1. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching.

    PubMed

    Swain, Timothy D; Vega-Perkins, Jesse B; Oestreich, William K; Triebold, Conrad; DuBois, Emily; Henss, Jillian; Baird, Andrew; Siple, Margaret; Backman, Vadim; Marcelino, Luisa

    2016-07-01

    As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon-specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon-specific bleaching and mortality records (2036) of 374 coral taxa (during 1982-2006) at 316 sites were standardized to average percent tissue area affected and a taxon-specific bleaching response index (taxon-BRI) was calculated by averaging taxon-specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon-BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon-BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon-BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon-BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon-BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel

  2. Coral bleaching response index: a new tool to standardize and compare susceptibility to thermal bleaching.

    PubMed

    Swain, Timothy D; Vega-Perkins, Jesse B; Oestreich, William K; Triebold, Conrad; DuBois, Emily; Henss, Jillian; Baird, Andrew; Siple, Margaret; Backman, Vadim; Marcelino, Luisa

    2016-07-01

    As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon-specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon-specific bleaching and mortality records (2036) of 374 coral taxa (during 1982-2006) at 316 sites were standardized to average percent tissue area affected and a taxon-specific bleaching response index (taxon-BRI) was calculated by averaging taxon-specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon-BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon-BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon-BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon-BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon-BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel

  3. Climatological context for large-scale coral bleaching

    NASA Astrophysics Data System (ADS)

    Barton, A. D.; Casey, K. S.

    2005-12-01

    Large-scale coral bleaching was first observed in 1979 and has occurred throughout virtually all of the tropics since that time. Severe bleaching may result in the loss of live coral and in a decline of the integrity of the impacted coral reef ecosystem. Despite the extensive scientific research and increased public awareness of coral bleaching, uncertainties remain about the past and future of large-scale coral bleaching. In order to reduce these uncertainties and place large-scale coral bleaching in the longer-term climatological context, specific criteria and methods for using historical sea surface temperature (SST) data to examine coral bleaching-related thermal conditions are proposed by analyzing three, 132 year SST reconstructions: ERSST, HadISST1, and GISST2.3b. These methodologies are applied to case studies at Discovery Bay, Jamaica (77.27°W, 18.45°N), Sombrero Reef, Florida, USA (81.11°W, 24.63°N), Academy Bay, Galápagos, Ecuador (90.31°W, 0.74°S), Pearl and Hermes Reef, Northwest Hawaiian Islands, USA (175.83°W, 27.83°N), Midway Island, Northwest Hawaiian Islands, USA (177.37°W, 28.25°N), Davies Reef, Australia (147.68°E, 18.83°S), and North Male Atoll, Maldives (73.35°E, 4.70°N). The results of this study show that (1) The historical SST data provide a useful long-term record of thermal conditions in reef ecosystems, giving important insight into the thermal history of coral reefs and (2) While coral bleaching and anomalously warm SSTs have occurred over much of the world in recent decades, case studies in the Caribbean, Northwest Hawaiian Islands, and parts of other regions such as the Great Barrier Reef exhibited SST conditions and cumulative thermal stress prior to 1979 that were comparable to those conditions observed during the strong, frequent coral bleaching events since 1979. This climatological context and knowledge of past environmental conditions in reef ecosystems may foster a better understanding of how coral reefs will

  4. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events

    NASA Astrophysics Data System (ADS)

    Dishon, G.; Fisch, J.; Horn, I.; Kaczmarek, K.; Bijma, J.; Gruber, D. F.; Nir, O.; Popovich, Y.; Tchernov, D.

    2015-10-01

    Coral reefs occupy only ~ 0.1 percent of the ocean's habitat, but are the most biologically diverse marine ecosystem. In recent decades, coral reefs have experienced a significant global decline due to a variety of causes, one of the major causes being widespread coral bleaching events. During bleaching, the coral expels its symbiotic algae, thereby losing its main source of nutrition generally obtained through photosynthesis. While recent coral bleaching events have been extensively investigated, there is no scientific data on historical coral bleaching prior to 1979. In this study, we employ high-resolution femtosecond Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) to demonstrate a distinct biologically induced decline of boron (B) isotopic composition (δ11B) as a result of coral bleaching. These findings and methodology offer a new use for a previously developed isotopic proxy to reconstruct paleo-coral bleaching events. Based on a literature review of published δ11B data and our recorded vital effect of coral bleaching on the δ11B signal, we also describe at least two possible coral bleaching events since the Last Glacial Maximum. The implementation of this bleaching proxy holds the potential of identifying occurrences of coral bleaching throughout the geological record. A deeper temporal view of coral bleaching will enable scientists to determine if it occurred in the past during times of environmental change and what outcome it may have had on coral population structure. Understanding the frequency of bleaching events is also critical for determining the relationship between natural and anthropogenic causes of these events.

  5. Impacts of the 1998 and 2010 mass coral bleaching events on the Western Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Sutthacheep, Makamas; Yucharoen, Mathinee; Klinthong, Wanlaya; Pengsakun, Sittiporn; Sangmanee, Kanwara; Yeemin, Thamasak

    2013-11-01

    A long-term study of coral reef ecology in the Gulf of Thailand provides a good opportunity to examine the temporal variation on the impact of mass coral bleaching at those reef sites. We compared the bleaching and mortality of corals between the mass bleaching events in 1998 and 2010 at a coral community in the Western Gulf of Thailand. The aim was to identify the coral species which were most likely to suffer from (and to be able to tolerate) changes in seawater temperature. Significant differences in the susceptibility of the coral taxa to bleaching events between the years 1998 and 2010 and among coral species were documented. Bleaching was significantly different between the most dominant corals. Diploastrea heliopora was the most resistant coral to bleaching in both years. Some coral species showed more resistance to bleaching in 2010. The coral mortality following the mass bleaching events in 1998 and 2010 varied significantly between the years and the coral taxa. Mortality of some dominant coral taxa was also lower in 2010. Seven coral species, i.e. Astreopora myriophthalma, Pachyseris rugosa, Turbinaria mesenterina, Goniastrea pectinata, Favia pallida, F. maritima, Favites halicora, Platygyra daedalea and Galaxea fascicularis, were tolerant to the coral bleaching events. An ecosystem-based approach to managing coral reefs in the Gulf of Thailand is needed to identify appropriate marine protected area networks and to strengthen marine and coastal resource policies in order to build coral reef resilience.

  6. Viral communities associated with healthy and bleaching corals.

    PubMed

    Marhaver, Kristen L; Edwards, Robert A; Rohwer, Forest

    2008-09-01

    The coral holobiont is the integrated assemblage of the coral animal, its symbiotic algae, protists, fungi and a diverse consortium of Bacteria and Archaea. Corals are a model system for the study of symbiosis, the breakdown of which can result in disease and mortality. Little is known, however, about viruses that infect corals and their symbionts. Here we present metagenomic analyses of the viral communities associated with healthy and partially bleached specimens of the Caribbean reef-building coral Diploria strigosa. Surprisingly, herpes-like sequences accounted for 4-8% of the total sequences in each metagenome; this abundance of herpes-like sequences is unprecedented in other marine viral metagenomes. Viruses similar to those that infect algae and plants were also present in the coral viral assemblage. Among the phage identified, cyanophages were abundant in both healthy and bleaching corals and vibriophages were also present. Therefore, coral-associated viruses could potentially infect all components of the holobiont--coral, algal and microbial. Thus, we expect viruses to figure prominently in the preservation and breakdown of coral health.

  7. The condition of coral reefs in South Florida (2000) using Coral disease and bleaching as indicators.

    PubMed

    Santavy, Deborah L; Summers, J Kevin; Engle, Virginia D; Harwell, Linda C

    2005-01-01

    The destruction of coral reef habitats has occurred at unprecedented levels during the last three decades. Coral disease and bleaching in the Caribbean and South Florida have caused extensive coral mortality with limited recovery, often coral reefs are being replaced with turf algae. Acroporids were once dominant corals and have diminished to the state where they are being considered as endangered species. Our survey assessed the condition of reef corals throughout South Florida. A probability-based design produced unbiased estimates of the spatial extent of ecological condition, measured as the absence or presence and frequency or prevalence of coral diseases and bleaching intensity over large geographic regions. This approach allowed us to calculate a quantifiable level of uncertainty. Coral condition was estimated for 4100 hectares (ha) (or 41.0 km2) of coral reefs in South Florida, including reefs in the Florida Keys National Marine Sanctuary (FKNMS), New Grounds, Dry Tortugas National Park (DTNP), and Biscayne National Park (BNP). The absence or presence of coral disease, 'causal' coral bleaching, partial bleaching and coral paling were not good indicators of overall coral condition. It was more useful to report the prevalence of anomalies that indicated a compromised condition at both the population and community levels. For example, 79% of the area in South Florida had less than 6% of the coral colonies diseased, whereas only 2.2% (97.15 ha) of the sampled area had a maximum prevalence of 13% diseased coral colonies at any single location. The usefulness of 'causal bleaching' might be more important when considering the prevalence of each of the three different states at a single location. For example, paling was observed over the entire area, whereas bleaching and partial bleaching occurred at 19 and 41% of the area, respectively. An index for coral reef condition might integrate the prevalence and species affected by each bleaching state at individual

  8. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica.

    PubMed

    Ainsworth, T D; Fine, M; Roff, G; Hoegh-Guldberg, O

    2008-01-01

    Coral bleaching occurs when the endosymbiosis between corals and their symbionts disintegrates during stress. Mass coral bleaching events have increased over the past 20 years and are directly correlated with periods of warm sea temperatures. However, some hypotheses have suggested that reef-building corals bleach due to infection by bacterial pathogens. The 'Bacterial Bleaching' hypothesis is based on laboratory studies of the Mediterranean invading coral, Oculina patagonica, and has further generated conclusions such as the coral probiotic hypothesis and coral hologenome theory of evolution. We aimed to investigate the natural microbial ecology of O. patagonica during the annual bleaching using fluorescence in situ hybridization to map bacterial populations within the coral tissue layers, and found that the coral bleaches on the temperate rocky reefs of the Israeli coastline without the presence of Vibrio shiloi or bacterial penetration of its tissue layers. Bacterial communities were found associated with the endolithic layer of bleached coral regions, and a community dominance shift from an apparent cyanobacterial-dominated endolithic layer to an algal-dominated layer was found in bleached coral samples. While bacterial communities certainly play important roles in coral stasis and health, we suggest environmental stressors, such as those documented with reef-building corals, are the primary triggers leading to bleaching of O. patagonica and suggest that bacterial involvement in patterns of bleaching is that of opportunistic colonization.

  9. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica.

    PubMed

    Ainsworth, T D; Fine, M; Roff, G; Hoegh-Guldberg, O

    2008-01-01

    Coral bleaching occurs when the endosymbiosis between corals and their symbionts disintegrates during stress. Mass coral bleaching events have increased over the past 20 years and are directly correlated with periods of warm sea temperatures. However, some hypotheses have suggested that reef-building corals bleach due to infection by bacterial pathogens. The 'Bacterial Bleaching' hypothesis is based on laboratory studies of the Mediterranean invading coral, Oculina patagonica, and has further generated conclusions such as the coral probiotic hypothesis and coral hologenome theory of evolution. We aimed to investigate the natural microbial ecology of O. patagonica during the annual bleaching using fluorescence in situ hybridization to map bacterial populations within the coral tissue layers, and found that the coral bleaches on the temperate rocky reefs of the Israeli coastline without the presence of Vibrio shiloi or bacterial penetration of its tissue layers. Bacterial communities were found associated with the endolithic layer of bleached coral regions, and a community dominance shift from an apparent cyanobacterial-dominated endolithic layer to an algal-dominated layer was found in bleached coral samples. While bacterial communities certainly play important roles in coral stasis and health, we suggest environmental stressors, such as those documented with reef-building corals, are the primary triggers leading to bleaching of O. patagonica and suggest that bacterial involvement in patterns of bleaching is that of opportunistic colonization. PMID:18059488

  10. The Impact of Tropical Cyclones on Coral Bleaching and Coral Diseases

    NASA Astrophysics Data System (ADS)

    van Hooidonk, R. J.; Huber, M.

    2006-12-01

    Tropical cyclones (TCs) impact coral reef ecology in various ways, they cool down ambient sea surface temperature (SST), damage coral reefs by wave action, decrease salinity, increase nutrients, and increase sedimentation rates on a reef. Here we present an investigation into the effect of TCs on coral bleaching and the effect TCs have on the occurrence of coral diseases. Coral bleaching, the condition where the symbiotic zooxanthellae leave the coral host, is one of the major threats to coral reefs. Bleaching occurs in anomalously warm waters, analysis of historical TC tracks show that TCs frequently occur near coral bleaching episodes. Intriguingly, TCs cool down sea surface temperature by vertical mixing and as SST is the most important factor in coral bleaching this phenomenon might have an impact on the duration, occurrence and the resulting coral mortality, of bleaching events. In recent literature a correlation has been seen in the power of tropical cyclones and average sea surface temperature, making the study of the effect of TCs on the ecology of reefs an urgent one. We will present case studies where a TCs occurred near bleaching episodes and a statistical analysis to quantify this effect. To do this we use historical cyclone track data, satellite SST data, and a dataset of reefs. But there are other TC effects on reefs that bear investigation. Because TCs occur near corals that experience thermal stress, the changes in the corals environment caused by TCs might be anomalously detrimental. For example, data suggests that corals, because they are stressed by increased sedimentation, are more vulnerable to disease and algal overgrowth after TC damage. Nutrients have been shown to increase the severity of coral diseases. With satellite data it can be shown that short-term events such as increased run-off due to tropical cyclones can be an important part of the distribution of pollutants and pathogens affecting reefs. Infectious diseases severely affect

  11. Sunscreens Cause Coral Bleaching by Promoting Viral Infections

    PubMed Central

    Danovaro, Roberto; Bongiorni, Lucia; Corinaldesi, Cinzia; Giovannelli, Donato; Damiani, Elisabetta; Astolfi, Paola; Greci, Lucedio; Pusceddu, Antonio

    2008-01-01

    Background Coral bleaching (i.e., the release of coral symbiotic zooxanthellae) has negative impacts on biodiversity and functioning of reef ecosystems and their production of goods and services. This increasing world-wide phenomenon is associated with temperature anomalies, high irradiance, pollution, and bacterial diseases. Recently, it has been demonstrated that personal care products, including sunscreens, have an impact on aquatic organisms similar to that of other contaminants. Objectives Our goal was to evaluate the potential impact of sunscreen ingredients on hard corals and their symbiotic algae. Methods In situ and laboratory experiments were conducted in several tropical regions (the Atlantic, Indian, and Pacific Oceans, and the Red Sea) by supplementing coral branches with aliquots of sunscreens and common ultraviolet filters contained in sunscreen formula. Zooxanthellae were checked for viral infection by epifluorescence and transmission electron microscopy analyses. Results Sunscreens cause the rapid and complete bleaching of hard corals, even at extremely low concentrations. The effect of sunscreens is due to organic ultraviolet filters, which are able to induce the lytic viral cycle in symbiotic zooxanthellae with latent infections. Conclusions We conclude that sunscreens, by promoting viral infection, potentially play an important role in coral bleaching in areas prone to high levels of recreational use by humans. PMID:18414624

  12. A method to objectively optimize coral bleaching prediction techniques

    NASA Astrophysics Data System (ADS)

    van Hooidonk, R. J.; Huber, M.

    2007-12-01

    Thermally induced coral bleaching is a global threat to coral reef health. Methodologies, e.g. the Degree Heating Week technique, have been developed to predict bleaching induced by thermal stress by utilizing remotely sensed sea surface temperature (SST) observations. These techniques can be used as a management tool for Marine Protected Areas (MPA). Predictions are valuable to decision makers and stakeholders on weekly to monthly time scales and can be employed to build public awareness and support for mitigation. The bleaching problem is only expected to worsen because global warming poses a major threat to coral reef health. Indeed, predictive bleaching methods combined with climate model output have been used to forecast the global demise of coral reef ecosystems within coming decades due to climate change. Accuracy of these predictive techniques has not been quantitatively characterized despite the critical role they play. Assessments have typically been limited, qualitative or anecdotal, or more frequently they are simply unpublished. Quantitative accuracy assessment, using well established methods and skill scores often used in meteorology and medical sciences, will enable objective optimization of existing predictive techniques. To accomplish this, we will use existing remotely sensed data sets of sea surface temperature (AVHRR and TMI), and predictive values from techniques such as the Degree Heating Week method. We will compare these predictive values with observations of coral reef health and calculate applicable skill scores (Peirce Skill Score, Hit Rate and False Alarm Rate). We will (a) quantitatively evaluate the accuracy of existing coral reef bleaching predictive methods against state-of- the-art reef health databases, and (b) present a technique that will objectively optimize the predictive method for any given location. We will illustrate this optimization technique for reefs located in Puerto Rico and the US Virgin Islands.

  13. Annual coral bleaching and the long-term recovery capacity of coral.

    PubMed

    Schoepf, Verena; Grottoli, Andréa G; Levas, Stephen J; Aschaffenburg, Matthew D; Baumann, Justin H; Matsui, Yohei; Warner, Mark E

    2015-11-22

    Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species.

  14. Annual coral bleaching and the long-term recovery capacity of coral.

    PubMed

    Schoepf, Verena; Grottoli, Andréa G; Levas, Stephen J; Aschaffenburg, Matthew D; Baumann, Justin H; Matsui, Yohei; Warner, Mark E

    2015-11-22

    Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species. PMID:26582020

  15. Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Bachok, Zainudin; Mfilinge, Prosper; Tsuchiya, Makoto

    2006-11-01

    Under bleaching conditions, corals lose their symbiotic zooxanthellae, and thus, the ability to synthesize fatty acids (FAs) from photosynthetically derived carbon. This study investigated the lipid content and FA composition in healthy and bleached corals from the Odo reef flat in Okinawa, southern Japan, following a bleaching event. It was hypothesized that the FA composition and abundance would change as algae are lost or die, and possibly microbial abundance would increase in corals as a consequence of bleaching. The lipid content and FA composition of three healthy coral species ( Pavona frondifera, Acropora pulchra, and Goniastrea aspera) and of partially bleached and completely bleached colonies of P. frondifera were examined. The FA composition did not differ among healthy corals, but differed significantly among healthy, partially bleached, and completely bleached specimens of P. frondifera. Completely bleached corals contained significantly lower lipid and total FA content, as well as lower relative amounts of polyunsaturated FAs and higher relative amounts of saturated FAs, than healthy and partially bleached corals. Furthermore, there was a significantly higher relative concentration of monounsaturated FAs and odd-numbered branched FAs in completely bleached corals, indicating an increase in bacterial colonization in the bleached corals.

  16. RESISTANCE AND RESILIENCE TO CORAL BLEACHING: IMPLICATIONS FOR CORAL REEF CONSERVATION AND MANAGEMENT

    EPA Science Inventory

    The massive scale of the 1997-1998 El Nino-associated coral bleaching event underscores the need for strategies to mitigate biodiversity losses resulting from temperature-induced coral mortality. As baseline sea surface temperatures continue to rise, climate change may represent ...

  17. INDICATORS OF UV EXPOSURE IN CORALS: RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    EPA Science Inventory

    Increased exposure to solar UV radiation and elevated water temperatures are believed to play a role in the bleaching of corals. To provide additional tools for evaluating the role of UV radiation, we have examined UV-specific effects in coral and have characterized factors that ...

  18. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    PubMed

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change.

  19. High spatial variability in coral bleaching around Moorea (French Polynesia): patterns across locations and water depths.

    PubMed

    Penin, Lucie; Adjeroud, Mehdi; Schrimm, Muriel; Lenihan, Hunter Stanton

    2007-02-01

    Mass coral bleaching events are one of the main threats to coral reefs. A severe bleaching event impacted Moorea, French Polynesia, between March and July 2002, causing 55+/-14% of colonies to suffer bleaching around the island. However, bleaching varied significantly across coral genera, locations, and as a function of water depth, with a bleaching level as high as 72% at some stations. Corals in deeper water bleached at a higher rate than those in shallow water, and the north coast was more impacted than the west coast. The relatively small scale of variability in bleaching responses probably resulted from the interaction between extrinsic factors, including hydrodynamic condition, and intrinsic factors, such as differential adaptation of the coral/algal association.

  20. Tropical cyclone cooling combats region-wide coral bleaching.

    PubMed

    Carrigan, Adam D; Puotinen, Marji

    2014-05-01

    Coral bleaching has become more frequent and widespread as a result of rising sea surface temperature (SST). During a regional scale SST anomaly, reef exposure to thermal stress is patchy in part due to physical factors that reduce SST to provide thermal refuge. Tropical cyclones (TCs - hurricanes, typhoons) can induce temperature drops at spatial scales comparable to that of the SST anomaly itself. Such cyclone cooling can mitigate bleaching across broad areas when well-timed and appropriately located, yet the spatial and temporal prevalence of this phenomenon has not been quantified. Here, satellite SST and historical TC data are used to reconstruct cool wakes (n=46) across the Caribbean during two active TC seasons (2005 and 2010) where high thermal stress was widespread. Upon comparison of these datasets with thermal stress data from Coral Reef Watch and published accounts of bleaching, it is evident that TC cooling reduced thermal stress at a region-wide scale. The results show that during a mass bleaching event, TC cooling reduced thermal stress below critical levels to potentially mitigate bleaching at some reefs, and interrupted natural warming cycles to slow the build-up of thermal stress at others. Furthermore, reconstructed TC wave damage zones suggest that it was rare for more reef area to be damaged by waves than was cooled (only 12% of TCs). Extending the time series back to 1985 (n = 314), we estimate that for the recent period of enhanced TC activity (1995-2010), the annual probability that cooling and thermal stress co-occur is as high as 31% at some reefs. Quantifying such probabilities across the other tropical regions where both coral reefs and TCs exist is vital for improving our understanding of how reef exposure to rising SSTs may vary, and contributes to a basis for targeting reef conservation.

  1. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    NASA Astrophysics Data System (ADS)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  2. Microbial community compositional shifts in bleached colonies of the Brazilian reef-building coral Siderastrea stellata.

    PubMed

    Lins-de-Barros, Monica M; Cardoso, Alexander M; Silveira, Cynthia B; Lima, Joyce L; Clementino, Maysa M; Martins, Orlando B; Albano, Rodolpho M; Vieira, Ricardo P

    2013-01-01

    The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes. PMID:22864853

  3. Microbial community compositional shifts in bleached colonies of the Brazilian reef-building coral Siderastrea stellata.

    PubMed

    Lins-de-Barros, Monica M; Cardoso, Alexander M; Silveira, Cynthia B; Lima, Joyce L; Clementino, Maysa M; Martins, Orlando B; Albano, Rodolpho M; Vieira, Ricardo P

    2013-01-01

    The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.

  4. Prediction of Coral Bleaching in the Florida Keys Using Remotely Sensed Data

    EPA Science Inventory

    Coral bleaching has been attributed to extremes or stressful synergy in several physical variables of the coral habitat. Of particular concern have been temperature, ultraviolet radiation, and photosynthetically available radiation. Satellite observing systems allow synoptic-sca...

  5. INDICATORS OF UV EXPOSURE IN CORALS AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING. (R826939)

    EPA Science Inventory

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Through interactions with other factors such as sedimentation, pollution, and bacterial infection, bleaching can impact large areas of a reef with limited recovery, and it might be in...

  6. Excess algal symbionts increase the susceptibility of reef corals to bleaching

    NASA Astrophysics Data System (ADS)

    Cunning, Ross; Baker, Andrew C.

    2013-03-01

    Rising ocean temperatures associated with global climate change are causing mass coral bleaching and mortality worldwide. Understanding the genetic and environmental factors that mitigate coral bleaching susceptibility may aid local management efforts to help coral reefs survive climate change. Although bleaching susceptibility depends partly on the genetic identity of a coral's algal symbionts, the effect of symbiont density, and the factors controlling it, remain poorly understood. By applying a new metric of symbiont density to study the coral Pocillopora damicornis during seasonal warming and acute bleaching, we show that symbiont cell ratio density is a function of both symbiont type and environmental conditions, and that corals with high densities are more susceptible to bleaching. Higher vulnerability of corals with more symbionts establishes a quantitative mechanistic link between symbiont density and the molecular basis for coral bleaching, and indicates that high densities do not buffer corals from thermal stress, as has been previously suggested. These results indicate that environmental conditions that increase symbiont densities, such as nutrient pollution, will exacerbate climate-change-induced coral bleaching, providing a mechanistic explanation for why local management to reduce these stressors will help coral reefs survive future warming.

  7. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    PubMed

    Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593

  8. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility

    PubMed Central

    Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera–Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593

  9. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    PubMed

    Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.

  10. Forecasting decadal changes in sea surface temperatures and coral bleaching within a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Li, Angang; Reidenbach, Matthew A.

    2014-09-01

    Elevated sea surface temperature (SST) caused by global warming is one of the major threats to coral reefs. While increased SST has been shown to negatively affect the health of coral reefs by increasing rates of coral bleaching, how changes to atmospheric heating impact SST distributions, modified by local flow environments, has been less understood. This study aimed to simulate future water flow patterns and water surface heating in response to increased air temperature within a coral reef system in Bocas del Toro, Panama, located within the Caribbean Sea. Water flow and SST were modeled using the Delft3D-FLOWcomputer simulation package. Locally measured physical parameters, including bathymetry, astronomic tidal forcing, and coral habitat distribution were input into the model and water flow, and SST was simulated over a four-month period under present day, as well as projected warming scenarios in 2020s, 2050s, and 2080s. Changes in SST, and hence the thermal stress to corals, were quantified by degree heating weeks. Results showed that present-day reported bleaching sites were consistent with localized regions of continuous high SST. Regions with highest SST were located within shallow coastal sites adjacent to the mainland or within the interior of the bay, and characterized by low currents with high water retention times. Under projected increases in SSTs, shallow reef areas in low flow regions were found to be hot spots for future bleaching.

  11. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    PubMed

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  12. Predicting the onset and severity of coral bleaching and mortality using satellite-observed light and temperature

    NASA Astrophysics Data System (ADS)

    Eakin, C. M.; Skirving, W. J.; Iglesias-Prieto, R.; Dove, S.; Hedley, J.; Hoegh-Guldberg, O.; Enriquez, S. D.; Christensen, T. R.; Heron, S. F.; Mumby, P. J.; Strong, A. E.; Gledhill, D. K.; Liu, G.; Morgan, J. A.; Parker, B. A.

    2009-05-01

    The NOAA Coral Reef Watch (CRW) suite of satellite products is designed to help coral reef managers monitor thermal stress to better understand and predict mass coral bleaching. The current products are based purely on ocean temperature, and yet both temperature and light contribute to mass coral bleaching. A new satellite- derived solar radiation product has been developed and, when combined with the thermal stress indices, is expected to improve predictions of the severity of mass coral bleaching events and resultant mortality. Here, we describe the development of a new coral physiology-based method to predict coral bleaching based on the total Light Stress Damage experienced by the coral holobiont.

  13. Symbiophagy as a cellular mechanism for coral bleaching.

    PubMed

    Downs, Craig A; Kramarsky-Winter, Esti; Martinez, Jon; Kushmaro, Ariel; Woodley, Cheryl M; Loya, Yossi; Ostrander, Gary K

    2009-02-01

    Coral bleaching is a major contributor to the global declines of coral reefs. This phenomenon is characterized by the loss of symbiotic algae, their pigments or both. Despite wide scientific interest, the mechanisms by which bleaching occurs are still poorly understood. Here we report that the removal of the symbiont during light and temperature stress is achieved using the host's cellular autophagic-associated machinery. Host cellular and subcellular morphologies showed increased vacuolization and appearance of autophagic membranes surrounding a variety of organelles and surrounding the symbiotic algae. Markers of autophagy (Rab 7 and LAS) corroborate these observations. Results showed that during stress the symbiont vacuolar membrane is transformed from a conduit of nutrient exchange to a digestive organelle resulting in the consumption of the symbiont, a process we term symbiophagy. We posit that during a stress event, the mechanism maintaining symbiosis is destabilized and symbiophagy is activated, ultimately resulting in the phenomenon of bleaching. Symbiophagy may have evolved from a more general primordial innate intracellular protective pathway termed xenophagy.

  14. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems.

    PubMed

    Graham, Nicholas A J; Wilson, Shaun K; Jennings, Simon; Polunin, Nicholas V C; Robinson, Jan; Bijoux, Jude P; Daw, Tim M

    2007-10-01

    Recent episodes of coral bleaching have led to wide-scale loss of reef corals and raised concerns over the effectiveness of existing conservation and management efforts. The 1998 bleaching event was most severe in the western Indian Ocean, where coral declined by up to 90% in some locations. Using fisheries-independent data, we assessed the long-term impacts of this event on fishery target species in the Seychelles, the overall size structure of the fish assemblage, and the effectiveness of two marine protected areas (MPAs) in protecting fish communities. The biomass of fished species above the size retained in fish traps changed little between 1994 and 2005, indicating no current effect on fishery yields. Biomass remained higher in MPAs, indicating they were effective in protecting fish stocks. Nevertheless, the size structure of the fish communities, as described with size-spectra analysis, changed in both fished areas and MPAs, with a decline in smaller fish (<30 cm) and an increase in larger fish (>45 cm). We believe this represents a time-lag response to a reduction in reef structural complexity brought about because fishes are being lost through natural mortality and fishing, and are not being replaced by juveniles. This effect is expected to be greater in terms of fisheries productivity and, because congruent patterns are observed for herbivores, suggests that MPAs do not offer coral reefs long-term resilience to bleaching events. Corallivores and planktivores declined strikingly in abundance, particularly in MPAs, and this decline was associated with a similar pattern of decline in their preferred corals. We suggest that climate-mediated disturbances, such as coral bleaching, be at the fore of conservation planning for coral reefs.

  15. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.

    PubMed

    Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R

    2014-02-01

    Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future.

  16. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    PubMed

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  17. Changes in coral-associated microbial communities during a bleaching event.

    PubMed

    Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn

    2008-04-01

    Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were

  18. Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Gleason, M. G.

    1993-11-01

    This study examines patterns of susceptibility and short-term recovery of corals from bleaching. A mass coral bleaching event began in March, 1991 on reefs in Moorea, French Polynesia and affected corals on the shallow barrier reef and to >20 m depth on the outer forereef slope. There were significant differences in the effect of the bleaching among common coral genera, with Acropora, Montastrea, Montipora, and Pocillopora more affected than Porites, Pavona, leptastrea or Millepora. Individual colonies of the common species of Acropora and Pocillopora were marked and their fate assessed on a subsequent survey in August, 1991 to determine rates of recovery and mortality. Ninety-six percent of Acropora spp. showed some degree of bleaching compared to 76% of Pocillopora spp. From March to August mortality of bleached colonies of Pocillopora was 17%, 38% recovered completely, and many suffered some partial mortality of the tissue. In contrast, 63% of the Acropora spp. died, and about 10% recovered completely. Generally, those colonies with less than 50% of the colony area affected by the bleaching recovered at a higher rate than did those with more severe bleaching. Changes in community composition four months after the event began included a significant decrease only in crustose algae and an increase in cover of filamentous algae, much of which occupied plate-like and branching corals that had died in the bleaching event. Total coral cover and cover of susceptible coral genera had declined, but not significantly, after the event.

  19. Hurricanes, Coral Bleaching, and the Florida Keys Reef Tract: Can Hurricanes Benefit Temperature Stressed Corals?

    NASA Astrophysics Data System (ADS)

    Manzello, D. P.

    2006-12-01

    The Florida reef tract has been impacted by three mass coral bleaching events, two tropical storms, and 12 hurricanes from 1997 to 2005. Decreased sea temperatures associated with high winds from hurricanes or tropical storms were apparent in 1998, 1999, 2001, 2004, and 2005 at the five SEAKEYS C-MAN stations situated on the Florida reef tract. Given the potential for cooler sea temperatures to ameliorate the severity of coral bleaching, the duration and magnitude that sea temperatures cooled from the passage of hurricanes and tropical storms was assessed. The timing of these storms is particularly relevant as 1998 and 2005 were major coral bleaching years, whereas 1999, 2001, and 2004 were not. Sea temperatures decreased from 0.3 to 3.0 degrees Celsius when the track of a hurricane or tropical storm passed within 375 km of any of these five sites. Sea temperature decreased to below the long-term average from one to 26 days when the track of a hurricane or tropical storm was within 275 km. The potential for hurricanes and tropical storms to benefit temperature stressed corals is dependent on several temporal and spatial considerations.

  20. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    PubMed Central

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  1. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    PubMed

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  2. Climate change disables coral bleaching protection on the Great Barrier Reef.

    PubMed

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR.

  3. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  4. Climate change disables coral bleaching protection on the Great Barrier Reef.

    PubMed

    Ainsworth, Tracy D; Heron, Scott F; Ortiz, Juan Carlos; Mumby, Peter J; Grech, Alana; Ogawa, Daisie; Eakin, C Mark; Leggat, William

    2016-04-15

    Coral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching. Such conditions confer thermal tolerance, decreasing coral cell mortality and symbiont loss during bleaching by over 50%. We find that near-future increases in local temperature of as little as 0.5°C result in this protective mechanism being lost, which may increase the rate of degradation of the GBR. PMID:27081069

  5. SHEDDING LIGHT ON CORALS HEALTH: INTERACTIONS OF CLIMATE CHANGE AND SOLAR RADIATION WITH BLEACHING

    EPA Science Inventory

    Coral bleaching and declines in coral reef health in recent years have been attributed in part to processes driven by UV and/or visible light. For coral assemblages, exposure to UV light is often an unavoidable consequence of having access to visible (photosynthetically active) ...

  6. Response of coral assemblages to thermal stress: are bleaching intensity and spatial patterns consistent between events?

    PubMed

    Penin, Lucie; Vidal-Dupiol, Jeremie; Adjeroud, Mehdi

    2013-06-01

    Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.

  7. Susceptibility of central Red Sea corals during a major bleaching event

    NASA Astrophysics Data System (ADS)

    Furby, K. A.; Bouwmeester, J.; Berumen, M. L.

    2013-06-01

    A major coral bleaching event occurred in the central Red Sea near Thuwal, Saudi Arabia, in the summer of 2010, when the region experienced up to 10-11 degree heating weeks. We documented the susceptibility of various coral taxa to bleaching at eight reefs during the peak of this thermal stress. Oculinids and agaricids were most susceptible to bleaching, with up to 100 and 80 % of colonies of these families, respectively, bleaching at some reefs. In contrast, some families, such as mussids, pocilloporids, and pectinids showed low levels of bleaching (<20 % on average). We resurveyed the reefs 7 months later to estimate subsequent mortality. Mortality was highly variable among taxa, with some taxa showing evidence of full recovery and some (e.g., acroporids) apparently suffering nearly complete mortality. The unequal mortality among families resulted in significant change in community composition following the bleaching. Significant factors in the likelihood of coral bleaching during this event were depth of the reef and distance of the reef from shore. Shallow reefs and inshore reefs had a higher prevalence of bleaching. This bleaching event shows that Red Sea reefs are subject to the same increasing pressures that reefs face worldwide. This study provides a quantitative, genus-level assessment of the vulnerability of various coral groups from within the Red Sea to bleaching and estimates subsequent mortality. As such, it can provide valuable insights into the future for reef communities in the Red Sea.

  8. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record

    SciTech Connect

    Knowlton, N.; Weil, E.; Weigt, L.A.; Guzman, H.M. )

    1992-01-17

    Measures of growth and skeletal isotopic ratios in the Caribbean coral Montastraea annularis are fundamental to many studies of paleoceanography, environmental degradation, and global climate change. This taxon is shown to consist of at least three sibling species in shallow water. The two most commonly studied of these show highly significant differences in growth rate and oxygen isotopic ratios, parameters routinely used to estimate past climatic conditions; unusual coloration in the third may have confused research on coral bleaching. Interpretation or comparison of past and current studies can be jeopardized by ignoring these species boundaries.

  9. Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Vicente, V. P.

    1990-04-01

    An updated list of sponges with algal endosymbionts including new records for Puerto Rico and the Caribbean, indicates that thirty-five species of common Caribbean sponges possess photosynthetic endosymbionts. Of these, 23 (67.6%) species in seven orders, were found with unicellular chroococcoid cyanobacteria ( Aphanocapsa-like) and 5 (14.7%) hadromerid species were found with zooxanthellae. Sponges with other algae as symbionts occur less frequently (≦6%). Thirty-one common sponge species were inspected for bleaching during coral-bleaching months (July-September 1987; January 1988) in Puerto Rico. Anthosigmella varians, Xestospongia muta and Petrosia pellasarca bleached partially, but only few individuals within any given population became bleached and the bleaching of sponges was very localized. Adaptations between cyanobacterial symbionts and sponges, acquired during the long evolutionary history of these two taxa may explain the paucity of bleached sponges when compared to the high incidence of bleached corals reported.

  10. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2016-04-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  11. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event.

    PubMed

    LaJeunesse, Todd C; Smith, Robin T; Finney, Jennifer; Oxenford, Hazel

    2009-12-01

    Reef corals are sentinels for the adverse effects of rapid global warming on the planet's ecosystems. Warming sea surface temperatures have led to frequent episodes of bleaching and mortality among corals that depend on endosymbiotic micro-algae (Symbiodinium) for their survival. However, our understanding of the ecological and evolutionary response of corals to episodes of thermal stress remains inadequate. For the first time, we describe how the symbioses of major reef-building species in the Caribbean respond to severe thermal stress before, during and after a severe bleaching event. Evidence suggests that background populations of Symbiodinium trenchi (D1a) increased in prevalence and abundance, especially among corals that exhibited high sensitivity to stress. Contrary to previous hypotheses, which posit that a change in symbiont occurs subsequent to bleaching, S. trenchi increased in the weeks leading up to and during the bleaching episode and disproportionately dominated colonies that did not bleach. During the bleaching event, approximately 20 per cent of colonies surveyed harboured this symbiont at high densities (calculated at less than 1.0% only months before bleaching began). However, competitive displacement by homologous symbionts significantly reduced S. trenchi's prevalence and dominance among colonies after a 2-year period following the bleaching event. While the extended duration of thermal stress in 2005 provided an ecological opportunity for a rare host-generalist symbiont, it remains unclear to what extent the rise and fall of S. trenchi was of ecological benefit or whether its increased prevalence was an indicator of weakening coral health.

  12. Seasonal mesophotic coral bleaching of Stylophora pistillata in the Northern Red Sea.

    PubMed

    Nir, Orit; Gruber, David F; Shemesh, Eli; Glasser, Eliezra; Tchernov, Dan

    2014-01-01

    Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40-63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98-92.19 µmol O2 cm(-2) day(-1). However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between -12.86 - (-10.24) µmol O2 cm(-2) day(-1). But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between -2.83-0.76 µmol O2 cm(-2) day(-1). This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall.

  13. Seasonal Mesophotic Coral Bleaching of Stylophora pistillata in the Northern Red Sea

    PubMed Central

    Nir, Orit; Gruber, David F.; Shemesh, Eli; Glasser, Eliezra; Tchernov, Dan

    2014-01-01

    Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been witnessed for repeated summers in the mesophotic zone (40–63 m) in the northern Red Sea: seasonal bleaching and recovery of several hermatypic coral species. In this study, we followed the recurring bleaching process of the common coral Stylophora pistillata. Bleaching occurred from April to September with a 66% decline in chlorophyll a concentration, while recovery began in October. Using aquarium and transplantation experiments, we explored environmental factors such as temperature, photon flux density and heterotrophic food availability. Our experiments and observations did not yield one single factor, alone, responsible for the seasonal bleaching. The dinoflagellate symbionts (of the genus Symbiodinium) in shallow (5 m) Stylophora pistillata were found to have a net photosynthetic rate of 56.98–92.19 µmol O2 cm−2 day−1. However, those from mesophotic depth (60 m) during months when they are not bleached are net consumers of oxygen having a net photosynthetic rate between −12.86 - (−10.24) µmol O2 cm−2 day−1. But during months when these mesophotic corals are partially-bleached, they yielded higher net production, between −2.83–0.76 µmol O2 cm−2 day−1. This study opens research questions as to why mesophotic zooxanthellae are more successfully meeting the corals metabolic requirements when Chl a concentration decreases by over 60% during summer and early fall. PMID:24454772

  14. Skeletal isotope records of growth perturbations in Porites corals during the 1997-1998 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Gagan, M.; Fabricius, K.; Isdale, P.; Yukino, I.; Kawahata, H.

    2003-04-01

    Severe coral bleaching occurred throughout the tropics in 1997/98. We report skeletal UV fluorescence, oxygen isotope, and carbon isotope evidence for perturbations in coral skeletal growth due to bleaching at Ishigaki Island, Japan, and Pandora Reef, Great Barrier Reef. Bleached corals showed abrupt reductions in skeletal extension rate immediately after summer temperature maxima, indicating that bleaching inhibits coral calcification. A colony growing at the low tide line in Ishigaki exhibited clear blue UV fluorescent bands associated with recurrent growth interruptions. Based on the length of time-gaps observed in the annual isotopic cycle, the typical time required for a coral to recover from bleaching is estimated to be about 5--6 months. The effect of bleaching on the oxygen isotope ratio -- temperature relationship was negligible. However, the Ishigaki corals showed lower carbon isotope ratios during bleaching indicating depressed coral metabolism associated with a reduction in calcification. In contrast, skeletal carbon isotope ratios in the Pandora Reef corals exhibited little change in response to bleaching. This is because the records for Pandora Reef were derived from the shaded sides of coral colonies, where algal photosynthesis was particularly slow prior to bleaching, thus subduing the carbon isotope response to bleaching. Taken together, the isotopic and UV fluorescence signals can be used to reconstruct past bleaching events.

  15. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998

    PubMed Central

    Pisapia, C.; Burn, D.; Yoosuf, R.; Najeeb, A.; Anderson, K. D.; Pratchett, M. S.

    2016-01-01

    Increasing frequency and severity of disturbances is causing global degradation of coral reef ecosystems. This study examined temporal changes in live coral cover and coral composition in the central Maldives from 1997 to 2016, encompassing two bleaching events, a tsunami, and an outbreak of Acanthaster planci. We also examined the contemporary size structure for five dominant coral taxa (tabular Acropora, Acropora muricata, Acropora humilis, Pocillopora spp, and massive Porites). Total coral cover increased throughout the study period, with marked increases following the 1998 mass-bleaching. The relative abundance of key genera has changed through time, where Acropora and Pocillopora (which are highly susceptible to bleaching) were under-represented following 1998 mass-bleaching but increased until outbreaks of A. planci in 2015. The contemporary size-structure for all coral taxa was dominated by larger colonies with peaked distributions suggesting that recent disturbances had a disproportionate impact on smaller colonies, or that recruitment is currently limited. This may suggest that coral resilience has been compromised by recent disturbances, and further bleaching (expected in 2016) could lead to highly protracted recovery times. We showed that Maldivian reefs recovered following the 1998 mass-bleaching event, but it took up to a decade, and ongoing disturbances may be eroding reef resilience. PMID:27694823

  16. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    NASA Astrophysics Data System (ADS)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  17. Modelling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    NASA Astrophysics Data System (ADS)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2015-05-01

    Coral reefs are diverse ecosystems that are threatened by rising CO2 levels through increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are explicitly modelled by linking rates of growth, recovery and calcification to rates of bleaching and temperature-stress-induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, correlated up- and down-regulation of traits that are consistent with resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The performance of the model is assessed against independent data to demonstrate how it can capture the observed response of corals to stress. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles to help understand the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can give insights into how corals respond to changes in temperature and ocean acidification.

  18. Modeling coral calcification accounting for the impacts of coral bleaching and ocean acidification

    NASA Astrophysics Data System (ADS)

    Evenhuis, C.; Lenton, A.; Cantin, N. E.; Lough, J. M.

    2014-01-01

    Coral reefs are diverse ecosystems threatened by rising CO2 levels that are driving the observed increases in sea surface temperature and ocean acidification. Here we present a new unified model that links changes in temperature and carbonate chemistry to coral health. Changes in coral health and population are able to explicitly modelled by linking the rates of growth, recovery and calcification to the rates of bleaching and temperature stress induced mortality. The model is underpinned by four key principles: the Arrhenius equation, thermal specialisation, resource allocation trade-offs, and adaption to local environments. These general relationships allow this model to be constructed from a range of experimental and observational data. The different characteristics of this model are also assessed against independent data to show that the model captures the observed response of corals. We also provide new insights into the factors that determine calcification rates and provide a framework based on well-known biological principles for understanding the observed global distribution of calcification rates. Our results suggest that, despite the implicit complexity of the coral reef environment, a simple model based on temperature, carbonate chemistry and different species can reproduce much of the observed response of corals to changes in temperature and ocean acidification.

  19. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus.

    PubMed

    Ben-Haim, Yael; Zicherman-Keren, Maya; Rosenberg, Eugene

    2003-07-01

    Coral bleaching is the disruption of symbioses between coral animals and their photosynthetic microalgal endosymbionts (zooxanthellae). It has been suggested that large-scale bleaching episodes are linked to global warming. The data presented here demonstrate that Vibrio coralliilyticus is an etiological agent of bleaching of the coral Pocillopora damicornis. This bacterium was present at high levels in bleached P. damicornis but absent from healthy corals. The bacterium was isolated in pure culture, characterized microbiologically, and shown to cause bleaching when it was inoculated onto healthy corals at 25 degrees C. The pathogen was reisolated from the diseased tissues of the infected corals. The zooxanthella concentration in the bacterium-bleached corals was less than 12% of the zooxanthella concentration in healthy corals. When P. damicornis was infected with V. coralliilyticus at higher temperatures (27 and 29 degrees C), the corals lysed within 2 weeks, indicating that the seawater temperature is a critical environmental parameter in determining the outcome of infection. A large increase in the level of the extracellular protease activity of V. coralliilyticus occurred at the same temperature range (24 to 28 degrees C) as the transition from bleaching to lysis of the corals. We suggest that bleaching of P. damicornis results from an attack on the algae, whereas bacterium-induced lysis and death are promoted by bacterial extracellular proteases. The data presented here support the bacterial hypothesis of coral bleaching.

  20. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    PubMed

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances.

  1. Massive bleaching of coral reefs induced by the 2010 ENSO, Puerto Cabello, Venezuela.

    PubMed

    del Mónaco, Carlos; Haiek, Gerard; Narciso, Samuel; Galindo, Miguel

    2012-06-01

    El Niño Southern Oscillation (ENSO) has generated global coral massive bleaching. The aim of this work was to evaluate the massive bleaching of coral reefs in Puerto Cabello, Venezuela derived from ENSO 2010. We evaluated the bleaching of reefs at five localities both at three and five meter depth. The coral cover and densities of colonies were estimated. We recorded living coral cover, number and diameter of bleached and non-bleached colonies of each coral species. The colonies were classified according to the proportion of bleached area. Satellite images (Modis Scar) were analyzed for chlorophyll-a concentration and temperature in August, September, October and November from 2008-2010. Precipitation, wind speed and air temperature information was evaluated in meteorological data for 2009 and 2010. A total of 58.3% of colonies, belonging to 11 hexacoral species, were affected and the greatest responses were observed in Colpophyllia natans, Montastraea annularis and Montastraeafaveolata. The most affected localities were closer to the mainland and had a bleached proportion up to 62.73+/-36.55%, with the highest proportion of affected colonies, whereas the farthest locality showed 20.25+/-14.00% bleached and the smallest proportion. The salinity in situ varied between 30 and 33ppm and high levels of turbidity were observed. According to the satellite images, in 2010 the surface water temperature reached 31 degree C in August, September and October, and resulted higher than those registered in 2008 and 2009. Regionally, chlorophyll values were higher in 2010 than in 2008 and 2009. The meteorological data indicated that precipitation in November 2010 was three times higher than in November 2009. Massive coral bleaching occurred due to a three month period of high temperatures followed by one month of intense ENSO-associated precipitation. However, this latter factor was likely the trigger because of the bleaching gradient observed.

  2. Coral bleaching under unconventional scenarios of climate warming and ocean acidification

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Lester; Cox, Peter; Halloran, Paul R.; Mumby, Peter J.; Wiltshire, Andy J.

    2015-08-01

    Elevated sea surface temperatures have been shown to cause mass coral bleaching. Widespread bleaching, affecting >90% of global coral reefs and causing coral degradation, has been projected to occur by 2050 under all climate forcing pathways adopted by the IPCC for use within the Fifth Assessment Report. These pathways include an extremely ambitious pathway aimed to limit global mean temperature rise to 2 °C (ref. ; Representative Concentration Pathway 2.6--RCP2.6), which assumes full participation in emissions reductions by all countries, and even the possibility of negative emissions. The conclusions drawn from this body of work, which applied widely used algorithms to estimate coral bleaching, are that we must either accept that the loss of a large percentage of the world’s coral reefs is inevitable, or consider technological solutions to buy those reefs time until atmospheric CO2 concentrations can be reduced. Here we analyse the potential for geoengineering, through stratospheric aerosol-based solar radiation management (SRM), to reduce the extent of global coral bleaching relative to ambitious climate mitigation. Exploring the common criticism of geoengineering--that ocean acidification and its impacts will continue unabated--we focus on the sensitivity of results to the aragonite saturation state dependence of bleaching. We do not, however, address the additional detrimental impacts of ocean acidification on processes such as coral calcification that will further determine the benefit to corals of any SRM-based scenario. Despite the sensitivity of thermal bleaching thresholds to ocean acidification being uncertain, stabilizing radiative forcing at 2020 levels through SRM reduces the risk of global bleaching relative to RCP2.6 under all acidification-bleaching relationships analysed.

  3. Comparing Environmental Influences on Coral Bleaching Across and within Species using Clustered Binomial Regression

    EPA Science Inventory

    Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. However, the influence of the local environment on species-specific bleaching susceptibilities has not been ...

  4. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    SciTech Connect

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  5. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

    NASA Astrophysics Data System (ADS)

    Desalvo, M. K.; Estrada, A.; Sunagawa, S.; Medina, Mónica

    2012-03-01

    Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

  6. Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals.

    PubMed

    Palmer, Caroline V; Bythell, John C; Willis, Bette L

    2010-06-01

    Immunity is a key life history trait that may explain hierarchies in the susceptibility of corals to disease and thermal bleaching, two of the greatest current threats to coral health and the persistence of tropical reefs. Despite their ongoing and rapid global decline, there have been few investigations into the immunity mechanisms of reef-building corals. Variables commonly associated with invertebrate immunity, including the presence of melanin, size of melanin-containing granular cells, and phenoloxidase (PO) activity, as well as concentrations of fluorescent proteins (FPs), were investigated in hard (Scleractinia) and soft (Alcyonacea) corals spanning 10 families from the Great Barrier Reef. Detectable levels of these indicators were present in all corals investigated, although relative investment differed among coral taxa. Overall levels of investment were inversely correlated to thermal bleaching and disease susceptibility. In addition, PO activity, melanin-containing granular cell size, and FP concentration were each found to be significant predictors of susceptibility and thus may play key roles in coral immunity. Correlative evidence that taxonomic (family-level) variation in the levels of these constituent immunity parameters underpins susceptibility to both thermal bleaching and disease indicates that baseline immunity underlies the vulnerability of corals to these two threats. This reinforces the necessity of a holistic approach to understanding bleaching and disease in order to accurately determine the resilience of coral reefs.

  7. Coral reef recovery status in south Andaman Islands after the bleaching event 2010

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Jerald Wilson, J.; Vinithkumar, N. V.; Kirubagaran, R.

    2013-03-01

    The Andaman and Nicobar Islands are one of the Union Territories of India, located in the eastern part of the Bay of Bengal. In 2010 summer, the increment in sea surface water temperature (up to 34°C) resulted in the bleaching of about 74% to 77% of corals in the South Andaman. During this event, coral species such as Acropora cerealis, A. humilis, Montipora sp., Favia pallida, Diploastrea sp., Goniopora sp. Fungia concinna, Gardineroseries sp., Porites sp., Favites abdita and Lobophyllia robusta were severely affected. This study is to assess the recovery status of the reef ecosystem by estimating the percentage of Live Coral cover, Bleached coral cover, Dead coral with algae, Rubble, Sandy flat, Algal assemblage and other associated organisms. The sedimentation rate (mg cm-2 d-1) and coral coverage (%) were assessed during this study period. The average sedimentation rate was ranged between 0.27 and 0.89 mg cm-2 d-1. The observed post bleaching recovery of coral cover was 21.1% at Port Blair Bay and 13.29% at Havelock Island. The mortality rate of coral cover due to this bleaching was estimated as 2.05% at Port Blair Bay and 9.82% at Havelock Island. Once the sea water temperature resumed back to the normal condition, most of the corals were found recovered.

  8. Temperature and Light Effects on Extracellular Superoxide Production by Algal and Bacterial Symbionts in Corals: Implications for Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Brighi, C.; Diaz, J. M.; Apprill, A.; Hansel, C. M.

    2014-12-01

    Increased surface seawater temperature due to global warming is one of the main causes of coral bleaching, a phenomenon in which corals lose their photosynthetic algae. Light and temperature induced production of superoxide and other reactive oxygen species (ROS) by these symbiotic algae has been implicated in the breakdown of their symbiotic association with the coral host and subsequent coral bleaching. Nevertheless, a direct link between Symbiodinium ROS production and coral bleaching has not been demonstrated. In fact, given the abundance and diversity of microorganisms within the coral holobiont, the concentration and fluxes of ROS within corals may involve several microbial sources and sinks. Here, we explore the role of increased light and temperature on superoxide production by coral-derived cultures of Symbiodinium algae and Oceanospirillales bacteria of the genus Endozoicomonas, which are globally common and abundant associates of corals. Using a high sensitivity chemiluminescent technique, we find that heat stress (exposure to 34°C vs. 23°C for 2hr or 24hr) has no significant effect on extracellular superoxide production by Symbiodinium isolates within clades B and C, regardless of the level of light exposure. Exposure to high light, however, increased superoxide production by these organisms at both 34°C and 23°C. On the other hand, extracellular superoxide production by Endozoicomonas bacteria tested under the same conditions was stimulated by the combined effects of thermal and light stress. The results of this research suggest that the sources and physical triggers for biological superoxide production within corals are more complex than currently assumed. Thus, further investigations into the biological processes controlling ROS dynamics within corals are required to improve our understanding of the mechanisms underpinning coral bleaching and to aid in the development of mitigation strategies.

  9. Changes in Caribbean coral disease prevalence after the 2005 bleaching event.

    PubMed

    Cróquer, Aldo; Weil, Ernesto

    2009-11-16

    Bleaching events and disease epizootics have increased during the past decades, suggesting a positive link between these 2 causes in producing coral mortality. However, studies to test this hypothesis, integrating a broad range of hierarchical spatial scales from habitats to distant localities, have not been conducted in the Caribbean. In this study, we examined links between bleaching intensity and disease prevalence collected from 6 countries, 2 reef sites for each country, and 3 habitats within each reef site (N = 6 x 2 x 3 = 36 site-habitat combinations) during the peak of bleaching in 2005 and a year after, in 2006. Patterns of disease prevalence and bleaching were significantly correlated (Rho = 0.58, p = 0.04). Higher variability in disease prevalence after bleaching occurred among habitats at each particular reef site, with a significant increase in prevalence recorded in 4 of the 10 site-habitats where bleaching was intense and a non-significant increase in disease prevalence in 18 out of the 26 site-habitats where bleaching was low to moderate. A significant linear correlation was found (r = 0.89, p = 0.008) between bleaching and the prevalence of 2 virulent diseases (yellow band disease and white plague) affecting the Montastraea species complex. Results of this study suggest that if bleaching events become more intense and frequent, disease-related mortality of Caribbean coral reef builders could increase, with uncertain effects on coral reef resilience.

  10. Prediction of coral bleaching in the Florida Keys using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Barnes, Brian B.; Hallock, Pamela; Hu, Chuanmin; Muller-Karger, Frank; Palandro, David; Walter, Cory; Zepp, Richard

    2015-06-01

    Shallow water tropical coral reefs may bleach due to extremes in a variety of environmental factors. Of particular concern have been temperature, ultraviolet radiation, and photosynthetically available radiation. Satellite observation systems allow synoptic-scale monitoring of coral environments that can be used to investigate the effects of such environmental parameters. Recent advancements in algorithm development for new satellite data products have made it possible to include light availability in such monitoring. Long-term satellite data (2000-2013), in combination with in situ bleaching surveys ( N = 3,334; spanning 2003-2012), were used to identify the environmental factors contributing to bleaching of Florida reef tract corals. Stepwise multiple linear regression supports the conclusion that elevated sea surface temperature (SST; partial R {adj/2} = 0.13; p < 0.001) and high visible light levels reaching the benthos (partial R {adj/2} = 0.06; p < 0.001) each independently contributed to coral bleaching. The effect of SST was modulated by significant interactions with wind speed (partial R {adj/2} = 0.03; p < 0.001) and ultraviolet benthic available light (partial R {adj/2} = 0.01; p = 0.022). These relationships were combined via canonical analysis of principal coordinates to create a predictive model of coral reef bleaching for the region. This model predicted `severe bleaching' and `no bleaching' conditions with 69 and 57 % classification success, respectively. This was approximately 2.5 times greater than that predicted by chance and shows improvement over similar models created using only temperature data. The results enhance the understanding of the factors contributing to coral bleaching and allow for weekly assessment of historical and current bleaching stress.

  11. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data.

    PubMed

    Yee, Susan Harrell; Barron, Mace G

    2010-02-01

    Coral reefs have experienced extensive mortality over the past few decades as a result of temperature-induced mass bleaching events. There is an increasing realization that other environmental factors, including water mixing, solar radiation, water depth, and water clarity, interact with temperature to either exacerbate bleaching or protect coral from mass bleaching. The relative contribution of these factors to variability in mass bleaching at a global scale has not been quantified, but can provide insights when making large-scale predictions of mass bleaching events. Using data from 708 bleaching surveys across the globe, a framework was developed to predict the probability of moderate or severe bleaching as a function of key environmental variables derived from global-scale remote-sensing data. The ability of models to explain spatial and temporal variability in mass bleaching events was quantified. Results indicated approximately 20% improved accuracy of predictions of bleaching when solar radiation and water mixing, in addition to elevated temperature, were incorporated into models, but predictive accuracy was variable among regions. Results provide insights into the effects of environmental parameters on bleaching at a global scale.

  12. Resilience and climate change: lessons from coral reefs and bleaching in the Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Obura, David O.

    2005-05-01

    The impact of climate change through thermal stress-related coral bleaching on coral reefs of the Western Indian Ocean has been well documented and is caused by rising sea water temperatures associated with background warming trends and extreme climate events. Recent studies have identified a number of factors that may reduce the impact of coral bleaching and mortality at a reef or sub-reef level. However, there is little scientific consensus as yet, and it is unclear how well current science supports the immediate needs of management responses to climate change. This paper provides evidence from the Western Indian Ocean in support of recent hypotheses on coral and reef vulnerability to thermal stress that have been loosely termed 'resistance and resilience to bleaching'. The paper argues for a more explicit definition of terms, and identifies three concepts affecting coral-zooxanthellae holobiont and reef vulnerability to thermal stress previously termed 'resistance to bleaching': 'thermal protection', where some reefs are protected from the thermal conditions that induce bleaching and/or where local physical conditions reduce bleaching and mortality levels; 'thermal resistance', where individual corals bleach to differing degrees to the same thermal stress; and 'thermal tolerance', where individual corals suffer differing levels of mortality when exposed to the same thermal stress. 'Resilience to bleaching' is a special case of ecological resilience, where recovery following large-scale bleaching mortality varies according to ecological and other processes. These concepts apply across multiple levels of biological organization and temporal and spatial scales. Thermal resistance and tolerance are genetic properties and may interact with environmental protection properties resulting in phenotypic variation in bleaching and mortality of corals. The presence or absence of human threats and varying levels of reef management may alter the influence of the above factors

  13. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Muller, E.; Rogers, C.; Waara, R.; Atkinson, A.; Whelan, K.R.T.; Patterson, M.; Witcher, B.

    2009-01-01

    In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with >90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of disease-associated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4-61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0-79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to

  14. Spectral discrimination of bleached and healthy submerged corals based on principal components analysis

    SciTech Connect

    Holden, H.; LeDrew, E.

    1997-06-01

    Remote discrimination of substrate types in relatively shallow coastal waters has been limited by the spatial and spectral resolution of available sensors. An additional limiting factor is the strong attenuating influence of the water column over the substrate. As a result, there have been limited attempts to map submerged ecosystems such as coral reefs based on spectral characteristics. Both healthy and bleached corals were measured at depth with a hand-held spectroradiometer, and their spectra compared. Two separate principal components analyses (PCA) were performed on two sets of spectral data. The PCA revealed that there is indeed a spectral difference based on health. In the first data set, the first component (healthy coral) explains 46.82%, while the second component (bleached coral) explains 46.35% of the variance. In the second data set, the first component (bleached coral) explained 46.99%; the second component (healthy coral) explained 36.55%; and the third component (healthy coral) explained 15.44 % of the total variance in the original data. These results are encouraging with respect to using an airborne spectroradiometer to identify areas of bleached corals thus enabling accurate monitoring over time.

  15. Nutrient enrichment can increase the susceptibility of reef corals to bleaching

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Jörg; D'Angelo, Cecilia; Smith, Edward G.; Hunt, Alan N.; Legiret, François-Eric; Postle, Anthony D.; Achterberg, Eric P.

    2013-02-01

    Mass coral bleaching, resulting from the breakdown of coral-algal symbiosis has been identified as the most severe threat to coral reef survival on a global scale. Regionally, nutrient enrichment of reef waters is often associated with a significant loss of coral cover and diversity. Recently, increased dissolved inorganic nitrogen concentrations have been linked to a reduction of the temperature threshold of coral bleaching, a phenomenon for which no mechanistic explanation is available. Here we show that increased levels of dissolved inorganic nitrogen in combination with limited phosphate concentrations result in an increased susceptibility of corals to temperature- and light-induced bleaching. Mass spectrometric analyses of the algal lipidome revealed a marked accumulation of sulpholipids under these conditions. Together with increased phosphatase activities, this change indicates that the imbalanced supply of dissolved inorganic nitrogen results in phosphate starvation of the symbiotic algae. Based on these findings we introduce a conceptual model that links unfavourable ratios of dissolved inorganic nutrients in the water column with established mechanisms of coral bleaching. Notably, this model improves the understanding of the detrimental effects of coastal nutrient enrichment on coral reefs, which is urgently required to support knowledge-based management strategies to mitigate the effects of climate change.

  16. Inhibition of photosynthetic CO₂ fixation in the coral Pocillopora damicornis and its relationship to thermal bleaching.

    PubMed

    Hill, Ross; Szabó, Milán; ur Rehman, Ateeq; Vass, Imre; Ralph, Peter J; Larkum, Anthony W D

    2014-06-15

    Two inhibitors of the Calvin-Benson cycle [glycolaldehyde (GA) and potassium cyanide (KCN)] were used in cultured Symbiodinium cells and in nubbins of the coral Pocillopora damicornis to test the hypothesis that inhibition of the Calvin-Benson cycle triggers coral bleaching. Inhibitor concentration range-finding trials aimed to determine the appropriate concentration to generate inhibition of the Calvin-Benson cycle, but avoid other metabolic impacts to the symbiont and the animal host. Both 3 mmol l(-1) GA and 20 μmol l(-1) KCN caused minimal inhibition of host respiration, but did induce photosynthetic impairment, measured by a loss of photosystem II function and oxygen production. GA did not affect the severity of bleaching, nor induce bleaching in the absence of thermal stress, suggesting inhibition of the Calvin-Benson cycle by GA does not initiate bleaching in P. damicornis. In contrast, KCN did activate a bleaching response through symbiont expulsion, which occurred in the presence and absence of thermal stress. While KCN is an inhibitor of the Calvin-Benson cycle, it also promotes reactive oxygen species formation, and it is likely that this was the principal agent in the coral bleaching process. These findings do not support the hypothesis that temperature-induced inhibition of the Calvin-Benson cycle alone induces coral bleaching.

  17. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    PubMed

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P < 0.05), respectively. We present these genes as potential coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  18. Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean.

    PubMed

    Ricaurte, Martha; Schizas, Nikolaos V; Ciborowski, Pawel; Boukli, Nawal M

    2016-06-15

    There has been an increase in the scale and frequency of coral bleaching around the world due mainly to changes in sea temperature. This may occur at large scales, often resulting in significant decline in coral coverage. In order to understand the molecular and cellular basis of the ever-increasing incidence of coral bleaching, we have undertaken a comparative proteomic approach with the endangered Caribbean coral Acropora palmata. Using a proteomic tandem mass spectrometry approach, we identified 285 and 321 expressed protein signatures in bleached and unbleached A. palmata colonies, respectively, in southwestern Puerto Rico. Overall the expression level of 38 key proteins was significantly different between bleached and unbleached corals. A wide range of proteins was detected and categorized, including transcription factors involved mainly in heat stress/UV responses, immunity, apoptosis, biomineralization, the cytoskeleton, and endo-exophagocytosis. The results suggest that for bleached A. palmata, there was an induced differential protein expression response compared with those colonies that did not bleach under the same environmental conditions. PMID:27105725

  19. Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding

    NASA Astrophysics Data System (ADS)

    Bessell-Browne, Pia; Stat, Michael; Thomson, Damian; Clode, Peta L.

    2014-09-01

    Colonies of Coscinaraea marshae corals from Rottnest Island, Western Australia have survived for more than 11 months in various bleached states following a severe heating event in the austral summer of 2011. These colonies are situated in a high-latitude, mesophotic environment, which has made their long-term survival of particular interest as such environments typically suffer from minimal thermal pressures. We have investigated corals that remain unbleached, moderately bleached, or severely bleached to better understand potential survival mechanisms utilised in response to thermal stress. Specifically, Symbiodinium (algal symbiont) density and genotype, chlorophyll- a concentrations, and δ13C and δ15N levels were compared between colonies in the three bleaching categories. Severely bleached colonies housed significantly fewer Symbiodinium cells ( p < 0.05) and significantly reduced chlorophyll- a concentrations ( p < 0.05), compared with unbleached colonies. Novel Symbiodinium clade associations were observed for this coral in both severely and moderately bleached colonies, with clade C and a mixed clade population detected. In unbleached colonies, only clade B was observed. Levels of δ15N indicate that severely bleached colonies are utilising heterotrophic feeding mechanisms to aid survival whilst bleached. Collectively, these results suggest that these C. marshae colonies can survive with low symbiont and chlorophyll densities, in response to prolonged thermal stress and extended bleaching, and increase heterotrophic feeding levels sufficiently to meet energy demands, thus enabling some colonies to survive and recover over long time frames. This is significant as it suggests that corals in mesophotic and high-latitude environments may possess considerable plasticity and an ability to tolerate and adapt to large environmental fluctuations, thereby improving their chances of survival as climate change impacts coral ecosystems worldwide.

  20. Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    PubMed Central

    Eakin, C. Mark; Morgan, Jessica A.; Heron, Scott F.; Smith, Tyler B.; Liu, Gang; Alvarez-Filip, Lorenzo; Baca, Bart; Bartels, Erich; Bastidas, Carolina; Bouchon, Claude; Brandt, Marilyn; Bruckner, Andrew W.; Bunkley-Williams, Lucy; Cameron, Andrew; Causey, Billy D.; Chiappone, Mark; Christensen, Tyler R. L.; Crabbe, M. James C; Day, Owen; de la Guardia, Elena; Díaz-Pulido, Guillermo; DiResta, Daniel; Gil-Agudelo, Diego L.; Gilliam, David S.; Ginsburg, Robert N.; Gore, Shannon; Guzmán, Héctor M.; Hendee, James C.; Hernández-Delgado, Edwin A.; Husain, Ellen; Jeffrey, Christopher F. G.; Jones, Ross J.; Jordán-Dahlgren, Eric; Kaufman, Les S.; Kline, David I.; Kramer, Philip A.; Lang, Judith C.; Lirman, Diego; Mallela, Jennie; Manfrino, Carrie; Maréchal, Jean-Philippe; Marks, Ken; Mihaly, Jennifer; Miller, W. Jeff; Mueller, Erich M.; Muller, Erinn M.; Orozco Toro, Carlos A.; Oxenford, Hazel A.; Ponce-Taylor, Daniel; Quinn, Norman; Ritchie, Kim B.; Rodríguez, Sebastián; Ramírez, Alberto Rodríguez; Romano, Sandra; Samhouri, Jameal F.; Sánchez, Juan A.; Schmahl, George P.; Shank, Burton V.; Skirving, William J.; Steiner, Sascha C. C.; Villamizar, Estrella; Walsh, Sheila M.; Walter, Cory; Weil, Ernesto; Williams, Ernest H.; Roberson, Kimberly Woody; Yusuf, Yusri

    2010-01-01

    Background The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate. PMID:21125021

  1. Boring sponges, an increasing threat for coral reefs affected by bleaching events.

    PubMed

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-04-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold.

  2. Boring sponges, an increasing threat for coral reefs affected by bleaching events

    PubMed Central

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-01-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold. PMID:23610632

  3. An evaluation of the effect of recent temperature variability on the prediction of coral bleaching events.

    PubMed

    Donner, Simon D

    2011-07-01

    Over the past 30 years, warm thermal disturbances have become commonplace on coral reefs worldwide. These periods of anomalous sea surface temperature (SST) can lead to coral bleaching, a breakdown of the symbiosis between the host coral and symbiotic dinoflagellates which reside in coral tissue. The onset of bleaching is typically predicted to occur when the SST exceeds a local climatological maximum by 1 degrees C for a month or more. However, recent evidence suggests that the threshold at which bleaching occurs may depend on thermal history. This study uses global SST data sets (HadISST and NOAA AVHRR) and mass coral bleaching reports (from Reefbase) to examine the effect of historical SST variability on the accuracy of bleaching prediction. Two variability-based bleaching prediction methods are developed from global analysis of seasonal and interannual SST variability. The first method employs a local bleaching threshold derived from the historical variability in maximum annual SST to account for spatial variability in past thermal disturbance frequency. The second method uses a different formula to estimate the local climatological maximum to account for the low seasonality of SST in the tropics. The new prediction methods are tested against the common globally fixed threshold method using the observed bleaching reports. The results find that estimating the bleaching threshold from local historical SST variability delivers the highest predictive power, but also a higher rate of Type I errors. The second method has the lowest predictive power globally, though regional analysis suggests that it may be applicable in equatorial regions. The historical data analysis suggests that the bleaching threshold may have appeared to be constant globally because the magnitude of interannual variability in maximum SST is similar for many of the world's coral reef ecosystems. For example, the results show that a SST anomaly of 1 degrees C is equivalent to 1.73-2.94 standard

  4. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress.

    PubMed

    Thompson, D M; van Woesik, R

    2009-08-22

    The response of coral-reef ecosystems to contemporary thermal stress may be in part a consequence of recent or historical sea-surface temperature (SST) variability. To test this hypothesis, we examined whether: (i) there was a relationship between the historical frequency of SST variability and stress experienced during the most recent thermal-stress events (in 1998 and 2005-2006) and (ii) coral reefs that historically experienced frequent thermal anomalies were less likely to experience coral bleaching during these recent thermal-stress events. Examination of nine detrended coral delta(18)O and Sr/Ca anomaly records revealed a high- (5.7-year) and low-frequency (>54-year) mode of SST variability. There was a positive relationship between the historical frequency of SST anomalies and recent thermal stress; sites historically dominated by the high-frequency mode experienced greater thermal stress than other sites during both events, and showed extensive coral bleaching in 1998. Nonetheless, in 2005-2006, corals at sites dominated by high-frequency variability showed reduced bleaching, despite experiencing high thermal stress. This bleaching resistance was most likely a consequence of rapid directional selection that followed the extreme thermal event of 1998. However, the benefits of regional resistance could come at the considerable cost of shifts in coral species composition.

  5. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    PubMed

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

  6. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress.

    PubMed

    Thompson, D M; van Woesik, R

    2009-08-22

    The response of coral-reef ecosystems to contemporary thermal stress may be in part a consequence of recent or historical sea-surface temperature (SST) variability. To test this hypothesis, we examined whether: (i) there was a relationship between the historical frequency of SST variability and stress experienced during the most recent thermal-stress events (in 1998 and 2005-2006) and (ii) coral reefs that historically experienced frequent thermal anomalies were less likely to experience coral bleaching during these recent thermal-stress events. Examination of nine detrended coral delta(18)O and Sr/Ca anomaly records revealed a high- (5.7-year) and low-frequency (>54-year) mode of SST variability. There was a positive relationship between the historical frequency of SST anomalies and recent thermal stress; sites historically dominated by the high-frequency mode experienced greater thermal stress than other sites during both events, and showed extensive coral bleaching in 1998. Nonetheless, in 2005-2006, corals at sites dominated by high-frequency variability showed reduced bleaching, despite experiencing high thermal stress. This bleaching resistance was most likely a consequence of rapid directional selection that followed the extreme thermal event of 1998. However, the benefits of regional resistance could come at the considerable cost of shifts in coral species composition. PMID:19474044

  7. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    PubMed

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health. PMID:23761353

  8. A depth refugium from catastrophic coral bleaching prevents regional extinction.

    PubMed

    Smith, Tyler B; Glynn, Peter W; Maté, Juan L; Toth, Lauren T; Gyory, Joanna

    2014-06-01

    Species intolerant of changing climate might avoid extinction within refugia buffered from extreme conditions. Refugia have been observed in the fossil record but are not well documented or understood on ecological time scales. Using a 37-year record from the eastern Pacific across the two most severe El Niño events on record (1982-1983 and 1997 1998) we show how an exceptionally thermally sensitive reef-building hydrocoral, Millepora intricata, twice survived catastrophic bleaching in a deeper-water refuge (> 11 m depth). During both events, M. intricata was extirpated across its range in shallow water, but showed recovery within several years, while two other hydrocorals without deep-water populations were driven to regional extinction. Evidence from the subfossil record in the same area showed shallow-water persistence of abundant M. intricata populations from 5000 years ago, through severe El Niño-Southern Oscillation cycles, suggesting a potential depth refugium on a millennial timescale. Our data confirm the deep refuge hypothesis for corals under thermal stress.

  9. A depth refugium from catastrophic coral bleaching prevents regional extinction.

    PubMed

    Smith, Tyler B; Glynn, Peter W; Maté, Juan L; Toth, Lauren T; Gyory, Joanna

    2014-06-01

    Species intolerant of changing climate might avoid extinction within refugia buffered from extreme conditions. Refugia have been observed in the fossil record but are not well documented or understood on ecological time scales. Using a 37-year record from the eastern Pacific across the two most severe El Niño events on record (1982-1983 and 1997 1998) we show how an exceptionally thermally sensitive reef-building hydrocoral, Millepora intricata, twice survived catastrophic bleaching in a deeper-water refuge (> 11 m depth). During both events, M. intricata was extirpated across its range in shallow water, but showed recovery within several years, while two other hydrocorals without deep-water populations were driven to regional extinction. Evidence from the subfossil record in the same area showed shallow-water persistence of abundant M. intricata populations from 5000 years ago, through severe El Niño-Southern Oscillation cycles, suggesting a potential depth refugium on a millennial timescale. Our data confirm the deep refuge hypothesis for corals under thermal stress. PMID:25039230

  10. A comparison between boat-based and diver-based methods for quantifying coral bleaching

    USGS Publications Warehouse

    Zawada, David G.; Ruzicka, Rob; Colella, Michael A.

    2015-01-01

    Recent increases in both the frequency and severity of coral bleaching events have spurred numerous surveys to quantify the immediate impacts and monitor the subsequent community response. Most of these efforts utilize conventional diver-based methods, which are inherently time-consuming, expensive, and limited in spatial scope unless they deploy large teams of scientifically-trained divers. In this study, we evaluated the effectiveness of the Along-Track Reef Imaging System (ATRIS), an automated image-acquisition technology, for assessing a moderate bleaching event that occurred in the summer of 2011 in the Florida Keys. More than 100,000 images were collected over 2.7 km of transects spanning four patch reefs in a 3-h period. In contrast, divers completed 18, 10-m long transects at nine patch reefs over a 5-day period. Corals were assigned to one of four categories: not bleached, pale, partially bleached, and bleached. The prevalence of bleaching estimated by ATRIS was comparable to the results obtained by divers, but only for corals > 41 cm in size. The coral size-threshold computed for ATRIS in this study was constrained by prevailing environmental conditions (turbidity and sea state) and, consequently, needs to be determined on a study-by-study basis. Both ATRIS and diver-based methods have innate strengths and weaknesses that must be weighed with respect to project goals.

  11. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii.

    PubMed

    Rodrigues, Lisa J; Grottoli, Andréa G; Lesser, Michael P

    2008-08-01

    Chlorophyll fluorescence has been used to predict and monitor coral bleaching over short timescales (hours to days), but long-term changes during recovery remain largely unknown. To evaluate changes in fluorescence during long-term bleaching and recovery, Porites compressa and Montipora capitata corals were experimentally bleached in tanks at 30 degrees C for 1 month, while control fragments were maintained at 27 degrees C. A pulse amplitude modulated fluorometer measured the quantum yield of photosystem II fluorescence (Fv/Fm) of the zooxanthellae each week during bleaching, and after 0, 1.5, 4 and 8 months recovery. M. capitata appeared bleached 6 days sooner than P. compressa, yet their fluorescence patterns during bleaching did not significantly differ. Changes in minimum (Fo), maximum (Fm) and variable (Fv) fluorescence throughout bleaching and recovery indicated periods of initial photoprotection followed by photodamage in both species, with P. compressa requiring less time for photosystem II (PS II) repair than M. capitata. Fv/Fm fully recovered 6.5 months earlier in P. compressa than M. capitata, suggesting that the zooxanthellae of P. compressa were more resilient to bleaching stress.

  12. Long-term changes in the chlorophyll fluorescence of bleached and recovering corals from Hawaii.

    PubMed

    Rodrigues, Lisa J; Grottoli, Andréa G; Lesser, Michael P

    2008-08-01

    Chlorophyll fluorescence has been used to predict and monitor coral bleaching over short timescales (hours to days), but long-term changes during recovery remain largely unknown. To evaluate changes in fluorescence during long-term bleaching and recovery, Porites compressa and Montipora capitata corals were experimentally bleached in tanks at 30 degrees C for 1 month, while control fragments were maintained at 27 degrees C. A pulse amplitude modulated fluorometer measured the quantum yield of photosystem II fluorescence (Fv/Fm) of the zooxanthellae each week during bleaching, and after 0, 1.5, 4 and 8 months recovery. M. capitata appeared bleached 6 days sooner than P. compressa, yet their fluorescence patterns during bleaching did not significantly differ. Changes in minimum (Fo), maximum (Fm) and variable (Fv) fluorescence throughout bleaching and recovery indicated periods of initial photoprotection followed by photodamage in both species, with P. compressa requiring less time for photosystem II (PS II) repair than M. capitata. Fv/Fm fully recovered 6.5 months earlier in P. compressa than M. capitata, suggesting that the zooxanthellae of P. compressa were more resilient to bleaching stress. PMID:18626085

  13. Unprecedented Mass Bleaching and Loss of Coral across 12° of Latitude in Western Australia in 2010–11

    PubMed Central

    Moore, James A. Y.; Bellchambers, Lynda M.; Depczynski, Martial R.; Evans, Richard D.; Evans, Scott N.; Field, Stuart N.; Friedman, Kim J.; Gilmour, James P.; Holmes, Thomas H.; Middlebrook, Rachael; Radford, Ben T.; Ridgway, Tyrone; Shedrawi, George; Taylor, Heather; Thomson, Damian P.; Wilson, Shaun K.

    2012-01-01

    Background Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010–11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA). Methodology/Principal Findings Extreme La-Niña conditions caused extensive warming of waters and drove considerable storminess and cyclonic activity across WA from October 2010 to May 2011. Satellite-derived sea surface temperature measurements recorded anomalies of up to 5°C above long-term averages. Benthic surveys quantified the extent of bleaching at 10 locations across four regions from tropical to temperate waters. Bleaching was recorded in all locations across regions and ranged between 17% (±5.5) in the temperate Perth region, to 95% (±3.5) in the Exmouth Gulf of the tropical Ningaloo region. Coincident with high levels of bleaching, three cyclones passed in close proximity to study locations around the time of peak temperatures. Follow-up surveys revealed spatial heterogeneity in coral cover change with four of ten locations recording significant loss of coral cover. Relative decreases ranged between 22%–83.9% of total coral cover, with the greatest losses in the Exmouth Gulf. Conclusions/Significance The anomalous thermal stress of 2010–11 induced mass bleaching of corals along central and southern WA coral reefs. Significant coral bleaching was observed at multiple locations across the tropical-temperate divide spanning more than 1200 km of coastline. Resultant spatially patchy loss of coral cover under widespread and high levels of bleaching and cyclonic activity, suggests a degree of resilience for WA coral communities. However, the spatial extent of bleaching casts some doubt over hypotheses suggesting that future impacts to coral reefs under forecast

  14. Bleaching, coral mortality and subsequent survivorship on a West Australian fringing reef

    NASA Astrophysics Data System (ADS)

    Depczynski, M.; Gilmour, J. P.; Ridgway, T.; Barnes, H.; Heyward, A. J.; Holmes, T. H.; Moore, J. A. Y.; Radford, B. T.; Thomson, D. P.; Tinkler, P.; Wilson, S. K.

    2013-03-01

    The spring and summer of 2010/11 saw an exceptionally strong La Niña push warm waters from Indonesia down the Western Australian coastline, resulting in a host of extraordinary biological oddities including significant bleaching of Western Australian corals. Here, we report a 79-92 % decline in coral cover for a location in the Ningaloo Marine Park where sustained high water temperatures over an 8-month period left just 1-6 % of corals alive. The severity of bleaching provided an opportunity to investigate the resilience of different taxonomic groups and colony size classes to an acute but protracted episode of thermal stress. While the sub-dominant community of massive growth forms fared reasonably well, the dominant Acropora and Montipora assemblages all died, with the exception of the <10 cm size class, which seemed immune to bleaching.

  15. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Manzello, Derek; Planes, Serge

    2014-01-01

    Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs.

  16. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Manzello, Derek; Planes, Serge

    2014-01-01

    Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10-15 years later at high-latitude reefs than for reefs in low latitudes under RCP8.5. In these 10-15 years, Ωarag keeps declining and thus any benefits for high-latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long-term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst-case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up-to-date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs. PMID:24151155

  17. The effects of ultraviolet radiation on growth and bleaching in three species of Hawaiian coral

    SciTech Connect

    Goodman, G.D. )

    1990-01-09

    Long term exposure to ultraviolet radiation is harmful to many organisms, including hermatypic corals, which obtain much of their nutrition from photosynthetic zooxanthellae. Therefore, increased UV radiation from atmospheric ozone depletion could inhibit growth of such corals. Moreover, coral bleaching, which has been attributed to loss of pigment and/or expulsion of zooxanthellae, may be a specific response to UV light. Does UV-A reduce skeletal growth or influence population density and pigment content of zooxanthellae In addition, do zooxanthellae migrate to shaded areas of the colony to avoid ultraviolet light Using alizarin red stain and suitable filters, I compared the stain and suitable filters, I compared the effects of UV-A (320-400nm) and full-spectrum UV (280-400nm) on the skeletal growth of two Hawaiian corals, Montipora verrucosa, Pocillopora damicornis, in situ. In the perforate corals, M. Verrucosa and Porites compressa, I measured concentration of zooxanthellae and their chlorophyll content to quantify bleaching in response to UV light. Reduction in skeletal growth by the two corals in response to different ranges of UV light appears to be species specific. Bleaching by UV appears to be characterized by an initial loss of pigment followed by the expulsion and migration of the zooxanthellae to shaded areas of the colony. Differences in tolerance and adaptation to decreasing ozone levels and increasing UV light should confer a competitive advantage on various species and morphologies of reef-building corals.

  18. Long-term impacts of coral bleaching events on the world's warmest reefs.

    PubMed

    Burt, John; Al-Harthi, Suaad; Al-Cibahy, Ashraf

    2011-10-01

    The southern Arabian Gulf houses some of the most thermally tolerant corals on earth, but severe bleaching in the late 1990s caused widespread mortality. More than a decade later, corals still dominated benthos (mean: 40 ± 3% cover on 10 sites spanning > 350 km; range: 11.0-65.6%), but coral communities varied spatially. Sites to the west generally had low species richness and coral cover (mean: 3.2 species per transect, 31% cover), with Porites dominated communities (88% of coral) that are distinct from more diverse and higher cover eastern sites (mean: 10.3 species per transect, 62% cover). These patterns reflect both the more extreme bleaching to the west in the late 1990s as well as the higher faviid dominated recruitment to the east in subsequent years. There has been limited recovery of the formerly dominant Acropora, which now represents <1% of the benthos, likely as a result of recruitment failure. Results indicate that severe bleaching can have substantial long-term impacts on coral communities, even in areas with corals tolerant to environmental extremes.

  19. The 2014 coral bleaching and freshwater flood events in Kāne'ohe Bay, Hawai'i.

    PubMed

    Bahr, Keisha D; Jokiel, Paul L; Rodgers, Kuʻulei S

    2015-01-01

    Until recently, subtropical Hawai'i escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawai'i will occur with increasing frequency and increasing severity over future decades. A freshwater "kill" event occurred during July 2014 in the northern part of Kāne'ohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the "stress period" actually started long before the

  20. The 2014 coral bleaching and freshwater flood events in Kāne'ohe Bay, Hawai'i.

    PubMed

    Bahr, Keisha D; Jokiel, Paul L; Rodgers, Kuʻulei S

    2015-01-01

    Until recently, subtropical Hawai'i escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawai'i will occur with increasing frequency and increasing severity over future decades. A freshwater "kill" event occurred during July 2014 in the northern part of Kāne'ohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the "stress period" actually started long before the

  1. A Strategic Framework for Responding to Coral Bleaching Events in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Maynard, J. A.; Johnson, J. E.; Marshall, P. A.; Eakin, C. M.; Goby, G.; Schuttenberg, H.; Spillman, C. M.

    2009-07-01

    The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.

  2. A strategic framework for responding to coral bleaching events in a changing climate.

    PubMed

    Maynard, J A; Johnson, J E; Marshall, P A; Eakin, C M; Goby, G; Schuttenberg, H; Spillman, C M

    2009-07-01

    The frequency and severity of mass coral bleaching events are predicted to increase as sea temperatures continue to warm under a global regime of rising ocean temperatures. Bleaching events can be disastrous for coral reef ecosystems and, given the number of other stressors to reefs that result from human activities, there is widespread concern about their future. This article provides a strategic framework from the Great Barrier Reef to prepare for and respond to mass bleaching events. The framework presented has two main inter-related components: an early warning system and assessment and monitoring. Both include the need to proactively and consistently communicate information on environmental conditions and the level of bleaching severity to senior decision-makers, stakeholders, and the public. Managers, being the most timely and credible source of information on bleaching events, can facilitate the implementation of strategies that can give reefs the best chance to recover from bleaching and to withstand future disturbances. The proposed framework is readily transferable to other coral reef regions, and can easily be adapted by managers to local financial, technical, and human resources.

  3. Modeling patterns of coral bleaching at a remote Central Pacific atoll.

    PubMed

    Williams, Gareth J; Knapp, Ingrid S; Maragos, James E; Davy, Simon K

    2010-09-01

    A mild bleaching event (9.2% prevalence) at Palmyra Atoll occurred in response to the 2009 ENSO, when mean water temperature reached 29.8-30.1 degrees C. Prevalence among both abundant and sparse taxa varied with no clear pattern in susceptibility relating to coral morphology. Seven taxon-specific models showed that turbidity exacerbated while prior exposure to higher background temperatures alleviated bleaching, with these predictors explaining an average 16.3% and 11.5% variation in prevalence patterns, respectively. Positive associations occurred between bleaching prevalence and both immediate temperature during the bleaching event (average 8.4% variation explained) and increased sand cover (average 3.7%). Despite these associations, mean unexplained variation in prevalence equalled 59%. Lower bleaching prevalence in areas experiencing higher background temperatures suggests acclimation to temperature stress among several coral genera, while WWII modifications may still be impacting the reefs via shoreline sediment re-distribution and increased turbidity, exacerbating coral bleaching susceptibility during periods of high temperature stress.

  4. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss

    USGS Publications Warehouse

    Sudek, M.; Work, T.M.; Aeby, G.S.; Davy, S.K.

    2012-01-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed.

  5. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss.

    PubMed

    Sudek, M; Work, T M; Aeby, G S; Davy, S K

    2012-10-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed.

  6. Stable isotopic records of bleaching and endolithic algae blooms in the skeleton of the boulder forming coral Montastraea faveolata

    NASA Astrophysics Data System (ADS)

    Hartmann, A. C.; Carilli, J. E.; Norris, R. D.; Charles, C. D.; Deheyn, D. D.

    2010-12-01

    Within boulder forming corals, fixation of dissolved inorganic carbon is performed by symbiotic dinoflagellates within the coral tissue and, to a lesser extent, endolithic algae within the coral skeleton. Endolithic algae produce distinctive green bands in the coral skeleton, and their origin may be related to periods of coral bleaching due to complete loss of dinoflagellate symbionts or “paling” in which symbiont populations are patchily reduced in coral tissue. Stable carbon isotopes were analyzed in coral skeletons across a known bleaching event and 12 blooms of endolithic algae to determine whether either of these types of changes in photosynthesis had a clear isotopic signature. Stable carbon isotopes tended to be enriched in the coral skeleton during the initiation of endolith blooms, consistent with enhanced photosynthesis by endoliths. In contrast, there were no consistent δ13C patterns directly associated with bleaching, suggesting that there is no unique isotopic signature of bleaching. On the other hand, isotopic values after bleaching were lighter 92% of the time when compared to the bleaching interval. This marked drop in skeletal δ13C may reflect increased kinetic fractionation and slow symbiont recolonization for several years after bleaching.

  7. Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling.

    PubMed

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (<10% at both sites) was observed, but corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs.

  8. Bleaching Susceptibility and Recovery of Colombian Caribbean Corals in Response to Water Current Exposure and Seasonal Upwelling

    PubMed Central

    Bayraktarov, Elisa; Pizarro, Valeria; Eidens, Corvin; Wilke, Thomas; Wild, Christian

    2013-01-01

    Coral bleaching events are globally occurring more frequently and with higher intensity, mainly caused by increases in seawater temperature. In Tayrona National Natural Park (TNNP) in the Colombian Caribbean, local coral communities are subjected to seasonal wind-triggered upwelling events coinciding with stronger water currents depending on location. This natural phenomenon offers the unique opportunity to study potential water current-induced mitigation mechanisms of coral bleaching in an upwelling influenced region. Therefore, coral bleaching susceptibility and recovery patterns were compared during a moderate and a mild bleaching event in December 2010 and 2011, and at the end of the subsequent upwelling periods at a water current-exposed and -sheltered site of an exemplary bay using permanent transect and labeling tools. This was accompanied by parallel monitoring of key environmental variables. Findings revealed that in 2010 overall coral bleaching before upwelling was significantly higher at the sheltered (34%) compared to the exposed site (8%). Whereas 97% of all previously bleached corals at the water current-exposed site had recovered from bleaching by April 2011, only 77% recovered at the sheltered site, but 12% had died there. In December 2011, only mild bleaching (<10% at both sites) was observed, but corals recovered significantly at both sites in the course of upwelling. No differences in water temperatures between sites occurred, but water current exposure and turbidity were significantly higher at the exposed site, suggesting that these variables may be responsible for the observed site-specific mitigation of coral bleaching. This indicates the existence of local resilience patterns against coral bleaching in Caribbean reefs. PMID:24282551

  9. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals

    NASA Astrophysics Data System (ADS)

    Hawkins, T. D.; Krueger, T.; Becker, S.; Fisher, P. L.; Davy, S. K.

    2014-03-01

    Coral bleaching poses a threat to coral reefs worldwide. As a consequence of the temperature-induced breakdown in coral-dinoflagellate symbiosis, bleaching can have extensive effects on reef communities. However, our understanding of bleaching at a cellular level is limited, and this is particularly true regarding differential susceptibility among coral species. Recent work suggests that bleaching may represent a host innate immune-like response to symbiont dysfunction that involves synthesis of the signalling compound nitric oxide (NO) and the induction of host apoptotic-like cell death. In this study, we examined the activity of apoptosis-regulating enzymes alongside oxidised NO accumulation (a proxy for NO synthesis) in the reef corals Acropora millepora, Montipora digitata, and Pocillopora damicornis during experimental thermal stress. P. damicornis was the most sensitive species, suffering mortality (tissue sloughing) after 5 days at 33 °C but non-lethal bleaching after 9 days at 31.5 °C. A. millepora bleached at 33 °C but remained structurally intact, while M. digitata showed little evidence of bleaching. P. damicornis and A. millepora both exhibited evidence of temperature-induced NO synthesis and, after 5 days of heating, levels of oxidised NO in both species were fivefold higher than in controls maintained at 28.5 °C. These responses preceded bleaching by a number of days and may have occurred before symbiont dysfunction (measured as chlorophyll a degradation and oxidised NO accumulation). In A. millepora, apparent NO synthesis correlated with the induction of host apoptotic-like pathways, while in P. damicornis, the upregulation of apoptotic pathways occurred later. No evidence of elevated NO production or apoptosis was observed in M. digitata at 33 °C and baseline activity of apoptosis-regulating enzymes was negligible in this species. These findings provide important physiological data in the context of the responses of corals to global change and

  10. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    PubMed Central

    Levas, Stephen J.; Grottoli, Andréa G.; Hughes, Adam; Osburn, Christopher L.; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ13C of the skeletal, δ13C, and δ15N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via 13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of fixed carbon

  11. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    PubMed

    Levas, Stephen J; Grottoli, Andréa G; Hughes, Adam; Osburn, Christopher L; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13)C of the skeletal, δ(13)C, and δ(15)N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13)C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of

  12. Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals

    PubMed Central

    Tchernov, Dan; Kvitt, Hagit; Haramaty, Liti; Bibby, Thomas S.; Gorbunov, Maxim Y.; Rosenfeld, Hanna; Falkowski, Paul G.

    2011-01-01

    During the past several decades, numerous reports from disparate geographical areas have documented an increased frequency of “bleaching” in reef-forming corals. The phenomenon, triggered by increased sea surface temperatures, occurs when the cnidarian hosts digest and/or expel their intracellular, photosynthetic dinoflagellate symbionts (“zooxanthellae” in the genus Symbiodinium). Although coral bleaching is often followed by the death of the animal hosts, in some cases, the animal survives and can be repopulated with viable zooxanthellae. The physiological factors determining the ability of the coral to survive bleaching events are poorly understood. In this study, we experimentally established that bleaching and death of the host animal involve a caspase-mediated apoptotic cascade induced by reactive oxygen species produced primarily by the algal symbionts. In addition, we demonstrate that, although some corals naturally suppress caspase activity and significantly reduce caspase concentration under high temperatures as a mechanism to prevent colony death from apoptosis, even sensitive corals can be prevented from dying by application of exogenous inhibitors of caspases. Our results indicate that variability in response to thermal stress in corals is determined by a four-element, combinatorial genetic matrix intrinsic to the specific symbiotic association. Based on our experimental data, we present a working model in which the phenotypic expression of this symbiont/host relationship places a selective pressure on the symbiotic association. The model predicts the survival of the host animals in which the caspase-mediated apoptotic cascade is down-regulated. PMID:21636790

  13. Ocean acidification causes bleaching and productivity loss in coral reef builders.

    PubMed

    Anthony, K R N; Kline, D I; Diaz-Pulido, G; Dove, S; Hoegh-Guldberg, O

    2008-11-11

    Ocean acidification represents a key threat to coral reefs by reducing the calcification rate of framework builders. In addition, acidification is likely to affect the relationship between corals and their symbiotic dinoflagellates and the productivity of this association. However, little is known about how acidification impacts on the physiology of reef builders and how acidification interacts with warming. Here, we report on an 8-week study that compared bleaching, productivity, and calcification responses of crustose coralline algae (CCA) and branching (Acropora) and massive (Porites) coral species in response to acidification and warming. Using a 30-tank experimental system, we manipulated CO(2) levels to simulate doubling and three- to fourfold increases [Intergovernmental Panel on Climate Change (IPCC) projection categories IV and VI] relative to present-day levels under cool and warm scenarios. Results indicated that high CO(2) is a bleaching agent for corals and CCA under high irradiance, acting synergistically with warming to lower thermal bleaching thresholds. We propose that CO(2) induces bleaching via its impact on photoprotective mechanisms of the photosystems. Overall, acidification impacted more strongly on bleaching and productivity than on calcification. Interestingly, the intermediate, warm CO(2) scenario led to a 30% increase in productivity in Acropora, whereas high CO(2) lead to zero productivity in both corals. CCA were most sensitive to acidification, with high CO(2) leading to negative productivity and high rates of net dissolution. Our findings suggest that sensitive reef-building species such as CCA may be pushed beyond their thresholds for growth and survival within the next few decades whereas corals will show delayed and mixed responses.

  14. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean

  15. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    PubMed

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.

  16. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    PubMed

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  17. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral

    PubMed Central

    Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.

    2015-01-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  18. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching.

  19. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    PubMed

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching. PMID:26310104

  20. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  1. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  2. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    PubMed

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-01-01

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones. PMID:26680690

  3. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching

    PubMed Central

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-01-01

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones. PMID:26680690

  4. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    PubMed

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances. PMID:26856646

  5. GLOBAL CHANGE RESEARCH NEWS #36: PUBLICATION OF WORKSHOP REPORT ON CORAL BLEACHING AND MARINE PROTECTED AREAS

    EPA Science Inventory

    The Nature Conservancy (TNC) and the World Wildlife Fund (WWF) have launched a joint initiative to mitigate the impacts of coral bleaching through the design of marine protected areas (MPAs). EPA's Global Change Research Program is contributing to this effort through the work of ...

  6. PREDICTING CORAL BLEACHING IN RESPONSE TO ENVIRONMENTAL STRESSORS USING 8 YEARS OF GLOBAL-SCALE DATA.

    EPA Science Inventory

    Coral reefs are among the most diverse marine ecosystems on the planet (Wilkinson 2002), but have experienced extensive mortality over the past few decades as a result of mass bleaching events (Hoegh-Guldberg 1999, Wilkinson 2002, Hughes 2003, Obura 2005). Historically, elevated...

  7. Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates

    NASA Astrophysics Data System (ADS)

    Teneva, Lida; Karnauskas, Mandy; Logan, Cheryl A.; Bianucci, Laura; Currie, Jock C.; Kleypas, Joan A.

    2012-03-01

    Sea surface temperature fields (1870-2100) forced by CO2-induced climate change under the IPCC SRES A1B CO2 scenario, from three World Climate Research Programme Coupled Model Intercomparison Project Phase 3 (WCRP CMIP3) models (CCSM3, CSIRO MK 3.5, and GFDL CM 2.1), were used to examine how coral sensitivity to thermal stress and rates of adaption affect global projections of coral-reef bleaching. The focus of this study was two-fold, to: (1) assess how the impact of Degree-Heating-Month (DHM) thermal stress threshold choice affects potential bleaching predictions and (2) examine the effect of hypothetical adaptation rates of corals to rising temperature. DHM values were estimated using a conventional threshold of 1°C and a variability-based threshold of 2σ above the climatological maximum Coral adaptation rates were simulated as a function of historical 100-year exposure to maximum annual SSTs with a dynamic rather than static climatological maximum based on the previous 100 years, for a given reef cell. Within CCSM3 simulations, the 1°C threshold predicted later onset of mild bleaching every 5 years for the fraction of reef grid cells where 1°C > 2σ of the climatology time series of annual SST maxima (1961-1990). Alternatively, DHM values using both thresholds, with CSIRO MK 3.5 and GFDL CM 2.1 SSTs, did not produce drastically different onset timing for bleaching every 5 years. Across models, DHMs based on 1°C thermal stress threshold show the most threatened reefs by 2100 could be in the Central and Western Equatorial Pacific, whereas use of the variability-based threshold for DHMs yields the Coral Triangle and parts of Micronesia and Melanesia as bleaching hotspots. Simulations that allow corals to adapt to increases in maximum SST drastically reduce the rates of bleaching. These findings highlight the importance of considering the thermal stress threshold in DHM estimates as well as potential adaptation models in future coral bleaching projections.

  8. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    PubMed

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  9. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching.

    PubMed

    Cardini, Ulisse; van Hoytema, Nanne; Bednarz, Vanessa N; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian

    2016-09-01

    Coral holobionts (i.e., coral-algal-prokaryote symbioses) exhibit dissimilar thermal sensitivities that may determine which coral species will adapt to global warming. Nonetheless, studies simultaneously investigating the effects of warming on all holobiont members are lacking. Here we show that exposure to increased temperature affects key physiological traits of all members (herein: animal host, zooxanthellae and diazotrophs) of both Stylophora pistillata and Acropora hemprichii during and after thermal stress. S. pistillata experienced severe loss of zooxanthellae (i.e., bleaching) with no net photosynthesis at the end of the experiment. Conversely, A. hemprichii was more resilient to thermal stress. Exposure to increased temperature (+ 6°C) resulted in a drastic increase in daylight dinitrogen (N2 ) fixation, particularly in A. hemprichii (threefold compared with controls). After the temperature was reduced again to in situ levels, diazotrophs exhibited a reversed diel pattern of activity, with increased N2 fixation rates recorded only in the dark, particularly in bleached S. pistillata (twofold compared to controls). Concurrently, both animal hosts, but particularly bleached S. pistillata, reduced both organic matter release and heterotrophic feeding on picoplankton. Our findings indicate that physiological plasticity by coral-associated diazotrophs may play an important role in determining the response of coral holobionts to ocean warming.

  10. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching.

    PubMed

    Cardini, Ulisse; van Hoytema, Nanne; Bednarz, Vanessa N; Rix, Laura; Foster, Rachel A; Al-Rshaidat, Mamoon M D; Wild, Christian

    2016-09-01

    Coral holobionts (i.e., coral-algal-prokaryote symbioses) exhibit dissimilar thermal sensitivities that may determine which coral species will adapt to global warming. Nonetheless, studies simultaneously investigating the effects of warming on all holobiont members are lacking. Here we show that exposure to increased temperature affects key physiological traits of all members (herein: animal host, zooxanthellae and diazotrophs) of both Stylophora pistillata and Acropora hemprichii during and after thermal stress. S. pistillata experienced severe loss of zooxanthellae (i.e., bleaching) with no net photosynthesis at the end of the experiment. Conversely, A. hemprichii was more resilient to thermal stress. Exposure to increased temperature (+ 6°C) resulted in a drastic increase in daylight dinitrogen (N2 ) fixation, particularly in A. hemprichii (threefold compared with controls). After the temperature was reduced again to in situ levels, diazotrophs exhibited a reversed diel pattern of activity, with increased N2 fixation rates recorded only in the dark, particularly in bleached S. pistillata (twofold compared to controls). Concurrently, both animal hosts, but particularly bleached S. pistillata, reduced both organic matter release and heterotrophic feeding on picoplankton. Our findings indicate that physiological plasticity by coral-associated diazotrophs may play an important role in determining the response of coral holobionts to ocean warming. PMID:27234003

  11. Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host

    NASA Astrophysics Data System (ADS)

    Wooldridge, Scott A.

    2014-03-01

    It is well established that different coral species have different susceptibilities to thermal stress, yet it is less clear which biological or physical mechanisms allow some corals to resist thermal stress, whereas other corals bleach and die. Although the type of symbiont is clearly of fundamental importance, many aspects of coral bleaching cannot be explained solely by differences in symbionts amongst coral species. Here, I use the CO2 (sink) limitation model of coral bleaching to repose various host traits believed to influence thermal tolerance (e.g. metabolic rates, colony tissue thickness, skeletal growth form, mucus production rates, tissue concentration of fluorescent pigments and heterotrophic feedings capacity) in terms of an integrated strategy to reduce the likelihood of CO2 limitation around its intracellular photosymbionts. Contrasting observational data for the skeletal vital effect on oxygen isotope composition (δ18O) partitions two alternate evolutionary strategies. The first strategy is heavily reliant on a sea water supply chain of CO2 to supplement respiratory CO2(met). In contrast, the alternate strategy is less reliant on the sea water supply source, potentially facilitated by increased basal respiration rates and/or a lower photosynthetic demand for CO2. The comparative vulnerability of these alternative strategies to modern ocean conditions is used to explain the global-wide observation that corals with branching morphologies (and thin tissue layers) are generally more thermally sensitive than corals with massive morphologies (and thick tissue layers). The life history implications of this new framework are discussed in terms of contrasting fitness drivers and past environmental constraints, which delivers ominous predictions for the viability of thin-tissued branching and plating species during the present human-dominated ("Anthropocene") era of the Earth System.

  12. Coral Diseases Following Massive Bleaching in 2005 Cause 60 Percent Decline in Coral Cover and Mortality of the Threatened Species, Acropora Palmata, on Reefs in the U.S. Virgin Islands

    USGS Publications Warehouse

    Rogers, Caroline S.

    2008-01-01

    Record-high seawater temperatures and calm seas in the summer of 2005 led to the most severe coral bleaching (greater than 90 percent bleached coral cover) ever observed in the U.S. Virgin Islands (USVI) (figs. 1 and 2). All but a few coral species bleached, including the threatened species, Acropora palmata. Bleaching was seen from the surface to depths over 20 meters.

  13. Tracking the Effect of Algal Mats on Coral Bleaching Using Remote Sensing

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Johnson, S. H.; Idris, N.; Qurban, M. A. B.

    2014-12-01

    Benthic habitats rely on relatively stable environmental conditions for survival. The introduction of algal mats into an ecosystem can have a notable effect on the livelihood of organisms such as coral reefs by causing changes in the biogeochemistry of the surrounding water. Increasing levels of acidity and new competition for sunlight caused by congregations of cyanobacteria essentially starve coral reefs of natural resources. These changes are particularly prevalent in waters near quickly developing population centers, such as the ecologically diverse Arabian Gulf. While ground-truthing studies to determine the extensiveness of coral death proves useful on a microcosmic level, new ventures in remote sensing research allow scientists to utilize satellite data to track these changes on a broader scale. Satellite images acquired from Landsat 5, 1987, Landsat 7, 2000, and Landsat 8, 2013 along with higher resolution IKONOS data are digitally analyzed in order to create spectral libraries for relevant benthic types, which in turn can be used to perform supervised classifications and change detection analyses over a larger area. The supervised classifications performed over the three scenes show five significant marine-related classes, namely coral, mangroves, macro-algae, and seagrass, in different degrees of abundance, yet here we focus only on the algal mats impact on corals bleaching. The change detection analysis is introduced to study see the degree of algal mats impact on coral bleaching over the course of time with possible connection to the local meteorology and current climate scenarios.

  14. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    NASA Astrophysics Data System (ADS)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on

  15. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum

    NASA Astrophysics Data System (ADS)

    Wall, C. B.; Fan, T.-Y.; Edmunds, P. J.

    2014-03-01

    The objective of this study was to test whether elevated pCO2 predicted for the year 2100 (85.1 Pa) affects bleaching in the coral Seriatopora caliendrum (Ehrenberg 1834) either independently or interactively with high temperature (30.5 °C). Response variables detected the sequence of events associated with the onset of bleaching: reduction in the photosynthetic performance of symbionts as measured by maximum photochemical efficiency ( F v/ F m) and effective photochemical efficiency (Δ F/ F m') of PSII, declines in net photosynthesis ( P net) and photosynthetic efficiency (alpha, α), and finally, reduced chlorophyll a and symbiont concentrations. S. caliendrum was collected from Nanwan Bay, Taiwan, and subjected to combinations of temperature (27.7 vs. 30.5 °C) and pCO2 (45.1 vs. 85.1 Pa) for 14 days. High temperature reduced values of all dependent variables (i.e., bleaching occurred), but high pCO2 did not affect Symbiodinium photophysiology or productivity, and did not cause bleaching. These results suggest that short-term exposure to 81.5 Pa pCO2, alone and in combination with elevated temperature, does not cause or affect coral bleaching.

  16. Coral and algal changes after the 1998 coral bleaching: interaction with reef management and herbivores on Kenyan reefs

    NASA Astrophysics Data System (ADS)

    McClanahan, T.; Muthiga, N.; Mangi, S.

    2001-05-01

    Interaction between the El Niño and Indian Ocean dipole ocean-atmosphere quasi-periodic oscillations produced one of the warmest seawater temperatures on record in 1998. During the warm northeast monsoon in March and April, Kenya's shallow coral reefs experienced water temperatures between 30 and 31 °C and low winds. This caused large-scale bleaching of hard and soft corals at the end of March, which extended into the cooler months of May and June. Direct observations of coloration in the Mombasa Marine National Park found that the coral genera Acropora, Millepora, Pocillopora, branching Porites and Stylophora showed rapid bleaching and high mortality by the end of May 1998. Other hard coral genera that bleached significantly included Echinopora, Favia, Favites, Galaxea, Hydnophora, Goniopora, Leptoria, Montipora, Platygyra and massive Porites, but mortality was variable among these genera. Astreopora, Coscinarea, Cyphastrea and Pavona were the least responsive genera, with some paling, but little evidence of full bleaching or significant mortality. We compared changes in reef ecology in four national parks (protected from fishing) with four non-park areas (heavy fishing) to determine how coral mortality and herbivory interact under the two management regimes. Benthic studies using line transects in 16 sites spread across ~150 km of coastline were completed before and 6 to 13 months after the bleaching event and found that the cover of nine hard coral genera including Acropora, Alveopora, Favites, Goniopora, Platygyra, Pocillopora, branching Porites, Stylophora and Tubipora decreased significantly ( p<0.04) after the event, usually by >85%, and soft coral cover decreased by ~75%. One year after the bleaching, sites in the national parks experienced 88 and 115% increases in turf and fleshy algal cover, respectively, while reefs outside the parks had a 220% increase in fleshy algal cover with no appreciable change in turf-forming algal cover. There was, however

  17. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados.

    PubMed

    Oxenford, Hazel A; Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world's coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  18. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados

    PubMed Central

    Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world’s coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future. PMID:27326377

  19. "Super-quenching" state protects Symbiodinium from thermal stress - Implications for coral bleaching.

    PubMed

    Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R

    2016-06-01

    The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching.

  20. Transient turbid water mass reduces temperature-induced coral bleaching and mortality in Barbados.

    PubMed

    Oxenford, Hazel A; Vallès, Henri

    2016-01-01

    Global warming is seen as one of the greatest threats to the world's coral reefs and, with the continued rise in sea surface temperature predicted into the future, there is a great need for further understanding of how to prevent and address the damaging impacts. This is particularly so for countries whose economies depend heavily on healthy reefs, such as those of the eastern Caribbean. Here, we compare the severity of bleaching and mortality for five dominant coral species at six representative reef sites in Barbados during the two most significant warm-water events ever recorded in the eastern Caribbean, i.e., 2005 and 2010, and describe prevailing island-scale sea water conditions during both events. In so doing, we demonstrate that coral bleaching and subsequent mortality were considerably lower in 2010 than in 2005 for all species, irrespective of site, even though the anomalously warm water temperature profiles were very similar between years. We also show that during the 2010 event, Barbados was engulfed by a transient dark green turbid water mass of riverine origin coming from South America. We suggest that reduced exposure to high solar radiation associated with this transient water mass was the primary contributing factor to the lower bleaching and mortality observed in all corals. We conclude that monitoring these episodic mesoscale oceanographic features might improve risk assessments of southeastern Caribbean reefs to warm-water events in the future.

  1. "Super-quenching" state protects Symbiodinium from thermal stress - Implications for coral bleaching.

    PubMed

    Slavov, Chavdar; Schrameyer, Verena; Reus, Michael; Ralph, Peter J; Hill, Ross; Büchel, Claudia; Larkum, Anthony W D; Holzwarth, Alfred R

    2016-06-01

    The global rise in sea surface temperatures causes regular exposure of corals to high temperature and high light stress, leading to worldwide disastrous coral bleaching events (loss of symbiotic dinoflagellates (Symbiodinium) from reef-building corals). Our picosecond chlorophyll fluorescence experiments on cultured Symbiodinium clade C cells exposed to coral bleaching conditions uncovered the transformations of the alga's photosynthetic apparatus (PSA) that activate an extremely efficient non-photochemical "super-quenching" mechanism. The mechanism is associated with a transition from an initially heterogeneous photosystem II (PSII) pool to a homogeneous "spillover" pool, where nearly all excitation energy is transferred to photosystem I (PSI). There, the inherently higher stability of PSI and high quenching efficiency of P(700)(+) allow dumping of PSII excess excitation energy into heat, resulting in almost complete cessation of photosynthetic electron transport (PET). This potentially reversible "super-quenching" mechanism protects the PSA against destruction at the cost of a loss of photosynthetic activity. We suggest that the inhibition of PET and the consequent inhibition of organic carbon production (e.g. sugars) in the symbiotic Symbiodinium provide a trigger for the symbiont expulsion, i.e. bleaching. PMID:26869375

  2. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event.

    PubMed

    Donner, Simon D; Knutson, Thomas R; Oppenheimer, Michael

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, we use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5 degrees C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term "committed warming" even after stabilization of atmospheric CO(2) levels may still represent an additional long-term threat to corals.

  3. Model-based assessment of the role of human-induced climate change in the 2005 Caribbean coral bleaching event

    SciTech Connect

    Donner, S.D.; Knutson, T.R.; Oppenheimer, M.

    2007-03-27

    Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, the authors use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5{sup o}C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term 'committed warming' even after stabilization of atmospheric CO{sub 2} levels may still represent an additional long-term threat to corals.

  4. Comparisons of the 1995 and 1998 coral bleaching events on the patch reefs of San Salvador Island, Bahamas.

    PubMed

    McGrath, Thomas A; Smith, Garriet W

    2003-06-01

    Coral patch reefs around San Salvador Island, Bahamas have been monitored with the aid of Earthwatch volunteers three times a year since 1992. During that period two significant mass bleaching events occurred: autumn 1995, and late summer 1998. Elsewhere in 1995, bleaching was caused by higher-than-normal summer sea temperatures; in San Salvador, however, temperatures were normal. In 1998 a prolonged period of higher-than-normal sea temperatures preceded bleaching on San Salvador and worldwide. During the 1995 event, one of the monitored reefs had twice the percentage of coral colonies bleached as the other two. Bleaching was more evenly distributed among the reefs during the 1998 event. In 1995 Agaricia agaricites was significantly more affected than other coral species, with almost 50% of all its colonies showing bleaching. Bleaching was more evenly spread among coral species in 1998, with five species showing bleaching on more than 40% of their colonies. Bleaching began on Millepora as early as August during the 1998 event and progressed to other species through the remainder of the autumn. In 1995 bleaching was not seen until late autumn and appeared to impact all affected species at about the same time. Recovery from the 1995 event was complete: no coral death or damage above normal background levels were seen. In the 1998 event, all Acropora cervicornis on the monitored reefs died and A. palmata was severely damaged. Millepora sp. lost almost half of their live tissue, and Montastraea sp. showed significant tissue damage following this event. Phototransect analysis suggests that more than 20% of total live tissue on affected species died during the 1998 event. A. cervicornis has demonstrated no re-growth from 1998 to 2000 on monitored reefs. Monitoring has suggested significant differences in causes and courses in these two events.

  5. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host.

    PubMed

    Banin, E; Israely, T; Fine, M; Loya, Y; Rosenberg, E

    2001-05-15

    Vibrio shiloi, the causative agent of bleaching the coral Oculina patagonica in the Mediterranean Sea, adheres to its coral host by a beta-D-galactopyranoside-containing receptor on the coral surface. The receptor is present in the coral mucus, since V. shiloi adhered avidly to mucus-coated ELISA plates. Adhesion was inhibited by methyl-beta-D-galactopyranoside. Removal of the mucus from O. patagonica resulted in a delay in adhesion of V. shiloi to the coral, corresponding to regeneration of the mucus. DCMU inhibited the recovery of adhesion of the bacteria to the mucus-depleted corals, indicating that active photosynthesis by the endosymbiotic zooxanthellae was necessary for the synthesis or secretion of the receptor. Further evidence of the role of the zooxanthellae in producing the receptor came from a study of adhesion of V. shiloi to different species of corals. The bacteria failed to adhere to bleached corals and white (azooxanthellate) O. patagonica cave corals, both of which lacked the algae. In addition, V. shiloi adhered to two Mediterranean corals (Madracis and Cladocora) that contained zooxanthellae and did not adhere to two azooxanthellate Mediterranean corals (Phyllangia and Polycyathus). V. shiloi demonstrated positive chemotaxis towards the mucus of O. patagonica. The data demonstrate that endosymbiotic zooxanthellae contribute to the production of coral mucus and that V. shiloi infects only mucus-containing, zooxanthellate corals.

  6. The role of transcriptome resilience in resistance of corals to bleaching.

    PubMed

    Seneca, Francois O; Palumbi, Stephen R

    2015-04-01

    Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress.

  7. The role of transcriptome resilience in resistance of corals to bleaching.

    PubMed

    Seneca, Francois O; Palumbi, Stephen R

    2015-04-01

    Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress. PMID:25728233

  8. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events

    PubMed Central

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-Chr.; Zinke, J.; Garbe-Schönberg, D.

    2016-01-01

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940–2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997–98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997–98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions. PMID:27619506

  9. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events

    NASA Astrophysics Data System (ADS)

    Hetzinger, S.; Pfeiffer, M.; Dullo, W.-Chr.; Zinke, J.; Garbe-Schönberg, D.

    2016-09-01

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940–2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997–98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997–98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

  10. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events.

    PubMed

    Hetzinger, S; Pfeiffer, M; Dullo, W-Chr; Zinke, J; Garbe-Schönberg, D

    2016-09-13

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions.

  11. A change in coral extension rates and stable isotopes after El Niño-induced coral bleaching and regional stress events.

    PubMed

    Hetzinger, S; Pfeiffer, M; Dullo, W-Chr; Zinke, J; Garbe-Schönberg, D

    2016-01-01

    Coral reefs are biologically diverse ecosystems threatened with effective collapse under rapid climate change, in particular by recent increases in ocean temperatures. Coral bleaching has occurred during major El Niño warming events, at times leading to the die-off of entire coral reefs. Here we present records of stable isotopic composition, Sr/Ca ratios and extension rate (1940-2004) in coral aragonite from a northern Venezuelan site, where reefs were strongly impacted by bleaching following the 1997-98 El Niño. We assess the impact of past warming events on coral extension rates and geochemical proxies. A marked decrease in coral (Pseudodiploria strigosa) extension rates coincides with a baseline shift to more negative values in oxygen and carbon isotopic composition after 1997-98, while a neighboring coral (Siderastrea siderea) recovered to pre-bleaching extension rates simultaneously. However, other stressors, besides high temperature, might also have influenced coral physiology and geochemistry. Coastal Venezuelan reefs were exposed to a series of extreme environmental fluctuations since the mid-1990s, i.e. upwelling, extreme rainfall and sediment input from landslides. This work provides important new data on the potential impacts of multiple regional stress events on coral isotopic compositions and raises questions about the long-term influence on coral-based paleoclimate reconstructions. PMID:27619506

  12. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals.

    PubMed

    Silverstein, Rachel N; Cunning, Ross; Baker, Andrew C

    2015-01-01

    Mutualistic organisms can be particularly susceptible to climate change stress, as their survivorship is often limited by the most vulnerable partner. However, symbiotic plasticity can also help organisms in changing environments by expanding their realized niche space. Coral-algal (Symbiodinium spp.) symbiosis exemplifies this dichotomy: the partnership is highly susceptible to 'bleaching' (stress-induced symbiosis breakdown), but stress-tolerant symbionts can also sometimes mitigate bleaching. Here, we investigate the role of diverse and mutable symbiotic partnerships in increasing corals' ability to thrive in high temperature conditions. We conducted repeat bleaching and recovery experiments on the coral Montastraea cavernosa, and used quantitative PCR and chlorophyll fluorometry to assess the structure and function of Symbiodinium communities within coral hosts. During an initial heat exposure (32 °C for 10 days), corals hosting only stress-sensitive symbionts (Symbiodinium C3) bleached, but recovered (at either 24 °C or 29 °C) with predominantly (>90%) stress-tolerant symbionts (Symbiodinium D1a), which were not detected before bleaching (either due to absence or extreme low abundance). When a second heat stress (also 32 °C for 10 days) was applied 3 months later, corals that previously bleached and were now dominated by D1a Symbiodinium experienced less photodamage and symbiont loss compared to control corals that had not been previously bleached, and were therefore still dominated by Symbiodinium C3. Additional corals that were initially bleached without heat by a herbicide (DCMU, at 24 °C) also recovered predominantly with D1a symbionts, and similarly lost fewer symbionts during subsequent thermal stress. Increased thermotolerance was also not observed in C3-dominated corals that were acclimated for 3 months to warmer temperatures (29 °C) before heat stress. These findings indicate that increased thermotolerance post-bleaching resulted from

  13. Depth-dependent mortality of reef corals following a severe bleaching event: implications for thermal refuges and population recovery.

    PubMed

    Bridge, Tom C L; Hoey, Andrew S; Campbell, Stuart J; Muttaqin, Efin; Rudi, Edi; Fadli, Nur; Baird, Andrew H

    2013-01-01

    Coral bleaching caused by rising sea temperature is a primary cause of coral reef degradation. However, bleaching patterns often show significant spatial variability, therefore identifying locations where local conditions may provide thermal refuges is a high conservation priority. Coral bleaching mortality often diminishes with increasing depth, but clear depth zonation of coral communities and putative limited overlap in species composition between deep and shallow reef habitats has led to the conclusion that deeper reef habitats will provide limited refuge from bleaching for most species. Here, we show that coral mortality following a severe bleaching event diminished sharply with depth. Bleaching-induced mortality of Acropora was approximately 90% at 0-2m, 60% at 3-4 m, yet at 6-8m there was negligible mortality. Importantly, at least two-thirds of the shallow-water (2-3 m) Acropora assemblage had a depth range that straddled the transition from high to low mortality. Cold-water upwelling may have contributed to the lower mortality observed in all but the shallowest depths. Our results demonstrate that, in this instance, depth provided a refuge for individuals from a high proportion of species in this Acropora-dominated assemblage. The persistence of deeper populations may provide a critical source of propagules to assist recovery of adjacent shallow-water reefs.

  14. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    PubMed Central

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-01-01

    Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Conclusion Under thermal

  15. Bleaching and stress in coral reef ecosystems: hsp70 expression by the giant barrel sponge Xestospongia muta.

    PubMed

    López-Legentil, Susanna; Song, Bongkeun; McMurray, Steven E; Pawlik, Joseph R

    2008-04-01

    Sponges are a prominent component of coral reef ecosystems. Like reef-building corals, some sponges have been reported to bleach and die. The giant barrel sponge Xestospongia muta is one of the largest and most important components of Caribbean coral reef communities. Tissues of X. muta contain cyanobacterial symbionts of the Synechococcus group. Two types of bleaching have been described: cyclic bleaching, from which sponges recover, and fatal bleaching, which usually results in sponge death. We quantified hsp70 gene expression as an indicator of stress in X. muta undergoing cyclic and fatal bleaching and in response to thermal and salinity variability in both field and laboratory settings. Chlorophyll a content of sponge tissue was estimated to determine whether hsp70 expression was related to cyanobacterial abundance. We found that fatally bleached sponge tissue presented significantly higher hsp70 gene expression, but cyclically bleached tissue did not, yet both cyclic and fatally bleached tissues had lower chlorophyll a concentrations than nonbleached tissue. These results corroborate field observations suggesting that cyclic bleaching is a temporary, nonstressful state, while fatal bleaching causes significant levels of stress, leading to mortality. Our results support the hypothesis that Synechococcus symbionts are commensals that provide no clear advantage to their sponge host. In laboratory experiments, sponge pieces incubated at 30 degrees C exhibited significantly higher hsp70 expression than control pieces after 1.5 h, with sponge mortality after less than 15 h. In contrast, sponges at different salinities were not significantly stressed after the same period of time. Stress associated with increasing seawater temperatures may result in declining sponge populations in coral reef ecosystems.

  16. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi

    PubMed Central

    Jokiel, Paul L.; Rodgers, Kuʻulei S.

    2015-01-01

    Until recently, subtropical Hawaiʻi escaped the major bleaching events that have devastated many tropical regions, but the continued increases in global long-term mean temperatures and the apparent ending of the Pacific Decadal Oscillation (PDO) cool phase have increased the risk of bleaching events. Climate models and observations predict that bleaching in Hawaiʻi will occur with increasing frequency and increasing severity over future decades. A freshwater “kill” event occurred during July 2014 in the northern part of Kāneʻohe Bay that reduced coral cover by 22.5% in the area directly impacted by flooding. A subsequent major bleaching event during September 2014 caused extensive coral bleaching and mortality throughout the bay and further reduced coral cover in the freshwater kill area by 60.0%. The high temperature bleaching event only caused a 1.0% reduction in live coral throughout the portion of the bay not directly impacted by the freshwater event. Thus, the combined impact of the low salinity event and the thermal bleaching event appears to be more than simply additive. The temperature regime during the September 2014 bleaching event was analogous in duration and intensity to that of the large bleaching event that occurred previously during August 1996, but resulted in a much larger area of bleaching and coral mortality. Apparently seasonal timing as well as duration and magnitude of heating is important. Coral spawning in the dominant coral species occurs early in the summer, so reservoirs of stored lipid in the corals had been depleted by spawning prior to the September 2014 event. Warm months above 27 °C result in lower coral growth and presumably could further decrease lipid reserves, leading to a bleaching event that was more severe than would have happened if the high temperatures occurred earlier in the summer. Hawaiian reef corals decrease skeletal growth at temperatures above 27 °C, so perhaps the “stress period” actually started long

  17. Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Strong, Alan E.; Skirving, William

    Early in 2002, satellites of the U.S. National Oceanic and Atmospheric Administration (NOAA) detected anomalously high sea surface temperatures (SST) developing in the western Coral Sea, midway along Australia's Great Barrier Reef (GBR). This was the beginning of what was to become the most significant GBR coral bleaching event on record [Wilkinson, 2002]. During this time, NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) provided satellite data as part of ongoing collaborative work on coral reef health with the Australian Institute of Marine Science (AIMS) and the Great Barrier Reef Marine Park Authority (GBRMPA). These data proved invaluable to AIMS and GBRMPA as they monitored and assessed the development and evolution of SSTs throughout the austral summer, enabling them to keep stakeholders, government, and the general public informed and up to date.

  18. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  19. Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia.

    PubMed

    Wooldridge, Scott A

    2009-05-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Here, the additional role of poor water quality in lowering the thermal tolerance (i.e. bleaching 'resistance') of symbiotic reef corals is considered. In particular, a quantitative linkage is established between terrestrially-sourced dissolved inorganic nitrogen (DIN) loading and the upper thermal bleaching thresholds of inshore reefs on the Great Barrier Reef, Australia. Significantly, this biophysical linkage provides concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of corals reefs to global climate change. Indeed, for inshore reef areas with a high runoff exposure risk, it is shown that the potential benefit of this 'local' management imperative is equivalent to approximately 2.0-2.5 degrees C in relation to the upper thermal bleaching limit; though in this case, a potentially cost-prohibitive reduction in end-of-river DIN of >50-80% would be required. An integrated socio-economic modelling framework is outlined that will assist future efforts to understand (optimise) the alternate tradeoffs that the water quality/coral bleaching linkage presents.

  20. Modulation of Light-Enhancement to Symbiotic Algae by Light-Scattering in Corals and Evolutionary Trends in Bleaching

    PubMed Central

    Marcelino, Luisa A.; Westneat, Mark W.; Stoyneva, Valentina; Henss, Jillian; Rogers, Jeremy D.; Radosevich, Andrew; Turzhitsky, Vladimir; Siple, Margaret; Fang, Andrew; Swain, Timothy D.; Fung, Jennifer; Backman, Vadim

    2013-01-01

    Calcium carbonate skeletons of scleractinian corals amplify light availability to their algal symbionts by diffuse scattering, optimizing photosynthetic energy acquisition. However, the mechanism of scattering and its role in coral evolution and dissolution of algal symbioses during “bleaching” events are largely unknown. Here we show that differences in skeletal fractal architecture at nano/micro-lengthscales within 96 coral taxa result in an 8-fold variation in light-scattering and considerably alter the algal light environment. We identified a continuum of properties that fall between two extremes: (1) corals with low skeletal fractality that are efficient at transporting and redistributing light throughout the colony with low scatter but are at higher risk of bleaching and (2) corals with high skeletal fractality that are inefficient at transporting and redistributing light with high scatter and are at lower risk of bleaching. While levels of excess light derived from the coral skeleton is similar in both groups, the low-scatter corals have a higher rate of light-amplification increase when symbiont concentration is reduced during bleaching, thus creating a positive feedback-loop between symbiont concentration and light-amplification that exposes the remaining symbionts to increasingly higher light intensities. By placing our findings in an evolutionary framework, in conjunction with a novel empirical index of coral bleaching susceptibility, we find significant correlations between bleaching susceptibility and light-scattering despite rich homoplasy in both characters; suggesting that the cost of enhancing light-amplification to the algae is revealed in decreased resilience of the partnership to stress. PMID:23630594

  1. The reef coral Goniastrea aspera: a `winner' becomes a `loser' during a severe bleaching event in Thailand

    NASA Astrophysics Data System (ADS)

    Brown, B. E.; Dunne, R. P.; Phongsuwan, N.; Patchim, L.; Hawkridge, J. M.

    2014-06-01

    The reef coral Goniastrea aspera is regarded as one of the most environmentally tolerant species on Indo-Pacific reefs. Its demise, following a severe bleaching event in the Andaman Sea in the north-eastern Indian Ocean in 2010, was surprising in view of the rapid recovery of co-existing species such as Porites lutea. Demographic studies of G. aspera at this site showed the population was mainly composed of large individuals, which recruited in the early 1990s. These results, and size-specific mortality observed in G. aspera, post-bleaching, suggest that factors, related to size and age, may have contributed to the coral's marked decline.

  2. Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching

    NASA Astrophysics Data System (ADS)

    Hill, R.; Larkum, A. W. D.; Prášil, O.; Kramer, D. M.; Szabó, M.; Kumar, V.; Ralph, P. J.

    2012-12-01

    Elevated temperatures in combination with moderate to high irradiance are known to cause bleaching events in scleractinian corals, characterised by damage to photosystem II (PSII). Photoprotective mechanisms of the symbiont can reduce the excitation pressure impinging upon PSII. In the bleaching sensitive species, Acropora millepora and Pocillopora damicornis, high light alone induced photoprotection through the xanthophyll cycle, increased content of the antioxidant carotenoid, β-carotene, as well as the dissociation of the light-harvesting chlorophyll complexes. The evidence is compatible with either the membrane-bound chlorophyll a-chlorophyll c 2-peridinin-protein (acpPC) complex or the peripheral peridinin-chlorophyll-protein complex, or both, disconnecting from PSII under high light. The acpPC complex potentially showed a state transition response with redistribution towards photosystem I to reduce PSII over-excitation. This apparent acpPC dissociation/reassociation was promoted by the addition of the xanthophyll cycle inhibitor, dithiothreitol, under high irradiance. Exposure to thermal stress as well as high light promoted xanthophyll de-epoxidation and increased β-carotene content, although it did not influence light-harvesting chlorophyll complex (LHC) dissociation, indicating light, rather than temperature, controls LHC dissociation. Photoinhibition was avoided in the bleaching tolerant species, Pavona decussata, suggesting xanthophyll cycling along with LHC dissociation may have been sufficient to prevent photodamage to PSII. Symbionts of P. decussata also displayed the greatest detachment of antenna complexes, while the more thermally sensitive species, Pocillopora damicornis and A. millepora, showed less LHC dissociation, suggesting antenna movement influences bleaching susceptibility.

  3. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories.

    PubMed

    Howells, Emily J; Ketchum, Remi N; Bauman, Andrew G; Mustafa, Yasmine; Watkins, Kristina D; Burt, John A

    2016-04-30

    Coral populations in the Persian Gulf have a reputation for being some of the toughest in the world yet little is known about the energetic constraints of living under temperature and salinity extremes. Energy allocation for sexual reproduction in Gulf corals was evaluated relative to conspecifics living under milder environmental conditions in the Oman Sea. Fecundity was depressed at Gulf sites in two Indo-Pacific merulinid species (Cyphastrea microphthalma and Platygyra daedalea) but not in a regionally endemic acroporid (Acropora downingi). Gulf populations of each species experienced high temperature bleaching at the onset of gametogenesis in the study but fecundity was only negatively impacted in P. daedalea and A. downingi. Large population sizes of C. microphthalma and P. daedalea in the Gulf are expected to buffer reductions on colony-level fecundity. However, depleted population sizes of A. downingi at some Gulf sites equate to low reef-wide fecundity and likely impede outcrossing success. PMID:26608503

  4. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    PubMed

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  5. Downscaled projections of Caribbean coral bleaching that can inform conservation planning.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki

    2015-09-01

    Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations. PMID:25833698

  6. Downscaled projections of Caribbean coral bleaching that can inform conservation planning.

    PubMed

    van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki

    2015-09-01

    Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations.

  7. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories.

    PubMed

    Fabricius, K E; Mieog, J C; Colin, P L; Idip, D; van Oppen, M J H

    2004-08-01

    The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals. PMID:15245416

  8. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia.

    PubMed

    McClanahan, T R; Baird, A H; Marshall, P A; Toscano, M A

    2004-02-01

    We compared the bleaching and mortality response (BMI) of 19 common scleractinian corals to an anomalous warm-water event in 1998 to determine the degree of variation between depths, sites, and regions. Mombasa corals experienced a greater temperature anomaly than those on the Great Barrier Reef (GBR) sites and this was reflected in the greater BMI response of most taxa. Comparing coral taxa in different sites at the same depth produced high correlation coefficients in the bleaching response in Kenya at 2 m (r=0.86) and GBR at 6 m depth sites (r=0.80) but less in the GBR for shallow 2 m sites (r=0.49). The pattern of taxa susceptibility was remarkably consistent between the regions. Coral taxa explained 52% of the variation in the response of colonies to bleaching between these two regions (Kenya BMI=0.90 GBR BMI+26; F(1,19) - 18.3; p < 0.001; r2 = 0.52). Stylophora and Pocillopora were consistently susceptible while Cyphastrea, Goniopora Galaxea and Pavona were resistant in both regions. Three taxa behaved differently between the two regions; Acropora, and branching Porites were both moderately affected on the GBR but were highly affected in Kenya while the opposite was true for Pavona. These results suggest that a colonies response to bleaching is phylogenetically constrained, emphasizing the importance of features of the host's physiology or morphology in determining the response to thermal stress.

  9. Abundance, composition and growth rate of coral recruits on dead corals following the 2010 bleaching event at Mu Ko Surin, the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Yucharoen, Mathinee; Yeemin, Thamasak; Casareto, Beatriz E.; Suzuki, Yoshimi; Samsuvan, Watchara; Sangmanee, Kanwara; Klinthong, Wanlaya; Pengsakun, Sittiporn; Sutthacheep, Makamas

    2015-06-01

    Elevated seawater temperatures in the summer months of 2010 were associated with widespread coral mortality in Thailand. A large number of corals at Mu Ko Surin died following the bleaching event. Understanding of the recruitment of corals would improve our ability to predict the potential for coral recovery from the impacts of bleaching events, as well as the interpretation of spatio-temporal variability in coral community structure. This study aims to examine the composition, abundance and growth rate of juvenile corals and the potential of reef recovery at Mu Ko Surin in order to help to understand how reefs react to major disturbances. We found that the densities of coral recruits varied among years and study sites. In the year 2011, coral recruitments ranged between 0.18 ± 0.02 to 1.67 ± 0.07 recruits per m2 for 10 study sites. While in 2012, the monitoring revealed a range between 0.96 ± 0.16 and 2.19 ± 0.21 recruits per m2 from 5 study sites. Fungia, Acropora, Porites and Favites were the dominant groups of coral recruits. In terms substrate forms, they were significant differences between sampling years but the preferential dominant substrate forms did not differ. The Acropora recruits at Ko Torinla showed normal distributions of size class during the two periods. Their ranges in 2011 and 2012 were 4-30 and 13-54 mm, respectively. Six species of Acropora recruits, i.e. Acropora intermedia, A. nasuta, A. cerealis, A. subulata, A. muricata and A. latistella were found. They showed diverse growth rates due to the spatial distribution of 2.11 ± 0.59 to 7.47 ± 1.37 cm per year. This study provides useful data in terms of coral recruitment and recovery from degradation and disturbance, especially from temperature changes induced by coral bleaching. The findings suggest that there is the possibility for coral recovery around Mu Ko Surin following the 2010 bleaching event.

  10. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  11. ReefTemp: An interactive monitoring system for coral bleaching using high-resolution SST and improved stress predictors

    NASA Astrophysics Data System (ADS)

    Maynard, Jeffrey A.; Turner, Peter J.; Anthony, Kenneth R. N.; Baird, Andrew H.; Berkelmans, Ray; Eakin, C. Mark; Johnson, Johanna; Marshall, Paul A.; Packer, Gareck R.; Rea, Anthony; Willis, Bette L.

    2008-03-01

    Anomalously high sea surface temperatures (SST) have led to repeated mass coral bleaching events on a global scale. Existing satellite-based systems used to monitor conditions conducive to bleaching are based on low-resolution (0.5°, ~50 km) SST data. While these systems have served the research and management community well, they have inherent weaknesses that limit their capacity to predict stress on coral reefs at local scales, over which bleaching severity is known to vary dramatically. Here we discuss the development and testing of ReefTemp, a new operational remote sensing application for the Great Barrier Reef that assesses bleaching risk daily using: high-resolution (2 km) SST, regionally validated thermal stress indices, and color-graded legends directly related to past observations of bleaching severity. Given projections of sea temperature rise, ReefTemp is timely as it can accurately predict bleaching severity at a local scale and therefore help to give focus to future research and monitoring efforts.

  12. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity.

    PubMed

    Anderson, David A; Walz, Marcus E; Weil, Ernesto; Tonellato, Peter; Smith, Matthew C

    2016-01-01

    Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system. PMID:26925311

  13. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity

    PubMed Central

    Walz, Marcus E.; Weil, Ernesto; Smith, Matthew C.

    2016-01-01

    Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system. PMID:26925311

  14. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae) under bleaching and disease stress expands models of coral innate immunity.

    PubMed

    Anderson, David A; Walz, Marcus E; Weil, Ernesto; Tonellato, Peter; Smith, Matthew C

    2016-01-01

    Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  15. Marine Cloud Brightening: regional applications to the weakening of hurricanes and reduction in coral bleaching

    NASA Astrophysics Data System (ADS)

    Gadian, A.; Hauser, R.; Kleypas, J. A.; Latham, J.; Parkes, B.; Salter, S.

    2013-12-01

    This study examines the potential to cool ocean surface waters in regions of hurricane genesis and early development. This would be achieved by seeding, with copious quantities of seawater cloud condensation nuclei (CCN), low-level maritime stratocumulus clouds covering these regions or those at the source of incoming currents. Higher cloud droplet density would increase these clouds' reflectivity to incoming sunlight, and possibly their longevity. This approach is a more localized application of the Marine Cloud Brightening (MCB) geoengineering technique promoting global cooling. By utilizing a climate ocean/atmosphere coupled model, HadGEM1, and by judicious seeding of maritime stratocumulus clouds, we demonstrate that we may be able to significantly reduce sea surface temperatures (SSTs) in hurricane development regions. Thus artificial seeding may reduce hurricane intensity; but how well the magnitude of this effect is yet to be determined. Increases in coral bleaching events over the last few decades have been largely caused by rising SSTs, and continued warming is expected to cause even greater increases through this century. Using thr same Global Climate Model to examine the potential of MCB to cool oceanic surface waters in three coral reef provinces. Our simulations indicate that under doubled CO2 conditions, the substantial increases in coral bleaching conditions from current values in three reef regions (Caribbean, French Polynesia, and the Great Barrier Reef) were eliminated when MCB was applied, which reduced the SSTs at these sites roughly to their original values. In this study we also illustrate how even regional application of MCB can affect the planetary meridional heat flux and the reduction in poleward heat transfer. (a) Change in annual average sea surface temperature, Celsius, between the 2xCO2 and CONTROL simulations. (b) Change in annual average sea surface temperature, Celsius, between the CONTROL and 2xCO2+MCB simulations. The dashed black

  16. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching.

    PubMed

    Bruckner, Andrew W; Hill, Ronald L

    2009-11-16

    Remote reefs off southwest Puerto Rico have experienced recent losses in live coral cover of 30 to 80%, primarily due to the decline of Montastraea annularis and M. faveolata from disease and bleaching. These species were formerly the largest, oldest, and most abundant corals on these reefs, constituting over 65% of the living coral cover and 40 to 80% of the total number of colonies. From 1998 to 2001, outbreaks of yellow band disease (YBD) and white plague (WP) affected 30 to 60% of the M. annularis (complex) colonies. Disease prevalence declined beginning in 2002, and then increased immediately following the 2005 mass bleaching event. Colonies of M. annularis (complex) have been reduced in abundance by 24 to 32%, and remaining colonies are missing more than half their tissue. Both M. annularis and M. faveolata have failed to recruit, resheeting has been minimal, and exposed skeletal surfaces are being colonized by macroalgae, bioeroding sponges, and hydrozoans. Other scleractinian corals were smaller in size (mean = 28 cm diameter) and exhibited lower levels of partial mortality; these taxa were affected to a lesser extent by coral diseases and bleaching-associated tissue loss over the last decade. The numbers of small colonies (1 to 9 cm) of these species identified since 2005 also exceeded numbers of larger colonies that died. These reefs appear to be exhibiting shifts in species assemblages, with replacement of M. annularis (complex) by shorter-lived brooding species and other massive and plating corals (Agaricia, Porites, Meandrina, Eusmilia, Diploria, and Siderastrea spp.). To avoid a catastrophic and permanent loss of the dominant, slow-growing reef-building corals, the causes and effects of diseases need to be better understood, and possible control mechanisms must be developed. In particular, steps must be taken to mitigate environmental and anthropogenic stressors that increase the spread and severity of disease.

  17. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    USGS Publications Warehouse

    Rogers, C.S.; Muller, E.M.

    2012-01-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies (n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality (n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  18. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    NASA Astrophysics Data System (ADS)

    Rogers, C. S.; Muller, E. M.

    2012-09-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies ( n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality ( n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  19. Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia)

    NASA Astrophysics Data System (ADS)

    Ortiz, J. C.; Gomez-Cabrera, M. Del C.; Hoegh-Guldberg, O.

    2009-12-01

    In January-May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.

  20. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching.

    PubMed

    Downs, C A; McDougall, Kathleen E; Woodley, Cheryl M; Fauth, John E; Richmond, Robert H; Kushmaro, Ariel; Gibb, Stuart W; Loya, Yossi; Ostrander, Gary K; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m(-2) s(-1) PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching.

  1. Heat-Stress and Light-Stress Induce Different Cellular Pathologies in the Symbiotic Dinoflagellate during Coral Bleaching

    PubMed Central

    Downs, C. A.; McDougall, Kathleen E.; Woodley, Cheryl M.; Fauth, John E.; Richmond, Robert H.; Kushmaro, Ariel; Gibb, Stuart W.; Loya, Yossi; Ostrander, Gary K.; Kramarsky-Winter, Esti

    2013-01-01

    Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching. PMID:24324575

  2. Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions

    NASA Astrophysics Data System (ADS)

    Hill, R.; Takahashi, S.

    2014-12-01

    Increased seawater temperature causes photoinhibition due to accumulation of photodamaged photosystem II (PSII) in symbiotic algae (genus Symbiodinium) within corals, and it is assumed to be associated with coral bleaching. To avoid photoinhibition, photosynthetic organisms repair the photodamaged PSII through replacing the PSII proteins, primarily the D1 protein, with newly synthesised proteins. However, in experiments using cultured Symbiodinium strains, the PSII repair of Symbiodinium has been suggested not to be related to the synthesis of the D1 protein. In this study, we examined the relationship between the recovery of PSII photochemical efficiency ( F V/ F M) and the content of D1 protein after high-light and high-temperature treatments using the bleaching-sensitive coral species, Pocillopora damicornis and Acropora millepora, and the bleaching-tolerant coral species, Montipora digitata and Pavona decussata. When corals were exposed to strong light (600 µmol photons m-2 s-1) at elevated temperature (32 °C) for 8 h, significant bleaching occurred in bleaching-sensitive coral species although an almost similar extent of reduced PSII function was found across all coral species tested. During a subsequent 15-h recovery under low light (10 µmol photons m-2 s-1) at optimal temperature (22 °C), the reduced F V/ F M recovered close to initial levels in all coral species, but the reduced D1 content recovered only in one coral species ( Pavona decussata). D1 content was therefore not strongly linked to chloroplast protein synthesis-dependent PSII repair. These results demonstrate that the recovery of photodamaged PSII does not always correspond with the recovery of D1 protein content in Symbiodinium within corals, suggesting that photodamaged PSII can be repaired by a unique mechanism in Symbiodinium within corals.

  3. Stable Oxygen (δ 18O) and Carbon (δ 13C) Isotopes in the Skeleton of Bleached and Recovering Corals From Hawaii

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. J.; Grottoli, A. G.

    2004-12-01

    Coral skeletal stable oxygen isotopes (δ 18O) reflect changes in seawater temperature and salinity, while stable carbon isotopes (δ 13C) reflect a combination of both metabolic (photosynthesis and feeding) and kinetic fractionation. Together, the two isotopic signatures may be used as a proxy for past bleaching events. During bleaching, increased seawater temperatures often contribute to a decline in zooxanthellae and/or chlorophyll concentrations, resulting in a decrease in photosynthesis. We experimentally investigated the effect of bleaching and subsequent recovery on the δ 13C and δ 18O values of coral skeleton. Fragments from two coral species (Montipora capitata and Porites compressa) from Kaneohe Bay, Hawaii were bleached in outdoor tanks by raising the seawater temperature to 30° C. Additional fragments from the same parent colonies were maintained at ambient seawater temperatures (27° C) in separate tanks as controls. After one month in the tanks, a subset of the fragments was frozen and all remaining fragments were placed back on the reef to recover. All coral fragments were analyzed for their skeletal δ 13C and δ 18O compositions at five time intervals: before, immediately after, 1.5, 4, and 8 months after bleaching. In addition, rates of photosynthesis, calcification, and heterotrophy were also measured. Immediately after bleaching, δ 18O decreased in bleached M. capitata relative to controls, reflecting their exposure to increased seawater temperatures. During recovery, δ 18O values in the treatment M. capitata were not different from the controls. In P. compressa, δ 18O did not significantly differ in bleached and control corals at any time during the experiment. Immediately after bleaching, δ 13C decreased in the bleached fragments of both species relative to controls reflecting decreased photosynthetic rates. However, during recovery δ 13C in both species was greater in bleached than control fragments despite photosynthesis remaining

  4. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral.

    PubMed

    Bay, Line K; Doyle, Jason; Logan, Murray; Berkelmans, Ray

    2016-06-01

    Sensitive molecular analyses show that most corals host a complement of Symbiodinium genotypes that includes thermo-tolerant types in low abundance. While tolerant symbiont types are hypothesized to facilitate tolerance to temperature and recovery from bleaching, empirical data on their distribution and relative abundance in corals under ambient and stress conditions are still rare. We quantified visual bleaching and mortality of coral hosts, along with relative abundance of C- and D-type Symbiodinium cells in 82 Acropora millepora colonies from three locations on the Great Barrier Reef transplanted to a central inshore site over a 13 month period. Our analyses reveal dynamic change in symbiont associations within colonies and among populations over time. Coral bleaching and declines in C- but not D-type symbionts were observed in transplanted corals. Survival and recovery of 25% of corals from one population was associated with either initial D-dominance or an increase in D-type symbionts that could be predicted by a minimum pre-stress D : C ratio of 0.003. One-third of corals from this population became D dominated at the bleached stage despite no initial detection of this symbiont type, but failed to recover and died in mid to late summer. These results provide a predictive threshold minimum density of background D-type symbionts in A. millepora, above which survival following extreme thermal stress is increased.

  5. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral.

    PubMed

    Bay, Line K; Doyle, Jason; Logan, Murray; Berkelmans, Ray

    2016-06-01

    Sensitive molecular analyses show that most corals host a complement of Symbiodinium genotypes that includes thermo-tolerant types in low abundance. While tolerant symbiont types are hypothesized to facilitate tolerance to temperature and recovery from bleaching, empirical data on their distribution and relative abundance in corals under ambient and stress conditions are still rare. We quantified visual bleaching and mortality of coral hosts, along with relative abundance of C- and D-type Symbiodinium cells in 82 Acropora millepora colonies from three locations on the Great Barrier Reef transplanted to a central inshore site over a 13 month period. Our analyses reveal dynamic change in symbiont associations within colonies and among populations over time. Coral bleaching and declines in C- but not D-type symbionts were observed in transplanted corals. Survival and recovery of 25% of corals from one population was associated with either initial D-dominance or an increase in D-type symbionts that could be predicted by a minimum pre-stress D : C ratio of 0.003. One-third of corals from this population became D dominated at the bleached stage despite no initial detection of this symbiont type, but failed to recover and died in mid to late summer. These results provide a predictive threshold minimum density of background D-type symbionts in A. millepora, above which survival following extreme thermal stress is increased. PMID:27429786

  6. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral

    PubMed Central

    Bay, Line K.; Doyle, Jason; Logan, Murray; Berkelmans, Ray

    2016-01-01

    Sensitive molecular analyses show that most corals host a complement of Symbiodinium genotypes that includes thermo-tolerant types in low abundance. While tolerant symbiont types are hypothesized to facilitate tolerance to temperature and recovery from bleaching, empirical data on their distribution and relative abundance in corals under ambient and stress conditions are still rare. We quantified visual bleaching and mortality of coral hosts, along with relative abundance of C- and D-type Symbiodinium cells in 82 Acropora millepora colonies from three locations on the Great Barrier Reef transplanted to a central inshore site over a 13 month period. Our analyses reveal dynamic change in symbiont associations within colonies and among populations over time. Coral bleaching and declines in C- but not D-type symbionts were observed in transplanted corals. Survival and recovery of 25% of corals from one population was associated with either initial D-dominance or an increase in D-type symbionts that could be predicted by a minimum pre-stress D : C ratio of 0.003. One-third of corals from this population became D dominated at the bleached stage despite no initial detection of this symbiont type, but failed to recover and died in mid to late summer. These results provide a predictive threshold minimum density of background D-type symbionts in A. millepora, above which survival following extreme thermal stress is increased. PMID:27429786

  7. A Flatworm from the Genus Waminoa (Acoela: Convolutidae) Associated with Bleached Corals in Western Australia.

    PubMed

    Cooper, Crystal; Clode, Peta L; Thomson, Damian P; Stat, Michael

    2015-10-01

    A flatworm isolated from bleached colonies of the coral Coscinaraea marshae at Rottnest Island, Western Australia, is described using a combination of morphological and molecular systematics. This flatworm shares morphological features characteristic of the genus Waminoa (Acoelomorpha: Acoela), including the presence of two algal symbionts, but appears to have genital regions different from those of other described species of Waminoa. The design of new oligonucleotide primers enabled the amplification of partial 18S rDNA of the Rottnest Island acoel specimens, and phylogenetic analysis positioned them within Waminoa, confirming their placement in the genus. Furthermore, Waminoa specimens from Rottnest Island grouped into a sister clade to Waminoa brickneri, indicating that the morphological and genetic differences observed are most likely intraspecific and due to geographic variation. As such, we name these Rottnest Island specimens W. cf. brickneri, but highlight that key differences warrant further exploration before assignment to this species can be confirmed. This is the first acoel flatworm described from Western Australia and contributes to our understanding of the diversity and evolutionary relationship of the Acoela.

  8. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    NASA Astrophysics Data System (ADS)

    Wooldridge, S. A.

    2012-07-01

    Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae") is the proximal trigger for the thermal breakdown of the coral-algae symbiosis ("coral bleaching"). Yet, the primary site of thermal damage is not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs) of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions", as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (re)growth following an initial irradiance-driven expulsion event as the cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater) nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. This provides a new standpoint to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  9. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009).

    PubMed

    Hongo, Chuki; Yamano, Hiroya

    2013-01-01

    Coral bleaching, triggered by elevated sea-surface temperatures (SSTs) has caused a decline in coral cover and changes in the abundances of corals on reefs worldwide. Coral decline can be exacerbated by the effects of local stressors like turbidity, yet some reefs with a natural history of turbidity can support healthy and resilient coral communities. However, little is known about responses of coral communities to bleaching events on anthropogenically turbid reefs as a result of recent (post World War II) terrestrial runoff. Analysis of region-scale coral cover and species abundance at 17-20 sites on the turbid reefs of Okinawa Island (total of 79 species, 30 genera, and 13 families) from 1995 to 2009 indicates that coral cover decreased drastically, from 24.4% to 7.5% (1.1%/year), subsequent to bleaching events in 1998 and 2001. This dramatic decrease in coral cover corresponded to the demise of Acropora species (e.g., A. digitifera) by 2009, when Acropora had mostly disappeared from turbid reefs on Okinawa Island. In contrast, Merulinidae species (e.g., Dipsastraea pallida/speciosa/favus) and Porites species (e.g., P. lutea/australiensis), which are characterized by tolerance to thermal stress, survived on turbid reefs of Okinawa Island throughout the period. Our results suggest that high turbidity, influenced by recent terrestrial runoff, could have caused a reduction in resilience of Acropora species to severe thermal stress events, because the corals could not have adapted to a relatively recent decline in water quality. The coral reef ecosystems of Okinawa Island will be severely impoverished if Acropora species fail to recover.

  10. Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995–2009)

    PubMed Central

    Hongo, Chuki; Yamano, Hiroya

    2013-01-01

    Coral bleaching, triggered by elevated sea-surface temperatures (SSTs) has caused a decline in coral cover and changes in the abundances of corals on reefs worldwide. Coral decline can be exacerbated by the effects of local stressors like turbidity, yet some reefs with a natural history of turbidity can support healthy and resilient coral communities. However, little is known about responses of coral communities to bleaching events on anthropogenically turbid reefs as a result of recent (post World War II) terrestrial runoff. Analysis of region-scale coral cover and species abundance at 17–20 sites on the turbid reefs of Okinawa Island (total of 79 species, 30 genera, and 13 families) from 1995 to 2009 indicates that coral cover decreased drastically, from 24.4% to 7.5% (1.1%/year), subsequent to bleaching events in 1998 and 2001. This dramatic decrease in coral cover corresponded to the demise of Acropora species (e.g., A. digitifera) by 2009, when Acropora had mostly disappeared from turbid reefs on Okinawa Island. In contrast, Merulinidae species (e.g., Dipsastraea pallida/speciosa/favus) and Porites species (e.g., P. lutea/australiensis), which are characterized by tolerance to thermal stress, survived on turbid reefs of Okinawa Island throughout the period. Our results suggest that high turbidity, influenced by recent terrestrial runoff, could have caused a reduction in resilience of Acropora species to severe thermal stress events, because the corals could not have adapted to a relatively recent decline in water quality. The coral reef ecosystems of Okinawa Island will be severely impoverished if Acropora species fail to recover. PMID:23565291

  11. Air-sea energy exchanges measured by eddy covariance during a localised coral bleaching event, Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.

    2010-12-01

    Despite the widely claimed association between climate change and coral bleaching, a paucity of data exists relating to exchanges of heat, moisture and momentum between the atmosphere and the reef-water surface. We present in situ measurements of reef-water-air energy exchanges made using the eddy covariance method during a summer coral bleaching event at Heron Reef, Australia. Under settled, cloud-free conditions and light winds, daily net radiation exceeded 800 W m-2, with up to 95% of the net radiation during the morning partitioned into heating the water column, substrate and benthic cover including corals. Heating was exacerbated by a mid-afternoon low tide when shallow reef flat water reached 34°C and near-bottom temperatures 33°C, exceeding the thermal tolerance of corals, causing bleaching. Results suggest that local to synoptic scale meteorology, particularly clear skies, solar heating, light winds and the timing of low tide were the primary controls on coral bleaching.

  12. Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress

    PubMed Central

    Abrego, David; Ulstrup, Karin E; Willis, Bette L; van Oppen, Madeleine J.H

    2008-01-01

    The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated lower metabolic costs and enhanced physiological tolerance of Acropora tenuis juveniles when hosting Symbiodinium type C1 compared with type D. In other studies, the same D-type has been shown to confer higher thermal tolerance than both C2 in adults and C1 in juveniles of the closely related species Acropora millepora. Our results challenge speculations that associations with type D are universally most robust to thermal stress. Although the heat tolerance of corals may be contingent on the Symbiodinium strain in hospite, our results highlight the complexity of interactions between symbiotic partners and a potential role for host factors in determining the physiological performance of reef corals. PMID:18577506

  13. Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress.

    PubMed

    Abrego, David; Ulstrup, Karin E; Willis, Bette L; van Oppen, Madeleine J H

    2008-10-01

    The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated lower metabolic costs and enhanced physiological tolerance of Acropora tenuis juveniles when hosting Symbiodinium type C1 compared with type D. In other studies, the same D-type has been shown to confer higher thermal tolerance than both C2 in adults and C1 in juveniles of the closely related species Acropora millepora. Our results challenge speculations that associations with type D are universally most robust to thermal stress. Although the heat tolerance of corals may be contingent on the Symbiodinium strain in hospite, our results highlight the complexity of interactions between symbiotic partners and a potential role for host factors in determining the physiological performance of reef corals.

  14. From the Cover: Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals

    NASA Astrophysics Data System (ADS)

    Tchernov, Dan; Gorbunov, Maxim Y.; de Vargas, Colomban; Narayan Yadav, Swati; Milligan, Allen J.; Häggblom, Max; Falkowski, Paul G.

    2004-09-01

    Over the past three decades, massive bleaching events of zooxanthellate corals have been documented across the range of global distribution. Although the phenomenon is correlated with relatively small increases in sea-surface temperature and enhanced light intensity, the underlying physiological mechanism remains unknown. In this article we demonstrate that thylakoid membrane lipid composition is a key determinate of thermal-stress sensitivity in symbiotic algae of cnidarians. Analyses of thylakoid membranes reveal that the critical threshold temperature separating thermally tolerant from sensitive species of zooxanthellae is determined by the saturation of the lipids. The lipid composition is potentially diagnostic of the differential nature of thermally induced bleaching found in scleractinian corals. Measurements of variable chlorophyll fluorescence kinetic transients indicate that thermally damaged membranes are energetically uncoupled but remain capable of splitting water. Consequently, a fraction of the photosynthetically produced oxygen is reduced by photosystem I through the Mehler reaction to form reactive oxygen species, which rapidly accumulate at high irradiance levels and trigger death and expulsion of the endosymbiotic algae. Differential sensitivity to thermal stress among the various species of Symbiodinium seems to be distributed across all clades. A clocked molecular phylogenetic analysis suggests that the evolutionary history of symbiotic algae in cnidarians selected for a reduced tolerance to elevated temperatures in the latter portion of the Cenozoic.

  15. Experimental Bleaching of a Reef-Building Coral Using a Simplified Recirculating Laboratory Exposure System

    EPA Science Inventory

    Determining stressor-response relationships in reef building corals is a critical need for researchers because of global declines in coral reef ecosystems. A simplified recirculating coral exposure system for laboratory testing of a diversity of species and morphologies of reef b...

  16. Atmospheric forcing intensifies the effects of regional ocean warming on reef-scale temperature anomalies during a coral bleaching event

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenlin; Falter, James; Lowe, Ryan; Ivey, Greg; McCulloch, Malcolm

    2013-09-01

    We investigate how local atmospheric conditions and hydrodynamic forcing contributed to local variations in water temperature within a fringing coral reef-lagoon system during the peak of a marine heat wave in 2010-2011 that caused mass coral bleaching across Western Australia. A three-dimensional circulation model Regional Ocean Modeling System (ROMS) with a built-in air-sea heat flux exchange module Coupled Ocean Atmosphere Experiment (COARE) was coupled with a spectral wave model Simulating Waves Nearshore (SWAN) to resolve the surface heat exchange and wave-driven reef circulation in Coral Bay, Ningaloo Reef. Using realistic oceanic and atmospheric forcing, the model predictions were in good agreement with measured time series of water temperature at various locations in the coral reef system during the bleaching event. Through a series of sensitivity analyses, we found that the difference in temperature between the reef and surrounding offshore waters (ΔT) was predominantly a function of both the daily mean net heat flux (Qnet>¯) and residence time, whereas diurnal variations in reef water temperature were dependent on the diurnal fluctuation in the net heat flux. We found that reef temperatures were substantially higher than offshore in the inner lagoon under normal weather conditions and over the entire reef domain under more extreme weather conditions (0.7°C-1.5°C). Although these temperature elevations were still less than that caused by the regional ocean warming (2°C-3°C), the arrival of peak seasonal temperatures in the summer of 2010-2011 (when net atmospheric heat fluxes were positive and abnormally high) caused substantially higher thermal stresses than would have otherwise occurred if offshore temperatures had reached their normal seasonal maxima in autumn (when net atmospheric heat fluxes were negative or cooling). Therefore, the degree heating weeks calculated based on offshore temperature substantially underestimated the thermal stresses

  17. Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis.

    PubMed

    Hawkins, Thomas D; Bradley, Benjamin J; Davy, Simon K

    2013-12-01

    Coral bleaching (involving the loss of symbiotic algae from the cnidarian host) is a major threat to coral reefs and appears to be mediated at the cellular level by nitric oxide (NO). In this study, we examined the specific role of NO in bleaching using the sea anemone Aiptasia pulchella, a model system for the study of corals. Exposure of A. pulchella to high-temperature shock (26-33°C over <1 h) or an NO donor (S-nitrosoglutathione) resulted in significant increases in host caspase-like enzyme activity. These responses were reflected in the intensities of bleaching, which were significantly higher in heat- or NO-treated specimens than in controls maintained in seawater at 26°C. Notably, the inhibition of caspase-like activity prevented bleaching even in the presence of an NO donor or at elevated temperature. The additional use of an NO scavenger controlled for effects mediated by agents other than NO. We also exposed A. pulchella to a more ecologically relevant treatment (an increase from 26 to 33°C over 6-7 d). Again, host NO synthesis correlated with the activation of caspase-like enzyme activity. Therefore, we conclude that NO's involvement in cnidarian bleaching arises through the regulation of host apoptotic pathways. PMID:23934282

  18. Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model sea anemone-dinoflagellate symbiosis.

    PubMed

    Hawkins, Thomas D; Bradley, Benjamin J; Davy, Simon K

    2013-12-01

    Coral bleaching (involving the loss of symbiotic algae from the cnidarian host) is a major threat to coral reefs and appears to be mediated at the cellular level by nitric oxide (NO). In this study, we examined the specific role of NO in bleaching using the sea anemone Aiptasia pulchella, a model system for the study of corals. Exposure of A. pulchella to high-temperature shock (26-33°C over <1 h) or an NO donor (S-nitrosoglutathione) resulted in significant increases in host caspase-like enzyme activity. These responses were reflected in the intensities of bleaching, which were significantly higher in heat- or NO-treated specimens than in controls maintained in seawater at 26°C. Notably, the inhibition of caspase-like activity prevented bleaching even in the presence of an NO donor or at elevated temperature. The additional use of an NO scavenger controlled for effects mediated by agents other than NO. We also exposed A. pulchella to a more ecologically relevant treatment (an increase from 26 to 33°C over 6-7 d). Again, host NO synthesis correlated with the activation of caspase-like enzyme activity. Therefore, we conclude that NO's involvement in cnidarian bleaching arises through the regulation of host apoptotic pathways.

  19. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae

    NASA Astrophysics Data System (ADS)

    Wooldridge, S. A.

    2013-03-01

    Impairment of the photosynthetic machinery of the algal endosymbiont ("zooxanthellae") is the proximal driver of the thermal breakdown of the coral-algae symbiosis ("coral bleaching"). Yet, the initial site of damage, and early dynamics of the impairment are still not well resolved. In this perspective essay, I consider further a recent hypothesis which proposes an energetic disruption to the carbon-concentrating mechanisms (CCMs) of the coral host, and the resultant onset of CO2-limitation within the photosynthetic "dark reactions" as a unifying cellular mechanism. The hypothesis identifies the enhanced retention of photosynthetic carbon for zooxanthellae (re)growth following an initial irradiance-driven expulsion event as a strong contributing cause of the energetic disruption. If true, then it implies that the onset of the bleaching syndrome and setting of upper thermal bleaching limits are emergent attributes of the coral symbiosis that are ultimately underpinned by the characteristic growth profile of the intracellular zooxanthellae; which is known to depend not just on temperature, but also external (seawater) nutrient availability and zooxanthellae genotype. Here, I review this proposed bleaching linkage at a variety of observational scales, and find it to be parsimonious with the available evidence. Future experiments are suggested that can more formally test the linkage. If correct, the new cellular model delivers a valuable new perspective to consider the future prospects of the coral symbiosis in an era of rapid environmental change, including: (i) the underpinning mechanics (and biological significance) of observed changes in resident zooxanthellae genotypes, and (ii) the now crucial importance of reef water quality in co-determining thermal bleaching resistance.

  20. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    USGS Publications Warehouse

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  1. Nitric oxide and heat shock protein 90 co-regulate temperature-induced bleaching in the soft coral Eunicea fusca

    NASA Astrophysics Data System (ADS)

    Ross, Cliff

    2014-06-01

    Coral bleaching represents a complex physiological process that is affected not only by environmental conditions but by the dynamic internal cellular biology of symbiotic dinoflagellates ( Symbiodinium spp.) and their cnidarian hosts. Recently, nitric oxide (NO) has emerged as a key molecule involved with the expulsion of Symbiodinium from host cnidarian cells. However, the site of production remains under debate, and the corresponding signaling pathways within and between host and endosymbiont remain elusive. In this study, using freshly isolated Symbiodinium from the soft coral Eunicea fusca, I demonstrate that thermally induced stress causes an upregulation in Symbiodinium heat shock protein 90 (Hsp90). In turn, Hsp90 shows a concomitant ability to enhance the activity of a constitutively expressed isoform of NO synthase. The resulting production of NO constitutes a signaling molecule capable of inducing Symbiodinium expulsion. Using nitric oxide synthase (NOS) and Hsp90 polyclonal antibodies, thermal stress-induced Hsp90 was shown to co-immunoprecipitate with a constitutive isoform of NOS. The specific blocking of Hsp90 activity, with the Hsp90 inhibitor geldanamycin, was capable of inhibiting NO production implicating the involvement of a coordinated regulatory system. These results have strong evolutionary implications for Hsp90-NOS chaperone complexes among biological kingdoms and provide evidence for a new functional role in symbiotic associations.

  2. Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon.

    PubMed

    Bouchard, Josée Nina; Yamasaki, Hideo

    2008-04-01

    Nitric oxide (NO) is a gas displaying multiple physiological functions in plants, animals and bacteria. The enzymes nitrate reductase and NO synthase have been suggested to be involved in the production of NO in plants and algae, but the implication of those enzymes in NO production under physiological conditions remains obscure. Symbiodinium microadriaticum, commonly referred to as zooxanthellae, is a marine microalga commonly found in symbiotic association with a cnidarian host including reef-building corals. Here we demonstrate NO production in zooxanthellae upon supplementation of either sodium nitrite or L-arginine as a substrate. The nitrite-dependent NO production was detected electrochemically and confirmed by the application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO scavenger. Cells stained with the diaminofluorescein, DAF-2 DA, an NO fluorescent probe, showed an increase in fluorescence intensity upon supplementation of both sodium nitrite and L-arginine. Microscopic observations of DAF-stained cells verified that NO was produced inside the cells. NO production in S. microadriaticum was found to increase upon exposure of cells to an acute heat stress which also caused a decline in the photosynthetic efficiency of PSII (F(v)/F(m)). This study provides substantial evidence to confirm that zooxanthellae can synthesize NO even when they are not in a symbiotic association with a coral host. The increase in NO production at high temperatures suggests that heat stress stimulates the microalgal NO production in a temperature-dependent manner. The implications of these findings are discussed in the light of the coral bleaching phenomenon which is associated with elevated sea surface temperature due to global warming.

  3. Proteomics Links the Redox State to Calcium Signaling During Bleaching of the Scleractinian Coral Acropora microphthalma on Exposure to High Solar Irradiance and Thermal Stress

    PubMed Central

    Weston, Andrew J.; Dunlap, Walter C.; Beltran, Victor H.; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F.

    2015-01-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  4. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    PubMed

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  5. Neutralization of radical toxicity by temperature-dependent modulation of extracellular SOD activity in coral bleaching pathogen Vibrio shiloi and its role as a virulence factor.

    PubMed

    Murali, Malliga Raman; Raja, Subramaniya Bharathi; Devaraj, Sivasitambaram Niranjali

    2010-08-01

    Vibrio shiloi is the first and well-documented bacterium which causes coral bleaching, particularly, during summer, when seawater temperature is between 26 and 31 degrees C. Coral bleaching is the disruption of the symbiotic association between coral hosts and their photosynthetic microalgae zooxanthellae. This is either due to lowered resistance in corals to infection or increased virulence of the bacterium at the higher sea surface temperature. The concentration of the oxygen and resulting oxygen radicals produced by the zooxanthellae during photosynthesis are highly toxic to bacteria, which also assist corals in resisting the infection. Hence, in this study we examined the effect of different temperatures on the activity of a novel extracellular SOD in V. shiloi. We also partially characterized the SOD and clearly confirmed that the extracellular SOD produced by V. shiloi is Mn-SOD type, as it was not inhibited by H2O2 or KCN. Performing chemical susceptibility killing assay, we confirmed that extracellular SOD may act as first line of defense for the bacteria against the reactive oxygen species. Since, increased activity of novel Mn-SOD at higher temperature, leads to the neutralization of radical toxicity and facilitates the survival of V. shiloi. Hence, the extracellular Mn-SOD may be considered as a virulence factor.

  6. Calcification rate and the stable carbon, oxygen, and nitrogen isotopes in the skeleton, host tissue, and zooxanthellae of bleached and recovering Hawaiian corals

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lisa J.; Grottoli, Andréa G.

    2006-06-01

    We tested the effectiveness of stable isotopes as recorders of physiological changes that occur during coral bleaching and recovery. Montipora capitata and Porites compressa fragments were bleached in outdoor tanks with seawater temperature raised to 30 °C (treatment corals) for one month. Additional fragments were maintained at 27 °C in separate tanks (control corals). After one month, (0 months recovery), buoyant weight was measured and a subset of fragments was frozen. Remaining fragments were returned to the reef for recovery. After 1.5, 4, and 8 months, fragments were collected, measured for buoyant weight, and frozen. Fragments were analyzed for stable carbon and oxygen isotopic compositions of the skeleton (δ 13C s; δ 18O s) and nitrogen and carbon isotopic compositions of the host tissue (δ 15N h; δ 13C h) and zooxanthellae (δ 15N z; δ 13C z). δ 13C s decreased immediately after bleaching in M. capitata, but not in P. compressa. δ 18O s of both species failed to record the warming event. During the remaining months of recovery, δ 13C s and δ 18O s were more enriched in treatment than control corals due to decreases in calcification and metabolic fractionation during that time. Increased δ 15N h of treatment P. compressa may be due to expelled zooxanthellae during bleaching and recovery. Increased δ 15N z at 1.5 months in treatment fragments of both species reflects the increased incorporation of dissolved inorganic nitrogen to facilitate mitotic cell division and/or chl a/cell recovery. Changes in δ 13C h and δ 13C z at 1.5 months in treatment M. capitata indicated a large increase in heterotrophically acquired carbon relative to photosynthetically fixed carbon. We experimentally show that isotopes in coral skeleton, host tissue and zooxanthellae can be used to verify physiological changes during bleaching and recovery, but their use as a proxy for past bleaching events in the skeletal record is limited.

  7. Differential bleaching of corals based on El Niño type and intensity in the Andaman Sea, southeast Bay of Bengal.

    PubMed

    Lix, J K; Venkatesan, R; Grinson, George; Rao, R R; Jineesh, V K; Arul, Muthiah M; Vengatesan, G; Ramasundaram, S; Sundar, R; Atmanand, M A

    2016-03-01

    The Andaman coral reef region experienced mass bleaching events during 1998 and 2010. The purpose of this study is to investigate the role of the El Niño in the coral reef bleaching events of the Andaman region. Both Niño 3.4 and 3 indices were examined to find out the relationship between the mass bleaching events and El Niño, and correlated with sea surface temperature (SST) anomalies in the Andaman Sea. The result shows that abnormal warming and mass bleaching events in the Andaman Sea were seen only during strong El Niño years of 1997-1998 and 2009-2010. The Andaman Sea SST was more elevated and associated with El Niño Modoki (central Pacific El Niño) than conventional El Niño (eastern Pacific El Niño) occurrences. It is suggested that the development of hot spot patterns around the Andaman Islands during May 1998 and April-May 2010 may be attributed to zonal shifts in the Walker circulation driven by El Niño during the corresponding period.

  8. Differential bleaching of corals based on El Niño type and intensity in the Andaman Sea, southeast Bay of Bengal.

    PubMed

    Lix, J K; Venkatesan, R; Grinson, George; Rao, R R; Jineesh, V K; Arul, Muthiah M; Vengatesan, G; Ramasundaram, S; Sundar, R; Atmanand, M A

    2016-03-01

    The Andaman coral reef region experienced mass bleaching events during 1998 and 2010. The purpose of this study is to investigate the role of the El Niño in the coral reef bleaching events of the Andaman region. Both Niño 3.4 and 3 indices were examined to find out the relationship between the mass bleaching events and El Niño, and correlated with sea surface temperature (SST) anomalies in the Andaman Sea. The result shows that abnormal warming and mass bleaching events in the Andaman Sea were seen only during strong El Niño years of 1997-1998 and 2009-2010. The Andaman Sea SST was more elevated and associated with El Niño Modoki (central Pacific El Niño) than conventional El Niño (eastern Pacific El Niño) occurrences. It is suggested that the development of hot spot patterns around the Andaman Islands during May 1998 and April-May 2010 may be attributed to zonal shifts in the Walker circulation driven by El Niño during the corresponding period. PMID:26887314

  9. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses.

    PubMed

    Bhagooli, Ranjeet; Hidaka, Michio

    2004-03-01

    In the present study, we examined the effect of thermal stress on the photoinhibitory light threshold in a bleaching susceptible (Stylophora pistillata) and a bleaching resistant (Platygyra ryukyuensis) coral. Four light (0, 110, 520, 1015 micromol quantam(-2)s(-1)) and three temperature (26, 32 and 34 degrees C) conditions were used over a 3-h period, followed by 24- and 48-h recovery periods at approximately 21 degrees C under dim light. Dynamic photoinhibition could be detected in both P. ryukyuensis and S. pistillata under 520 and 1015 micromol quantam(-2)s(-1) at 26 degrees C and under 110 micromol quantam(-2)s(-1) at 32 degrees C only in S. pistillata. Chronic photoinhibition was recorded under 520 and 1015 micromol quantam(-2)s(-1) at 34 degrees C in P. ryukyuensis, and under 1015 micromol quantam(-2)s(-1) at 32 degrees C and under all light levels at 34 degrees C in S. pistillata. These results show that high temperature reduced the threshold light intensity for photoinhibition differently in two corals with different bleaching susceptibilities under thermal stress. No visual paling and mortality in P. ryukyuensis was observed at any treatment, even in chronically photoinhibited specimens, while paling and high mortality of S. pistillata was noted in all treatments, apart from samples at 26 degrees C. These observations suggest a potential role of the host in differential bleaching and mortality determination.

  10. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata

    PubMed Central

    Vieira, Christophe; Engelen, Aschwin H.; Guentas, Linda; Aires, Tânia; Houlbreque, Fanny; Gaubert, Julie; Serrão, Ester A.; De Clerck, Olivier; Payri, Claude E.

    2016-01-01

    While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation. PMID:27047453

  11. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata.

    PubMed

    Vieira, Christophe; Engelen, Aschwin H; Guentas, Linda; Aires, Tânia; Houlbreque, Fanny; Gaubert, Julie; Serrão, Ester A; De Clerck, Olivier; Payri, Claude E

    2016-01-01

    While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.

  12. Species Specificity of Bacteria Associated to the Brown Seaweeds Lobophora (Dictyotales, Phaeophyceae) and Their Potential for Induction of Rapid Coral Bleaching in Acropora muricata.

    PubMed

    Vieira, Christophe; Engelen, Aschwin H; Guentas, Linda; Aires, Tânia; Houlbreque, Fanny; Gaubert, Julie; Serrão, Ester A; De Clerck, Olivier; Payri, Claude E

    2016-01-01

    While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing, and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae) species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria, and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from nine families, four classes, and three phyla), some of which are not known as, but are related to pathogens involved in coral diseases, and others are naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of these bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation. PMID:27047453

  13. Topography and spatial arrangement of reef-building corals on the fringing reefs of North Jamaica may influence their response to disturbance from bleaching.

    PubMed

    Crabbe, M J C

    2010-04-01

    Knowledge of factors that are important in reef resilience helps us understand how reefs react following major environmental disturbances such as hurricanes and bleaching. Here we test factors that might have influenced Jamaican reef resilience to, and subsequent recovery from, the 2005 bleaching event, and which might help inform management policy for reefs in the future: reef rugosity and contact of corals with macroalgae. In addition, we test in the field, on Dairy Bull reef, whether aggregated Porites astreoides colonies exhibit enhanced growth when exposed to superior competition from Acopora palmata, as has been found by experiment with the Indo-Pacific corals Porites lobata and the superior competitor Porites rus [Idjadi, J.A., Karlson, R.H., 2007. Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88, 2449-2454]. There were significant linear relationships between rugosity and the increase in smallest size classes for Sidastrea siderea, Colpophyllia natans, P. astreoides and Agaricia species, and between rugosity and cover of the branching coral Acropora cervicornis. Linear extension rates of A. cervicornis and radial growth rates of P. astreoides were significantly lower (p<0.025; F>6) when in contact with macroalgae. Aggregated colonies of P. astreoides in contact with one another, one of which was in contact with the faster growing competitor A. palmata showed significantly greater growth rates than with just two aggregated P. astreoides colonies alone. These findings suggest that three dimensional topography and complexity is important for reef resilience and viability in the face of environmental stressors such as bleaching. Our findings also support the idea that aggregated spatial arrangements of corals can influence the outcome of interspecific competition and promote species coexistence, important in times of reef recovery after disturbance.

  14. Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen

    NASA Astrophysics Data System (ADS)

    Lesser, M. P.; Stochaj, W. R.; Tapley, D. W.; Shick, J. M.

    1990-04-01

    Recent widespread bleaching of coral reef anthozoans has been observed on the Great Barrier Reef, the Pacific coast of Panama, and in the Caribbean Sea. Bleaching events have been correlated with anomalously high sea surface temperatures which are presumed to cause the expulsion of zooxanthellae from their hosts. Our experimental results show that increases in temperature significantly reduce the total number of zooxanthellae per polyp. At the same time temperature, irradiance (photosynthetically active radiation=PAR), and ultraviolet radiation (UV) independently increase the activities of the enzymes superoxide dismutase, catalase, and ascorbate peroxidase within the zooxanthellae of the zoanthid Palythoa caribaeorum. Enzyme activities within the host are only suggestive of similar changes. These enzymes are responsible for detoxifying active forms of oxygen, and their elevated activities indirectly indicate an increase in the production of active oxygen species by increases in these environmental factors. Historically, bleaching has been attributed to changes in temperature, salinity, and UV. Increases in temperature or highly energetic UV radiation can increase the flux of active forms of oxygen, particularly at the elevated oxygen concentrations that prevail in the tissues during photosynthesis, with oxygen toxicity potentially mediating the bleaching event. Additionally, the concentration of UV absorbing compounds within the symbiosis is inversely related to temperature, potentially increasing exposure of the host and zooxanthellae to the direct effects of UV.

  15. Assessing the Effects of Disease and Bleaching on Florida Keys Corals by Fitting Population Models to Data

    EPA Science Inventory

    Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways via which coral diseases ar...

  16. Viral Outbreak in Corals Associated with an In Situ Bleaching Event: Atypical Herpes-Like Viruses and a New Megavirus Infecting Symbiodinium.

    PubMed

    Correa, Adrienne M S; Ainsworth, Tracy D; Rosales, Stephanie M; Thurber, Andrew R; Butler, Christopher R; Vega Thurber, Rebecca L

    2016-01-01

    Previous studies of coral viruses have employed either microscopy or metagenomics, but few have attempted to comprehensively link the presence of a virus-like particle (VLP) to a genomic sequence. We conducted transmission electron microscopy imaging and virome analysis in tandem to characterize the most conspicuous viral types found within the dominant Pacific reef-building coral genus Acropora. Collections for this study inadvertently captured what we interpret as a natural outbreak of viral infection driven by aerial exposure of the reef flat coincident with heavy rainfall and concomitant mass bleaching. All experimental corals in this study had high titers of viral particles. Three of the dominant VLPs identified were observed in all tissue layers and budding out from the epidermis, including viruses that were ∼70, ∼120, and ∼150 nm in diameter; these VLPs all contained electron dense cores. These morphological traits are reminiscent of retroviruses, herpesviruses, and nucleocytoplasmic large DNA viruses (NCLDVs), respectively. Some 300-500 nm megavirus-like VLPs also were observed within and associated with dinoflagellate algal endosymbiont (Symbiodinium) cells. Abundant sequence similarities to a gammaretrovirus, herpesviruses, and members of the NCLDVs, based on a virome generated from five Acropora aspera colonies, corroborated these morphology-based identifications. Additionally sequence similarities to two diagnostic genes, a MutS and (based on re-annotation of sequences from another study) a DNA polymerase B gene, most closely resembled Pyramimonas orientalis virus, demonstrating the association of a cosmopolitan megavirus with Symbiodinium. We also identified several other virus-like particles in host tissues, along with sequences phylogenetically similar to circoviruses, phages, and filamentous viruses. This study suggests that viral outbreaks may be a common but previously undocumented component of natural bleaching events, particularly

  17. Viral Outbreak in Corals Associated with an In Situ Bleaching Event: Atypical Herpes-Like Viruses and a New Megavirus Infecting Symbiodinium

    PubMed Central

    Correa, Adrienne M. S.; Ainsworth, Tracy D.; Rosales, Stephanie M.; Thurber, Andrew R.; Butler, Christopher R.; Vega Thurber, Rebecca L.

    2016-01-01

    Previous studies of coral viruses have employed either microscopy or metagenomics, but few have attempted to comprehensively link the presence of a virus-like particle (VLP) to a genomic sequence. We conducted transmission electron microscopy imaging and virome analysis in tandem to characterize the most conspicuous viral types found within the dominant Pacific reef-building coral genus Acropora. Collections for this study inadvertently captured what we interpret as a natural outbreak of viral infection driven by aerial exposure of the reef flat coincident with heavy rainfall and concomitant mass bleaching. All experimental corals in this study had high titers of viral particles. Three of the dominant VLPs identified were observed in all tissue layers and budding out from the epidermis, including viruses that were ∼70, ∼120, and ∼150 nm in diameter; these VLPs all contained electron dense cores. These morphological traits are reminiscent of retroviruses, herpesviruses, and nucleocytoplasmic large DNA viruses (NCLDVs), respectively. Some 300–500 nm megavirus-like VLPs also were observed within and associated with dinoflagellate algal endosymbiont (Symbiodinium) cells. Abundant sequence similarities to a gammaretrovirus, herpesviruses, and members of the NCLDVs, based on a virome generated from five Acropora aspera colonies, corroborated these morphology-based identifications. Additionally sequence similarities to two diagnostic genes, a MutS and (based on re-annotation of sequences from another study) a DNA polymerase B gene, most closely resembled Pyramimonas orientalis virus, demonstrating the association of a cosmopolitan megavirus with Symbiodinium. We also identified several other virus-like particles in host tissues, along with sequences phylogenetically similar to circoviruses, phages, and filamentous viruses. This study suggests that viral outbreaks may be a common but previously undocumented component of natural bleaching events, particularly

  18. INCIDENCE OF CORAL DISEASE IN THE FLORIDA KEYS AND DRY TORTUGAS (ABSTRACT)

    EPA Science Inventory

    Disease in corals is one factor that has been implicated in serious declines in the ecological condition of coral reefs. In particular, coral reefs in the Western Atlantic Province have undergone large-scale and consistent ecological changes during the last two decades. Few studi...

  19. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  20. Ecology: Deep and complex ways to survive bleaching

    NASA Astrophysics Data System (ADS)

    Pandolfi, John M.

    2015-02-01

    Mass coral bleaching events can drive reefs from being the domains of corals to becoming dominated by seaweed. But longitudinal data show that more than half of the reefs studied rebound to their former glory. See Letter p.94

  1. Continuation of sexual reproduction in Montipora capitata following bleaching

    NASA Astrophysics Data System (ADS)

    Cox, E. F.

    2007-09-01

    Bleaching is generally expected to produce detrimental impacts on coral reproduction. This study compared the fecundity of bleached and unbleached colonies of the Hawaiian coral Montipora capitata. It was hypothesized that bleaching would have no effect on reproduction because previous studies have shown that Montipora capitata can increase heterotrophic feeding following bleaching. Reproductive parameters, total reproductive output (bundles released ml-1 coral colony), number of eggs bundle-1, and egg size, measured in the summer of 2005 did not differ between colonies that bleached or did not bleach during 2004. These data were collected following a single bleaching event and cannot be used to predict the outcome should bleaching episodes become more frequent or severe.

  2. "Choice" and destiny: the substrate composition and mechanical stability of settlement structures can mediate coral recruit fate in post-bleached reefs

    NASA Astrophysics Data System (ADS)

    Yadav, Shreya; Rathod, Pooja; Alcoverro, Teresa; Arthur, Rohan

    2016-03-01

    Increasingly frequent and intense ocean warming events seriously test the buffer and recovery capacities of tropical coral reefs. Post-disturbance, available settlement structures on a reef (often dead coral skeletons) vary considerably in their mechanical stability and substrate composition, critically influencing coral recruit settlement choice and fate. In the wake of a coral mass mortality in the Lakshadweep archipelago, we examine (1) the relative availability of recruit settlement structures (from stable to unstable: reef platform, dead massive coral, consolidated rubble, dead corymbose coral, dead tabular coral, and unconsolidated rubble) in 12 recovering reefs across three atolls in the archipelago, (2) the substrate composition [crustose coralline algae (CCA), mixed turf, macroalgae] of these structural forms, and (3) whether the choice and fate of young coral are mediated by the substrate and stability of different structural forms. For this, we measured the abundance and distribution of recruit (<1 cm), juvenile (1-5 cm), and young adult (5-10) corals of 24 common coral genera. Four years after the mass mortality, reefs differed considerably in composition of settlement structures. The structures themselves varied significantly in substrate cover with dead tables largely covered in CCA [60 ± 6.05 % (SE)] and dead corymbose coral dominated by mixed turf (61.83 ± 3.8 %). The youngest visible recruits (<1 cm) clearly preferred CCA-rich structures such as dead massives and tables. However, older size classes were rarely found on unstable structures (strongly "avoiding" tables, Ivlev's electivity index, E = -0.5). Our results indicate that while substrate cover might mediate coral choice, the mechanical stability of settlement structures is critical in determining post-settlement coral survival. The composition and availability of settlement structures on a reef may serve as a characteristic signature of its recovery potential, aiding in assessments of reef

  3. Detrimental effects of host anemone bleaching on anemonefish populations

    NASA Astrophysics Data System (ADS)

    Saenz-Agudelo, P.; Jones, G. P.; Thorrold, S. R.; Planes, S.

    2011-06-01

    Coral bleaching and related reef degradation have caused significant declines in the abundance of reef-associated fishes. Most attention on the effects of bleaching has focused on corals, but bleaching is also prevalent in other cnidarians, including sea anemones. The consequences of anemone bleaching are unknown, and the demographic effects of bleaching on associated fish recruitment, survival, and reproduction are poorly understood. We examined the effect of habitat degradation including host anemone bleaching on fish abundance, egg production, and recruitment of the panda anemonefish ( Amphiprion polymnus) near Port Moresby, Papua New Guinea. Following a high-temperature anomaly in shallow waters of the region, most shallow anemones to a depth of 6 m (approximately 35% of all the anemones in this area) were severely bleached. Anemone mortality was low but bleached anemones underwent a ~34% reduction in body size. Total numbers of A. polymnus were not affected by bleaching and reduction in shelter area. While egg production of females living in bleached anemones was reduced by ~38% in 2009 compared to 2008, egg production of females on unbleached anemones did not differ significantly between years. Total recruitment in 2009 was much lower than in 2008. However, we found no evidence of recruiting larvae avoiding bleached anemones at settlement suggesting that other factors or different chemical cues were more important in determining recruitment than habitat quality. These results provide the first field evidence of detrimental effects of climate-induced bleaching and habitat degradation on reproduction and recruitment of anemonefish.

  4. Dietary shift in corallivorous Drupella snails following a major bleaching event at Koh Tao, Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Hoeksema, B. W.; Scott, C.; True, J. D.

    2013-06-01

    The island Koh Tao in the western Gulf of Thailand suffered severe coral bleaching in 2010. Its mushroom coral fauna of 20 species was surveyed during the bleaching in 2010 and after the bleaching in 2011. Multi-species assemblages of free-living mushroom corals occurred around the island, two of which were invaded by corallivorous Drupella snails after the bleaching. Previously these gastropods were known to mainly consume branching corals and hardly any mushroom corals. The snails were found preying on four fungiid species, three of which were susceptible to bleaching. The dietary shift became apparent after populations of preferred prey species (Acroporidae and Pocilloporidae) had died during the bleaching event. It seems that bleaching mortality reduced the availability of preferred prey, causing the corallivores to switch to less preferred species that occur in dense aggregations.

  5. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  6. Large-amplitude internal waves benefit corals during thermal stress

    PubMed Central

    Wall, M.; Putchim, L.; Schmidt, G. M.; Jantzen, C.; Khokiattiwong, S.; Richter, C.

    2015-01-01

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management. PMID:25473004

  7. Large-amplitude internal waves benefit corals during thermal stress.

    PubMed

    Wall, M; Putchim, L; Schmidt, G M; Jantzen, C; Khokiattiwong, S; Richter, C

    2015-01-22

    Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management.

  8. The differential effects of increasing frequency and magnitude of extreme events on coral populations.

    PubMed

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin

    2015-09-01

    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity.

  9. The differential effects of increasing frequency and magnitude of extreme events on coral populations.

    PubMed

    Fabina, Nicholas S; Baskett, Marissa L; Gross, Kevin

    2015-09-01

    Extreme events, which have profound ecological consequences, are changing in both frequency and magnitude with climate change. Because extreme temperatures induce coral bleaching, we can explore the relative impacts of changes in frequency and magnitude of high temperature events on coral reefs. Here, we combined climate projections and a dynamic population model to determine how changing bleaching regimes influence coral persistence. We additionally explored how coral traits and competition with macroalgae mediate changes in bleaching regimes. Our results predict that severe bleaching events reduce coral persistence more than frequent bleaching. Corals with low adult mortality and high growth rates are successful when bleaching is mild, but bleaching resistance is necessary to persist when bleaching is severe, regardless of frequency. The existence of macroalgae-dominated stable states reduces coral persistence and changes the relative importance of coral traits. Building on previous studies, our results predict that management efforts may need to prioritize protection of "weaker" corals with high adult mortality when bleaching is mild, and protection of "stronger" corals with high bleaching resistance when bleaching is severe. In summary, future reef projections and conservation targets depend on both local bleaching regimes and biodiversity. PMID:26552262

  10. Taxonomic, Spatial and Temporal Patterns of Bleaching in Anemones Inhabited by Anemonefishes

    PubMed Central

    Hobbs, Jean-Paul A.; Frisch, Ashley J.; Ford, Benjamin M.; Thums, Michele; Saenz-Agudelo, Pablo; Furby, Kathryn A.; Berumen, Michael L.

    2013-01-01

    Background Rising sea temperatures are causing significant destruction to coral reef ecosystems due to coral mortality from thermally-induced bleaching (loss of symbiotic algae and/or their photosynthetic pigments). Although bleaching has been intensively studied in corals, little is known about the causes and consequences of bleaching in other tropical symbiotic organisms. Methodology/Principal Findings This study used underwater visual surveys to investigate bleaching in the 10 species of anemones that host anemonefishes. Bleaching was confirmed in seven anemone species (with anecdotal reports of bleaching in the other three species) at 10 of 19 survey locations spanning the Indo-Pacific and Red Sea, indicating that anemone bleaching is taxonomically and geographically widespread. In total, bleaching was observed in 490 of the 13,896 surveyed anemones (3.5%); however, this percentage was much higher (19–100%) during five major bleaching events that were associated with periods of elevated water temperatures and coral bleaching. There was considerable spatial variation in anemone bleaching during most of these events, suggesting that certain sites and deeper waters might act as refuges. Susceptibility to bleaching varied between species, and in some species, bleaching caused reductions in size and abundance. Conclusions/Significance Anemones are long-lived with low natural mortality, which makes them particularly vulnerable to predicted increases in severity and frequency of bleaching events. Population viability will be severely compromised if anemones and their symbionts cannot acclimate or adapt to rising sea temperatures. Anemone bleaching also has negative effects to other species, particularly those that have an obligate relationship with anemones. These effects include reductions in abundance and reproductive output of anemonefishes. Therefore, the future of these iconic and commercially valuable coral reef fishes is inextricably linked to the ability of

  11. Life histories predict coral community disassembly under multiple stressors.

    PubMed

    Darling, Emily S; McClanahan, Timothy R; Côté, Isabelle M

    2013-06-01

    Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species-rich ecosystems, such as coral reefs. Here, we investigate whether life-history strategies and cotolerance to different stressors can predict community responses to fishing and temperature-driven bleaching using a 20-year time series of coral assemblages in Kenya. We found that the initial life-history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no-take marine reserves were composed of three distinct life histories - competitive, stress-tolerant and weedy- and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress-tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of 'survivor' species with stress-tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat.

  12. Hair bleach poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002702.htm Hair bleach poisoning To use the sharing features on this page, please enable JavaScript. Hair bleach poisoning occurs when someone swallows hair bleach or ...

  13. Behaviourally Mediated Phenotypic Selection in a Disturbed Coral Reef Environment

    PubMed Central

    McCormick, Mark I.

    2009-01-01

    Natural and anthropogenic disturbances are leading to changes in the nature of many habitats globally, and the magnitude and frequency of these perturbations are predicted to increase under climate change. Globally coral reefs are one of the most vulnerable ecosystems to climate change. Fishes often show relatively rapid declines in abundance when corals become stressed and die, but the processes responsible are largely unknown. This study explored the mechanism by which coral bleaching may influence the levels and selective nature of mortality on a juvenile damselfish, Pomacentrus amboinensis, which associates with hard coral. Recently settled fish had a low propensity to migrate small distances (40 cm) between habitat patches, even when densities were elevated to their natural maximum. Intraspecific interactions and space use differ among three habitats: live hard coral, bleached coral and dead algal-covered coral. Large fish pushed smaller fish further from the shelter of bleached and dead coral thereby exposing smaller fish to higher mortality than experienced on healthy coral. Small recruits suffered higher mortality than large recruits on bleached and dead coral. Mortality was not size selective on live coral. Survival was 3 times as high on live coral as on either bleached or dead coral. Subtle behavioural interactions between fish and their habitats influence the fundamental link between life history stages, the distribution of phenotypic traits in the local population and potentially the evolution of life history strategies. PMID:19763262

  14. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching.

    PubMed

    Rosic, Nedeljka N; Pernice, Mathieu; Dove, Sophie; Dunn, Simon; Hoegh-Guldberg, Ove

    2011-01-01

    Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation.

  15. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching

    PubMed Central

    Pernice, Mathieu; Dove, Sophie; Dunn, Simon; Hoegh-Guldberg, Ove

    2010-01-01

    Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation. PMID:20821176

  16. Does seaweed-coral competition make seaweeds more palatable?

    NASA Astrophysics Data System (ADS)

    Longo, G. O.; Hay, M. E.

    2015-03-01

    Seaweed-coral interactions are increasingly common on modern coral reefs, but the dynamics, processes, and mechanisms affecting these interactions are inadequately understood. We investigated the frequency and effect of seaweed-coral contacts for common seaweeds and corals in Belize. Effects on corals were evaluated by measuring the frequency and extent of bleaching when contacted by various seaweeds, and effects on a common seaweed were evaluated by assessing whether contact with coral made the seaweed more palatable to the sea urchin Diadema antillarum. Coral-seaweed contacts were particularly frequent between Agaricia corals and the seaweed Halimeda opuntia, with this interaction being associated with coral bleaching in 95 % of contacts. Pooling across all coral species, H. opuntia was the seaweed most commonly contacting corals and most frequently associated with localized bleaching at the point of contact. Articulated coralline algae, Halimeda tuna and Lobophora variegata also frequently contacted corals and were commonly associated with bleaching. The common corals Agaricia and Porites bleached with similar frequency when contacted by H. opuntia (95 and 90 %, respectively), but Agaricia experienced more damage than Porites when contacted by articulated coralline algae or H. tuna. When spatially paired individuals of H. opuntia that had been in contact with Agaricia and not in contact with any coral were collected from the reefs and offered to D. antillarum, urchins consumed about 150 % more of thalli that had been competing with Agaricia. Contact and non-contact thalli did not differ in nutritional traits (ash-free-dry-mass, C or N concentrations), suggesting that Halimeda chemical defenses may have been compromised by coral-algal contact. If competition with corals commonly enhances seaweed palatability, then the dynamics and nuances of small-scale seaweed-coral-herbivore interactions at coral edges are deserving of greater attention in that such

  17. Microbial diseases of corals and global warming.

    PubMed

    Rosenberg, Eugene; Ben-Haim, Yael

    2002-06-01

    Coral bleaching and other diseases of corals have increased dramatically during the last few decades. As outbreaks of these diseases are highly correlated with increased sea-water temperature, one of the consequences of global warming will probably be mass destruction of coral reefs. The causative agent(s) of a few of these diseases have been reported: bleaching of Oculina patagonica by Vibrio shiloi; black band disease by a microbial consortium; sea-fan disease (aspergillosis) by Aspergillus sydowii; and coral white plague possibly by Sphingomonas sp. In addition, we have recently discovered that Vibrio coralyticus is the aetiological agent for bleaching the coral Pocillopora damicornis in the Red Sea. In the case of coral bleaching by V. shiloi, the major effect of increasing temperature is the expression of virulence genes by the pathogen. At high summer sea-water temperatures, V. shiloi produces an adhesin that allows it to adhere to a beta-galactoside-containing receptor in the coral mucus, penetrate into the coral epidermis, multiply intracellularly, differentiate into a viable-but-not-culturable (VBNC) state and produce toxins that inhibit photosynthesis and lyse the symbiotic zooxanthellae. In black band disease, sulphide is produced at the coral-microbial biofilm interface, which is probably responsible for tissue death. Reports of newly emerging coral diseases and the lack of epidemiological and biochemical information on the known diseases indicate that this will become a fertile area of research in the interface between microbial ecology and infectious disease.

  18. Localized bleaching in Hawaii causes tissue loss and a reduction in the number of gametes in Porites compressa

    NASA Astrophysics Data System (ADS)

    Sudek, M.; Aeby, G. S.; Davy, S. K.

    2012-06-01

    Localized bleaching (a discrete white area on the coral) was observed in one of the main framework-building corals in Hawaii, Porites compressa. This study aimed to determine the degree of virulence of the lesion. We investigated the whole-colony effects by following disease progression through time and examining the effect of localized bleaching on coral fecundity. After two months, 35 of 42 (83.3%) individually tagged colonies affected by localized bleaching showed tissue loss and partial colony mortality. Histological slides of healthy P. compressa and samples from colonies showing signs of localized bleaching were compared showing that affected colonies had a significant reduction (almost 50%) in gamete development, egg numbers, and egg size in the affected tissue. The observed localized bleaching results in both partial colony mortality and a reduced number of gametes and was termed Porites Bleaching with Tissue Loss (PBTL).

  19. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  20. Specializing on vulnerable habitat: Acropora selectivity among damselfish recruits and the risk of bleaching-induced habitat loss

    NASA Astrophysics Data System (ADS)

    Bonin, M. C.

    2012-03-01

    Coral reef habitats are increasingly being degraded and destroyed by a range of disturbances, most notably climate-induced coral bleaching. Habitat specialists, particularly those associated with susceptible coral species, are clearly among the most vulnerable to population decline or extinction. However, the degree of specialization on coral microhabitats is still unclear for one of the most ubiquitous, abundant and well studied of coral reef fish families—the damselfishes (Pomacentridae). Using high taxonomic resolution surveys of microhabitat use and availability, this study provides the first species-level description of patterns of Acropora selectivity among recruits of 10 damselfish species in order to determine their vulnerability to habitat degradation. In addition, surveys of the bleaching susceptibility of 16 branching coral species revealed which preferred recruitment microhabitats are at highest risk of decline as a result of chronic coral bleaching. Four species (i.e., Chrysiptera parasema, Pomacentrus moluccensis, Dascyllus melanurus and Chromis retrofasciata) were identified as highly vulnerable because they used only branching hard corals as recruitment habitat and primarily associated with only 2-4 coral species. The bleaching surveys revealed that five species of Acropora were highly susceptible to bleaching, with more than 50% of colonies either severely bleached or already dead. These highly susceptible corals included two of the preferred microhabitats of the specialist C. parasema and represented a significant proportion of its total recruitment microhabitat. In contrast, highly susceptible corals were rarely used by another specialist, P. moluccensis, suggesting that this species faces a lower risk of bleaching-induced habitat loss compared to C. parasema. As degradation to coral reef habitats continues, specialists will increasingly be forced to use alternative recruitment microhabitats, and this is likely to reduce population

  1. CORAL REEF RESPONSES TO GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Increased emissions of greenhouse gases and synthetic compounds are related to rising sea temperatures and increased penetration of ultraviolet radiation (UVR), two factors that are consistently linked to bleaching and disease of corals. Coral reefs play a major role in the envir...

  2. Molecular toxicology of corals: a review.

    PubMed

    Rotchell, Jeanette M; Ostrander, Gary K

    2011-01-01

    Coral reefs worldwide have become increasingly affected by a phenomenon known as "coral bleaching," the loss of the symbiotic algae from the host corals. The underlying causes and mechanism(s) of coral bleaching are not well known, although several have been hypothesized. While coral bleaching has been a primary focus in recent years, corals respond differentially to numerous environmental stresses. The impacts of heat, hydrocarbons, salinity, sewage effluents, biocides, heavy metals, and ultraviolet light have been investigated in both laboratory experiments and field surveys among multiple coral species. Herein what is known regarding the biological impacts of such stresses on corals at the molecular level of organization is summarized. The objective is to focus attention at the early stages of biological effects in order to encourage and facilitate research that provide ways to understand how changes at the molecular level might elucidate processes likely occurring at the population level. This, in turn, should accelerate studies that may elucidate the cellular and physiological changes contributing to coral decline, rather than just document the continued global loss of coral diversity and abundance.

  3. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-03-04

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology.

  4. Heterotrophic Compensation: A Possible Mechanism for Resilience of Coral Reefs to Global Warming or a Sign of Prolonged Stress?

    PubMed Central

    Hughes, Adam D.; Grottoli, Andréa G.

    2013-01-01

    Thermally induced bleaching has caused a global decline in corals and the frequency of such bleaching events will increase. Thermal bleaching severely disrupts the trophic behaviour of the coral holobiont, reducing the photosynthetically derived energy available to the coral host. In the short term this reduction in energy transfer from endosymbiotic algae results in an energy deficit for the coral host. If the bleaching event is short-lived then the coral may survive this energy deficit by depleting its lipid reserves, or by increasing heterotrophic energy acquisition. We show for the first time that the coral animal is capable of increasing the amount of heterotrophic carbon incorporated into its tissues for almost a year following bleaching. This prolonged heterotrophic compensation could be a sign of resilience or prolonged stress. If the heterotrophic compensation is in fact an acclimatization response, then this physiological response could act as a buffer from future bleaching by providing sufficient heterotrophic energy to compensate for photoautotrophic energy losses during bleaching, and potentially minimizing the effect of subsequent elevated temperature stresses. However, if the elevated incorporation of zooplankton is a sign that the effects of bleaching continue to be stressful on the holobiont, even after 11 months of recovery, then this physiological response would indicate that complete coral recovery requires more than 11 months to achieve. If coral bleaching becomes an annual global phenomenon by mid-century, then present temporal refugia will not be sufficient to allow coral colonies to recover between bleaching events and coral reefs will become increasingly less resilient to future climate change. If, however, increasing their sequestration of zooplankton-derived nutrition into their tissues over prolonged periods of time is a compensating mechanism, the impacts of annual bleaching may be reduced. Thus, some coral species may be better

  5. Methods to Estimate Solar Radiation Dosimetry in Coral Reefs Using Remote Sensed, Modeled, and in Situ Data.

    EPA Science Inventory

    Solar irradiance has been increasingly recognized as an important determinant of bleaching in coral reefs, but measurements of solar radiation exposure within coral reefs have been relatively limited. Solar irradiance and diffuse down welling attenuation coefficients (Kd, m-1) we...

  6. SIMULATED SOLAR ULTRAVIOLET RADIATION EFFECTS ON 5 SPECIES OF SCLERACTINIAN CORALS

    EPA Science Inventory

    The impact of global climate change factors such as increased temperature and ultraviolet radiation (UVR) on coral bleaching are of continued interest to the USEPA. Coral bleaching occurs when symbiotic zooxanthellae and/or their pigments are depleted in response to stressors suc...

  7. Chemically rich seaweeds poison corals when not controlled by herbivores

    PubMed Central

    Rasher, Douglas B.; Hay, Mark E.

    2010-01-01

    Coral reefs are in dramatic global decline, with seaweeds commonly replacing corals. It is unclear, however, whether seaweeds harm corals directly or colonize opportunistically following their decline and then suppress coral recruitment. In the Caribbean and tropical Pacific, we show that, when protected from herbivores, ~40 to 70% of common seaweeds cause bleaching and death of coral tissue when in direct contact. For seaweeds that harmed coral tissues, their lipid-soluble extracts also produced rapid bleaching. Coral bleaching and mortality was limited to areas of direct contact with seaweeds or their extracts. These patterns suggest that allelopathic seaweed-coral interactions can be important on reefs lacking herbivore control of seaweeds, and that these interactions involve lipid-soluble metabolites transferred via direct contact. Seaweeds were rapidly consumed when placed on a Pacific reef protected from fishing but were left intact or consumed at slower rates on an adjacent fished reef, indicating that herbivory will suppress seaweeds and lower frequency of allelopathic damage to corals if reefs retain intact food webs. With continued removal of herbivores from coral reefs, seaweeds are becoming more common. This occurrence will lead to increasing frequency of seaweed-coral contacts, increasing allelopathic suppression of remaining corals, and continuing decline of reef corals. PMID:20457927

  8. Chemically rich seaweeds poison corals when not controlled by herbivores.

    PubMed

    Rasher, Douglas B; Hay, Mark E

    2010-05-25

    Coral reefs are in dramatic global decline, with seaweeds commonly replacing corals. It is unclear, however, whether seaweeds harm corals directly or colonize opportunistically following their decline and then suppress coral recruitment. In the Caribbean and tropical Pacific, we show that, when protected from herbivores, approximately 40 to 70% of common seaweeds cause bleaching and death of coral tissue when in direct contact. For seaweeds that harmed coral tissues, their lipid-soluble extracts also produced rapid bleaching. Coral bleaching and mortality was limited to areas of direct contact with seaweeds or their extracts. These patterns suggest that allelopathic seaweed-coral interactions can be important on reefs lacking herbivore control of seaweeds, and that these interactions involve lipid-soluble metabolites transferred via direct contact. Seaweeds were rapidly consumed when placed on a Pacific reef protected from fishing but were left intact or consumed at slower rates on an adjacent fished reef, indicating that herbivory will suppress seaweeds and lower frequency of allelopathic damage to corals if reefs retain intact food webs. With continued removal of herbivores from coral reefs, seaweeds are becoming more common. This occurrence will lead to increasing frequency of seaweed-coral contacts, increasing allelopathic suppression of remaining corals, and continuing decline of reef corals.

  9. Large-amplitude internal waves sustain coral health during thermal stress

    NASA Astrophysics Data System (ADS)

    Schmidt, Gertraud M.; Wall, Marlene; Taylor, Marc; Jantzen, Carin; Richter, Claudio

    2016-09-01

    Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.

  10. Formalising a mechanistic linkage between heterotrophic feeding and thermal bleaching resistance

    NASA Astrophysics Data System (ADS)

    Wooldridge, Scott A.

    2014-12-01

    In this paper, I utilise the CO2 (sink) limitation model of coral bleaching to propose a new biochemical framework that explains how certain (well-adapted) coral species can utilise heterotrophic carbon acquisition to combat the damaging algal photoinhibition response sequence that underpins thermal bleaching, thereby increasing thermal bleaching resistance. This mechanistic linkage helps to clarify a number of previously challenging experimental responses arising from feeding (versus starved) temperature stress experiments, and isotope labelling (tracer) experiments with heterotrophic carbon sources (e.g., zooplankton). In an era of rapidly warming surface ocean temperatures, the conferred fitness benefits arising from such a mechanistic linkage are considerable. Yet, various ecological constraints are outlined which caution against the ultimate benefit of the mechanism for raising bleaching thresholds at the coral community (reef) scale. Future experiments are suggested that can strengthen these proposed arguments.

  11. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    PubMed

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site.

  12. Local bleaching thresholds established by remote sensing techniques vary among reefs with deviating bleaching patterns during the 2012 event in the Arabian/Persian Gulf.

    PubMed

    Shuail, Dawood; Wiedenmann, Jörg; D'Angelo, Cecilia; Baird, Andrew H; Pratchett, Morgan S; Riegl, Bernhard; Burt, John A; Petrov, Peter; Amos, Carl

    2016-04-30

    A severe bleaching event affected coral communities off the coast of Abu Dhabi, UAE in August/September, 2012. In Saadiyat and Ras Ghanada reefs ~40% of the corals showed signs of bleaching. In contrast, only 15% of the corals were affected on Delma reef. Bleaching threshold temperatures for these sites were established using remotely sensed sea surface temperature (SST) data recorded by MODIS-Aqua. The calculated threshold temperatures varied between locations (34.48 °C, 34.55 °C, 35.05 °C), resulting in site-specific deviations in the numbers of days during which these thresholds were exceeded. Hence, the less severe bleaching of Delma reef might be explained by the lower relative heat stress experienced by this coral community. However, the dominance of Porites spp. that is associated with the long-term exposure of Delma reef to elevated temperatures, as well as the more pristine setting may have additionally contributed to the higher coral bleaching threshold for this site. PMID:26971815

  13. Unprecedented Disease-Related Coral Mortality in Southeastern Florida.

    PubMed

    Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert

    2016-01-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef. PMID:27506875

  14. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    PubMed Central

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-01-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef. PMID:27506875

  15. Unprecedented Disease-Related Coral Mortality in Southeastern Florida.

    PubMed

    Precht, William F; Gintert, Brooke E; Robbart, Martha L; Fura, Ryan; van Woesik, Robert

    2016-08-10

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  16. Crisis on coral reefs linked to climate change

    NASA Astrophysics Data System (ADS)

    Wellington, Gerard M.; Glynn, Peter W.; Strong, Alan E.; Navarrete, Sergio A.; Wieters, Evie; Hubbard, Dennis

    2001-01-01

    Since 1982, coral reefs worldwide have been subjected to an increased frequency of the phenomenon known as coral bleaching. Bleaching involves the dramatic loss of pigmented, single-celled endosymbiotic algae that live within the gastrodermal cells of a coral host that depends on this relationship for survival. Prior to the 1980s, and as early as the 1920s when coral reef research intensified, localized bleaching events were reported and attributed to factors such as extremely low tides, hurricane damage, torrential rainstorms, freshwater runoff near reefs, or toxic algal blooms [Glynn, 1993]. However, these early occurrences have recently been overshadowed by geographically larger and more frequent bleaching events whose impact has expanded to regional and global proportions.

  17. REGIONAL MONITORING OF CORAL CONDITION IN THE FLORIDA KEYS

    EPA Science Inventory

    Tropical reef corals have experienced unprecedented levels of bleaching and disease during the last three decades. Declining health has been attributed to several stressors, including exposures to elevated water temperature, increased solar radiation, and degraded water quality. ...

  18. Bleach vs. Bacteria

    MedlinePlus

    ... Inside Life Science > Bleach vs. Bacteria Inside Life Science View All Articles | Inside Life Science Home Page Bleach vs. Bacteria By Sharon Reynolds ... For Proteins, Form Shapes Function This Inside Life Science article also appears on LiveScience . Learn about related ...

  19. Food availability promotes rapid recovery from thermal stress in a scleractinian coral

    NASA Astrophysics Data System (ADS)

    Connolly, S. R.; Lopez-Yglesias, M. A.; Anthony, K. R. N.

    2012-12-01

    Bleaching in corals due to environmental stress represents a loss of energy intake often leading to an increase in mortality risk. Successful coral recovery from severe bleaching events may depend on the rate of replenishment of algal symbiont populations following the period of thermal stress, the supply of an alternative food source, or both. Here, we explore the role of food availability in promoting the survival and recovery of a common coral ( Acropora intermedia) following acute experimentally induced thermal stress. Fed corals were provided with live rotifers daily, to maintain densities of zooplankton in tanks that are typical of coral reefs. After a 6-week acclimation phase, heated corals were subjected to a +4 °C thermal anomaly for a 7-day period (bleaching phase) then temperatures were returned to normal for a further 2 weeks (recovery phase). Results demonstrated that heated corals had higher survival when they were provided with heterotrophic food. Fed corals experienced reduced loss of chlorophyll a, relative to unfed corals. During the recovery phase, both fed and unfed corals recovered within a few days; however, fed corals recovered to pre-bleaching phase levels of chlorophyll a, whereas unfed corals stabilized approximately one-third below this level. Protein levels of fed corals declined markedly during the bleaching phase, but recovered all of their losses by the end of the recovery phase. In contrast, unfed corals had low protein levels that were maintained throughout the experiment. To the extent that these results are representative of corals' responses to thermal anomalies in nature, the findings imply that availability of particulate food matter has the potential to increase corals' capacity to survive thermally induced bleaching and to ameliorate its sub-lethal effects. They also support the hypothesis that different rates of heterotrophy are an important determinant of variation in resilience to thermal stress among reef environments.

  20. Potential role of viruses in white plague coral disease

    PubMed Central

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne MS; Smith, Tyler B; Thurber, Rebecca Vega

    2014-01-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline. PMID:23949663

  1. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline. PMID:23949663

  2. Potential role of viruses in white plague coral disease.

    PubMed

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  3. New tool to manage coral reefs

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The National Oceanic and Atmospheric Administration is making available a new tool for coral reef managers to monitor the cumulative thermal stress of several coral reefs around the world, including the Great Barrier Reef, and reefs by the Galapagos Islands, the agency announced on 25 February.The agency's "Degree Heating Weeks" product uses satellite-derived information to allow continuous monitoring of the extent and acuteness of thermal stress, which are key predictors of coral bleaching, and which contribute to coral reef degradation.

  4. Thermal tolerances of reef corals in the Gulf: a review of the potential for increasing coral survival and adaptation to climate change through assisted translocation.

    PubMed

    Coles, Steve L; Riegl, Bernhard M

    2013-07-30

    Corals in the Gulf withstand summer temperatures up to 10 °C higher than corals elsewhere and have recovered from extreme temperature events in 10 years or less. This heat-tolerance of Gulf corals has positive implications for the world's coral populations to adapt to increasing water temperatures. However, survival of Gulf corals has been severely tested by 35-37 °C temperatures five times in the last 15 years, each time causing extensive coral bleaching and mortality. Anticipated future temperature increases may therefore challenge survival of already highly stressed Gulf corals. Previously proposed translocation of Gulf corals to introduce temperature-adapted corals outside of the Gulf is assessed and determined to be problematical, and to be considered a tool of last resort. Coral culture and transplantation within the Gulf is feasible for helping maintain coral species populations and preserving genomes and adaptive capacities of Gulf corals that are endangered by future thermal stress events.

  5. Agents of coral mortality on reef formations of the Colombian Pacific.

    PubMed

    Navas-Camacho, Raúl; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina

    2010-05-01

    The National Monitoring System for Coral Reefs of Colombia (SIMAC) monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease) in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utria Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date.

  6. Pediatric cutaneous bleach burns.

    PubMed

    Lang, Cathleen; Cox, Matthew

    2013-07-01

    Bleach is a common household product which can cause caustic injuries. Its effects on mucosal tissues and the eye have been well-described in the literature. However, there is little information published regarding the appearance and effect of bleach on a child's skin. We report three children who sustained chemical burns after contact with bleach. All three children sustained accidental bleach burns while at home, and each child had a distinct brown discoloration to the skin from the injury. All three children had treatment and follow-up for their burns. Two of the children sustained more severe burns, which were extensive and required more time to heal. There was also long-term scarring associated with the severe burns. Like most burns, pain control is required until the injury heals.

  7. Pediatric cutaneous bleach burns.

    PubMed

    Lang, Cathleen; Cox, Matthew

    2013-07-01

    Bleach is a common household product which can cause caustic injuries. Its effects on mucosal tissues and the eye have been well-described in the literature. However, there is little information published regarding the appearance and effect of bleach on a child's skin. We report three children who sustained chemical burns after contact with bleach. All three children sustained accidental bleach burns while at home, and each child had a distinct brown discoloration to the skin from the injury. All three children had treatment and follow-up for their burns. Two of the children sustained more severe burns, which were extensive and required more time to heal. There was also long-term scarring associated with the severe burns. Like most burns, pain control is required until the injury heals. PMID:23545350

  8. Comparative sensitivity of six scleractinian corals to temperature and solar radiation

    EPA Science Inventory

    Scleractinian corals were subjected to six combinations of temperature and solar radiation regimes to evaluate their effects on coral bleaching, survival, and tissue surface area changes during and after an exposure period. A recirculating coral exposure system was coupled to a ...

  9. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  10. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts.

    PubMed

    Mouchka, Morgan E; Hewson, Ian; Harvell, C Drew

    2010-10-01

    The importance of associations between microorganisms and their invertebrate hosts is becoming increasingly apparent. An emerging field, driven by the necessity to understand the microbial relationships that both maximize coral health and cause coral disease, is the study of coral-bacteria interactions. In this article, we review our current understanding of the diversity, specificity, development, and functions of coral-associated bacteria. We also summarize what is known regarding the role of coral microbiota in the health and disease of coral. We conduct a meta-analysis to determine whether the presence of unique taxa correlates with the state of coral health (i.e. healthy, diseased or bleached), as well as whether coral reef habitats harbor clusters of distinct taxa. We find that healthy and bleached corals harbor similar dominant taxa, although bleached corals had higher proportions of Vibrio and Acidobacteria. Diseased corals generally had more Rhodobacter, Clostridia, and Cyanobacteria sequences, and fewer Oceanospirillum sequences. We caution, however, that while 16S rRNA is useful for microbial species identification, it is a poor predictor of habitat or lifestyle, and care should be taken in interpretation of 16S rRNA surveys to identify potential pathogens amongst complex coral-microbial assemblages. Finally, we highlight evidence that coral-bacterial assemblages could be sensitive to the effects of climatic change. We suggest that the relationship between coral and their bacterial associates represents a valuable model that can be applied to the broader discipline of invertebrate-microbial interactions.

  11. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    NASA Astrophysics Data System (ADS)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  12. The role of microorganisms in coral health, disease and evolution.

    PubMed

    Rosenberg, Eugene; Koren, Omry; Reshef, Leah; Efrony, Rotem; Zilber-Rosenberg, Ilana

    2007-05-01

    Coral microbiology is an emerging field, driven largely by a desire to understand, and ultimately prevent, the worldwide destruction of coral reefs. The mucus layer, skeleton and tissues of healthy corals all contain large populations of eukaryotic algae, bacteria and archaea. These microorganisms confer benefits to their host by various mechanisms, including photosynthesis, nitrogen fixation, the provision of nutrients and infection prevention. Conversely, in conditions of environmental stress, certain microorganisms cause coral bleaching and other diseases. Recent research indicates that corals can develop resistance to specific pathogens and adapt to higher environmental temperatures. To explain these findings the coral probiotic hypothesis proposes the occurrence of a dynamic relationship between symbiotic microorganisms and corals that selects for the coral holobiont that is best suited for the prevailing environmental conditions. Generalization of the coral probiotic hypothesis has led us to propose the hologenome theory of evolution.

  13. The role of microorganisms in coral health, disease and evolution.

    PubMed

    Rosenberg, Eugene; Koren, Omry; Reshef, Leah; Efrony, Rotem; Zilber-Rosenberg, Ilana

    2007-05-01

    Coral microbiology is an emerging field, driven largely by a desire to understand, and ultimately prevent, the worldwide destruction of coral reefs. The mucus layer, skeleton and tissues of healthy corals all contain large populations of eukaryotic algae, bacteria and archaea. These microorganisms confer benefits to their host by various mechanisms, including photosynthesis, nitrogen fixation, the provision of nutrients and infection prevention. Conversely, in conditions of environmental stress, certain microorganisms cause coral bleaching and other diseases. Recent research indicates that corals can develop resistance to specific pathogens and adapt to higher environmental temperatures. To explain these findings the coral probiotic hypothesis proposes the occurrence of a dynamic relationship between symbiotic microorganisms and corals that selects for the coral holobiont that is best suited for the prevailing environmental conditions. Generalization of the coral probiotic hypothesis has led us to propose the hologenome theory of evolution. PMID:17384666

  14. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    PubMed

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment. PMID:23063708

  15. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    PubMed

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment.

  16. Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching.

    PubMed

    Kvitt, Hagit; Rosenfeld, Hanna; Zandbank, Keren; Tchernov, Dan

    2011-01-01

    Elevated seawater temperatures are associated with coral bleaching events and related mortality. Nevertheless, some coral species are able to survive bleaching and recover. The apoptotic responses associated to this ability were studied over 3 years in the coral Stylophora pistillata from the Gulf of Eilat subjected to long term thermal stress. These include caspase activity and the expression profiles of the S. pistillata caspase and Bcl-2 genes (StyCasp and StyBcl-2-like) cloned in this study. In corals exposed to thermal stress (32 or 34°C), caspase activity and the expression levels of the StyBcl-2-like gene increased over time (6-48 h) and declined to basal levels within 72 h of thermal stress. Distinct transcript levels were obtained for the StyCasp gene, with stimulated expression from 6 to 48 h of 34°C thermal stress, coinciding with the onset of bleaching. Increased cell death was detected in situ only between 6 to 48 h of stress and was limited to the gastroderm. The bleached corals survived up to one month at 32°C, and recovered back symbionts when placed at 24°C. These results point to a two-stage response in corals that withstand thermal stress: (i) the onset of apoptosis, accompanied by rapid activation of anti-oxidant/anti-apoptotic mediators that block the progression of apoptosis to other cells and (ii) acclimatization of the coral to the chronic thermal stress alongside the completion of symbiosis breakdown. Accordingly, the coral's ability to rapidly curb apoptosis appears to be the most important trait affecting the coral's thermotolerance and survival.

  17. The future of coral reefs

    NASA Astrophysics Data System (ADS)

    Knowlton, Nancy

    2001-05-01

    Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived "weedy" corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral "bleaching" (the breakdown of coral-algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.

  18. Predicting climate-driven regime shifts versus rebound potential in coral reefs.

    PubMed

    Graham, Nicholas A J; Jennings, Simon; MacNeil, M Aaron; Mouillot, David; Wilson, Shaun K

    2015-02-01

    Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

  19. A coral reef refuge in the Red Sea.

    PubMed

    Fine, Maoz; Gildor, Hezi; Genin, Amatzia

    2013-12-01

    The stability and persistence of coral reefs in the decades to come is uncertain due to global warming and repeated bleaching events that will lead to reduced resilience of these ecological and socio-economically important ecosystems. Identifying key refugia is potentially important for future conservation actions. We suggest that the Gulf of Aqaba (GoA) (Red Sea) may serve as a reef refugium due to a unique suite of environmental conditions. Our hypothesis is based on experimental detection of an exceptionally high bleaching threshold of northern Red Sea corals and on the potential dispersal of coral planulae larvae through a selective thermal barrier estimated using an ocean model. We propose that millennia of natural selection in the form of a thermal barrier at the southernmost end of the Red Sea have selected coral genotypes that are less susceptible to thermal stress in the northern Red Sea, delaying bleaching events in the GoA by at least a century.

  20. Corals from Space

    NASA Technical Reports Server (NTRS)

    Patzert, William C.

    1999-01-01

    The goal of this research is to monitor the health and vigor of coral reef ecosystems, and their sensitivity to natural and anthropogenic climate changes. To achieve these lofty goals, this research is investigating the feasibility of using spaceborne high-resolution spectrometers (on the US Landsat, French Systeme Probatoire pour l'Observation de la Terre [SPOT] and/or the Indian Resources Satellite [IRS 1C & 1D] spacecraft) to first map the aerial extent of coral reef systems, and second separate the amount of particular corals. If this is successful, we could potentially provide a quantum leap in our understanding of coral reef systems, as well as provide much needed baseline data to measure future changes in global coral reef ecosystems. In collaboration with Tomas Tomascik, Yann Morel, and other colleagues, a series of experiments were planned to coordinate in situ coral observations, high-resolution spaceborne imagery (from Landsat, SPOT, and, possibly, IRS IC spacecraft), and NASA Space Shuttle photographs and digital images. Our eventual goal is to develop "coral health algorithms" that can be used to assess time series of imagery collected from satellite sensors (Landsat since 1972, SPOT since 1986) in concert with in situ observations. The bad news from last year was that from 1997 to mid- 1998, the extreme cloudiness over southeast Asia due to prolonged smoke from El Nino-related fires and the economic chaos in this region frustrated both our space and reef-based data collection activities. When this volatile situation stabilizes, we will restart these activities. The good news was that in collaboration with Al Strong at the National Oceanic and Atmospheric Administration (NOAA) we had an exciting year operationally using the NOAA's Advanced Very High Resolution Radiometer sensor derived sea surface temperature products to warn of coral "bleaching" at many locations throughout the tropics. Data from NOAA's satellites showed that during the El Nino of

  1. Coral recovery may not herald the return of fishes on damaged coral reefs.

    PubMed

    Bellwood, David R; Baird, Andrew H; Depczynski, Martial; González-Cabello, Alonso; Hoey, Andrew S; Lefèvre, Carine D; Tanner, Jennifer K

    2012-10-01

    The dynamic nature of coral reefs offers a rare opportunity to examine the response of ecosystems to disruption due to climate change. In 1998, the Great Barrier Reef experienced widespread coral bleaching and mortality. As a result, cryptobenthic fish assemblages underwent a dramatic phase-shift. Thirteen years, and up to 96 fish generations later, the cryptobenthic fish assemblage has not returned to its pre-bleach configuration. This is despite coral abundances returning to, or exceeding, pre-bleach values. The post-bleach fish assemblage exhibits no evidence of recovery. If these short-lived fish species are a model for their longer-lived counterparts, they suggest that (1) the full effects of the 1998 bleaching event on long-lived fish populations have yet to be seen, (2) it may take decades, or more, before recovery or regeneration of these long-lived species will begin, and (3) fish assemblages may not recover to their previous composition despite the return of corals.

  2. The engine of the reef: photobiology of the coral-algal symbiosis.

    PubMed

    Roth, Melissa S

    2014-01-01

    Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  3. Modeling the effects of climate change and acidification on global coral reefs

    NASA Astrophysics Data System (ADS)

    Logan, C. A.; Donner, S. D.; Eakin, C.; Dunne, J. P.

    2010-12-01

    Climate warming threatens to increase the frequency of mass coral bleaching events. Meanwhile, ocean acidification may increase susceptibility to these events and slow the recovery of corals following bleaching. Using future sea surface warming scenarios from global coupled climate models, previous studies have estimated that corals will experience biannual bleaching events by mid-century unless they are able to acclimatize or adapt at a rate of ~0.2-1.0°C per decade. Empirical studies also show that certain coral ecotypes may be more resistant to bleaching than others (e.g. massive vs. branching). Likewise, more variable thermal history may play a significant role in increasing resistance to bleaching. Better quantifying the impacts of climate change and ocean acidification on coral reefs under different future scenarios is critical to making proactive decisions about both mitigation of greenhouse gas emissions and adaptation to climate change. Proposed here is a model that uses two of the ESM2 GFDL models and combines several previous attempts at modeling climate change effects. This model incorporates thermal history and adaptability into a modified Degree Heating Week bleaching threshold. The model is designed to examine the effects of rising SSTs alone as well as in combination with ocean acidification and other factors to predict future global coral reef bleaching frequency and response by coral ecotype. The ESM2 GFDL models are validated for use in coral reef areas by comparing model results against historical SST satellite data for the years 1985-2006 at 4km and 50km spatial resolutions to assess the models’ reproducibility of mean annual temperature, range, and variability. The modified bleaching threshold is tested against observational bleaching records in well-documented areas (e.g., Great Barrier Reef).

  4. Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature

    NASA Astrophysics Data System (ADS)

    Jokiel, P. L.; Coles, S. L.

    1990-04-01

    Loss of symbiotic zooxanthellae, or “bleaching” is one of the first visible signs of thermal stress. Critical threshold temperatures for coral bleaching vary geographically, but can be expressed universally as fixed increments relative to the historical mean local summer maximum. Bleaching can be induced by short-term exposure (i.e. 1 2 days) at temperature elevations of 3°C to 4°C above normal summer ambient or by long-term exposure (i.e. several weeks) at elevations of 1°C to 2°C. Corals in both tropical and subtropical locations live at temperatures close to their lethal limits during the summer months. Temperature elevations above summer ambient, but still below the bleaching threshold, can impair growth and reproduction. Temperature and light interact synergistically; high light accelerates bleaching caused by elevated temperature. Bleaching susceptibility is correlated with respiration rate. Any factor that increases respiration (such as high incident light) accelerates bleaching at higher temperatures. Ultraviolet (UV) radiation is a detrimental factor associated with solar radiation. Increased UV due to thinning of the earth's protective ozone layer may aggravate bleaching and mortality caused by global warming. A warming trend in Hawaiian waters has been observed over the past decade. In 1986, 1987 and 1988 Hawaiian corals were perilously close to their bleaching threshold during the summer months, and localized bleachings did occur. In some cases, local warming of surface water on shallow reef flats exceeded this threshold temperature and caused localized coral bleaching. In other cases, heating of large mesoscale eddies in the lee of the larger islands apparently caused wide-scale bleaching of the most sensitive coral species ( Pocillopora meandrina) to depths of 20 m. A continuation of the warming trend in Hawaii would lead to mass bleachings similar to those observed recently in other geographic locations.

  5. Improved water quality can ameliorate effects of climate change on corals.

    PubMed

    Wooldridge, Scott A; Done, Terence J

    2009-09-01

    The threats of wide-scale coral bleaching and reef demise associated with anthropogenic climate change are widely known. Moreover, rates of genetic adaptation and/or changes in the coral-zooxanthella partnerships are considered unlikely to be sufficiently fast for corals to acquire increased physiological resistance to increasing sea temperatures and declining pH. However, it has been suggested that coral reef resilience to climate change may be improved by good local management of coral reefs, including management of water quality. Here, using major data sets from the Great Barrier Reef (GBR), Australia, we investigate geographic patterns of coral bleaching in 1998 and 2002 and outline a synergism between heat stress and nutrient flux as a major causative mechanism for those patterns. The study provides the first concrete evidence for the oft-expressed belief that improved coral reef management will increase the regional-scale survival prospects of coral reefs to global climate change.

  6. Historical Temperature Variability Affects Coral Response to Heat Stress

    PubMed Central

    Carilli, Jessica; Donner, Simon D.; Hartmann, Aaron C.

    2012-01-01

    Coral bleaching is the breakdown of symbiosis between coral animal hosts and their dinoflagellate algae symbionts in response to environmental stress. On large spatial scales, heat stress is the most common factor causing bleaching, which is predicted to increase in frequency and severity as the climate warms. There is evidence that the temperature threshold at which bleaching occurs varies with local environmental conditions and background climate conditions. We investigated the influence of past temperature variability on coral susceptibility to bleaching, using the natural gradient in peak temperature variability in the Gilbert Islands, Republic of Kiribati. The spatial pattern in skeletal growth rates and partial mortality scars found in massive Porites sp. across the central and northern islands suggests that corals subject to larger year-to-year fluctuations in maximum ocean temperature were more resistant to a 2004 warm-water event. In addition, a subsequent 2009 warm event had a disproportionately larger impact on those corals from the island with lower historical heat stress, as indicated by lower concentrations of triacylglycerol, a lipid utilized for energy, as well as thinner tissue in those corals. This study indicates that coral reefs in locations with more frequent warm events may be more resilient to future warming, and protection measures may be more effective in these regions. PMID:22479626

  7. Macroalgal terpenes function as allelopathic agents against reef corals.

    PubMed

    Rasher, Douglas B; Stout, E Paige; Engel, Sebastian; Kubanek, Julia; Hay, Mark E

    2011-10-25

    During recent decades, many tropical reefs have transitioned from coral to macroalgal dominance. These community shifts increase the frequency of algal-coral interactions and may suppress coral recovery following both anthropogenic and natural disturbance. However, the extent to which macroalgae damage corals directly, the mechanisms involved, and the species specificity of algal-coral interactions remain uncertain. Here, we conducted field experiments demonstrating that numerous macroalgae directly damage corals by transfer of hydrophobic allelochemicals present on algal surfaces. These hydrophobic compounds caused bleaching, decreased photosynthesis, and occasionally death of corals in 79% of the 24 interactions assayed (three corals and eight algae). Coral damage generally was limited to sites of algal contact, but algae were unaffected by contact with corals. Artificial mimics for shading and abrasion produced no impact on corals, and effects of hydrophobic surface extracts from macroalgae paralleled effects of whole algae; both findings suggest that local effects are generated by allelochemical rather than physical mechanisms. Rankings of macroalgae from most to least allelopathic were similar across the three coral genera tested. However, corals varied markedly in susceptibility to allelopathic algae, with globally declining corals such as Acropora more strongly affected. Bioassay-guided fractionation of extracts from two allelopathic algae led to identification of two loliolide derivatives from the red alga Galaxaura filamentosa and two acetylated diterpenes from the green alga Chlorodesmis fastigiata as potent allelochemicals. Our results highlight a newly demonstrated but potentially widespread competitive mechanism to help explain the lack of coral recovery on many present-day reefs.

  8. Bleach Neutralizes Mold Allergens

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Researchers at National Jewish Medical and Research Center have demonstrated that dilute bleach not only kills common household mold, but may also neutralize the mold allergens that cause most mold-related health complaints. The study, published in the Journal of Allergy and Clinical Immunology, is the first to test the effect on allergic…

  9. The adaptive bleaching hypothesis: experimental tests of critical assumptions.

    PubMed

    Kinzie, R A; Takayama, M; Santos, S R; Coffroth, M A

    2001-02-01

    Coral bleaching, the loss of color due to loss of symbiotic zooxanthellae or their pigment, appears to be increasing in intensity and geographic extent, perhaps related to increasing sea surface temperatures. The adaptive bleaching hypothesis (ABH) posits that when environmental circumstances change, the loss of one or more kinds of zooxanthellae is rapidly, sometimes unnoticeably, followed by formation of a new symbiotic consortium with different zooxanthellae that are more suited to the new conditions in the host's habitat. Fundamental assumptions of the ABH include (1) different types of zooxanthellae respond differently to environmental conditions, specifically temperature, and (2) bleached adults can secondarily acquire zooxanthellae from the environment. We present simple tests of these assumptions and show that (1) genetically different strains of zooxanthellae exhibit different responses to elevated temperature, (2) bleached adult hosts can acquire algal symbionts with an apparently dose-dependent relationship between the concentration of zooxanthellae and the rate of establishment of the symbiosis, (3) and finally, bleached adult hosts can acquire symbionts from the water column.

  10. Symbiont diversity may help coral reefs survive moderate climate change.

    PubMed

    Baskett, Marissa L; Gaines, Steven D; Nisbet, Roger M

    2009-01-01

    Given climate change, thermal stress-related mass coral-bleaching events present one of the greatest anthropogenic threats to coral reefs. While corals and their symbiotic algae may respond to future temperatures through genetic adaptation and shifts in community compositions, the climate may change too rapidly for coral response. To test this potential for response, here we develop a model of coral and symbiont ecological dynamics and symbiont evolutionary dynamics. Model results without variation in symbiont thermal tolerance predict coral reef collapse within decades under multiple future climate scenarios, consistent with previous threshold-based predictions. However, model results with genetic or community-level variation in symbiont thermal tolerance can predict coral reef persistence into the next century, provided low enough greenhouse gas emissions occur. Therefore, the level of greenhouse gas emissions will have a significant effect on the future of coral reefs, and accounting for biodiversity and biological dynamics is vital to estimating the size of this effect.

  11. The 27-year decline of coral cover on the Great Barrier Reef and its causes.

    PubMed

    De'ath, Glenn; Fabricius, Katharina E; Sweatman, Hugh; Puotinen, Marji

    2012-10-30

    The world's coral reefs are being degraded, and the need to reduce local pressures to offset the effects of increasing global pressures is now widely recognized. This study investigates the spatial and temporal dynamics of coral cover, identifies the main drivers of coral mortality, and quantifies the rates of potential recovery of the Great Barrier Reef. Based on the world's most extensive time series data on reef condition (2,258 surveys of 214 reefs over 1985-2012), we show a major decline in coral cover from 28.0% to 13.8% (0.53% y(-1)), a loss of 50.7% of initial coral cover. Tropical cyclones, coral predation by crown-of-thorns starfish (COTS), and coral bleaching accounted for 48%, 42%, and 10% of the respective estimated losses, amounting to 3.38% y(-1) mortality rate. Importantly, the relatively pristine northern region showed no overall decline. The estimated rate of increase in coral cover in the absence of cyclones, COTS, and bleaching was 2.85% y(-1), demonstrating substantial capacity for recovery of reefs. In the absence of COTS, coral cover would increase at 0.89% y(-1), despite ongoing losses due to cyclones and bleaching. Thus, reducing COTS populations, by improving water quality and developing alternative control measures, could prevent further coral decline and improve the outlook for the Great Barrier Reef. Such strategies can, however, only be successful if climatic conditions are stabilized, as losses due to bleaching and cyclones will otherwise increase.

  12. Assessment of survival, mortality and recovery of coral reefs of East Kish Island, Persian Gulf.

    PubMed

    Jami, M J; Salehduost, A; Negarestan, H

    2010-10-15

    Coral reefs are specialized communities that develop clear, well-lit tropical and subtropical water; they provide shelter and canopy for great variety of organisms, living in mean temperature of 20 degrees C. Coral Bleaching and mortality have been associated with elevated seawater temperature. The aim of the study was to investigate coral bleaching and evaluate health condition of the corals. Distribution of coral reefs around Kish Island was determined by the Timed Swim (TS) technique. This survey carried out in 2 times (May and October, 2009) in 2 depths of 3-5 m and 6-10 m. Two Divers swam in constant speed for a set amount of time in three dive sites. The timed swim survey around the Kish Island showed that the most healthy live hard coral assemblages were found in the site called Persian Gulf seaport, whereas the greatest percentage of bleached corals were located in Jurassic Park station, located at the southeast of the Island. Branching corals (Acropora sp.) were bleached among all 3 stations and no sign of recovery could be detected. In Big coral site suitable substrate for accumulation of living organisms including Echinometra mathaie (sea urchin) existed due to presence of great amount of algae on dead corals and rocks. Based on the observation, it seems that the cause of reef destruction in Kish Island fall in to two categories, natural and human impacts. PMID:21319458

  13. Assessment of survival, mortality and recovery of coral reefs of East Kish Island, Persian Gulf.

    PubMed

    Jami, M J; Salehduost, A; Negarestan, H

    2010-10-15

    Coral reefs are specialized communities that develop clear, well-lit tropical and subtropical water; they provide shelter and canopy for great variety of organisms, living in mean temperature of 20 degrees C. Coral Bleaching and mortality have been associated with elevated seawater temperature. The aim of the study was to investigate coral bleaching and evaluate health condition of the corals. Distribution of coral reefs around Kish Island was determined by the Timed Swim (TS) technique. This survey carried out in 2 times (May and October, 2009) in 2 depths of 3-5 m and 6-10 m. Two Divers swam in constant speed for a set amount of time in three dive sites. The timed swim survey around the Kish Island showed that the most healthy live hard coral assemblages were found in the site called Persian Gulf seaport, whereas the greatest percentage of bleached corals were located in Jurassic Park station, located at the southeast of the Island. Branching corals (Acropora sp.) were bleached among all 3 stations and no sign of recovery could be detected. In Big coral site suitable substrate for accumulation of living organisms including Echinometra mathaie (sea urchin) existed due to presence of great amount of algae on dead corals and rocks. Based on the observation, it seems that the cause of reef destruction in Kish Island fall in to two categories, natural and human impacts.

  14. Community change and evidence for variable warm-water temperature adaptation of corals in Northern Male Atoll, Maldives.

    PubMed

    McClanahan, T R; Muthiga, N A

    2014-03-15

    This study provides a descriptive analysis of the North Male, Maldives seven years after the 1998 bleaching disturbance to determine the state of the coral community composition, the recruitment community, evidence for recovery, and adaptation to thermal stress. Overall, hard coral cover recovered at a rate commonly reported in the literature but with high spatial variability and shifts in taxonomic composition. Massive Porites, Pavona, Synarea, and Goniopora were unusually common in both the recruit and adult communities. Coral recruitment was low and some coral taxa, namely Tubipora, Seriatopora, and Stylophora, were rarer than expected. A study of the bleaching response to a thermal anomaly in 2005 indicated that some taxa, including Leptoria, Platygyra, Favites, Fungia, Hydnophora, and Galaxea astreata, bleached as predicted while others, including Acropora, Pocillopora, branching Porites, Montipora, Stylophora, and Alveopora, bleached less than predicted. This indicates variable-adaptation potentials among the taxa and considerable potential for ecological reorganization of the coral community. PMID:24486038

  15. Geochemical Records of Bleaching Events and the Associated Stressors From the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Roark, E. B.; McCulloch, M.; Ingram, B. L.; Marshall, J. F.

    2003-12-01

    The health of coral reefs world-wide is increasingly threatened by a wide array of stressors. On the Great Barrier Reef (GBR) these stressors include increased sediment flux associated with land use changes, increased sea surface temperatures (SST) and salinity changes due to large floods, the latter two of which are factors in an increased number of bleaching events. The ability to document long-term change in these stressors along with changes in the number of bleaching events would help discern what are natural and anthropogenic changes in this ecosystem. Here we present results of an initial calibration effort aimed at identifying bleaching events and the associated stressors using stable isotopic and trace element analysis in coral cores. Three ˜15-year time series of geochemical measurements (δ 13C, δ 18O, and Sr/Ca) on Porites coral cores obtained from Pandora Reef and the Keppel Islands on the GBR have been developed at near weekly resolution. Since the δ 13C of the coral skeletal carbonate is known to be affected by both environmental factors (e.g. insolation and temperature) and physiological factors (e.g. photosynthesis, calcification, and the statues of the symbiotic relationship between corals and zooxanthellae) it is the most promising proxy for reconstructing past bleaching events. The first record (PAN-98) comes from a coral head that had undergone bleaching and died shortly after the large-scale bleaching events on Pandora Reef in 1998. A second core (PAN-02) was collected from a living coral within 10m of PAN-98 in 2002. Sr/Ca ratios in both cores tracked even the smallest details of an in situ SST record. The increase in SST that occurred three to four weeks prior to bleaching was faithfully recorded by a similar decrease in the Sr/Ca ratio in PAN-98, indicating that calcification continued despite the high SST of 30-31° C. The δ 13C values decreased by about 5‰ , one week after the SST increase, and remained at this value for about 4

  16. Caribbean mesophotic coral ecosystems are unlikely climate change refugia.

    PubMed

    Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S

    2016-08-01

    Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.

  17. Caribbean mesophotic coral ecosystems are unlikely climate change refugia.

    PubMed

    Smith, Tyler B; Gyory, Joanna; Brandt, Marilyn E; Miller, William J; Jossart, Jonathan; Nemeth, Richard S

    2016-08-01

    Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light-dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching-related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30-75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs. PMID:26648385

  18. Modeling regional coral reef responses to global warming and changes in ocean chemistry: Caribbean case study

    USGS Publications Warehouse

    Buddemeier, R.W.; Lane, D.R.; Martinich, J.A.

    2011-01-01

    Climatic change threatens the future of coral reefs in the Caribbean and the important ecosystem services they provide. We used a simulation model [Combo ("COral Mortality and Bleaching Output")] to estimate future coral cover in the part of the eastern Caribbean impacted by a massive coral bleaching event in 2005. Combo calculates impacts of future climate change on coral reefs by combining impacts from long-term changes in average sea surface temperature (SST) and ocean acidification with impacts from episodic high temperature mortality (bleaching) events. We used mortality and heat dose data from the 2005 bleaching event to select historic temperature datasets, to use as a baseline for running Combo under different future climate scenarios and sets of assumptions. Results suggest a bleak future for coral reefs in the eastern Caribbean. For three different emissions scenarios from the Intergovernmental Panel on Climate Change (IPCC; B1, A1B, and A1FI), coral cover on most Caribbean reefs is projected to drop below 5% by the year 2035, if future mortality rates are equivalent to some of those observed in the 2005 event (50%). For a scenario where corals gain an additional 1-1. 5??C of heat tolerance through a shift in the algae that live in the coral tissue, coral cover above 5% is prolonged until 2065. Additional impacts such as storms or anthropogenic damage could result in declines in coral cover even faster than those projected here. These results suggest the need to identify and preserve the locations that are likely to have a higher resiliency to bleaching to save as many remnant populations of corals as possible in the face of projected wide-spread coral loss. ?? 2011 The Author(s).

  19. Coral microbiology

    USGS Publications Warehouse

    Rosenberg, Eugene; Kellogg, Christina A.; Rohwer, Forest

    2007-01-01

    In the last 30 years, there has been approximately a 30% loss of corals worldwide, largely due to emerging diseases (Harvell et al., 2002, 2007; Hughes et al., 2003). Coral microbiology is a new field, driven largely by a desire to understand the interactions between corals and their symbiotic microorganisms and to use this knowledge to eventually prevent the spread of coral diseases.

  20. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  1. Can a bleaching toothpaste containing Blue Covarine demonstrate the same bleaching as conventional techniques? An in vitro, randomized and blinded study

    PubMed Central

    DANTAS, Andréa Abi Rached; BORTOLATTO, Janaina Freitas; RONCOLATO, Ávery; MERCHAN, Hugo; FLOROS, Michael Christopher; KUGA, Milton Carlos; de OLIVEIRA, Osmir Batista

    2015-01-01

    ABSTRACT Objective The purpose of this in vitro study was to compare the efficacy of a bleaching toothpaste containing Blue Covarine vs. conventional tooth bleaching techniques using peroxides (both in-office and at-home). Material and Methods Samples were randomly distributed into five experimental groups (n=15): C - Control; BC – Bleaching toothpaste containing Blue Covarine; WBC – Bleaching toothpaste without Blue Covarine; HP35 - In-office bleaching using 35% hydrogen peroxide; and CP10 – At-home bleaching with 10% carbamide peroxide. The dental bleaching efficacy was determined by the color difference (ΔE), luminosity (ΔL), green-red axis (Δa), and blue-yellow axis (Δb). The CIELab coordinates were recorded with reflectance spectroscopy at different times: T0 - baseline, T1 – immediately after bleaching, T2 - 7 days, T3 - 14 days, and T4 - 21 days after the end of treatments. Data were analyzed by a repeated measures mixed ANOVA and post hoc Bonferroni test, with a significance level of 5%. Results No significant differences were found between the treatment groups C, BC, and WBC. The groups HP35 and CP10 showed significantly higher whitening efficacy than groups C, BC, and WBC. Conclusions There were no significant differences in the whitening efficacy between a Blue Covarine containing toothpaste, a standard whitening toothpaste, and a control. Neither of the whitening toothpastes tested were as effective as in-office or at-home bleaching treatments. PMID:26814462

  2. Historical thermal regimes define limits to coral acclimatization.

    PubMed

    Howells, Emily J; Berkelmans, Ray; van Oppen, Madeleine J H; Willis, Bette L; Bay, Line K

    2013-05-01

    Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern

  3. Evaluation of temperature increase during in-office bleaching

    PubMed Central

    MONDELLI, Rafael Francisco Lia; SOARES, Ana Flávia; PANGRAZIO, Eugenio Gabriel Kegler; WANG, Linda; ISHIKIRIAMA, Sergio Kiyoshi; BOMBONATTI, Juliana Fraga Soares

    2016-01-01

    ABSTRACT The use of light sources in the bleaching process reduces the time required and promotes satisfactory results. However, these light sources can cause an increase in the pulp temperature. Objective The purpose of the present study was to measure the increase in intrapulpal temperature induced by different light-activated bleaching procedures with and without the use of a bleaching gel. Material and Methods A human maxillary central incisor was sectioned 2 mm below the cementoenamel junction. A K-type thermocouple probe was introduced into the pulp chamber. A 35% hydrogen peroxide bleaching gel was applied to the vestibular tooth surface. The light units used were a conventional halogen, a hybrid light (only LED and LED/Laser), a high intensity LED, and a green LED light. Temperature increase values were compared by two-way ANOVA and Tukey´s tests (p<0.05). Results There were statistically significant differences in temperature increases between the different light sources used and between the same light sources with and without the use of a bleaching gel. The presence of a bleaching gel generated an increase in intra-pulpal temperature in groups activated with halogen light, hybrid light, and high intensity LED. Compared to the other light sources, the conventional halogen lamp applied over the bleaching gel induced a significant increase in temperature (3.83±0.41°C). The green LED unit with and without gel application did not produce any significant intrapulpal temperature variations. Conclusion In the present study, the conventional halogen lamp caused the highest increase in intrapulpal temperature, and the green LED caused the least. There was an increase in temperature with all lights tested and the maximum temperature remained below the critical level (5.5°C). The addition of a bleaching gel led to a higher increase in intrapulpal temperatures. PMID:27119761

  4. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  5. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol

    NASA Astrophysics Data System (ADS)

    Colombo-Pallotta, M. F.; Rodríguez-Román, A.; Iglesias-Prieto, R.

    2010-12-01

    All reef-building corals are symbiotic with dinoflagellates of the genus Symbiodinium, which influences many aspects of the host’s physiology including calcification. Coral calcification is a biologically controlled process performed by the host that takes place several membranes away from the site of photosynthesis performed by the symbiont. Although it is well established that light accelerates CaCO3 deposition in reef-building corals (commonly referred to as light-enhanced calcification), the complete physiological mechanism behind the process is not fully understood. To better comprehend the coral calcification process, a series of laboratory experiments were conducted in the major Caribbean reef-building species Montastraea faveolata, to evaluate the effect of glycerol addition and/or the super-saturation of oxygen in the seawater. These manipulations were performed in bleached and unbleached corals, to separate the effect of photosynthesis from calcification. The results suggest that under normal physiological conditions, a 42% increase in seawater oxygen concentration promotes a twofold increase in dark-calcification rates relative to controls. On the other hand, the results obtained using bleached corals suggest that glycerol is required, as a metabolic fuel, in addition to an oxygenic environment in a symbiosis that has been disrupted. Also, respiration rates in symbiotic corals that were pre-incubated in light conditions showed a kinetic limitation, whereas corals that were pre-incubated in darkness were oxygen limited, clearly emphasizing the role of oxygen in this regard. These findings indicate that calcification in symbiotic corals is not strictly a “light-enhanced” or “dark-repressed” process, but rather, the products of photosynthesis have a critical role in calcification, which should be viewed as a “photosynthesis-driven” process. The results presented here are discussed in the context of the current knowledge of the coral

  6. Relationships between temperature, bleaching and white syndrome on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Ban, S. S.; Graham, N. A. J.; Connolly, S. R.

    2013-03-01

    Coral bleaching and disease have often been hypothesized to be mutually reinforcing or co-occurring, but much of the research supporting this has only drawn an implicit connection through common environmental predictors. In this study, we examine whether an explicit relationship between white syndrome and bleaching exists using assemblage-level monitoring data from up to 112 sites on reef slopes spread throughout the Great Barrier Reef over 11 years of monitoring. None of the temperature metrics commonly used to predict mass bleaching performed strongly when applied to these data. Furthermore, the inclusion of bleaching as a predictor did not improve model skill over baseline models for predicting white syndrome. Similarly, the inclusion of white syndrome as a predictor did not improve models of bleaching. Evidence for spatial co-occurrence of bleaching and white syndrome at the assemblage level in this data set was also very weak. These results suggest the hypothesized relationship between bleaching and disease events may be weaker than previously thought, and more likely to be driven by common responses to environmental stressors, rather than directly facilitating one another.

  7. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive.

  8. [Anaphylactic reaction following hair bleaching].

    PubMed

    Babilas, P; Landthaler, M; Szeimies, R-M

    2005-12-01

    Ammonium persulphate is a potent bleach and oxidizing agent that is commonly present in hair bleaches. Because bleaching is so commonly performed, hairdressers often develop allergic contact dermatitis to ammonium persulphate. In addition to this delayed reaction, asthma and rhinitis may develop as immediate reactions in those exposed to the fumes. Severe anaphylactic reactions are rare. We report a 24-year-old woman who acquired dermatitis following contact with bleaching substances while working as a hairdresser. After changing her profession, the dermatitis disappeared. Following the private use of a hairdressing bleach containing ammonium persulphate, she suffered a severe anaphylactic reaction with unconsciousness. The patient also developed an anaphylactic reaction three hours following patch testing with the hairdresser battery. The rub test with ammonium persulphate (2.5%) in a 1:100 solution was positive. PMID:15688222

  9. Defining the tipping point: a complex cellular life/death balance in corals in response to stress.

    PubMed

    Ainsworth, T D; Wasmund, K; Ukani, L; Seneca, F; Yellowlees, D; Miller, D; Leggat, W

    2011-01-01

    Apoptotic cell death has been implicated in coral bleaching but the molecules involved and the mechanisms by which apoptosis is regulated are only now being identified. In contrast the mechanisms underlying apoptosis in higher animals are relatively well understood. To better understand the response of corals to thermal stress, the expression of coral homologs of six key regulators of apoptosis was studied in Acropora aspera under conditions simulating those of a mass bleaching event. Significant changes in expression were detected between the daily minimum and maximum temperatures. Maximum daily temperatures from as low as 3°C below the bleaching threshold resulted in significant changes in both pro- and anti-apoptotic gene expression. The results suggest that the control of apoptosis is highly complex in this eukaryote-eukaryote endosymbiosis and that apoptotic cell death cascades potentially play key roles tipping the cellular life/death balance during environmental stress prior to the onset of coral bleaching.

  10. MEETING AT PORTLAND, OR: CORAL RESPONSES TO CLIMATE AND LAND USE CHANGES

    EPA Science Inventory

    Coral reefs in the Florida Keys have been surveyed for occurrence of bleaching and disease, and additional indicators are being applied across the Keys to characterize the status of coral condition. Studies on cultured symbiotic algae have demonstrated combined effects of tempera...

  11. Local extinction of a coral reef fish explained by inflexible prey choice

    NASA Astrophysics Data System (ADS)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  12. THE IMPACT OF CDOM PHOTOBLEACHING ON UV ATTENUATION NEAR CORAL REEFS IN THE FLORIDA KEYS

    EPA Science Inventory

    We have investigated how the loss of chromophoric dissolved organic matter (CDOM) in the water column due to photobleaching allows for increased penetration of UV radiation near coral reefs in the Florida Keys. Extended exposure to UV may contribute to coral bleaching episodes. C...

  13. Life on the edge: corals in mangroves and climate change

    USGS Publications Warehouse

    Rogers, Caroline S.; Herlan, James J.

    2012-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  14. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose.

    PubMed

    Dunn, Simon R; Schnitzler, Christine E; Weis, Virginia M

    2007-12-22

    Cnidarian bleaching results from the breakdown in the symbiosis between the host cnidarian and its dinoflagellate symbiont. Coral bleaching in recent years has increasingly caused degradation and mortality of coral reefs on a global scale. Although much is understood about the environmental causes of bleaching, the underlying cellular mechanisms of symbiont release that drive the process are just beginning to be described. In this study, we investigated the roles of two cellular pathways, host cell apoptosis and autophagy, in the bleaching process of the symbiotic anemone Aiptasia pallida. Host cell apoptosis was experimentally manipulated using gene knockdown of an anemone caspase by RNA interference, chemical inhibition of caspase using ZVAD-fmk and an apoptosis-inducer wortmannin. Autophagy was manipulated by chemical inhibition using wortmannin or induction using rapamycin. The applications of multiple single treatments resulted in some increased bleaching in anemones under control conditions but no significant drop in bleaching in individuals subjected to a hyperthermic stress. These results indicated that no single pathway is responsible for symbiont release during bleaching. However, when multiple inhibitors were applied simultaneously to block both apoptosis and autophagy, there was a significant reduction in bleaching in heat-stressed anemones. Our results allow us to formulate a model for cellular processes involved in the control of cnidarian bleaching where apoptosis and autophagy act together in a see-saw mechanism such that if one is inhibited the other is induced. Similar interconnectivity between apoptosis and autophagy has previously been shown in vertebrates including involvement in an innate immune response to pathogens and parasites. This suggests that the bleaching response could be a modified immune response that recognizes and removes dysfunctional symbionts. PMID:17925275

  15. The Construction of a Coral Implantation Base and the Proof Experiment by Electrodeposition Method

    NASA Astrophysics Data System (ADS)

    Yoshitake, Masami; Nojima, Satoshi; Tokuyama, Hidekazu; Haraguchi, Satoru; Kadomoto, Yukio; Yoshida, Kazuo

    In recent years, we are facing a decline of coral reefs by bleaching and death of coral colonies, which is casued by rising of ocean temperatures presumably due to global warming and pollution due to human activity. It is our urgent issue to protect and reproduce coral reefs in a global scale. We propose an electrodeposition method using calcium and magnesium contained in natural seawater as a effective and way to revive coral reefs, because a product of electrodeposition characterized by porous texture provides suitable holes for implantation of coral larvae. We expect that the method creates a diverse coral reefs community similar to natural one comparing with other growth method. Since 2008, we have conducted coral growth experiments using electrodeposition in Yoronjima. As a result, Acropora sp., Porites sp. and Pocillopora sp. are observed, such as implantation of several types of coral larvae, and confirmed a growth of coral larvae.

  16. Maintenance of fish diversity on disturbed coral reefs

    NASA Astrophysics Data System (ADS)

    Wilson, S. K.; Dolman, A. M.; Cheal, A. J.; Emslie, M. J.; Pratchett, M. S.; Sweatman, H. P. A.

    2009-03-01

    Habitat perturbations play a major role in shaping community structure; however, the elements of disturbance-related habitat change that affect diversity are not always apparent. This study examined the effects of habitat disturbances on species richness of coral reef fish assemblages using annual surveys of habitat and 210 fish species from 10 reefs on the Great Barrier Reef (GBR). Over a period of 11 years, major disturbances, including localised outbreaks of crown-of-thorns sea star ( Acanthaster planci), severe storms or coral bleaching, resulted in coral decline of 46-96% in all the 10 reefs. Despite declines in coral cover, structural complexity of the reef framework was retained on five and species richness of coral reef fishes maintained on nine of the disturbed reefs. Extensive loss of coral resulted in localised declines of highly specialised coral-dependent species, but this loss of diversity was more than compensated for by increases in the number of species that feed on the epilithic algal matrix (EAM). A unimodal relationship between areal coral cover and species richness indicated species richness was greatest at approximately 20% coral cover declining by 3-4 species (6-8% of average richness) at higher and lower coral cover. Results revealed that declines in coral cover on reefs may have limited short-term impact on the diversity of coral reef fishes, though there may be fundamental changes in the community structure of fishes.

  17. Light gradients and optical microniches in coral tissues

    PubMed Central

    Wangpraseurt, Daniel; Larkum, Anthony W. D.; Ralph, Peter J.; Kühl, Michael

    2012-01-01

    Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterize vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500 and 700 nm) relative to a healthy coral. Photosynthesis peaked around 300 μm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g., ~1000 μm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts. PMID:22969755

  18. Recovery of an isolated coral reef system following severe disturbance.

    PubMed

    Gilmour, James P; Smith, Luke D; Heyward, Andrew J; Baird, Andrew H; Pratchett, Morgan S

    2013-04-01

    Coral reef recovery from major disturbance is hypothesized to depend on the arrival of propagules from nearby undisturbed reefs. Therefore, reefs isolated by distance or current patterns are thought to be highly vulnerable to catastrophic disturbance. We found that on an isolated reef system in north Western Australia, coral cover increased from 9% to 44% within 12 years of a coral bleaching event, despite a 94% reduction in larval supply for 6 years after the bleaching. The initial increase in coral cover was the result of high rates of growth and survival of remnant colonies, followed by a rapid increase in juvenile recruitment as colonies matured. We show that isolated reefs can recover from major disturbance, and that the benefits of their isolation from chronic anthropogenic pressures can outweigh the costs of limited connectivity. PMID:23559247

  19. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    PubMed

    Bellantuono, Anthony J; Granados-Cifuentes, Camila; Miller, David J; Hoegh-Guldberg, Ove; Rodriguez-Lanetty, Mauricio

    2012-01-01

    The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant) maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs in impending climate

  20. Moderate Thermal Stress Causes Active and Immediate Expulsion of Photosynthetically Damaged Zooxanthellae (Symbiodinium) from Corals

    PubMed Central

    Fujise, Lisa; Yamashita, Hiroshi; Suzuki, Go; Sasaki, Kengo; Liao, Lawrence M.; Koike, Kazuhiko

    2014-01-01

    The foundation of coral reef biology is the symbiosis between corals and zooxanthellae (dinoflagellate genus Symbiodinium). Recently, coral bleaching, which often results in mass mortality of corals and the collapse of coral reef ecosystems, has become an important issue around the world as coral reefs decrease in number year after year. To understand the mechanisms underlying coral bleaching, we maintained two species of scleractinian corals (Acroporidae) in aquaria under non-thermal stress (27°C) and moderate thermal stress conditions (30°C), and we compared the numbers and conditions of the expelled Symbiodinium from these corals. Under non-thermal stress conditions corals actively expel a degraded form of Symbiodinium, which are thought to be digested by their host coral. This response was also observed at 30°C. However, while the expulsion rates of Symbiodinium cells remained constant, the proportion of degraded cells significantly increased at 30°C. This result indicates that corals more actively digest and expel damaged Symbiodinium under thermal stress conditions, likely as a mechanism for coping with environmental change. However, the increase in digested Symbiodinium expulsion under thermal stress may not fully keep up with accumulation of the damaged cells. There are more photosynthetically damaged Symbiodinium upon prolonged exposure to thermal stress, and corals release them without digestion to prevent their accumulation. This response may be an adaptive strategy to moderate stress to ensure survival, but the accumulation of damaged Symbiodinium, which causes subsequent coral deterioration, may occur when the response cannot cope with the magnitude or duration of environmental stress, and this might be a possible mechanism underlying coral bleaching during prolonged moderate thermal stress. PMID:25493938

  1. Thermal stress markers in Colpophyllia natans provide an archive of site-specific bleaching events

    NASA Astrophysics Data System (ADS)

    Mallela, Jennie; Hetzinger, Steffen; Halfar, Jochen

    2016-03-01

    Tropical coral reef monitoring relies heavily on in situ diver observations. However, in many reef regions resources are not available to regularly monitor reefs. This lack of historical baseline data makes it difficult to determine how different reefs respond to environmental stressors and what the implications are for management. To test whether coral cores could be used to identify bleaching events retrospectively, three sites in Tobago with pre-existing reef data including water quality and bleaching observations were identified. Colpophyllia natans cores were examined for growth anomalies which occurred during periods of thermal stress. If present, anomalies were compared to in situ, real-time bleaching observations and water quality data. Interestingly, sites with better water quality during the 2005 thermal anomaly were less prone to bleaching. We suggest that by reducing terrestrial run-off (e.g., sediment and nutrients), and therefore improving marine water quality, reef managers could enhance near-shore coral reef resilience during high-temperature events.

  2. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    USGS Publications Warehouse

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  3. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals.

    PubMed

    Shapiro, Orr H; Kramarsky-Winter, Esti; Gavish, Assaf R; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral-pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  4. Fluorescent pigments in corals are photoprotective

    NASA Astrophysics Data System (ADS)

    Salih, Anya; Larkum, Anthony; Cox, Guy; Kühl, Michael; Hoegh-Guldberg, Ove

    2000-12-01

    All reef-forming corals depend on the photosynthesis performed by their algal symbiont, and such corals are therefore restricted to the photic zone. The intensity of light in this zone declines over several orders of magnitude-from high and damaging levels at the surface to extreme shade conditions at the lower limit. The ability of corals to tolerate this range implies effective mechanisms for light acclimation and adaptation. Here we show that the fluorescent pigments (FPs) of corals provide a photobiological system for regulating the light environment of coral host tissue. Previous studies have suggested that under low light, FPs may enhance light availability. We now report that in excessive sunlight FPs are photoprotective; they achieve this by dissipating excess energy at wavelengths of low photosynthetic activity, as well as by reflecting of visible and infrared light by FP-containing chromatophores. We also show that FPs enhance the resistance to mass bleaching of corals during periods of heat stress, which has implications for the effect of environmental stress on the diversity of reef-building corals, such as enhanced survival of a broad range of corals allowing maintenance of habitat diversity.

  5. Lithifying Microbes Associated to Coral Rubbles

    NASA Astrophysics Data System (ADS)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  6. Species-diverse coral communities on an artificial substrate at a tuna farm in Amami, Japan.

    PubMed

    Hata, Hiroki; Hirabayashi, Isao; Hamaoka, Hideki; Mukai, Yoshio; Omori, Koji; Fukami, Hironobu

    2013-04-01

    Tuna-farming is expanding worldwide, necessitating the monitoring/managing of its effects on the natural environment. In Japan, tuna-farming is conducted on coral reefs that have been damaged by mass-bleaching events and crown-of-thorns starfish (COTS) outbreaks. This study focused on the coral community on an artificial substrate of tuna-farm to reveal the possible effects of tuna-farming on the natural environment. Corals flourished on ropes suspended in the farm in the Amami Islands, southern Japan. These were moored 3 m below the sea-surface in 50-m-deep water. The coral community on the rope was analyzed and compared with those on natural substrata on two adjacent COTS-damaged reefs and with that in a protected reef. Corals were monitored throughout a year. Sixty coral species grew on the ropes, that corresponds to 27.3% of the 220 species known from Amami. The coral community was unique, dominated by massive faviid corals. On the ropes, the water temperature rarely exceeded 30.0 °C and no corals on the rope were severely bleached or covered by sedimentation during the observations. The tuna-farm infrastructure provided corals with a suitable habitat, and species-rich coral communities were established. These coral communities are an important node connecting tuna-farms and the natural environment.

  7. The effect of thermal history on the susceptibility of reef-building corals to thermal stress.

    PubMed

    Middlebrook, Rachael; Hoegh-Guldberg, Ove; Leggat, William

    2008-04-01

    The mutualistic relationship between corals and their unicellular dinoflagellate symbionts (Symbiodinium sp.) is a fundamental component within the ecology of coral reefs. Thermal stress causes the breakdown of the relationship between corals and their symbionts (bleaching). As with other organisms, this symbiosis may acclimate to changes in the environment, thereby potentially modifying the environmental threshold at which they bleach. While a few studies have examined the acclimation capacity of reef-building corals, our understanding of the underlying mechanism is still in its infancy. The present study focused on the role of recent thermal history in influencing the response of both corals and symbionts to thermal stress, using the reef-building coral Acropora aspera. The symbionts of corals that were exposed to 31 degrees C for 48 h (pre-stress treatment) 1 or 2 weeks prior to a 6-day simulated bleaching event (when corals were exposed to 34 degrees C) were found to have more effective photoprotective mechanisms. These mechanisms included changes in non-photochemical quenching and xanthophyll cycling. These differences in photoprotection were correlated with decreased loss of symbionts, with those corals that were not prestressed performing significantly worse, losing over 40% of their symbionts and having a greater reduction in photosynthetic efficiency. These results are important in that they show that thermal history, in addition to light history, can influence the response of reef-building corals to thermal stress and therefore have implications for the modeling of bleaching events. However, whether acclimation is capable of modifying the thermal threshold of corals sufficiently to cope as sea temperatures increase in response to global warming has not been fully explored. Clearly increases in sea temperatures that extend beyond 1-2 degrees C will exhaust the extent to which acclimation can modify the thermal threshold of corals.

  8. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    PubMed

    Rädecker, Nils; Pogoreutz, Claudia; Voolstra, Christian R; Wiedenmann, Jörg; Wild, Christian

    2015-08-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral-algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  9. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    PubMed

    Rädecker, Nils; Pogoreutz, Claudia; Voolstra, Christian R; Wiedenmann, Jörg; Wild, Christian

    2015-08-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral-algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease. PMID:25868684

  10. Bottlenecks to coral recovery in the Seychelles

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This

  11. The Role of Vibrios in Diseases of Corals.

    PubMed

    Munn, Colin B

    2015-08-01

    The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction.

  12. The Role of Vibrios in Diseases of Corals.

    PubMed

    Munn, Colin B

    2015-08-01

    The tissue, skeleton, and secreted mucus of corals supports a highly dynamic and diverse community of microbes, which play a major role in the health status of corals such as the provision of essential nutrients or the metabolism of waste products. However, members of the Vibrio genus are prominent as causative agents of disease in corals. The aim of this chapter is to review our understanding of the spectrum of disease effects displayed by coral-associated vibrios, with a particular emphasis on the few species where detailed studies of pathogenicity have been conducted. The role of Vibrio shilonii in seasonal bleaching of Oculina patagonica and the development of the coral probiotic hypothesis is reviewed, pointing to unanswered questions about this phenomenon. Detailed consideration is given to studies of V. coralliilyticus and related pathogens and changes in the dominance of vibrios associated with coral bleaching. Other Vibrio-associated disease syndromes discussed include yellow band/blotch disease and tissue necrosis in temperate gorgonian corals. The review includes analysis of the role of enzymes, resistance to oxidative stress, and quorum sensing in virulence of coral-associated vibrios. The review concludes that we should probably regard most-possibly all-vibrios as "opportunistic" pathogens which, under certain environmental conditions, are capable of overwhelming the defense mechanisms of appropriate hosts, leading to rapid growth and tissue destruction. PMID:26350314

  13. Biogeography and change among regional coral communities across the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A

    2014-01-01

    Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional

  14. What are the physiological and immunological responses of coral to climate warming and disease?

    PubMed

    Mydlarz, Laura D; McGinty, Elizabeth S; Harvell, C Drew

    2010-03-15

    Coral mortality due to climate-associated stress is likely to increase as the oceans get warmer and more acidic. Coral bleaching and an increase in infectious disease are linked to above average sea surface temperatures. Despite the uncertain future for corals, recent studies have revealed physiological mechanisms that improve coral resilience to the effects of climate change. Some taxa of bleached corals can increase heterotrophic food intake and exchange symbionts for more thermally tolerant clades; this plasticity can increase the probability of surviving lethal thermal stress. Corals can fight invading pathogens with a suite of innate immune responses that slow and even arrest pathogen growth and reduce further tissue damage. Several of these responses, such as the melanin cascade, circulating amoebocytes and antioxidants, are induced in coral hosts during pathogen invasion or disease. Some components of immunity show thermal resilience and are enhanced during temperature stress and even in bleached corals. These examples suggest some plasticity and resilience to cope with environmental change and even the potential for evolution of resistance to disease. However, there is huge variability in responses among coral species, and the rate of climate change is projected to be so rapid that only extremely hardy taxa are likely to survive the projected changes in climate stressors.

  15. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    PubMed Central

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  16. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  17. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    PubMed

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-01-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events. PMID:26627576

  18. Antioxidant responses to heat and light stress differ with habitat in a common reef coral

    NASA Astrophysics Data System (ADS)

    Hawkins, Thomas D.; Krueger, Thomas; Wilkinson, Shaun P.; Fisher, Paul L.; Davy, Simon K.

    2015-12-01

    Coral bleaching—the stress-induced collapse of the coral- Symbiodinium symbiosis—is a significant driver of worldwide coral reef degradation. Yet, not all corals are equally susceptible to bleaching, and we lack a clear understanding of the mechanisms underpinning their differential susceptibilities. Here, we focus on cellular redox regulation as a potential determinant of bleaching susceptibility in the reef coral Stylophora pistillata. Using slow heating (1 °C d-1) and altered irradiance, we induced bleaching in S. pistillata colonies sampled from two depths [5-8 m (shallow) and 15-18 m (deep)]. There was significant depth-dependent variability in the timing and extent of bleaching (loss of symbiont cells), as well as in host enzymatic antioxidant activity [specifically, superoxide dismutase and catalase (CAT)]. However, among the coral fragments that bleached, most did so without displaying any evidence of a host enzymatic antioxidant response. For example, both deep and shallow corals suffered significant symbiont loss at elevated temperature, but only deep colonies exposed to high temperature and high light displayed any up-regulation of host antioxidant enzyme activity (CAT). Surprisingly, this preceded the equivalent antioxidant responses of the symbiont, which raises questions about the source(s) of hydrogen peroxide in the symbiosis. Overall, changes in enzymatic antioxidant activity in the symbionts were driven primarily by irradiance rather than temperature, and responses were similar across depth groups. Taken together, our results suggest that in the absence of light stress, heating of 1 °C d-1 to 4 °C above ambient is not sufficient to induce a substantial oxidative challenge in S. pistillata. We provide some of the first evidence that regulation of coral enzymatic antioxidants can vary significantly depending on habitat, and, in terms of determining bleaching susceptibility, our results suggest a significant role for the host's differential

  19. Symbiotic crabs maintain coral health by clearing sediments

    NASA Astrophysics Data System (ADS)

    Stewart, Hannah L.; Holbrook, Sally J.; Schmitt, Russell J.; Brooks, Andrew J.

    2006-11-01

    Stony corals are the foundation of coral reef ecosystems and form associations with other reef species. Many of these associations may be ecologically important and play a role in maintaining the health and diversity of reef systems, rendering it critical to understand the influence of symbiotic organisms in mediating responses to perturbation. This study demonstrates the importance of an association with trapeziid crabs in reducing adverse effects of sediments deposited on corals. In a field experiment, mortality rates of two species of branching corals were significantly lowered by the presence of crabs. All outplanted corals with crabs survived whereas 45-80% of corals without crabs died within a month. For surviving corals that lacked crabs, growth was slower and tissue bleaching and sediment load were higher. Laboratory experiments revealed that corals with crabs shed substantially more of the sediments deposited on coral surfaces, but also that crabs were most effective at removing grain sizes that were most damaging to coral tissues. The mechanism underlying this symbiotic relationship has not been recognized previously, and its role in maintaining coral health is likely to become even more critical as reefs worldwide experience increasing sedimentation.

  20. Calcification and associated physiological parameters during a stress event in the scleractinian coral Stylophora pistillata.

    PubMed

    Moya, Aurélie; Ferrier-Pagès, Christine; Furla, Paola; Richier, Sophie; Tambutté, Eric; Allemand, Denis; Tambutté, Sylvie

    2008-09-01

    High calcification rates observed in reef coral organisms are due to the symbiotic relationship established between scleractinian corals and their photosynthetic dinoflagellates, commonly called zooxanthellae. Zooxanthellae are known to enhance calcification in the light, a process referred as "light-enhanced calcification". The disruption of the relationship between corals and their zooxanthellae leads to bleaching. Bleaching is one of the major causes of the present decline of coral reefs related to climate change and anthropogenic activities. In our aquaria, corals experienced a chemical pollution leading to bleaching and ending with the death of corals. During the time course of this bleaching event, we measured multiple parameters and could evidence four major consecutive steps: 1) at month 1 (January 2005), the stress affected primarily the photosystem II machinery of zooxanthellae resulting in an immediate decrease of photosystem II efficiency, 2) at month 2, the stress affected the photosynthetic production of O2 by zooxanthellae and the rate of light calcification, 3) at month 3, there was a decrease in both light and dark calcification rates, the appearance of the first oxidative damage in the zooxanthellae, the disruption of symbiosis, 4) and finally the death of corals at month 6.

  1. Temporary refugia for coral reefs in a warming world

    NASA Astrophysics Data System (ADS)

    van Hooidonk, R.; Maynard, J. A.; Planes, S.

    2013-05-01

    Climate-change impacts on coral reefs are expected to include temperature-induced spatially extensive bleaching events. Bleaching causes mortality when temperature stress persists but exposure to bleaching conditions is not expected to be spatially uniform at the regional or global scale. Here we show the first maps of global projections of bleaching conditions based on ensembles of IPCC AR5 (ref. ) models forced with the new Representative Concentration Pathways (RCPs). For the three RCPs with larger CO2 emissions (RCP 4.5, 6.0 and 8.5) the onset of annual bleaching conditions is associated with ~ 510ppm CO2 equivalent; the median year of all locations is 2040 for the fossil-fuel aggressive RCP 8.5. Spatial patterns in the onset of annual bleaching conditions are similar for each of the RCPs. For RCP 8.5, 26% of reef cells are projected to experience annual bleaching conditions more than 5 years later than the median. Some of these temporary refugia include the western Indian Ocean, Thailand, the southern Great Barrier Reef and central French Polynesia. A reduction in the growth of greenhouse-gas emissions corresponding to the difference between RCP 8.5 and 6.0 delays annual bleaching in ~ 23% of reef cells more than two decades, which might conceivably increase the potential for these reefs to cope with these changes.

  2. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals

    PubMed Central

    Shapiro, Orr H.; Kramarsky-Winter, Esti; Gavish, Assaf R.; Stocker, Roman; Vardi, Assaf

    2016-01-01

    Coral reefs, and the unique ecosystems they support, are facing severe threats by human activities and climate change. Our understanding of these threats is hampered by the lack of robust approaches for studying the micro-scale interactions between corals and their environment. Here we present an experimental platform, coral-on-a-chip, combining micropropagation and microfluidics to allow direct microscopic study of live coral polyps. The small and transparent coral micropropagates are ideally suited for live-imaging microscopy, while the microfluidic platform facilitates long-term visualization under controlled environmental conditions. We demonstrate the usefulness of this approach by imaging coral micropropagates at previously unattainable spatio-temporal resolutions, providing new insights into several micro-scale processes including coral calcification, coral–pathogen interaction and the loss of algal symbionts (coral bleaching). Coral-on-a-chip thus provides a powerful method for studying coral physiology in vivo at the micro-scale, opening new vistas in coral biology. PMID:26940983

  3. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef

    NASA Astrophysics Data System (ADS)

    Adjeroud, M.; Michonneau, F.; Edmunds, P. J.; Chancerelle, Y.; de Loma, T. Lison; Penin, L.; Thibaut, L.; Vidal-Dupiol, J.; Salvat, B.; Galzin, R.

    2009-09-01

    Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.

  4. Molecular phylogeny and community fingerprinting of coral-associated Symbiodinium north of the Arabian Gulf.

    PubMed

    Mahmoud, Huda M; Al-Sarraf, Mohammad

    2016-07-15

    Understanding coral-Symbiodinium relationships including changes in the genotypes and the numbers of Symbiodinium can explain the ability of Kuwait coral to survive high fluctuations in water temperature. In the current study, the diversity of Symbiodinium associated with fourteen coral species from six reef systems south of Kuwait was investigated. The results proved the predominance of clade C members in all corals tested, which reflects the importance of this type in helping corals thrive in the Gulf's harsh conditions. Platygyra daedalea was the only coral found that harbored clades A, B and C in their tissue but it is the most vulnerable coral for bleaching. The total number of Symbiodinium-like cells in the seawater was 10(4) cell ml(-1) while in coral tissue and mucus 10(7) cell g(-1) and 10(7) cell ml(-1) were found, respectively, and a strong positive correlation with the seawater temperature, salinity and conductivity was found. PMID:27179998

  5. Cold enzymatic bleaching of fluid whey.

    PubMed

    Campbell, R E; Drake, M A

    2013-01-01

    Chemical bleaching of fluid whey and retentate with hydrogen peroxide (HP) alone requires high concentrations (100-500 mg of HP/kg) and recent studies have demonstrated that off-flavors are generated during chemical bleaching that carry through to spray-dried whey proteins. Bleaching of fluid whey and retentate with enzymes such as naturally present lactoperoxidase or an exogenous commercial peroxidase (EP) at cold temperatures (4°C) may be a viable alternative to traditional chemical bleaching of whey. The objective of this study was to determine the optimum level of HP for enzymatic bleaching (both lactoperoxidase and EP) at 4°C and to compare bleaching efficacy and sensory characteristics to HP chemical bleaching at 4°C. Selected treatments were subsequently applied for whey protein concentrate with 80% protein (WPC80) manufacture. Fluid Cheddar whey and retentate (80% protein) were manufactured in triplicate from pasteurized whole milk. The optimum concentration of HP (0 to 250 mg/kg) to activate enzymatic bleaching at 4°C was determined by quantifying the loss of norbixin. In subsequent experiments, bleaching efficacy, descriptive sensory analysis, and volatile compounds were monitored at selected time points. A control with no bleaching was also evaluated. Enzymatic bleaching of fluid whey and retentate at 4°C resulted in faster bleaching and higher bleaching efficacy (color loss) than bleaching with HP alone at 250 mg/kg. Due to concentrated levels of naturally present lactoperoxidase, retentate bleached to completion (>80% norbixin destruction in 30 min) faster than fluid whey at 4°C (>80% norbixin destruction in 12h). In fluid whey, the addition of EP decreased bleaching time. Spray-dried WPC80 from bleached wheys, regardless of bleaching treatment, were characterized by a lack of sweet aromatic and buttery flavors, and the presence of cardboard flavor concurrent with higher relative abundance of 1-octen-3-ol and 1-octen-3-one. Among enzymatically

  6. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu

    NASA Astrophysics Data System (ADS)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-09-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  7. Release of hydrogen peroxide and antioxidant by the coral Stylophora pistillata to its external milieu

    NASA Astrophysics Data System (ADS)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-01-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu and can influence the H2O2 dynamics in the reef. Here we present laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed methodology for resolving the actual rates of H2O2 release by the corals. H2O2 and antioxidant activity linearly increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 2-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then slow down and stop by 5-7 h. Stirring was shown to induce the release of both H2O2 and antioxidant activity, possibly due to ventilation of the coral by the flow. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidant did not originate from the symbiotic algae. H2O2, however, was only minimally released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae and possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  8. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak. PMID:26564846

  9. Warm-water coral reefs and climate change.

    PubMed

    Spalding, Mark D; Brown, Barbara E

    2015-11-13

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  10. Warm-water coral reefs and climate change

    NASA Astrophysics Data System (ADS)

    Spalding, Mark D.; Brown, Barbara E.

    2015-11-01

    Coral reefs are highly dynamic ecosystems that are regularly exposed to natural perturbations. Human activities have increased the range, intensity, and frequency of disturbance to reefs. Threats such as overfishing and pollution are being compounded by climate change, notably warming and ocean acidification. Elevated temperatures are driving increasingly frequent bleaching events that can lead to the loss of both coral cover and reef structural complexity. There remains considerable variability in the distribution of threats and in the ability of reefs to survive or recover from such disturbances. Without significant emissions reductions, however, the future of coral reefs is increasingly bleak.

  11. Coral reef diseases in the Atlantic-Caribbean

    USGS Publications Warehouse

    Rogers, Caroline S.; Weil, Ernesto; Dubinsky, Zvy; Stambler, Noga

    2010-01-01

    Coral reefs are the jewels of the tropical oceans. They boast the highest diversity of all marine ecosystems, aid in the development and protection of other important, productive coastal marine communities, and have provided millions of people with food, building materials, protection from storms, recreation and social stability over thousands of years, and more recently, income, active pharmacological compounds and other benefits. These communities have been deteriorating rapidly in recent times. The continuous emergence of coral reef diseases and increase in bleaching events caused in part by high water temperatures among other factors underscore the need for intensive assessments of their ecological status and causes and their impact on coral reefs.

  12. Climate change, human impacts, and the resilience of coral reefs.

    PubMed

    Hughes, T P; Baird, A H; Bellwood, D R; Card, M; Connolly, S R; Folke, C; Grosberg, R; Hoegh-Guldberg, O; Jackson, J B C; Kleypas, J; Lough, J M; Marshall, P; Nyström, M; Palumbi, S R; Pandolfi, J M; Rosen, B; Roughgarden, J

    2003-08-15

    The diversity, frequency, and scale of human impacts on coral reefs are increasing to the extent that reefs are threatened globally. Projected increases in carbon dioxide and temperature over the next 50 years exceed the conditions under which coral reefs have flourished over the past half-million years. However, reefs will change rather than disappear entirely, with some species already showing far greater tolerance to climate change and coral bleaching than others. International integration of management strategies that support reef resilience need to be vigorously implemented, and complemented by strong policy decisions to reduce the rate of global warming.

  13. Coral choreography

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Viewers clicking onto the Waikiki Aquarium's “Coral Research Cam” any time during daylight hours in Hawaii can catch the latest action of three species of living corals (Acropora sp., Acropora elseyi,and Montipora digitata) and the yellow tang and blue tang fish swimming amongst them in an outdoor aquarium.Waikiki Aquarium Director Bruce Carlson says the camera is part of a new exhibit, “Corals Are Alive!,” which encourages people to view living corals close-up at the aquarium or via the Internet, in order to gain a better appreciation of the corals. “Hopefully through education and awareness, people will be more interested and willing to help with conservation efforts to preserve coral reefs,” says Carlson.

  14. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.

    PubMed

    Ateweberhan, Mebrahtu; Feary, David A; Keshavmurthy, Shashank; Chen, Allen; Schleyer, Michael H; Sheppard, Charles R C

    2013-09-30

    Most reviews concerning the impact of climate change on coral reefs discuss independent effects of warming or ocean acidification. However, the interactions between these, and between these and direct local stressors are less well addressed. This review underlines that coral bleaching, acidification, and diseases are expected to interact synergistically, and will negatively influence survival, growth, reproduction, larval development, settlement, and post-settlement development of corals. Interactions with local stress factors such as pollution, sedimentation, and overfishing are further expected to compound effects of climate change. Reduced coral cover and species composition following coral bleaching events affect coral reef fish community structure, with variable outcomes depending on their habitat dependence and trophic specialisation. Ocean acidification itself impacts fish mainly indirectly through disruption of predation- and habitat-associated behavior changes. Zooxanthellate octocorals on reefs are often overlooked but are substantial occupiers of space; these also are highly susceptible to bleaching but because they tend to be more heterotrophic, climate change impacts mainly manifest in terms of changes in species composition and population structure. Non-calcifying macroalgae are expected to respond positively to ocean acidification and promote microbe-induced coral mortality via the release of dissolved compounds, thus intensifying phase-shifts from coral to macroalgal domination. Adaptation of corals to these consequences of CO2 rise through increased tolerance of corals and successful mutualistic associations between corals and zooxanthellae is likely to be insufficient to match the rate and frequency of the projected changes. Impacts are interactive and magnified, and because there is a limited capacity for corals to adapt to climate change, global targets of carbon emission reductions are insufficient for coral reefs, so lower targets should be

  15. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.

    PubMed

    Ateweberhan, Mebrahtu; Feary, David A; Keshavmurthy, Shashank; Chen, Allen; Schleyer, Michael H; Sheppard, Charles R C

    2013-09-30

    Most reviews concerning the impact of climate change on coral reefs discuss independent effects of warming or ocean acidification. However, the interactions between these, and between these and direct local stressors are less well addressed. This review underlines that coral bleaching, acidification, and diseases are expected to interact synergistically, and will negatively influence survival, growth, reproduction, larval development, settlement, and post-settlement development of corals. Interactions with local stress factors such as pollution, sedimentation, and overfishing are further expected to compound effects of climate change. Reduced coral cover and species composition following coral bleaching events affect coral reef fish community structure, with variable outcomes depending on their habitat dependence and trophic specialisation. Ocean acidification itself impacts fish mainly indirectly through disruption of predation- and habitat-associated behavior changes. Zooxanthellate octocorals on reefs are often overlooked but are substantial occupiers of space; these also are highly susceptible to bleaching but because they tend to be more heterotrophic, climate change impacts mainly manifest in terms of changes in species composition and population structure. Non-calcifying macroalgae are expected to respond positively to ocean acidification and promote microbe-induced coral mortality via the release of dissolved compounds, thus intensifying phase-shifts from coral to macroalgal domination. Adaptation of corals to these consequences of CO2 rise through increased tolerance of corals and successful mutualistic associations between corals and zooxanthellae is likely to be insufficient to match the rate and frequency of the projected changes. Impacts are interactive and magnified, and because there is a limited capacity for corals to adapt to climate change, global targets of carbon emission reductions are insufficient for coral reefs, so lower targets should be

  16. Pulp reaction to vital bleaching.

    PubMed

    Fugaro, Jessica O; Nordahl, Inger; Fugaro, Orlando J; Matis, Bruce A; Mjör, Ivar A

    2004-01-01

    This study evaluated the histological changes in dental pulp after nightguard vital bleaching with 10% carbamide peroxide gel. Fifteen patients between 12 and 26 years of age with caries-free first premolars scheduled for orthodontic extraction were treated with 10% Opalescence (Ultradent Products, Inc). Tooth #5 had four days of bleaching, tooth #12 was treated for two weeks, tooth #21 was bleached for two weeks followed by two weeks without treatment and tooth #28, serving as the control, was without treatment. All teeth were extracted at the same time. Immediately after extraction, 4 mm of the most apical portion of the root was sectioned off and each specimen was placed in a vial containing 10% neutral buffered formalin. The samples were prepared for histological evaluation at the Scandinavian Institute of Dental Materials (NIOM) and microscopically examined independently at both NIOM and Indiana University School of Dentistry (IUSD). Pulp reactions were semi-quantitatively graded as none, slight, moderate and severe. Slight pulpal changes were detected in 16 of the 45 bleached teeth. Neither moderate nor severe reactions were observed. The findings indicate that the slight histological changes sometimes observed after bleaching tend to resolve within two weeks post-treatment. Statistical differences existed only between the untreated control and the four-day (p=0.0109) and two-week (p=0.0045) treatment groups. The findings from this study demonstrated that nightguard vital bleaching procedures using 10% carbamide peroxide might cause initial mild, localized pulp reactions. However, the minor histological changes observed did not affect the overall health of the pulp tissue and were reversible within two weeks post-treatment. Therefore, two weeks of treatment with 10% carbamide peroxide used for nightguard vital bleaching is considered safe for dental pulp. PMID:15279473

  17. Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures

    USGS Publications Warehouse

    Smith, L.W.; Birkeland, C.

    2007-01-01

    Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.

  18. Coral Pigments: Quantification Using HPLC and Detection by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Cottone, Mary C.

    1995-01-01

    Widespread coral bleaching (loss of pigments of symbiotic dinoflagellates), and the corresponding decline in coral reef health worldwide, mandates the monitoring of coral pigmentation. Samples of the corals Porites compressa and P. lobata were collected from a healthy reef at Puako, Hawaii, and chlorophyll (chl) a, peridinin, and Beta-carotene (Beta-car) were quantified using reverse-phase high performance liquid chromatography (HPLC). Detailed procedures are presented for the extraction of the coral pigments in 90% acetone, and the separation, identification, and quantification of the major zooxanthellar pigments using spectrophotometry and a modification of the HPLC system described by Mantoura and Llewellyn (1983). Beta-apo-8-carotenal was found to be inadequate as in internal standard, due to coelution with chl b and/or chl a allomer in the sample extracts. Improvements are suggested, which may result in better resolution of the major pigments and greater accuracy in quantification. Average concentrations of peridinin, chl a, and Beta-car in corals on the reef were 5.01, 8.59, and 0.29, micro-grams/cm(exp 2), respectively. Average concentrations of peridinin and Beta-car did not differ significantly between the two coral species sampled; however, the mean chl a concentration in P. compressa specimens (7.81 ,micro-grams/cm(exp 2) was significantly lower than that in P. lobata specimens (9.96 11g/cm2). Chl a concentrations determined spectrophotometrically were significantly higher than those generated through HPLC, suggesting that spectrophotometry overestimates chl a concentrations. The average ratio of chl a-to-peridinin concentrations was 1.90, with a large (53%) coefficient of variation and a significant difference between the two species sampled. Additional data are needed before conclusions can be drawn regarding average pigment concentrations in healthy corals and the consistency of the chl a/peridinin ratio. The HPLC pigment concentration values

  19. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to

  20. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to

  1. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence

    NASA Astrophysics Data System (ADS)

    Maynard, Jeffrey; van Hooidonk, Ruben; Eakin, C. Mark; Puotinen, Marjetta; Garren, Melissa; Williams, Gareth; Heron, Scott F.; Lamb, Joleah; Weil, Ernesto; Willis, Bette; Harvell, C. Drew

    2015-07-01

    Rising sea temperatures are likely to increase the frequency of disease outbreaks affecting reef-building corals through impacts on coral hosts and pathogens. We present and compare climate model projections of temperature conditions that will increase coral susceptibility to disease, pathogen abundance and pathogen virulence. Both moderate (RCP 4.5) and fossil fuel aggressive (RCP 8.5) emissions scenarios are examined. We also compare projections for the onset of disease-conducive conditions and severe annual coral bleaching, and produce a disease risk summary that combines climate stress with stress caused by local human activities. There is great spatial variation in the projections, both among and within the major ocean basins, in conditions favouring disease development. Our results indicate that disease is as likely to cause coral mortality as bleaching in the coming decades. These projections identify priority locations to reduce stress caused by local human activities and test management interventions to reduce disease impacts.

  2. The effect of temperature stress on coral- Symbiodinium associations containing distinct symbiont types

    NASA Astrophysics Data System (ADS)

    Fisher, P. L.; Malme, M. K.; Dove, S.

    2012-06-01

    Several studies have demonstrated that the temperature tolerance of scleractinian reef-building corals is controlled, in part, by hosting physiologically distinct symbiotic algae. We investigated the thermal tolerance of coral-algal associations within seven common species of reef-building corals hosting distinct Symbiodinium sub-clades collected from Heron Island during experimentally induced bleaching conditions. During experimental heating, photosynthetic fitness was assessed by the dark-adapted yield of PSII ( F v/ F m), and excitation pressure across PSII ( Q m) of each coral-algal association using pulse amplitude modulation fluorometry. The onset of bleaching was determined by the measurement of Symbiodinium cell density. Using the ribosomal internal transcribed spacer 2 (ITS-2) region, we showed that Symbiodinium type-coral host associations were temporally and spatially conserved in a high proportion of the colonies sampled within each species. Generally, the species Acropora millepora, Platygyra daedalea, Acropora aspera and Acropora formosa contained Symbiodinium ITS-2 type C3, whereas the species Montipora digitata, Porites cylindrica and Porites lutea contained Symbiodinium type C15. Bleaching susceptibility showed some association with Symbiodinium type, but further research is required to confirm this. Corals hosting C3 Symbiodinium displayed higher reductions in F v/ F m during heating compared to their C15 counterparts, irrespective of host species. However, a corresponding reduction in Symbiodinium density was not observed. Nonetheless, A. aspera and A. formosa showed significant reductions in Symbiodinium density relative to controls. This correlated with large increases in Q m and decreases in F v/ F m in heated explants. Our results suggest a range of bleaching susceptibilities for the coral species investigated, with A. aspera and A. formosa showing the greatest susceptibility to bleaching and M. digitata showing the lowest bleaching

  3. Immediate bonding to bleached enamel.

    PubMed

    Nour El-din, Amal K; Miller, Barbara H; Griggs, Jason A; Wakefield, Charles

    2006-01-01

    This research sought to determine the shear bond strength, degree of resin infiltration and failure mode when organic solvent-based adhesives (acetone or ethanol) were used in immediate bonding to enamel bleached with 10% carbamide peroxide or 38% hydrogen peroxide systems. Seventy-two non-carious bovine incisors were randomly assigned to three groups of 24 specimens each-control group (deionized water), 38% hydrogen peroxide bleach group and 10% carbamide peroxide bleach group. Each group was further subdivided into two subgroups of 12 specimens each according to the adhesive system used to bond the resin composite to enamel surfaces. The two adhesive systems used were Single Bond, an ethanol-based adhesive, and One Step, an acetone-based adhesive. The shear bond strengths of 38% hydrogen peroxide and 10% carbamide peroxide were significantly lower compared to the non-bleached controls. Fractography revealed an adhesive failure mode in all specimens. Qualitative comparisons of resin tags present in the bleached and unbleached specimens using scanning electron microscopy (SEM) revealed few, thin and fragmented resin tags when 38% hydrogen peroxide and 10% carbamide peroxide were used.

  4. Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica.

    PubMed

    Crabbe, M J C

    2009-01-01

    Coral reefs throughout the world are under severe challenges from many environmental factors. This paper quantifies the size structure of populations and the growth rates of corals from 2000 to 2008 to test whether the Discovery Bay coral colonies showed resilience in the face of multiple acute stressors of hurricanes and bleaching. There was a reduction in numbers of colonies in the smallest size class for all the species at all the sites in 2006, after the mass bleaching of 2005, with subsequent increases for all species at all sites in 2007 and 2008. Radial growth rates (mm yr(-1)) of non-branching corals and linear extension rates (mm yr(-1)) of branching corals calculated on an annual basis from 2000-2008 showed few significant differences either spatially or temporally. At Dairy Bull reef, live coral cover increased from 13+/-5% in 2006 to 20+/-9% in 2007 and 31+/-7% in 2008, while live Acropora species increased from 2+/-2% in 2006 to 10+/-4% in 2007 and 22+/-7% in 2008. These studies indicate good levels of coral resilience on the fringing reefs around Discovery Bay in Jamaica.

  5. Coral-algal phase shifts on coral reefs: Ecological and environmental aspects [review article

    NASA Astrophysics Data System (ADS)

    McManus, John W.; Polsenberg, Johanna F.

    2004-02-01

    This paper briefly reviews coral-algal phase shifts on coral reefs, with particular regard to summarizing the exogenous and endogenous factors in support of a proposed conceptual model, and to identifying critical information gaps. A phase shift occurs on a coral reef when the cover of a substrate by scleractinian corals is reduced in favor of macroalgal dominance, and resilience of the former condition is retarded because of ecological processes and/or environmental conditions. The change is often, but not always, associated with a perturbation such as coral bleaching, outbreaks of a coral-eating species, or storm damage. The new state is generally associated with some combination of reduced herbivory (from disease and/or fishing) and nutrient enrichment, although the relative importance of these factors is under debate and may vary among locations and even across single reefs. Disturbances that result in a state of generally low biotic three-dimensional structural complexity often precede a phase shift. Following such a disturbance, the system will pass to a state of higher biotic structural complexity, with either macroalgae or coral dominating. As the community progresses towards larger and more three-dimensionally complex corals or macroalgae, it exhibits greater resistance to shifting dominance from one state to the other. Studies of the phase-shift phenomena have been generally conducted at scales that are small relative to the sizes and inherent variability of whole coral reefs and systems of reefs. There is an urgent need for studies aimed at quantifying and simulating cause and effect aspects of the phase shift, including human-environment coupling, particularly in support of coral reef decision-making.

  6. Unrecognized coral species diversity masks differences in functional ecology.

    PubMed

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-01

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  7. Projecting coral reef futures under global warming and ocean acidification.

    PubMed

    Pandolfi, John M; Connolly, Sean R; Marshall, Dustin J; Cohen, Anne L

    2011-07-22

    Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.

  8. Unrecognized coral species diversity masks differences in functional ecology

    PubMed Central

    Boulay, Jennifer N.; Hellberg, Michael E.; Cortés, Jorge; Baums, Iliana B.

    2014-01-01

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change. PMID:24335977

  9. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    PubMed

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them. PMID:26812259

  10. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands

    PubMed Central

    Markey, Kathryn L.; Abdo, Dave A.; Evans, Scott N.; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of ‘heat tolerant’ coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them. PMID:26812259

  11. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    PubMed

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  12. Caught in the middle: combined impacts of shark removal and coral loss on the fish communities of coral reefs.

    PubMed

    Ruppert, Jonathan L W; Travers, Michael J; Smith, Luke L; Fortin, Marie-Josée; Meekan, Mark G

    2013-01-01

    Due to human activities, marine and terrestrial ecosystems face a future where disturbances are predicted to occur at a frequency and severity unprecedented in the recent past. Of particular concern is the ability of systems to recover where multiple stressors act simultaneously. We examine this issue in the context of a coral reef ecosystem where increases in stressors, such as fisheries, benthic degradation, cyclones and coral bleaching, are occurring at global scales. By utilizing long-term (decadal) monitoring programs, we examined the combined effects of chronic (removal of sharks) and pulse (cyclones, bleaching) disturbances on the trophic structure of coral reef fishes at two isolated atoll systems off the coast of northwest Australia. We provide evidence consistent with the hypothesis that the loss of sharks can have an impact that propagates down the food chain, potentially contributing to mesopredator release and altering the numbers of primary consumers. Simultaneously, we show how the effects of bottom-up processes of bleaching and cyclones appear to propagate up the food chain through herbivores, planktivores and corallivores, but do not affect carnivores. Because their presence may promote the abundance of herbivores, the removal of sharks by fishing has implications for both natural and anthropogenic disturbances involving the loss of corals, as herbivores are critical to the progress and outcome of coral recovery.

  13. Caught in the Middle: Combined Impacts of Shark Removal and Coral Loss on the Fish Communities of Coral Reefs

    PubMed Central

    Ruppert, Jonathan L. W.; Travers, Michael J.; Smith, Luke L.; Fortin, Marie-Josée; Meekan, Mark G.

    2013-01-01

    Due to human activities, marine and terrestrial ecosystems face a future where disturbances are predicted to occur at a frequency and severity unprecedented in the recent past. Of particular concern is the ability of systems to recover where multiple stressors act simultaneously. We examine this issue in the context of a coral reef ecosystem where increases in stressors, such as fisheries, benthic degradation, cyclones and coral bleaching, are occurring at global scales. By utilizing long-term (decadal) monitoring programs, we examined the combined effects of chronic (removal of sharks) and pulse (cyclones, bleaching) disturbances on the trophic structure of coral reef fishes at two isolated atoll systems off the coast of northwest Australia. We provide evidence consistent with the hypothesis that the loss of sharks can have an impact that propagates down the food chain, potentially contributing to mesopredator release and altering the numbers of primary consumers. Simultaneously, we show how the effects of bottom-up processes of bleaching and cyclones appear to propagate up the food chain through herbivores, planktivores and corallivores, but do not affect carnivores. Because their presence may promote the abundance of herbivores, the removal of sharks by fishing has implications for both natural and anthropogenic disturbances involving the loss of corals, as herbivores are critical to the progress and outcome of coral recovery. PMID:24058618

  14. Coral population dynamics across consecutive mass mortality events.

    PubMed

    Riegl, Bernhard; Purkis, Sam

    2015-11-01

    Annual coral mortality events due to increased atmospheric heat may occur regularly from the middle of the century and are considered apocalyptic for coral reefs. In the Arabian/Persian Gulf, this situation has already occurred and population dynamics of four widespread corals (Acropora downingi, Porites harrisoni, Dipsastrea pallida, Cyphastrea micropthalma) were examined across the first-ever occurrence of four back-to-back mass mortality events (2009-2012). Mortality was driven by diseases in 2009, bleaching and subsequent diseases in 2010/2011/2012. 2009 reduced P. harrisoni cover and size, the other events increasingly reduced overall cover (2009: -10%; 2010: -20%; 2011: -20%; 2012: -15%) and affected all examined species. Regeneration was only observed after the first disturbance. P. harrisoni and A. downingi severely declined from 2010 due to bleaching and subsequent white syndromes, while D. pallida and P. daedalea declined from 2011 due to bleaching and black-band disease. C. microphthalma cover was not affected. In all species, most large corals were lost while fission due to partial tissue mortality bolstered small size classes. This general shrinkage led to a decrease of coral cover and a dramatic reduction of fecundity. Transition matrices for disturbed and undisturbed conditions were evaluated as Life Table Response Experiment and showed that C. microphthalma changed the least in size-class dynamics and fecundity, suggesting they were 'winners'. In an ordered 'degradation cascade', impacts decreased from the most common to the least common species, leading to step-wise removal of previously dominant species. A potentially permanent shift from high- to low-coral cover with different coral community and size structure can be expected due to the demographic dynamics resultant from the disturbances. Similarities to degradation of other Caribbean and Pacific reefs are discussed. As comparable environmental conditions and mortality patterns must be

  15. The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both?

    PubMed

    Weis, Virginia M

    2010-04-01

    Coral reefs are threatened with worldwide decline from multiple factors, chief among them climate change (Hughes et al. 2003; Hoegh-Guldberg et al. 2007). The foundation of coral reefs is an endosymbiosis between coral hosts and their resident photosynthetic dinoflagellates (genus Symbiodinium) and this partnership (or holobiont) is exquisitely sensitive to temperature stress. The primary response to hyperthermic stress is coral bleaching, which is the loss of symbionts from coral tissues-the collapse of the symbiosis (Weis 2008). Bleaching can result in increased coral mortality which can ultimately lead to severely compromised reef health (Hoegh-Guldberg et al. 2007). Despite this grim picture of coral bleaching and reef degradation, coral susceptibility to stress and bleaching is highly variable (Coles & Brown 2003). There is enormous interest in discovering the factors that determine susceptibility in order to help us predict if and how corals will survive a period of rapid global warming. In this issue, Barshis et al. (2010) examine the ecophysiological and genetic basis for differential responses to stress in Porites lobata in American Samoa. They combine a reciprocal transplant experimental design between two neighbouring, but very different reef environments with state-of-the-art physiological biomarkers and molecular genetic markers for both partners to tease apart the contribution of environmental and fixed influences on stress susceptibility. Their results suggest the presence of a fixed, rather than environmental effect on expression of ubiquitin conjugates, one key marker for physiological stress response. In addition, the authors show genetic differentiation in host populations between the two sites suggesting strong selection for physiological adaptation to differing environments across small geographic distances. These conclusions point the study of coral resilience and susceptibility in a new direction.

  16. 21 CFR 582.1975 - Bleached beeswax.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Additives § 582.1975 Bleached beeswax. (a) Product. Bleached beeswax (white wax). (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good manufacturing...

  17. Phase shifts, herbivory, and the resilience of coral reefs to climate change.

    PubMed

    Hughes, Terence P; Rodrigues, Maria J; Bellwood, David R; Ceccarelli, Daniela; Hoegh-Guldberg, Ove; McCook, Laurence; Moltschaniwskyj, Natalie; Pratchett, Morgan S; Steneck, Robert S; Willis, Bette

    2007-02-20

    Many coral reefs worldwide have undergone phase shifts to alternate, degraded assemblages because of the combined effects of over-fishing, declining water quality, and the direct and indirect impacts of climate change. Here, we experimentally manipulated the density of large herbivorous fishes to test their influence on the resilience of coral assemblages in the aftermath of regional-scale bleaching in 1998, the largest coral mortality event recorded to date. The experiment was undertaken on the Great Barrier Reef, within a no-fishing reserve where coral abundances and diversity had been sharply reduced by bleaching. In control areas, where fishes were abundant, algal abundance remained low, whereas coral cover almost doubled (to 20%) over a 3 year period, primarily because of recruitment of species that had been locally extirpated by bleaching. In contrast, exclusion of large herbivorous fishes caused a dramatic explosion of macroalgae, which suppressed the fecundity, recruitment, and survival of corals. Consequently, management of fish stocks is a key component in preventing phase shifts and managing reef resilience. Importantly, local stewardship of fishing effort is a tractable goal for conservation of reefs, and this local action can also provide some insurance against larger-scale disturbances such as mass bleaching, which are impractical to manage directly.

  18. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals

    PubMed Central

    Vieira, Christophe; Thomas, Olivier P.; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; De Clerck, Olivier; Payri, Claude E.

    2016-01-01

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A–C (1–3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems. PMID:26728003

  19. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals.

    PubMed

    Vieira, Christophe; Thomas, Olivier P; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; De Clerck, Olivier; Payri, Claude E

    2016-01-01

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems. PMID:26728003

  20. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals.

    PubMed

    Vieira, Christophe; Thomas, Olivier P; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; De Clerck, Olivier; Payri, Claude E

    2016-01-01

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A-C (1-3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.

  1. 76 FR 63904 - Proposed Information Collection; Comment Request; Coral Reef Conservation Program Administration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Coral..., extension 150, or Jenny.Waddell@noaagov. SUPPLEMENTARY INFORMATION: I. Abstract The Coral Reef Conservation Act of 2000 (Act) was enacted to provide a framework for conserving coral reefs. The Coral...

  2. 21 CFR 582.1975 - Bleached beeswax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bleached beeswax. 582.1975 Section 582.1975 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1975 Bleached beeswax. (a) Product. Bleached beeswax (white wax). (b) Conditions of...

  3. 21 CFR 582.1975 - Bleached beeswax.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Bleached beeswax. 582.1975 Section 582.1975 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1975 Bleached beeswax. (a) Product. Bleached beeswax (white wax). (b) Conditions of...

  4. Symbiodinium Clade Affects Coral Skeletal Isotopic Ratio

    NASA Astrophysics Data System (ADS)

    Carilli, J.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2011-12-01

    The influence of different physiologies of Symbiodinium dinoflagellate symbiont clades on the skeletal chemistry of associated coral hosts has not previously been investigated. This is an important issue because coral skeletons are routinely used for tropical paleoclimatic reconstructions. We analyzed coral skeletal samples collected simultaneously from neighboring colonies off Belize and found that those harboring different clades of Symbiodinium displayed significantly different skeletal oxygen isotopic compositions. We also found evidence for mean shifts in skeletal oxygen isotopic composition after coral bleaching (the loss and potential exchange of symbionts) in two of four longer coral cores from the Mesoamerican Reef, though all experienced similar climatic conditions. Thus, we suggest that symbiont clade identity leaves a signature in the coral skeletal archive and that this influence must be considered for quantitative environmental reconstruction. In addition, we suggest that the skeletal isotopic signature may be used to identify changes in the dominant symbiont clade that have occurred in the past, to identify how common and widespread this phenomenon is--a potential adaptation to climate change.

  5. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf.

    PubMed

    Buchanan, Jack R; Krupp, Friedhelm; Burt, John A; Feary, David A; Ralph, Gina M; Carpenter, Kent E

    2016-04-30

    In the Gulf, multiple human impacts and recurrent bleaching events have resulted in serious declines of coral assemblages, particularly in near-shore areas. However, the degree to which the extinction risk of coral-dependent fishes is impacted by these coral declines has been uncertain. Using primary literature and expert knowledge, coral-dependent fishes of the Gulf were identified and species-specific data on the regional distribution, population status, life history characteristics, and major threats were compiled to determine their likelihood of extinction under the IUCN Red List of Threatened Species' Categories and Criteria. Due to the limited area and degraded and fragmented nature of coral assemblages in the Gulf, all coral-dependent fishes (where data was sufficient to assess) were listed at elevated risk of extinction. Cross-boundary collaboration among Gulf States is necessary for effective management and protection of coral assemblages and their associated communities within this globally important region. PMID:26602440

  6. Living on the edge: Vulnerability of coral-dependent fishes in the Gulf.

    PubMed

    Buchanan, Jack R; Krupp, Friedhelm; Burt, John A; Feary, David A; Ralph, Gina M; Carpenter, Kent E

    2016-04-30

    In the Gulf, multiple human impacts and recurrent bleaching events have resulted in serious declines of coral assemblages, particularly in near-shore areas. However, the degree to which the extinction risk of coral-dependent fishes is impacted by these coral declines has been uncertain. Using primary literature and expert knowledge, coral-dependent fishes of the Gulf were identified and species-specific data on the regional distribution, population status, life history characteristics, and major threats were compiled to determine their likelihood of extinction under the IUCN Red List of Threatened Species' Categories and Criteria. Due to the limited area and degraded and fragmented nature of coral assemblages in the Gulf, all coral-dependent fishes (where data was sufficient to assess) were listed at elevated risk of extinction. Cross-boundary collaboration among Gulf States is necessary for effective management and protection of coral assemblages and their associated communities within this globally important region.

  7. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  8. Vital bleach of hemorrhagic discoloration.

    PubMed

    Wong, M; Schmidt, J C

    1991-05-01

    An unusual case is presented of a maxillary central incisor with hemorrhagic discoloration that was successfully treated with the thermocatalytic vital bleach technique. This case emphasizes the need for a thorough radiographic and clinical examination to include vitality tests when a patient presents with a discolored tooth.

  9. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  10. Ultrastructural responses in field-bleached and experimentally stressed Amphistegina gibbosa (Class Foraminifera).

    PubMed

    Talge, Helen K; Hallock, Pamela

    2003-01-01

    Amphistegina are the most common foraminifers with algal endosymbionts found on reefs and carbonate shelves worldwide. Like zooxanthellate corals and other reef organisms with algal symbionts, Amphistegina respond to photoxidative stress by bleaching. This paper documents ultrastructural changes that occur during bleaching under field and laboratory conditions. Nine chambers from the outer whorl of each of 22 normal-appearing and 11 partly bleached specimens of Amphistegina gibbosa, which were collected from Conch Reef, Florida, USA, were examined using transmission electron microscopy. The condition and numbers of algal symbionts, as well as the cell area occupied by 10 other intracellular structures of the host, were quantified. Normal-appearing specimens averaged three times more viable symbionts and less than a fourth as many deteriorating symbionts as partly bleached specimens. Foraminifers experimentally exposed to visible light intensities > or = 13 micromole photon m(-2) s(-1) for 35 d were statistically similar to partly bleached field specimens in the number and condition of symbionts, and in chamber area occupied by the evaluated host structures. Exposure to 32 degrees C water temperature at 6-8 micromole photon m(-2) s(-1) for 28 d induced symbiont loss but did not degrade host endoplasm.

  11. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  12. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  13. Ultrastructural responses in field-bleached and experimentally stressed Amphistegina gibbosa (Class Foraminifera).

    PubMed

    Talge, Helen K; Hallock, Pamela

    2003-01-01

    Amphistegina are the most common foraminifers with algal endosymbionts found on reefs and carbonate shelves worldwide. Like zooxanthellate corals and other reef organisms with algal symbionts, Amphistegina respond to photoxidative stress by bleaching. This paper documents ultrastructural changes that occur during bleaching under field and laboratory conditions. Nine chambers from the outer whorl of each of 22 normal-appearing and 11 partly bleached specimens of Amphistegina gibbosa, which were collected from Conch Reef, Florida, USA, were examined using transmission electron microscopy. The condition and numbers of algal symbionts, as well as the cell area occupied by 10 other intracellular structures of the host, were quantified. Normal-appearing specimens averaged three times more viable symbionts and less than a fourth as many deteriorating symbionts as partly bleached specimens. Foraminifers experimentally exposed to visible light intensities > or = 13 micromole photon m(-2) s(-1) for 35 d were statistically similar to partly bleached field specimens in the number and condition of symbionts, and in chamber area occupied by the evaluated host structures. Exposure to 32 degrees C water temperature at 6-8 micromole photon m(-2) s(-1) for 28 d induce