Science.gov

Sample records for abstract radial basis

  1. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGESBeta

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  2. Radial basis function neural networks applied to NASA SSME data

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Dhawan, Atam P.

    1993-01-01

    This paper presents a brief report on the application of Radial Basis Function Neural Networks (RBFNN) to the prediction of sensor values for fault detection and diagnosis of the Space Shuttle's Main Engines (SSME). The location of the Radial Basis Function (RBF) node centers was determined with a K-means clustering algorithm. A neighborhood operation about these center points was used to determine the variances of the individual processing notes.

  3. Radial basis function neural networks applied to NASA SSME data

    NASA Astrophysics Data System (ADS)

    Wheeler, Kevin R.; Dhawan, Atam P.

    1993-06-01

    This paper presents a brief report on the application of Radial Basis Function Neural Networks (RBFNN) to the prediction of sensor values for fault detection and diagnosis of the Space Shuttle's Main Engines (SSME). The location of the Radial Basis Function (RBF) node centers was determined with a K-means clustering algorithm. A neighborhood operation about these center points was used to determine the variances of the individual processing notes.

  4. Point Set Denoising Using Bootstrap-Based Radial Basis Function

    PubMed Central

    Ramli, Ahmad; Abd. Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study. PMID:27315105

  5. A radial basis function neurocomputer implemented with analog VLSI circuits

    NASA Technical Reports Server (NTRS)

    Watkins, Steven S.; Chau, Paul M.; Tawel, Raoul

    1992-01-01

    An electronic neurocomputer which implements a radial basis function neural network (RBFNN) is described. The RBFNN is a network that utilizes a radial basis function as the transfer function. The key advantages of RBFNNs over existing neural network architectures include reduced learning time and the ease of VLSI implementation. This neurocomputer is based on an analog/digital hybrid design and has been constructed with both custom analog VLSI circuits and a commercially available digital signal processor. The hybrid architecture is selected because it offers high computational performance while compensating for analog inaccuracies, and it features the ability to model large problems.

  6. Surface interpolation with radial basis functions for medical imaging

    SciTech Connect

    Carr, J.C.; Beatson, R.K.; Fright, W.R.

    1997-02-01

    Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The specific application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are suited to problems where interpolation centers do not form a regular grid. However, their high computational requirements have previously limited their use to problems where the number of interpolation centers is small (<300). Recently developed fast evaluation techniques have overcome these limitations and made radial basis interpolation a practical approach for larger data sets. In this paper radial basis functions are fitted to depth-maps of the skull`s surface, obtained from X-ray computed tomography (CT) data using ray-tracing techniques. They are used to smoothly interpolate the surface of the skull across defect regions. The resulting mathematical description of the skull`s surface can be evaluated at any desired resolution to be rendered on a graphics workstation or to generate instructions for operating a computer numerically controlled (CNC) mill.

  7. Shakespeare vs. Fletcher: A Stylometric Analysis by Radial Basis Functions.

    ERIC Educational Resources Information Center

    Lowe, David; Matthews, Robert

    1995-01-01

    Illustrates how Radial Basis Function (RBF) network techniques can be used to explore questions concerning authorship of historic documents. Demonstrates the utility and potential for using quantitative techniques to assist in the decision-making process in relatively subjective disciplines. Compares RBF neural network techniques with more…

  8. Precision of a radial basis function neural network tracking method

    NASA Technical Reports Server (NTRS)

    Hanan, J.; Zhou, H.; Chao, T. H.

    2003-01-01

    The precision of a radial basis function (RBF) neural network based tracking method has been assessed against real targets. Precision was assessed against traditionally measured frame-by-frame measurements from the recorded data set. The results show the potential limit for the technique and reveal intricacies associated with empirical data not necessarily observed in simulations.

  9. Use of Normalized Radial Basis Function in Hydrology

    SciTech Connect

    Cotar, Anton; Brilly, Mitja

    2008-11-13

    In this article we will present a use of normalized radial basis function in hydrology for prediction of missing river Reka runoff data. The method is based on multidimensional normal distribution, where standard deviation is first optimized and later the whole prediction process is learned on existing data [5]. We can conclude, that the method works very well for middle ranges of data, but not so well for extremes because of its interpolating nature.

  10. Dynamics of learning near singularities in radial basis function networks.

    PubMed

    Wei, Haikun; Amari, Shun-Ichi

    2008-09-01

    The radial basis function (RBF) networks are one of the most widely used models for function approximation in the regression problem. In the learning paradigm, the best approximation is recursively or iteratively searched for based on observed data (teacher signals). One encounters difficulties in such a process when two component basis functions become identical, or when the magnitude of one component becomes null. In this case, the number of the components reduces by one, and then the reduced component recovers as the learning process proceeds further, provided such a component is necessary for the best approximation. Strange behaviors, especially the plateau phenomena, have been observed in dynamics of learning when such reduction occurs. There exist singularities in the space of parameters, and the above reduction takes place at the singular regions. This paper focuses on a detailed analysis of the dynamical behaviors of learning near the overlap and elimination singularities in RBF networks, based on the averaged learning equation that is applicable to both on-line and batch mode learning. We analyze the stability on the overlap singularity by solving the eigenvalues of the Hessian explicitly. Based on the stability analysis, we plot the analytical dynamic vector fields near the singularity, which are then compared to those real trajectories obtained by a numeric method. We also confirm the existence of the plateaus in both batch and on-line learning by simulation. PMID:18693082

  11. Adaptive radial basis function mesh deformation using data reduction

    NASA Astrophysics Data System (ADS)

    Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.

    2016-09-01

    Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited

  12. Reconstructing the magnetosphere from data using radial basis functions

    NASA Astrophysics Data System (ADS)

    Andreeva, Varvara A.; Tsyganenko, Nikolai A.

    2016-03-01

    A new method is proposed to derive from data magnetospheric magnetic field configurations without any a priori assumptions on the geometry of electric currents. The approach utilizes large sets of archived satellite data and uses an advanced technique to represent the field as a sum of toroidal and poloidal parts, whose generating potentials Ψ1 and Ψ2 are expanded into series of radial basis functions (RBFs) with their nodes regularly distributed over the 3-D modeling domain. The method was tested by reconstructing the inner and high-latitude field within geocentric distances up to 12RE on the basis of magnetometer data of Geotail, Polar, Cluster, Time History of Events and Macroscale Interactions during Substorms, and Van Allen space probes, taken during 1995-2015. Four characteristic states of the magnetosphere before and during a disturbance have been modeled: a quiet prestorm period, storm deepening phase with progressively decreasing SYM-H index, the storm maximum around the negative peak of SYM-H, and the recovery phase. Fitting the RBF model to data faithfully resolved contributions to the total magnetic field from all principal sources, including the westward and eastward ring current, the tail current, diamagnetic currents associated with the polar cusps, and the large-scale effect of the field-aligned currents. For two main phase conditions, the model field exhibited a strong dawn-dusk asymmetry of the low-latitude magnetic depression, extending to low altitudes and partly spreading sunward from the terminator plane in the dusk sector. The RBF model was found to resolve even finer details, such as the bifurcation of the innermost tail current. The method can be further developed into a powerful tool for data-based studies of the magnetospheric currents.

  13. Texture image classification using modular radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Chang, Chuan-Yu; Wang, Hung-Jen; Fu, Shih-Yu

    2010-01-01

    Image classification has become an important topic in multimedia processing. Recently, neural network-based methods have been proposed to solve the classification problem. Among them, the radial basis function neural network (RBFNN) is the most popular architecture, because it has good learning and approximation capabilities. However, traditional RBFNNs are sensitive to center initialization. To obtain appropriate centers, it needs to find significant features for further RBF clustering. In addition, the training procedure of a traditional RBFNN is time consuming. Therefore, in this work, a combination of a self-organizing map (SOM) and learning vector quantization (LVQ) neural networks is proposed to select more appropriate centers for an RBFNN, and a modular RBF neural network (MRBFNN) is proposed to improve the classification rate and to speed up the training time. Experimental results show that the proposed MRBFNN has better performance than those of the traditional RBFNN, the discrete wavelength transform (DWT)-based method, the tree structured wavelet (TWS), the discrete wavelet frame (DWF), the rotated wavelet filter (RWF), and the wavelet neural network based on adaptive norm entropy (WNN-ANE) methods.

  14. 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Wright, G. B.; Yuen, D.

    2008-12-01

    In the past 25 years a wide variety of numerical methods, such as finite-difference, finite-volume , finite- elements, and pseudospectral methods have been employed to study the problem of 3-D mantle convection. All have specialized strengths but also serious weaknesses. The first three methods are generally considered low-order and can involve high algorithmic complexity (as in triangular elements). Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. Here, we introduce a new grid/mesh-free approach using radial basis functions (RBFs). It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and naturally permits local node refinement. It has been shown for shallow-water equations and vortex flows that RBFs outperform other numerical methods in the sense that they obtain a much higher accuracy for the same spatial resolution while being able to take unusually large time steps. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer( planetary surface ) and inner shell ( core-mantle boundary ). The velocity and stress components are expressed in terms of the scalar potential approach (Zebib and Schubert, 1982) and the other remaining variable is the perturbed temperature field. We have studied the problem from the onset of convection to a modest nonlinear regime.

  15. CAD and mesh repair with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Marchandise, E.; Piret, C.; Remacle, J.-F.

    2012-03-01

    In this paper we present a process that includes both model/mesh repair and mesh generation. The repair algorithm is based on an initial mesh that may be either an initial mesh of a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junctions. This initial mesh is then remeshed by computing a discrete parametrization with Radial Basis Functions (RBF's). We showed in [1] that a discrete parametrization can be computed by solving Partial Differential Equations (PDE's) on an initial correct mesh using finite elements. Paradoxically, the meshless character of the RBF's makes it an attractive numerical method for solving the PDE's for the parametrization in the case where the initial mesh contains errors or holes. In this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF solution method for solving PDE's on arbitrary surfaces. Different examples show that the presented method is able to deal with errors such as gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover, the presented algorithm can be used as a hole-filling algorithm to repair meshes with undesirable holes. The overall procedure is implemented in the open-source mesh generator Gmsh [3].

  16. Radial basis function interpolation in the limit of increasingly flat basis functions

    NASA Astrophysics Data System (ADS)

    Kindelan, Manuel; Moscoso, Miguel; González-Rodríguez, Pedro

    2016-02-01

    We propose a new approach to study Radial Basis Function (RBF) interpolation in the limit of increasingly flat functions. The new approach is based on the semi-analytical computation of the Laurent series of the inverse of the RBF interpolation matrix described in a previous paper [3]. Once the Laurent series is obtained, it can be used to compute the limiting polynomial interpolant, the optimal shape parameter of the RBFs used for interpolation, and the weights of RBF finite difference formulas, among other things.

  17. A Cubic Radial Basis Function in the MLPG Method for Beam Problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.

    2002-01-01

    A non-compactly supported cubic radial basis function implementation of the MLPG method for beam problems is presented. The evaluation of the derivatives of the shape functions obtained from the radial basis function interpolation is much simpler than the evaluation of the moving least squares shape function derivatives. The radial basis MLPG yields results as accurate or better than those obtained by the conventional MLPG method for problems with discontinuous and other complex loading conditions.

  18. Three learning phases for radial-basis-function networks.

    PubMed

    Schwenker, F; Kestler, H A; Palm, G

    2001-05-01

    In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (ID objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where

  19. Meshless Local Petrov-Galerkin Euler-Bernoulli Beam Problems: A Radial Basis Function Approach

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2003-01-01

    A radial basis function implementation of the meshless local Petrov-Galerkin (MLPG) method is presented to study Euler-Bernoulli beam problems. Radial basis functions, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Compactly and noncompactly supported radial basis functions are considered. The non-compactly supported cubic radial basis function is found to perform very well. Results obtained from the radial basis MLPG method are comparable to those obtained using the conventional MLPG method for mixed boundary value problems and problems with discontinuous loading conditions.

  20. Free vibrations and buckling analysis of laminated plates by oscillatory radial basis functions

    NASA Astrophysics Data System (ADS)

    Neves, A. M. A.; Ferreira, A. J. M.

    2015-12-01

    In this paper the free vibrations and buckling analysis of laminated plates is performed using a global meshless method. A refined version of Kant's theorie which accounts for transverse normal stress and through-the-thickness deformation is used. The innovation is the use of oscillatory radial basis functions. Numerical examples are performed and results are presented and compared to available references. Such functions proved to be an alternative to the tradicional nonoscillatory radial basis functions.

  1. Structural basis for radial ornamentation in orthid brachiopods

    SciTech Connect

    Ackerly, S.C.

    1985-01-01

    Radial ornamentation patterns in brachiopods (eg. ribs, costellae) result from accretionary growth of a crenulated shell margin. The direction of rib growth represents the orientation of the crenulated fabric at the time of shell formation. Morphologic analysis reveals a close relationship between rib growth patterns and the position of adductor muscle attachment sites in the shell. In the brachial valves of most orthid brachiopods, the directions of rib growth, when projected backwards into the shell, converge on the anterior, or catch, adductor muscle scars. One explanation for the observed relationship is that the crenulated surface provides rigidity to the thin growing margin of the shell thereby resisting deformations caused by the adductor loadings. Alternatively, calcite secretion may be mediated by strain-induced growth mechanisms as observed in vertebrate bone growth patterns. Correspondence of muscle position with shell geometry indicates that muscle placement may be constrained by mechanical properties of the shell rather than by requirements of the hinge mechanism. Morphologic diversity among brachiopods is discussed in terms of structural and mechanical constraints on form.

  2. Satisfiability of logic programming based on radial basis function neural networks

    SciTech Connect

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-07-10

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  3. Satisfiability of logic programming based on radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Tilahun, Surafel Luleseged; Choon, Ong Hong

    2014-07-01

    In this paper, we propose a new technique to test the Satisfiability of propositional logic programming and quantified Boolean formula problem in radial basis function neural networks. For this purpose, we built radial basis function neural networks to represent the proportional logic which has exactly three variables in each clause. We used the Prey-predator algorithm to calculate the output weights of the neural networks, while the K-means clustering algorithm is used to determine the hidden parameters (the centers and the widths). Mean of the sum squared error function is used to measure the activity of the two algorithms. We applied the developed technique with the recurrent radial basis function neural networks to represent the quantified Boolean formulas. The new technique can be applied to solve many applications such as electronic circuits and NP-complete problems.

  4. Finite element basis for the expansion of radial wavefunction in quantum scattering calculations

    NASA Astrophysics Data System (ADS)

    Hwang, Woonglin; Sup Lee, Yoon; Park, Seung C.

    1991-11-01

    Radial wavefunctions in quantum scattering calculations are expanded in terms of two shape functions for each finite element. This approach is the R matrix version of Kohn's variational method and also directly applicable to S matrix in the log-derivative version. The linear algebra involved amounts to solving definite banded systems. In this basis set method, R matrix or log-derivative matrix is greatly simplified and the computational effort is linearly proportional to the number of radial basis functions, promising computational efficiencies for large scale calculations. Convergences for test vases are also reasonably rapid.

  5. Regional ice mass balance for Greenland from GRACE and ICESat modelled by radial basis functions

    NASA Astrophysics Data System (ADS)

    Eicker, A.; Springer, A.; Jensen, L.; Kusche, J.

    2012-04-01

    This contribution presents a tailored regional mass balance for the Greenland ice sheet from GRACE and ICESat observations. A regional gravity field trend model is calculated directly from the GRACE level 1B observations using the short arc method. The gravity field model is parameterized by harmonic space localizing radial basis functions that can be tailored to the specific signal characteristics in Greenland. The ICESat along-track ice elevation changes are co-estimated together with the local topography in order to be independent from external elevation models. The along-track observations are then evaluated without any necessary gridding consistently with the GRACE processing in the same basis of radial basis functions. This allows further joint analysis of the two data sets in this same basis.

  6. A Meshless Method Using Radial Basis Functions for Beam Bending Problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Phillips, D. R.; Krishnamurthy, T.

    2004-01-01

    A meshless local Petrov-Galerkin (MLPG) method that uses radial basis functions (RBFs) as trial functions in the study of Euler-Bernoulli beam problems is presented. RBFs, rather than generalized moving least squares (GMLS) interpolations, are used to develop the trial functions. This choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as they are in the conventional MLPG method. Compactly and noncompactly supported RBFs are considered. Noncompactly supported cubic RBFs are found to be preferable. Patch tests, mixed boundary value problems, and problems with complex loading conditions are considered. Results obtained from the radial basis MLPG method are either of comparable or better accuracy than those obtained when using the conventional MLPG method.

  7. Optical design and tolerancing of freeform surfaces using anisotropic radial basis functions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan

    2016-07-01

    We investigate use of the anisotropic radial basis functions expansion as a means to represent surface errors on aspheric and freeform surfaces. We show how the optimal choice of the shape parameter and the placement of radial basis function (RBF) nodes can increase accuracy of the surface approximation. We show an example of the adaptive grid refinement. In our approach, complex surfaces are modeled with general arbitrary representation while the anisotropic RBFs expansion models perturbation of the base surface. We show how both the global and the localized surface errors can be modeled across a wide spatial frequency range. With our method, the impact of the structured surface errors on the arbitrary surfaces when applied on the standardized image quality metrics can be assessed for the purpose of optical tolerancing.

  8. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Gocic, Milan; Shamshirband, Shahaboddin; Qasem, Sultan Noman; Trajkovic, Slavisa

    2016-08-01

    Accurate estimation of the reference evapotranspiration (ET0) is important for the water resource planning and scheduling of irrigation systems. For this purpose, the radial basis function network with particle swarm optimization (RBFN-PSO) and radial basis function network with back propagation (RBFN-BP) were used in this investigation. The FAO-56 Penman-Monteith equation was used as reference equation to estimate ET0 for Serbia during the period of 1980-2010. The obtained simulation results confirmed the proposed models and were analyzed using the root mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination ( R 2). The analysis showed that the RBFN-PSO had better statistical characteristics than RBFN-BP and can be helpful for the ET0 estimation.

  9. An efficient ensemble of radial basis functions method based on quadratic programming

    NASA Astrophysics Data System (ADS)

    Shi, Renhe; Liu, Li; Long, Teng; Liu, Jian

    2016-07-01

    Radial basis function (RBF) surrogate models have been widely applied in engineering design optimization problems to approximate computationally expensive simulations. Ensemble of radial basis functions (ERBF) using the weighted sum of stand-alone RBFs improves the approximation performance. To achieve a good trade-off between the accuracy and efficiency of the modelling process, this article presents a novel efficient ERBF method to determine the weights through solving a quadratic programming subproblem, denoted ERBF-QP. Several numerical benchmark functions are utilized to test the performance of the proposed ERBF-QP method. The results show that ERBF-QP can significantly improve the modelling efficiency compared with several existing ERBF methods. Moreover, ERBF-QP also provides satisfactory performance in terms of approximation accuracy. Finally, the ERBF-QP method is applied to a satellite multidisciplinary design optimization problem to illustrate its practicality and effectiveness for real-world engineering applications.

  10. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Gocic, Milan; Shamshirband, Shahaboddin; Qasem, Sultan Noman; Trajkovic, Slavisa

    2015-06-01

    Accurate estimation of the reference evapotranspiration (ET0) is important for the water resource planning and scheduling of irrigation systems. For this purpose, the radial basis function network with particle swarm optimization (RBFN-PSO) and radial basis function network with back propagation (RBFN-BP) were used in this investigation. The FAO-56 Penman-Monteith equation was used as reference equation to estimate ET0 for Serbia during the period of 1980-2010. The obtained simulation results confirmed the proposed models and were analyzed using the root mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination (R 2). The analysis showed that the RBFN-PSO had better statistical characteristics than RBFN-BP and can be helpful for the ET0 estimation.

  11. Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform

    NASA Astrophysics Data System (ADS)

    Larsson, Elisabeth; Ahlander, Krister; Hall, Andreas

    2008-12-01

    We show that the generalized Fourier transform can be used for reducing the computational cost and memory requirements of radial basis function methods for multi-dimensional option pricing. We derive a general algorithm, including a transformation of the Black-Scholes equation into the heat equation, that can be used in any number of dimensions. Numerical experiments in two and three dimensions show that the gain is substantial even for small problem sizes. Furthermore, the gain increases with the number of dimensions.

  12. Reconfigurable Flight Control Design using a Robust Servo LQR and Radial Basis Function Neural Networks

    NASA Technical Reports Server (NTRS)

    Burken, John J.

    2005-01-01

    This viewgraph presentation reviews the use of a Robust Servo Linear Quadratic Regulator (LQR) and a Radial Basis Function (RBF) Neural Network in reconfigurable flight control designs in adaptation to a aircraft part failure. The method uses a robust LQR servomechanism design with model Reference adaptive control, and RBF neural networks. During the failure the LQR servomechanism behaved well, and using the neural networks improved the tracking.

  13. Optimal Space Station solar array gimbal angle determination via radial basis function neural networks

    NASA Technical Reports Server (NTRS)

    Clancy, Daniel J.; Oezguener, Uemit; Graham, Ronald E.

    1994-01-01

    The potential for excessive plume impingement loads on Space Station Freedom solar arrays, caused by jet firings from an approaching Space Shuttle, is addressed. An artificial neural network is designed to determine commanded solar array beta gimbal angle for minimum plume loads. The commanded angle would be determined dynamically. The network design proposed involves radial basis functions as activation functions. Design, development, and simulation of this network design are discussed.

  14. Diagnosis of Cervical Cancer Using the Median M-Type Radial Basis Function (MMRBF) Neural Network

    NASA Astrophysics Data System (ADS)

    Gómez-Mayorga, Margarita E.; Gallegos-Funes, Francisco J.; de-La-Rosa-Vázquez, José M.; Cruz-Santiago, Rene; Ponomaryov, Volodymyr

    The automatic analysis of Pap smear microscopic images is one of the most interesting fields in biomedical image processing. In this paper we present the capability of the Median M-Type Radial Basis Function (MMRBF) neural network in the classification of cervical cancer cells. From simulation results we observe that the MMRBF neural network has better classification capabilities in comparison with the Median RBF algorithm used as comparative.

  15. Radial Basis Functions for Combining Shape and Speckle Tracking in 4D Echocardiography

    PubMed Central

    Compas, Colin B.; Wong, Emily Y.; Huang, Xiaojie; Sampath, Smita; Lin, Ben A.; Pal, Prasanta; Papademetris, Xenophon; Thiele, Karl; Dione, Donald P.; Stacy, Mitchel; Staib, Lawrence H.; Sinusas, Albert J.; O'Donnell, Matthew; Duncan, James S.

    2014-01-01

    Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach. PMID:24893257

  16. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  17. Numerical Investigation of Electromagnetic Scattering Problems Based on the Compactly Supported Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Roohani Ghehsareh, Hadi; Kamal Etesami, Seyed; Hajisadeghi Esfahani, Maryam

    2016-08-01

    In the current work, the electromagnetic (EM) scattering from infinite perfectly conducting cylinders with arbitrary cross sections in both transverse magnetic (TM) and transverse electric (TE) modes is numerically investigated. The problems of TE and TM EM scattering can be mathematically modelled via the magnetic field integral equation (MFIE) and the electric field integral equation (EFIE), respectively. An efficient technique is performed to approximate the solution of these surface integral equations. In the proposed numerical method, compactly supported radial basis functions (RBFs) are employed as the basis functions. The radial and compactly supported properties of these basis functions substantially reduce the computational cost and improve the efficiency of the method. To show the accuracy of the proposed technique, it has been applied to solve three interesting test problems. Moreover, the method is well used to compute the electric current density and also the radar cross section (RCS) for some practical scatterers with different cross section geometries. The reported numerical results through the tables and figures demonstrate the efficiency and accuracy of the proposed technique.

  18. Optimization of global model composed of radial basis functions using the term-ranking approach

    SciTech Connect

    Cai, Peng; Tao, Chao Liu, Xiao-Jun

    2014-03-15

    A term-ranking method is put forward to optimize the global model composed of radial basis functions to improve the predictability of the model. The effectiveness of the proposed method is examined by numerical simulation and experimental data. Numerical simulations indicate that this method can significantly lengthen the prediction time and decrease the Bayesian information criterion of the model. The application to real voice signal shows that the optimized global model can capture more predictable component in chaos-like voice data and simultaneously reduce the predictable component (periodic pitch) in the residual signal.

  19. Novel Online Dimensionality Reduction Method with Improved Topology Representing and Radial Basis Function Networks

    PubMed Central

    Ni, Shengqiao; Lv, Jiancheng; Cheng, Zhehao; Li, Mao

    2015-01-01

    This paper presents improvements to the conventional Topology Representing Network to build more appropriate topology relationships. Based on this improved Topology Representing Network, we propose a novel method for online dimensionality reduction that integrates the improved Topology Representing Network and Radial Basis Function Network. This method can find meaningful low-dimensional feature structures embedded in high-dimensional original data space, process nonlinear embedded manifolds, and map the new data online. Furthermore, this method can deal with large datasets for the benefit of improved Topology Representing Network. Experiments illustrate the effectiveness of the proposed method. PMID:26161960

  20. An improved radial basis function network for visual autonomous road following.

    PubMed

    Rosenblum, M; Davis, L S

    1996-01-01

    We have developed a radial basis function network (RBFN) for visual autonomous road following. Preliminary testing of the RBFN was done using a driving simulator, and the RBFN was then installed on an actual vehicle at Carnegie Mellon University for testing in an outdoor road-following application. In our first attempts, the RBFN had some success, but it experienced some significant problems such as jittery control and driving failure. Several improvements have been made to the original RBFN architecture to overcome these problems in simulation and more importantly in actual road following, and the improvements are described in this paper. PMID:18263508

  1. Parallel fixed point implementation of a radial basis function network in an FPGA.

    PubMed

    de Souza, Alisson C D; Fernandes, Marcelo A C

    2014-01-01

    This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918

  2. Parallel Fixed Point Implementation of a Radial Basis Function Network in an FPGA

    PubMed Central

    de Souza, Alisson C. D.; Fernandes, Marcelo A. C.

    2014-01-01

    This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA. PMID:25268918

  3. Estimation of river pollution source using the space-time radial basis collocation method

    NASA Astrophysics Data System (ADS)

    Li, Zi; Mao, Xian-Zhong; Li, Tak Sing; Zhang, Shiyan

    2016-02-01

    River contaminant source identification problems can be formulated as an inverse model to estimate the missing source release history from the observed contaminant plume. In this study, the identification of pollution sources in rivers, where strong advection is dominant, is solved by the global space-time radial basis collocation method (RBCM). To search for the optimal shape parameter and scaling factor which strongly determine the accuracy of the RBCM method, a new cost function based on the residual errors of not only the observed data but also the specified governing equation, the initial and boundary conditions, was constructed for the k-fold cross-validation technique. The performance of three global radial basis functions, Hardy's multiquadric, inverse multiquadric and Gaussian, were also compared in the test cases. The numerical results illustrate that the new cost function is a good indicator to search for near-optimal solutions. Application to a real polluted river shows that the source release history is reasonably recovered, demonstrating that the RBCM with the k-fold cross-validation is a powerful tool for source identification problems in advection-dominated rivers.

  4. Computing single step operators of logic programming in radial basis function neural networks

    NASA Astrophysics Data System (ADS)

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-01

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (Tp:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  5. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    PubMed

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. PMID:20864104

  6. On the influence of spread constant in radial basis networks for electrical impedance tomography.

    PubMed

    Martin, Sébastien; Choi, Charles T M

    2016-06-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique. The main task of this work is to solve a non-linear inverse problem, for which several techniques have been suggested, but none of which gives a very high degree of accuracy. This paper introduces a novel approach, based on radial basis function (RBF) artificial neural networks (ANNs), to solve this problem, and uses several ANNs to obtain the best solution to the EIT inverse problem. ANNs have the potential to directly estimate the solution of the inverse problem with a high degree of accuracy. While different radial basis neural networks do not always perform well on different problems, they usually give good results on some specific problems. This paper evidences a strong correlation between the area of the target and the spread constant of the RBF network that gives the best reconstruction. A solution to automatically estimate the size of the target and pick the best neural network directly from voltage measurements is presented, making the reconstruction process automatic. By automatically selecting the best ANN for each specific set of voltage measurements, the proposed solution gives a more accurate reconstruction of both small and large targets. PMID:27203367

  7. Computing single step operators of logic programming in radial basis function neural networks

    SciTech Connect

    Hamadneh, Nawaf; Sathasivam, Saratha; Choon, Ong Hong

    2014-07-10

    Logic programming is the process that leads from an original formulation of a computing problem to executable programs. A normal logic program consists of a finite set of clauses. A valuation I of logic programming is a mapping from ground atoms to false or true. The single step operator of any logic programming is defined as a function (T{sub p}:I→I). Logic programming is well-suited to building the artificial intelligence systems. In this study, we established a new technique to compute the single step operators of logic programming in the radial basis function neural networks. To do that, we proposed a new technique to generate the training data sets of single step operators. The training data sets are used to build the neural networks. We used the recurrent radial basis function neural networks to get to the steady state (the fixed point of the operators). To improve the performance of the neural networks, we used the particle swarm optimization algorithm to train the networks.

  8. The neural basis of a deficit in abstract thinking in patients with schizophrenia.

    PubMed

    Oh, Jooyoung; Chun, Ji-Won; Joon Jo, Hang; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2015-10-30

    Abnormal abstract thinking is a major cause of social dysfunction in patients with schizophrenia, but little is known about its neural basis. In this study, we aimed to determine the characteristic abstract thinking-related brain responses in patients using a task reflecting social situations. We conducted functional magnetic resonance imaging while 16 patients with schizophrenia and 16 healthy controls performed a theme-identification task, in which various emotional pictures depicting social situations were presented. Compared with healthy controls, the patients showed significantly decreased activity in the left frontopolar and right orbitofrontal cortices during theme identification. Activity in these two regions correlated well in the controls, but not in patients. Instead, the patients exhibited a close correlation between activity in both sides of the frontopolar cortex, and a positive correlation between the right orbitofrontal cortex activity and degrees of theme identification. Reduced activity in the left frontopolar and right orbitofrontal cortices and the underlying aberrant connectivity may be implicated in the patients' deficits in abstract thinking. These newly identified features of the neural basis of abnormal abstract thinking are important as they have implications for the impaired social behavior of patients with schizophrenia during real-life situations. PMID:26329118

  9. On fast computation of finite-time coherent sets using radial basis functions

    NASA Astrophysics Data System (ADS)

    Froyland, Gary; Junge, Oliver

    2015-08-01

    Finite-time coherent sets inhibit mixing over finite times. The most expensive part of the transfer operator approach to detecting coherent sets is the construction of the operator itself. We present a numerical method based on radial basis function collocation and apply it to a recent transfer operator construction [G. Froyland, "Dynamic isoperimetry and the geometry of Lagrangian coherent structures," Nonlinearity (unpublished); preprint arXiv:1411.7186] that has been designed specifically for purely advective dynamics. The construction [G. Froyland, "Dynamic isoperimetry and the geometry of Lagrangian coherent structures," Nonlinearity (unpublished); preprint arXiv:1411.7186] is based on a "dynamic" Laplace operator and minimises the boundary size of the coherent sets relative to their volume. The main advantage of our new approach is a substantial reduction in the number of Lagrangian trajectories that need to be computed, leading to large speedups in the transfer operator analysis when this computation is costly.

  10. On fast computation of finite-time coherent sets using radial basis functions.

    PubMed

    Froyland, Gary; Junge, Oliver

    2015-08-01

    Finite-time coherent sets inhibit mixing over finite times. The most expensive part of the transfer operator approach to detecting coherent sets is the construction of the operator itself. We present a numerical method based on radial basis function collocation and apply it to a recent transfer operator construction [G. Froyland, "Dynamic isoperimetry and the geometry of Lagrangian coherent structures," Nonlinearity (unpublished); preprint arXiv:1411.7186] that has been designed specifically for purely advective dynamics. The construction [G. Froyland, "Dynamic isoperimetry and the geometry of Lagrangian coherent structures," Nonlinearity (unpublished); preprint arXiv:1411.7186] is based on a "dynamic" Laplace operator and minimises the boundary size of the coherent sets relative to their volume. The main advantage of our new approach is a substantial reduction in the number of Lagrangian trajectories that need to be computed, leading to large speedups in the transfer operator analysis when this computation is costly. PMID:26328580

  11. Artificial neural network modeling of fixed bed biosorption using radial basis approach

    NASA Astrophysics Data System (ADS)

    Saha, Dipendu; Bhowal, Avijit; Datta, Siddhartha

    2010-04-01

    In modern day scenario, biosorption is a cost effective separation technology for the removal of various pollutants from wastewater and waste streams from various process industries. The difficulties associated in rigorous mathematical modeling of a fixed bed bio-adsorbing systems due to the complexities of the process often makes the development of pure black-box artificial neural network (ANN) models particularly useful in this field. In this work, radial basis function network has been employed as ANN to model the breakthrough curves in fixed bed biosorption. The prediction has been compared to the experimental breakthrough curves of Cadmium, Lanthanum and a dye available in the literature. Results show that this network gives fairly accurate representation of the actual breakthrough curves. The results obtained from ANN modeling approach shows the better agreement between experimental and predicted breakthrough curves as the error for all these situations are within 6%.

  12. The control volume radial basis function method CV-RBF with Richardson extrapolation in geochemical problems

    NASA Astrophysics Data System (ADS)

    Florez, W. F.; Portapila, M.; Hill, A. F.; Power, H.; Orsini, P.; Bustamante, C. A.

    2015-03-01

    The aim of this paper is to present how to implement a control volume approach improved by Hermite radial basis functions (CV-RBF) for geochemical problems. A multi-step strategy based on Richardson extrapolation is proposed as an alternative to the conventional dual step sequential non-iterative approach (SNIA) for coupling the transport equations with the chemical model. Additionally, this paper illustrates how to use PHREEQC to add geochemical reaction capabilities to CV-RBF transport methods. Several problems with different degrees of complexity were solved including cases of cation exchange, dissolution, dissociation, equilibrium and kinetics at different rates for mineral species. The results show that the solution and strategies presented here are effective and in good agreement with other methods presented in the literature for the same cases.

  13. Vibration measurement based on electronic speckle pattern interferometry and radial basis function

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Shao, Xinxing; Geng, Zhencen; Yang, Fujun; Jiang, Yijun; He, Xiaoyuan

    2015-11-01

    A method incorporating amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) with radial basis function (RBF) was proposed to investigate vibration characteristics of structures. The vibration patterns were obtained by AF-ESPI. A novel pre-filtering RBF method was presented to improve the quality of patterns. The out-of-plane vibration amplitude was rebuilt after fringe analysis. Ideal pre-filtering widow sizes for the presented RBF were given based on numerical experiments. For validation, an aluminum circular plate with fixed boundary was determined and compared with FEM, confirming the effectiveness of the proposed method. Finally, vibration characteristics of sandwich panels with honeycomb core were measured. The influence of presence of a pre-notch at different location was also investigated.

  14. Dynamics of on-line learning in radial basis function networks

    NASA Astrophysics Data System (ADS)

    Freeman, Jason A. S.; Saad, David

    1997-07-01

    On-line learning is examined for the radial basis function network, an important and practical type of neural network. The evolution of generalization error is calculated within a framework which allows the phenomena of the learning process, such as the specialization of the hidden units, to be analyzed. The distinct stages of training are elucidated, and the role of the learning rate described. The three most important stages of training, the symmetric phase, the symmetry-breaking phase, and the convergence phase, are analyzed in detail; the convergence phase analysis allows derivation of maximal and optimal learning rates. As well as finding the evolution of the mean system parameters, the variances of these parameters are derived and shown to be typically small. Finally, the analytic results are strongly confirmed by simulations.

  15. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoxue; Chen, Hao

    2014-07-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  16. Inf-sup condition for spherical polynomials and radial basis functions on spheres

    NASA Astrophysics Data System (ADS)

    Sloan, Ian H.; Wendland, Holger

    2009-09-01

    Interpolation by radial basis functions and interpolation by polynomials are both popular methods for function reconstruction from discrete data given on spheres. Recently, there has been an increasing interest in employing these function families together in hybrid schemes for scattered data modeling and the solution of partial differential equations on spheres. For the theoretical analysis of numerical methods for the associated discretized systems, a so-called inf-sup condition is crucial. In this paper, we derive such an inf-sup condition, and show that the constant in the inf-sup condition is independent of the polynomial degree and of the chosen point set, provided the mesh norm of the point set is sufficiently small. We then use the inf-sup condition to derive a new error analysis for the hybrid interpolation scheme of Sloan and Sommariva.

  17. Radial Basis Function Neural Network-based PID model for functional electrical stimulation system control.

    PubMed

    Cheng, Longlong; Zhang, Guangju; Wan, Baikun; Hao, Linlin; Qi, Hongzhi; Ming, Dong

    2009-01-01

    Functional electrical stimulation (FES) has been widely used in the area of neural engineering. It utilizes electrical current to activate nerves innervating extremities affected by paralysis. An effective combination of a traditional PID controller and a neural network, being capable of nonlinear expression and adaptive learning property, supply a more reliable approach to construct FES controller that help the paraplegia complete the action they want. A FES system tuned by Radial Basis Function (RBF) Neural Network-based Proportional-Integral-Derivative (PID) model was designed to control the knee joint according to the desired trajectory through stimulation of lower limbs muscles in this paper. Experiment result shows that the FES system with RBF Neural Network-based PID model get a better performance when tracking the preset trajectory of knee angle comparing with the system adjusted by Ziegler- Nichols tuning PID model. PMID:19964991

  18. Improved radial basis function methods for multi-dimensional option pricing

    NASA Astrophysics Data System (ADS)

    Pettersson, Ulrika; Larsson, Elisabeth; Marcusson, Gunnar; Persson, Jonas

    2008-12-01

    In this paper, we have derived a radial basis function (RBF) based method for the pricing of financial contracts by solving the Black-Scholes partial differential equation. As an example of a financial contract that can be priced with this method we have chosen the multi-dimensional European basket call option. We have shown numerically that our scheme is second-order accurate in time and spectrally accurate in space for constant shape parameter. For other non-optimal choices of shape parameter values, the resulting convergence rate is algebraic. We propose an adapted node point placement that improves the accuracy compared with a uniform distribution. Compared with an adaptive finite difference method, the RBF method is 20-40 times faster in one and two space dimensions and has approximately the same memory requirements.

  19. Radial Basis Function Neural Network Application to Power System Restoration Studies

    PubMed Central

    Sadeghkhani, Iman; Ketabi, Abbas; Feuillet, Rene

    2012-01-01

    One of the most important issues in power system restoration is overvoltages caused by transformer switching. These overvoltages might damage some equipment and delay power system restoration. This paper presents a radial basis function neural network (RBFNN) to study transformer switching overvoltages. To achieve good generalization capability for developed RBFNN, equivalent parameters of the network are added to RBFNN inputs. The developed RBFNN is trained with the worst-case scenario of switching angle and remanent flux and tested for typical cases. The simulated results for a partial of 39-bus New England test system show that the proposed technique can estimate the peak values and duration of switching overvoltages with good accuracy. PMID:22792093

  20. Evaluating the Uncertainty of Regional Flow by Using Radial Basis Function Network and Bootstrap Methods

    NASA Astrophysics Data System (ADS)

    Kan, P.

    2011-12-01

    This study employs radial basis function network (RBFNN) to simulate regional runoff in the future climate condition in Taiwan and bootstrap sampling technique to evaluate uncertainties of RBFNN. The hydrological and meteorological data (such as rainfall, river flow) in northern area of Taiwan during 1981 to 1999 are adopted as the training dataset to RBFNN, in which the parameters of RBFNN are optimized with genetic algorithm (GA). Meanwhile, the bootstrap sampling technique is applied for uncertainty analysis of RBFNN. The simulated results show that RBFNN with GA simulating the regional runoff reveals good performance and corresponding uncertainty can be evaluated by the bootstrap sampling technique. The results also illustrate that selecting training datasets randomly and repeatedly can reduce the possibility of model over-fitting of RBFNN. The regional runoff in the future can be estimated into an interval representing the possibility of the runoff by the proposed approach.

  1. Radial basis function network learns ceramic processing and predicts related strength and density

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.

    1993-01-01

    Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.

  2. Estimating dollar-value outcomes of workman`s compensation claims using radial basis function networks

    SciTech Connect

    Hancock, M.F. Jr.

    1995-12-31

    The National Council on Compensation Insurance (NCCI) maintains a national data base of outcomes of workers` compensation claims. We consider whether a radial basis function network can predict the total dollar value of a claim based upon medical and demographic indicators (MDI`s). This work used data from 12,130 workers` compensation claims collected over a period of four years from the state of New Mexico. Two problems were addressed: (1) How well can the total incurred medical expense for all claims be predicted from available MDI`s? For individual claims? (2) How well can the duration of disability be predicted from available MDI`s? The available features intuitively correlated with total medical cost were selected, including type of injury, part of body injured, person`s age at time of injury, gender, marital status, etc. These features were statistically standardized and sorted by correlation with outcome valuation. Principal component analysis was applied. A radial basis function neural network was applied to the feature sets in both supervised and unsupervised training modes. For sets used in training, individual case valuations could consistently be predicted to within $1000 over 98% of the time. For these sets, it was possible to predict total medical expense for the training sets themselves to within 10%. When applied as blind tests against sets which were NOT part of the training data, the prediction was within 15% on the whole sets. Results on individual cases were very poor in only 30% of the cases were the predictions for the training sets within $1000 of their actual valuations. Single-factor analysis suggested that the presence of an attorney strongly decorrelated the data. A simple stratification was performed to remove cases involving attorneys and contested claims, and the procedures above repeated. Preliminary results based upon the very limited effort applied indicate that NCCI data support population estimates, but not single-point estimates.

  3. Numerical solution of differential equations using multiquadric radial basis functions networks.

    PubMed

    Mai-Duy, N; Tran-Cong, T

    2001-03-01

    This paper presents mesh-free procedures for solving linear differential equations (ODEs and elliptic PDEs) based on multiquadric (MQ) radial basis function networks (RBFNs). Based on our study of approximation of function and its derivatives using RBFNs that was reported in an earlier paper (Mai-Duy, N. & Tran-Cong, T. (1999). Approximation of function and its derivatives using radial basis function networks. Neural networks, submitted), new RBFN approximation procedures are developed in this paper for solving DEs, which can also be classified into two types: a direct (DRBFN) and an indirect (IRBFN) RBFN procedure. In the present procedures, the width of the RBFs is the only adjustable parameter according to a(i) = betad(i), where d(i) is the distance from the ith centre to the nearest centre. The IRBFN method is more accurate than the DRBFN one and experience so far shows that beta can be chosen in the range 7 < or = beta 10 for the former. Different combinations of RBF centres and collocation points (uniformly and randomly distributed) are tested on both regularly and irregularly shaped domains. The results for a 1D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-4)) and O(1.0 x 10(-8)), respectively, with a centre density of 50. Similarly, the results for a 2D Poisson's equation show that the DRBFN and the IRBFN procedures achieve a norm of error of at least O(1.0 x 10(-3)) and O(1.0 x10(-6)) respectively, with a centre density of 12 X 12. PMID:11316233

  4. GRACE L1b inversion through a self-consistent modified radial basis function approach

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kusche, Juergen; Rietbroek, Roelof; Eicker, Annette

    2016-04-01

    Implementing a regional geopotential representation such as mascons or, more general, RBFs (radial basis functions) has been widely accepted as an efficient and flexible approach to recover the gravity field from GRACE (Gravity Recovery and Climate Experiment), especially at higher latitude region like Greenland. This is since RBFs allow for regionally specific regularizations over areas which have sufficient and dense GRACE observations. Although existing RBF solutions show a better resolution than classical spherical harmonic solutions, the applied regularizations cause spatial leakage which should be carefully dealt with. It has been shown that leakage is a main error source which leads to an evident underestimation of yearly trend of ice-melting over Greenland. Unlike some popular post-processing techniques to mitigate leakage signals, this study, for the first time, attempts to reduce the leakage directly in the GRACE L1b inversion by constructing an innovative modified (MRBF) basis in place of the standard RBFs to retrieve a more realistic temporal gravity signal along the coastline. Our point of departure is that the surface mass loading associated with standard RBF is smooth but disregards physical consistency between continental mass and passive ocean response. In this contribution, based on earlier work by Clarke et al.(2007), a physically self-consistent MRBF representation is constructed from standard RBFs, with the help of the sea level equation: for a given standard RBF basis, the corresponding MRBF basis is first obtained by keeping the surface load over the continent unchanged, but imposing global mass conservation and equilibrium response of the oceans. Then, the updated set of MRBFs as well as standard RBFs are individually employed as the basis function to determine the temporal gravity field from GRACE L1b data. In this way, in the MRBF GRACE solution, the passive (e.g. ice melting and land hydrology response) sea level is automatically

  5. A radial basis classifier for the automatic detection of aspiration in children with dysphagia

    PubMed Central

    Lee, Joon; Blain, Stefanie; Casas, Mike; Kenny, Dave; Berall, Glenn; Chau, Tom

    2006-01-01

    Background Silent aspiration or the inhalation of foodstuffs without overt physiological signs presents a serious health issue for children with dysphagia. To date, there are no reliable means of detecting aspiration in the home or community. An assistive technology that performs in these environments could inform caregivers of adverse events and potentially reduce the morbidity and anxiety of the feeding experience for the child and caregiver, respectively. This paper proposes a classifier for automatic classification of aspiration and swallow vibration signals non-invasively recorded on the neck of children with dysphagia. Methods Vibration signals associated with safe swallows and aspirations, both identified via videofluoroscopy, were collected from over 100 children with neurologically-based dysphagia using a single-axis accelerometer. Five potentially discriminatory mathematical features were extracted from the accelerometry signals. All possible combinations of the five features were investigated in the design of radial basis function classifiers. Performance of different classifiers was compared and the best feature sets were identified. Results Optimal feature combinations for two, three and four features resulted in statistically comparable adjusted accuracies with a radial basis classifier. In particular, the feature pairing of dispersion ratio and normality achieved an adjusted accuracy of 79.8 ± 7.3%, a sensitivity of 79.4 ± 11.7% and specificity of 80.3 ± 12.8% for aspiration detection. Addition of a third feature, namely energy, increased adjusted accuracy to 81.3 ± 8.5% but the change was not statistically significant. A closer look at normality and dispersion ratio features suggest leptokurticity and the frequency and magnitude of atypical values as distinguishing characteristics between swallows and aspirations. The achieved accuracies are 30% higher than those reported for bedside cervical auscultation. Conclusion The proposed aspiration

  6. Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment

    PubMed Central

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-01-01

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902

  7. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals

    NASA Astrophysics Data System (ADS)

    Johnsson, Roger

    2006-11-01

    Methods to measure and monitor the cylinder pressure in internal combustion engines can contribute to reduced fuel consumption, noise and exhaust emissions. As direct measurements of the cylinder pressure are expensive and not suitable for measurements in vehicles on the road indirect methods which measure cylinder pressure have great potential value. In this paper, a non-linear model based on complex radial basis function (RBF) networks is proposed for the reconstruction of in-cylinder pressure pulse waveforms. Input to the network is the Fourier transforms of both engine structure vibration and crankshaft speed fluctuation. The primary reason for the use of Fourier transforms is that different frequency regions of the signals are used for the reconstruction process. This approach also makes it easier to reduce the amount of information that is used as input to the RBF network. The complex RBF network was applied to measurements from a 6-cylinder ethanol powered diesel engine over a wide range of running conditions. Prediction accuracy was validated by comparing a number of parameters between the measured and predicted cylinder pressure waveform such as maximum pressure, maximum rate of pressure rise and indicated mean effective pressure. The performance of the network was also evaluated for a number of untrained running conditions that differ both in speed and load from the trained ones. The results for the validation set were comparable to the trained conditions.

  8. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    PubMed

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-01-01

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902

  9. High Rayleigh Number 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Yuen (3), G. Wright, D.

    2009-04-01

    In the last quarter of a century many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and pseudo-spectral methods have been used to study the problem of 3-D spherical convection. All have their respective strengths but also serious weaknesses, such as low-order and can involve high algorithmic complexity, as in triangular elements. Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. We have recently introduced a new grid/mesh-free approach, using radial basis functions ( RBFs) . It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and allows naturally node-refinement. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer( planetary surface ) and inner shell ( core-mantle boundary ). The velocity and stress components are expressed in terms of the scalar potential approach and the other remaining variable is the perturbed temperature field. We have studied the problem from the weakly nonlinear to a moderately nonlinear regime involving a Rayleigh number, about 1000 times super-critical. Both purely basal and partially internal -heating cases have been considered

  10. High Rayleigh Number 3-D Spherical Mantle Convection with Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Flyer, N.; Wright, G.; Yuen, D. A.

    2009-04-01

    In the last quarter of a century many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and pseudo-spectral methods have been used to study the problem of 3-D spherical convection. All have their respective strengths but also serious weaknesses, such as low-order and can involve high algorithmic complexity, as in triangular elements. Spectrally accurate methods do not practically allow for local mesh refinement and often involve cumbersome algebra. We have recently introduced a new grid/mesh-free approach, using radial basis functions (RBFs). It has the advantage of being spectrally accurate for arbitrary node layouts in multi-dimensions with extreme algorithmic simplicity, and allows naturally node-refinement. One virtue of the RBF scheme is the ability to use a simple Cartesian geometry while implementing the required boundary conditions for the temperature, velocity and stresses on a spherical surface of both the outer(planetary surface) and inner shell (core-mantle boundary). The velocity and stress components are expressed in terms of the scalar potential approach and the other remaining variable is the perturbed temperature field. We have studied the problem from the weakly onlinear to a moderately nonlinear regime involving a Rayleigh number, about 1000 times super-critical. Both purely basal and partially internal-heating cases have been considered.

  11. Classification of gear faults using cumulants and the radial basis function network

    NASA Astrophysics Data System (ADS)

    Wuxing, Lai; Tse, Peter W.; Guicai, Zhang; Tielin, Shi

    2004-03-01

    Every tooth in a gearbox is alternately meshing and detaching during its operation. Hence, the loading condition of the tooth is alternately changing. Such a condition will make the tooth easily subject to spalling and worn. Moreover, Gaussian type of noise which is always embedded in the measurements makes the signal-to-noise ratio (SNR) of the collected data low and difficult to extract in fault-related features. This paper aims to propose an approach for gear fault classification by using cumulants and the radial basis function (BRF) network. The use of cumulants can minimize Gaussian noise and increase the SNR. The RBF network has proven to be superior to back-propagation networks. The RBF network provides better functions to approximate non-linear inputs and faster in convergence. In this paper, experiments have been conducted on a real gearbox. The cumulants calculated from the vibration signal collected from the inspected gearbox are used as input features. The RBF network is then used as a classifier for various kinds of operating conditions of the gearbox. Results show that the method of classification by combining cumulants and the RBF network is promising and achieved better accuracy.

  12. Application of Radial Basis Functional Link Networks to Exploration for Proterozoic Mineral Deposits in Central Iran

    SciTech Connect

    Behnia, Pouran

    2007-06-15

    The metallogeny of Central Iran is characterized mainly by the presence of several iron, apatite, and uranium deposits of Proterozoic age. Radial Basis Function Link Networks (RBFLN) were used as a data-driven method for GIS-based predictive mapping of Proterozoic mineralization in this area. To generate the input data for RBFLN, the evidential maps comprising stratigraphic, structural, geophysical, and geochemical data were used. Fifty-eight deposits and 58 'nondeposits' were used to train the network. The operations for the application of neural networks employed in this study involve both multiclass and binary representation of evidential maps. Running RBFLN on different input data showed that an increase in the number of evidential maps and classes leads to a larger classification sum of squared error (SSE). As a whole, an increase in the number of iterations resulted in the improvement of training SSE. The results of applying RBFLN showed that a successful classification depends on the existence of spatially well distributed deposits and nondeposits throughout the study area.

  13. On the use of back propagation and radial basis function neural networks in surface roughness prediction

    NASA Astrophysics Data System (ADS)

    Markopoulos, Angelos P.; Georgiopoulos, Sotirios; Manolakos, Dimitrios E.

    2016-03-01

    Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, namely the adaptive back propagation algorithm of the steepest descent with the use of momentum term, the back propagation Levenberg-Marquardt algorithm and the back propagation Bayesian algorithm. Moreover, radial basis function neural networks are examined. All the aforementioned algorithms are used for the prediction of surface roughness in milling, trained with the same input parameters and output data so that they can be compared. The advantages and disadvantages, in terms of the quality of the results, computational cost and time are identified. An algorithm for the selection of the spread constant is applied and tests are performed for the determination of the neural network with the best performance. The finally selected neural networks can satisfactorily predict the quality of the manufacturing process performed, through simulation and input-output surfaces for combinations of the input data, which correspond to milling cutting conditions.

  14. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.

    1998-01-01

    The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.

  15. Fire Risk Assessment of Some Indian Coals Using Radial Basis Function (RBF) Technique

    NASA Astrophysics Data System (ADS)

    Nimaje, Devidas; Tripathy, Debi Prasad

    2016-03-01

    Fires, whether surface or underground, pose serious and environmental problems in the global coal mining industry. It is causing huge loss of coal due to burning and loss of lives, sterilization of coal reserves and environmental pollution. Most of the instances of coal mine fires happening worldwide are mainly due to the spontaneous combustion. Hence, attention must be paid to take appropriate measures to prevent occurrence and spread of fire. In this paper, to evaluate the different properties of coals for fire risk assessment, forty-nine in situ coal samples were collected from major coalfields of India. Intrinsic properties viz. proximate and ultimate analysis; and susceptibility indices like crossing point temperature, flammability temperature, Olpinski index and wet oxidation potential method of Indian coals were carried out to ascertain the liability of coal to spontaneous combustion. Statistical regression analysis showed that the parameters of ultimate analysis provide significant correlation with all investigated susceptibility indices as compared to the parameters of proximate analysis. Best correlated parameters (ultimate analysis) were used as inputs to the radial basis function network model. The model revealed that Olpinski index can be used as a reliable method to assess the liability of Indian coals to spontaneous combustion.

  16. Space shuttle main engine sensor modeling using radial-basis-function neural networks

    NASA Astrophysics Data System (ADS)

    Wheeler, Kevin R.; Dhawan, Atam P.; Meyer, Claudia M.

    1994-11-01

    An efficient method of parameter prediction is needed for sensor validation of space shuttle main-engine (SSME) parameters during real-time safety monitoring and post-test analysis. Feedforward neural networks (FFNN) have been used to model the highly nonlinear and dynamic SSME parameters during startup. Due to several problems associated with the use of feedforward networks, radial-basis-function neural networks (RBFNN) were investigated in modeling SSME parameters. In this paper, RBFNNs are used to predict the high-pressure oxidizer turbine discharge temperature, a redlined parameter, during the startup transient. Data from SSME ground test firings were used to train and validate the RBFNNs. The performance of the RBFNN model is compared with that of a FFNN model, trained with the Quickprop learning algorithm. In comparison with the FFNN model, the RBFNN-based model was found to be more robust against variations in architecture and network parameters, and was faster to train. In addition, the performance of the RBFNN model during nominal operation and during simulated input sensor failures was found to be robust in the presence of small deviations in the input.

  17. Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function.

    PubMed

    An, Yu; Liu, Jie; Zhang, Guanglei; Ye, Jinzuo; Mao, Yamin; Jiang, Shixin; Shang, Wenting; Du, Yang; Chi, Chongwei; Tian, Jie

    2015-10-01

    Fluorescence molecular tomography (FMT) is a promising tool in the study of cancer, drug discovery, and disease diagnosis, enabling noninvasive and quantitative imaging of the biodistribution of fluorophores in deep tissues via image reconstruction techniques. Conventional reconstruction methods based on the finite-element method (FEM) have achieved acceptable stability and efficiency. However, some inherent shortcomings in FEM meshes, such as time consumption in mesh generation and a large discretization error, limit further biomedical application. In this paper, we propose a meshless method for reconstruction of FMT (MM-FMT) using compactly supported radial basis functions (CSRBFs). With CSRBFs, the image domain can be accurately expressed by continuous CSRBFs, avoiding the discretization error to a certain degree. After direct collocation with CSRBFs, the conventional optimization techniques, including Tikhonov, L1-norm iteration shrinkage (L1-IS), and sparsity adaptive matching pursuit, were adopted to solve the meshless reconstruction. To evaluate the performance of the proposed MM-FMT, we performed numerical heterogeneous mouse experiments and in vivo bead-implanted mouse experiments. The results suggest that the proposed MM-FMT method can reduce the position error of the reconstruction result to smaller than 0.4 mm for the double-source case, which is a significant improvement for FMT. PMID:26451513

  18. Online dimensionality reduction using competitive learning and Radial Basis Function network.

    PubMed

    Tomenko, Vladimir

    2011-06-01

    The general purpose dimensionality reduction method should preserve data interrelations at all scales. Additional desired features include online projection of new data, processing nonlinearly embedded manifolds and large amounts of data. The proposed method, called RBF-NDR, combines these features. RBF-NDR is comprised of two modules. The first module learns manifolds by utilizing modified topology representing networks and geodesic distance in data space and approximates sampled or streaming data with a finite set of reference patterns, thus achieving scalability. Using input from the first module, the dimensionality reduction module constructs mappings between observation and target spaces. Introduction of specific loss function and synthesis of the training algorithm for Radial Basis Function network results in global preservation of data structures and online processing of new patterns. The RBF-NDR was applied for feature extraction and visualization and compared with Principal Component Analysis (PCA), neural network for Sammon's projection (SAMANN) and Isomap. With respect to feature extraction, the method outperformed PCA and yielded increased performance of the model describing wastewater treatment process. As for visualization, RBF-NDR produced superior results compared to PCA and SAMANN and matched Isomap. For the Topic Detection and Tracking corpus, the method successfully separated semantically different topics. PMID:21420831

  19. Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function

    NASA Astrophysics Data System (ADS)

    An, Yu; Liu, Jie; Zhang, Guanglei; Ye, Jinzuo; Mao, Yamin; Jiang, Shixin; Shang, Wenting; Du, Yang; Chi, Chongwei; Tian, Jie

    2015-10-01

    Fluorescence molecular tomography (FMT) is a promising tool in the study of cancer, drug discovery, and disease diagnosis, enabling noninvasive and quantitative imaging of the biodistribution of fluorophores in deep tissues via image reconstruction techniques. Conventional reconstruction methods based on the finite-element method (FEM) have achieved acceptable stability and efficiency. However, some inherent shortcomings in FEM meshes, such as time consumption in mesh generation and a large discretization error, limit further biomedical application. In this paper, we propose a meshless method for reconstruction of FMT (MM-FMT) using compactly supported radial basis functions (CSRBFs). With CSRBFs, the image domain can be accurately expressed by continuous CSRBFs, avoiding the discretization error to a certain degree. After direct collocation with CSRBFs, the conventional optimization techniques, including Tikhonov, L1-norm iteration shrinkage (L1-IS), and sparsity adaptive matching pursuit, were adopted to solve the meshless reconstruction. To evaluate the performance of the proposed MM-FMT, we performed numerical heterogeneous mouse experiments and in vivo bead-implanted mouse experiments. The results suggest that the proposed MM-FMT method can reduce the position error of the reconstruction result to smaller than 0.4 mm for the double-source case, which is a significant improvement for FMT.

  20. Estuary water-stage forecasting by using radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chen, Yen-Chang

    2003-01-01

    The Radial basis function neural network (RBFNN) has been successfully applied to many tasks due to its powerful properties in classification and functional approximation. This paper presents a novel RBFNN for water-stage forecasting in an estuary under high flood and tidal effects. The RBFNN adopts a hybrid two-stage learning scheme, unsupervised and supervised learning. In the first scheme, fuzzy min-max clustering is proposed for choosing best patterns for cluster representation in an efficient and automatic way. The second scheme uses supervised learning, which is a multivariate linear regression method to produce a weighted sum of the output from the hidden layer. Since this network has only one layer using a supervised learning algorithm, its training process is much faster than the error back propagation based multilayer perceptrons. Moreover, only one parameter, θ, must be determined manually. The other parameters used in this model can be adjusted automatically by model training. The water-stage data of the Tanshui River under tidal effect are used to construct a water-stage forecasting model that can also be used during flood. The results show that the RBFNN can be applied successfully and provide high accuracy and reliability of water-stage forecasting in an estuary.

  1. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm.

    PubMed

    Lu, Y; Sundararajan, N; Saratchandran, P

    1998-01-01

    This paper presents a detailed performance analysis of the minimal resource allocation network (M-RAN) learning algorithm, M-RAN is a sequential learning radial basis function neural network which combines the growth criterion of the resource allocating network (RAN) of Platt (1991) with a pruning strategy based on the relative contribution of each hidden unit to the overall network output. The resulting network leads toward a minimal topology for the RAN. The performance of this algorithm is compared with the multilayer feedforward networks (MFNs) trained with 1) a variant of the standard backpropagation algorithm, known as RPROP and 2) the dependence identification (DI) algorithm of Moody and Antsaklis on several benchmark problems in the function approximation and pattern classification areas. For all these problems, the M-RAN algorithm is shown to realize networks with far fewer hidden neurons with better or same approximation/classification accuracy. Further, the time taken for learning (training) is also considerably shorter as M-RAN does not require repeated presentation of the training data. PMID:18252454

  2. Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Flyer, Natasha; Barnett, Gregory A.; Wicker, Louis J.

    2016-07-01

    Polynomials are used together with polyharmonic spline (PHS) radial basis functions (RBFs) to create local RBF-finite-difference (RBF-FD) weights on different node layouts for spatial discretizations that can be viewed as enhancements of the classical finite differences (FD). The presented method replicates the convergence properties of FD but for arbitrary node layouts. It is tested on the 2D compressible Navier-Stokes equations at low Mach number, relevant to atmospheric flows. Test cases are taken from the numerical weather prediction community and solved on bounded domains. Thus, attention is given on how to handle boundaries with the RBF-FD method, as well as a novel implementation for hyperviscosity. Comparisons are done on Cartesian, hexagonal, and quasi-uniform node layouts. Consideration and guidelines are given on PHS order, polynomial degree and stencil size. The main advantages of the present method are: 1) capturing the basic physics of the problem surprisingly well, even at very coarse resolutions, 2) high-order accuracy without the need of tuning a shape parameter, and 3) the inclusion of polynomials eliminates stagnation (saturation) errors. A MATLAB code is given to calculate the differentiation weights for this novel approach.

  3. Radial Basis Function Based Neural Network for Motion Detection in Dynamic Scenes.

    PubMed

    Huang, Shih-Chia; Do, Ben-Hsiang

    2014-01-01

    Motion detection, the process which segments moving objects in video streams, is the first critical process and plays an important role in video surveillance systems. Dynamic scenes are commonly encountered in both indoor and outdoor situations and contain objects such as swaying trees, spouting fountains, rippling water, moving curtains, and so on. However, complete and accurate motion detection in dynamic scenes is often a challenging task. This paper presents a novel motion detection approach based on radial basis function artificial neural networks to accurately detect moving objects not only in dynamic scenes but also in static scenes. The proposed method involves two important modules: a multibackground generation module and a moving object detection module. The multibackground generation module effectively generates a flexible probabilistic model through an unsupervised learning process to fulfill the property of either dynamic background or static background. Next, the moving object detection module achieves complete and accurate detection of moving objects by only processing blocks that are highly likely to contain moving objects. This is accomplished by two procedures: the block alarm procedure and the object extraction procedure. The detection results of our method were evaluated by qualitative and quantitative comparisons with other state-of-the-art methods based on a wide range of natural video sequences. The overall results show that the proposed method substantially outperforms existing methods with Similarity and F1 accuracy rates of 69.37% and 65.50%, respectively. PMID:24108721

  4. Solution of the quantum fluid dynamical equations with radial basis function interpolation

    SciTech Connect

    Hu, Xu-Guang; Ho, Tak-San; Rabitz, Herschel; Askar, Attila

    2000-05-01

    The paper proposes a numerical technique within the Lagrangian description for propagating the quantum fluid dynamical (QFD) equations in terms of the Madelung field variables R and S, which are connected to the wave function via the transformation {psi}=exp{l_brace}(R+iS)/({Dirac_h}/2{pi})(right brace). The technique rests on the QFD equations depending only on the form, not the magnitude, of the probability density {rho}=|{psi}|{sup 2} and on the structure of R=({Dirac_h}/2{pi})/2 ln {rho} generally being simpler and smoother than {rho}. The spatially smooth functions R and S are especially suitable for multivariate radial basis function interpolation to enable the implementation of a robust numerical scheme. Examples of two-dimensional model systems show that the method rivals, in both efficiency and accuracy, the split-operator and Chebychev expansion methods. The results on a three-dimensional model system indicates that the present method is superior to the existing ones, especially, for its low storage requirement and its uniform accuracy. The advantage of the new algorithm is expected to increase for higher dimensional systems to provide a practical computational tool. (c) 2000 The American Physical Society.

  5. Self-organizing radial basis function networks for adaptive flight control and aircraft engine state estimation

    NASA Astrophysics Data System (ADS)

    Shankar, Praveen

    The performance of nonlinear control algorithms such as feedback linearization and dynamic inversion is heavily dependent on the fidelity of the dynamic model being inverted. Incomplete or incorrect knowledge of the dynamics results in reduced performance and may lead to instability. Augmenting the baseline controller with approximators which utilize a parametrization structure that is adapted online reduces the effect of this error between the design model and actual dynamics. However, currently existing parameterizations employ a fixed set of basis functions that do not guarantee arbitrary tracking error performance. To address this problem, we develop a self-organizing parametrization structure that is proven to be stable and can guarantee arbitrary tracking error performance. The training algorithm to grow the network and adapt the parameters is derived from Lyapunov theory. In addition to growing the network of basis functions, a pruning strategy is incorporated to keep the size of the network as small as possible. This algorithm is implemented on a high performance flight vehicle such as F-15 military aircraft. The baseline dynamic inversion controller is augmented with a Self-Organizing Radial Basis Function Network (SORBFN) to minimize the effect of the inversion error which may occur due to imperfect modeling, approximate inversion or sudden changes in aircraft dynamics. The dynamic inversion controller is simulated for different situations including control surface failures, modeling errors and external disturbances with and without the adaptive network. A performance measure of maximum tracking error is specified for both the controllers a priori. Excellent tracking error minimization to a pre-specified level using the adaptive approximation based controller was achieved while the baseline dynamic inversion controller failed to meet this performance specification. The performance of the SORBFN based controller is also compared to a fixed RBF network

  6. Unification of Plasma Fluid and Kinetic Theory via Gaussian Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Candy, J. M.

    2015-11-01

    A fundamental macroscopic description of a magnetized plasma is the Vlasov equation supplemented by the nonlinear inverse-square force Fokker-Planck collision operator [Rosenbluth et al., Phys. Rev. 107, 1957]. The Vlasov part describes advection in a six-dimensional phase space whereas the collision operator contains friction and diffusion coefficients that are weighted velocity-space integrals of the particle distribution function. The Fokker-Planck collision operator is an integro-differential, nonlinear (bilinear) operator. Numerical discretization of the operator, in particular for collisions of unlike species, is extremely challenging. In this work, we describe a new approach to discretize the entire kinetic system based on an expansion in Gaussian Radial Basis functions (RBFs). This approach is particularly well-suited to treat the collision operator because the friction and diffusion coefficients can be analytically calculated. Although the RBF method is known to be a powerful scheme for the interpolation of scattered multidimensional data, Gaussian RBFs also have a deep physical interpretation in statistical mechanics and plasma physics as local thermodynamic equilibria. We outline the general theory, highlight the connection to plasma fluid theories, and also give 2D and 3D numerical solutions of the nonlinear Fokker-Planck equation. A broad spectrum of applications for the new method is anticipated in both astrophysical and laboratory plasmas. In particular, we believe that the RBF method may provide a new bridge between fluid and kinetic descriptions of magnetized plasma. Work supported in part by US DOE under DE-FG02-08ER54963.

  7. Thoracic non-rigid registration combining self-organizing maps and radial basis functions.

    PubMed

    Matsopoulos, George K; Mouravliansky, Nikolaos A; Asvestas, Pantelis A; Delibasis, Konstantinos K; Kouloulias, Vassilis

    2005-06-01

    An automatic three-dimensional non-rigid registration scheme is proposed in this paper and applied to thoracic computed tomography (CT) data of patients with stage III non-small cell lung cancer (NSCLC). According to the registration scheme, initially anatomical set of points such as the vertebral spine, the ribs, and shoulder blades are automatically segmented slice by slice from the two CT scans of the same patient in order to serve as interpolant points. Based on these extracted features, a rigid-body transformation is then applied to provide a pre-registration of the data. To establish correspondence between the feature points, the novel application of the self-organizing maps (SOMs) is adopted. In particular, the automatic correspondence of the interpolant points is based on the initialization of the Kohonen neural network model capable to identify 500 corresponding pairs of points approximately in the two CT sets. Then, radial basis functions (RBFs) using the shifted log function is subsequently employed for elastic warping of the image volume, using the correspondence between the interpolant points, as obtained in the previous phase. Quantitative and qualitative results are also presented to validate the performance of the proposed elastic registration scheme resulting in an alignment error of 6 mm, on average, over 15 CT paired datasets. Finally, changes of the tumor volume in respect to each reference dataset are estimated for all patients, which indicate inspiration and/or movement of the patient during acquisition of the data. Thus, the practical implementation of this scheme could provide estimations of lung tumor volumes during radiotherapy treatment planning. PMID:15854844

  8. Optimized face recognition algorithm using radial basis function neural networks and its practical applications.

    PubMed

    Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold

    2015-09-01

    In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. PMID:26163042

  9. Near and long-term load prediction using radial basis function networks

    SciTech Connect

    Hancock, M.F.

    1995-12-31

    A number of researchers have investigated the application of multi-layer perceptrons (MLP`s), a variety of neural network, to the problem of short-term load forecasting for electric utilities (e.g., Rahman & Hazin, IEEE Trans. Power Systems, May 1993). {open_quotes}Short-term{close_quotes} in this context typically means {open_quotes}next day{close_quotes}. These forecasts have been based upon previous day actual loads and meteorological factors (e.g., max-min temperature, relative humidity). We describe the application of radial basis function networks (RBF`s) to the {open_quotes}long-term{close_quotes} (next year) load forecasting problem. The RBF network performs a two-stage classification based upon annual average loads and meteorological data. During stage 1, discrete classification is performed using radius-limited elements. During stage 2, a multi-layer perceptron may be applied. The quantized output is used to correct a prediction template. The stage 1 classifier is trained by maximizing an objective function (the {open_quotes}disambiguity{close_quotes}). The stage 2 MLP`s are trained by standard back-propagation. This work uses 12 months of hourly meteorological data, and the corresponding hourly load data for both commercial and residential feeders. At the current stage of development, the RBF machine can train on 20% of the weather/load data (selected by simple linear sampling), and estimate the hourly load for an entire year (8,760 data points) with 9.1% error (RMS, relative to daily peak load). (By comparison, monthly mean profiles perform at c. 12% error.) The best short-term load forecasters operate in the 2% error range. The current system is an engineering prototype, and development is continuing.

  10. A radial basis function neural network based on artificial immune systems for remote sensing image classification

    NASA Astrophysics Data System (ADS)

    Yan, Qin; Zhong, Yanfei

    2008-12-01

    The radial basis function (RBF) neural network is a powerful method for remote sensing image classification. It has a simple architecture and the learning algorithm corresponds to the solution of a linear regression problem, resulting in a fast training process. The main drawback of this strategy is the requirement of an efficient algorithm to determine the number, position, and dispersion of the RBF. Traditional methods to determine the centers are: randomly choose input vectors from the training data set; vectors obtained from unsupervised clustering algorithms, such as k-means, applied to the input data. These conduce that traditional RBF neural network is sensitive to the center initialization. In this paper, the artificial immune network (aiNet) model, a new computational intelligence based on artificial immune networks (AIN), is applied to obtain appropriate centers for remote sensing image classification. In the aiNet-RBF algorihtm, each input pattern corresonds to an antigenic stimulus, while each RBF candidate center is considered to be an element, or cell, of the immune network model. The steps are as follows: A set of candidate centers is initialized at random, where the initial number of candidates and their positions is not crucial to the performance. Then, the clonal selection principle will control which candidates will be selected and how they will be upadated. Note that the clonal selection principle will be responsible for how the centers will represent the training data set. Finally, the immune network will identify and eliminate or suppress self-recognizing individuals to control the number of candidate centers. After the above learning phase, the aiNet network centers represent internal images of the inuput patterns presented to it. The algorithm output is taken to be the matrix of memory cells' coordinates that represent the final centers to be adopted by the RBF network. The stopping criterion of the proposed algorithm is given by a pre

  11. Application of Polynomial and Radial Basis Function Maps to Signal Masking

    SciTech Connect

    Damiano, B.

    1998-01-01

    The objective of this research was to develop and demonstrate a technique for encrypting information by using a masking signal that closely approximates local ambient noise. Signal masking techniques developed to date have used nonlinear differential equations, spread spectrum, and various modulation schemes to encode information. While these techniques can effectively hide a signal, the resulting masks may not appear as ambient noise to an observer. The advantage of the proposed technique over commonly used masking methods is that the transmitted signal will appear as normal background noise, thus greatly reducing the probability of detection and exploitation. A promising near-term application of this technology presents itself in the area of clandestine minefield reconnaissance in shallow water areas. Shallow water mine-counter-mine (SWMCM) activity is essential for minefield avoidance, efficient minefield clearance, and effective selection of transit lanes within minefields. A key technology area for SWMCM is the development of special sonar waveforms with low probability of exploitation/intercept (LPE/LPI) attributes. In addition to LPE/LPI sonar, this technology has the potential to enable significant improvements in underwater acoustic communications. For SWMCM, the chaotic waveform research provides a mechanism for encrypted communications between a submarine (SSN) and an unmanned underwater vehicle (UUV) via an acoustic channel. Acoustic SSN/UUV communications would eliminate the need for a fiberoptic link between the two vessels, thus increasing the robustness of SWMCM. Similar applications may exist in the areas of radar masking and secure communications. The original approach called for the use of polynomial maps to generate a masking signal. Because polynomial maps were found to have highly restrictive stability criteria, the approach was modified to use radial basis function (RBF) maps. they have shown that stable RBF maps that closely approximate an

  12. An adaptive multiquadric radial basis function method for expensive black-box mixed-integer nonlinear constrained optimization

    NASA Astrophysics Data System (ADS)

    Rashid, Kashif; Ambani, Saumil; Cetinkaya, Eren

    2013-02-01

    Many real-world optimization problems comprise objective functions that are based on the output of one or more simulation models. As these underlying processes can be time and computation intensive, the objective function is deemed expensive to evaluate. While methods to alleviate this cost in the optimization procedure have been explored previously, less attention has been given to the treatment of expensive constraints. This article presents a methodology for treating expensive simulation-based nonlinear constraints alongside an expensive simulation-based objective function using adaptive radial basis function techniques. Specifically, a multiquadric radial basis function approximation scheme is developed, together with a robust training method, to model not only the costly objective function, but also each expensive simulation-based constraint defined in the problem. The article presents the methodology developed for expensive nonlinear constrained optimization problems comprising both continuous and integer variables. Results from various test cases, both analytical and simulation-based, are presented.

  13. Near infrared spectroscopy coupled with radial basis function neural network for at-line monitoring of Lactococcus lactis subsp. fermentation

    PubMed Central

    Liu, Yan; Lu, Chengyu; Meng, Qingfan; Lu, Jiahui; Fu, Yao; Liu, Botong; Zhou, Yongcan; Guo, Weiliang; Teng, Lesheng

    2015-01-01

    In our previous work, partial least squares (PLSs) were employed to develop the near infrared spectroscopy (NIRs) models for at-line (fast off-line) monitoring key parameters of Lactococcus lactis subsp. fermentation. In this study, radial basis function neural network (RBFNN) as a non-linear modeling method was investigated to develop NIRs models instead of PLS. A method named moving window radial basis function neural network (MWRBFNN) was applied to select the characteristic wavelength variables by using the degree approximation (Da) as criterion. Next, the RBFNN models with selected wavelength variables were optimized by selecting a suitable constant spread. Finally, the effective spectra pretreatment methods were selected by comparing the robustness of the optimum RBFNN models developed with pretreated spectra. The results demonstrated that the robustness of the optimal RBFNN models were better than the PLS models for at-line monitoring of glucose and pH of L. lactis subsp. fermentation. PMID:26858554

  14. Comparison of Response Surface Construction Methods for Derivative Estimation Using Moving Least Squares, Kriging and Radial Basis Functions

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, Thiagarajan

    2005-01-01

    Response construction methods using Moving Least Squares (MLS), Kriging and Radial Basis Functions (RBF) are compared with the Global Least Squares (GLS) method in three numerical examples for derivative generation capability. Also, a new Interpolating Moving Least Squares (IMLS) method adopted from the meshless method is presented. It is found that the response surface construction methods using the Kriging and RBF interpolation yields more accurate results compared with MLS and GLS methods. Several computational aspects of the response surface construction methods also discussed.

  15. Modeling of forming radially polarized beams on the basis of refractive elements with interference polarizer

    NASA Astrophysics Data System (ADS)

    Paranin, Vyacheslav D.; Karpeev, Sergey V.; Khonina, Svetlana N.

    2016-03-01

    The calculation and simulation of interference polarizer to generate radially polarized light is made. The method is based on converting the conical wavefront passing through the interference polarizer. The multilayer optical coating can be applied on the surface of the axicon. It is shown that in this way we noticeably reduce both the operating angle of incidence and achieve practically significant degree of polarization of the beam generated at much lower energy losses.

  16. The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development

    PubMed Central

    Szabó, András; Cobo, Isidoro; Omara, Sharif; McLachlan, Sophie; Keller, Ray; Mayor, Roberto

    2016-01-01

    Summary Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events. PMID:27165554

  17. The Molecular Basis of Radial Intercalation during Tissue Spreading in Early Development.

    PubMed

    Szabó, András; Cobo, Isidoro; Omara, Sharif; McLachlan, Sophie; Keller, Ray; Mayor, Roberto

    2016-05-01

    Radial intercalation is a fundamental process responsible for the thinning of multilayered tissues during large-scale morphogenesis; however, its molecular mechanism has remained elusive. Using amphibian epiboly, the thinning and spreading of the animal hemisphere during gastrulation, here we provide evidence that radial intercalation is driven by chemotaxis of cells toward the external layer of the tissue. This role of chemotaxis in tissue spreading and thinning is unlike its typical role associated with large-distance directional movement of cells. We identify the chemoattractant as the complement component C3a, a factor normally linked with the immune system. The mechanism is explored by computational modeling and tested in vivo, ex vivo, and in vitro. This mechanism is robust against fluctuations of chemoattractant levels and expression patterns and explains expansion during epiboly. This study provides insight into the fundamental process of radial intercalation and could be applied to a wide range of morphogenetic events. PMID:27165554

  18. A meshless method using radial basis functions for numerical solution of the two-dimensional KdV-Burgers equation

    NASA Astrophysics Data System (ADS)

    Zabihi, F.; Saffarian, M.

    2016-07-01

    The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.

  19. Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels.

    PubMed

    Cho, Baek Hwan; Yu, Hwanjo; Lee, Jongshill; Chee, Young Joon; Kim, In Young; Kim, Sun I

    2008-03-01

    Nonlinear classifiers, e.g., support vector machines (SVMs) with radial basis function (RBF) kernels, have been used widely for automatic diagnosis of diseases because of their high accuracies. However, it is difficult to visualize the classifiers, and thus difficult to provide intuitive interpretation of results to physicians. We developed a new nonlinear kernel, the localized radial basis function (LRBF) kernel, and new visualization system visualization for risk factor analysis (VRIFA) that applies a nomogram and LRBF kernel to visualize the results of nonlinear SVMs and improve the interpretability of results while maintaining high prediction accuracy. Three representative medical datasets from the University of California, Irvine repository and Statlog dataset-breast cancer, diabetes, and heart disease datasets-were used to evaluate the system. The results showed that the classification performance of the LRBF is comparable with that of the RBF, and the LRBF is easy to visualize via a nomogram. Our study also showed that the LRBF kernel is less sensitive to noise features than the RBF kernel, whereas the LRBF kernel degrades the prediction accuracy more when important features are eliminated. We demonstrated the VRIFA system, which visualizes the results of linear and nonlinear SVMs with LRBF kernels, on the three datasets. PMID:18348954

  20. The neural basis of conceptualizing the same action at different levels of abstraction.

    PubMed

    Spunt, Robert P; Kemmerer, David; Adolphs, Ralph

    2016-07-01

    People can conceptualize the same action (e.g. 'riding a bike') at different levels of abstraction (LOA), where higher LOAs specify the abstract motives that explain why the action is performed (e.g. 'getting exercise'), while lower LOAs specify the concrete steps that indicate how the action is performed (e.g. 'gripping handlebars'). Prior neuroimaging studies have shown that why and how questions about actions differentially activate two cortical networks associated with mental-state reasoning and action representation, respectively; however, it remains unknown whether this is due to the differential demands of the questions per se or to the shifts in LOA those questions produce. We conducted functional magnetic resonance imaging while participants judged pairs of action phrases that varied in LOA and that could be framed either as a why question (Why ride a bike? Get exercise.) or a how question (How to get exercise? Ride a bike.). Question framing (why vs how) had no effect on activity in regions of the two networks. Instead, these regions uniquely tracked parametric variation in LOA, both across and within trials. This suggests that the human capacity to understand actions at different LOA is based in the relative activity of two cortical networks. PMID:26117505

  1. Use of Structure as a Basis for Abstraction in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2004-01-01

    The safety and efficiency of the air traffic control domain is highly dependent on the capabilities and limitations of its human controllers. Past research has indicated that structure provided by the airspace and procedures could aid in simplifying the controllers cognitive tasks. In this paper, observations, interviews, voice command data analyses, and radar analyses were conducted at the Boston Terminal Route Control (TRACON) facility to determine if there was evidence of controllers using structure to simplify their cognitive processes. The data suggest that controllers do use structure-based abstractions to simplify their cognitive processes, particularly the projection task. How structure simplifies the projection task and the implications of understanding the benefits structure provides to the projection task was discussed.

  2. A hybrid radial basis function-pseudospectral method for thermal convection in a 3-D spherical shell

    NASA Astrophysics Data System (ADS)

    Wright, G. B.; Flyer, N.; Yuen, D. A.

    2010-07-01

    A novel hybrid spectral method that combines radial basis function (RBF) and Chebyshev pseudospectral methods in a "2 + 1" approach is presented for numerically simulating thermal convection in a 3-D spherical shell. This is the first study to apply RBFs to a full 3-D physical model in spherical geometry. In addition to being spectrally accurate, RBFs are not defined in terms of any surface-based coordinate system such as spherical coordinates. As a result, when used in the lateral directions, as in this study, they completely circumvent the pole issue with the further advantage that nodes can be "scattered" over the surface of a sphere. In the radial direction, Chebyshev polynomials are used, which are also spectrally accurate and provide the necessary clustering near the boundaries to resolve boundary layers. Applications of this new hybrid methodology are given to the problem of convection in the Earth's mantle, which is modeled by a Boussinesq fluid at infinite Prandtl number. To see whether this numerical technique warrants further investigation, the study limits itself to an isoviscous mantle. Benchmark comparisons are presented with other currently used mantle convection codes for Rayleigh number (Ra) 7 × 103 and 105. Results from a Ra = 106 simulation are also given. The algorithmic simplicity of the code (mostly due to RBFs) allows it to be written in less than 400 lines of MATLAB and run on a single workstation. We find that our method is very competitive with those currently used in the literature.

  3. Determination of thickness uniformity of a transparent film based on in-plane ESPI and radial basis function

    NASA Astrophysics Data System (ADS)

    Dai, Xiangjun; Shao, Xinxing; Yang, Fujun; Yun, Hai

    2016-06-01

    In-plane electronic speckle pattern interferometry (ESPI) was developed to determine the thickness uniformity of a transparent film. The method is based on the subsequent spatial carrier patterns caused by the change of the rotation angle. Full-field thickness distribution can be obtained according to the relation between the phase difference and optical path difference generated by film rotation. Moreover, radial basis function was applied to improve the image quality of interference patterns. The main principle and experimental procedure of the method were presented. The errors of measurement results were analyzed. It is shown that the thickness uniformity of the thin film can be measured rapidly and accurately. Also, the refractive index can be determined by the developed method simultaneously.

  4. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids

    PubMed Central

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382

  5. A Computationally Inexpensive Optimal Guidance via Radial-Basis-Function Neural Network for Autonomous Soft Landing on Asteroids.

    PubMed

    Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun

    2015-01-01

    Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382

  6. Radial basis function neural networks in non-destructive determination of compound aspirin tablets on NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dou, Ying; Mi, Hong; Zhao, Lingzhi; Ren, Yuqiu; Ren, Yulin

    2006-09-01

    The application of the second most popular artificial neural networks (ANNs), namely, the radial basis function (RBF) networks, has been developed for quantitative analysis of drugs during the last decade. In this paper, the two components (aspirin and phenacetin) were simultaneously determined in compound aspirin tablets by using near-infrared (NIR) spectroscopy and RBF networks. The total database was randomly divided into a training set (50) and a testing set (17). Different preprocessing methods (standard normal variate (SNV), multiplicative scatter correction (MSC), first-derivative and second-derivative) were applied to two sets of NIR spectra of compound aspirin tablets with different concentrations of two active components and compared each other. After that, the performance of RBF learning algorithm adopted the nearest neighbor clustering algorithm (NNCA) and the criterion for selection used a cross-validation technique. Results show that using RBF networks to quantificationally analyze tablets is reliable, and the best RBF model was obtained by first-derivative spectra.

  7. Application of Radial Basis Function Methods in the Development of a 95th Percentile Male Seated FEA Model.

    PubMed

    Vavalle, Nicholas A; Schoell, Samantha L; Weaver, Ashley A; Stitzel, Joel D; Gayzik, F Scott

    2014-11-01

    Human body finite element models (FEMs) are a valuable tool in the study of injury biomechanics. However, the traditional model development process can be time-consuming. Scaling and morphing an existing FEM is an attractive alternative for generating morphologically distinct models for further study. The objective of this work is to use a radial basis function to morph the Global Human Body Models Consortium (GHBMC) average male model (M50) to the body habitus of a 95th percentile male (M95) and to perform validation tests on the resulting model. The GHBMC M50 model (v. 4.3) was created using anthropometric and imaging data from a living subject representing a 50th percentile male. A similar dataset was collected from a 95th percentile male (22,067 total images) and was used in the morphing process. Homologous landmarks on the reference (M50) and target (M95) geometries, with the existing FE node locations (M50 model), were inputs to the morphing algorithm. The radial basis function was applied to morph the FE model. The model represented a mass of 103.3 kg and contained 2.2 million elements with 1.3 million nodes. Simulations of the M95 in seven loading scenarios were presented ranging from a chest pendulum impact to a lateral sled test. The morphed model matched anthropometric data to within a rootmean square difference of 4.4% while maintaining element quality commensurate to the M50 model and matching other anatomical ranges and targets. The simulation validation data matched experimental data well in most cases. PMID:26192960

  8. An alternative local collocation strategy for high-convergence meshless PDE solutions, using radial basis functions

    NASA Astrophysics Data System (ADS)

    Stevens, D.; Power, H.; Meng, C. Y.; Howard, D.; Cliffe, K. A.

    2013-12-01

    , the stress fields are reproduced to the same degree of accuracy as the displacement field, and exhibit the same order of convergence. The method is also highly stable towards variations in basis function flatness, demonstrating significantly improved stability in comparison to finite-difference type RBF collocation methods.

  9. NURBS for the geometrical modeling of a new family of Compact-Supported Radial Basis Functions for elastic registration of medical images.

    PubMed

    García-Pérez, Verónica; Tristán-Vega, Antonio; Aja-Fernández, Santiago

    2010-01-01

    In this paper we propose a novel approach to design a family of Radial Basis Functions with Compact Support applied to elastic registration of medical images. The proposed method is based on Non-Uniform Rational B-Spline theory, which introduce a number of practical properties. The proposed method allows to design almost perfect equally distributed functions which fulfill most of the requirements identified in the recent literature. The Radial Basis Function is merely parametrized by the symmetric desired curvature at peak-and-tails. Properties of the function are numerically compared with foregoing RBFs. Preliminary experimental results indicate its suitability and benefits in registration of medical images. PMID:21097344

  10. Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.; Shoemaker, Christine A.

    2013-05-01

    This article presents the DYCORS (DYnamic COordinate search using Response Surface models) framework for surrogate-based optimization of HEB (High-dimensional, Expensive, and Black-box) functions that incorporates an idea from the DDS (Dynamically Dimensioned Search) algorithm. The iterate is selected from random trial solutions obtained by perturbing only a subset of the coordinates of the current best solution. Moreover, the probability of perturbing a coordinate decreases as the algorithm reaches the computational budget. Two DYCORS algorithms that use RBF (Radial Basis Function) surrogates are developed: DYCORS-LMSRBF is a modification of the LMSRBF algorithm while DYCORS-DDSRBF is an RBF-assisted DDS. Numerical results on a 14-D watershed calibration problem and on eleven 30-D and 200-D test problems show that DYCORS algorithms are generally better than EGO, DDS, LMSRBF, MADS with kriging, SQP, an RBF-assisted evolution strategy, and a genetic algorithm. Hence, DYCORS is a promising approach for watershed calibration and for HEB optimization.

  11. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    NASA Astrophysics Data System (ADS)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  12. RBF-TSS: identification of transcription start site in human using radial basis functions network and oligonucleotide positional frequencies.

    PubMed

    Mahdi, Rami N; Rouchka, Eric C

    2009-01-01

    Accurate identification of promoter regions and transcription start sites (TSS) in genomic DNA allows for a more complete understanding of the structure of genes and gene regulation within a given genome. Many recently published methods have achieved high identification accuracy of TSS. However, models providing more accurate modeling of promoters and TSS are needed. A novel identification method for identifying transcription start sites that improves the accuracy of TSS recognition for recently published methods is proposed. This method incorporates a metric feature based on oligonucleotide positional frequencies, taking into account the nature of promoters. A radial basis function neural network for identifying transcription start sites (RBF-TSS) is proposed and employed as a classification algorithm. Using non-overlapping chunks (windows) of size 50 and 500 on the human genome, the proposed method achieves an area under the Receiver Operator Characteristic curve (auROC) of 94.75% and 95.08% respectively, providing increased performance over existing TSS prediction methods. PMID:19287502

  13. Phononic band structures and stability analysis using radial basis function method with consideration of different interface models

    NASA Astrophysics Data System (ADS)

    Yan, Zhi-zhong; Wei, Chun-qiu; Zheng, Hui; Zhang, Chuanzeng

    2016-05-01

    In this paper, a meshless radial basis function (RBF) collocation method is developed to calculate the phononic band structures taking account of different interface models. The present method is validated by using the analytical results in the case of perfect interfaces. The stability is fully discussed based on the types of RBFs, the shape parameters and the node numbers. And the advantages of the proposed RBF method compared to the finite element method (FEM) are also illustrated. In addition, the influences of the spring-interface model and the three-phase model on the wave band gaps are investigated by comparing with the perfect interfaces. For different interface models, the effects of various interface conditions, length ratios and density ratios on the band gap width are analyzed. The comparison results of the two models show that the weakly bonded interface has a significant effect on the properties of phononic crystals. Besides, the band structures of the spring-interface model have certain similarities and differences with those of the three-phase model.

  14. Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design

    NASA Astrophysics Data System (ADS)

    Tyan, Maxim; Van Nguyen, Nhu; Lee, Jae-Woo

    2015-07-01

    The global variable-fidelity modelling (GVFM) method presented in this article extends the original variable-complexity modelling (VCM) algorithm that uses a low-fidelity and scaling function to approximate a high-fidelity function for efficiently solving design-optimization problems. GVFM uses the design of experiments to sample values of high- and low-fidelity functions to explore global design space and to initialize a scaling function using the radial basis function (RBF) network. This approach makes it possible to remove high-fidelity-gradient evaluation from the process, which makes GVFM more efficient than VCM for high-dimensional design problems. The proposed algorithm converges with 65% fewer high-fidelity function calls for a one-dimensional problem than VCM and approximately 80% fewer for a two-dimensional numerical problem. The GVFM method is applied for the design optimization of transonic and subsonic aerofoils. Both aerofoil design problems show design improvement with a reasonable number of high- and low-fidelity function evaluations.

  15. Design of cognitive engine for cognitive radio based on the rough sets and radial basis function neural network

    NASA Astrophysics Data System (ADS)

    Yang, Yanchao; Jiang, Hong; Liu, Congbin; Lan, Zhongli

    2013-03-01

    Cognitive radio (CR) is an intelligent wireless communication system which can dynamically adjust the parameters to improve system performance depending on the environmental change and quality of service. The core technology for CR is the design of cognitive engine, which introduces reasoning and learning methods in the field of artificial intelligence, to achieve the perception, adaptation and learning capability. Considering the dynamical wireless environment and demands, this paper proposes a design of cognitive engine based on the rough sets (RS) and radial basis function neural network (RBF_NN). The method uses experienced knowledge and environment information processed by RS module to train the RBF_NN, and then the learning model is used to reconfigure communication parameters to allocate resources rationally and improve system performance. After training learning model, the performance is evaluated according to two benchmark functions. The simulation results demonstrate the effectiveness of the model and the proposed cognitive engine can effectively achieve the goal of learning and reconfiguration in cognitive radio.

  16. Cascaded evolutionary algorithm for nonlinear system identification based on correlation functions and radial basis functions neural networks

    NASA Astrophysics Data System (ADS)

    Ayala, Helon Vicente Hultmann; Coelho, Leandro dos Santos

    2016-02-01

    The present work introduces a procedure for input selection and parameter estimation for system identification based on Radial Basis Functions Neural Networks (RBFNNs) models with an improved objective function based on the residuals and its correlation function coefficients. We show the results when the proposed methodology is applied to model a magnetorheological damper, with real acquired data, and other two well-known benchmarks. The canonical genetic and differential evolution algorithms are used in cascade to decompose the problem of defining the lags taken as the inputs of the model and its related parameters based on the simultaneous minimization of the residuals and higher orders correlation functions. The inner layer of the cascaded approach is composed of a population which represents the lags on the inputs and outputs of the system and an outer layer represents the corresponding parameters of the RBFNN. The approach is able to define both the inputs of the model and its parameters. This is interesting as it frees the designer of manual procedures, which are time consuming and prone to error, usually done to define the model inputs. We compare the proposed methodology with other works found in the literature, showing overall better results for the cascaded approach.

  17. Global and Regional Gravity Field Determination from GOCE Kinematic Orbit by Means of Spherical Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Bucha, Blažej; Bezděk, Aleš; Sebera, Josef; Janák, Juraj

    2015-11-01

    We present global and regional gravity field models to degree 130 based on the GOCE kinematic orbit from the period 01 November 2009 to 11 January 2010. The gravity field models are parameterized in terms of the Shannon and Kaula's spherical radial basis functions. The relation between the unknown expansion coefficients and the kinematic orbit of the satellite is established by the acceleration approach. We show that our global GOCE-only solutions free from prior information can compete with unconstrained spherical harmonic models in terms of accuracy. Furthermore, we utilize our low-degree global GOCE-based models to introduce prior information into the least-squares adjustment. This procedure substantially improves the zonal and near-zonal spherical harmonic coefficients, which are usually degraded due to the polar gap problem. As an unwanted side effect, low-pass filtering of the geopotential may occur, but this can be adjusted by the spectral content of the prior information. We show that the regional enhancement of the global solutions reduces noise in the final model between degrees 70 and 130 by ~10 % in terms of RMS error. In general, our Shannon-based solutions systematically outperform the Kaula-based ones. To validate our results, we use the EIGEN-6S model, which is superior to the solutions from kinematic orbits at least by one order of magnitude. Both the global and the regional models satisfy the GOCE-only strategy.

  18. Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network.

    PubMed

    Kuo, R J.; Cohen, P H.

    1999-03-01

    On-line tool wear estimation plays a very critical role in industry automation for higher productivity and product quality. In addition, appropriate and timely decision for tool change is significantly required in the machining systems. Thus, this paper is dedicated to develop an estimation system through integration of two promising technologies, artificial neural networks (ANN) and fuzzy logic. An on-line estimation system consisting of five components: (1) data collection; (2) feature extraction; (3) pattern recognition; (4) multi-sensor integration; and (5) tool/work distance compensation for tool flank wear, is proposed herein. For each sensor, a radial basis function (RBF) network is employed to recognize the extracted features. Thereafter, the decisions from multiple sensors are integrated through a proposed fuzzy neural network (FNN) model. Such a model is self-organizing and self-adjusting, and is able to learn from the experience. Physical experiments for the metal cutting process are implemented to evaluate the proposed system. The results show that the proposed system can significantly increase the accuracy of the product profile. PMID:12662710

  19. Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: design and analysis

    NASA Astrophysics Data System (ADS)

    Oh, Sung-Kwun; Kim, Wook-Dong; Pedrycz, Witold

    2016-05-01

    In this paper, we introduce a new architecture of optimized Radial Basis Function neural network classifier developed with the aid of fuzzy clustering and data preprocessing techniques and discuss its comprehensive design methodology. In the preprocessing part, the Linear Discriminant Analysis (LDA) or Principal Component Analysis (PCA) algorithm forms a front end of the network. The transformed data produced here are used as the inputs of the network. In the premise part, the Fuzzy C-Means (FCM) algorithm determines the receptive field associated with the condition part of the rules. The connection weights of the classifier are of functional nature and come as polynomial functions forming the consequent part. The Particle Swarm Optimization algorithm optimizes a number of essential parameters needed to improve the accuracy of the classifier. Those optimized parameters include the type of data preprocessing, the dimensionality of the feature vectors produced by the LDA (or PCA), the number of clusters (rules), the fuzzification coefficient used in the FCM algorithm and the orders of the polynomials of networks. The performance of the proposed classifier is reported for several benchmarking data-sets and is compared with the performance of other classifiers reported in the previous studies.

  20. R-Peak Detection using Daubechies Wavelet and ECG Signal Classification using Radial Basis Function Neural Network

    NASA Astrophysics Data System (ADS)

    Rai, H. M.; Trivedi, A.; Chatterjee, K.; Shukla, S.

    2014-01-01

    This paper employed the Daubechies wavelet transform (WT) for R-peak detection and radial basis function neural network (RBFNN) to classify the electrocardiogram (ECG) signals. Five types of ECG beats: normal beat, paced beat, left bundle branch block (LBBB) beat, right bundle branch block (RBBB) beat and premature ventricular contraction (PVC) were classified. 500 QRS complexes were arbitrarily extracted from 26 records in Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database, which are available on Physionet website. Each and every QRS complex was represented by 21 points from p1 to p21 and these QRS complexes of each record were categorized according to types of beats. The system performance was computed using four types of parameter evaluation metrics: sensitivity, positive predictivity, specificity and classification error rate. The experimental result shows that the average values of sensitivity, positive predictivity, specificity and classification error rate are 99.8%, 99.60%, 99.90% and 0.12%, respectively with RBFNN classifier. The overall accuracy achieved for back propagation neural network (BPNN), multilayered perceptron (MLP), support vector machine (SVM) and RBFNN classifiers are 97.2%, 98.8%, 99% and 99.6%, respectively. The accuracy levels and processing time of RBFNN is higher than or comparable with BPNN, MLP and SVM classifiers.

  1. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks.

    PubMed

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  2. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  3. Automated cross-modal mapping in robotic eye/hand systems using plastic radial basis function networks

    NASA Astrophysics Data System (ADS)

    Meng, Qinggang; Lee, M. H.

    2007-03-01

    Advanced autonomous artificial systems will need incremental learning and adaptive abilities similar to those seen in humans. Knowledge from biology, psychology and neuroscience is now inspiring new approaches for systems that have sensory-motor capabilities and operate in complex environments. Eye/hand coordination is an important cross-modal cognitive function, and is also typical of many of the other coordinations that must be involved in the control and operation of embodied intelligent systems. This paper examines a biologically inspired approach for incrementally constructing compact mapping networks for eye/hand coordination. We present a simplified node-decoupled extended Kalman filter for radial basis function networks, and compare this with other learning algorithms. An experimental system consisting of a robot arm and a pan-and-tilt head with a colour camera is used to produce results and test the algorithms in this paper. We also present three approaches for adapting to structural changes during eye/hand coordination tasks, and the robustness of the algorithms under noise are investigated. The learning and adaptation approaches in this paper have similarities with current ideas about neural growth in the brains of humans and animals during tool-use, and infants during early cognitive development.

  4. An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    In this study, an expert system with a radial basis function neural network (RBF-NN) based on decision trees (DT) is designed to predict sediment transport in sewer pipes at the limit of deposition. First, sensitivity analysis is carried out to investigate the effect of each parameter on predicting the densimetric Froude number (Fr). The results indicate that utilizing the ratio of the median particle diameter to pipe diameter (d/D), ratio of median particle diameter to hydraulic radius (d/R) and volumetric sediment concentration (C(V)) as the input combination leads to the best Fr prediction. Subsequently, the new hybrid DT-RBF method is presented. The results of DT-RBF are compared with RBF and RBF-particle swarm optimization (PSO), which uses PSO for RBF training. It appears that DT-RBF is more accurate (R(2) = 0.934, MARE = 0.103, RMSE = 0.527, SI = 0.13, BIAS = -0.071) than the two other RBF methods. Moreover, the proposed DT-RBF model offers explicit expressions for use by practicing engineers. PMID:27386995

  5. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen

    2015-11-01

    The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

  6. Improved Classification of Lung Cancer Using Radial Basis Function Neural Network with Affine Transforms of Voss Representation

    PubMed Central

    Adetiba, Emmanuel; Olugbara, Oludayo O.

    2015-01-01

    Lung cancer is one of the diseases responsible for a large number of cancer related death cases worldwide. The recommended standard for screening and early detection of lung cancer is the low dose computed tomography. However, many patients diagnosed die within one year, which makes it essential to find alternative approaches for screening and early detection of lung cancer. We present computational methods that can be implemented in a functional multi-genomic system for classification, screening and early detection of lung cancer victims. Samples of top ten biomarker genes previously reported to have the highest frequency of lung cancer mutations and sequences of normal biomarker genes were respectively collected from the COSMIC and NCBI databases to validate the computational methods. Experiments were performed based on the combinations of Z-curve and tetrahedron affine transforms, Histogram of Oriented Gradient (HOG), Multilayer perceptron and Gaussian Radial Basis Function (RBF) neural networks to obtain an appropriate combination of computational methods to achieve improved classification of lung cancer biomarker genes. Results show that a combination of affine transforms of Voss representation, HOG genomic features and Gaussian RBF neural network perceptibly improves classification accuracy, specificity and sensitivity of lung cancer biomarker genes as well as achieving low mean square error. PMID:26625358

  7. A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks

    PubMed Central

    Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.

    2016-01-01

    This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600

  8. Iterative Radial Basis Functions Neural Networks as Metamodels of Stochastic Simulations of the Quality of Search Engines in the World Wide Web.

    ERIC Educational Resources Information Center

    Meghabghab, George

    2001-01-01

    Discusses the evaluation of search engines and uses neural networks in stochastic simulation of the number of rejected Web pages per search query. Topics include the iterative radial basis functions (RBF) neural network; precision; response time; coverage; Boolean logic; regression models; crawling algorithms; and implications for search engine…

  9. The cerebral basis of mapping nonsymbolic numerical quantities onto abstract symbols: an fMRI training study.

    PubMed

    Lyons, Ian M; Ansari, Daniel

    2009-09-01

    Although significant insights into the neural basis of numerical and mathematical processing have been made, the neural processes that enable abstract symbols to become numerical remain largely unexplored in humans. In the present study, adult participants were trained to associate novel symbols with nonsymbolic numerical magnitudes (arrays of dots). Functional magnetic resonance imaging was used to examine the neural correlates of numerical comparison versus recognition of the novel symbols after each of two training stages. A left-lateralized fronto-parietal network, including the intraparietal sulcus, the precuneus, and the dorsal prefrontal cortex, was more active during numerical comparison than during perceptual recognition. In contrast, a network including bilateral temporal-occipital regions was more active during recognition than comparison. A whole-brain three-way interaction revealed that those individuals who had higher scores on a postscan numerical task (measuring their understanding of the global numerical organization of the novel symbols) exhibited increasing segregation between the two tasks in the bilateral intraparietal sulci as a function of increased training. Furthermore, whole-brain regression analysis showed that activity in the left intraparietal sulcus was systematically related to the effect of numerical distance on accuracy. These data provide converging evidence that parietal and left prefrontal cortices are involved in learning to map numerical quantities onto visual symbols. Only the parietal cortex, however, appeared systematically related to the degree to which individuals learned to associate novel symbols with their numerical referents. We conclude that the left parietal cortex, in particular, may play a central role in imbuing visual symbols with numerical meaning. PMID:18823231

  10. Application of principal component-radial basis function neural networks (PC-RBFNN) for the detection of water-adulterated bayberry juice by near-infrared spectroscopy*

    PubMed Central

    Xie, Li-juan; Ye, Xing-qian; Liu, Dong-hong; Ying, Yi-bin

    2008-01-01

    Near-infrared (NIR) spectroscopy combined with chemometrics techniques was used to classify the pure bayberry juice and the one adulterated with 10% (w/w) and 20% (w/w) water. Principal component analysis (PCA) was applied to reduce the dimensions of spectral data, give information regarding a potential capability of separation of objects, and provide principal component (PC) scores for radial basis function neural networks (RBFNN). RBFNN was used to detect bayberry juice adulterant. Multiplicative scatter correction (MSC) and standard normal variate (SNV) transformation were used to preprocess spectra. The results demonstrate that PC-RBFNN with optimum parameters can separate pure bayberry juice samples from water-adulterated bayberry at a recognition rate of 97.62%, but cannot clearly detect water levels in the adulterated bayberry juice. We conclude that NIR technology can be successfully applied to detect water-adulterated bayberry juice. PMID:19067467

  11. Sliding-mode and proportional-derivative-type motion control with radial basis function neural network based estimators for wheeled vehicles

    NASA Astrophysics Data System (ADS)

    Pamosoaji, Anugrah K.; Thuong Cat, Pham; Hong, Keum-Shik

    2014-12-01

    An obstacle avoidance problem of rear-steered wheeled vehicles in consideration of the presence of uncertainties is addressed. Modelling errors and additional uncertainties are taken into consideration. Controller designs for driving and steering motors are designed. A proportional-derivative-type driving motor controller and a sliding-mode steering controller combined with radial basis function neural network (RBFNN) based estimators are proposed. The convergence properties of the RBFNN-based estimators are proven by the Stone-Weierstrass theorem. The stability of the proposed control law is proven using Lyapunov stability analysis. The obstacle avoidance strategy utilising the sliding surface adjustment to an existing navigation method is presented. It is concluded that the driving velocity and steering-angle performances of the proposed control system are satisfactory.

  12. Analysis of pull-in instability of geometrically nonlinear microbeam using radial basis artificial neural network based on couple stress theory.

    PubMed

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  13. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  14. Regional gravity field modeling using radial basis functions: results from IAG's Joint Study Group JSG0.3 and real data GOCE applications

    NASA Astrophysics Data System (ADS)

    Eicker, Annette; Schall, Judith; Lieb, Verena; Bentel, Katrin; Schmidt, Michael; Buße, Kirsten; Kusche, Jürgen; Gerlach, Christian

    2014-05-01

    Traditionally, the gravity field of the Earth is modeled as a series expansion into globally defined spherical harmonic basis functions. However, it is well-known that spherical harmonic approaches have problems to properly represent data of heterogeneous density and quality. These and other deficiencies can be overcome using regional modeling approaches, which allow to more flexibly adjust the analysis procedure to the gravity field signal in certain geographical areas. Therefore, different sophisticated regional gravity field modeling approaches have been developed in recent years. In order to systematically compare the different approaches, the IAG ICCT Joint Study Group JSG0.3 "Comparison of Current Methodologies in Regional Gravity Field Modeling" has recently created synthetic test data sets. In this presentation we will discuss and compare the results obtained from the test data sets using a parameterization by different types of radial basis functions as provided by the groups of the University of Bonn, the German Geodetic Research Institute (DGFI) and the Norwegian University of Life Sciences. Furthermore, we will present the improvements that can be obtained by regional processing techniques compared to global spherical harmonic modeling at the example of GOCE real data applications.

  15. Hourly air temperature driven using multi-layer perceptron and radial basis function networks in arid and semi-arid regions

    NASA Astrophysics Data System (ADS)

    Rezaeian-Zadeh, Mehdi; Zand-Parsa, Shahrookh; Abghari, Hirad; Zolghadr, Masih; Singh, Vijay P.

    2012-08-01

    This study employed two artificial neural network (ANN) models, including multi-layer perceptron (MLP) and radial basis function (RBF), as data-driven methods of hourly air temperature at three meteorological stations in Fars province, Iran. MLP was optimized using the Levenberg-Marquardt (MLP_LM) training algorithm with a tangent sigmoid transfer function. Both time series (TS) and randomized (RZ) data were used for training and testing of ANNs. Daily maximum and minimum air temperatures (MM) and antecedent daily maximum and minimum air temperatures (AMM) constituted the input for ANNs. The ANN models were evaluated using the root mean square error (RMSE), the coefficient of determination ( R 2) and the mean absolute error. The use of AMM led to a more accurate estimation of hourly temperature compared with the use of MM. The MLP-ANN seemed to have a higher estimation efficiency than the RBF ANN. Furthermore, the ANN testing using randomized data showed more accurate estimation. The RMSE values for MLP with RZ data using daily maximum and minimum air temperatures for testing phase were equal to 1.2°C, 1.8°C, and 1.7°C, respectively, at Arsanjan, Bajgah, and Kooshkak stations. The results of this study showed that hourly air temperature driven using ANNs (proposed models) had less error than the empirical equation.

  16. Accelerating the performance of a novel meshless method based on collocation with radial basis functions by employing a graphical processing unit as a parallel coprocessor

    NASA Astrophysics Data System (ADS)

    Owusu-Banson, Derek

    In recent times, a variety of industries, applications and numerical methods including the meshless method have enjoyed a great deal of success by utilizing the graphical processing unit (GPU) as a parallel coprocessor. These benefits often include performance improvement over the previous implementations. Furthermore, applications running on graphics processors enjoy superior performance per dollar and performance per watt than implementations built exclusively on traditional central processing technologies. The GPU was originally designed for graphics acceleration but the modern GPU, known as the General Purpose Graphical Processing Unit (GPGPU) can be used for scientific and engineering calculations. The GPGPU consists of massively parallel array of integer and floating point processors. There are typically hundreds of processors per graphics card with dedicated high-speed memory. This work describes an application written by the author, titled GaussianRBF to show the implementation and results of a novel meshless method that in-cooperates the collocation of the Gaussian radial basis function by utilizing the GPU as a parallel co-processor. Key phases of the proposed meshless method have been executed on the GPU using the NVIDIA CUDA software development kit. Especially, the matrix fill and solution phases have been carried out on the GPU, along with some post processing. This approach resulted in a decreased processing time compared to similar algorithm implemented on the CPU while maintaining the same accuracy.

  17. A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network.

    PubMed

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483

  18. Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs).

    PubMed

    Huang, Wei; Oh, Sung-Kwun; Pedrycz, Witold

    2014-12-01

    In this study, we propose Hybrid Radial Basis Function Neural Networks (HRBFNNs) realized with the aid of fuzzy clustering method (Fuzzy C-Means, FCM) and polynomial neural networks. Fuzzy clustering used to form information granulation is employed to overcome a possible curse of dimensionality, while the polynomial neural network is utilized to build local models. Furthermore, genetic algorithm (GA) is exploited here to optimize the essential design parameters of the model (including fuzzification coefficient, the number of input polynomial fuzzy neurons (PFNs), and a collection of the specific subset of input PFNs) of the network. To reduce dimensionality of the input space, principal component analysis (PCA) is considered as a sound preprocessing vehicle. The performance of the HRBFNNs is quantified through a series of experiments, in which we use several modeling benchmarks of different levels of complexity (different number of input variables and the number of available data). A comparative analysis reveals that the proposed HRBFNNs exhibit higher accuracy in comparison to the accuracy produced by some models reported previously in the literature. PMID:25233483

  19. Quality changes and predictive models of radial basis function neural networks for brined common carp (Cyprinus carpio) fillets during frozen storage.

    PubMed

    Kong, Chunli; Wang, Huiyi; Li, Dapeng; Zhang, Yuemei; Pan, Jinfeng; Zhu, Beiwei; Luo, Yongkang

    2016-06-15

    To investigate and predict quality of 2% brined common carp (Cyprinus carpio) fillets during frozen storage, free fatty acids (FFA), salt extractable protein (SEP), total sulfhydryl (SH) content, and Ca(2+)-ATPase activity were determined at 261 K, 253 K, and 245 K, respectively. There was a dramatic increase (P<0.05) in FFA and a sharp decrease (P<0.05) in SH at 261 K during the first 3 weeks. SEP decreased to 67.31% after 17 weeks at 245 K, whereas it took about 7 weeks and 13 weeks to decrease to the same extent at 261 K and 253 K, respectively. Ca(2+)-ATPase activity kept decreasing to 18.28% after 7 weeks at 261 K. Furthermore, radial basis function neural networks (RBFNNs) were developed to predict quality (FFA, SEP, SH, and Ca(2+)-ATPase activity) of brined carp fillets during frozen storage with relative errors all within ±5%. Thus, RBFNN is a promising method to predict quality of carp fillets during storage at 245-261 K. PMID:26868584

  20. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  1. The numerical study and comparison of radial basis functions in applications of the dual reciprocity boundary element method to convection-diffusion problems

    NASA Astrophysics Data System (ADS)

    Chanthawara, Krittidej; Kaennakham, Sayan; Toutip, Wattana

    2016-02-01

    The methodology of Dual Reciprocity Boundary Element Method (DRBEM) is applied to the convection-diffusion problems and investigating its performance is our first objective of the work. Seven types of Radial Basis Functions (RBF); Linear, Thin-plate Spline, Cubic, Compactly Supported, Inverse Multiquadric, Quadratic, and that proposed by [12], were closely investigated in order to numerically compare their effectiveness drawbacks etc. and this is taken as our second objective. A sufficient number of simulations were performed covering as many aspects as possible. Varidated against both exacts and other numerical works, the final results imply strongly that the Thin-Plate Spline and Linear type of RBF are superior to others in terms of both solutions' quality and CPU-time spent while the Inverse Multiquadric seems to poorly yield the results. It is also found that DRBEM can perform relatively well at moderate level of convective force and as anticipated becomes unstable when the problem becomes more convective-dominated, as normally found in all classical mesh-dependence methods.

  2. Application of Radial Basis Function Network Tool for Correlation of CD4+ Count with Plasma Viral Load in HIV-Seropositive Individuals

    PubMed Central

    Neelambike, Sumana M.

    2016-01-01

    Introduction Human Immunodeficiency Virus (HIV) infects and cripples the immune system of the body. The two important marker CD4+T cells and Plasma viral load are crucial not only in understanding the disease progression but also in starting the antiretroviral therapy. A lot of research is going on in understanding the dynamic nature of HIV. Aim To find the correlation between CD4+ count and Plasma Viral Load (PVL) measured by two different technologies; with the help of correlation technique in conjunction with the three dimensional HIV model with a purpose of establishing a mathematical model between the CD4+ cells and PVL using a sinusoidal function as well as Radial Basis Function (RBF) neural network. Materials and Methods Plasma Viral Load were determined by two different methods viz Exavir CavidiTM and Abbott Real time HIV-1 assay and then they were correlated with the CD4+ count with the help of computational intelligence in predicting viral load. Results It was found that there exists a positive correlation between the CD4+ cells and viral loads. A correlation value of 0.4082 and 0.3652 was observed between CD4+ cells and viral measured using Exavir CavidiTM and Abbott Real time HIV-1 assay respectively. Conclusion The existence of positive correlation had helped us to understand the nature and dynamic of the existence of HIV and how the CD4 + and PVL act. PMID:27190799

  3. Simulation of solid body motion in a Newtonian fluid using a vorticity-based pseudo-spectral immersed boundary method augmented by the radial basis functions

    NASA Astrophysics Data System (ADS)

    Sabetghadam, Fereidoun; Soltani, Elshan

    2015-10-01

    The moving boundary conditions are implemented into the Fourier pseudo-spectral solution of the two-dimensional incompressible Navier-Stokes equations (NSE) in the vorticity-velocity form, using the radial basis functions (RBF). Without explicit definition of an external forcing function, the desired immersed boundary conditions are imposed by direct modification of the convection and diffusion terms. At the beginning of each time-step the solenoidal velocities, satisfying the desired moving boundary conditions, along with a modified vorticity are obtained and used in modification of the convection and diffusion terms of the vorticity evolution equation. Time integration is performed by the explicit fourth-order Runge-Kutta method and the boundary conditions are set at the beginning of each sub-step. The method is applied to a couple of moving boundary problems and more than second-order of accuracy in space is demonstrated for the Reynolds numbers up to Re = 550. Moreover, performance of the method is shown in comparison with the classical Fourier pseudo-spectral method.

  4. Simultaneous determination of penicillin G salts by infrared spectroscopy: Evaluation of combining orthogonal signal correction with radial basis function-partial least squares regression

    NASA Astrophysics Data System (ADS)

    Talebpour, Zahra; Tavallaie, Roya; Ahmadi, Seyyed Hamid; Abdollahpour, Assem

    2010-09-01

    In this study, a new method for the simultaneous determination of penicillin G salts in pharmaceutical mixture via FT-IR spectroscopy combined with chemometrics was investigated. The mixture of penicillin G salts is a complex system due to similar analytical characteristics of components. Partial least squares (PLS) and radial basis function-partial least squares (RBF-PLS) were used to develop the linear and nonlinear relation between spectra and components, respectively. The orthogonal signal correction (OSC) preprocessing method was used to correct unexpected information, such as spectral overlapping and scattering effects. In order to compare the influence of OSC on PLS and RBF-PLS models, the optimal linear (PLS) and nonlinear (RBF-PLS) models based on conventional and OSC preprocessed spectra were established and compared. The obtained results demonstrated that OSC clearly enhanced the performance of both RBF-PLS and PLS calibration models. Also in the case of some nonlinear relation between spectra and component, OSC-RBF-PLS gave satisfactory results than OSC-PLS model which indicated that the OSC was helpful to remove extrinsic deviations from linearity without elimination of nonlinear information related to component. The chemometric models were tested on an external dataset and finally applied to the analysis commercialized injection product of penicillin G salts.

  5. A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network

    PubMed Central

    Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.

    2015-01-01

    In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483

  6. Performance evaluation and modeling of a submerged membrane bioreactor treating combined municipal and industrial wastewater using radial basis function artificial neural networks.

    PubMed

    Mirbagheri, Seyed Ahmad; Bagheri, Majid; Boudaghpour, Siamak; Ehteshami, Majid; Bagheri, Zahra

    2015-01-01

    Treatment process models are efficient tools to assure proper operation and better control of wastewater treatment systems. The current research was an effort to evaluate performance of a submerged membrane bioreactor (SMBR) treating combined municipal and industrial wastewater and to simulate effluent quality parameters of the SMBR using a radial basis function artificial neural network (RBFANN). The results showed that the treatment efficiencies increase and hydraulic retention time (HRT) decreases for combined wastewater compared with municipal and industrial wastewaters. The BOD, COD, [Formula: see text] and total phosphorous (TP) removal efficiencies for combined wastewater at HRT of 7 hours were 96.9%, 96%, 96.7% and 92%, respectively. As desirable criteria for treating wastewater, the TBOD/TP ratio increased, the BOD and COD concentrations decreased to 700 and 1000 mg/L, respectively and the BOD/COD ratio was about 0.5 for combined wastewater. The training procedures of the RBFANN models were successful for all predicted components. The train and test models showed an almost perfect match between the experimental and predicted values of effluent BOD, COD, [Formula: see text] and TP. The coefficient of determination (R(2)) values were higher than 0.98 and root mean squared error (RMSE) values did not exceed 7% for train and test models. PMID:25798288

  7. The near-equivalence of five species of spectrally-accurate radial basis functions (RBFs): Asymptotic approximations to the RBF cardinal functions on a uniform, unbounded grid

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2011-02-01

    Radial basis function (RBF) interpolants have become popular in computer graphics, neural networks and for solving partial differential equations in many fields of science and engineering. In this article, we compare five different species of RBFs: Gaussians, hyperbolic secant (sech's), inverse quadratics, multiquadrics and inverse multiquadrics. We show that the corresponding cardinal functions for a uniform, unbounded grid are all approximated by the same function: C(X) ∼ (1/(ρ)) sin (πX)/sinh (πX/ρ) for some constant ρ(α) which depends on the inverse width parameter (“shape parameter”) α of the RBF and also on the RBF species. The error in this approximation is exponentially small in 1/α for sech's and inverse quadratics and exponentially small in 1/α2 for Gaussians; the error is proportional to α4 for multiquadrics and inverse multiquadrics. The error in all cases is small even for α ∼ O(1). These results generalize to higher dimensions. The Gaussian RBF cardinal functions in any number of dimensions d are, without approximation, the tensor product of one dimensional Gaussian cardinal functions: Cd(x1,x2…,xd)=∏j=1dC(xj). For other RBF species, we show that the two-dimensional cardinal functions are well approximated by the products of one-dimensional cardinal functions; again the error goes to zero as α → 0. The near-identity of the cardinal functions implies that all five species of RBF interpolants are (almost) the same, despite the great differences in the RBF ϕ's themselves.

  8. Combining radial basis function neural network with genetic algorithm to QSPR modeling of adsorption on multi-walled carbon nanotubes surface

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Zeinabe; Kompany-Zareh, Mohsen; Ghavami, Raouf; Gholami, Somayeh; Malek-Khatabi, Atefe

    2015-10-01

    The configuring of a radial basis function neural network (RBFN) consists of optimizing the architecture and the network parameters (centers, widths, and weights). Methods such as genetic algorithm (GA), K-means and cluster analysis (CA) are among center selection methods. In the most of reports on RBFN modeling optimum centers are selected among rows of descriptors matrix. A combination of RBFN and GA is introduced for better description of quantitative structure-property relationships (QSPR) models. In this method, centers are not exactly rows of the independent matrix and can be located in any point of the samples space. In the proposed approach, initial centers are randomly selected from the calibration set. Then GA changes the locations of the initially selected centers to find the optimum positions of centers from the whole space of scores matrix, in order to obtain highest prediction ability. This approach is called whole space GA-RBFN (wsGA-RBFN) and applied to predict the adsorption coefficients (logk), of 40 small molecules on the surface of multi-walled carbon nanotubes (MWCNTs). The data consists of five solute descriptors [R, π, α, β, V] of the molecules and known as data set1. Prediction ability of wsGA-RBFN is compared to GA-RBFN and MLR models. The obtained Q2 values for wsGA-RBFN, GA-RBFN and MLR are 0.95, 0.85, and 0.78, respectively, which shows the merit of wsGA-RBFN. The method is also applied on the logarithm of surface area normalized adsorption coefficients (logKSA), of organic compounds (OCs) on MWCNTs surface. The data set2 includes 69 aromatic molecules with 13 physicochemical properties of the OCs. Thirty-nine of these molecules were similar to those of data set1 and the others were aromatic compounds included of small and big molecules. Prediction ability of wsGA-RBFN for second data set was compared to GA-RBF. The Q2 values for wsGA-RBFN and GA-RBF are obtained as 0.89 and 0.80, respectively.

  9. Onset of Time-Dependent 3-D spherical Mantle Convection using a Radial Basis Function-Pseudospectral Method ; Spectral-Finite Volume ; Spectral Higher-Order Finite- Difference Methods

    NASA Astrophysics Data System (ADS)

    Wright, G.; Flyer, N.; Yuen, D. A.; Monnereau, M.; Zhang, S.; Wang, S. M.

    2009-05-01

    Many numerical methods, such as finite-differences, finite-volume, their yin-yang variants, finite-elements and spectral methods have been employed to study 3-D mantle convection. All have their own strengths, but also serious weaknesses. Spectrally accurate methods do not practically allow for node refinement and often involve cumbersome algebra while finite difference, volume, or element methods are generally low-order, adding excessive numerical diffusion to the model. For the 3-D mantle convection problem, we have introduced a new mesh-free approach, using radial basis functions (RBF). This method has the advantage of being algorithmic simple, spectrally accurate for arbitrary node layouts in multi-dimensions and naturally allows for node-refinement. One virtue of the RBF scheme allows the user to use a simple Cartesian geometry, while implementing the required boundary conditions for the temperature, velocities and stress components on a spherical surface at both the planetary surface and the core-mantle boundary. We have studied time- dependent mantle convection, using both a RBF-pseudospectral code and a code which uses spherical- harmonics in the angular direction and second-order finite volume in the radial direction. We have employed a third code , which uses spherical harmonics and higher-order finite-difference method a la Fornberg in the radial coordinate.We first focus on the onset of time-dependence at Rayleigh number Ra of 70,000. We follow the development of stronger time-dependence to a Ra of one million, using high enough resolution with 120 to 200 points in the radial direction and 128 to 256 spherical harmonics.

  10. INVENTORY ABSTRACTION

    SciTech Connect

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the

  11. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  12. Radial systems of dark globules

    SciTech Connect

    Gyul'budagyn, A.L.

    1986-03-01

    The author gives examples of radial systems consisting of dark globules and ''elephant trunks''. Besides already known systems, which contain hot stars at their center, data are given on three radial systems of a new kind, at the center of which there are stars of spectral types later than B. Data are given on 32 globules of radial systems of the association Cep OB2. On the basis of the observational data, it is concluded that at least some of the isolated Bok globules derive from elephant trunks and dark globules forming radial systems around hot stars. It is also suggested that the two molecular clouds situated near the Rosette nebula and possessing velocities differing by ca 20 km/sec from the velocity of the nebula could have been ejected in opposite directions from the center of the nebula. One of these clouds consists of dark globules forming the radial system of the Rosette nebula.

  13. Radial Erosion

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The ejecta surrounding the crater (off image to the left) in this image has undergone significant erosion by the wind. The wind has stripped the surface features from the ejecta and has started to winnow away the ejecta blanket. Near the margin of the ejecta the wind is eroding along a radial pattern -- taking advantage of radial emplacement. Note the steep margin of the ejecta blanket. Most, if not all, of the fine ejecta material has been removed and the wind in now working on the more massive continuous ejecta blanket.

    Image information: VIS instrument. Latitude 12.5, Longitude 197.4 East (162.6 West). 37 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Radial-radial single rotor turbine

    DOEpatents

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  15. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  16. Radially inhomogeneous bounded plasmas

    NASA Astrophysics Data System (ADS)

    Zakeri-Khatir, H.; Aghamir, F. M.

    2016-07-01

    On the basis of kinetic theory along with self-consistent field equations, the expressions for dielectric tensor of radially inhomogeneous magnetized plasma columns are obtained. The study of dielectric tensor characteristics allows the accurate analysis of the inhomogeneous properties, beyond limitations that exist in the conventional method. Through the Bessel–Fourier transformation, the localized form of material equations in a radially inhomogeneous medium are obtained. In order to verify the integrity of the model and reveal the effect of inhomogeneity, a special case of a cylindrical plasma waveguide completely filled with inhomogeneous magnetized cold plasma was considered. The dispersion relation curves for four families of electromagnetic (EH and HE) and electrostatic (SC and C) modes are obtained and compared with the findings of the conventional model. The numerical analysis indicates that the inhomogeneity effect leads to coupling of electromagnetic and electrostatic modes each having different radial eigen numbers. The study also reveals that the electrostatic modes are more sensitive to inhomogeneous effects than the electromagnetic modes.

  17. Radial head fracture - aftercare

    MedlinePlus

    Elbow fracture - radial head - aftercare ... the radius bone, just below your elbow. A fracture is a break in your bone. The most common cause of a radial head fracture is falling with an outstretched arm.

  18. Radial arm strike rail

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.

    1991-01-01

    The radial arm strike rail assembly is a system for measurement of bearings, directions, and stereophotography for geologic mapping, particularly where magnetic compasses are not appropriate. The radial arm, pivoting around a shaft axis, provides a reference direction determination for geologic mapping and bearing or direction determination. The centerable and levelable pedestal provide a base for the radial arm strike rail and the telescoping camera pedestal. The telescoping feature of the radial arm strike rail allows positioning the end of the rail for strike direction or bearing measurement with a goniometer.

  19. [Zaidemberg's vascularized radial graft].

    PubMed

    Saint-Cast, Y

    2010-12-01

    In 1991, Carlos Zaidemberg described a new technique to repair scaphoid non-unions with a vascularized bone graft harvested from the radial styloid process. An anatomic study based on 30 dissections after colorized latex injection established the constancy of the radial styloid process's artery, while showing that its origin, course and length were subject to variations. In a retrospective series of 38 cases over a period of 10 years, the vascularized bone graft was indicated for: (1) scaphoid non-union with the presence of avascular changes of the proximal fragment (23 cases); (2) failed prior reconstruction with bone graft and internal fixation (nine cases); (3) degenerative styloid-scaphoid arthritis (three cases); (4) fracture on Preiser dystrophy (three cases). The five steps of the simplified operative technique without dissection of the vascular pedicle include: (1) longitudinal dorso-radial approach, identification of the periosteal portion of the radial styloid process artery; (2) incision of the first and second compartments, longitudinal arthrotomy under the second compartment; (3) styloidectomy and transversal resection of the scaphoid non-union and sclerotic bone; (4) elevation of the vascularized bone graft; (5) transversal and radial insertion of the vascularized bone graft, osteosynthesis by two or three K-wire touching the scaphoid's radial edge. Scaphoid union was obtained in 33 cases out of 38. The only postoperative complications were two transient radial paresthesia. The standardized surgical procedure using vascularized bone graft harvested from the radial styloid process provides an efficient scaphoid reconstruction. PMID:21087882

  20. Weak Radial Artery Pulse

    PubMed Central

    Venugopalan, Poothirikovil; Sivakumar, Puthuval; Ardley, Robert G.; Oates, Crispian

    2012-01-01

    We present an 11year-old boy with a weak right radial pulse, and describe the successful application of vascular ultrasound to identify the ulnar artery dominance and a thin right radial artery with below normal Doppler flow velocity that could explain the discrepancy. The implications of identifying this anomaly are discussed. PMID:22375269

  1. Triple acting radial seal

    DOEpatents

    Ebert, Todd A; Carella, John A

    2012-03-13

    A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.

  2. FAME Radial Velocity Survey

    NASA Astrophysics Data System (ADS)

    Salim, S.; Gould, A.

    2000-12-01

    Full-Sky Astrometric Mapping Explorer (FAME) belongs to a new generation of astrometry satellites and will probe the surrounding space some 20 times deeper than its predecessor Hipparcos. As a result we will acquire precise knowledge of 5 out of 6 components of phase-space for millions of stars. The remaining coordinate, radial velocity, will remain unknown. In this study, we look at how the knowledge of radial velocity affects the determination of the structure of the Galaxy, and its gravitational potential. We therefore propose a radial velocity survey of FAME stars, and discuss its feasibility and technical requirements.

  3. Piaget on Abstraction.

    ERIC Educational Resources Information Center

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  4. Radial nerve dysfunction (image)

    MedlinePlus

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  5. Radial heat flux transformer

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Buzzard, R. J.

    1971-01-01

    Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.

  6. Radial nerve dysfunction

    MedlinePlus

    ... may occur: Abnormal sensations to the hand or forearm ("back" of the hand), "thumb side" (radial surface) ... wrist or fingers Muscle loss ( atrophy ) in the forearm Weakness of the wrist and finger Wrist or ...

  7. Radial nerve dysfunction

    MedlinePlus

    ... nerve leads to problems with movement in the arm and wrist and with sensation in the back of the arm or hand. ... to the radial nerve, which travels down the arm and controls movement of the triceps muscle at ...

  8. Radial turbine cooling

    NASA Astrophysics Data System (ADS)

    Roelke, Richard J.

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  9. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    The technology of high temperature cooled radial turbines is reviewed. Aerodynamic performance considerations are described. Heat transfer and structural analysis are addressed, and in doing so the following topics are covered: cooling considerations, hot side convection, coolant side convection, and rotor mechanical analysis. Cooled rotor concepts and fabrication are described, and the following are covered in this context: internally cooled rotor, hot isostatic pressure bonded rotor, laminated rotor, split blade rotor, and the NASA radial turbine program.

  10. [Approaches to radial shaft].

    PubMed

    Bartoníček, J; Naňka, O; Tuček, M

    2015-10-01

    In the clinical practice, radial shaft may be exposed via two approaches, namely the posterolateral Thompson and volar (anterior) Henry approaches. A feared complication of both of them is the injury to the deep branch of the radial nerve. No consensus has been reached, yet, as to which of the two approaches is more beneficial for the proximal half of radius. According to our anatomical studies and clinical experience, Thompson approach is safe only in fractures of the middle and distal thirds of the radial shaft, but highly risky in fractures of its proximal third. Henry approach may be used in any fracture of the radial shaft and provides a safe exposure of the entire lateral and anterior surfaces of the radius.The Henry approach has three phases. In the first phase, incision is made along the line connecting the biceps brachii tendon and the styloid process of radius. Care must be taken not to damage the lateral cutaneous nerve of forearm.In the second phase, fascia is incised and the brachioradialis identified by the typical transition from the muscle belly to tendon and the shape of the tendon. On the lateral side, the brachioradialis lines the space with the radial artery and veins and the superficial branch of the radial nerve running at its bottom. On the medial side, the space is defined by the pronator teres in the proximal part and the flexor carpi radialis in the distal part. The superficial branch of the radial nerve is retracted together with the brachioradialis laterally, and the radial artery medially.In the third phase, the attachment of the pronator teres is identified by its typical tendon in the middle of convexity of the lateral surface of the radial shaft. The proximal half of the radius must be exposed very carefully in order not to damage the deep branch of the radial nerve. Dissection starts at the insertion of the pronator teres and proceeds proximally along its lateral border in interval between this muscle and insertion of the supinator

  11. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  12. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  13. Radially uniform electron source

    NASA Technical Reports Server (NTRS)

    Mccomas, D.; Bame, S. J.

    1982-01-01

    A thermionic electron source capable of producing uniform count rates in a number of channel electron multipliers simultaneously was required for conditioning multipliers for an extended space mission. It was found that a straight tungsten filament in the center of a cylindrically symmetric geometry surrounded by an array of multipliers emits a radially asymmetric distribution of electrons that changes with time. A source was developed which successfully produces a time-independent radially uniform distribution of electrons by moving the filament out of the direct line of sight and replacing it with a centrally located electron 'cloud.'

  14. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  15. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1975

    1975-01-01

    Papers abstracted represent those submitted to the distribution center at the 83rd American Society for Engineering Education Convention. Abstracts are grouped under headings corresponding to the main topic of the paper. (Editor/CP)

  16. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  17. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  18. Radial forces in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.

  19. Radial forces in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1978-01-01

    Radial forces on the primary seal ring of a flat misaligned seal are analyzed, taking into account the radial variation in seal clearance. An analytical solution for both hydrostatic and hydrodynamic effects is presented that covers the whole range from zero to full angular misalignment. The net radial force on the primary seal ring is always directed so as to produce a radial eccentricity which generates inward pumping. Although the radial force is usually very small, in some cases it may be one of the reasons for excessive leakage through both the primary and secondary seals of a radial face seal.

  20. Abstraction in mathematics.

    PubMed

    Ferrari, Pier Luigi

    2003-07-29

    Some current interpretations of abstraction in mathematical settings are examined from different perspectives, including history and learning. It is argued that abstraction is a complex concept and that it cannot be reduced to generalization or decontextualization only. In particular, the links between abstraction processes and the emergence of new objects are shown. The role that representations have in abstraction is discussed, taking into account both the historical and the educational perspectives. As languages play a major role in mathematics, some ideas from functional linguistics are applied to explain to what extent mathematical notations are to be considered abstract. Finally, abstraction is examined from the perspective of mathematics education, to show that the teaching ideas resulting from one-dimensional interpretations of abstraction have proved utterly unsuccessful. PMID:12903658

  1. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  2. Variable stator radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  3. Radial Inflow Turboexpander Redesign

    SciTech Connect

    William G. Price

    2001-09-24

    Steamboat Envirosystems, LLC (SELC) was awarded a grant in accordance with the DOE Enhanced Geothermal Systems Project Development. Atlas-Copco Rotoflow (ACR), a radial expansion turbine manufacturer, was responsible for the manufacturing of the turbine and the creation of the new computer program. SB Geo, Inc. (SBG), the facility operator, monitored and assisted ACR's activities as well as provided installation and startup assistance. The primary scope of the project is the redesign of an axial flow turbine to a radial inflow turboexpander to provide increased efficiency and reliability at an existing facility. In addition to the increased efficiency and reliability, the redesign includes an improved reduction gear design, and improved shaft seal design, and upgraded control system and a greater flexibility of application

  4. Loving Those Abstracts

    ERIC Educational Resources Information Center

    Stevens, Lori

    2004-01-01

    The author describes a lesson she did on abstract art with her high school art classes. She passed out a required step-by-step outline of the project process. She asked each of them to look at abstract art. They were to list five or six abstract artists they thought were interesting, narrow their list down to the one most personally intriguing,…

  5. Radial pressure flange seal

    DOEpatents

    Batzer, T.H.; Call, W.R.

    1989-01-24

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side. 5 figs.

  6. Radial pressure flange seal

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1989-01-01

    This invention provides an all metal seal for vacuum or pressure vessels or systems. This invention does not use gaskets. The invention uses a flange which fits into a matching groove. Fluid pressure is applied in a chamber in the flange causing at least one of the flange walls to radially press against a side of the groove creating the seal between the flange wall and the groove side.

  7. Radial Field Piezoelectric Diaphragms

    NASA Technical Reports Server (NTRS)

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  8. Antiproton compression and radial measurements

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A. J.; Jenkins, M. J.; Joergensen, L. V.; Madsen, N.; Werf, D. P. van der; Bray, C. C.; Chapman, S.; Fajans, J.; Povilus, A.; Wurtele, J. S.; Cesar, C. L.; Lambo, R.; Silveira, D. M.; Fujiwara, M. C.

    2008-08-08

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  9. Community Development Abstracts.

    ERIC Educational Resources Information Center

    Agency for International Development (Dept. of State), Washington, DC.

    This volume of 1,108 abstracts summarizes the majority of important works on community development during the last ten years. Part I contains abstracts of periodical literature and is classified into 19 sections, including general history, communications, community and area studies, decision-making, leadership, migration and settlement, social…

  10. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  11. Has Abstractness Been Resolved?

    ERIC Educational Resources Information Center

    Al-Omoush, Ahmad

    1989-01-01

    A discussion focusing on the abstractness of analysis in phonology, debated since the 1960s, describes the issue, reviews the literature on the subject, cites specific natural language examples, and examines the extent to which the issue has been resolved. An underlying representation is said to be abstract if it is different from the derived one,…

  12. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  13. Knowledge-Based Abstracting.

    ERIC Educational Resources Information Center

    Black, William J.

    1990-01-01

    Discussion of automatic abstracting of technical papers focuses on a knowledge-based method that uses two sets of rules. Topics discussed include anaphora; text structure and discourse; abstracting techniques, including the keyword method and the indicator phrase method; and tools for text skimming. (27 references) (LRW)

  14. Leadership Abstracts, 1995.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1995-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, and teaching in community colleges. The 12 abstracts for Volume 8, 1995, are: (1) "Redesigning the System To Meet the Workforce Training Needs of the Nation," by Larry Warford; (2) "The College President, the Board, and the Board Chair: A…

  15. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  16. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  17. Journalism Abstracts. Vol. 15.

    ERIC Educational Resources Information Center

    Popovich, Mark N., Ed.

    This book, the fifteenth volume of an annual publication, contains 373 abstracts of 52 doctoral and 321 master's theses from 50 colleges and universities. The abstracts are arranged alphabetically by author, with the doctoral dissertations appearing first. These cover such topics as advertising, audience analysis, content analysis of news issues…

  18. Leadership Abstracts, 1996.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1996-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 9 for 1996 includes the following 12 abstracts: (1) "Tech-Prep + School-To-Work: Working Together To Foster Educational Reform," (Roderick F. Beaumont); (2)…

  19. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  20. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  1. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  2. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  3. Radial Rydberg wavepacket maps

    NASA Astrophysics Data System (ADS)

    Zeibel, J. G.; Jones, R. R.

    2001-04-01

    Picosecond laser pulses have been used to excite radial Rydberg wavepackets in Ca. Time-delayed, unipolar, `half-cycle' electric field pulses are used to probe the evolution of the wavepackets as a continuous function of binding energy. The data provide three-dimensional maps of wavepacket recurrence probability versus binding energy versus time. A rescaling of the energy and time coordinate axes allows the visualization of the distinct difference between the initial oscillations of the wavepacket and those that occur at integer and fractional revivals.

  4. Radial reflection diffraction tomography

    DOEpatents

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  5. Radial Reflection diffraction tomorgraphy

    DOEpatents

    Lehman, Sean K

    2013-11-19

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  6. Underground radial pipe network

    SciTech Connect

    Peterson, D.L.

    1984-04-24

    The network, useful in conducting fluids to underground sites, is an assembly of flexible pipes or tubes, suspended from and connected to a drill pipe. The flexible pipes, assembled in a bundle, are spring biased to flare outwardly in an arcuate manner when a releasable cap on the distal end of the bundle is removed. The assembled bundle is inserted into and lowered down a bore hole. When the cap is released, the pipes flare radially and outwardly. Fluid, pumped into and through the assembly, can be directed into the underground formation for various purposes.

  7. Radial cutting torch

    SciTech Connect

    Robertson, M.C.

    1997-01-08

    The project`s aim is to complete development of the Radial Cutting Torch, a pyrotechnic cutter, for use in all downhole tubular cutting operations in the petroleum industry. Project objectives are to redesign and pressure test nozzle seals to increase product quality, reliability, and manufacturability; improve the mechanical anchor to increase its temperature tolerance and its ability to function in a wider variety of wellbore fluids; and redesign and pressure test the RCT nozzle for operation at pressures from 10 to 20 ksi. The proposal work statement is included in the statement of work for the grant via this reference.

  8. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1997

    1997-01-01

    Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…

  9. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  10. 1971 Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1971

    1971-01-01

    Included are 112 abstracts listed under headings such as: acoustics, continuing engineering studies, educational research and methods, engineering design, libraries, liberal studies, and materials. Other areas include agricultural, electrical, mechanical, mineral, and ocean engineering. (TS)

  11. 2016 ACPA MEETING ABSTRACTS.

    PubMed

    2016-07-01

    The peer-reviewed abstracts presented at the 73rd Annual Meeting of the ACPA are published as submitted by the authors. For financial conflict of interest disclosure, please visit http://meeting.acpa-cpf.org/disclosures.html. PMID:27447885

  12. Abstracts of contributed papers

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  13. Radial Eigenmodes for a Toroidal Waveguide with Rectangular Cross Section

    SciTech Connect

    Rui Li

    2012-07-01

    In applying mode expansion to solve the CSR impedance for a section of toroidal vacuum chamber with rectangular cross section, we identify the eigenvalue problem for the radial eigenmodes which is different from that for cylindrical structures. In this paper, we present the general expressions of the radial eigenmodes, and discuss the properties of the eigenvalues on the basis of the Sturm-Liouville theory.

  14. Radial evolution of the energy density of solar wind fluctuations

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Matthaeus, W. H.; Smith, C. W.

    1995-01-01

    On the basis of transport theories appropriate to a radially expanding solar wind, we describe new results for the radial evolution of the energy density in solar wind fluctuations at MHD scales. These models include the effects of 'mixing' and driving as well as the possibility of non-isotropic MHD turbulence. Implications of these results for solar wind heating, cosmic ray diffusion and interstellar pick-up ions will also be addressed.

  15. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  16. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  17. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue. PMID:25416026

  18. Thyra Abstract Interface Package

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  19. Abstracting and indexing guide

    USGS Publications Warehouse

    U.S. Department of the Interior; Office of Water Resources Research

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  20. Radial gate hoist mechanisms mounted above radial gates, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Radial gate hoist mechanisms mounted above radial gates, view to the east - Wellton-Mohawk Irrigation System, Wasteway No. 1, Wellton-Mohawk Canal, North side of Wellton-Mohawk Canal, bounded by Gila River to North & the Union Pacific Railroad & Gila Mountains to south, Wellton, Yuma County, AZ

  1. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  2. The SIDdatagrabber (Abstract)

    NASA Astrophysics Data System (ADS)

    Silvis, G.

    2015-12-01

    (Abstract only) The Stanford/SARA SuperSid project offers an opportunity for adding data to the AAVSO SID Monitoring project. You can now build a SID antenna and monitoring setup for about $150. And with the SIDdatagrabber application you can easily re-purpose the data collected for the AAVSO.

  3. Making the Abstract Concrete

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2005-01-01

    President Ronald Reagan nominated a woman to serve on the United States Supreme Court. He did so through a single-page form letter, completed in part by hand and in part by typewriter, announcing Sandra Day O'Connor as his nominee. While the document serves as evidence of a historic event, it is also a tangible illustration of abstract concepts…

  4. Learning Abstracts, 2001.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.

    2001-01-01

    Volume 4 of the League for Innovation in the Community College's Learning Abstracts include the following: (1) "Touching Students in the Digital Age: The Move Toward Learner Relationship Management (LRM)," by Mark David Milliron, which offers an overview of an organizing concept to help community colleges navigate the intersection between digital…

  5. Leadership Abstracts, 2002.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.; Milliron, Mark David, Ed.

    2002-01-01

    This 2002 volume of Leadership Abstracts contains issue numbers 1-12. Articles include: (1) "Skills Certification and Workforce Development: Partnering with Industry and Ourselves," by Jeffrey A. Cantor; (2) "Starting Again: The Brookhaven Success College," by Alice W. Villadsen; (3) "From Digital Divide to Digital Democracy," by Gerardo E. de los…

  6. Leadership Abstracts, 1993.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1993-01-01

    This document includes 10 issues of Leadership Abstracts (volume 6, 1993), a newsletter published by the League for Innovation in the Community College (California). The featured articles are: (1) "Reinventing Government" by David T. Osborne; (2) "Community College Workforce Training Programs: Expanding the Mission to Meet Critical Needs" by…

  7. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  8. CIRF Abstracts, Volume 12.

    ERIC Educational Resources Information Center

    International Labour Office, Geneva (Switzerland).

    The aim of the CIRF abstracts is to convey information about vocational training ideas, programs, experience, and experiments described in periodicals, books, and other publications and relating to operative personnel, supervisors, and technical and training staff in all sectors of economic activity. Information is also given on major trends in…

  9. Leadership Abstracts, 1999.

    ERIC Educational Resources Information Center

    Leadership Abstracts, 1999

    1999-01-01

    This document contains five Leadership Abstracts publications published February-December 1999. The article, "Teaching the Teachers: Meeting the National Teacher Preparation Challenge," authored by George R. Boggs and Sadie Bragg, examines the community college role and makes recommendations and a call to action for teacher education. "Chaos…

  10. Double Trouble (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2015-12-01

    (Abstract only) Variable stars with close companions can be difficult to accurately measure and characterize. The companions can create misidentifications, which in turn can affect the perceived magnitudes, amplitudes, periods, and colors of the variable stars. We will show examples of these Double Trouble stars and the impact their close companions have had on our understanding of some of these variable stars.

  11. Send Me No Abstract.

    ERIC Educational Resources Information Center

    Levy, Steven

    1985-01-01

    Discusses Magazine Index's practice of assigning letter grades (sometimes inaccurate) to book, restaurant, and movie reviews, thus allowing patrons to get the point of the review from the index rather than the article itself, and argues that this situation is indicative of the larger problem of reliability of abstracts. (MBR)

  12. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  13. Water reuse. [Lead abstract

    SciTech Connect

    Middlebrooks, E.J.

    1982-01-01

    Separate abstracts were prepared for the 31 chapters of this book which deals with all aspects of wastewater reuse. Design data, case histories, performance data, monitoring information, health information, social implications, legal and organizational structures, and background information needed to analyze the desirability of water reuse are presented. (KRM)

  14. Reasoning abstractly about resources

    NASA Technical Reports Server (NTRS)

    Clement, B.; Barrett, A.

    2001-01-01

    r describes a way to schedule high level activities before distributing them across multiple rovers in order to coordinate the resultant use of shared resources regardless of how each rover decides how to perform its activities. We present an algorithm for summarizing the metric resource requirements of an abstract activity based n the resource usages of its potential refinements.

  15. Humor, abstraction, and disbelief.

    PubMed

    Hoicka, Elena; Jutsum, Sarah; Gattis, Merideth

    2008-09-01

    We investigated humor as a context for learning about abstraction and disbelief. More specifically, we investigated how parents support humor understanding during book sharing with their toddlers. In Study 1, a corpus analysis revealed that in books aimed at 1-to 2-year-olds, humor is found more often than other forms of doing the wrong thing including mistakes, pretense, lying, false beliefs, and metaphors. In Study 2, 20 parents read a book containing humorous and non-humorous pages to their 19-to 26-month-olds. Parents used a significantly higher percentage of high abstraction extra-textual utterances (ETUs) when reading the humorous pages. In Study 3, 41 parents read either a humorous or non-humorous book to their 18-to 24-month-olds. Parents reading the humorous book made significantly more ETUs coded for a specific form of high abstraction: those encouraging disbelief of prior utterances. Sharing humorous books thus increases toddlers' exposure to high abstraction and belief-based language. PMID:21585438

  16. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  17. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  18. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  19. Learning Abstracts, 1999.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll.

    This document contains volume two of Learning Abstracts, a bimonthly newsletter from the League for Innovation in the Community College. Articles in these seven issues include: (1) "Get on the Fast Track to Learning: An Accelerated Associate Degree Option" (Gerardo E. de los Santos and Deborah J. Cruise); (2) "The Learning College: Both Learner…

  20. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  1. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  2. Radially composite piezoelectric ceramic tubular transducer in radial vibration.

    PubMed

    Shuyu, Lin; Shuaijun, Wang

    2011-11-01

    The radially composite piezoelectric tubular transducer is studied. It is composed of radially poled piezoelectric and a long metal tube. The electro-mechanical equivalent circuit of the radially poled piezoelectric and metal tube in radial vibration is obtained. Based on the force and velocity boundary conditions, the six-port electro-mechanical equivalent circuit for the composite tubular transducer is given and the resonance/anti-resonance frequency equations are obtained. The relationship between the resonance frequency and the dimensions is analyzed. Numerically simulated results obtained by the finite element method are compared with those from the analytical method. Composite piezoelectric tubular transducers are designed and manufactured. The resonance/anti-resonance frequencies are measured, and it is shown that the theoretical results are in good agreement with the simulated and experimental results. It is expected that radially composite piezoelectric tubular transducers can be used as high-power ultrasonic radiators in ultrasonic applications, such as ultrasonic liquid processing. PMID:22083782

  3. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  4. Historical development of abstracting.

    PubMed

    Skolnik, H

    1979-11-01

    The abstract, under a multitude of names, such as hypothesis, marginalia, abridgement, extract, digest, précis, resumé, and summary, has a long history, one which is concomitant with advancing scholarship. The progression of this history from the Sumerian civilization ca. 3600 B.C., through the Egyptian and Greek civilizations, the Hellenistic period, the Dark Ages, Middle Ages, Renaissance, and into the modern period is reviewed. PMID:399482

  5. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  6. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  7. Reverse Radial Artery Flap Perforator Anatomy and Clinical Applications.

    PubMed

    White, Colin P; Steve, Anna K; Buchel, Edward W; Hayakawa, Thomas E; Morris, Steven F

    2016-09-01

    The pedicled reverse radial forearm flap is a well-known option for the treatment of a variety of soft tissue wounds including dorsal hand wounds. We document the number, emerging diameter, length from origin, course, and location of all perforators of the radial artery in a series of 6 fresh human cadavers after whole body lead oxide and gelatin injection to confirm and comprehensively document the anatomy of the radial artery perforators. This data provide an anatomic basis for a modification to the reversed radial forearm flap used to decrease venous congestion in the postoperative period. Two case reports are presented to provide clinical demonstration of the importance of this modification. PMID:26678105

  8. Resection arthroplasty after failure of a radial head prosthesis: a case report

    PubMed Central

    Vanni, Stefania; Marenco, Stefano; Calò, Michel; Battiston, Bruno

    2016-01-01

    Abstract Radial head represents a secondary elbow stabilizer for varus-valgus and postero-lateral stress. In complex fractures, that cannot be synthesized, the presence of associated ligament injuries makes radial head replacement necessary to restore elbow stability. This study evaluates how the elbow responds to a prosthetic removal after a complex injury repair.

  9. Focal spot analysis of radially polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Sun, Wenchao; Hu, Wenhua; Qi, Junli; Wang, Weiming; Liao, Jiali; Yi, Wenjun; Jia, Hui; Li, Xiujian

    2014-09-01

    When radially polarized light beams focus through high numerical-aperture lens, there will be a very strong longitudinal component of the light field near the focus. And, under the condition of certain system parameters, they can shape a spot which is over the focusing spot of the diffraction limit, which are the superiorities that linearly polarized light and circularly polarized light do not have. Besides, what we have found in the experiment is that radially polarized femtosecond laser pulses own the same superiorities, which provides the basis for using the focusing characteristics of radially polarized light beams under the condition of shorter and more powerful laser pulses. So far, although people have studied a lot on radially polarized light beams, this kind of light beams' focusing characters are rarely researched. What is worse, most research of its focusing characters still stays in the stage of theoretical simulation,and it seems that none of people have really studied it by the way of experiments. This article is precisely based on this. On the basis of predecessors' a lot of theoretical research, the article pays more attention on analyzing radially polarized light beams' focusing character through experiments. What's more, the article, based on femtosecond laser pulses, compares the differences of the focusing nature among linearly polarized light, circularly polarized light and radially polarized light. And it gets the conclusion that radially polarized femtosecond laser pulses have better focusing character in longitudinal light field, confirming the feasibility that radially polarized light beams can be used in the fields of pulling, catching, and accelerating particles, metal cutting and high-density storage.

  10. Radial and azimuthal beam parameters.

    PubMed

    Lumer, Yaakov; Moshe, Inon

    2009-02-01

    Global invariant parameters are introduced to characterize the radial and azimuthal content of totally polarized beams. Such parameters are written in terms of the second moments of the optical beam and are invariant in propagation through symmetric first-order optical systems described by the ABCD matrix. Since it was proven in the past that the usual definition for radial polarization is not invariant, such invariance is novel in characterizing the radial and azimuthal polarizations content of optical beams. The possibility of obtaining a pure mode from a given beam using the proposed parameters is discussed. PMID:19183626

  11. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  12. Coplanar Waveguide Radial Line Stub

    NASA Technical Reports Server (NTRS)

    Simons, R. N.; Taub, S. R.

    1993-01-01

    A coplanar waveguide radial line stub resonator is experimentally characterized with respect to stub radius, sectoral angle, substrate thickness, and relative dielectric constant. A simple closed-form design equation which predicts the resonance radius of the stub is presented.

  13. Delayed Sudden Radial Artery Rupture After Left Transradial Coronary Catheterization

    PubMed Central

    Indolfi, Ciro; Passafaro, Francesco; Mongiardo, Annalisa; Spaccarotella, Carmen; Torella, Daniele; Sorrentino, Sabato; Polimeni, Alberto; Emanuele, Vittorio; Curcio, Antonio; De Rosa, Salvatore

    2015-01-01

    Abstract Local complications at the radial access site are not frequent, hence its large diffusion as the preferred access route for endovascular procedures. However, in a time of fast widespreading, better comprehension of all potential complications becomes critical to facilitate their early recognition and the most appropriate treatment. In this case report, we present for the first time a case of sudden massive bleeding at the left wrist, due to spontaneous gross rupture of the left radial artery bleeding 15 days after an endovascular procedure through a left radial arterial access. The patient had been readmitted to the hospital after evidence of local infection at the left wrist with loss of substance. The radial artery was patent with no evidence of pseudoaneurysm. After sudden radial artery rupture, with massive bleeding and suspicion that the local infection could have reached the arterial wall, surgical hemostasis with artery ligation was obtained. Healing of the large wound was then efficiently speeded up using a negative pressure wound therapy. This is the first case of macroscopic radial artery rupture associated with local wrist infection after arterial catheterization. After prompt surgical hemostasis, negative pressure wound therapy was very helpful in favoring healing of the large and deep wound. PMID:25761194

  14. A LARI Experience (Abstract)

    NASA Astrophysics Data System (ADS)

    Cook, M.

    2015-12-01

    (Abstract only) In 2012, Lowell Observatory launched The Lowell Amateur Research Initiative (LARI) to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their astronomical research. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. A summary of the scientific and organizational aspects of this LARI project, including its goals and science motivation, the process for getting involved with the project, a description of the team members, their equipment and methods of collaboration, and an overview of the programme stars, preliminary findings, and lessons learned is presented.

  15. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  16. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  17. Teaching for Abstraction: A Model

    ERIC Educational Resources Information Center

    White, Paul; Mitchelmore, Michael C.

    2010-01-01

    This article outlines a theoretical model for teaching elementary mathematical concepts that we have developed over the past 10 years. We begin with general ideas about the abstraction process and differentiate between "abstract-general" and "abstract-apart" concepts. A 4-phase model of teaching, called Teaching for Abstraction, is then proposed…

  18. High power radial klystron oscillator

    SciTech Connect

    Arman, M.J.

    1995-11-01

    The advantages of the radial klystron amplifier over the conventional klystron amplifier have been reported by Arman et al. Briefly, the radial structure of this design allows for much smaller impedances and thus higher power, the beam-cavity coupling is stronger because the beam travels inside the cavity, and the source is much more compact because there is no need for external magnetic fields. Here the author reports on possible advantages of the radial klystron oscillator over the radial klystron amplifier. The amplifying nature of certain HPM sources is often mandated by the requirement for synchronization and phase-locking of a number of sources in specific applications. In situations where amplification is solely adhered to for the purpose of achieving higher powers, the oscillator will be a better choice if a mechanism can be found to grow the desired mode at the required frequency. By switching to the oscillator mode there will be no need for priming the cavity or maintaining the phase. This simplifies the design and reduces the operational and maintenance cost of the source. Here he reports that an oscillator version of the radial klystron is possible and in fact more suitable for many applications. The mechanism for exciting and growing the mode will be transit-time effects thus providing all the beneficial features of the transit-time oscillators. The complications due to the presence of thin foils in the radial design still persist and will be dealt with in subsequent works. Numerical simulations using the PIC codes MAGIC and SOS indicate the radial klystron oscillator is a viable and efficient means of rf generation.

  19. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  20. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  1. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  2. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  3. Radial Coherence of Diffusion Tractography in the Cerebral White Matter of the Human Fetus: Neuroanatomic Insights

    PubMed Central

    Xu, Gang; Takahashi, Emi; Folkerth, Rebecca D.; Haynes, Robin L.; Volpe, Joseph J.; Grant, P. Ellen; Kinney, Hannah C.

    2014-01-01

    High angular resolution diffusion imaging (HARDI) demonstrates transient radial coherence of telencephalic white matter in the human fetus. Our objective was to define the neuroanatomic basis of this radial coherence through correlative HARDI- and postmortem tissue analyses. Applying immunomarkers to radial glial fibers (RGFs), axons, and blood vessels in 18 cases (19 gestational weeks to 3 postnatal years), we compared their developmental profiles to HARDI tractography in brains of comparable ages (n = 11). At midgestation, radial coherence corresponded with the presence of RGFs. At 30–31 weeks, the transition from HARDI-defined radial coherence to corticocortical coherence began simultaneously with the transformation of RGFs to astrocytes. By term, both radial coherence and RGFs had disappeared. White matter axons were radial, tangential, and oblique over the second half of gestation, whereas penetrating blood vessels were consistently radial. Thus, radial coherence in the fetal white matter likely reflects a composite of RGFs, penetrating blood vessels, and radial axons of which its transient expression most closely matches that of RGFs. This study provides baseline information for interpreting radial coherence in tractography studies of the preterm brain in the assessment of the encephalopathy of prematurity. PMID:23131806

  4. Program and abstracts

    SciTech Connect

    Not Available

    1994-10-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States, Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components . of the oil (N, alkali metals), the formation of NO{sub x}, in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  5. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  6. Accepted scientific research works (abstracts).

    PubMed

    2014-01-01

    These are the 39 accepted abstracts for IAYT's Symposium on Yoga Research (SYR) September 24-24, 2014 at the Kripalu Center for Yoga & Health and published in the Final Program Guide and Abstracts. PMID:25645134

  7. Radial Velocity Measurements for Pulsating Stars with Poznan Spectroscopic Telescope: First Results

    NASA Astrophysics Data System (ADS)

    Rozek, A.; Baranowski, R.; Bartczak, P.; Borczyk, W.; Dimitrov, W.; Fagas, M.; Kaminski, K.; Kwiatkowski, T.; Ratajczak, R.; Schwarzenberg-Czerny, A.

    2008-12-01

    We present examples of radial velocity measurements obtained with the Poznan Spectroscopic Telescope (PST). Observations on PST are run on regular basis since August 2007. The PST is a binary telescope with two 40 cm mirrors of a Newtonian focus, connected by optic fibers with an echelle spectrograph. Radial velocity measurements are done for δ Sct, β Cep, classical Cepheids, eclipsing binaries and other types of variable stars. Echelle spectra reduction and radial velocity measurements are performed with IRAF package. Final results are obtained from cross-correlating stellar spectra either with radial velocity standards or the program star itself using IRAF fxcor procedure.

  8. Parachute drag and radial force

    SciTech Connect

    Purvis, J.W.

    1986-01-01

    This paper presents a combination of old and new wind tunnel data in a format which illustrates the effects of inflated diameter, geometric porosity, reefing line length, suspension line length, number of gores, and number of ribbons on parachute drag. A new definition of radial force coefficient is presented, as well as a universal drag curve for flat circular and conical parachutes.

  9. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  10. Recursive Abstractions for Parameterized Systems

    NASA Astrophysics Data System (ADS)

    Jaffar, Joxan; Santosa, Andrew E.

    We consider a language of recursively defined formulas about arrays of variables, suitable for specifying safety properties of parameterized systems. We then present an abstract interpretation framework which translates a paramerized system as a symbolic transition system which propagates such formulas as abstractions of underlying concrete states. The main contribution is a proof method for implications between the formulas, which then provides for an implementation of this abstract interpreter.

  11. Severity grading in radial dysplasia.

    PubMed

    Vilkki, S K

    2014-11-01

    A functional scoring method to grade the usefulness and quality of the upper limbs in congenital radial dysplasia is presented. It is based on the author's examinations of 44 arms with congenital deficiency of the radius. The hand (H), wrist (W) and proximal parts (P) of the extremity are each scored from 0 to 10 points for severity. The scoring is expressed similarly to the TNM (tumour, nodes, metastasis) tumour classification, for example as H5W4P2. The maximum severity index is 30 points. A severity grade of mild is between 1 and 8 points, moderate between 9 and 16 points and severe 17 points and over. In the author's series, the grades were mild in eight, moderate in 21 and severe in 15 cases. The functional severity grading should allow better comparison of radially deficient limbs and the results of treatment between groups of patients. PMID:24401744

  12. Velocidades radiales en Collinder 121

    NASA Astrophysics Data System (ADS)

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  13. Radial Electromagnetic Press for IGNITOR

    NASA Astrophysics Data System (ADS)

    Cucchiaro, A.; Anzidei, L.; Capriccioli, A.; Celentano, G.; Crescenzi, C.; Gasparotto, M.; Guerrieri, A.; Pizzuto, A.; Palmieri, A.; Rita, C.; Roccella, M.; Coppi, B.

    1998-11-01

    The structural performance of the IGNITOR machine relies upon a combination of both bucking between Toroidal Field Coils (TFCs), Central Solenoid (CS) and the Central Post (CP), and wedging in a well-defined area of the TFCs and of the magnet mechanical structure (called C-Clamps). This requires a pre-loading system to enhance the load bearing capability. Several solutions have been assessed and compared with each other within the operational scenarios and eventually a radial electromagnetic press has been selected as reference(Pizzuto A. et al., ENEA Report IGN/MAC/001/96). The loading system is made up by active coils and passive restraining rings. The radial active press consists of two pairs of coils (200x200mm each), symmetrically located relative to the machine equatorial plane and seating onto the passive rings. The permanent pre--load of the rings is applied through a wedging system with a load of about 120 MN. A radial electromagnetic press has the purpose of modulating the axial pressure on the TFC inner legs during the pulse. Design aspects including stress analysis, manufacturing, assembly and operational scenarios of the selected solution are presented in this paper.

  14. New measurements of radial velocities in clusters of galaxies. II

    NASA Astrophysics Data System (ADS)

    Proust, D.; Mazure, A.; Sodre, L.; Capelato, H.; Lund, G.

    1988-03-01

    Heliocentric radial velocities are determined for 100 galaxies in five clusters, on the basis of 380-518-nm observations obtained using a CCD detector coupled by optical fibers to the OCTOPUS multiobject spectrograph at the Cassegrain focus of the 3.6-m telescope at ESO La Silla. The data-reduction procedures and error estimates are discussed, and the results are presented in tables and graphs and briefly characterized.

  15. Property of radially quadratic reflector systems

    NASA Technical Reports Server (NTRS)

    Mizusawa, M.; Katagi, T.

    1986-01-01

    This report shows that when considered in terms of optical geometry, radially parabolic and radially hyperbolic mirrors used as mirrors for Cassegrain and parabolic antennas possess values similar to common conical horn reflector antennas.

  16. Abstracts

    NASA Astrophysics Data System (ADS)

    2012-09-01

    Measuring cosmological parameters with GRBs: status and perspectives New interpretation of the Amati relation The SED Machine - a dedicated transient spectrograph PTF10iue - evidence for an internal engine in a unique Type Ic SN Direct evidence for the collapsar model of long gamma-ray bursts On pair instability supernovae and gamma-ray bursts Pan-STARRS1 observations of ultraluminous SNe The influence of rotation on the critical neutrino luminosity in core-collapse supernovae General relativistic magnetospheres of slowly rotating and oscillating neutron stars Host galaxies of short GRBs GRB 100418A: a bridge between GRB-associated hypernovae and SNe Two super-luminous SNe at z ~ 1.5 from the SNLS Prospects for very-high-energy gamma-ray bursts with the Cherenkov Telescope Array The dynamics and radiation of relativistic flows from massive stars The search for light echoes from the supernova explosion of 1181 AD The proto-magnetar model for gamma-ray bursts Stellar black holes at the dawn of the universe MAXI J0158-744: the discovery of a supersoft X-ray transient Wide-band spectra of magnetar burst emission Dust formation and evolution in envelope-stripped core-collapse supernovae The host galaxies of dark gamma-ray bursts Keck observations of 150 GRB host galaxies Search for properties of GRBs at large redshift The early emission from SNe Spectral properties of SN shock breakout MAXI observation of GRBs and short X-ray transients A three-dimensional view of SN 1987A using light echo spectroscopy X-ray study of the southern extension of the SNR Puppis A All-sky survey of short X-ray transients by MAXI GSC Development of the CALET gamma-ray burst monitor (CGBM)

  17. Vague Language in Conference Abstracts

    ERIC Educational Resources Information Center

    Cutting, Joan

    2012-01-01

    This study examined abstracts for a British Association for Applied Linguistics conference and a Sociolinguistics Symposium, to define the genre of conference abstracts in terms of vague language, specifically universal general nouns (e.g. people) and research general nouns (e.g. results), and to discover if the language used reflected the level…

  18. Leadership Abstracts; Volume 4, 1991.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1991-01-01

    "Leadership Abstracts" is published bimonthly and distributed to the chief executive officer of every two-year college in the United States and Canada. This document consists of the 15 one-page abstracts published in 1991. Addressing a variety of topics of interest to the community college administrators, this volume includes: (1) "Delivering the…

  19. Food Science and Technology Abstracts.

    ERIC Educational Resources Information Center

    Cohen, Elinor; Federman, Joan

    1979-01-01

    Introduces the reader to the Food Science and Technology Abstracts, a data file that covers worldwide literature on human food commodities and aspects of food processing. Topics include scope, subject index, thesaurus, searching online, and abstracts; tables provide a comparison of ORBIT and DIALOG versions of the file. (JD)

  20. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  1. Student Success with Abstract Art

    ERIC Educational Resources Information Center

    Hamidou, Kristine

    2009-01-01

    An abstract art project can be challenging or not, depending on the objectives the teacher sets up. In this article, the author describes an abstract papier-mache project that is a success for all students, and is a versatile project easily manipulated to suit the classroom of any art teacher.

  2. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  3. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect

    Broesius, J.Y.

    1991-03-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  4. Metaphor: Bridging embodiment to abstraction.

    PubMed

    Jamrozik, Anja; McQuire, Marguerite; Cardillo, Eileen R; Chatterjee, Anjan

    2016-08-01

    Embodied cognition accounts posit that concepts are grounded in our sensory and motor systems. An important challenge for these accounts is explaining how abstract concepts, which do not directly call upon sensory or motor information, can be informed by experience. We propose that metaphor is one important vehicle guiding the development and use of abstract concepts. Metaphors allow us to draw on concrete, familiar domains to acquire and reason about abstract concepts. Additionally, repeated metaphoric use drawing on particular aspects of concrete experience can result in the development of new abstract representations. These abstractions, which are derived from embodied experience but lack much of the sensorimotor information associated with it, can then be flexibly applied to understand new situations. PMID:27294425

  5. Implementing radial motion to the booster simulation

    SciTech Connect

    Yang, Xi; /Fermilab

    2007-04-01

    It's a puzzle that high intensity beams prefer a particular radial motion during transition in the Booster, and the result of removing such a radial motion is to increase the transition loss. In order to understand this observation, the radial motion should be taken into account in the longitudinal simulation.

  6. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  7. Outcome of Radial Head Arthroplasty in Comminuted Radial Head Fractures: Short and Midterm Results

    PubMed Central

    Moghaddam, Arash; Raven, Tim Friedrich; Dremel, Eike; Studier-Fischer, Stefan; Grutzner, Paul Alfred; Biglari, Bahram

    2016-01-01

    Background: Comminuted radial head fractures are often associated with secondary injuries and elbow instability. Objectives: The aim of this retrospective study was to evaluate how well the modular metallic radial head implant EVOLVE® prosthesis restores functional range of motion (ROM) and stability of the elbow in acute care. Patients and Methods: Eighty-five patients with comminuted radial head fractures and associated injuries received treatment with an EVOLVE® prosthesis between May 2001 and November 2009. Seventy-five patients were available for follow-up. On average, patients were followed for 41.5 months (33.0: 4.0 - 93.0). Outcome assessment was done on the basis of pain, ROM, strength, radiographic findings, and functional rating scores such as Broberg and Morrey, the Mayo elbow performance index (MEPI), and disabilities of the arm, shoulder and hand (DASH). Our study is currently the largest analysis of clinical outcome of a modular radial head replacement in the literature. Results: Overall, there were 2 (2.7%) Mason II fractures, 21 (28%) Mason III fractures, and 52 (69.3%) Mason IV fractures. Arbeitsgemeinschaft fur osteosynthesefragen (AO) classification was also determined. Of the 85 patients in our study, 75 were available for follow-up. Follow-up averaged 41.5 months (range, 4 - 93 months). Average scores for the cohort were as follows: Morrey, 85.7 (median 90.2; range 44.4 - 100); MEPI, 83.3 (85.0; 40.0 - 100); and DASH 26.1 points (22.5; 0.0 - 75.8). Mean flexion/extension in the affected joint was 125.7°/16.5°/0° in comparison to the noninjured side 138.5°/0°/1.2°. Mean pronation/supination was 70.5°/0°/67.1° in comparison to the noninjured side 83.6°/0°/84.3°. Handgrip strength of the injured compared to the non-injured arm was 78.8%. The following complications were also documented: 58 patients had periprosthetic radioluceny shown to be neither clinically significant nor relevant according to evaluated scores; 26 patients had

  8. PRECISION RADIAL VELOCITIES WITH CSHELL

    SciTech Connect

    Crockett, Christopher J.; Prato, L.; Mahmud, Naved I.; Johns-Krull, Christopher M.; Jaffe, Daniel T.; Beichman, Charles A. E-mail: lprato@lowell.edu E-mail: cmj@rice.edu

    2011-07-10

    Radial velocity (RV) identification of extrasolar planets has historically been dominated by optical surveys. Interest in expanding exoplanet searches to M dwarfs and young stars, however, has motivated a push to improve the precision of near-infrared RV techniques. We present our methodology for achieving 58 m s{sup -1} precision in the K band on the M0 dwarf GJ 281 using the CSHELL spectrograph at the 3 m NASA Infrared Telescope Facility. We also demonstrate our ability to recover the known 4 M{sub JUP} exoplanet Gl 86 b and discuss the implications for success in detecting planets around 1-3 Myr old T Tauri stars.

  9. Teaching Abstract Concepts by Metaphor.

    ERIC Educational Resources Information Center

    Sutherland, Judith A.

    2001-01-01

    Defines metaphor and its uses; explains the construction and application of metaphors in nursing education. Describes the transformation of the abstract psychiatric concept of therapeutic milieu into a visual metaphor. (SK)

  10. Deficiencies in structured medical abstracts.

    PubMed

    Froom, P; Froom, J

    1993-07-01

    This study was carried out to determine if the content of structured abstracts conforms with recommendations of the Ad Hoc Working Group for the critical appraisal of the medical literature as adopted by the Annals of Internal Medicine. The study design was a survey. All articles published in Annals of Internal Medicine in 1991, excluding editorials, case-reports, literature reviews, decision analysis, studies in medical education, descriptive studies of clinical and basic phenomena, and papers lacking a structured abstract, were studied. Of a total of 150 articles, 20 were excluded. The abstract and text of each article were assessed for the presence of the following items; patient selection criteria, statements concerning extrapolation of findings, need for further study, and whether or not the information should be used now. Number of refusers, drop outs and reason(s) for drop outs were assessed for intervention and prospective cohort studies only. Deficiencies of assessed items were noted in both abstracts and texts. For abstracts, patient selection criteria, numbers of refusers, number of drop outs and reason(s) for drop outs were reported in 44.6% (58/130), 3.1% (4/130), 16.9% (14/83) and 2.4% (2/83) respectively. These items were reported more frequently in the texts 87.7% (114/130), 9.2% (12/130), 60.2% (50/83) and 37.3% (31/83) respectively (p < 0.05). Statements concerning extrapolation of findings, need for further study and use of information now were also more frequent in texts than abstracts (p < 0.0001). A large number of structured abstracts published in the Annals of Internal Medicine in 1991, lack information recommended by the Ad Hoc Working Group. Our findings should not be extrapolated to other journals requiring structured abstracts. PMID:8326342

  11. Development and Testing of a Radial Halbach Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2006-01-01

    The NASA John H. Glenn Research Center has developed and tested a revolutionary Radial Halbach Magnetic Bearing. The objective of this work is to develop a viable non-contact magnetic bearing utilizing Halbach arrays for all-electric flight, and many other applications. This concept will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels and mitigate many of the concerns and limitations encountered in conventional axial bearings such as bearing wear, leaks, seals and friction loss. The Radial Halbach Magnetic Bearing is inherently stable and requires no active feedback control system or superconductivity as required in many magnetic bearing designs. The Radial Halbach Magnetic Bearing is useful for very high speed applications including turbines, instrumentation, medical applications, manufacturing equipment, and space power systems such as flywheels. Magnetic fields suspend and support a rotor assembly within a stator. Advanced technologies developed for particle accelerators, and currently under development for maglev trains and rocket launchers, served as the basis for this application. Experimental hardware was successfully designed and developed to validate the basic principles and analyses. The report concludes that the implementation of Radial Halbach Magnetic Bearings can provide significant improvements in rotational system performance and reliability.

  12. Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization.

    PubMed

    Kraus, Martin; Ahmed, Marwan Abdou; Michalowski, Andreas; Voss, Andreas; Weber, Rudolf; Graf, Thomas

    2010-10-11

    A linear to radial and/or azimuthal polarization converter (LRAC) has been inserted into the beam delivery of a micromachining station equipped with a picosecond laser system. Percussion drilling and helical drilling in steel have been performed using radially as well as azimuthally polarized infrared radiation at 1030 nm. The presented machining results are discussed on the basis of numerical simulations of the polarization-dependent beam propagation inside the fabricated capillaries. PMID:20941131

  13. Deformation Mechanisms in Tube Billets from Zr-1%Nb Alloy under Radial Forging

    SciTech Connect

    Perlovich, Yuriy; Isaenkova, Margarita; Fesenko, Vladimir; Krymskaya, Olga; Zavodchikov, Alexander

    2011-05-04

    Features of the deformation process by cold radial forging of tube billets from Zr-1%Nb alloy were reconstructed on the basis of X-ray data concerning their structure and texture. The cold radial forging intensifies grain fragmentation in the bulk of billet and increases significantly the latent hardening of potentially active slip systems, so that operation only of the single slip system becomes possible. As a result, in radially-forged billets unusual deformation and recrystallization textures arise. These textures differ from usual textures of {alpha}-Zr by the mutual inversion of crystallographic axes, aligned along the axis of tube.

  14. Radial flow pulse jet mixer

    DOEpatents

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  15. Flat disc, radially nonhomogeneous, lenses

    NASA Astrophysics Data System (ADS)

    Cornbleet, S.

    1980-12-01

    A plane surfaced lens can be constructed through the use of a radially nonhomogenous medium, with axial symmetry. The rays from an axial source are incident on the plane front surface, perpendicular to the axis, where the assumption is made that the rays obey Snell's laws locally as for an infinite uniform medium. The curved ray paths are then given by the standard ray integral and are taken up to the point where each ray becomes horizontal. For certain polynomial functions describing the refractive index, the ray integral is an incomplete elliptic integral of the first kind, and trial functions can be inserted, such that the rays have become horizontal all at a second plane surface, thus creating a flat disk lens. The total symmetry of the design provides for many advantageous properties.

  16. Radial superlattices and single nanoreactors

    NASA Astrophysics Data System (ADS)

    Deneke, Ch.; Jin-Phillipp, N.-Y.; Loa, I.; Schmidt, O. G.

    2004-05-01

    We investigate the wall structure and thermal stability of individual freestanding rolled-up nanotubes (RUNTs) using micro-Raman spectroscopy, transmission electron microscopy, and selected area electron diffraction. Our studies reveal that the walls of the InAs/GaAs RUNTs consist of a radial superlattice comprising alternating crystalline and noncrystalline layers. Furthermore, we locally heated individual RUNTs with a laser beam, and Raman spectroscopy was used in situ to monitor any structural changes. At about 300 °C the heated part of a RUNT starts to oxidize and eventually transforms into crystalline β-Ga2O3. This result shows that RUNTs can serve as nanoreactors that locally synthesize material at intentional places on a substrate surface.

  17. A fully relativistic radial fall

    NASA Astrophysics Data System (ADS)

    Spallicci, Alessandro D. A. M.; Ritter, Patxi

    2014-10-01

    Radial fall has historically played a momentous role. It is one of the most classical problems, the solutions of which represent the level of understanding of gravitation in a given epoch. A gedankenexperiment in a modern frame is given by a small body, like a compact star or a solar mass black hole, captured by a supermassive black hole. The mass of the small body itself and the emission of gravitational radiation cause the departure from the geodesic path due to the back-action, that is the self-force. For radial fall, as any other non-adiabatic motion, the instantaneous identity of the radiated energy and the loss of orbital energy cannot be imposed and provide the perturbed trajectory. In the first part of this paper, we present the effects due to the self-force computed on the geodesic trajectory in the background field. Compared to the latter trajectory, in the Regge-Wheeler, harmonic and all others smoothly related gauges, a far observer concludes that the self-force pushes inward (not outward) the falling body, with a strength proportional to the mass of the small body for a given large mass; further, the same observer notes a higher value of the maximal coordinate velocity, this value being reached earlier during infall. In the second part of this paper, we implement a self-consistent approach for which the trajectory is iteratively corrected by the self-force, this time computed on osculating geodesics. Finally, we compare the motion driven by the self-force without and with self-consistent orbital evolution. Subtle differences are noticeable, even if self-force effects have hardly the time to accumulate in such a short orbit.

  18. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  19. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  20. Meeting Abstracts - Annual Meeting 2016.

    PubMed

    2016-04-01

    The AMCP Abstracts program provides a forum through which authors can share their insights and outcomes of advanced managed care practice through publication in AMCP's Journal of Managed Care & Specialty Pharmacy (JMCP). Most of the reviewed and unreviewed abstracts are presented as posters so that interested AMCP meeting attendees can review findings and query authors. The Student/Resident/ Fellow poster presentation (unreviewed) is Wednesday, April 20, 2016, and the Professional poster presentation (reviewed) is Thursday, April 21. The Professional posters will also be displayed on Friday, April 22. The reviewed abstracts are published in the JMCP Meeting Abstracts supplement. The AMCP Managed Care & Specialty Pharmacy Annual Meeting 2016 in San Francisco, California, is expected to attract more than 3,500 managed care pharmacists and other health care professionals who manage and evaluate drug therapies, develop and manage networks, and work with medical managers and information specialists to improve the care of all individuals enrolled in managed care programs. Abstracts were submitted in the following categories: Research Report: describe completed original research on managed care pharmacy services or health care interventions. Examples include (but are not limited to) observational studies using administrative claims, reports of the impact of unique benefit design strategies, and analyses of the effects of innovative administrative or clinical programs. Economic Model: describe models that predict the effect of various benefit design or clinical decisions on a population. For example, an economic model could be used to predict the budget impact of a new pharmaceutical product on a health care system. Solving Problems in Managed Care: describe the specific steps taken to introduce a needed change, develop and implement a new system or program, plan and organize an administrative function, or solve other types of problems in managed care settings. These

  1. Sphericity measurements by the radial method: I. Mathematical fundamentals

    NASA Astrophysics Data System (ADS)

    Janecki, D.; Stępień, K.; Adamczak, S.

    2016-01-01

    Traditionally, form errors of spherical components have been assessed on the basis of roundness profiles measured in several randomly selected cross-sections. However, such evaluation is superficial, especially if there are significant local irregularities. A new concept was thus developed at the Kielce University of Technology to enable measurement of spherical specimens along some predefined paths so that the surface is densely covered with a grid of points. This approach assumes that measurements can be performed using a typical radial roundness measuring instrument equipped with a special mechanism for controlled positioning of a measured element. This work discusses the assumptions of the new concept and describes a mathematical model of sphericity measurement by the radial method.

  2. Abstract communication for coordinated planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Durfee, Edmund H.

    2003-01-01

    work offers evidence that distributed planning agents can greatly reduce communication costs by reasoning at abstract levels. While it is intuitive that improved search can reduce communication in such cases, there are other decisions about how to communicate plan information that greatly affect communication costs. This paper identifies cases independent of search where communicating at multiple levels of abstraction can exponentially decrease costs and where it can exponentially add costs. We conclude with a process for determining appropriate levels of communication based on characteristics of the domain.

  3. Hollow Cathode With Multiple Radial Orifices

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    Improved hollow cathode serving as source of electrons has multiple radial orifices instead of single axial orifice. Distributes ion current more smoothly, over larger area. Prototype of high-current cathodes for ion engines in spacecraft. On Earth, cathodes used in large-diameter ion sources for industrial processing of materials. Radial orientation of orifices in new design causes current to be dispersed radially in vicinity of cathode. Advantageous where desireable to produce plasma more nearly uniform over wider region around cathode.

  4. Stirling Engine With Radial Flow Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  5. Abstracting event-based control models for high autonomy systems

    NASA Technical Reports Server (NTRS)

    Luh, Cheng-Jye; Zeigler, Bernard P.

    1993-01-01

    A high autonomy system needs many models on which to base control, management, design, and other interventions. These models differ in level of abstraction and in formalism. Concepts and tools are needed to organize the models into a coherent whole. The paper deals with the abstraction processes for systematic derivation of related models for use in event-based control. The multifaceted modeling methodology is briefly reviewed. The morphism concepts needed for application to model abstraction are described. A theory for supporting the construction of DEVS models needed for event-based control is then presented. An implemented morphism on the basis of this theory is also described.

  6. Innovation Abstracts, Volume XIX, 1997.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1997-01-01

    The 52 abstracts in these 29 serial issues describe innovative approaches to teaching and learning in the community college. Sample topics include a checklist for conference presenters, plan to retain students, faculty home page, improvements in writing instruction, cooperative learning, support for high risk students, competitive colleges and the…

  7. Handedness Shapes Children's Abstract Concepts

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Henetz, Tania

    2012-01-01

    Can children's handedness influence how they represent abstract concepts like "kindness" and "intelligence"? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on…

  8. Innovation Abstracts, Volume XX, 1998.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1998-01-01

    The 52 abstracts in these 29 serial issues describe innovative approaches to teaching and learning in the community college. Sample topics include reading motivation, barriers to academic success, the learning environment, writing skills, leadership in the criminal justice profession, role-playing strategies, cooperative education, distance…

  9. Abstract Journal Concept Being Examined

    ERIC Educational Resources Information Center

    Somerville, Brendan F.

    1972-01-01

    In order to control the information explosion, some European chemical groups are studying the idea of abandoning full publication in printed form of all primary journals and, in their place, substituting a new form of abstract journal combined with a microfilm record of full scientific papers. (Author/CP)

  10. Metaphoric Images from Abstract Concepts.

    ERIC Educational Resources Information Center

    Vizmuller-Zocco, Jana

    1992-01-01

    Discusses children's use of metaphors to create meaning, using as an example the pragmatic and "scientific" ways in which preschool children explain thunder and lightning to themselves. Argues that children are being shortchanged by modern scientific notions of abstractness and that they should be encouraged to create their own explanations of…

  11. Abstract Expressionism. Clip and Save.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2002-01-01

    Provides information on the art movement, Abstract Expressionism, and includes learning activities. Focuses on the artist Jackson Pollock, offering a reproduction of his artwork, "Convergence: Number 10." Includes background information on the life and career of Pollock and a description of the included artwork. (CMK)

  12. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  13. Does "Social Work Abstracts" Work?

    ERIC Educational Resources Information Center

    Holden, Gary; Barker, Kathleen; Covert-Vail, Lucinda; Rosenberg, Gary; Cohen, Stephanie A.

    2008-01-01

    Objective: The current study seeks to provide estimates of the adequacy of journal coverage in the Social Work Abstracts (SWA) database. Method: A total of 23 journals listed in the Journal Citation Reports social work category during the 1997 to 2005 period were selected for study. Issue-level coverage estimates were obtained for SWA and…

  14. Manpower Management Studies: Selected Abstracts.

    ERIC Educational Resources Information Center

    Ryerson, William R., Comp.

    This bibliography contains 58 selected abstracts of research reports dating back to 1964 on the general subject of manpower management. It was prepared from a search of the National Technical Information Service data base of more than 300,000 documents submitted by agencies of the Federal Government and also by private organizations or individuals…

  15. The Theatre Audience: An Abstraction.

    ERIC Educational Resources Information Center

    Campbell, Paul Newell

    1981-01-01

    Argues that theater is aimed at and presented to an ideal or abstract audience. Discusses the implications of performing for an actual audience, adaptation to various audiences, and the concept of the audience as an evaluative device. (See CS 705 536.) (JMF)

  16. Chemical Abstracts' Document Delivery Service.

    ERIC Educational Resources Information Center

    Rollins, Stephen

    1984-01-01

    The Document Delivery Service offered by Chemical Abstracts is described in terms of the DIALORDER option on the Dialog information retrieval system, mail requests, and requests transmitted through OCLC's Interlibrary Loan system. Transmission costs, success rates, delivery rates, and other considerations in utilizing the service are included.…

  17. Radial head button holing: a cause of irreducible anterior radial head dislocation.

    PubMed

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina; Bae, Kee Jeong

    2016-10-01

    "Buttonholing" of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. PMID:27502623

  18. Radial keratotomy associated endothelial degeneration

    PubMed Central

    Moshirfar, Majid; Ollerton, Andrew; Semnani, Rodmehr T; Hsu, Maylon

    2012-01-01

    Purpose To describe the presentation and clinical course of eyes with a history of radial keratotomy (RK) and varying degrees of endothelial degeneration. Methods Retrospective case series were used. Results Thirteen eyes (seven patients) were identified with clinical findings of significant guttata and a prior history of RK. The mean age of presentation for cornea evaluation was 54.3 years (range: 38–72 years), averaging 18.7 years (range: 11–33 years) after RK. The presentation of guttata varied in degree from moderate to severe. Best corrected visual acuity (BCVA) ranged from 20/25 to 20/80. All patients had a history of bilateral RK, except one patient who did not develop any guttata in the eye without prior RK. No patients reported a family history of Fuch’s Dystrophy. One patient underwent a penetrating keratoplasty in one eye and a Descemet’s stripping automated endothelial keratoplasty (DSAEK) in the other eye. Conclusions RK may induce a spectrum of endothelial degeneration. In elderly patients, the findings of guttata may signify comorbid Fuch’s dystrophy in which RK incisions could potentially hasten endothelial decomposition. In these select patients with stable cornea topography and prior RK, DSAEK may successfully treat RK endothelial degeneration. PMID:22347792

  19. Differentiating common causes of radial wrist pain.

    PubMed

    Shuaib, Waqas; Mohiuddin, Zia; Swain, Freddie R; Khosa, Faisal

    2014-09-01

    Radial wrist pain is a common patient complaint with a broad differential. Because treatment and prognosis differ, determining the underlying cause is key. This article reviews a case of intersection syndrome and compares it to other causes of radial wrist pain. PMID:25148441

  20. Radial force in a bearingless reluctance motor

    NASA Astrophysics Data System (ADS)

    Chiba, Akira; Rahman, M. A.; Fukao, Tadashi

    1991-03-01

    A four-pole reluctance synchronous machine with additional two-pole windings was constructed. The additional winding currents produce the radial force to act as a magnetic bearing. Expressions for the machine inductance functions are given. Inductance functions with respect to the eccentric displacement of the rotor were measured. The contribution of these inductances to the radial force production is established.

  1. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  2. An Abstract Plan Preparation Language

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2006-01-01

    This paper presents a new planning language that is more abstract than most existing planning languages such as the Planning Domain Definition Language (PDDL) or the New Domain Description Language (NDDL). The goal of this language is to simplify the formal analysis and specification of planning problems that are intended for safety-critical applications such as power management or automated rendezvous in future manned spacecraft. The new language has been named the Abstract Plan Preparation Language (APPL). A translator from APPL to NDDL has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats Project (SAVH) sponsored by the Explorations Technology Development Program, which is seeking to mature autonomy technology for application to the new Crew Exploration Vehicle (CEV) that will replace the Space Shuttle.

  3. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  4. Concrete and abstract Voronoi diagrams

    SciTech Connect

    Klein, R. )

    1989-01-01

    The Voronoi diagram of a set of sites is a partition of the plane into regions, one to each site, such that the region of each site contains all points of the plane that are closer to this site than to the other ones. Such partitions are of great importance to computer science and many other fields. The challenge is to compute Voronoi diagrams quickly. The problem is that their structure depends on the notion of distance and the sort of site. In this book the author proposes a unifying approach by introducing abstract Voronoi diagrams. These are based on the concept of bisecting curves which are required to have some simple properties that are actually possessed by most bisectors of concrete Voronoi diagrams. Abstract Voronoi diagrams can be computed efficiently and there exists a worst-case efficient algorithm of divide-and-conquer type that applies to all abstract Voronoi diagrams satisfying a certain constraint. The author shows that this constraint is fulfilled by the concrete diagrams based no large classes of metrics in the plane.

  5. Combination radial and thrust magnetic bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor)

    2002-01-01

    A combination radial and thrust magnetic bearing is disclosed that allows for both radial and thrust axes control of an associated shaft. The combination radial and thrust magnetic bearing comprises a rotor and a stator. The rotor comprises a shaft, and first and second rotor pairs each having respective rotor elements. The stator comprises first and second stator elements and a magnet-sensor disk. In one embodiment, each stator element has a plurality of split-poles and a corresponding plurality of radial force coils and, in another embodiment, each stator element does not require thrust force coils, and radial force coils are replaced by double the plurality of coils serving as an outer member of each split-pole half.

  6. Radial spin Hall effect of light

    NASA Astrophysics Data System (ADS)

    Shu, Weixing; Ke, Yougang; Liu, Yachao; Ling, Xiaohui; Luo, Hailu; Yin, Xiaobo

    2016-01-01

    We propose and realize a radial spin Hall effect (SHE) of light by using a dielectric metasurface. The metasurface with radially varying optical axes introduces a Pancharatnam-Berry (PB) geometrical phase to the incident light. The spatial gradient of PB phase accounts for a shift in the momentum space and thus leads the light to split radially into two concentric rays with opposite spin in the position space, which is called a radial SHE. Further experiments verify that the magnitude of the splitting increases with the rotation rate of the optical-axis orientation and the propagation distance, thereby allowing for macroscopic observation of the SHE. We also find that the phase of the incident light influences the profiles of the two split rays, while the polarization determines their intensities. The results provide methods to tune the SHE of light by engineering metasurfaces and modulating the incident light, and this radial SHE may be extrapolated to other physical systems.

  7. Chemical Abstracts Service Chemical Registry System: History, Scope, and Impacts.

    ERIC Educational Resources Information Center

    Weisgerber, David W.

    1997-01-01

    Describes the history, scope, and applications of the Chemical Abstracts Service Chemical Registry System, a computerized database that uniquely identifies chemical substances on the basis of their molecular structures. Explains searching the system is and discusses its use as an international resource. (66 references) (Author/LRW)

  8. Current Abstracts Nuclear Reactors and Technology

    SciTech Connect

    Bales, J.D.; Hicks, S.C.

    1993-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  9. Youth Studies Abstracts. Vol. 4 No. 3.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains 169 abstracts of documents dealing with youth and educational programs for youth. Included in the volume are 97 abstracts of documents dealing with social and educational developments; 56 abstracts of program reports, reviews, and evaluations; and 16 abstracts of program materials. Abstracts are grouped according to the…

  10. Radial force development during root growth measured by photoelasticity

    NASA Astrophysics Data System (ADS)

    Kolb, Evelyne; Hartmann, Christian; Genet, Patricia

    2012-02-01

    The mechanical and topological properties of a soil like the global porosity and the distribution of void sizes greatly affect the development of a plant root, which in turn affects the shoot development. In particular, plant roots growing in heterogeneous medium like sandy soils or cracked substrates have to adapt their morphology and exert radial forces depending on the pore size in which they penetrate. We propose a model experiment in which a pivot root (chick-pea seeds) of millimetric diameter has to grow in a size-controlled gap δ (δ ranging 0.5-2.3 mm) between two photoelastic grains. By time-lapse imaging, we continuously monitored the root growth and the development of optical fringes in the photoelastic neighbouring grains when the root enters the gap. Thus we measured simultaneously and in situ the root morphological changes (length and diameter growth rates, circumnutation) as well as the radial forces the root exerts. Radial forces were increasing in relation with gap constriction and experiment duration but a levelling of the force was not observed, even after 5 days and for narrow gaps. The inferred mechanical stress was consistent with the turgor pressure of compressed cells. Therefore our set-up could be a basis for testing mechanical models of cellular growth.

  11. Rate of radial transport of plasma in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Hill, T. W.; Rymer, A. M.; Wilson, R. J.

    2010-10-01

    In the inner part of a rapidly rotating magnetosphere such as that of Saturn, the major observable signature of radial plasma convection is a series of longitudinally localized injections and simultaneous drift dispersions of hot tenuous plasma from the outer magnetosphere. The Cassini Plasma Spectrometer (CAPS) and the Cassini Magnetospheric Imaging Instrument (MIMI) have observed signatures of these processes frequently, thus providing direct evidence for Saturn's magnetospheric convective motions, in which the radial transport of plasma comprises hot, tenuous plasma moving inward and cooler, denser plasma moving outward. On the basis of an extended statistical sample of these injection/dispersion events, we find that the inflow channels occupy only a small fraction (˜7%) of the total available longitudinal space, indicating that the inflow speed is much larger than the outflow speed. We assume that the plasma is largely confined to a thin equatorial sheet and calculate its thickness by deriving the centrifugal scale height profile based on the CAPS observations. We also present the radial and longitudinal dependences of flux tube mass content as well as the total ion mass between 5 and 10 Saturn radii. Combining these results, we estimate a global plasma mass outflow rate ˜280 kg/s.

  12. Operating System Abstraction Layer (OSAL)

    NASA Technical Reports Server (NTRS)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  13. IEEE conference record--Abstracts

    SciTech Connect

    Not Available

    1992-01-01

    The following topics were covered in this meeting: basic plasma phenomena and plasma waves; plasma diagnostics; space plasma diagnostics; magnetic fusion; electron, ion and plasma sources; intense electron and ion beams; intense beam microwaves; fast wave M/W devices; microwave plasma interactions; plasma focus; ultrafast Z-pinches; plasma processing; electrical gas discharges; fast opening switches; magnetohydrodynamics; electromagnetic and electrothermal launchers; x-ray lasers; computational plasma science; solid state plasmas and switches; environmental/energy issues in plasma science; vacuum electronics; plasmas for lighting; gaseous electronics; and ball lightning and other spherical plasmas. Separate abstracts were prepared for 278 papers of this conference.

  14. Novel Integration Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth; Brown, Gary

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics; separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and magnetic field modeling results will be presented.

  15. Novel Integrated Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.

  16. An extensive radial velocity survey towards NGC 6253

    NASA Astrophysics Data System (ADS)

    Montalto, M.; Melo, C. H. F.; Santos, N. C.; Queloz, D.; Piotto, G.; Desidera, S.; Bedin, L. R.; Momany, Y.; Saviane, I.

    2016-04-01

    The old and metal-rich open cluster NGC 6253 was observed with the Fibre Large Array Multi Element Spectrograph (FLAMES) multi-object spectrograph during an extensive radial velocity campaign monitoring 317 stars with a median of 15 epochs per object. All the targeted stars are located along the upper main sequence of the cluster between 14.8 < V < 16.5. Fifty nine stars are confirmed cluster members both by radial velocities and proper motions and do not show evidence of variability. We detected 45 variable stars among which 25 belong to NGC 6253. We were able to derive an orbital solution for four cluster members (and for two field stars) yielding minimum masses in between ˜90 MJ and ˜460 MJ and periods between 3 and 220 d. Simulations demonstrated that this survey was sensitive to objects down to 30 MJ at 10 days orbital periods with a detection efficiency equal to 50 per cent. On the basis of these results we concluded that the observed frequency of binaries down to the hydrogen burning limit and up to 20 d orbital period is around (1.5 ± 1.3) per cent in NGC 6253. The overall observed frequency of binaries around the sample of cluster stars is (13 ± 3) per cent. The median radial velocity precision achieved by the GIRAFFE spectrograph in this magnitude range was around ˜240 m s- 1 (˜180 m s- 1 for UVES). Based on a limited follow-up analysis of seven stars in our sample with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph we determined that a precision of 35 m s- 1 can be reached in this magnitude range, offering the possibility to further extend the variability analysis into the substellar domain. Prospects are even more favourable once considering the upcoming ESPRESSO spectrograph at VLT.

  17. Scintillating lustre induced by radial fins.

    PubMed

    Takahashi, Kohske; Fukuda, Haruaki; Watanabe, Katsumi; Ueda, Kazuhiro

    2012-01-01

    Radial lines of Ehrenstein patterns induce illusory scintillating lustre in gray disks inserted into the central gaps (scintillating-lustre effect). We report a novel variant of this illusion by replacing the radial lines with white and black radial fins. Both white and gray disks inserted into the central gaps were perceived as scintillating, if the ratio of the black/white fin width were balanced (ie, close to 1.0). Thus, the grayness of the central disk is not a prerequisite for the scintillation. However, the scintillation was drastically reduced when the ratio was imbalanced. Furthermore, the optimal ratio depended on the color of the center disks. PMID:23145270

  18. Catalogue of radial velocities of galaxies

    SciTech Connect

    Palumbo, G.G.S.

    1983-01-01

    The Catalogue of Radial Velocities of Galaxies is a survey of radial velocities of redshifts of the galaxies in the universe. It lists all available measurements for each galaxy (including Russian citations) from the measurement of the first radial velocity by Slipher in 1914 through December 1980. It includes optical and radio measurements for all galaxies in both the Northern and Southern Hemispheres. In bringing together uniformly and concisely all published references, the catalogue affords readers the opportunity to evaluate the data and determine which measurement for the radical velocity of each galaxy.

  19. Basis selection in LOBPCG

    NASA Astrophysics Data System (ADS)

    Hetmaniuk, U.; Lehoucq, R.

    2006-10-01

    The purpose of our paper is to discuss basis selection for Knyazev's locally optimal block preconditioned conjugate gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Rayleigh-Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality of the basis vectors and so has excellent numerical properties.

  20. The problem of multivariate classification of samples with radial (or V-shaped) chemical data.

    PubMed

    Aruga, Roberto

    2003-07-27

    On the basis of the results of previous studies, the problem of multivariate classification in the presence of the so-called radial or V-shaped data has been briefly re-examined. Taking into account that the radial data, in the absence of preliminary transformations, usually lead to classifications of samples meaningless from a chemical point of view, five different data transformations have been evaluated and compared in the case of both hypothetical and real samples (real samples, in particular, consisted of archaeological ceramic shards to be classified on the basis of provenance). The following transformations have been used: closure to 100, log row centering, log double centering, row centering, and double centering. The transformed data were then classified by means of hierarchical clustering and principal component analysis (PCA). It has been demonstrated that only the first three transformations lead to correct classifications of radial data, and the causes of this fact have been explained. PMID:18969118

  1. Singular Value Decomposition of the Radial Distribution Function for Hard Sphere and Square Well Potentials

    PubMed Central

    Hoppe, Travis

    2013-01-01

    We compute the singular value decomposition of the radial distribution function for hard sphere, and square well solutions. We find that decomposes into a small set of basis vectors allowing for an extremely accurate representation at all interpolated densities and potential strengths. In addition, we find that the coefficient vectors describing the magnitude of each basis vector are well described by a low-order polynomial. We provide a program to calculate in this compact representation for the investigated parameter range. PMID:24143174

  2. Radial/axial power divider/combiner

    NASA Technical Reports Server (NTRS)

    Vaddiparty, Yerriah P. (Inventor)

    1987-01-01

    An electromagnetic power divider/combiner comprises N radial outputs (31) having equal powers and preferably equal phases, and a single axial output (20). A divider structure (1) and a preferably identical combiner structure (2) are broadside coupled across a dielectric substrate (30) containing on one side the network of N radial outputs (31) and on its other side a set of N equispaced stubs (42) which are capacitively coupled through the dielectric substrate (30) to the N radial outputs (31). The divider structure (1) and the combiner structure (2) each comprise a dielectric disk (12, 22, respectively) on which is mounted a set of N radial impedance transformers (14, 24, respectively). Gross axial coupling is determined by the thickness of the dielectric layer (30). Rotating the disks (12, 22) with respect to each other effectuates fine adjustment in the degree of axial coupling.

  3. Aberrant Radial Artery Causing Carpal Tunnel Syndrome

    PubMed Central

    Kokkalis, Zinon T.; Tolis, Konstantinos E.; Megaloikonomos, Panayiotis D.; Panagopoulos, Georgios N.; Igoumenou, Vasilios G.; Mavrogenis, Andreas F.

    2016-01-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  4. Aberrant Radial Artery Causing Carpal Tunnel Syndrome.

    PubMed

    Kokkalis, Zinon T; Tolis, Konstantinos E; Megaloikonomos, Panayiotis D; Panagopoulos, Georgios N; Igoumenou, Vasilios G; Mavrogenis, Andreas F

    2016-06-01

    Anatomical vascular variations are rare causes of carpal tunnel syndrome. An aberrant medial artery is the most common vascular variation, while an aberrant radial artery causing carpal tunnel syndrome is even more rare, with an incidence ranging less than 3%. This article reports a patient with compression of the median nerve at the carpal tunnel by an aberrant superficial branch of the radial artery. An 80- year- old man presented with a 5-year history of right hand carpal tunnel syndrome; Tinel sign, Phalen test and neurophysiological studies were positive. Open carpal tunnel release showed an aberrant superficial branch of the radial artery with its accompanying veins running from radially to medially, almost parallel to the median nerve, ending at the superficial palmar arterial arch. The median nerve was decompressed without ligating the aberrant artery. At the last follow-up, 2 years after diagnosis and treatment the patient is asymptomatic. PMID:27517078

  5. Abstract Expression Grammar Symbolic Regression

    NASA Astrophysics Data System (ADS)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  6. Toward Millimagnitude Photometric Calibration (Abstract)

    NASA Astrophysics Data System (ADS)

    Dose, E.

    2014-12-01

    (Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.

  7. Experience with abstract notation one

    NASA Technical Reports Server (NTRS)

    Harvey, James D.; Weaver, Alfred C.

    1990-01-01

    The development of computer science has produced a vast number of machine architectures, programming languages, and compiler technologies. The cross product of these three characteristics defines the spectrum of previous and present data representation methodologies. With regard to computer networks, the uniqueness of these methodologies presents an obstacle when disparate host environments are to be interconnected. Interoperability within a heterogeneous network relies upon the establishment of data representation commonality. The International Standards Organization (ISO) is currently developing the abstract syntax notation one standard (ASN.1) and the basic encoding rules standard (BER) that collectively address this problem. When used within the presentation layer of the open systems interconnection reference model, these two standards provide the data representation commonality required to facilitate interoperability. The details of a compiler that was built to automate the use of ASN.1 and BER are described. From this experience, insights into both standards are given and potential problems relating to this development effort are discussed.

  8. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  9. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  10. Elbow dislocation with irreparable fracture radial head

    PubMed Central

    Tanna, Dilip

    2013-01-01

    Background: Treatment of elbow dislocation with irreparable radial head fracture needs replacement of radial head to achieve stability of elbow. An alternate method in cases of elbow dislocation with radial head fracture can be resection of radial head with repair of medial collateral ligament. We report a retrospective analysis of cases of elbow dislocation with irreparable radial head treated by excision head of radius and repair of MCL. Materials and Methods: Nine patients of elbow dislocation with associated irreparable fractures of the head of the radius were included in this analysis (6 F:3 M, Age: 35-47 years). Radial head excision was done through the lateral approach and MCL was sutured using no 3 Ethibond using medial approach. Above elbow plaster was given for 6 weeks and gradual mobilization was done thereafter. All patients were assessed at final followup using Mayo elbow performance score (MEPS). Results: Mean followup was 19.55 ± 7.12 months (range 14-36 months). There was no extension deficit when compared to opposite side with mean range of flexion of 138.8° ± 6.97° (range 130 -145°). Mean pronation was 87.7° ± 4.4° (range 80-90°) and mean supination was 87.7 ± 4.62° (range 80-90°). The mean MEPS was 98.8 ± 3.33 (range 90-100). No patient had pain, sensory complaints, subluxation or redislocation. All were able to carry out their daily activities without disability. Conclusion: Radial head excision with MCL repair is an acceptable option for treatment of patients with elbow dislocation and irreparable radial head fracture. PMID:23798760

  11. Radial transport with perturbed magnetic field

    SciTech Connect

    Hazeltine, R. D.

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  12. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  13. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes.

    PubMed

    Culican, S M; Baumrind, N L; Yamamoto, M; Pearlman, A L

    1990-02-01

    Radial glia are transiently present in the developing cerebral cortex, where they are thought to guide the migration of neurons from the proliferative zone to the forming cortical plate. To provide a framework for experimental studies of radial glia, we have defined morphological and immunocytochemical criteria to identify them in primary cultures of cortical cells obtained at embryonic day 13 in the mouse. Cortical radial glia in culture for 1-2 d resemble radial glia in vivo: they have a long, thin, unbranched process extending from one or both ends of the elongated cell body and are labeled with the monoclonal antibody RC1 but not with antibodies to glial fibrillary acidic protein (abGFAP). We tested the specificity of RC1 by double-labeling with a panel of cell-type specific antibodies, and found that it labels radial glia, astrocytes, and fibroblast-like cells, but not neurons. Fibroblasts are easily distinguished from glia by morphology and by labeling with antibodies to fibronectin. To test the hypothesis that radial glia become astrocytes when their developmental role is complete, we examined their morphological and immunocytochemical development in culture. After 3-4 d in vitro radial glia develop several branched processes; in this transitional stage they are labeled by both RC1 and abGFAP. Many radial glia lose RC1 immunoreactivity as they become increasingly branched and immunoreactive to abGFAP. In areas of the cultures that have few neurons and in cultures depleted of neurons by washing, flat, nonprocess-bearing glia predominate. These cells do not lose immunoreactivity to RC1 during the 9-d period of observation even though they acquire GFAP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2303868

  14. An abstract approach to music.

    SciTech Connect

    Kaper, H. G.; Tipei, S.

    1999-04-19

    In this article we have outlined a formal framework for an abstract approach to music and music composition. The model is formulated in terms of objects that have attributes, obey relationships, and are subject to certain well-defined operations. The motivation for this approach uses traditional terms and concepts of music theory, but the approach itself is formal and uses the language of mathematics. The universal object is an audio wave; partials, sounds, and compositions are special objects, which are placed in a hierarchical order based on time scales. The objects have both static and dynamic attributes. When we realize a composition, we assign values to each of its attributes: a (scalar) value to a static attribute, an envelope and a size to a dynamic attribute. A composition is then a trajectory in the space of aural events, and the complex audio wave is its formal representation. Sounds are fibers in the space of aural events, from which the composer weaves the trajectory of a composition. Each sound object in turn is made up of partials, which are the elementary building blocks of any music composition. The partials evolve on the fastest time scale in the hierarchy of partials, sounds, and compositions. The ideas outlined in this article are being implemented in a digital instrument for additive sound synthesis and in software for music composition. A demonstration of some preliminary results has been submitted by the authors for presentation at the conference.

  15. Ozone Conference II: Abstract Proceedings

    SciTech Connect

    1999-11-01

    Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications. Included in the presentations were topics on: (1) Ozone fumigation; (2) Ozone generation techniques; (3) System and design applications; (4) Prewater treatment requirements; (5) Poultry water reuse; (6) Soil treatments with ozone gas; and (7) Post-harvest aqueous and gaseous ozone research results. A live videoconference between Tulare and Washington, D.C. was held to discuss the regulators' view from inside the beltway. Attendees participated in two Roundtable Question and Answer sessions and visited fifteen exhibits and demonstrations. The attendees included university and governmental researchers, regulators, consultants and industry experts, technology developers and providers, and corporate and individual end-users. This report is comprised of the Abstracts of each presentation, biographical sketches for each speaker and a registration/attendees list.

  16. 1986 annual information meeting. Abstracts

    SciTech Connect

    Not Available

    1986-01-01

    Abstracts are presented for the following papers: Geohydrological Research at the Y-12 Plant (C.S. Haase); Ecological Impacts of Waste Disposal Operations in Bear Creek Valley Near the Y-12 Plant (J.M. Loar); Finite Element Simulation of Subsurface Contaminant Transport: Logistic Difficulties in Handling Large Field Problems (G.T. Yeh); Dynamic Compaction of a Radioactive Waste Burial Trench (B.P. Spalding); Comparative Evaluation of Potential Sites for a High-Level Radioactive Waste Repository (E.D. Smith); Changing Priorities in Environmental Assessment and Environmental Compliance (R.M. Reed); Ecology, Ecotoxicology, and Ecological Risk Assessment (L.W. Barnthouse); Theory and Practice in Uncertainty Analysis from Ten Years of Practice (R.H. Gardner); Modeling Landscape Effects of Forest Decline (V.H. Dale); Soil Nitrogen and the Global Carbon Cycle (W.M. Post); Maximizing Wood Energy Production in Short-Rotation Plantations: Effect of Initial Spacing and Rotation Length (L.L. Wright); and Ecological Communities and Processes in Woodland Streams Exhibit Both Direct and Indirect Effects of Acidification (J.W. Elwood).

  17. Attracting Girls into Physics (abstract)

    NASA Astrophysics Data System (ADS)

    Gadalla, Afaf

    2009-04-01

    A recent international study of women in physics showed that enrollment in physics and science is declining for both males and females and that women are severely underrepresented in careers requiring a strong physics background. The gender gap begins early in the pipeline, from the first grade. Girls are treated differently than boys at home and in society in ways that often hinder their chances for success. They have fewer freedoms, are discouraged from accessing resources or being adventurous, have far less exposure to problem solving, and are not encouraged to choose their lives. In order to motivate more girl students to study physics in the Assiut governorate of Egypt, the Assiut Alliance for the Women and Assiut Education District collaborated in renovating the education of physics in middle and secondary school classrooms. A program that helps in increasing the number of girls in science and physics has been designed in which informal groupings are organized at middle and secondary schools to involve girls in the training and experiences needed to attract and encourage girls to learn physics. During implementation of the program at some schools, girls, because they had not been trained in problem-solving as boys, appeared not to be as facile in abstracting the ideas of physics, and that was the primary reason for girls dropping out of science and physics. This could be overcome by holding a topical physics and technology summer school under the supervision of the Assiut Alliance for the Women.

  18. Intraoperative hemodynamic evaluation of the radial and ulnar arteries during free radial forearm flap procedure.

    PubMed

    Lorenzetti, Fulvio; Giordano, Salvatore; Suominen, Erkki; Asko-Seljavaara, Sirpa; Suominen, Sinikka

    2010-02-01

    The purpose of this prospective study was to assess the blood flow of the radial and ulnar arteries before and after radial forearm flap raising. Twenty-two patients underwent radial forearm microvascular reconstruction for leg soft tissue defects. Blood flow of the radial, ulnar, and recipient arteries was measured intraoperatively by transit-time and ultrasonic flowmeter. In the in situ radial artery, the mean blood flow was 60.5 +/- 47.7 mL/min before, 6.7 +/- 4.1 mL/min after raising the flap, and 5.8 +/- 2.0 mL/min after end-to-end anastomosis to the recipient artery. In the ulnar artery, the mean blood flow was 60.5 +/- 43.3 mL/min before harvesting the radial forearm flap and significantly increased to 85.7 +/- 57.9 mL/min after radial artery sacrifice. A significant difference was also found between this value and the value of blood flow in the ulnar and radial arteries pooled together ( P < 0.05). The vascular resistance in the ulnar artery decreased significantly after the radial artery flap raising (from 2.7 +/- 3.1 to 1.9 +/- 2.2 peripheral resistance units, P = 0.010). The forearm has a conspicuous arterial vascularization not only through the radial and ulnar arteries but also through the interosseous system. The raising of the radial forearm flap increases blood flow and decreases vascular resistance in the ulnar artery. PMID:19902406

  19. Radial velocity studies of cool stars.

    PubMed

    Jones, Hugh R A; Barnes, John; Tuomi, Mikko; Jenkins, James S; Anglada-Escude, Guillem

    2014-04-28

    Our current view of exoplanets is one derived primarily from solar-like stars with a strong focus on understanding our Solar System. Our knowledge about the properties of exoplanets around the dominant stellar population by number, the so-called low-mass stars or M dwarfs, is much more cursory. Based on radial velocity discoveries, we find that the semi-major axis distribution of M dwarf planets appears to be broadly similar to those around more massive stars and thus formation and migration processes might be similar to heavier stars. However, we find that the mass of M dwarf planets is relatively much lower than the expected mass dependency based on stellar mass and thus infer that planet formation efficiency around low-mass stars is relatively impaired. We consider techniques to overcome the practical issue of obtaining good quality radial velocity data for M dwarfs despite their faintness and sustained activity and emphasize (i) the wavelength sensitivity of radial velocity signals, (ii) the combination of radial velocity data from different experiments for robust detection of small amplitude signals, and (iii) the selection of targets and radial velocity interpretation of late-type M dwarfs should consider Hα behaviour. PMID:24664922

  20. An unusual course of the radial artery.

    PubMed

    Pelin, C; Zagyapan, R; Mas, N; Karabay, G

    2006-11-01

    Radial artery variations are of importance for clinicians, whether in angiographic examinations or surgical approaches. The high origin radial artery is the most frequent arterial variation observed in the upper limb, showing an incidence of 14.27% in dissection material and 9.75% in angiographic examination. In the present study an unusual course of the radial artery and its relation with the median nerve has been evaluated. During embryological development the radial artery sprouts from two arterial buds arising from the lateral side of the brachial artery and coalescing with each other. The artery lies in the forearm and is overlapped by the brachioradial muscle. In this particular case the radial artery originated from the medial side of the brachial artery and crossed the median nerve twice in an unusual manner 8 cm below the point at which the deep brachial artery arose and 12 cm above the intercondylar line. These results will enhance anatomical knowledge of the region and reduce complication in surgical approaches. PMID:17171625

  1. Fast radial flows in transition disk holes

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Chiang, Eugene

    2014-02-20

    Protoplanetary 'transition' disks have large, mass-depleted central cavities, yet also deliver gas onto their host stars at rates comparable to disks without holes. The paradox of simultaneous transparency and accretion can be explained if gas flows inward at much higher radial speeds inside the cavity than outside the cavity, since surface density (and by extension optical depth) varies inversely with inflow velocity at fixed accretion rate. Radial speeds within the cavity might even have to approach free-fall values to explain the huge surface density contrasts inferred for transition disks. We identify observational diagnostics of fast radial inflow in channel maps made in optically thick spectral lines. Signatures include (1) twisted isophotes in maps made at low systemic velocities and (2) rotation of structures observed between maps made in high-velocity line wings. As a test case, we apply our new diagnostic tools to archival Atacama Large Millimeter Array data on the transition disk HD 142527 and uncover evidence for free-fall radial velocities inside its cavity. Although the observed kinematics are also consistent with a disk warp, the radial inflow scenario is preferred because it predicts low surface densities that appear consistent with recent observations of optically thin CO isotopologues in this disk. How material in the disk cavity sheds its angular momentum wholesale to fall freely onto the star is an unsolved problem; gravitational torques exerted by giant planets or brown dwarfs are briefly discussed as a candidate mechanism.

  2. Helical antimicrobial polypeptides with radial amphiphilicity

    PubMed Central

    Xiong, Menghua; Lee, Michelle W.; Mansbach, Rachael A.; Song, Ziyuan; Bao, Yan; Peek, Richard M.; Yao, Catherine; Chen, Lin-Feng; Ferguson, Andrew L.; Wong, Gerard C. L.; Cheng, Jianjun

    2015-01-01

    α-Helical antimicrobial peptides (AMPs) generally have facially amphiphilic structures that may lead to undesired peptide interactions with blood proteins and self-aggregation due to exposed hydrophobic surfaces. Here we report the design of a class of cationic, helical homo-polypeptide antimicrobials with a hydrophobic internal helical core and a charged exterior shell, possessing unprecedented radial amphiphilicity. The radially amphiphilic structure enables the polypeptide to bind effectively to the negatively charged bacterial surface and exhibit high antimicrobial activity against both gram-positive and gram-negative bacteria. Moreover, the shielding of the hydrophobic core by the charged exterior shell decreases nonspecific interactions with eukaryotic cells, as evidenced by low hemolytic activity, and protects the polypeptide backbone from proteolytic degradation. The radially amphiphilic polypeptides can also be used as effective adjuvants, allowing improved permeation of commercial antibiotics in bacteria and enhanced antimicrobial activity by one to two orders of magnitude. Designing AMPs bearing this unprecedented, unique radially amphiphilic structure represents an alternative direction of AMP development; radially amphiphilic polypeptides may become a general platform for developing AMPs to treat drug-resistant bacteria. PMID:26460016

  3. DOE-NABIR PI Workshop: Abstracts 2003

    SciTech Connect

    Various

    2003-01-28

    The mission of the NABIR program is to provide the fundamental science that will serve as the basis for the development of cost-effective bioremediation and long-term stewardship of radionuclides and metals in the subsurface at DOE sites. The focus of the program is on strategies leading to long-term immobilization of contaminants in situ to reduce the risk to humans and the environment. Contaminants of special interest are uranium, technetium, plutonium, chromium, and mercury. The focus of the NABIR program is on the bioremediation of these contaminants in the subsurface below the root zone, including both vadose and saturated zones. The program consists of four interrelated Science Elements (Biotransformation, Community Dynamics/Microbial Ecology, Biomolecular Science and Engineering, and Biogeochemistry). The program also has a cross-cutting Assessment Element that supports development of innovative approaches and technologies to support the science elements. An element called Bioremediation and its Societal Implications and Concerns (BASIC) addresses potential societal issues of implementing NABIR scientific findings. The material presented at this year's workshop focuses on approximately 60 research projects funded in FY 2000-2003 by the Environmental Remediation Sciences Division in DOE's Office of Biological and Environmental Research (BER) in the Office of Science. Abstracts of NABIR research projects are provided in this book.

  4. DOE NABIR PI Workshop: Abstracts 2002

    SciTech Connect

    Hawkes , Dan

    2002-01-09

    The mission of the NABIR program is to provide the fundamental science that will serve as the basis for the development of cost-effective bioremediation and long-term stewardship of radionuclides and metals in the subsurface at DOE sites. The focus of the program is on strategies leading to long-term immobilization of contaminants in place to reduce the risk to humans and the environment. Contaminants of special interest are uranium, technetium, plutonium, chromium, and mercury. The focus of the NABIR program is on the bioremediation of these contaminants in the subsurface below the root zone, including both vadose and saturated zones. The program is implemented through four interrelated scientific research elements (Biogeochemistry, Biomolecular Science and Engineering, Biotransformation, and Community Dynamics/Microbial Ecology); and through an element called Bioremediation and its Societal Implications and Concerns (BASIC), which addresses societal issues and potential concerns of stakeholders. The material presented at this year's workshop focuses on approximately 60 research projects funded in FY 2000-2002 by DOE's Office of Biological and Environmental Research (BER). Abstracts of NABIR research projects are provided in this book.

  5. MHD Contractors' Review Meeting: Abstracts

    NASA Astrophysics Data System (ADS)

    The objectives of the Integrated Topping Cycle project are to design, construct, and deliver all prototypical hardware necessary to conduct long duration integrated MHD topping cycle proof-of-concept tests at the Component Development and Integration Facility (CDIF) in Butte, Montana. The results of the long duration tests will augment the existing engineering data base on MHD power train reliability, maintainability, durability, and performance, and will serve as a basis for scaling up to the early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include the following three systems: (1) a slagging coal combustion subsystem with a rated capacity of 50 MW thermal input, capable of operation with eastern (Illinois) or western (Montana Rosebud) coal; (2) a channel subsystem consisting of a segmented supersonic nozzle, channel (with current controls), and diffuser, capable of power output of 1.5 MW(sub e); and (3) a current consolidation subsystem to interface the channel with the existing facility inverter.

  6. Preprocessor and postprocessor computer programs for a radial-flow finite-element model

    USGS Publications Warehouse

    Pucci, A.A., Jr.; Pope, D.A.

    1987-01-01

    Preprocessing and postprocessing computer programs that enhance the utility of the U.S. Geological Survey radial-flow model have been developed. The preprocessor program: (1) generates a triangular finite element mesh from minimal data input, (2) produces graphical displays and tabulations of data for the mesh , and (3) prepares an input data file to use with the radial-flow model. The postprocessor program is a version of the radial-flow model, which was modified to (1) produce graphical output for simulation and field results, (2) generate a statistic for comparing the simulation results with observed data, and (3) allow hydrologic properties to vary in the simulated region. Examples of the use of the processor programs for a hypothetical aquifer test are presented. Instructions for the data files, format instructions, and a listing of the preprocessor and postprocessor source codes are given in the appendixes. (Author 's abstract)

  7. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  8. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  9. Swept frequency eddy current material profiling using radial basis function neural networks for inversion

    SciTech Connect

    Katragadda, G.; Lewis, D.; Wallace, J.; Si, J.

    2000-01-01

    Traditional methods for inverting swept frequency or pulsed eddy current signals to get material information involve iterating with a forward model until the response from the model under the same excitation condition is as close to the measured signal as possible. Although the feasibility of the model based inversion has been demonstrated, the complexity of such procedures and the computational resources that this technique requires has hampered its widespread acceptance in industry. Recent approaches include using the look up tables for features extracted from the signals. The performance of look up table approach depends on the choice of the features extracted. The authors propose an innovative approach of using a neural network (NN) to solve this inversion problem. Although the use of NN for inverting uniform field eddy current data has been demonstrated, this is the first effort to investigate the feasibility of NN inversion of swept frequency and pulsed eddy current data for thickness measurements of metallic coatings of metal substrates. The authors previously reported initial results from this research. The current paper focuses on the PC based instrumentation and software developed for the swept frequency material profiler. Results of the NN based classification are summarized, and potential applications discussed.

  10. A Sequential Optimization Sampling Method for Metamodels with Radial Basis Functions

    PubMed Central

    Pan, Guang; Ye, Pengcheng; Yang, Zhidong

    2014-01-01

    Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is strongly affected by the sampling methods. In this paper, a new sequential optimization sampling method is proposed. Based on the new sampling method, metamodels can be constructed repeatedly through the addition of sampling points, namely, extrema points of metamodels and minimum points of density function. Afterwards, the more accurate metamodels would be constructed by the procedure above. The validity and effectiveness of proposed sampling method are examined by studying typical numerical examples. PMID:25133206

  11. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    PubMed

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  12. Automatic Black-Box Model Order Reduction using Radial Basis Functions

    SciTech Connect

    Stephanson, M B; Lee, J F; White, D A

    2011-07-15

    Finite elements methods have long made use of model order reduction (MOR), particularly in the context of fast freqeucny sweeps. In this paper, we discuss a black-box MOR technique, applicable to a many solution methods and not restricted only to spectral responses. We also discuss automated methods for generating a reduced order model that meets a given error tolerance. Numerical examples demonstrate the effectiveness and wide applicability of the method. With the advent of improved computing hardware and numerous fast solution techniques, the field of computational electromagnetics are progressed rapidly in terms of the size and complexity of problems that can be solved. Numerous applications, however, require the solution of a problem for many different configurations, including optimization, parameter exploration, and uncertainly quantification, where the parameters that may be changed include frequency, material properties, geometric dimensions, etc. In such cases, thousands of solutions may be needed, so solve times of even a few minutes can be burdensome. Model order reduction (MOR) may alleviate this difficulty by creating a small model that can be evaluated quickly. Many MOR techniques have been applied to electromagnetic problems over the past few decades, particularly in the context of fast frequency sweeps. Recent works have extended these methods to allow more than one parameter and to allow the parameters to represent material and geometric properties. There are still limitations with these methods, however. First, they almost always assume that the finite element method is used to solve the problem, so that the system matrix is a known function of the parameters. Second, although some authors have presented adaptive methods (e.g., [2]), the order of the model is often determined before the MOR process begins, with little insight about what order is actually needed to reach the desired accuracy. Finally, it not clear how to efficiently extend most methods to the multiparameter case. This paper address the above shortcomings be developing a method that uses a block-box approach to the solution method, is adaptive, and is easily extensible to many parameters.

  13. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    PubMed Central

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  14. From Abstract to Concrete Norms in Agent Institutions

    NASA Technical Reports Server (NTRS)

    Grossi, Davide; Dignum, Frank

    2004-01-01

    Norms specifying constraints over institutions are stated in such a form that allows them to regulate a wide range of situations over time without need for modification. To guarantee this stability, the formulation of norms need to abstract from a variety of concrete aspects, which are instead relevant for the actual operationalization of institutions. If agent institutions are to be built, which comply with a set of abstract requirements, how can those requirements be translated in more concrete constraints the impact of which can be described directly in the institution? In this work we make use of logical methods in order to provide a formal characterization of the translation rules that operate the connection between abstract and concrete norms. On the basis of this characterization, a comprehensive formalization of the notion of institution is also provided.

  15. Manufacturing of Precision Forgings by Radial Forging

    SciTech Connect

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-17

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  16. Precise Near-Infrared Radial Velocities

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Gao, P.; Bottom, M.; Davison, C.; Mills, S.; Ciardi, D. R.; Brinkworth, C.; Tanner, A. M.; Beichman, C. A.; Catanzarite, J.; Crawford, S.; Wallace, J.; Mennesson, B.; Johnson, J. A.; White, R. J.; Anglada-Escudé, G.; von Braun, K.; Walp, B.; Vasisht, G.; Kane, S. R.; Prato, L. A.; NIRRVs

    2014-01-01

    We present precise radial velocity time-series from a 2.3 micron pilot survey to detect exoplanets around red, low mass, and young stars. We use the CSHELL spectrograph with an isotopic methane absorption gas cell for common optical path relative wavelength calibration at the NASA InfraRed Telescope Facility. We present an overview of our Nelder-Mead simplex optimization pipeline for extracting radial velocities. We will also present first light data at 1.6 microns from a near-infrared fiber scrambler used in tandem with our gas cell and CSHELL at IRTF. The fiber scrambler makes use of non-circular core fibers to stabilize the illumination of the slit and echelle grating against changes in seeing, focus, guiding and other sources of systematic radial velocity noise, complementing the wavelength calibration of a gas cell.

  17. Radial anisotropy ambient noise tomography of volcanoes

    NASA Astrophysics Data System (ADS)

    Mordret, Aurélien; Rivet, Diane; Shapiro, Nikolai; Jaxybulatov, Kairly; Landès, Matthieu; Koulakov, Ivan; Sens-Schönfelder, Christoph

    2016-04-01

    The use of ambient seismic noise allows us to perform surface-wave tomography of targets which could hardly be imaged by other means. The frequencies involved (~ 0.5 - 20 s), somewhere in between active seismic and regular teleseismic frequency band, make possible the high resolution imaging of intermediate-size targets like volcanic edifices. Moreover, the joint inversion of Rayleigh and Love waves dispersion curves extracted from noise correlations allows us to invert for crustal radial anisotropy. We present here the two first studies of radial anisotropy on volcanoes by showing results from Lake Toba Caldera, a super-volcano in Indonesia, and from Piton de la Fournaise volcano, a hot-spot effusive volcano on the Réunion Island (Indian Ocean). We will see how radial anisotropy can be used to infer the main fabric within a magmatic system and, consequently, its dominant type of intrusion.

  18. Thrombosis following percutaneous radial artery cannulation.

    PubMed

    Cederholm, I; Sørensen, J; Carlsson, C

    1986-04-01

    A prospective study of the arterial supply of the hand was carried out in 100 ICU patients after cannulation of the radial artery. Patency of the radial artery was checked using a reversed Allen's test and Doppler ultrasonic technique. Furthermore, radial artery angiography was carried out in 15 patients with suspect thrombosis, and the artery was examined by microscopy in four patients at autopsy. Signs of thrombosis, Allen's test and Doppler technique, were found in 33/100 patients. In 10/15 angiograms a thrombosis was visualized, and in 3/4 patients at autopsy a thrombosis was found. The incidence of thrombosis was not correlated to sex, age, size of artery (judged by wrist circumference), cannulation technique or the presence of hypotension. It did, however, correlate to the presence of haematoma at the puncture site. After removal of the cannula recanalisation occurred soon in the majority of cases. PMID:3739580

  19. Generalized radially self-accelerating helicon beams.

    PubMed

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander

    2014-10-31

    We report, in theory and experiment, on a new class of optical beams that are radially self-accelerating and nondiffracting. These beams continuously evolve on spiraling trajectories while maintaining their amplitude and phase distribution in their rotating rest frame. We provide a detailed insight into the theoretical origin and characteristics of radial self-acceleration and prove our findings experimentally. As radially self-accelerating beams are nonparaxial and a solution to the full scalar Helmholtz equation, they can be implemented in many linear wave systems beyond optics, from acoustic and elastic waves to surface waves in fluids and soft matter. Our work generalized the study of classical helicon beams to a complete set of solutions for rotating complex fields. PMID:25396370

  20. On magnetopause inflation under radial IMF

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Dmitriev, A. V.

    2016-07-01

    Full understanding of the magnetosphere interaction with radial IMF structures embedded in the solar wind flow is far from completeness. In order to analyze the effects of radial IMF, we use THEMIS observations of the magnetopause and magnetosheath together with upstream data acquired from ACE and Wind monitors as well as from the OMNI data base. We demonstrate a prominent magnetopause inflation and low pressure magnetosheath (LPM) mode under long-lasting radial IMF. We propose that these phenomena result from a kinetic effect of energetic ions taking the energy away from the pressure balance at the magnetopause. We show that strict quantitative determination of the inflation and LPM mode as a function of the cone angle is difficult because of the problems with reliable determination of the upstream and magnetosheath conditions. The shortcomings are caused by such effects as ambiguous time delay for the solar wind propagation, THEMIS orbital bias and model-dependent estimations of the magnetopause inflation.

  1. Dispersion-free radial transmission lines

    DOEpatents

    Caporaso, George J.; Nelson, Scott D.

    2011-04-12

    A dispersion-free radial transmission line ("DFRTL") preferably for linear accelerators, having two plane conductors each with a central hole, and an electromagnetically permeable material ("EPM") between the two conductors and surrounding a channel connecting the two holes. At least one of the material parameters of relative magnetic permeability, relative dielectric permittivity, and axial width of the EPM is varied as a function of radius, so that the characteristic impedance of the DFRTL is held substantially constant, and pulse transmission therethrough is substantially dispersion-free. Preferably, the EPM is divided into concentric radial sections, with the varied material parameters held constant in each respective section but stepwise varied between sections as a step function of the radius. The radial widths of the concentric sections are selected so that pulse traversal time across each section is the same, and the varied material parameters of the concentric sections are selected to minimize traversal error.

  2. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-01-01

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  3. Radial flow nuclear thermal rocket (RFNTR)

    DOEpatents

    Leyse, Carl F.

    1995-11-07

    A radial flow nuclear thermal rocket fuel assembly includes a substantially conical fuel element having an inlet side and an outlet side. An annular channel is disposed in the element for receiving a nuclear propellant, and a second, conical, channel is disposed in the element for discharging the propellant. The first channel is located radially outward from the second channel, and separated from the second channel by an annular fuel bed volume. This fuel bed volume can include a packed bed of loose fuel beads confined by a cold porous inlet frit and a hot porous exit frit. The loose fuel beads include ZrC coated ZrC-UC beads. In this manner, nuclear propellant enters the fuel assembly axially into the first channel at the inlet side of the element, flows axially across the fuel bed volume, and is discharged from the assembly by flowing radially outward from the second channel at the outlet side of the element.

  4. OIL POLLUTION ABSTRACTS. VOLUME 6, NUMBER 1

    EPA Science Inventory

    Oil Pollution Abstracts (formerly entitled Oil Pollution Reports) is a quarterly compilation of abstracts of current oil pollution related literature and research projects. Comprehensive coverage of oil pollution and its prevention and control is provided, with emphasis on the aq...

  5. An algorithm for generating abstract syntax trees

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.

    1985-01-01

    The notion of an abstract syntax is discussed. An algorithm is presented for automatically deriving an abstract syntax directly from a BNF grammar. The implementation of this algorithm and its application to the grammar for Modula are discussed.

  6. The radial velocity search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert S.

    1991-01-01

    Radial velocity measurements are being made to search for planets orbiting stars other than the Sun. The reflex acceleration induced on stars by planets can be sensed by measuring the small, slow changes in the line-of-site velocities of stars. To detect these planetary perturbations, the data series must be made on a uniform instrumental scale for as long as it takes a planet to orbit its star. A spectrometer of extreme stability and unprecedented sensitivity to changes in stellar radial velocities was operated.

  7. Electrostatic model of radial pn junction nanowires

    NASA Astrophysics Data System (ADS)

    Chia, A. C. E.; LaPierre, R. R.

    2013-08-01

    Poisson's equation is solved for a radial pn junction nanowire (NW) with surface depletion. This resulted in a model capable of giving radial energy band and electric field profiles for any arbitrary core/shell doping density, core/shell dimensions, and surface state density. Specific cases were analyzed to extract pertinent underlying physics, while the relationship between NW specifications and the depletion of the NW were examined to optimize the built-in potential across the junction. Additionally, the model results were compared with experimental results in literature to good agreement. Finally, an optimum device design is proposed to satisfy material, optical, and electrostatic constraints in high efficiency NW solar cells.

  8. Prediction of refractive correction with radial keratotomy.

    PubMed

    Kremer, F B; Steer, R A

    1985-10-01

    Multiple regression analysis was employed to estimate the amount of preoperative correction required to achieve emmetropia in 129 spherical radial keratotomy procedures. Age, intraocular pressure, central corneal thickness, number of incisions, number of zones, and central optical zone size are variables that describe the amount of refractive correction required in order to achieve emmetropia. The surgical procedures from which these estimates are derived yield meaningful reductions in myopia. Recommendations for further research on the prediction of optimal response to radial keratotomy are included. PMID:4073725

  9. Radial oscillations of charged strange stars

    NASA Astrophysics Data System (ADS)

    Arbañil, J. D. V.; Malheiro, M.

    2016-04-01

    The radial oscillations of charged strange quark stars is investigated. It is considered that the fluid pressure follows the MIT bag model equation of state and the charge density to be proportional to the energy density, ρe = αρ (where α is proportionality constant). The modified equations of radial oscillations to the introduction of the electric charge are integrated to determine the fundamental mode. It is found that the stability of the charged object decreases with the increment of the central energy density and with the growth of the charge fraction.

  10. Plasma Signatures of Radial Field Power Dropouts

    SciTech Connect

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-10-04

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and {beta} during these events.

  11. Aircraft radial-belted tire evaluation

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Stubbs, Sandy M.; Davis, Pamela A.

    1990-01-01

    An overview is given of the ongoing joint NASA/FAA/Industry Surface Traction And Radial Tire (START) Program being conducted at NASA Langley's Aircraft Landing Dynamics Facility (ALDF). The START Program involves tests using three different tire sizes to evaluate tire rolling resistance, braking, and cornering performance throughout the aircraft ground operational speed range for both dry and wet runway surfaces. Preliminary results from recent 40 x 14 size bias-ply, radial-belted, and H-type aircraft tire tests are discussed. The paper concludes with a summary of the current program status and planned ALDF test schedule.

  12. Ultrasonic scanner for radial and flat panels

    NASA Technical Reports Server (NTRS)

    Spencer, R. L.; Hill, E. K. (Inventor)

    1973-01-01

    An ultrasonic scanning mechanism is described that scans panels of honeycomb construction or with welded seams. It incorporates a device which by simple adjustment is adapted to scan either a flat panel or a radial panel. The supporting structure takes the form of a pair of spaced rails. An immersion tank is positioned between the rails and below their level. A work holder is mounted in the tank and is adapted to hold the flat or radial panel. A traveling bridge is movable along the rails and a carriage is mounted on the bridge.

  13. Safety Basis Report

    SciTech Connect

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  14. 2013 SYR Accepted Poster Abstracts.

    PubMed

    2013-01-01

    SYR 2013 Accepted Poster abstracts: 1. Benefits of Yoga as a Wellness Practice in a Veterans Affairs (VA) Health Care Setting: If You Build It, Will They Come? 2. Yoga-based Psychotherapy Group With Urban Youth Exposed to Trauma. 3. Embodied Health: The Effects of a Mind�Body Course for Medical Students. 4. Interoceptive Awareness and Vegetable Intake After a Yoga and Stress Management Intervention. 5. Yoga Reduces Performance Anxiety in Adolescent Musicians. 6. Designing and Implementing a Therapeutic Yoga Program for Older Women With Knee Osteoarthritis. 7. Yoga and Life Skills Eating Disorder Prevention Among 5th Grade Females: A Controlled Trial. 8. A Randomized, Controlled Trial Comparing the Impact of Yoga and Physical Education on the Emotional and Behavioral Functioning of Middle School Children. 9. Feasibility of a Multisite, Community based Randomized Study of Yoga and Wellness Education for Women With Breast Cancer Undergoing Chemotherapy. 10. A Delphi Study for the Development of Protocol Guidelines for Yoga Interventions in Mental Health. 11. Impact Investigation of Breathwalk Daily Practice: Canada�India Collaborative Study. 12. Yoga Improves Distress, Fatigue, and Insomnia in Older Veteran Cancer Survivors: Results of a Pilot Study. 13. Assessment of Kundalini Mantra and Meditation as an Adjunctive Treatment With Mental Health Consumers. 14. Kundalini Yoga Therapy Versus Cognitive Behavior Therapy for Generalized Anxiety Disorder and Co-Occurring Mood Disorder. 15. Baseline Differences in Women Versus Men Initiating Yoga Programs to Aid Smoking Cessation: Quitting in Balance Versus QuitStrong. 16. Pranayam Practice: Impact on Focus and Everyday Life of Work and Relationships. 17. Participation in a Tailored Yoga Program is Associated With Improved Physical Health in Persons With Arthritis. 18. Effects of Yoga on Blood Pressure: Systematic Review and Meta-analysis. 19. A Quasi-experimental Trial of a Yoga based Intervention to Reduce Stress and

  15. At the HeART of Abstraction

    ERIC Educational Resources Information Center

    Berdit, Nancy

    2006-01-01

    Abstraction has long been a concept difficult to define for students. Students often feel the pressure of making their artwork "look real" and frustration can often lead to burnout in the classroom. In this article, the author describes how her lesson on abstraction has alleviated much of that pressure as students created an abstract acrylic…

  16. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  17. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  18. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  19. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2014-07-01 2014-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  20. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2012-07-01 2012-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  1. Writing a Structured Abstract for the Thesis

    ERIC Educational Resources Information Center

    Hartley, James

    2010-01-01

    This article presents the author's suggestions on how to improve thesis abstracts. The author describes two books on writing abstracts: (1) "Creating Effective Conference Abstracts and Posters in Biomedicine: 500 tips for Success" (Fraser, Fuller & Hutber, 2009), a compendium of clear advice--a must book to have in one's hand as one prepares a…

  2. One-year results of cemented bipolar radial head prostheses for comminuted radial head fractures

    PubMed Central

    Laun, Reinhold; Wild, Michael; Hakimi, Mohssen

    2015-01-01

    Introduction: Comminuted radial head fractures (Mason type III) continue to pose a challenge to orthopedic surgeons. When internal fixation is not possible, radial head arthroplasty has been advocated as the treatment of choice. The purpose of this retrospective study was to evaluate clinical and radiological short-term results of patients with Mason type III radial head fractures treated with a cemented bipolar radial prosthesis. Methods: Twelve patients received cemented bipolar radial head hemiarthroplasty for comminuted radial head fractures. In all patients a CT scan was obtained prior to surgical treatment to assess all associated injuries. Postoperatively an early motion protocol was applied. All patients were evaluated clinically and radiologically at an average of 12.7 months. Results: According to the Mayo Modified Wrist Score, the Mayo Elbow Performance Score, the functional rating index of Broberg and Morrey, and the DASH Score good to excellent results were obtained. Grip strength and range of motion were almost at the level of the unaffected contralateral side. Patient satisfaction was high, no instability or signs of loosening of the implant, and only mild signs of osteoarthritis were seen. Conclusion: Overall good to excellent short-term results for primary arthroplasty for comminuted radial head fractures were observed. These encouraging results warrant the conduction of further studies with long-term follow-up and more cases to see if these short-term results can be maintained over time. PMID:26734534

  3. Research & writing basics: elements of the abstract.

    PubMed

    Krasner, D; Van Rijswijk, L

    1995-04-01

    Writing an abstract is a challenging skill that requires precision and care. Criteria for well-formulated abstracts and abstract guidelines for 2 types of articles (empirical studies and reviews or theoretical articles) as well as a description of the content of a structured abstract are presented. Details were gleaned from a review of the literature including the American Medical Association Manual of Style, Eighth Edition and the Publication Manual of the American Psychological Association, Fourth Edition. A good abstract is like a crystal: it is a clear, sharp synthesis that elucidates meaning for the reader. PMID:7546111

  4. Determining Enzyme Activity by Radial Diffusion

    ERIC Educational Resources Information Center

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  5. MMICs with Radial Probe Transitions to Waveguides

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam; Pukala, David; Soria, Mary; Fung, King Man; Gaier, Todd; Radisic, Vesna; Lai, Richard

    2009-01-01

    A document presents an update on the innovation reported in Integrated Radial Probe Transition From MMIC to Waveguide (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. To recapitulate: To enable operation or testing of a monolithic microwave integrated circuit (MMIC), it is necessary to mount the MMIC in a waveguide package that typically has cross-sectional waveguide dimensions of the order of a few hundred microns. A radial probe transition between an MMIC operating at 340 GHz and a waveguide had been designed (but not yet built and tested) to be fabricated as part of a monolithic unit that would include the MMIC. The radial probe could readily be integrated with an MMIC amplifier because the design provided for fabrication of the transition on a substrate of the same material (InP) and thickness (50 m) typical of substrates of MMICs that can operate above 300 GHz. As illustrated in the updated document by drawings, photographs, and plots of test data, the concept has now been realized by designing, fabricating, and testing several MMIC/radial- probe integrated-circuit chips and designing and fabricating a waveguide package to contain each chip.

  6. Extended foil capacitor with radially spoked electrodes

    DOEpatents

    Foster, James C.

    1990-01-01

    An extended foil capacitor has a conductive disk electrically connected in oncrushing contact to the extended foil. A conductive paste is placed through spaces between radial spokes on the disk to electrically and mechanically connect the extended foil to the disk.

  7. NASA contributions to radial turbine aerodynamic analyses

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1980-01-01

    A brief description of the radial turbine and its analysis needs is followed by discussions of five analytical areas; design geometry and performance, off design performance, blade row flow, scroll flow, and duct flow. The functions of the programs, areas of applicability, and limitations and uncertainties are emphasized. Both past contributions and current activities are discussed.

  8. Radial velocities of Planetary Nebulae revisited

    NASA Astrophysics Data System (ADS)

    Vázquez, Roberto; Ayala, Sandra A.; Wendolyn Blanco Cárdenas, Mónica; Contreras, María E.; Gómez-Muñoz, Marco Antonio; Guillén, Pedro F.; Olguín, Lorenzo; Ramos-Larios, Gerardo; Sabin, Laurence; Zavala, Saúl A.

    2015-08-01

    We present a new determination of radial velocities of a sample of Galactic Planetary Nebulae (PNe) using a systematic method and the same instrumental setting: the long-slit high-dispersion Manchester Echelle Spectrograph (MES) on the 2.1-m telescope at the San Pedro Mártir Observatory (OAN-SPM; Mexico). This project was inspired by the work of Schneider et al. (1983, A&AS, 52, 399), which has been an important reference during the last decades. Radial velocities of gaseous nebulae can be obtained using the central wavelength of a Gaussian fit, even when there is an expansion velocity, as expected in PNe, but with not enough resolution to see a spectral line splitting. We have used the software SHAPE, a morpho-kinematic modeling and reconstruction tool for astrophysical objects (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to prove that non-uniform density or brightness, on an expanding shell, can lead to mistaken conclusions about the radial velocity. To determine radial velocities, we only use the spectral data in which a spectral line-splitting is seen, avoiding thus the problem of the possible biased one-Gaussian fit. Cases when this method is not recommended are discussed.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  9. Intrinsic radial sensitivity of nucleon inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kelly, J. J.

    1988-02-01

    A linear expansion analysis of the folding model transition amplitude is used to study the intrinsic sensitivity of the inelastic scattering of intermediate energy nucleons to the radial form of the neutron transition density, given known proton transition densities from electron scattering. Realistic density-dependent effective interactions are used to construct pseudodata. These pseudodata are then reanalyzed and the error matrix is used to calculate an error band for the radial transition density. This approach reveals the sensitivity of the extracted transition density to absorption, medium modifications of the interaction, and the extent and quality of the data in a manner that is largely free of the residual inaccuracies in reaction theory that complicate the analysis of real data. We find that the intrinsic radial sensitivity of nucleon inelastic scattering is best for projectile energies between 200 and 500 MeV, but is adequate to resolve the radial dependence of neutron transition densities even in the interior of heavy nuclei throughout the energy regime 100-800 MeV. We have also compared our method with scale-factor analyses which assume proportionality between neutron and proton densities. For states whose transition densities are similar in the surface, we find scaling to be accurate at the 20% level. However, for light nuclei substantial deviations beyond the first peak of the differential cross section reveal sensitivity to shape differences. This sensitivity is reduced for heavy nuclei. The model dependence of radial densities is also studied. A high-q constraint is used to analyze the contribution of incompleteness error to the deduced error bands and to reduce the model dependence.

  10. Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal axis wind turbine applications

    NASA Astrophysics Data System (ADS)

    Kriswanto, Jamari

    2016-04-01

    Permanent magnet bearings (PMB) are contact free bearings which utilize the forces generated by the magnets. PMB in this work is a type of radial PMB, which functions as the radial bearings of the Horizontal Axis Wind Turbine (HAWT) rotor shaft. Radial PMB should have a greater radial force than the radial force HAWT rotor shaft (bearing load). This paper presents a modeling and experiments to calculate the radial force of the radial PMB. This paper also presents rotational speed test of the radial PMB compared to conventional bearings for HAWT applications. Modeling using COMSOL Multiphysics 4.3b with the magnetic fields physics models. Experiments were conducted by measuring the displacement of the rotor to the stator for a given load variation. Results of the two methods showed that the large displacement then the radial force would be greater. Radial forces of radial PMB is greater than radial forces of HAWT rotor shaft. The rotational speed test results of HAWT that used radial PMB produced higher rotary than conventional bearings with an average increase of 87.4%. Increasing rotational speed occured because radial PMB had no friction. HAWT that used radial PMB rotated at very low wind speeds are 1.4 m/s with a torque of 0.043 Nm, while the HAWT which uses conventional bearing started rotating at a wind speed of 4.4 m/s and required higher torque of 0.104 N.

  11. Stabilizing Morbidity and Predicting the Aesthetic Results of Radial Forearm Free Flap Donor Sites

    PubMed Central

    Yun, Tae Kyoung; Ahn, Duck Sun; Park, Seung Ha; Lee, Byung Il; Kim, Hyon Surk; You, Hi Jin

    2015-01-01

    Background The radial forearm flap is a versatile, widely used flap. However, the possibility of donor site complications has led to concern over its use. Some surgeons prefer using other flaps whose donor sites can be closed primarily with less morbidity, including avoiding unpleasant scarring. However, in our experience, donor site stability of the radial forearm flap can be reliably achieved by using well-implemented specific procedures. Here, we present a collection of donor site cases of the radial forearm flap and investigate factors that affect the aesthetic results as the basis for a reference for selecting a radial forearm flap. Methods In this retrospective study, we reviewed 171 cases in which a radial forearm flap was used for free tissue transfer after resecting head and neck cancer. We focused on donor site morbidity rates. Each operation involved a detailed procedure designed to minimize donor site morbidity. Moreover, statistical investigations were conducted for 22 cases to determine factors affecting the scar appearance. Results Only one case developed total skin graft necrosis as a major complication. Scar-related aesthetic results were acceptable, and the body-mass index, body weight, diabetes, and cardiac problems were significant factors related to the appearance of scars. Conclusions Performing the radial forearm flap using a well-implemented detailed technique helps achieve acceptable donor site morbidity results. The aesthetic results were more promising for patients without excess body weight, diabetes, or cardiac problems. Therefore, anxiety about donor site morbidity should not be a reason to avoid selecting the radial forearm flap in suitable patients. PMID:26618126

  12. Low profile radial nerve palsy orthosis with radial and ulnar deviation.

    PubMed

    Peck, Jean; Ollason, Jennie

    2015-01-01

    Individuals who sustain damage to the radial nerve experience a significant loss in functional use of the hand. Traditional orthoses have been effective in providing assistance with wrist stabilization and finger/thumb MP extension. These authors adapted a low profile orthosis to provide the necessary support while allowing radial and ulnar deviation of the wrist, thus increasing functional use of the hand.--Victoria Priganc, PhD, OTR, CHT, CLT, Practice Forum Editor. PMID:26190027

  13. Entropy generation of radial rotation convective channels

    NASA Astrophysics Data System (ADS)

    Alić, Fikret

    2012-03-01

    The exchange of heat between two fluids is established by radial rotating pipe or a channel. The hotter fluid flows through the pipe, while the cold fluid is ambient air. Total length of pipe is made up of multiple sections of different shape and position in relation to the common axis of rotation. In such heat exchanger the hydraulic and thermal irreversibility of the hotter and colder fluid occur. Therefore, the total entropy generated within the radial rotating pipe consists of the total entropy of hotter and colder fluid, taking into account all the hydraulic and thermal irreversibility of both fluids. Finding a mathematical model of the total generated entropy is based on coupled mathematical expressions that combine hydraulic and thermal effects of both fluids with the complex geometry of the radial rotating pipe. Mathematical model follows the each section of the pipe and establishes the function between the sections, so the total generated entropy is different from section to section of the pipe. In one section of the pipe thermal irreversibility may dominate over the hydraulic irreversibility, while in another section of the pipe the situation may be reverse. In this paper, continuous analytic functions that connect sections of pipe in geometric meaning are associated with functions that describe the thermo-hydraulic effects of hotter and colder fluid. In this way, the total generated entropy of the radial rotating pipe is a continuous analytic function of any complex geometry of the rotating pipe. The above method of establishing a relationship between the continuous function of entropy with the complex geometry of the rotating pipe enables indirect monitoring of unnecessary hydraulic and thermal losses of both fluids. Therefore, continuous analytic functions of generated entropy enable analysis of hydraulic and thermal irreversibility of individual sections of pipe, as well as the possibility of improving the thermal-hydraulic performance of the rotating

  14. New Measurements of Radial Mode Eigenfrequencies

    NASA Astrophysics Data System (ADS)

    Laske, G.; Masters, G.; Dziewonski, A. M.

    2001-12-01

    Radial mode eigenfrequencies are commonly thought to be measured with great ease and precision. The reason for this is that these modes have no geographic pattern so one should be able to measure frequencies from a spectrum observed at any station in the world. Yet, radial modes often seem inconsistent with spherical Earth models that fit all other mode frequencies. It turns out that radial modes are sometimes strongly coupled. The strongest coupling is predicted to be with l=2 modes which is caused by the Earth's hydrostatic ellipticity and aspherical structure of harmonic degree 2. In such cases, mode-coupling due to ellipticity alone can cause a frequency shift for the radial modes by more than 4 microHz. Given that mode frequencies can be measured to within 0.1 microHz, this shift is significant, and some singlets of l=2 modes have indeed been misidentified as the radial mode in the past. Including the spectra of the June 23, 2001 Southern Peru Earthquake we have re-analyzed radial mode eigenfrequencies and present a mode dataset that is internally more consistent than previous ones. We construct spherical Earth models that are consistent with our new data, the Earth's mass and moment of inertia and the current best estimates of ``Reference Normal Mode Data'' (available on the Reference Earth Model web site: //mahi.ucsd.edu/Gabi/rem.html). We seek the smallest perturbation to PREM but update the Q-structure as well as the depths of the upper mantle discontinuities (418~km and 660~km as first order discontinuities; 520~km as change in gradient). The best fitting 1D model is transversely isotropic but we also show isotropic models that fit the data to within their errors. We show that the 220~km discontinuity is not required in the isotropic model but that there exists a trade-off between high shear-velocities in the lid and a low-density zone beneath it. We also investigate ways of truncating transverse isotropy without the 220.

  15. Radial tunnel syndrome. A retrospective review of 30 decompressions of the radial nerve.

    PubMed

    Lawrence, T; Mobbs, P; Fortems, Y; Stanley, J K

    1995-08-01

    Radial tunnel syndrome results from compression of the radial nerve by the free edge of the supinator muscle or closely related structures in the vicinity of the elbow joint. Despite numerous reports on the surgical management of this disorder, it remains largely unrecognized and often neglected. The symptoms of radial tunnel syndrome can resemble those of tennis elbow, chronic wrist pain or tenosynovitis. Reliable objective criteria are not available to differentiate between these pathologies. These difficulties are discussed in relation to 29 patients who underwent 30 primary explorations and proximal decompressions of the radial nerve. Excellent or good results were obtained in 70%, fair results in 13% and poor results in 17% of patients. The results can be satisfactory despite the prolonged duration of symptoms. We believe that a diagnosis of radial tunnel syndrome should always be born in mind when dealing with patients with forearm and wrist pain that has not responded to more conventional treatment. Patients with occupations requiring repetitive manual tasks seem to be particularly at risk of developing radial tunnel syndrome and it is also interesting to note that 66% of patients with on-going medico-legal claims had successful outcomes following surgery. PMID:7594982

  16. Algebraic evaluation of matrix elements in the Laguerre function basis

    NASA Astrophysics Data System (ADS)

    McCoy, A. E.; Caprio, M. A.

    2016-02-01

    The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfunctions (from the Schrödinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1, 1) × SO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.

  17. Analysis of complex networks using aggressive abstraction.

    SciTech Connect

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving - we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  18. Simple proposal for radial 3D needlets

    NASA Astrophysics Data System (ADS)

    Durastanti, C.; Fantaye, Y.; Hansen, F.; Marinucci, D.; Pesenson, I. Z.

    2014-11-01

    We present here a simple construction of a wavelet system for the three-dimensional ball, which we label radial 3D needlets. The construction envisages a data collection environment in which an observer located at the center of the ball is surrounded by concentric spheres with the same pixelization at different radial distances, for any given resolution. The system is then obtained by weighting the projector operator built on the corresponding set of eigenfunctions and performing a discretization step which turns out to be computationally very convenient. The resulting wavelets can be shown to have very good localization properties in the real and harmonic domain; their implementation is computationally very convenient, and they allow for exact reconstruction as they form a tight frame system. Our theoretical results are supported by an extensive numerical analysis.

  19. Radial spline assembly for antifriction bearings

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1993-01-01

    An outer race carrier is constructed for receiving an outer race of an antifriction bearing assembly. The carrier in turn is slidably fitted in an opening of a support wall to accommodate slight axial movements of a shaft. A plurality of longitudinal splines on the carrier are disposed to be fitted into matching slots in the opening. A deadband gap is provided between sides of the splines and slots, with a radial gap at ends of the splines and slots and a gap between the splines and slots sized larger than the deadband gap. With this construction, operational distortions (slope) of the support wall are accommodated by the larger radial gaps while the deadband gaps maintain a relatively high springrate of the housing. Additionally, side loads applied to the shaft are distributed between sides of the splines and slots, distributing such loads over a larger surface area than a race carrier of the prior art.

  20. Coronary Embolism After Iatrogenic Radial Endarterectomy.

    PubMed

    Rozado, Jose; Pascual, Isaac; Avanzas, Pablo; Moris, Cesar

    2016-06-01

    A 55-year-old man with double-vessel coronary artery disease was revascularized by percutaneous coronary intervention three years ago. Elective coronary angiography was indicated for angina with positive stress test. During the procedure, severe radial spasm occurred; after the first injection, we detected loss in pressure trace in the diagnostic catheter and acute distal circumflex occlusion. Suspecting catheter thrombosis with coronary embolization, the entire system was exchanged and inspected; inside, we discovered a 2 x 50 mm white biological cylinder. Histological study of this material was compatible with endarterectomy. We present a rare complication of severe radial artery spasm and endarterectomy, with occlusion of the diagnostic catheter and coronary embolization. PMID:27236012

  1. TMT and Exoplanet Radial Velocity Surveys

    NASA Astrophysics Data System (ADS)

    Tanner, Angelle; Crossfield, Ian

    2014-07-01

    With echelle spectrometers on the verge of crossing over the 0.1 m/s radial velocity (RV) measurement precision threshold needed to detect habitable Earth mass planets around Sun-like stars, conducing such surveys on state-of-the-art telescopes is an imperative. RV exoplanets surveys conducted with the optical and infrared echelle spectrometers being built for the TMT have the potential to complete a census of the population of Earth-mass planets in our local stellar neighborhood. The detection of such systems will provide a valuable stellar sample for follow-up exoplanet studies which would characterize the atmospheres of these or additional planets found in these nearby solar systems. Here, we will further discuss the impact of the TMT on radial velocity exoplanet surveys.

  2. Precise Near-Infrared Radial Velocities

    NASA Astrophysics Data System (ADS)

    Plavchan, Peter; Gao, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe

    2016-01-01

    We present the results of two 2.3 μm near-infrared (NIR) radial velocity (RV) surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~ 46,000) at the NASA InfraRed Telescope Facility (IRTF), combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m s-1 on our survey targets.

  3. SpicyNodes Radial Map Engine

    NASA Astrophysics Data System (ADS)

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  4. Stellar Rotation and Precise Radial Velocities

    NASA Astrophysics Data System (ADS)

    Gray, D. F.

    Two aspects will be considered. First, I will view the spectroscopic measurement of rotation rates as a differential precision radial velocity: how do we get rotation rates; what are the uncertainties stemming from differential rotation, time variable profiles caused by spots, uncertain limb darkening, and the presence of macroturbulence? What do we even mean by the rotation rate when there is differential rotation? Second, I will discuss the effects of rotation on specifying the precise position of spectral lines, i.e., the classical radial velocity of a star. I will present some thoughts on the effects of having our sharp markers of the Doppler effect degraded by rotation, the meaning of line position when the Doppler effects of rotation and convection interact, and the altered shapes of composite spectrum features with increased rotational smearing.

  5. Basis of Articulation.

    ERIC Educational Resources Information Center

    Kelz, Heinrich

    This article intends to shed light on the somewhat nebulous term "basis of articulation," which is used frequently in Eastern European phonetic and linguistic literature but highly neglected in contemporary American literature. In a historical approach, it is shown how the term originated and developed, how it is defined by various authors, and…

  6. Prefrontal cortex organization: dissociating effects of temporal abstraction, relational abstraction, and integration with FMRI.

    PubMed

    Nee, Derek Evan; Jahn, Andrew; Brown, Joshua W

    2014-09-01

    The functions of the prefrontal cortex (PFC) underlie higher-level cognition. Varying proposals suggest that the PFC is organized along a rostral-caudal gradient of abstraction with more abstract representations/processes associated with more rostral areas. However, the operational definition of abstraction is unclear. Here, we contrasted 2 prominent theories of abstraction--temporal and relational--using fMRI. We further examined whether integrating abstract rules--a function common to each theory--recruited the PFC independently of other abstraction effects. While robust effects of relational abstraction were present in the PFC, temporal abstraction effects were absent. Instead, we found activations specific to the integration of relational rules in areas previously shown to be associated with temporal abstraction. We suggest that previous effects of temporal abstraction were due to confounds with integration demands. We propose an integration framework to understand the functions of the PFC that resolves discrepancies in prior data. PMID:23563962

  7. Radially Localized Helicon Modes in Nonuniform Plasma

    SciTech Connect

    Breizman, Boris N.; Arefiev, Alexey V.

    2000-04-24

    A radial density gradient in an axisymmetric cylindrical plasma column forms a potential well for nonaxisymmetric helicon modes (m{ne}0 ). This paper presents an analytic description of such modes in the limit of small longitudinal wave numbers. The corresponding mode equation indicates the possibility of efficient resonant absorption of rf power in helicon discharges at unusually low frequencies. (c) 2000 The American Physical Society.

  8. Radial rib antenna surface deviation analysis program

    NASA Technical Reports Server (NTRS)

    Coyner, J. V., Jr.

    1971-01-01

    A digital computer program was developed which analyzes any radial rib antenna with ribs radiating from a central hub. The program has the capability for calculating the antenna surface contour (reversed pillowing effect), the optimum rib shape for minimizing the rms surface error, and the actual rms surface error. Rib deflection due to mesh tension and catenary cable tension can also be compensated for, and the pattern from which the mesh gores are cut can be determined.

  9. Vitesses radiales - catalogue WEB: Wilson Evans Batten.

    NASA Astrophysics Data System (ADS)

    Duflot, M.; Figon, P.; Meyssonnier, N.

    Les auteurs ont réuni, en une seule version, les catalogues de vitesses radiales moyennes de Wilson (1963) et de Evans (1978), qui ont de nombreuses étoiles en commun. Les étoiles doubles spectroscopiques, dont l'orbite est déterminée (catalogue de Batten et al. 1989), ont également été associées à ce travail.

  10. Development of a Radial Deconsolidation Method

    SciTech Connect

    Helmreich, Grant W.; Montgomery, Fred C.; Hunn, John D.

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.

  11. Approximate theory for radial filtration/consolidation

    SciTech Connect

    Tiller, F.M.; Kirby, J.M.; Nguyen, H.L.

    1996-10-01

    Approximate solutions are developed for filtration and subsequent consolidation of compactible cakes on a cylindrical filter element. Darcy`s flow equation is coupled with equations for equilibrium stress under the conditions of plane strain and axial symmetry for radial flow inwards. The solutions are based on power function forms involving the relationships of the solidosity {epsilon}{sub s} (volume fraction of solids) and the permeability K to the solids effective stress p{sub s}. The solutions allow determination of the various parameters in the power functions and the ratio k{sub 0} of the lateral to radial effective stress (earth stress ratio). Measurements were made of liquid and effective pressures, flow rates, and cake thickness versus time. Experimental data are presented for a series of tests in a radial filtration cell with a central filter element. Slurries prepared from two materials (Microwate, which is mainly SrSO{sub 4}, and kaolin) were used in the experiments. Transient deposition of filter cakes was followed by static (i.e., no flow) conditions in the cake. The no-flow condition was accomplished by introducing bentonite which produced a nearly impermeable layer with negligible flow. Measurement of the pressure at the cake surface and the transmitted pressure on the central element permitted calculation of k{sub 0}.

  12. Immunoelectrophoretic analysis and radial immunodiffusion assay using plasminogen purified from fresh human plasma

    PubMed Central

    Magoon, E. H.; Austen, K. F.; Spragg, Jocelyn

    1974-01-01

    Plasminogen was purified from fresh human plasma by affinity chromatography and gel filtration and was characterized functionally, electrophoretically and on a weight basis. After antibody raised against this material was demonstrated to be monospecific for plasminogen/plasmin, it was employed in an immunoelectrophoretic analysis of plasminogen activated in several ways and in a radial immunodiffusion assay of human plasma plasminogen, where the mean level found was 476 μg/ml. ImagesFIG. 5FIG. 8 PMID:4143118

  13. Compression Neuropathy of the Radial Nerve Due to Ganglion Cysts

    PubMed Central

    Lifchez, Scott D.; Dzwierzynski, William W.

    2008-01-01

    Ganglions of the upper extremity are common. Radial nerve dysfunction, particularly radial sensory dysfunction, is a rare finding in association with a ganglion. We present our experience with two such ganglia and a review of the literature. PMID:18780092

  14. Developing Creativity and Abstraction in Representing Data

    ERIC Educational Resources Information Center

    South, Andy

    2012-01-01

    Creating charts and graphs is all about visual abstraction: the process of representing aspects of data with imagery that can be interpreted by the reader. Children may need help making the link between the "real" and the image. This abstraction can be achieved using symbols, size, colour and position. Where the representation is close to what…

  15. Content Differences for Abstract and Concrete Concepts

    ERIC Educational Resources Information Center

    Wiemer-Hastings, Katja Katja; Xu, Xu

    2005-01-01

    Concept properties are an integral part of theories of conceptual representation and processing. To date, little is known about conceptual properties of abstract concepts, such as idea. This experiment systematically compared the content of 18 abstract and 18 concrete concepts, using a feature generation task. Thirty-one participants listed…

  16. Annual Abstract Series of Educational Material.

    ERIC Educational Resources Information Center

    Shelesnyak, M. C., Ed.

    1980-01-01

    This is the fifth annual collection of abstracts of educational materials presented by the Educational Materials Review Board of the American Physiological Society under the direction of the Education Committee. The collection includes abstracts of articles, papers, textbooks, books, handbooks, and symposia which are valuable in teaching…

  17. Abstracting in the Context of Spontaneous Learning

    ERIC Educational Resources Information Center

    Williams, Gaye

    2007-01-01

    There is evidence that spontaneous learning leads to relational understanding and high positive affect. To study spontaneous abstracting, a model was constructed by combining the RBC model of abstraction with Krutetskii's mental activities. Using video-stimulated interviews, the model was then used to analyze the behavior of two Year 8 students…

  18. National Workplace Literacy Program. 1993 Abstracts.

    ERIC Educational Resources Information Center

    Office of Vocational and Adult Education (ED), Washington, DC. National Workplace Literacy Program.

    This publication presents the abstracts of the 57 National Workplace Literacy Program 1993 projects. Each abstract provides the following information: project title; award number; project director; awardee; address; telephone and fax numbers; funds by fiscal year (federal and nonfederal); award period; federal project officer; objectives;…

  19. A Hybrid Method for Abstracting Newspaper Articles.

    ERIC Educational Resources Information Center

    Liu, James; Wu, Yan; Zhou, Lina

    1999-01-01

    Introduces a hybrid method for abstracting Chinese text that integrates the statistical approach with language understandings, incorporating some linguistics heuristics and segmentation into the abstracting process. Initial responses from application to Chinese newspaper articles show that the method contributes much to the flexibility and…

  20. Abstractions of Awareness: Aware of What?

    NASA Astrophysics Data System (ADS)

    Metaxas, Georgios; Markopoulos, Panos

    This chapter presents FN-AAR, an abstract model of awareness systems. The purpose of the model is to capture in a concise and abstract form essential aspects of awareness systems, many of which have been discussed in design essays or in the context of evaluating specific design solutions.

  1. Foundations of the Bandera Abstraction Tools

    NASA Technical Reports Server (NTRS)

    Hatcliff, John; Dwyer, Matthew B.; Pasareanu, Corina S.; Robby

    2003-01-01

    Current research is demonstrating that model-checking and other forms of automated finite-state verification can be effective for checking properties of software systems. Due to the exponential costs associated with model-checking, multiple forms of abstraction are often necessary to obtain system models that are tractable for automated checking. The Bandera Tool Set provides multiple forms of automated support for compiling concurrent Java software systems to models that can be supplied to several different model-checking tools. In this paper, we describe the foundations of Bandera's data abstraction mechanism which is used to reduce the cardinality (and the program's state-space) of data domains in software to be model-checked. From a technical standpoint, the form of data abstraction used in Bandera is simple, and it is based on classical presentations of abstract interpretation. We describe the mechanisms that Bandera provides for declaring abstractions, for attaching abstractions to programs, and for generating abstracted programs and properties. The contributions of this work are the design and implementation of various forms of tool support required for effective application of data abstraction to software components written in a programming language like Java which has a rich set of linguistic features.

  2. New Features in the ADS Abstract Service

    NASA Technical Reports Server (NTRS)

    Eichhorn, Guenther; Accomazzi, Alberto; Grant, Carolyn S.; Kurtz, Michael J.; Henneken, Edwin A.; Thompson, Donna M.; Murray, Stephen S.

    2005-01-01

    The NASA-ADS Abstract Service provides a sophisticated search capability for the literature in Astronomy, Planetary Sciences, Physics/Geophysics, and Space Instrumentation. The ADS is funded by NASA and access to the ADS services is free to anybody world-wide without restrictions. It allows the user to search the literature by author, title, and abstract text.

  3. Interpreting Abstract Interpretations in Membership Equational Logic

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd; Rosu, Grigore

    2001-01-01

    We present a logical framework in which abstract interpretations can be naturally specified and then verified. Our approach is based on membership equational logic which extends equational logics by membership axioms, asserting that a term has a certain sort. We represent an abstract interpretation as a membership equational logic specification, usually as an overloaded order-sorted signature with membership axioms. It turns out that, for any term, its least sort over this specification corresponds to its most concrete abstract value. Maude implements membership equational logic and provides mechanisms to calculate the least sort of a term efficiently. We first show how Maude can be used to get prototyping of abstract interpretations "for free." Building on the meta-logic facilities of Maude, we further develop a tool that automatically checks and abstract interpretation against a set of user-defined properties. This can be used to select an appropriate abstract interpretation, to characterize the specified loss of information during abstraction, and to compare different abstractions with each other.

  4. Tour the Galaxy of the Abstract.

    ERIC Educational Resources Information Center

    Kennedy, Patricia

    2003-01-01

    Describes an abstract art unit in which students in an introductory art course created abstract art inspired by the work of M. C. Escher. Explains that some students are unsure of their drawing ability. States this unit helps them overcome their fears. (CMK)

  5. Some Call It Stone: Teaching Abstract Sculpture

    ERIC Educational Resources Information Center

    Asher, Rikki

    2004-01-01

    Abstract visual art is not for everybody. Some people find it threatening, uncomfortable, and often, inaccessible. Understandably, this can result in a lack of attention paid to nonrepresentational works of art in the visual arts curriculum. This article describes an experiential, hands-on, field trip that sought to demystify abstract sculpture,…

  6. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  7. Romanian Scientific Abstracts, Volume 10 Number 3.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main numerical sequence. The December issue includes a subject index for the material included throughout the year. It also indicates, in an appended table, the numerical symbol of…

  8. Romanian Scientific Abstracts, Volume 10 Number 1.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  9. Romanian Scientific Abstracts, Volume 10 Number 6.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  10. Romanian Scientific Abstracts, Volume 10 Number 4.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numeric sequence. The December issue includes a subject index for the material included…

  11. Romanian Scientific Abstracts, Volume 10 Number 5.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numeric sequence. The December issue includes a subject index for the material included…

  12. Romanian Scientific Abstracts, Volume 9 Number 11.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. The entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  13. Romanian Scientific Abstracts, Volume 9 Number 12.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. T8e entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  14. Romanian Scientific Abstracts, Volume 10 Number 2.

    ERIC Educational Resources Information Center

    Caracas, Angela, Ed.

    The material included in the monthly issues of the "Romanian Scientific Abstracts" as bibliographic references or abstracts is arranged according to discipline and main problems and is provided with an index and with key-words. T entries are recorded in numerical sequence. The December issue includes a subject index for the material included…

  15. Youth Studies Abstracts. Vol. 4 No. 1.

    ERIC Educational Resources Information Center

    Youth Studies Abstracts, 1985

    1985-01-01

    This volume contains abstracts of 76 projects (most of which were conducted in Australia and New Zealand) concerned with programs for youth and with social and educational developments affecting youth. The abstracts are arranged in the following two categories: (1) Social and Educational Developments: Policy, Analysis, Research; and (2) Programs:…

  16. Interactional Metadiscourse in Research Article Abstracts

    ERIC Educational Resources Information Center

    Gillaerts, Paul; Van de Velde, Freek

    2010-01-01

    This paper deals with interpersonality in research article abstracts analysed in terms of interactional metadiscourse. The evolution in the distribution of three prominent interactional markers comprised in Hyland's (2005a) model, viz. hedges, boosters and attitude markers, is investigated in three decades of abstract writing in the field of…

  17. Writing Abstracts for Free-Text Searching.

    ERIC Educational Resources Information Center

    Fidel, Raya

    1986-01-01

    This study surveyed abstracting policies and guidelines used by producers of bibliographic databases that aim to enhance free-text retrieval. Results indicate editors consider content of abstracts and their language as primary factors in retrieval enhancement. Most recommend that concepts and form be coordinated with controlled vocabulary…

  18. A Microfilm Index to "Chemical Abstracts"

    ERIC Educational Resources Information Center

    Robinson, F.

    1973-01-01

    To improve access to the recent Chemical Abstracts,'' a cumulative quarterly index, based on the keyword phrases, has been produced in microfilm form. The index is available soon after the end of each quarter. Abstract titles are included in the index, thus increasing its value as a working tool. (4 references) (Author/SJ)

  19. Abstraction/Representation Theory for heterotic physical computing.

    PubMed

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. PMID:26078343

  20. DSNF AND OTHER WASTE FORM DEGRADATION ABSTRACTION

    SciTech Connect

    J. CUNNANE

    2004-11-19

    Several hundred distinct types of DOE-owned spent nuclear fuel (DSNF) may potentially be disposed in the Yucca Mountain repository. These fuel types represent many more types than can be viably individually examined for their effect on the Total System Performance Assessment for the License Application (TSPA-LA). Additionally, for most of these fuel types, there is no known direct experimental test data for the degradation and dissolution of the waste form in repository groundwaters. The approach used in the TSPA-LA model is, therefore, to assess available information on each of 11 groups of DSNF, and to identify a model that can be used in the TSPA-LA model without differentiating between individual codisposal waste packages containing different DSNF types. The purpose of this report is to examine the available data and information concerning the dissolution kinetics of DSNF matrices for the purpose of abstracting a degradation model suitable for use in describing degradation of the DSNF inventory in the Total System Performance Assessment for the License Application. The data and information and associated degradation models were examined for the following types of DSNF: Group 1--Naval spent nuclear fuel; Group 2--Plutonium/uranium alloy (Fermi 1 SNF); Group 3--Plutonium/uranium carbide (Fast Flux Test Facility-Test Fuel Assembly SNF); Group 4--Mixed oxide and plutonium oxide (Fast Flux Test Facility-Demonstration Fuel Assembly/Fast Flux Test Facility-Test Demonstration Fuel Assembly SNF); Group 5--Thorium/uranium carbide (Fort St. Vrain SNF); Group 6--Thorium/uranium oxide (Shippingport light water breeder reactor SNF); Group 7--Uranium metal (N Reactor SNF); Group 8--Uranium oxide (Three Mile Island-2 core debris); Group 9--Aluminum-based SNF (Foreign Research Reactor SNF); Group 10--Miscellaneous Fuel; and Group 11--Uranium-zirconium hydride (Training Research Isotopes-General Atomics SNF). The analyses contained in this document provide an ''upper-limit'' (i

  1. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  2. 14 CFR 73.5 - Bearings; radials; miles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Bearings; radials; miles. 73.5 Section 73.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SPECIAL USE AIRSPACE General § 73.5 Bearings; radials; miles. (a) All bearings and radials in this...

  3. 14 CFR 73.5 - Bearings; radials; miles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Bearings; radials; miles. 73.5 Section 73.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SPECIAL USE AIRSPACE General § 73.5 Bearings; radials; miles. (a) All bearings and radials in this...

  4. 14 CFR 71.7 - Bearings, radials, and mileages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Bearings, radials, and mileages. 71.7 Section 71.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... REPORTING POINTS § 71.7 Bearings, radials, and mileages. All bearings and radials in this part are true...

  5. 14 CFR 73.5 - Bearings; radials; miles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Bearings; radials; miles. 73.5 Section 73.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SPECIAL USE AIRSPACE General § 73.5 Bearings; radials; miles. (a) All bearings and radials in this...

  6. 14 CFR 71.7 - Bearings, radials, and mileages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Bearings, radials, and mileages. 71.7 Section 71.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... REPORTING POINTS § 71.7 Bearings, radials, and mileages. All bearings and radials in this part are true...

  7. 14 CFR 73.5 - Bearings; radials; miles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Bearings; radials; miles. 73.5 Section 73.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SPECIAL USE AIRSPACE General § 73.5 Bearings; radials; miles. (a) All bearings and radials in this...

  8. 14 CFR 71.7 - Bearings, radials, and mileages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Bearings, radials, and mileages. 71.7 Section 71.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... REPORTING POINTS § 71.7 Bearings, radials, and mileages. All bearings and radials in this part are true...

  9. 14 CFR 71.7 - Bearings, radials, and mileages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Bearings, radials, and mileages. 71.7 Section 71.7 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... REPORTING POINTS § 71.7 Bearings, radials, and mileages. All bearings and radials in this part are true...

  10. 14 CFR 73.5 - Bearings; radials; miles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Bearings; radials; miles. 73.5 Section 73.5 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRSPACE SPECIAL USE AIRSPACE General § 73.5 Bearings; radials; miles. (a) All bearings and radials in this...

  11. Comminuted radial head fractures treated by the Acumed anatomic radial head system

    PubMed Central

    Mou, Zhefei; Chen, Maohua; Xiong, Yan; Fan, Zhihang; Wang, Aimin; Wang, Ziming

    2015-01-01

    Objective: The treatment of comminuted radial head fractures is still challenging. A radial head replacement is more effective in comminuted radial head fractures. The aim of this paper was to present the medium-term results of the Acumed anatomic radial head system (AARHS). Methods: This study was performed on 12 patients with traumatic elbow fracture and instability between 2008 and 2011 of whom 12 were reviewed at a mean follow-up of 60.8 months (19 to 77 months). The evaluation included a record of pain, function, muscle strength, contracture and rotation. The outcome was assessed using the Hospital for Special Surgery total elbow scoring and a modified Disability of Arm Shoulder Hand (DASH) questionnaire. Results: The average flexion and extension arc was 130° (range, 110° to 140°). The mean range of elbow supination was 75° (rang, 60° to 85°) and pronation 80° (range, 65° to 90°). There were no complications such as infection, implant loosening, instability of the elbow, cubitus valgus, osteoporosis of the capitellum, or pain in the forearm and wrist. The mean DASH score was 11.9/100 (0 to 25/100). Conclusion: The radial head replacement with the AARHS can provide effectively stability and good clinic results at the middle term following up. Our experience has encouraged us to continue using the AARHS in comminuted fractures, especially when instability of elbow is a potential problem. PMID:26131250

  12. Abstracted publications related to the Hanford environment, 1980 to 1988

    SciTech Connect

    Becker, C.D.; Gray, R.H.

    1989-05-01

    This abstracted bibliography provides a reference to the diverse environmental activities conducted on the Hanford Site from 1980 through 1988. It includes 500 reports and articles that were prepared largely by onsite contractors and the Department of Energy. Documents contained here were separated into eight subject areas: air and atmosphere, aquatic ecology, effluents and wastes, geology and hydrology, Hanford Site, radioactivity, terrestrial ecology, and socioeconomics. These areas form the basis of a key word index, which is intended to help the reader locate subjects of interest. An author index is also included.

  13. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  14. Radial Extracorporeal Shock Wave Therapy in a Person With Advanced Osteonecrosis of the Femoral Head

    PubMed Central

    Ma, Yue Wen; Jiang, Dong Lei; Zhang, Dai; Wang, Xiao Bei; Yu, Xiao Tong

    2016-01-01

    ABSTRACT This case report describes the first patient with avascular necrosis of the femoral head of Association Research Circulation Osseous stage IV, treated with radial extracorporeal shock wave therapy. By contrast, previous studies demonstrated the efficacy of a single treatment of focused extracorporeal shock wave therapy in improving pain and Harris Hip Scale in patients with avascular necrosis of the femoral head of Association Research Circulation Osseous stage I to III. The affected hip was treated with 6000 impulses of radial extracorporeal shock wave therapy at 10 Hz and an intensity ranging from 2.5 to 4.0 bar at 7-day intervals for 24 mos. The Harris Hip Scale values were 33, 43, 56, 77, 81, 88, and 92 at baseline and 1, 3, 6, 12, 18, and 24 mos, respectively. The radiographs showed that the subluxation of the right hip was slightly aggravated. Joint effusion was reduced, bone marrow edema disappeared, the density became more uniform, and the gluteal muscles were more developed based on magnetic resonance imaging. Increased tracer uptake was evident along the joint margin and superolateral aspect of the head both before and after radial extracorporeal shock wave therapy. This case report demonstrates the feasibility of long-term radial extracorporeal shock wave therapy in Association Research Circulation Osseous stage IV patients. PMID:27003206

  15. Abstract spatial reasoning as an autistic strength.

    PubMed

    Stevenson, Jennifer L; Gernsbacher, Morton Ann

    2013-01-01

    Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven's Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level--concrete vs. abstract--and test domain--spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength. PMID:23533615

  16. Constraint-Based Abstract Semantics for Temporal Logic: A Direct Approach to Design and Implementation

    NASA Astrophysics Data System (ADS)

    Banda, Gourinath; Gallagher, John P.

    interpretation provides a practical approach to verifying properties of infinite-state systems. We apply the framework of abstract interpretation to derive an abstract semantic function for the modal μ-calculus, which is the basis for abstract model checking. The abstract semantic function is constructed directly from the standard concrete semantics together with a Galois connection between the concrete state-space and an abstract domain. There is no need for mixed or modal transition systems to abstract arbitrary temporal properties, as in previous work in the area of abstract model checking. Using the modal μ-calculus to implement CTL, the abstract semantics gives an over-approximation of the set of states in which an arbitrary CTL formula holds. Then we show that this leads directly to an effective implementation of an abstract model checking algorithm for CTL using abstract domains based on linear constraints. The implementation of the abstract semantic function makes use of an SMT solver. We describe an implemented system for proving properties of linear hybrid automata and give some experimental results.

  17. Writing, reviewing, and presenting an abstract.

    PubMed

    Strauss, R G

    1991-01-01

    Abstracts afford an opportunity to report data at professional meetings and, when published, in the literature. Accordingly, they should be prepared with great care. When writing an abstract, anticipate questions the reviewer will ask when judging it and provide complete answers. The presentation of an abstract should follow similar thought processes. State why a problem or question is important, how you addressed it, what you found, and how your findings can be applied to the issue at hand. Slides and text should provide coordinated visual and auditory input, respectively, to ensure complete comprehension. PMID:1816248

  18. DESIGN ANALYSIS OF RADIAL INFLOW TURBINES

    NASA Technical Reports Server (NTRS)

    Glassman, A. J.

    1994-01-01

    This program performs a velocity-diagram analysis required for determining geometry and estimating performance for radial-inflow turbines. Input design requirements are power, mass flow rate, inlet temperature and pressure, and rotative rate. The design variables include stator-exit angle, rotor-exit-tip to rotor-inlet radius ratio, rotor-exit-hub to tip radius ratio, and the magnitude and radial distribution of rotor-exit tangential velocity. The program output includes diameters, total and static efficiences, all absolute and relative temperatures, pressures, and velocities, and flow angles at stator inlet, stator exit, rotor inlet, and rotor exit. Losses accounted for in this program by the internal loss model are three-dimensional (profile plus end wall) viscous losses in the stator and the rotor, the disk-friction loss on the back side of the rotor, the loss due to the clearance between the rotor tip and the outer casing, and the exit velocity loss. The flow analysis is one-dimensional at the stator inlet, stator exit, and rotor inlet, each of these calculation stations being at a constant radius. At the rotor exit where there is a variation in flow-field radius, an axisymmetric two-dimensional analysis is made using constant height sectors. Simple radial equilibrium is used to establish the static pressure gradient at the rotor exit. This program is written in FORTRAN V and has been implemented on a UNIVAC 1100 series computer with a memory requirement of approximately 22K of 36 bit words.

  19. Linear stability of radially-heated circular Couette flow with simulated radial gravity

    NASA Astrophysics Data System (ADS)

    Tagg, Randy; Weidman, Patrick D.

    2007-05-01

    The stability of circular Couette flow between vertical concentric cylinders in the presence of a radial temperature gradient is considered with an effective “radial gravity.” In addition to terrestrial buoyancy - ρg e z we include the term - ρg m f(r)e r where g m f(r) is the effective gravitational acceleration directed radially inward across the gap. Physically, this body force arises in experiments using ferrofluid in the annular gap of a Taylor Couette cell whose inner cylinder surrounds a vertical stack of equally spaced disk magnets. The radial dependence f(r) of this force is proportional to the modified Bessel function K 1(κr), where 2π/κ is the spatial period of the magnetic stack and r is the radial coordinate. Linear stability calculations made to compare with conditions reported by Ali and Weidman (J. Fluid Mech., 220, 1990) show strong destabilization effects, measured by the onset Rayleigh number R, when the inner wall is warmer, and strong stabilization effects when the outer wall is warmer, with increasing values of the dimensionless radial gravity γ = g m /g. Further calculations presented for the geometry and fluid properties of a terrestrial laboratory experiment reveal a hitherto unappreciated structure of the stability problem for differentially-heated cylinders: multiple wavenumber minima exist in the marginal stability curves. Transitions in global minima among these curves give rise to a competition between differing instabilities of the same spiral mode number, but widely separated axial wavenumbers.

  20. Methods and apparatus for radially compliant component mounting

    DOEpatents

    Bulman, David Edward; Darkins, Jr., Toby George; Stumpf, James Anthony; Schroder, Mark S.; Lipinski, John Joseph

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  1. Coupling Between Velocities in a Radial Supercharger

    NASA Astrophysics Data System (ADS)

    Pavlechko, V. N.; Petrov, O. A.

    2014-03-01

    We have analyzed the velocities of the medium and impeller in a radial supercharger with consideration of the Coriolis acceleration. We have derived an expression for determining the angular velocity of the medium that differs from the angular velocity of the impeller. Dependences have been obtained to determine the velocity of the medium at the exit from the impeller on the inclination angle of the supercharger blades and their coupling with the circumferential velocity of the impeller in the absence of energy losses. Graphical dependences of velocities on the inclination angle of the blades at different ratios of inside radius to outside radius have been constructed.

  2. Anomalous optical forces on radially anisotropic nanowires

    NASA Astrophysics Data System (ADS)

    Chen, H. L.; Gao, L.

    2015-11-01

    Full-wave electromagnetic scattering theory and Maxwell stress tensor integration techniques have been established to study the optical force on the radially anisotropic nanowires. The optical forces on the isotropic nanowires are dependent on the size of the nanowire and the wave vector in the media with the Rayleigh's law. However, the optical forces on the anisotropic nanowires have the anomalous behaviors under non-Rayleigh vanishing condition and non-Rayleigh diverging condition. Therefore, the optical forces on the anisotropic nanowires may be enhanced or reduced by tuning the anisotropic parameters. These results may promote the potential applications in the field of nanotechnology.

  3. Reactive-infiltration instability in radial geometry

    NASA Astrophysics Data System (ADS)

    Grodzki, Piotr; Szymczak, Piotr

    2015-04-01

    A planar dissolution front propagating through a homogeneous porous matrix is unstable with respect to small variations in local permeability; regions of high permeability dissolve faster because of enhanced transport of reactants, which leads to increased rippling of the front. This phenomenon, usually referred to known as reactive-infiltration instability is an important mechanism for pattern development in geology, with a range of morphologies and scales, from cave systems running for hundreds of miles to laboratory acidization on the scale of centimeters. In general, this instability is characterized by two length scales: the diffusive length (D/v) and the reactant penetration length (v/r), where v is the Darcy velocity, D - the diffusion constant and r - the dissolution rate. If the latter scale is much smaller than the former one can adopt the so-called thin front limit, where the interface is treated as a discontinuity in porosity, with a completely dissolved phase on one side and an undissolved phase on the other. Linear stability analysis for this case has been carried out by Chadam et al. [1], and the corresponding dispersion relation shows that long wavelengths are unstable, whereas short wavelengths are stabilized by diffusion. In their derivation, Chadam et al. have considered a linear geometry with a uniform pressure gradient applied along one of the directions. However, in many cases (e.g. in the acidization techniques used in oil industry) the reactive fluids are injected through a well and thus the relevant geometry is radial rather than linear. Motivated by this, we have carried out the linear stability analysis of the reactive-infiltration problem in radial geometry, with the fluid injection at the centre of the system. We stay within the thin-front limit and derive the corresponding dispersion relation, which shows the stable regions for both the long-wavelength and short-wavelength modes, and the unstable region in between. Next, we study how

  4. Radial Velocity Detection of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Kaye, T. G.

    2004-05-01

    Spectroscopy has long been an ignored corner of amateur astronomy and is generally regarded as difficult if not impossible with small telescopes. With the advent of robotic scopes and high efficiency CCD's, this aspect of astronomy is now open for exploration. The Spectrashift.com project is a team of amateurs that have constructed and implemented a spectrograph and tele- scope system capable of measuring radial velocities down to approximately 100 meters per second. This level of precision can detect extrasolar planets known as "hot Jupiters". The system's performance has been demonstrated on the star Tau Boötis.

  5. Radioactive Waste Management Basis

    SciTech Connect

    Perkins, B K

    2009-06-03

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. The effects of groundwater abstraction on low flows

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E. M.; van Beek, L. P. H.; Wada, Y.; Bierkens, M. F. P.

    2012-04-01

    In regions with frequent water stress and large aquifer systems, groundwater often constitutes an essential source of water. If groundwater abstraction exceeds groundwater recharge over a long time and over large areas persistent groundwater depletion can occur. The resulting lowering of groundwater levels can have negative effects on agricultural productivity but also on natural streamflow and associated wetlands and ecosystems, in particular during low-flow events when the groundwater contribution through baseflow is relatively large. In this study we focus on the effects of global groundwater abstraction on low-flow magnitude, frequency and duration for the major rivers of the world for the period 1960-2000. As a basis, we use the large-scale hydrological model PCR-GLOBWB that calculates all major water balance terms on a daily time step at a 0.5ox0.5o resolution. Currently, PCR-GLOBWB represents groundwater and the associated baseflow by means of a linear reservoir that is parameterized using global lithological data and drainage density. It simulates renewable groundwater storage within each 0.5o cell. Lateral flow between cells is not considered. The specific runoff from the model is subsequently transformed into discharge by means of a kinematic wave routing scheme. In this study we perform a sensitivity analysis in which we evaluate the effects of total water demand for the period 1960-2000 (Wada et al., 2011: doi:10.5194/hess-15-3785-2011). This demand is preferentially met by renewable groundwater storage, secondly by surface water. Any remainder is assumed to stem from non- renewable (i.e. fossil) groundwater resources. Thus, groundwater abstractions act as a direct sink of (renewable) groundwater storage, whereas surface water abstractions act as a direct sink of streamflow. The resulting response is non-trivial as abstractions are variably taken from both groundwater and surface water, where return-flows contribute to a single source: return flow from

  7. Radial Neck Osteotomy for Malunion of Radial Neck Fracture in Childhood

    PubMed Central

    Vandergugten, Simon; Troussel, Serge; Lefebvre, Bernard

    2015-01-01

    In a case of a neglected radial neck fracture in childhood, the management of initial fracture and its complications are subjected to discussion. In children, open reduction should be avoided but an angulation less than 30° must be obtained. Several techniques exist to manage symptomatic malunion in adults, including resection, prosthesis, and osteotomy. When performing an osteotomy, it is important first to preserve an intact osseous hinge to avoid avascular necrosis and second to align the edge of the radial head articular surface with the lateral edge of the coronoid process, in order to avoid overstuffing elbow joint. PMID:26347364

  8. Rebirth of left radial artery access: could this be the 'right' radial artery?

    PubMed

    Taylor, Montoya; Capers, Quinn; Patel, Dilesh; Mehta, Nishaki K

    2015-06-01

    Cardiac catheterization has several risks, notably which include bleeding, stroke and death. The transradial (TR) approach to catheterization is associated with a lower bleeding risk. The right radial approach is the default method in most laboratories and the left radial artery (LRA) serves as the bail-out approach. This article discusses the advantages and disadvantages of transfemoral and TR access routes. The authors envisage an increased adoption of the LRA approach, due to the anatomical superiority and ease of catheter engagement afforded by this approach. The authors discuss ways to increase operator ease for LRA in the laboratory and propose a novel way to improve LRA work-flow. PMID:26000561

  9. Extension of the basis set of linearized augmented plane wave (LAPW) method by using supplemented tight binding basis functions

    NASA Astrophysics Data System (ADS)

    Nikolaev, A. V.; Lamoen, D.; Partoens, B.

    2016-07-01

    In order to increase the accuracy of the linearized augmented plane wave (LAPW) method, we present a new approach where the plane wave basis function is augmented by two different atomic radial components constructed at two different linearization energies corresponding to two different electron bands (or energy windows). We demonstrate that this case can be reduced to the standard treatment within the LAPW paradigm where the usual basis set is enriched by the basis functions of the tight binding type, which go to zero with zero derivative at the sphere boundary. We show that the task is closely related with the problem of extended core states which is currently solved by applying the LAPW method with local orbitals (LAPW+LO). In comparison with LAPW+LO, the number of supplemented basis functions in our approach is doubled, which opens up a new channel for the extension of the LAPW and LAPW+LO basis sets. The appearance of new supplemented basis functions absent in the LAPW+LO treatment is closely related with the existence of the u ˙ l -component in the canonical LAPW method. We discuss properties of additional tight binding basis functions and apply the extended basis set for computation of electron energy bands of lanthanum (face and body centered structures) and hexagonal close packed lattice of cadmium. We demonstrate that the new treatment gives lower total energies in comparison with both canonical LAPW and LAPW+LO, with the energy difference more pronounced for intermediate and poor LAPW basis sets.

  10. Pulmonary toxicology of respirable particles. [Lead abstract

    SciTech Connect

    Sanders, C.L.; Cross, F.T.; Dagle, G.E.; Mahaffey, J.A.

    1980-09-01

    Separate abstracts were prepared for the 44 papers presented in these proceedings. The last paper (Stannard) in the proceedings is an historical review of the field of inhalation toxicology and is not included in the analytics. (DS)

  11. OIL POLLUTION ABSTRACTS. VOLUME 6, NUMBER 2

    EPA Science Inventory

    Oil Pollution Abstracts (formerly entitled Oil Pollution Reports) is a quarterly compilation of current literature and research project summaries. Comprehensive coverage of oil pollution and its prevention and control is provided, with emphasis on the aquatic environment. This is...

  12. Program Aims at Improving Abstract Reasoning

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1977

    1977-01-01

    Describes a program being conducted within the chemistry department of Xavier University, New Orleans, Louisiana, to improve the abstract reasoning abilities of freshmen science majors. The project is based upon the philosophy developed by Jean Piaget. (SL)

  13. Introducing Abstraction to Junior High Students.

    ERIC Educational Resources Information Center

    Costanzo, Nancy

    1981-01-01

    Suggests a way to introduce abstract art to junior high school students who, more than students of any other age, emphasize realism both in their artwork and in their appreciation of works of art. (Author/SJL)

  14. Masking failures of multidimensional sensors (extended abstract)

    NASA Technical Reports Server (NTRS)

    Chew, Paul; Marzullo, Keith

    1990-01-01

    When a computer monitors a physical process, the computer uses sensors to determine the values of the physical variables that represent the state of the process. A sensor can sometimes fail, however, and in the worst case report a value completely unrelated to the true physical value. The work described is motivated by a methodology for transforming a process control program that can not tolerate sensor failure into one that can. In this methodology, a reliable abstract sensor is created by combining information from several real sensors that measure the same physical value. To be useful, an abstract sensor must deliver reasonably accurate information at reasonable computational cost. Sensors are considered that deliver multidimensional values (e.g., location or velocity in three dimensions, or both temperature and pressure). Geometric techniques are used to derive upper bounds on abstract sensor accuracy and to develop efficient algorithms for implementing abstract sensors.

  15. Two Types of Radial Systems of Dark Globules

    NASA Astrophysics Data System (ADS)

    Gyulbudaghian, A. L.; Mendez, R. A.

    2016-06-01

    We present results of survey of ESO/SRC plates of Southern Hemisphere for discovering new radial systems of dark globules. During the survey 16 new type 1 radial systems and 6 type 2 radial systems were found, it means that the number of known radial systems was almost doubled. In the centers of type 1 radial systems are situated O-B2 type stars, in the centers of type 2 radial systems there are no early type stars. An attempt was done to give interpretation to groups of submm starless condensations as radial systems of dark globules, situated behind thick dark clouds, that is why these globules are seen only in submm wavelengths.

  16. Earth Sciences Division collected abstracts: 1980

    SciTech Connect

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  17. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  18. Radial Velocity Eclipse Mapping of Exoplanets

    NASA Astrophysics Data System (ADS)

    Nikolov, Nikolay; Sainsbury-Martinez, Felix

    2015-07-01

    Planetary rotation rates and obliquities provide information regarding the history of planet formation, but have not yet been measured for evolved extrasolar planets. Here we investigate the theoretical and observational perspective of the Rossiter-McLaughlin effect during secondary eclipse (RMse) ingress and egress for transiting exoplanets. Near secondary eclipse, when the planet passes behind the parent star, the star sequentially obscures light from the approaching and receding parts of the rotating planetary surface. The temporal block of light emerging from the approaching (blueshifted) or receding (redshifted) parts of the planet causes a temporal distortion in the planet’s spectral line profiles resulting in an anomaly in the planet’s radial velocity curve. We demonstrate that the shape and the ratio of the ingress-to-egress radial velocity amplitudes depends on the planetary rotational rate, axial tilt, and impact factor (i.e., sky-projected planet spin-orbital alignment). In addition, line asymmetries originating from different layers in the atmosphere of the planet could provide information regarding zonal atmospheric winds and constraints on the hot spot shape for giant irradiated exoplanets. The effect is expected to be most-pronounced at near-infrared wavelengths, where the planet-to-star contrasts are large. We create synthetic near-infrared, high-dispersion spectroscopic data and demonstrate how the sky-projected spin axis orientation and equatorial velocity of the planet can be estimated. We conclude that the RMse effect could be a powerful method to measure exoplanet spins.

  19. Radial pn Junction, Wire Array Solar Cells

    NASA Astrophysics Data System (ADS)

    Kayes, Brendan Melville

    Radial pn junctions are potentially of interest in photovoltaics as a way to decouple light absorption from minority carrier collection. In a traditional planar design these occur in the same dimension, and this sets a lower limit on absorber material quality, as cells must both be thick enough to effectively absorb the solar spectrum while also having minority-carrier diffusion lengths long enough to allow for efficient collection of the photo-generated carriers. Therefore, highly efficient photovoltaic devices currently require highly pure materials and expensive processing techniques, while low cost devices generally operate at relatively low efficiency. The radial pn junction design sets the direction of light absorption perpendicular to the direction of minority-carrier transport, allowing the cell to be thick enough for effective light absorption, while also providing a short pathway for carrier collection. This is achieved by increasing the junction area, in order to decrease the path length any photogenerated minority carrier must travel, to be less than its minority carrier diffusion length. Realizing this geometry in an array of semiconducting wires, by for example depositing a single-crystalline inorganic semiconducting absorber layer at high deposition rates from the gas phase by the vapor-liquid-solid (VLS) mechanism, allows for a "bottom up" approach to device fabrication, which can in principle dramatically reduce the materials costs associated with a cell.

  20. A radial transmission line material measurement apparatus

    SciTech Connect

    Warne, L.K.; Moyer, R.D.; Koontz, T.E.; Morris, M.E.

    1993-05-01

    A radial transmission line material measurement sample apparatus (sample holder, offset short standards, measurement software, and instrumentation) is described which has been proposed, analyzed, designed, constructed, and tested. The purpose of the apparatus is to obtain accurate surface impedance measurements of lossy, possibly anisotropic, samples at low and intermediate frequencies (vhf and low uhf). The samples typically take the form of sections of the material coatings on conducting objects. Such measurements thus provide the key input data for predictive numerical scattering codes. Prediction of the sample surface impedance from the coaxial input impedance measurement is carried out by two techniques. The first is an analytical model for the coaxial-to-radial transmission line junction. The second is an empirical determination of the bilinear transformation model of the junction by the measurement of three full standards. The standards take the form of three offset shorts (and an additional lossy Salisbury load), which have also been constructed. The accuracy achievable with the device appears to be near one percent.