Science.gov

Sample records for abstract reactive oxygen

  1. Titanium-Oxygen Reactivity Study

    NASA Technical Reports Server (NTRS)

    Chafey, J. E.; Scheck, W. G.; Witzell, W. E.

    1962-01-01

    A program has been conducted at Astronautics to investigate the likelihood of occurrence of the catastrophic oxidation of titanium alloy sheet under conditions which simulate certain cases of accidental failure of the metal while it is in contact with liquid or gaseous oxygen. Three methods of fracturing the metal were used; they consisted of mechanical puncture, tensile fracture of welded joints, and perforation by very high velocity particles. The results of the tests which have been conducted provide further evidence of the reactivity of titanium with liquid and gaseous oxygen. The evidence indicates that the rapid fracturing of titanium sheet while it is in contact with oxygen initiates the catastrophic oxidation reaction. Initiation occurred when the speed of the fracture was some few feet per second, as in both the drop-weight puncture tests and the static tensile fracture tests of welded joints, as well as when the speed was several thousand feet per second, as in the simulated micrometeoroid penetration tests. The slow propagation of a crack, however, did not initiate the reaction. It may logically be concluded that the localized frictional heat of rapid fracture and/or spontaneous oxidation (exothermic) of minute particles emanating from the fracture cause initiation of the reaction. Under conditions of slow fracture, however, the small heat generated may be adequately dissipated and the reaction is not initiated. A portion of the study conducted consisted of investigating various means by which the reaction might be retarded or prevented. Providing a "barrier" at the titanium-oxygen interface consisting of either aluminum metal or a coating of a petroleum base corrosion inhibitor appeared to be only partially effective in retarding the reaction. The accidental puncturing or similar rupturing of thin-walled pressurized oxygen tanks on missiles and space vehicle will usually constitute loss of function, and may sometimes cause their catastrophic destruction

  2. Reactive Oxygen Species in Cardiovascular Disease

    PubMed Central

    Sugamura, Koichi; Keaney, John F.

    2011-01-01

    Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987

  3. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  4. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  5. Superoxide Dismutases and Reactive Oxygen Species

    SciTech Connect

    Cabelli, D.E.

    2011-01-01

    The 'free radical theory' of aging was introduced over a half-century ago. In this theory, much of the deleterious effects of aging were attributed to the cumulative buildup of damage from reactive oxygen species. When discussing reactive oxygen species (ROS) in aerobic systems, both superoxide radicals (O{sub 2}{sup -}) and superoxide dismutases (SODs) are considered to play prominent roles. O{sub 2}{sup -} is formed by attachment of the electron to oxygen (O{sub 2}) that is present in tens to hundreds of micromolar concentration in vivo. SODs are enzymes that serve to eliminate O{sub 2}{sup -} by rapidly converting it to O{sub 2} and hydrogen peroxide (H{sub 2}O{sub 2}). Both the radical and the enzyme will be discussed with the focus on the systems that are present in humans.

  6. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  7. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  8. Signaling functions of reactive oxygen species.

    PubMed

    Forman, Henry Jay; Maiorino, Matilde; Ursini, Fulvio

    2010-02-01

    We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H(2)O(2) best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H(2)O(2), provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H(2)O(2) to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H(2)O(2) is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling.

  9. Senescence, Stress, and Reactive Oxygen Species

    PubMed Central

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz

    2015-01-01

    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  10. Reactive oxygen species in redox cancer therapy.

    PubMed

    Tong, Lingying; Chuang, Chia-Chen; Wu, Shiyong; Zuo, Li

    2015-10-10

    The role of reactive oxygen species (ROS) in cancer cells has been intensively studied for the past two decades. Cancer cells mostly have higher basal ROS levels than their normal counterparts. The induction of ROS has been shown to be associated with cancer development, metastasis, progression, and survival. Various therapeutic approaches targeting intracellular ROS levels have yielded mixed results. As widely accepted dietary supplements, antioxidants demonstrate both ROS scavenging ability and anti-cancer characteristics. However, antioxidants may not always be safe to use since excessive intake of antioxidants could lead to serious health concerns. In this review, we have evaluated the production and scavenging systems of ROS in cells, as well as the beneficial and harmful roles of ROS in cancer cells. We also examine the effect of antioxidants in cancer treatment, the effect of combined treatment of antioxidants with traditional cancer therapies, and the side effects of excessive antioxidant intake.

  11. Downregulation of Reactive Oxygen Species in Apoptosis

    PubMed Central

    Jeong, Chul-Ho; Joo, Sang Hoon

    2016-01-01

    Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells. PMID:27051644

  12. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER

    PubMed Central

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy. PMID:25584043

  13. Imaging reactive oxygen species in arthritis.

    PubMed

    Chen, Wei-Tsung; Tung, Ching-Hsuan; Weissleder, Ralph

    2004-07-01

    Reactive oxygen species (ROS) have been shown to play a role in the pathogenesis of arthritides. Luminol was used as the primary reporter of ROS and photons resulting from the chemiluminescence reaction were detected using a super-cooled CCD photon counting system. Luminol was injected intravenously into groups of animals with different models of arthritis. Imaging signal correlated well with the severity of arthritis in focal and pan-arthritis as determined by histological measurement of ROS by formazan. Measurements were highly reproducible, sensitive, and repeatable. In vivo chemiluminescence imaging is expected to become a useful modality to elucidate the role of ROS in the pathogenesis of arthritides and in determining therapeutic efficacy of protective therapies.

  14. Metabolic Stress, Reactive Oxygen Species, and Arrhythmia

    PubMed Central

    Jeong, Euy-Myoung; Liu, Man; Sturdy, Megan; Gao, Ge; Varghese, Susan T.; Sovari, Ali A.; Dudley, Samuel C.

    2011-01-01

    Cardiac arrhythmias can cause sudden cardiac death (SCD) and add to the current heart failure (HF) health crisis. Nevertheless, the pathological processes underlying arrhythmias are unclear. Arrhythmic conditions are associated with systemic and cardiac oxidative stress caused by reactive oxygen species (ROS). In excitable cardiac cells, ROS regulate both cellular metabolism and ion homeostasis. Increasing evidence suggests that elevated cellular ROS can cause alterations of the cardiac sodium channel (Nav1.5), abnormal Ca2+ handling, changes of mitochondrial function, and gap junction remodeling, leading to arrhythmogenesis. This review summarizes our knowledge of the mechanisms by which ROS may cause arrhythmias and discusses potential therapeutic strategies to prevent arrhythmias by targeting ROS and its consequences. PMID:21978629

  15. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  16. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  17. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  18. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health.

  19. Reactive oxygen species and redox compartmentalization

    PubMed Central

    Kaludercic, Nina; Deshwal, Soni; Di Lisa, Fabio

    2014-01-01

    Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca2+ or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases. PMID:25161621

  20. Reactive Oxygen Species in Skeletal Muscle Signaling

    PubMed Central

    Barbieri, Elena; Sestili, Piero

    2012-01-01

    Generation of reactive oxygen species (ROS) is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also—within certain concentrations—useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a “positive” or “negative” response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of “physiologically compatible” levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle. PMID:22175016

  1. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  2. Oxidative stress and reactive oxygen species.

    PubMed

    Galli, Francesco; Piroddi, Marta; Annetti, Claudia; Aisa, Cristina; Floridi, Emanuela; Floridi, Ardesio

    2005-01-01

    This article discusses different aspects concerning classification/nomenclature, biochemical properties and pathophysiological roles of reactive oxygen species (ROS) which are pivotal to interpret the concept of oxidative stress. In vitro studies in both the prokaryotes and eukaryotes clearly demonstrate that exogenous or constitutive and inducible endogenous sources of ROS together with cofactors such as transition metals can damage virtually all the biomolecules. This adverse chemistry is at the origin of structural and metabolic defects that ultimately may lead to cell dysfunction and death as underlying mechanisms in tissue degeneration processes. The same biomolecular interpretation of aging has been proposed to embodies an oxidative stress-based process and oxidative stress may virtually accompany all the inflammatory events. As a consequence, ROS have proposed to play several roles in the pathogenesis of chronic-degenerative conditions, such as athero-thrombotic events, neurodegeneration, cancer, some forms of anemia, auto-immune diseases, and the entire comorbidity of uremia and diabetes. Nowadays, the chance to investigate biochemical and toxicological aspects of ROS with advanced biomolecular tools has, if needed, still more emphasized the interest on this area of biomedicine. These technological advancements and the huge information available in literature represent in our time a challenge to further understand the clinical meaning of oxidative stress and to develop specific therapeutic strategies.

  3. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  4. Reactive Oxygen Species: The Achilles' Heel of Cancer Cells?

    PubMed Central

    2012-01-01

    Abstract Cancer development, progression, and metastasis are multistep processes. Accumulating evidence suggests that reactive oxygen species (ROS) are critically involved in cancer cell functions. This Forum reviews our current understanding of the important and paradoxical role of ROS in the regulation of tumor-associated cell properties, genes, and signaling pathways. The six reviews in this Forum showcase the up-to-date knowledge on how ROS modulate or interact with the p53 protein, epithelial–mesenchymal transition, tumor stromal cells, angiogenesis, and cancer stem cells, which are essential factors in cancer development and metastasis. The contributions demonstrate that ROS levels in cancer cells are tightly controlled, which brings promises and challenges in the development of novel ROS-targeted anticancer therapies. Further understanding of the biological mechanisms underlying the effects of oxidative stress on tumor growth and metastasis will contribute to the advancement of cancer biology and cancer treatment. Antioxid. Redox Signal. 16, 1212–1214. PMID:22304673

  5. Hydrogen abstraction from the hydrazine molecule by an oxygen atom.

    PubMed

    Spada, Rene F K; Ferrão, Luiz F A; Rocha, Roberta J; Iha, Koshun; Rocco, José A F F; Roberto-Neto, Orlando; Lischka, Hans; Machado, Francisco B C

    2015-03-01

    Thermochemical and kinetics properties of the hydrogen abstraction from the hydrazine molecule (N2H4) by an oxygen atom were computed using high-level ab initio methods and the M06-2X DFT functional with aug-cc-pVXZ (X = T, Q) and maug-cc-pVTZ basis sets, respectively. The properties along the reaction path were obtained using the dual-level methodology to build the minimum energy path with the potential energy surface obtained with the M06-2X method and thermochemical properties corrected with the CCSD(T)/CBS//M06-2X/maug-cc-pVTZ results. The thermal rate constants were calculated in the framework of variational transition-state theory. Wells on both sides of the reaction (reactants and products) were found and considered in the chemical kinetics calculations. Additionally, the product yields were investigated by means of a study of the triplet and singlet surfaces of the N2H4 + O → N2H2 + H2O reaction.

  6. Reactive oxygen species and boar sperm function.

    PubMed

    Awda, Basim J; Mackenzie-Bell, Meghan; Buhr, Mary M

    2009-09-01

    Boar spermatozoa are very susceptible to reactive oxygen species (ROS), but ROS involvement in damage and/or capacitation is unclear. The impact of exposing fresh boar spermatozoa to an ROS-generating system (xanthine/xanthine oxidase; XA/XO) on sperm ROS content, membrane lipid peroxidation, phospholipase (PL) A activity, and motility, viability, and capacitation was contrasted to ROS content and sperm function after cryopreservation. Exposing boar sperm (n = 4-5 ejaculates) to the ROS-generating system for 30 min rapidly increased hydrogen peroxide (H2O2) and lipid peroxidation in all sperm, increased PLA in dead sperm, and did not affect intracellular O2- (flow cytometry of sperm labeled with 2',7'-dichlorodihydrofluorscein diacetate, BODIPY 581/591 C11, bis-BODIPY-FL C11, hydroethidine, respectively; counterstained for viability). Sperm viability remained high, but sperm became immotile. Cryopreservation decreased sperm motility, viability, and intracellular O2- significantly, but did not affect H2O2. As expected, more sperm incubated in capacitating media than Beltsville thawing solution buffer underwent acrosome reactions and protein tyrosine phosphorylation (four proteins, 58-174 kDa); which proteins were tyrosine phosphorylated was pH dependent. Pre-exposing sperm to the ROS-generating system increased the percentage of sperm that underwent acrosome reactions after incubation in capacitating conditions (P < 0.025), and decreased capacitation-dependent increases in two tyrosine-phosphorylated proteins (P < or = 0.035). In summary, H2O2 is the major free radical mediating direct ROS effects, but not cryopreservation changes, on boar sperm. Boar sperm motility, acrosome integrity, and lipid peroxidation are more sensitive indicators of oxidative stress than viability and PLA activity. ROS may stimulate the acrosome reaction in boar sperm through membrane lipid peroxidation and PLA activation. PMID:19357363

  7. [Reactive oxygen and nitrogen species in inflammatory process].

    PubMed

    Rutkowski, Ryszard; Pancewicz, Sławomir A; Rutkowski, Krzysztof; Rutkowska, Joanna

    2007-08-01

    Reactive oxygen species (ROS) are generated in every cell during normal oxidation. The most important ROS include: superoxide anion (O2*-), hydroxyl radical (OH*), hydroperoxyl radical (HO2*), hydrogen peroxide (H2O2) and singlet oxygen ((1)O2*-). Reactive oxygen species can react with key cellular structures and molecules altering their biological function. Similarly reactive nitrogen species (RNS) such as nitric oxide (NO) or peroxinitrite anion (ONOO-) have physiological activity or reacts with different types of molecules to form toxic products. ROS and RNS are important in process of energy generation, lipids peroxidation, protein and DNA oxidation, nitration, nitrosation or nitrosylation and catecholamine response. Reactive oxygen/nitrogen species are neutralized by enzymatic activity or natural antioxidants that stop the initial formation of radicals. Overproduction of ROS or RNS results in "oxidative" or "nitrosative" stress which contributes to variety of pathological processes typical for different cancer, neurodegenerative, viral, toxic or inflammatory diseases. PMID:18044345

  8. Reactive oxygen species production by catechol stabilized copper nanoparticles.

    PubMed

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-12-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.

  9. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  10. Generation of reactive oxygen species by the faecal matrix

    PubMed Central

    Owen, R; Spiegelhalder, B; Bartsch, H

    2000-01-01

    BACKGROUND—Reactive oxygen species are implicated in the aetiology of a range of human diseases and there is increasing interest in their role in the development of cancer.
AIM—To develop a suitable method for the detection of reactive oxygen species produced by the faecal matrix.
METHODS—A refined high performance liquid chromatography system for the detection of reactive oxygen species is described.
RESULTS—The method allows baseline separation of the products of hydroxyl radical attack on salicylic acid in the hypoxanthine/xanthine oxidase system, namely 2,5-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, and catechol. The increased efficiency and precision of the method has allowed a detailed evaluation of the dynamics of reactive oxygen species generation in the faecal matrix. The data show that the faecal matrix is capable of generating reactive oxygen species in abundance. This ability cannot be attributed to the bacteria present, but rather to a soluble component within the matrix. As yet, the nature of this soluble factor is not entirely clear but is likely to be a reducing agent.
CONCLUSIONS—The soluble nature of the promoting factor renders it amenable to absorption, and circumstances may exist in which either it comes into contact with either free or chelated iron in the colonocyte, leading to direct attack on cellular DNA, or else it initiates lipid peroxidation processes whereby membrane polyunsaturated fatty acids are attacked by reactive oxygen species propagating chain reactions leading to the generation of promutagenic lesions such as etheno based DNA adducts.


Keywords: colorectal cancer; faecal matrix; hypoxanthine; phytic acid; reactive oxygen species; xanthine oxidase PMID:10644317

  11. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    SciTech Connect

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  12. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  13. Imaging Reactive Oxygen Species-Induced Modifications in Living Systems

    PubMed Central

    Maulucci, Giuseppe; Bačić, Goran; Bridal, Lori; Schmidt, Harald H.H.W.; Tavitian, Bertrand; Viel, Thomas; Utsumi, Hideo; Yalçın, A. Süha

    2016-01-01

    Abstract Significance: Reactive Oxygen Species (ROS) may regulate signaling, ion channels, transcription factors, and biosynthetic processes. ROS-related diseases can be due to either a shortage or an excess of ROS. Recent Advances: Since the biological activity of ROS depends on not only concentration but also spatiotemporal distribution, real-time imaging of ROS, possibly in vivo, has become a need for scientists, with potential for clinical translation. New imaging techniques as well as new contrast agents in clinically established modalities were developed in the previous decade. Critical Issues: An ideal imaging technique should determine ROS changes with high spatio-temporal resolution, detect physiologically relevant variations in ROS concentration, and provide specificity toward different redox couples. Furthermore, for in vivo applications, bioavailability of sensors, tissue penetration, and a high signal-to-noise ratio are additional requirements to be satisfied. Future Directions: None of the presented techniques fulfill all requirements for clinical translation. The obvious way forward is to incorporate anatomical and functional imaging into a common hybrid-imaging platform. Antioxid. Redox Signal. 24, 939–958. PMID:27139586

  14. Oxygen Reactivity of a Carbon Fiber Composite

    SciTech Connect

    Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

    2002-09-01

    Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

  15. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling.

  16. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  17. Comparison of two strategies for detection of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Gao, Weidong; Zhou, Yuanshu; Gu, Yueqing

    2014-09-01

    Photodynamic therapy (PDT) is a clinically approved treatment that was applied to oncology , dermatology, and ophthalmology. Reactive oxygen species (ROS) play a important role in the efficacy of PDT. Online monitoring of reactive oxygen species is the key to understand effect of PDT treatment. We used Fluorescence probes DPBF and luminescent probe luminal to measure the ROS in cells. And we revaluate the relationship between the amount of light and cell survival. There is strongly correlated between the amount of light and cell kill.

  18. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  19. Investigation of the reactivity of organic materials in liquid oxygen

    NASA Technical Reports Server (NTRS)

    Chamberlain, D.; Irwin, K.; Kirshen, N.; Mill, T.; Stringham, R.

    1970-01-01

    Measurements of impact-ignition sensitivity and studies of the relative reactivity of t-butoxy and t-butyl peroxy radicals toward a variety of organic compounds reveal improved methods of selection of materials for safe use in a liquid oxygen environment.

  20. Adipose dysfunction, interaction of reactive oxygen species, and inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This American Society for Nutrition sponsored symposium summary contains information about the symposium focus and the general content of speaker presentation. The focus of the symposium was to delineate the significance of obesity-associated reactive oxygen species (ROS), inflammation, and adipose ...

  1. Engineering of pyranose dehydrogenase for increased oxygen reactivity.

    PubMed

    Krondorfer, Iris; Lipp, Katharina; Brugger, Dagmar; Staudigl, Petra; Sygmund, Christoph; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-01-01

    Pyranose dehydrogenase (PDH), a member of the GMC family of flavoproteins, shows a very broad sugar substrate specificity but is limited to a narrow range of electron acceptors and reacts extremely slowly with dioxygen as acceptor. The use of substituted quinones or (organo)metals as electron acceptors is undesirable for many production processes, especially of food ingredients. To improve the oxygen reactivity, site-saturation mutagenesis libraries of twelve amino acids around the active site of Agaricus meleagris PDH were expressed in Saccharomyces cerevisiae. We established high-throughput screening assays for oxygen reactivity and standard dehydrogenase activity using an indirect Amplex Red/horseradish peroxidase and a DCIP/D-glucose based approach. The low number of active clones confirmed the catalytic role of H512 and H556. Only one position was found to display increased oxygen reactivity. Histidine 103, carrying the covalently linked FAD cofactor in the wild-type, was substituted by tyrosine, phenylalanine, tryptophan and methionine. Variant H103Y was produced in Pichia pastoris and characterized and revealed a five-fold increase of the oxygen reactivity. PMID:24614932

  2. BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS

    EPA Science Inventory

    Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

  3. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.

    PubMed

    Cordeiro, Rodrigo M

    2014-01-01

    Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. PMID:24095673

  4. Are mitochondrial reactive oxygen species required for autophagy?

    SciTech Connect

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  5. Role of Reactive Oxygen Species-Mediated Signaling in Aging

    PubMed Central

    Labunskyy, Vyacheslav M.

    2013-01-01

    Abstract Significance: Redox biology is a rapidly developing area of research due to the recent evidence for general importance of redox control for numerous cellular functions under both physiological and pathophysiological conditions. Understanding of redox homeostasis is particularly relevant to the understanding of the aging process. The link between reactive oxygen species (ROS) and accumulation of age-associated oxidative damage to macromolecules is well established, but remains controversial and applies only to a subset of experimental models. In addition, recent studies show that ROS may function as signaling molecules and that dysregulation of this process may also be linked to aging. Recent Advances: Many protein factors and pathways that control ROS production and scavenging, as well as those that regulate cellular redox homeostasis, have been identified. However, much less is known about the mechanisms by which redox signaling pathways influence longevity. In this review, we discuss recent advances in the understanding of the molecular basis for the role of redox signaling in aging. Critical Issues: Recent studies allowed identification of previously uncharacterized redox components and revealed complexity of redox signaling pathways. It would be important to identify functions of these components and elucidate how distinct redox pathways are integrated with each other to maintain homeostatic balance. Future Directions: Further characterization of processes that coordinate redox signaling, redox homeostasis, and stress response pathways should allow researchers to dissect how their dysregulation contributes to aging and pathogenesis of various age-related diseases, such as diabetes, cancer and neurodegeneration. Antioxid. Redox Signal. 19, 1362–1372. PMID:22901002

  6. Reactive Oxygen Species Regulate Oxygen-Sensitive Potassium Flux in Rainbow Trout Erythrocytes

    PubMed Central

    Bogdanova, Anna Yu; Nikinmaa, Mikko

    2001-01-01

    In the present study, we have investigated if reactive oxygen species are involved in the oxygen-dependent regulation of potassium-chloride cotransport activity in trout erythrocyte membrane. An increase in the oxygen level caused an increase in chloride-sensitive potassium transport (K+-Cl− cotransport). 5 mM hydrogen peroxide caused an increase in K+-Cl− cotransport at 5% oxygen. The increase in flux could be inhibited by adding extracellular catalase in the incubation. Pretreatment of the cells with mercaptopropionyl glycine (MPG), a scavenger of reactive oxygen species showing preference for hydroxyl radicals, abolished the activation of the K+-Cl− cotransporter by increased oxygen levels. The inhibition by MPG was reversible, and MPG could not inhibit the activation of transporter by the sulfhydryl reagent, N-ethylmaleimide, indicating that the effect of MPG was due to the scavenging of reactive oxygen species and not to the reaction of MPG with the cotransporter. Copper ions, which catalyze the production of hydroxyl radicals in the Fenton reaction, activated K+-Cl− cotransport significantly at hypoxic conditions (1% O2). These data suggest that hydroxyl radicals, formed from O2 in close vicinity to the cell membrane, play an important role in the oxygen-dependent activation of the K+-Cl− cotransporter. PMID:11158169

  7. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  8. Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy

    PubMed Central

    Gupta, Subash C.; Hevia, David; Patchva, Sridevi; Park, Byoungduck; Koh, Wonil

    2012-01-01

    Abstract Significance: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. Recent Advances: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. Critical Issues: These statements suggest both “upside” (cancer-suppressing) and “downside” (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. Future Directions: The various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed. Antioxid. Redox Signal. 16, 1295–1322. PMID:22117137

  9. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  10. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  11. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7

  12. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  13. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  14. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  15. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research

    PubMed Central

    Kohno, Masahiro

    2010-01-01

    Electron spin resonance (ESR) spectroscopy has been widely applied in the research of biological free radicals for quantitative and qualitative analyses of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ESR spin-trapping method was developed in the early 1970s and enabled the analysis of short-lived free radicals. This method is now widely used as one of the most powerful tools for free radical studies. In this report, some of the studies that applied ESR for the measurement of ROS and RNS during oxidative stress are discussed. PMID:20664724

  16. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  17. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress.

  18. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  19. Production and consumption of reactive oxygen species by fullerenes.

    PubMed

    Kong, Lingjun; Zepp, Richard G

    2012-01-01

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen peroxide, and hydroxyl radicals) by Buckminster fullerene (C(60) ) and fullerenol were investigated in aqueous systems. Fullerenol exhibits higher photoproduction efficiency of singlet oxygen and superoxide than aqueous suspensions of C(60) aggregates (aqu/nC(60) ), and this higher efficiency results in higher steady-state concentrations of these two ROS. Transmission electron microscopy indicates that the C(60) molecules in aqu/nC(60) are much more closely packed than the C(60) cages in fullerenol. These observations provide additional evidence that the lower ROS production efficiency of aqu/nC(60) is attributable primarily to efficient self-quenching of C(60) triplet states. Production of singlet oxygen by aqu/nC(60) is accelerated by increasing oxygen concentration and in part is sensitized by fluorescent photoproducts that accumulate during irradiation. The fullerenes react slowly with singlet oxygen (second-order rate constant <4 × 10(5)  M(-1)  s(-1) ), but react rapidly with hydroxyl radicals (second-order rate constants of 5.4 × 10(9) and 4 × 10(8)  M(-1)  s(-1) for aqu/nC(60) and fullerenol, respectively). These results show that environmental conditions, including light exposure and oxygen concentration, have the potential to impact the generation of toxic ROS by fullerenes.

  20. Control of root growth and development by reactive oxygen species.

    PubMed

    Tsukagoshi, Hironaka

    2016-02-01

    Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed.

  1. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  2. Reactive oxygen species and HIF-1 signalling in cancer.

    PubMed

    Galanis, Alex; Pappa, Aglaia; Giannakakis, Antonis; Lanitis, Evripidis; Dangaj, Denarda; Sandaltzopoulos, Raphael

    2008-07-18

    The heterodimeric transcription factor HIF-1 (hypoxia-inducible factor 1) represents the key mediator of hypoxia response. HIF-1 controls numerous genes of pivotal importance for cellular metabolism, angiogenesis, cell cycle regulation and inhibition of apoptosis. HIF-1 overexpression and enhanced transcriptional activity are linked to tumour initiation and progression. Malfunction of the HIF-1 signalling network has been associated with breast, ovarian and prostate cancers. Elevated reactive oxygen species (ROS), also observed in such tumours, have been implicated in HIF-1 signalling. Deciphering the role of ROS in cancer onset and their involvement in signalling networks should prove invaluable for the design of novel anticancer therapeutics.

  3. Manganese neurotoxicity and the role of reactive oxygen species.

    PubMed

    Martinez-Finley, Ebany J; Gavin, Claire E; Aschner, Michael; Gunter, Thomas E

    2013-09-01

    Manganese (Mn) is an essential dietary nutrient, but an excess or accumulation can be toxic. Disease states, such as manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals, and toxic metabolites; alteration of mitochondrial function and ATP production; and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as providing an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body.

  4. Reactive Oxygen Species: A Key Hallmark of Cardiovascular Disease

    PubMed Central

    2016-01-01

    Cardiovascular diseases (CVDs) have been the prime cause of mortality worldwide for decades. However, the underlying mechanism of their pathogenesis is not fully clear yet. It has been already established that reactive oxygen species (ROS) play a vital role in the progression of CVDs. ROS are chemically unstable reactive free radicals containing oxygen, normally produced by xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidase, lipoxygenases, or mitochondria or due to the uncoupling of nitric oxide synthase in vascular cells. When the equilibrium between production of free radicals and antioxidant capacity of human physiology gets altered due to several pathophysiological conditions, oxidative stress is induced, which in turn leads to tissue injury. This review focuses on pathways behind the production of ROS, its involvement in various intracellular signaling cascades leading to several cardiovascular disorders (endothelial dysfunction, ischemia-reperfusion, and atherosclerosis), methods for its detection, and therapeutic strategies for treatment of CVDs targeting the sources of ROS. The information generated by this review aims to provide updated insights into the understanding of the mechanisms behind cardiovascular complications mediated by ROS. PMID:27774507

  5. Sulfur, oxygen, and nitrogen mustards: stability and reactivity.

    PubMed

    Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2012-11-28

    Mustard gas, bis(β-chloroethyl) sulfide (HD), is highly toxic and harmful to humans and the environment. It comprises one class of chemical warfare agents (CWAs) that was used in both World Wars I and II. The three basic analogues or surrogates are: the monochloro derivative, known as the half mustard, 2-chloroethyl ethyl sulfide (CEES); an oxygen analogue, bis(β-chloroethyl) ether (BCEE); and several nitrogen analogues based on the 2,2'-dichlorodiethylamine framework (e.g., HN1, HN2, and HN3). The origin of their toxicity is considered to be from the formation of three-membered heterocyclic ions, a reaction that is especially accelerated in aqueous solution. The reaction of these cyclic ion intermediates with a number of important biological species such as DNA, RNA and proteins causes cell toxicity and is responsible for the deleterious effects of the mustards. While a number of studies have been performed over the last century to determine the chemistry of these compounds, early studies suffered from a lack of more sophisticated NMR and X-ray techniques. It is now well-established that the sulfur and nitrogen mustards are highly reactive in water, while the oxygen analog is much more stable. In this study, we review and summarize results from previous studies, and add results of our own studies of the reactivity of these mustards toward various nonaqueous solvents and nucleophiles. In this manner a more comprehensive evaluation of the stability and reactivity of these related mustard compounds is achieved. PMID:23070251

  6. In situ reactive oxygen species production for tertiary wastewater treatment.

    PubMed

    Guitaya, Léa; Drogui, Patrick; Blais, Jean François

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05 × 10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45 × 10(-5) M after 20 min of electrolysis to a concentration of 2.87 × 10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent.

  7. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    DOE PAGES

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic NiII-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar NiIII–oxygen adduct. Moreover, this rare example of amore » high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.« less

  8. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    SciTech Connect

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic NiII-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar NiIIIoxygen adduct. Moreover, this rare example of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.

  9. Redox and Reactive Oxygen Species Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis

    PubMed Central

    Bourens, Myriam; Fontanesi, Flavia; Soto, Iliana C.; Liu, Jingjing

    2013-01-01

    Abstract Significance: Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. Recent Advances: Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. Critical Issues: An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. Future Directions: Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress. Antioxid. Redox Signal. 19, 1940–1952. PMID:22937827

  10. Reactive oxygen species-activated nanomaterials as theranostic agents.

    PubMed

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  11. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  12. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity.

    PubMed

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  13. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  14. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated. PMID:27625575

  15. Reactive oxygen species in eradicating acute myeloid leukemic stem cells

    PubMed Central

    Zhang, Hui; Fang, Hai

    2014-01-01

    Leukemic stem cells (LSCs) have been proven to drive leukemia initiation, progression and relapse, and are increasingly being used as a critical target for therapeutic intervention. As an essential feature in LSCs, reactive oxygen species (ROS) homeostasis has been extensively exploited in the past decade for targeting LSCs in acute myeloid leukemia (AML). Most, if not all, agents that show therapeutic benefits are able to alter redox status by inducing ROS, which confers selectivity in eradicating AML stem cells but sparing normal counterparts. In this review, we provide the comprehensive update of ROS-generating agents in the context of their impacts on our understanding of the pathogenesis of AML and its therapy. We anticipate that further characterizing these ROS agents will help us combat against AML in the coming era of LSC-targeting strategy. PMID:27358859

  16. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule.

  17. Reactive oxygen species-activated nanomaterials as theranostic agents

    PubMed Central

    Kim, Kye S; Lee, Dongwon; Song, Chul Gyu; Kang, Peter M

    2015-01-01

    Reactive oxygen species (ROS) are generated from the endogenous oxidative metabolism or from exogenous pro-oxidant exposure. Oxidative stress occurs when there is excessive production of ROS, outweighing the antioxidant defense mechanisms which may lead to disease states. Hydrogen peroxide (H2O2) is one of the most abundant and stable forms of ROS, implicated in inflammation, cellular dysfunction and apoptosis, which ultimately lead to tissue and organ damage. This review is an overview of the role of ROS in different diseases. We will also examine ROS-activated nanomaterials with emphasis on hydrogen peroxide, and their potential medical implications. Further development of the biocompatible, stimuli-activated agent responding to disease causing oxidative stress, may lead to a promising clinical use. PMID:26328770

  18. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  19. Reactive oxygen species in organ-specific autoimmunity.

    PubMed

    Di Dalmazi, Giulia; Hirshberg, Jason; Lyle, Daniel; Freij, Joudeh B; Caturegli, Patrizio

    2016-12-01

    Reactive oxygen species (ROS) have been extensively studied in the induction of inflammation and tissue damage, especially as it relates to aging. In more recent years, ROS have been implicated in the pathogenesis of autoimmune diseases. Here, ROS accumulation leads to apoptosis and autoantigen structural changes that result in novel specificities. ROS have been implicated not only in the initiation of the autoimmune response but also in its amplification and spreading to novel epitopes, through the unmasking of cryptic determinants. This review will examine the contribution of ROS to the pathogenesis of four organ specific autoimmune diseases (Hashimoto thyroiditis, inflammatory bowel disease, multiple sclerosis, and vitiligo), and compare it to that of a better characterized systemic autoimmune disease (rheumatoid arthritis). It will also discuss tobacco smoking as an environmental factor endowed with both pro-oxidant and anti-oxidant properties, thus capable of differentially modulating the autoimmune response. PMID:27491295

  20. Reactive oxygen species, ageing and the hormesis police

    PubMed Central

    Ludovico, Paula; Burhans, William C.

    2013-01-01

    For more than 50 years the Free Radical Theory served as the paradigm guiding most investigations of ageing. However, recent studies in a variety of organisms have identified conceptual and practical limitations to this theory. Some of these limitations are related to the recent discovery that caloric restriction and other experimental manipulations promote longevity by inducing hormesis effects in association with increased reactive oxygen species (ROS). The beneficial role of ROS in lifespan extension is consistent with the essential role of these molecules in cell signalling. However, the identity of specific forms of ROS that promote longevity remains unclear. In this article, we argue that in several model systems, hydrogen peroxide plays a crucial role in the induction of hormesis. PMID:23965186

  1. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  2. Reactive Oxygen Species: Physiological and Physiopathological Effects on Synaptic Plasticity

    PubMed Central

    Beckhauser, Thiago Fernando; Francis-Oliveira, José; De Pasquale, Roberto

    2016-01-01

    In the mammalian central nervous system, reactive oxygen species (ROS) generation is counterbalanced by antioxidant defenses. When large amounts of ROS accumulate, antioxidant mechanisms become overwhelmed and oxidative cellular stress may occur. Therefore, ROS are typically characterized as toxic molecules, oxidizing membrane lipids, changing the conformation of proteins, damaging nucleic acids, and causing deficits in synaptic plasticity. High ROS concentrations are associated with a decline in cognitive functions, as observed in some neurodegenerative disorders and age-dependent decay of neuroplasticity. Nevertheless, controlled ROS production provides the optimal redox state for the activation of transductional pathways involved in synaptic changes. Since ROS may regulate neuronal activity and elicit negative effects at the same time, the distinction between beneficial and deleterious consequences is unclear. In this regard, this review assesses current research and describes the main sources of ROS in neurons, specifying their involvement in synaptic plasticity and distinguishing between physiological and pathological processes implicated.

  3. Serum Reactive Oxygen Metabolite Levels Predict Severe Exacerbations of Asthma

    PubMed Central

    Nakamoto, Keitaro; Watanabe, Masato; Sada, Mitsuru; Inui, Toshiya; Nakamura, Masuo; Honda, Kojiro; Wada, Hiroo; Mikami, Yu; Matsuzaki, Hirotaka; Horie, Masafumi; Noguchi, Satoshi; Yamauchi, Yasuhiro; Koyama, Hikari; Kogane, Toshiyuki; Kohyama, Tadashi; Takizawa, Hajime

    2016-01-01

    Background and Purpose Bronchial asthma (BA) is a chronic airway disease characterized by airway hyperresponsiveness and remodeling, which are intimately linked to chronic airway inflammation. Reactive oxygen species (ROS) such as hydrogen peroxide are generated by inflammatory cells that are involved in the pathogenesis of BA. However, the role of ROS in the management of BA patients is not yet clear. We attempted to determine the role of ROS as a biomarker in the clinical setting of BA. Subjects and Methods We enrolled patients with BA from 2013 through 2015 and studied the degrees of asthma control, anti-asthma treatment, pulmonary function test results, fractional exhaled nitric oxide (FeNO), serum reactive oxygen metabolite (ROM) levels, and serum levels of interleukin (IL)-6 and IL-8. Results We recruited 110 patients with BA. Serum ROM levels correlated with white blood cell (WBC) count (rs = 0.273, p = 0.004), neutrophil count (rs = 0.235, p = 0.014), CRP (rs = 0.403, p < 0.001), and IL-6 (rs = 0.339, p < 0.001). Serum ROM levels and IL-8 and CRP levels negatively correlated with %FEV1 (rs = -0.240, p = 0.012, rs = -0.362, p < 0.001, rs = -0.197, p = 0.039, respectively). Serum ROM levels were significantly higher in patients who experienced severe exacerbation within 3 months than in patients who did not (339 [302–381] vs. 376 [352–414] CARR U, p < 0.025). Receiver-operating characteristics analysis showed that ROM levels correlated significantly with the occurrence of severe exacerbation (area under the curve: 0.699, 95% CI: 0.597–0.801, p = 0.025). Conclusions Serum levels of ROM were significantly associated with the degrees of airway obstruction, WBC counts, neutrophil counts, IL-6, and severe exacerbations. This biomarker may be useful in predicting severe exacerbations of BA. PMID:27776186

  4. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  5. Bordetella bronchiseptica responses to physiological reactive nitrogen and oxygen stresses

    PubMed Central

    Omsland, Anders; Miranda, Katrina M.; Friedman, Richard L.; Boitano, Scott

    2008-01-01

    Bordetella bronchiseptica can establish prolonged airway infection consistent with a highly developed ability to evade mammalian host immune responses. Upon initial interaction with the host upper respiratory tract mucosa, B. bronchiseptica are subjected to antimicrobial reactive nitrogen species (RNS) and reactive oxygen species (ROS), effector molecules of the innate immune system. However, the responses of B. bronchiseptica to redox species at physiologically relevant concentrations (nM-µM) have not been investigated. Using predicted physiological concentrations of nitric oxide (NO), superoxide (O2.−) and hydrogen peroxide (H2O2) on low numbers of colony forming units (CFU) of B. bronchiseptica, all redox active species displayed dose-dependent antimicrobial activity. Susceptibility to individual redox active species was significantly increased upon introduction of a second species at sub-antimicrobial concentrations. An increased bacteriostatic activity of NO was observed relative to H2O2. The understanding of Bordetella responses to physiologically relevant levels of exogenous RNS and ROS will aid in defining the role of endogenous production of these molecules in host innate immunity against Bordetella and other respiratory pathogens. PMID:18462394

  6. Soot-driven reactive oxygen species formation from incense burning.

    PubMed

    Chuang, Hsiao-Chi; Jones, Tim P; Lung, Shih-Chun C; BéruBé, Kelly A

    2011-10-15

    This study investigated the effects of reactive oxygen species (ROS) generated as a function of the physicochemistry of incense particulate matter (IPM), diesel exhaust particles (DEP) and carbon black (CB). Microscopical and elemental analyses were used to determine particle morphology and inorganic compounds. ROS was determined using the reactive dye, Dichlorodihydrofluorescin (DCFH), and the Plasmid Scission Assay (PSA), which determine DNA damage. Two common types of soot were observed within IPM, including nano-soot and micro-soot, whereas DEP and CB mainly consisted of nano-soot. These PM were capable of causing oxidative stress in a dose-dependent manner, especially IPM and DEP. A dose of IPM (36.6-102.3μg/ml) was capable of causing 50% oxidative DNA damage. ROS formation was positively correlated to smaller nano-soot aggregates and bulk metallic compounds, particularly Cu. These observations have important implications for respiratory health given that inflammation has been recognised as an important factor in the development of lung injury/diseases by oxidative stress. This study supports the view that ROS formation by combustion-derived PM is related to PM physicochemistry, and also provides new data for IPM.

  7. Reactive oxygen species and the Antarctic macroalgal wound response.

    PubMed

    McDowell, Ruth E; Amsler, Charles D; Dickinson, Dale A; McClintock, James B; Baker, Bill J

    2014-02-01

    Reactive oxygen species (ROS) are commonly produced by algal, vascular plant, and animal cells involved in the innate immune response as cellular signals promoting defense and healing and/or as a direct defense against invading pathogens. The production of reactive species in macroalgae upon injury, however, is largely uncharacterized. In this study, we surveyed 13 species of macroalgae from the Western Antarctic Peninsula and show that the release of strong oxidants is common after macroalgal wounding. Most species released strong oxidants within 1 min of wounding and/or showed cellular accumulation of strong oxidants over an hour post-wounding. Exogenous catalase was used to show that hydrogen peroxide was a component of immediate oxidant release in one of five species, but was not responsible for the entire oxidative wound response as is common in vascular plants. The other component(s) of the oxidant cocktail released upon wounding are unknown. We were unable to detect protein nitration in extracts of four oxidant-producing species flash frozen 30 s after wounding, but a role for reactive nitrogen species such as peroxynitrite cannot be completely ruled out. Two species showed evidence for the production of a catalase-activated oxidant, a mechanism previously known only from the laboratory and from the synthetic drug isoniazid used to kill the human pathogen Mycobacterium tuberculosis. The rhodophyte Palmaria decipiens, which released strong oxidants after wounding, also produced strong oxidants upon grazing by a sympatric amphipod, suggesting that oxidants are involved in the response to grazing. PMID:26988009

  8. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    SciTech Connect

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  9. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation. PMID:27025055

  10. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    PubMed

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation.

  11. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  12. Reactive oxygen species mediate growth and death in submerged plants

    PubMed Central

    Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

    2013-01-01

    Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS. PMID:23761805

  13. The immunopathogenic role of reactive oxygen species in Alzheimer disease.

    PubMed

    Mohsenzadegan, Monireh; Mirshafiey, Abbas

    2012-09-01

    Reactive oxygen species (ROS) are produced in many normal and abnormal processes in humans, including atheroma, asthma, joint diseases, cancer, and aging. Basal levels of ROS production in cells could be related to several physiological functions including cell proliferation, apoptosis and homeostasis. However, excessive ROS production above basal levels would impair and oxidize DNA, lipids, sugars and proteins and consequently result in dysfunction of these molecules within cells and finally cell death. A leading theory of the cause of aging indicates that free radical damage and oxidative stress play a major role in the pathogenesis of Alzheimer disease (AD). Because the brain utilizes 20% more oxygen than other tissues that also undergo mitochondrial respiration, the potential for ROS exposure increases. In fact, AD has been demonstrated to be highly associated with cellular oxidative stress, including augmentation of protein oxidation, protein nitration, glycoloxidation and lipid peroxidation as well as accumulation of Amyloid β (Aβ). The treatment with anti-oxidant compounds can provide protection against oxidative stress and Aβ toxicity. In this review, our aim was to clarify the role of ROS in pathogenesis of AD and will discuss therapeutic efficacy of some antioxidants studies in recent years in this disease.

  14. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?

    PubMed

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Arif, Maaz; Arora, Nitin; Divietro, Alexander; Patel, Shivali; Olson, Kenneth R

    2016-04-01

    Stepwise one-electron reduction of oxygen to water produces reactive oxygen species (ROS) that are chemically and biochemically similar to reactive sulfide species (RSS) derived from one-electron oxidations of hydrogen sulfide to elemental sulfur. Both ROS and RSS are endogenously generated and signal via protein thiols. Given the similarities between ROS and RSS, we wondered whether extant methods for measuring the former would also detect the latter. Here, we compared ROS to RSS sensitivity of five common ROS methods: redox-sensitive green fluorescent protein (roGFP), 2', 7'-dihydrodichlorofluorescein, MitoSox Red, Amplex Red, and amperometric electrodes. All methods detected RSS and were as, or more, sensitive to RSS than to ROS. roGFP, arguably the "gold standard" for ROS measurement, was more than 200-fold more sensitive to the mixed polysulfide H2Sn(n = 1-8) than to H2O2 These findings suggest that RSS may be far more prevalent in intracellular signaling than previously appreciated and that the contribution of ROS may be overestimated. This conclusion is further supported by the observation that estimated daily sulfur metabolism and ROS production are approximately equal and the fact that both RSS and antioxidant mechanisms have been present since the origin of life, nearly 4 billion years ago, long before the rise in environmental oxygen 600 million years ago. Although ROS are assumed to be the most biologically relevant oxidants, our results question this paradigm. We also anticipate our findings will direct attention toward development of novel and clinically relevant anti-(RSS)-oxidants.

  15. Plasma-generated reactive oxygen species for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

    2012-10-01

    To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (μ-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1δ) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

  16. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  17. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided.

  18. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the involvement of cytochrome P450 (CYP) enzymes in the formation of reactive oxygen species in biological systems and discusses the possible involvement of reactive oxygen species and CYP enzymes in cancer. Reactive oxygen species are formed in biological systems as byproducts of the reduction of molecular oxygen and include the superoxide radical anion (∙O2-), hydrogen peroxide (H2O2), hydroxyl radical (∙OH), hydroperoxyl radical (HOO∙), singlet oxygen ((1)O2), and peroxyl radical (ROO∙). Two endogenous sources of reactive oxygen species are the mammalian CYP-dependent microsomal electron transport system and the mitochondrial electron transport chain. CYP enzymes catalyze the oxygenation of an organic substrate and the simultaneous reduction of molecular oxygen. If the transfer of oxygen to a substrate is not tightly controlled, uncoupling occurs and leads to the formation of reactive oxygen species. Reactive oxygen species are capable of causing oxidative damage to cellular membranes and macromolecules that can lead to the development of human diseases such as cancer. In normal cells, intracellular levels of reactive oxygen species are maintained in balance with intracellular biochemical antioxidants to prevent cellular damage. Oxidative stress occurs when this critical balance is disrupted. Topics covered in this review include the role of reactive oxygen species in intracellular cell signaling and the relationship between CYP enzymes and cancer. Outlines of CYP expression in neoplastic tissues, CYP enzyme polymorphism and cancer risk, CYP enzymes in cancer therapy and the metabolic activation of chemical procarcinogens by CYP enzymes are also provided. PMID:26233903

  19. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.

    PubMed

    Zhang, Lun; Li, Jiahui; Zong, Liang; Chen, Xin; Chen, Ke; Jiang, Zhengdong; Nan, Ligang; Li, Xuqi; Li, Wei; Shan, Tao; Ma, Qingyong; Ma, Zhenhua

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy.

  20. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  1. Reactive oxygen metabolites produced by the carcinogenic fibrous mineral erionite

    SciTech Connect

    Urano, Naoko; Yano, Eiji ); Evans, P.H. )

    1991-02-01

    Erionite, a fibrous mineral and the causative agent of the endemic outbreak of mesothelioma in Turkey, has been shown to generate reactive oxygen metabolites (ROM) from polymorphonuclear leukocytes (PMN). In order to investigate the mechanism of the production of ROM by erionite from PMN, a luminol-dependent chemiluminescence (CL) method was utilized. Human peripheral blood PMN were incubated with 50-800 {mu}g/ml of erionite. PMN CL was produced immediately after the addition of erionite; the maximal CL production was reached within 2 to 6 minutes and the CL response increased with the dose of erionite. Superoxide dismutase, catalase, and dimethyl sulfoxide were utilized as scavengers of O{sub 2}, H{sub 2}O{sub 2}, and OH, respectively. These scavengers inhibited the production of erionite-stimulated PMN CL dose dependently, thus indicating the production of O{sub 2}{sup {minus}}, H{sub 2}O{sub 2}, and OH by erionite-stimulated PMN. The less phagocytically active cells, namely, mononuclear cells and erythrocytes, produced CL immediately after the addition of erionite or phorbol myristate acetate and displayed a significant delay period after the addition of zymosan. Therefore, the direct interaction between the cell surface membrane and erionite would appear to be more important than phagocytosis, per se, for the production of ROM by erionite.

  2. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases

    PubMed Central

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  3. Effects of reactive oxygen species on sperm function.

    PubMed

    Guthrie, H D; Welch, G R

    2012-11-01

    Reactive oxygen species (ROS) formation and membrane lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic, because of the low specificity and sensitivity of the established chemiluminescence assay technologies. We developed flow cytometric assays to measure SO, HP, membrane lipid peroxidation, and inner mitochondrial transmembrane potential in boar sperm. These methods were sufficiently sensitive to permit detection of early changes in ROS formation in sperm cells that were still viable. Basal ROS formation and membrane lipid peroxidation in the absence of ROS generators were low in viable sperm of both fresh and frozen-thawed boar semen, affecting less than 4% of the sperm cells on average. However, this is not the case in other species, as human, bovine, and poultry sperm have large increases in sperm ROS formation, lipid peroxidation, loss of motility, and death in vitro. Closer study of the effects of ROS formation on the relationship between sperm motility and ATP content in boar sperm was conducted using menadione (mitochondrial SO generator) and HP treatment. Menadione or HP caused an immediate disruption of motility with delayed or no decrease in sperm ATP content, respectively. Overall, the inhibitory effects of ROS on motility point to a mitochondrial-independent mechanism. The reduction in motility may have been due to a ROS-induced lesion in ATP utilization or in the contractile apparatus of the flagellum. PMID:22704396

  4. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.

  5. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria.

  6. Generation of reactive oxygen species by raphidophycean phytoplankton.

    PubMed

    Oda, T; Nakamura, A; Shikayama, M; Kawano, I; Ishimatsu, A; Muramatsu, T

    1997-10-01

    Chattonella marina, a raphidophycean flagellate, is one of the most toxic red tide phytoplankton and causes severe damage to fish farming. Recent studies demonstrated that Chattonella sp. generates superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl radicals (.OH), which may be responsible for the toxicity of C. marina. In this study, we found the other raphidophycean flagellates such as Heterosigma akashiwo, Olisthodiscus luteus, and Fibrocapsa japonica also produce O2- and H2O2 under normal growth condition. Among the flagellate species tested, Chattonella has the highest rates of production of O2- and H2O2 as compared on the basis of cell number. This seems to be partly due to differences in their cell sizes, since Chattonella is larger than other flagellate species. The generation of O2- by these flagellate species was also confirmed by a chemiluminescence assay by using 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one (MCLA). All these raphidophycean flagellates inhibited the proliferation of a marine bacterium, Vibrio alginolyticus, in a flagellates/bacteria co-culture system, and their toxic effects were suppressed by the addition of superoxide dismutase (SOD) or catalase. Our results suggest that the generation of reactive oxygen species is a common feature of raphidophycean flagellates.

  7. Tamoxifen reduces fat mass by boosting reactive oxygen species.

    PubMed

    Liu, L; Zou, P; Zheng, L; Linarelli, L E; Amarell, S; Passaro, A; Liu, D; Cheng, Z

    2015-01-01

    As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4-5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study. PMID:25569103

  8. Cardiac reactive oxygen species after traumatic brain injury

    PubMed Central

    Larson, Brett E; Stockwell, David W.; Boas, Stefan; Andrews, Trevor; Wellman, George C.; Lockette, Warren; Freeman, Kalev

    2011-01-01

    Background Cardiovascular complications after traumatic brain injury (TBI) contribute to morbidity and mortality and may provide a target for therapy. We examined blood pressure and left ventricle contractility after TBI, and tested the hypothesis that beta-adrenergic blockade would decrease oxidative stress after TBI. Material and Methods Rodents received fluid-percussion injury or sham surgery, confirmed with magnetic resonance imaging (MRI) and histopathology. We followed recovery with sensorimotor coordination testing and blood pressure measurements. We assessed left ventricular ejection fraction using ECG-gated cardiac MRI and measured myocardial reactive oxygen species (ROS) with dihydroethidium. We randomized additional TBI and sham animals to post-operative treatment with propranolol or control, for measurement of ROS. Results Blood pressure and cardiac contractility were elevated 48 hours after TBI. Myocardial tissue sections showed increased ROS. Treatment with propranolol diminished ROS levels following TBI. Conclusions TBI is associated with increased cardiac contractility and myocardial ROS; decreased myocardial ROS after beta-blockade suggests that sympathetic stimulation is a mechanism of oxidative stress. PMID:22172132

  9. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  10. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed Central

    Görlach, Agnes; Dimova, Elitsa Y.; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P.; Palmeira, Carlos M.; Kietzmann, Thomas

    2015-01-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  11. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species.

    PubMed

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  12. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  13. Shear stress, reactive oxygen species, and arterial structure and function.

    PubMed

    Matlung, Hanke L; Bakker, Erik N T P; VanBavel, Ed

    2009-07-01

    Shear stress is well known to be a key factor in the regulation of small-artery tone and structure. Although nitric oxide is a major endothelium-derived factor involved in short- and long-term regulation of vascular caliber, it is clear that other mechanisms also can be involved. This review discusses the evidence for endothelium-derived reactive oxygen species (ROS) as mediators for shear-dependent arterial tone and remodeling. The work focuses on resistance vessels, because their caliber determines local perfusion. However, work on large vessels is included where needed. Attention is given to the shear-stress levels and profiles that exist in the arterial system and the differential effects of steady and oscillating shear on NO and ROS production. We furthermore address the relation between microvascular tone and remodeling and the effect of ROS and inflammation on the activity of remodeling enzymes such as matrix metalloproteinases and transglutaminases. We conclude that future work should address the role of H(2)O(2) as an endothelium-derived factor mediating tone and influencing structure of small arteries over the long term.

  14. Reactive Oxygen Species (ROS): Beneficial Companions of Plants’ Developmental Processes

    PubMed Central

    Singh, Rachana; Singh, Samiksha; Parihar, Parul; Mishra, Rohit K.; Tripathi, Durgesh K.; Singh, Vijay P.; Chauhan, Devendra K.; Prasad, Sheo M.

    2016-01-01

    Reactive oxygen species (ROS) are generated inevitably in the redox reactions of plants, including respiration and photosynthesis. In earlier studies, ROS were considered as toxic by-products of aerobic pathways of the metabolism. But in recent years, concept about ROS has changed because they also participate in developmental processes of plants by acting as signaling molecules. In plants, ROS regulate many developmental processes such as cell proliferation and differentiation, programmed cell death, seed germination, gravitropism, root hair growth and pollen tube development, senescence, etc. Despite much progress, a comprehensive update of advances in the understanding of the mechanisms evoked by ROS that mediate in cell proliferation and development are fragmentry and the matter of ROS perception and the signaling cascade remains open. Therefore, keeping in view the above facts, an attempt has been made in this article to summarize the recent findings regarding updates made in the regulatory action of ROS at various plant developmental stages, which are still not well-known. PMID:27729914

  15. Genetically encoded reactive oxygen species (ROS) and redox indicators.

    PubMed

    Pouvreau, Sandrine

    2014-02-01

    Redox processes are increasingly being recognized as key elements in the regulation of cellular signaling cascades. They are frequently encountered at the frontier between physiological functions and pathological events. The biological relevance of intracellular redox changes depends on the subcellular origin, the spatio-temporal distribution and the redox couple involved. Thus, a key task in the elucidation of the role of redox reactions is the specific and quantitative measurement of redox conditions with high spatio-temporal resolution. Unfortunately, until recently, our ability to perform such measurements was limited by the lack of adequate technology. Over the last 10 years, promising imaging tools have been developed from fluorescent proteins. Genetically encoded reactive oxygen species (ROS) and redox indicators (GERRIs) have the potential to allow real-time and pseudo-quantitative monitoring of specific ROS and thiol redox state in subcellular compartments or live organisms. Redox-sensitive yellow fluorescent proteins (rxYFP family), redox-sensitive green fluorescent proteins (roGFP family), HyPer (a probe designed to measure H2 O2 ), circularly permuted YFP and others have been used in several models and sufficient information has been collected to highlight their main characteristics. This review is intended to be a tour guide of the main types of GERRIs, their origins, properties, advantages and pitfalls.

  16. Stress granules inhibit apoptosis by reducing reactive oxygen species production.

    PubMed

    Takahashi, Masahiko; Higuchi, Masaya; Matsuki, Hideaki; Yoshita, Manami; Ohsawa, Toshiaki; Oie, Masayasu; Fujii, Masahiro

    2013-02-01

    Cells can undergo two alternative fates following exposure to environmental stress: they either induce apoptosis or inhibit apoptosis and then repair the stress-induced alterations. These processes minimize cell loss and prevent the survival of cells with aberrant DNA and protein alterations. These two alternative fates are partly controlled by stress granules (SGs). While arsenite, hypoxia, and heat shock induce the formation of SGs that inhibit apoptosis, X-ray irradiation and genotoxic drugs do not induce SGs, and they are more prone to trigger apoptosis. However, it is unclear precisely how SGs control apoptosis. This study found that SGs suppress the elevation of reactive oxygen species (ROS), and this suppression is essential for inhibiting ROS-dependent apoptosis. This antioxidant activity of SGs is controlled by two SG components, GTPase-activating protein SH3 domain binding protein 1 (G3BP1) and ubiquitin-specific protease 10 (USP10). G3BP1 elevates the steady-state ROS level by inhibiting the antioxidant activity of USP10. However, following exposure to arsenite, G3BP1 and USP10 induce the formation of SGs, which uncovers the antioxidant activity of USP10. We also found that the antioxidant activity of USP10 requires the protein kinase activity of ataxia telangiectasia mutated (ATM). This work reveals that SGs are critical redox regulators that control cell fate under stress conditions.

  17. Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis

    PubMed Central

    Dorighello, Gabriel G.; Paim, Bruno A.; Kiihl, Samara F.; Ferreira, Mônica S.; Catharino, Rodrigo R.; Vercesi, Anibal E.; Oliveira, Helena C. F.

    2016-01-01

    Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent. PMID:26635912

  18. Reactive oxygen species in diabetic nephropathy: friend or foe?

    PubMed

    Bondeva, Tzvetanka; Wolf, Gunter

    2014-11-01

    Based on the numerous cellular and animal studies over the last decades, it has been postulated that reactive oxygen species (ROS) are important secondary messengers for signalling pathways associated with apoptosis, proliferation, damage and inflammation. Their adverse effects were considered to play a leading role in the onset and progression of type 1 and type 2 diabetes mellitus as well as in the complication of diabetic disease leading to vascular-, cardiac-, neuro-degeneration, diabetic retinopathy and diabetic nephropathy. All these complications were mostly linked to the generation of the superoxide anion, due to a prolonged hyperglycaemia in diabetes, and this anion was almost 'blamed for everything', despite the fact that its measurement and detection in life systems is extremely complicated due to the short lifespan of the superoxide anion. Therefore, a tremendous amount of research has been focused on finding ways to suppress ROS production. However, a recent report from Dugan et al. shed new insights into the life detection of superoxide generation in diabetes and raised the question of whether we treat the diabetes-related complications correctly or the target is somewhat different as thought. This review will focus on some aspects of this novel concept for the role of ROS in diabetic nephropathy. PMID:24589719

  19. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases.

    PubMed

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  20. UV-induced reactive oxygen species in photocarcinogenesis and photoaging.

    PubMed

    Scharffetter-Kochanek, K; Wlaschek, M; Brenneisen, P; Schauen, M; Blaudschun, R; Wenk, J

    1997-11-01

    The increase in UV irradiation on earth due to the stratospheric ozone depletion represents a major environmental threat to the skin increasing its risk of photooxidative damage by UV-induced reactive oxygen species (ROS). Increased ROS load has been implicated in several pathological states including photoaging and photocarcinogenesis of the skin. Large efforts have been made to better define the involvement of distinct ROS in photocarcinogenesis and photoaging. Both pathological processes share common features; however, they reveal unique molecular characteristics which finally determine the fate of the cell and its host. As well as causing permanent genetic changes involving protooncogenes and tumor suppressor genes, ROS activate cytoplasmic signal transduction pathways that are related to growth differentiation, senescence, transformation and tissue degradation. This review focuses on the role of UV-induced ROS in the photodamage of the skin resulting in biochemical and clinical characteristics of photocarcinogenesis and photoaging. A decrease in the ROS load by efficient sunscreens and/or otherwise protective agents may represent a promising strategy to prevent or at least minimize ROS induced cutaneous pathological states. PMID:9426184

  1. Reactive Oxygen Species and Respiratory Plasticity Following Intermittent Hypoxia

    PubMed Central

    MacFarlane, P.M.; Wilkerson, J.E.R.; Lovett-Barr, M.R.; Mitchell, G.S.

    2008-01-01

    The neural network controlling breathing exhibits plasticity in response to environmental or physiological challenges. For example, while hypoxia initiates rapid and robust increases in respiratory motor output to defend against hypoxemia, it also triggers persistent changes, or plasticity, in chemosensory neurons and integrative pathways that transmit brainstem respiratory activity to respiratory motor neurons. Frequently studied models of hypoxia-induced respiratory plasticity include: 1) carotid chemosensory plasticity and metaplasticity induced by chronic intermittent hypoxia (CIH), and 2) acute intermittent hypoxia (AIH) induced phrenic long-term facilitation (pLTF) in naïve and CIH preconditioned rats. These forms of plasticity share some mechanistic elements, although they differ in anatomical location and the requirement for CIH preconditioning. Both forms of plasticity require serotonin receptor activation and formation of reactive oxygen species (ROS). While the cellular sources and targets of ROS are not well known, recent evidence suggests that ROS modify the balance of protein phosphatase and kinase activities, shifting the balance towards net phosphorylation and favoring cellular reactions that induce and/or maintain plasticity. Here, we review possible sources of ROS, and the impact of ROS on phosphorylation events relevant to respiratory plasticity. PMID:18692605

  2. Generator-specific targets of mitochondrial reactive oxygen species.

    PubMed

    Bleier, Lea; Wittig, Ilka; Heide, Heinrich; Steger, Mirco; Brandt, Ulrich; Dröse, Stefan

    2015-01-01

    To understand the role of reactive oxygen species (ROS) in oxidative stress and redox signaling it is necessary to link their site of generation to the oxidative modification of specific targets. Here we have studied the selective modification of protein thiols by mitochondrial ROS that have been implicated as deleterious agents in a number of degenerative diseases and in the process of biological aging, but also as important players in cellular signal transduction. We hypothesized that this bipartite role might be based on different generator sites for "signaling" and "damaging" ROS and a directed release into different mitochondrial compartments. Because two main mitochondrial ROS generators, complex I (NADH:ubiquinone oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase; cytochrome bc1 complex), are known to predominantly release superoxide and the derived hydrogen peroxide (H2O2) into the mitochondrial matrix and the intermembrane space, respectively, we investigated whether these ROS generators selectively oxidize specific protein thiols. We used redox fluorescence difference gel electrophoresis analysis to identify redox-sensitive targets in the mitochondrial proteome of intact rat heart mitochondria. We observed that the modified target proteins were distinctly different when complex I or complex III was employed as the source of ROS. These proteins are potential targets involved in mitochondrial redox signaling and may serve as biomarkers to study the generator-dependent dual role of mitochondrial ROS in redox signaling and oxidative stress.

  3. Reactive oxygen species inhibited by titanium oxide coatings.

    PubMed

    Suzuki, Richard; Muyco, Julie; McKittrick, Joanna; Frangos, John A

    2003-08-01

    Titanium is a successful biomaterial that possesses good biocompatibility. It is covered by a surface layer of titanium dioxide, and this oxide may play a critical role in inhibiting reactive oxygen species, such as peroxynitrite, produced during the inflammatory response. In the present study, titanium dioxide was coated onto silicone substrates by radio-frequency sputtering. Silicone coating with titanium dioxide enhanced the breakdown of peroxynitrite by 79%. At physiologic pH, the peroxynitrite donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) was used to nitrate 4-hydroxyphenylacetic acid (4-HPA) to form 4-hydroxy-3-nitrophenyl acetic acid (NHPA). Titanium dioxide-coated silicone inhibited the nitration of 4-HPA by 61% compared to aluminum oxide-coated silicone and 55% compared to uncoated silicone. J774A.1 mouse macrophages were plated on oxide-coated silicone and polystyrene and stimulated to produce superoxide and interleukin-6. Superoxide production was measured by the chemiluminescent reaction with 2-methyl-6-[p-methoxyphenyl]-3,7-dihydroimidazo[1,2-a]pyrazin-3-one (MCLA). Titanium dioxide-coated silicone exhibited a 55% decrease in superoxide compared to uncoated silicone and a 165% decrease in superoxide compared to uncoated polystyrene. Titanium dioxide-coated silicone inhibited IL-6 production by 77% compared to uncoated silicone. These results show that the anti-inflammatory properties of titanium dioxide can be transferred to the surfaces of silicone substrates.

  4. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    NASA Astrophysics Data System (ADS)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  5. Reactive oxygen species in response of plants to gravity stress

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy

    2016-07-01

    Reactive oxygen species (ROS) as second messengers can induce stress response of plants. Thioredoxins (Trx) and peroxiredoxins (Prx) can function as sensors and transmitters of the ROS in stress signaling and antioxidant response. 12-14 days old tissue culture of Arabidopsis thaliana have been investigated. Hypergravity stress was induced by centrifugation at 10 and 20 g during 30 and 90 min and than intensity of spontaneous chemiluminescence (SChL/ROS content), Trx and Prx activities were determined. All experiments were repeated from 3 to 5 times and the obtained data were statistically treated. In the tissue culture under development of the stress there were an increase in intensity of SChL and Trx and Prx activities. Thus, under hypergravity stress in the plant occurred early increase in the ROS level and the ROS induced the increase in the Trx and Prx activities. Prx and Trx can also participate in the formation of stress respons as acceptors and transducers of the redox signals. Increase in the activity of these enzymes primarily aimed at increasing of the total antioxidant activity in the cells to prevent of the plant to development of oxidative degradation by ROS.

  6. Roles of Reactive Oxygen and Nitrogen Species in Pain

    PubMed Central

    Salvemini, Daniela; Little, Joshua W.; Doyle, Timothy; Neumann, William L.

    2011-01-01

    Peroxynitrite (PN, ONOO−) and its reactive oxygen precursor superoxide (SO, O2·−), are critically important in the development of pain of several etiologies including in the development of pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contribution of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel non-narcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the role of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is due to the fact that unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory [1]. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the last 15 years, our team has spearheaded research concerning the roles of SO/PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area. PMID:21277369

  7. Reactive oxygen species a double-edged sword for mesothelioma

    PubMed Central

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  8. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  9. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-01

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates. PMID:25209711

  10. O(3P) + CO2 collisions at hyperthermal energies: dynamics of nonreactive scattering, oxygen isotope exchange, and oxygen-atom abstraction.

    PubMed

    Yeung, Laurence Y; Okumura, Mitchio; Zhang, Jianming; Minton, Timothy K; Paci, Jeffrey T; Karton, Amir; Martin, Jan M L; Camden, Jon P; Schatz, George C

    2012-01-12

    The dynamics of O((3)P) + CO(2) collisions at hyperthermal energies were investigated experimentally and theoretically. Crossed-molecular-beams experiments at = 98.8 kcal mol(-1) were performed with isotopically labeled (12)C(18)O(2) to distinguish products of nonreactive scattering from those of reactive scattering. The following product channels were observed: elastic and inelastic scattering ((16)O((3)P) + (12)C(18)O(2)), isotope exchange ((18)O + (16)O(12)C(18)O), and oxygen-atom abstraction ((18)O(16)O + (12)C(18)O). Stationary points on the two lowest triplet potential energy surfaces of the O((3)P) + CO(2) system were characterized at the CCSD(T)/aug-cc-pVTZ level of theory and by means of W4 theory, which represents an approximation to the relativistic basis set limit, full-configuration-interaction (FCI) energy. The calculations predict a planar CO(3)(C(2v), (3)A'') intermediate that lies 16.3 kcal mol(-1) (W4 FCI excluding zero point energy) above reactants and is approached by a C(2v) transition state with energy 24.08 kcal mol(-1). Quasi-classical trajectory (QCT) calculations with collision energies in the range 23-150 kcal mol(-1) were performed at the B3LYP/6-311G(d) and BMK/6-311G(d) levels. Both reactive channels observed in the experiment were predicted by these calculations. In the isotope exchange reaction, the experimental center-of-mass (c.m.) angular distribution, T(θ(c.m.)), of the (16)O(12)C(18)O products peaked along the initial CO(2) direction (backward relative to the direction of the reagent O atoms), with a smaller isotropic component. The product translational energy distribution, P(E(T)), had a relatively low average of = 35 kcal mol(-1), indicating that the (16)O(12)C(18)O products were formed with substantial internal energy. The QCT calculations give c.m. P(E(T)) and T(θ(c.m.)) distributions and a relative product yield that agree qualitatively with the experimental results, and the trajectories indicate that

  11. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  12. Reactive Oxygen Species Regulate Nucleostemin Oligomerization and Protein Degradation*

    PubMed Central

    Huang, Min; Whang, Patrick; Chodaparambil, Jayanth V.; Pollyea, Daniel A.; Kusler, Brenda; Xu, Liwen; Felsher, Dean W.; Mitchell, Beverly S.

    2011-01-01

    Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H2O2) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H2O2 impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-l-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation. PMID:21242306

  13. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  14. Reactive Oxygen Production Induced by the Gut Microbiota: Pharmacotherapeutic Implications

    PubMed Central

    Jones, R.M.; Mercante, J.W.; Neish, A.S.

    2014-01-01

    The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism. PMID:22360484

  15. Reactive Oxygen Species Tune Root Tropic Responses1[OPEN

    PubMed Central

    Krieger, Gat

    2016-01-01

    The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism. PMID:27535793

  16. Reactive Oxygen Species-Driven Transcription in Arabidopsis under Oxygen Deprivation1[W

    PubMed Central

    Pucciariello, Chiara; Parlanti, Sandro; Banti, Valeria; Novi, Giacomo; Perata, Pierdomenico

    2012-01-01

    Reactive oxygen species (ROS) play an important role as triggers of gene expression during biotic and abiotic stresses, among which is low oxygen (O2). Previous studies have shown that ROS regulation under low O2 is driven by a RHO-like GTPase that allows tight control of hydrogen peroxide (H2O2) production. H2O2 is thought to regulate the expression of heat shock proteins, in a mechanism that is common to both O2 deprivation and to heat stress. In this work, we used publicly available Arabidopsis (Arabidopsis thaliana) microarray datasets related to ROS and O2 deprivation to define transcriptome convergence pattern. Our results show that although Arabidopsis response to anoxic and hypoxic treatments share a common core of genes related to the anaerobic metabolism, they differ in terms of ROS-related gene response. We propose that H2O2 production under O2 deprivation is a trait present in a very early phase of anoxia, and that ROS are needed for the regulation of a set of genes belonging to the heat shock protein and ROS-mediated groups. This mechanism, likely not regulated via the N-end rule pathway for O2 sensing, is probably mediated by a NADPH oxidase and it is involved in plant tolerance to the stress. PMID:22415514

  17. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  18. [Generation of reactive oxygen species in water under exposure of visible or infrared irradiation at absorption band of molecular oxygen].

    PubMed

    Gudkov, S V; Karp, O E; Garmash, S A; Ivanov, V E; Chernikov, A V; Manokhin, A A; Astashev, M E; Iaguzhinskiĭ, L S; Bruskov, V I

    2012-01-01

    It is found that in bidistilled water saturated with oxygen hydrogen peroxide and hydroxyl radicals are formed under the influence of visible and infrared radiation in the absorption bands of molecular oxygen. Formation of reactive oxygen species (ROS) occurs under the influence of both solar and artificial light sourses, including the coherent laser irradiation. The oxygen effect, i.e. the impact of dissolved oxygen concentration on production of hydrogen peroxide induced by light, is detected. It is shown that the visible and infrared radiation in the absorption bands of molecular oxygen leads to the formation of 8-oxoguanine in DNA in vitro. Physicochemical mechanisms of ROS formation in water when exposed to visible and infrared light are studied, and the involvement of singlet oxygen and superoxide anion radicals in this process is shown.

  19. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis

    PubMed Central

    2014-01-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall’s plaques (RPs) or Randall’s plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall’s plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles

  20. Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species

    PubMed Central

    Sestili, Piero; Fimognari, Carmela

    2015-01-01

    According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species. PMID:26185755

  1. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  2. COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD

    EPA Science Inventory

    Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...

  3. Balancing the generation and elimination of reactive oxygen species

    USGS Publications Warehouse

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  4. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  5. Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea

    PubMed Central

    Zhou, Jia-Yu; Yuan, Jie; Li, Xia; Ning, Yi-Fan

    2015-01-01

    Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions. PMID:26712554

  6. Investigation of oxygen states and reactivities on a nanostructured cupric oxide surface

    NASA Astrophysics Data System (ADS)

    Svintsitskiy, D. A.; Stadnichenko, A. I.; Demidov, D. V.; Koscheev, S. V.; Boronin, A. I.

    2011-08-01

    Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu 2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10 -5 and was steadily reduced down to 5 × 10 -9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O 2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.

  7. Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae.

    PubMed

    Barros, Mario H; Bandy, Brian; Tahara, Erich B; Kowaltowski, Alicia J

    2004-11-26

    Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.

  8. Reactivity of oxygen radical anions bound to scandia nanoparticles in the gas phase: C-H bond activation.

    PubMed

    Tian, Li-Hua; Meng, Jing-Heng; Wu, Xiao-Nan; Zhao, Yan-Xia; Ding, Xun-Lei; He, Sheng-Gui; Ma, Tong-Mei

    2014-01-20

    The activation of C-H bonds in alkanes is currently a hot research topic in chemistry. The atomic oxygen radical anion (O(-·)) is an important species in C-H activation. The mechanistic details of C-H activation by O(-·) radicals can be well understood by studying the reactions between O(-·) containing transition metal oxide clusters and alkanes. Here the reactivity of scandium oxide cluster anions toward n-butane was studied by using a high-resolution time-of-flight mass spectrometer coupled with a fast flow reactor. Hydrogen atom abstraction (HAA) from n-butane by (Sc2O3)(N)O(-) (N=1-18) clusters was observed. The reactivity of (Sc2O3)(N)O(-) (N=1-18) clusters is significantly sizedependent and the highest reactivity was observed for N=4 (Sc8O13(-)) and 12 (Sc24O37(-)). Larger (Sc2O3)(N)O(-) clusters generally have higher reactivity than the smaller ones. Density functional theory calculations were performed to interpret the reactivity of (Sc2O3)(N)O(-) (N=1-5) clusters, which were found to contain the O(-·) radicals as the active sites. The local charge environment around the O(-·) radicals was demonstrated to control the experimentally observed size-dependent reactivity. This work is among the first to report HAA reactivity of cluster anions with dimensions up to nanosize toward alkane molecules. The anionic O(-·) containing scandium oxide clusters are found to be more reactive than the corresponding cationic ones in the C-H bond activation. PMID:24338790

  9. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  10. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.

  11. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa.

    PubMed

    Gyöngyösi, Norbert; Nagy, Dóra; Makara, Krisztina; Ella, Krisztina; Káldi, Krisztina

    2013-05-01

    Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.

  12. Singlet oxygen as a reactive intermediate in the photodegradation of an electroluminescent polymer

    SciTech Connect

    Scurlock, R.D.; Wang, B.; Ogilby, P.R.; Sheats, J.R.; Clough, R.L.

    1995-10-18

    Singlet molecular oxygen (a{sup 1}{Delta}{sub g}) is shown to be a reactive intermediate in the photoinduced oxidative decomposition of the electroluminescent material poly(2,5-bis(5,6-dihydrocholestanoxy)-1,4-phenylenevinylene) [BCHA-PPV] in both liquid solutions and solid films. Upon irradiation of this polymer in CS{sub 2}, singlet oxygen is produced by energy transfer from the BCHA-PPV triplet state to ground state oxygen with a quantum yield of nearly 0.025. Singlet oxygen reacts with BCHA-PPV, resulting in extensive chain scission of the macromolecule. The reaction with singlet oxygen is unique to the polymer; the monomeric analog of this system, stilbene, does not appreciably react with singlet oxygen. Polymer degradation is proposed to proceed via addition of singlet oxygen in a{sub {pi}} 2+{sub {pi}}2 cycloaddition reaction to the double bond that connects phenylene groups in the macromolecule. 60 refs., 6 figs.

  13. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Kaur, Amandeep; Jankowska, Karolina; Pilgrim, Chelsea; Fraser, Stuart T.

    2016-01-01

    Abstract Aims: Chronic elevations in cellular redox state are known to result in the onset of various pathological conditions, but transient increases in reactive oxygen species (ROS)/reactive nitrogen species (RNS) are necessary for signal transduction and various physiological functions. There is a distinct lack of reversible fluorescent tools that can aid in studying and unraveling the roles of ROS/RNS in physiology and pathology by monitoring the variations in cellular ROS levels over time. In this work, we report the development of ratiometric fluorescent sensors that reversibly respond to changes in mitochondrial redox state. Results: Photophysical studies of the developed flavin–rhodamine redox sensors, flavin–rhodamine redox sensor 1 (FRR1) and flavin–rhodamine redox sensor 2 (FRR2), confirmed the reversible response of the probes upon reduction and re-oxidation over more than five cycles. The ratiometric output of FRR1 and FRR2 remained unaltered in the presence of other possible cellular interferants (metals and pH). Microscopy studies indicated clear mitochondrial localization of both probes, and FRR2 was shown to report the time-dependent increase of mitochondrial ROS levels after lipopolysaccharide stimulation in macrophages. Moreover, it was used to study the variations in mitochondrial redox state in mouse hematopoietic cells at different stages of embryonic development and maturation. Innovation: This study provides the first ratiometric and reversible probes for ROS, targeted to the mitochondria, which reveal variations in mitochondrial ROS levels at different stages of embryonic and adult blood cell production. Conclusions: Our results suggest that with their ratiometric and reversible outputs, FRR1 and FRR2 are valuable tools for the future study of oxidative stress and its implications in physiology and pathology. Antioxid. Redox Signal. 24, 667–679. PMID:26865422

  14. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts.

    PubMed

    Wang, Lu-Cun; Friend, C M; Fushimi, Rebecca; Madix, Robert J

    2016-07-01

    The activation of molecular O2 as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O2 activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O2 dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O2 dissociation is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O2 dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction. PMID:27376884

  15. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  16. Mitochondrial Respiratory Supercomplex Association Limits Production of Reactive Oxygen Species from Complex I

    PubMed Central

    Maranzana, Evelina; Barbero, Giovanna; Falasca, Anna Ida; Lenaz, Giorgio

    2013-01-01

    Abstract Aims: The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. Results: The results of our investigation provide experimental evidence that the production of ROS is strongly increased in either model, supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I. Innovation: Dissociation of supercomplexes may link oxidative stress and energy failure in a vicious circle. Conclusion: Our findings support a central role of mitochondrial supramolecular structure in the development of the aging process and in the etiology and pathogenesis of most major chronic diseases. Antioxid. Redox Signal. 19, 1469–1480. PMID:23581604

  17. Mitochondrial metabolic suppression in fasting and daily torpor: consequences for reactive oxygen species production.

    PubMed

    Brown, Jason C L; Staples, James F

    2011-01-01

    Abstract Daily torpor results in an ∼70% decrease in metabolic rate (MR) and a 20%-70% decrease in state 3 (phosphorylating) respiration rate of isolated liver mitochondria in both dwarf Siberian hamsters and mice even when measured at 37°C. This study investigated whether mitochondrial metabolic suppression also occurs in these species during euthermic fasting, when MR decreases significantly but torpor is not observed. State 3 respiration rate measured at 37°C was 20%-30% lower in euthermic fasted animals when glutamate but not succinate was used as a substrate. This suggests that electron transport chain complex I is inhibited during fasting. We also investigated whether mitochondrial metabolic suppression alters mitochondrial reactive oxygen species (ROS) production. In both torpor and euthermic fasting, ROS production (measured as H(2)O(2) release rate) was lower with glutamate in the presence (but not absence) of rotenone when measured at 37°C, likely reflecting inhibition at or upstream of the complex I ROS-producing site. ROS production with succinate (with rotenone) increased in torpor but not euthermic fasting, reflecting complex II inhibition during torpor only. Finally, mitochondrial ROS production was twofold more temperature sensitive than mitochondrial respiration (as reflected by Q(10) values). These data suggest that electron leak from the mitochondrial electron transport chain, which leads to ROS production, is avoided more efficiently at the lower body temperatures experienced during torpor. PMID:21897084

  18. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    SciTech Connect

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin; Kwon, Ho Jeong

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  19. Reactive Oxygen-Related Diseases: Therapeutic Targets and Emerging Clinical Indications

    PubMed Central

    Daiber, Andreas; Maghzal, Ghassan J.; Di Lisa, Fabio; Kaludercic, Nina; Leach, Sonia; Cuadrado, Antonio; Jaquet, Vincent; Seredenina, Tamara; Krause, Karl H.; López, Manuela G.; Stocker, Roland

    2015-01-01

    Abstract Significance: Enhanced levels of reactive oxygen species (ROS) have been associated with different disease states. Most attempts to validate and exploit these associations by chronic antioxidant therapies have provided disappointing results. Hence, the clinical relevance of ROS is still largely unclear. Recent Advances: We are now beginning to understand the reasons for these failures, which reside in the many important physiological roles of ROS in cell signaling. To exploit ROS therapeutically, it would be essential to define and treat the disease-relevant ROS at the right moment and leave physiological ROS formation intact. This breakthrough seems now within reach. Critical Issues: Rather than antioxidants, a new generation of protein targets for classical pharmacological agents includes ROS-forming or toxifying enzymes or proteins that are oxidatively damaged and can be functionally repaired. Future Directions: Linking these target proteins in future to specific disease states and providing in each case proof of principle will be essential for translating the oxidative stress concept into the clinic. Antioxid. Redox Signal. 23, 1171–1185. PMID:26583264

  20. Role of Reactive Oxygen Species and Advanced Glycation End Products in the Malfunctioning of Dental Implants

    PubMed Central

    Guo, M; Liu, L; Zhang, J; Liu, M

    2015-01-01

    ABSTRACT Objective: In the last decade, dental implants have emerged as a crucial modality and serve as an individual form of therapy for dental failure. However, disparities in host responses have led to peri-implantitis and implant failure. The pathological mechanisms driving peri-implantitis remain largely unknown. In this study, we evaluated the role of oxidative stress and advanced glycation end products (AGEs) in the progression of peri-implantitis and dental implants failure, compared with chronic periodontal disease. Subjects and Methods: Three patient groups (peri-implantitis, chronic periodontal disease and control), each with 10 subjects (7M/3F) and average age ranging from 40–60 years were selected for analysis. Salivary oxidative stress and tissue AGE levels were analysed by probing for reactive oxygen species (ROS) and Maillard reaction-related fluorescence, respectively. Results: We observed significant increase (> 2-fold) in oxidative stress and AGE levels in patients with peri-implantitis and chronic periodontal disease compared to controls, with chronic periodontal disease having the highest levels. In addition, we observed a strong positive correlation (r = 0.94) between oxidative stress and AGE levels in the patients. Conclusion: We propose that increased AGE levels and oxidative stress, although not the only pathway, are significant mediators in the pathogenesis of peri-implantitis. Altering them may potentially be used in combination with other modalities to manage peri-implantitis. PMID:26624598

  1. Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence

    PubMed Central

    Samoylenko, Anatoly; Hossain, Jubayer Al; Mennerich, Daniela; Kellokumpu, Sakari; Hiltunen, Jukka Kalervo

    2013-01-01

    Abstract Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials. Antioxid. Redox Signal. 19, 2157–2196. PMID:23458328

  2. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  3. Mechanistic and kinetic study on the reactions of coumaric acids with reactive oxygen species: a DFT approach.

    PubMed

    Garzón, Andrés; Bravo, Iván; Barbero, Antonio J; Albaladejo, José

    2014-10-01

    The mechanism and kinetics of reactions between coumaric acids and a series of reactive oxygen species ((•)OX) was studied through the density functional theory (DFT). H atom abstraction from -OH and -COOH groups and addition to the nonaromatic double bond were the most representative reaction pathways chosen for which free energy barriers and rate constants were calculated within the transition state theory (TST) framework. From these calculations, it was estimated that (•)OH > (•)OCH3 > (•)OOH > (•)OOCH3 is the order of reactivity of (•)OX with any coumaric acid. The highest rate constant was estimated for p-coumaric acid + (•)OH reaction, whereas the rest of the (•)OX species are more reactive with o-coumaric acid. On the basis of the calculated rate constants, H abstraction from a -OH group should be the main mechanism for the reactions involving (•)OCH3, (•)OOH, and (•)OOCH3 radicals. Nevertheless, the addition mechanism, which sometimes is not considered in theoretical studies on reactions of phenolic compounds with electrophilic species, could play a relevant role in the global mechanism of coumaric acid + (•)OH reactions.

  4. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation.

    PubMed

    Nicolaije, Claudia; Koedam, Marijke; van Leeuwen, Johannes P T M

    2012-04-01

    Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization.

  5. NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair

    PubMed Central

    Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

    2014-01-01

    Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair. PMID:24669283

  6. [Measurement of reactive oxygen species in a biological system and its perspectives].

    PubMed

    Todoki, K; Lee, C; Okabe, E

    1996-12-01

    In recent years, reactive oxygen species have been implicated in the pathogenesis of a wide variety of disorders. Although the existence of reactive oxygen intermediates in drug metabolism can be inferred from end product analysis or from the effects of antioxidants or enzymes such as superoxide dismutase, only the technique of electron spin resonance (ESR) allows the direct detection of these highly reactive species. However, some free radical species cannot be detected by ESR due to their extremely short half-lives, which result in low steady-state concentrations of the radicals or to short radical relaxation times, which lead to a very broad line. These facts made recent development of spin-trapping and chemiluminescence techniques are widely used to detect free radicals. The goal of this paper is to introduce the various assays available for measurement of reactive oxygen species in biological models. This paper will focus on two topics: (1) the spin-trapping/ESR technique in vitro and vivo and (2) the chemiluminescence-optical biosensor application of this technique, a very sensitive method that has the advantage of being able to provide continuous, online, nondestructive monitoring of reactive oxygen species.

  7. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    PubMed Central

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  8. The reactivity of α-oxoaldehyde with reactive oxygen species in diabetes complications

    PubMed Central

    Matsumura, Yuriko; Iwasawa, Atsuo; Kobayashi, Toshihiro; Kamachi, Toshiaki; Ozawa, Toshihiko; Kohno, Masahiro

    2013-01-01

    The reactions of three α-oxoaldehydes (methylglyoxal, glyoxal, and pyruvic acid) with hydroxyl radicals generated by sonolysis of water were investigated using an electron spin resonance (electron paramagnetic resonance) spin-trapping method, and their reaction kinetics were investigated. It is apparent from our experimental results that methylglyoxal exhibits the highest reactivity of the three α-oxoaldehydes. These α-oxoaldehydes can react with hydroxyl radicals faster than other well-known antioxidants can. The reactivity of hydroxyl radicals is higher than that of hydrogen peroxides. PMID:23526048

  9. Role of reactive oxygen species and TRP channels in the cough reflex.

    PubMed

    Taylor-Clark, Thomas E

    2016-09-01

    The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1. PMID:27016063

  10. ASRDI oxygen technology survey. Volume 3: Heat transfer and fluid dynamics. Abstracts of selected technical reports and publications

    NASA Technical Reports Server (NTRS)

    Schmidt, A. F. (Editor)

    1972-01-01

    Selected information is presented from an assemblage of reports and publications on heat transfer and fluid dynamics with direct applicability to oxygen systems. For each document cited, an abstract has been prepared together with key words and a listing of most important references found in the document. Additionally, an author index, a subject index, and a key word index have been provided to simplify the retrieval of specific information from this work. In each subject area - e.g., boiling heat transfer - the individual citations are listed alphabetically by first author, with review papers dually noted under the appropriate subject category and under review papers. Of the documents reviewed and evaluated for inclusion in this publication, coverage of existing information directly concerned with oxygen was given primary emphasis. However, work not specifically oxygen-designated but considered applicable to oxygen by the reviewer e.g., a two-phase friction factor correlation derived from nitrogen experiments is occasionally given where no actual oxygen data exist, as an aid to the reader. Approximately 130 abstracts are listed.

  11. Evolution of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by Chlorine Atom

    SciTech Connect

    Poutsma, Marvin L

    2013-01-01

    Empirical structure-reactivity correlations are developed for log k298, the gas-phase rate constants for the reaction (Cl + HCR3 ClH + CR3 ). It has long been recognized that correlation with rH is weak. The poor performance of the linear Evans-Polanyi formulation s illustrated and was little improved by adding a quadratic term, e.g., by making its slope smoothly dependent on rH [ ( rH rHmin) / ( rHmax rHmin)]. The polar effect ( -Cl---H---CR3 +) has also been long discussed but there is no formalization of this dependence based on widely available independent variable(s). Using the sum of Hammett constants for the R substituents also gave at best modest correlations, either for para or for its dissection into F (field/inductive) and R (resonance) effects. Much greater success was achieved by combining these approaches with the preferred independent variable set being either [( rH)2, rH, F, and R] or [ , rH, F, and R]. For 64 rate constants which span 7 orders of magnitude, these correlation formulations give r2 > 0.87 and a mean unsigned deviation of <0.5 log k units, with even better performance if primary secondary, and tertiary reaction centers are treated separately.

  12. Reactive Oxygen Species Adversely Impacts Bone Marrow Microenvironment in Diabetes

    PubMed Central

    Mangialardi, Giuseppe; Spinetti, Gaia; Reni, Carlotta

    2014-01-01

    Abstract Significance: Patients with diabetes mellitus suffer an excess of cardiovascular complications and recover worse from them as compared with their nondiabetic peers. It is well known that microangiopathy is the cause of renal damage, blindness, and heart attacks in patients with diabetes. This review highlights molecular deficits in stem cells and a supporting microenvironment, which can be traced back to oxidative stress and ultimately reduce stem cells therapeutic potential in diabetic patients. Recent Advances: New research has shown that increased oxidative stress contributes to inducing microangiopathy in bone marrow (BM), the tissue contained inside the bones and the main source of stem cells. These precious cells not only replace old blood cells but also exert an important reparative function after acute injuries and heart attacks. Critical Issues: The starvation of BM as a consequence of microangiopathy can lead to a less efficient healing in diabetic patients with ischemic complications. Furthermore, stem cells from a patient's BM are the most used in regenerative medicine trials to mend hearts damaged by heart attacks. Future Directions: A deeper understanding of redox signaling in BM stem cells will lead to new modalities for preserving local and systemic homeostasis and to more effective treatments of diabetic cardiovascular complications. Antioxid. Redox Signal. 21, 1620–1633. PMID:25089632

  13. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association.

    PubMed

    Griendling, Kathy K; Touyz, Rhian M; Zweier, Jay L; Dikalov, Sergey; Chilian, William; Chen, Yeong-Renn; Harrison, David G; Bhatnagar, Aruni

    2016-08-19

    Reactive oxygen species and reactive nitrogen species are biological molecules that play important roles in cardiovascular physiology and contribute to disease initiation, progression, and severity. Because of their ephemeral nature and rapid reactivity, these species are difficult to measure directly with high accuracy and precision. In this statement, we review current methods for measuring these species and the secondary products they generate and suggest approaches for measuring redox status, oxidative stress, and the production of individual reactive oxygen and nitrogen species. We discuss the strengths and limitations of different methods and the relative specificity and suitability of these methods for measuring the concentrations of reactive oxygen and reactive nitrogen species in cells, tissues, and biological fluids. We provide specific guidelines, through expert opinion, for choosing reliable and reproducible assays for different experimental and clinical situations. These guidelines are intended to help investigators and clinical researchers avoid experimental error and ensure high-quality measurements of these important biological species.

  14. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  15. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  16. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  17. Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients.

    PubMed

    Degasperi, Giovanna R; Denis, Raphael G P; Morari, Joseane; Solon, Carina; Geloneze, Bruno; Stabe, Christiane; Pareja, José Carlos; Vercesi, Aníbal E; Velloso, Lício A

    2009-08-01

    Infiltrating macrophages play an important role in the production of inflammatory mediators by the adipose tissue of obese subjects. To reach the adipose tissue, peripheral monocytes are recruited by locally produced chemoattractants. However, little is known about the activation of monocytes in the peripheral blood of obese subjects. The objective of this study was to determine reactive oxygen species and endoplasmic reticulum stress as early markers of monocytic commitment with an inflammatory phenotype in the peripheral blood of nondiabetic obese patients. Patients were recruited from an academic general hospital; controls were voluntary students. Seven lean controls and 6 nondiabetic obese patients were included in the study. Monocytes were prepared from peripheral blood. Immunoblot, flow cytometry, and polymerase chain reaction were used to determine reactive oxygen species and endoplasmic reticulum stress. Increased reactive oxygen species and activation of endoplasmic reticulum stress were detected in the monocytes from obese patients. Reducing endoplasmic reticulum stress with a chemical chaperone reversed monocytic activation, as determined by the reduction of reactive oxygen species production. Thus, monocytes from nondiabetic obese patients are already committed with an inflammatory phenotype in peripheral blood; and reducing endoplasmic reticulum stress negatively modulates their activation.

  18. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  19. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  20. An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation

    PubMed Central

    Arnold, Rebecca S.; Sun, Qian; Sun, Carrie Q.; Richards, Jendai C.; O'Hearn, Sean; Osunkoya, Adeboye O.; Wallace, Douglas C.; Petros, John A.

    2013-01-01

    Mitochondrial DNA (mtDNA) mutations have been found in many cancers but the physiological derangements caused by such mutations have remained elusive. Prostate cancer is associated with both inherited and somatic mutations in the cytochrome c oxidase (COI) gene. We present a prostate cancer patient-derived rare heteroplasmic mutation of this gene, part of mitochondrial respiratory complex IV. Functional studies indicate that this mutation leads to the simultaneous decrease in cytochrome oxidation, increase in reactive oxygen, and increased reactive nitrogen. These data suggest that mitochondrial DNA mutations resulting in increased reactive oxygen and reactive nitrogen generation may be involved in prostate cancer biology. PMID:23509693

  1. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  2. Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.

    PubMed

    Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

    2009-01-01

    Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

  3. The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry.

    PubMed

    Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

    2014-04-01

    Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O₂ and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles.

  4. Reactive Oxygen Species Deficiency Induces Autoimmunity with Type 1 Interferon Signature

    PubMed Central

    Kelkka, Tiina; Kienhöfer, Deborah; Hoffmann, Markus; Linja, Marjo; Wing, Kajsa; Sareila, Outi; Hultqvist, Malin; Laajala, Essi; Chen, Zhi; Vasconcelos, Júlia; Neves, Esmeralda; Guedes, Margarida; Marques, Laura; Krönke, Gerhard; Helminen, Merja; Kainulainen, Leena; Olofsson, Peter; Jalkanen, Sirpa; Lahesmaa, Riitta; Souto-Carneiro, M. Margarida

    2014-01-01

    Abstract Aims: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the phagocyte reactive oxygen species (ROS)–producing NOX2 enzyme complex and characterized by recurrent infections associated with hyperinflammatory and autoimmune manifestations. A translational, comparative analysis of CGD patients and the corresponding ROS-deficient Ncf1m1J mutated mouse model was performed to reveal the molecular pathways operating in NOX2 complex deficient inflammation. Results: A prominent type I interferon (IFN) response signature that was accompanied by elevated autoantibody levels was identified in both mice and humans lacking functional NOX2 complex. To further underline the systemic lupus erythematosus (SLE)-related autoimmune process, we show that naïve Ncf1m1J mutated mice, similar to SLE patients, suffer from inflammatory kidney disease with IgG and C3 deposits in the glomeruli. Expression analysis of germ-free Ncf1m1J mutated mice reproduced the type I IFN signature, enabling us to conclude that the upregulated signaling pathway is of endogenous origin. Innovation: Our findings link the previously unexplained connection between ROS deficiency and increased susceptibility to autoimmunity by the discovery that activation of IFN signaling is a major pathway downstream of a deficient NOX2 complex in both mice and humans. Conclusion: We conclude that the lack of phagocyte-derived oxidative burst is associated with spontaneous autoimmunity and linked with type I IFN signature in both mice and humans. Antioxid. Redox Signal. 21, 2231–2245. PMID:24787605

  5. Reactive Oxygen Species, Vascular Noxs, and Hypertension: Focus on Translational and Clinical Research

    PubMed Central

    Montezano, Augusto C.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are signaling molecules that are important in physiological processes, including host defense, aging, and cellular homeostasis. Increased ROS bioavailability and altered redox signaling (oxidative stress) have been implicated in the onset and/or progression of chronic diseases, including hypertension. Recent Advances: Although oxidative stress may not be the only cause of hypertension, it amplifies blood pressure elevation in the presence of other pro-hypertensive factors, such as salt loading, activation of the renin-angiotensin-aldosterone system, and sympathetic hyperactivity, at least in experimental models. A major source for ROS in the cardiovascular-renal system is a family of nicotinamide adenine dinucleotide phosphate oxidases (Noxs), including the prototypic Nox2-based Nox, and Nox family members: Nox1, Nox4, and Nox5. Critical Issues: Although extensive experimental data support a role for increased ROS levels and altered redox signaling in the pathogenesis of hypertension, the role in clinical hypertension is unclear, as a direct causative role of ROS in blood pressure elevation has yet to be demonstrated in humans. Nevertheless, what is becoming increasingly evident is that abnormal ROS regulation and aberrant signaling through redox-sensitive pathways are important in the pathophysiological processes which is associated with vascular injury and target-organ damage in hypertension. Future Directions: There is a paucity of clinical information related to the mechanisms of oxidative stress and blood pressure elevation, and a few assays accurately measure ROS directly in patients. Such further ROS research is needed in humans and in the development of adequately validated analytical methods to accurately assess oxidative stress in the clinic. Antioxid. Redox Signal. 20, 164–182. PMID:23600794

  6. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway

    SciTech Connect

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

  7. Mechanotransduction Drives Post Ischemic Revascularization Through KATP Channel Closure and Production of Reactive Oxygen Species

    PubMed Central

    Browning, Elizabeth; Wang, Hui; Hong, Nankang; Yu, Kevin; Buerk, Donald G.; DeBolt, Kristine; Gonder, Daniel; Sorokina, Elena M.; Patel, Puja; De Leon, Diva D.; Feinstein, Sheldon I.; Fisher, Aron B.

    2014-01-01

    Abstract Aims: We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a KATP channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling. Results: Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo. Flow adapted PMVEC injected into a Matrigel matrix showed significantly higher tube formation than cells grown under static conditions or cells from mice with knockout of KATP channels or the NOX2. Blocking of hypoxia inducible factor-1 alpha (HIF-1α) accumulation completely abrogated the tube formation in wild-type (WT) PMVEC. With ischemia in vivo (femoral artery ligation), revascularization was high in WT mice and was significantly decreased in mice with knockout of KATP channel and in mice orally fed with a KATP channel agonist. In transgenic mice with endothelial-specific NOX2 expression, the revascularization observed was intermediate between that of WT and knockout of KATP channel or NOX2. Increased HIF-1α activation and vascular endothelial growth factor (VEGF) expression was observed in ischemic tissue of WT mice but not in KATP channel and NOX2 null mice. Revascularization could be partially rescued in KATP channel null mice by delivering VEGF into the hind limb. Innovation: This is the first report of a mechanosensitive ion channel (KATP channel) initiating endothelial signaling that drives revascularization. Conclusion: The KATP channel responds to the stop of flow and activates signals for revascularization to restore the impeded blood flow. Antioxid. Redox Signal. 20, 872–886. PMID:23758611

  8. NADPH Oxidases: A Perspective on Reactive Oxygen Species Production in Tumor Biology

    PubMed Central

    Meitzler, Jennifer L.; Antony, Smitha; Wu, Yongzhong; Juhasz, Agnes; Liu, Han; Jiang, Guojian; Lu, Jiamo; Roy, Krishnendu

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. Recent Advances: Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. Critical Issues: A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. Future Directions: In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer. Antioxid. Redox Signal. 20, 2873–2889. PMID:24156355

  9. On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase.

    PubMed

    Piubelli, Luciano; Pedotti, Mattia; Molla, Gianluca; Feindler-Boeckh, Susanne; Ghisla, Sandro; Pilone, Mirella S; Pollegioni, Loredano

    2008-09-01

    The flavoprotein cholesterol oxidase from Brevibacterium sterolicum (BCO) possesses a narrow channel that links the active center containing the flavin to the outside solvent. This channel has been proposed to serve for the access of dioxygen; it contains at its "bottom" a Glu-Arg pair (Glu-475-Arg-477) that was found by crystallographic studies to exist in two forms named "open" and "closed," which in turn was suggested to constitute a gate functioning in the control of oxygen access. Most mutations of residues that flank the channel have minor effects on the oxygen reactivity. Mutations of Glu-311, however, cause a switch in the basic kinetic mechanism of the reaction of reduced BCO with dioxygen; wild-type BCO and most mutants show a saturation behavior with increasing oxygen concentration, whereas for Glu-311 mutants a linear dependence is found that is assumed to reflect a "simple" second order process. This is taken as support for the assumption that residue Glu-311 finely tunes the Glu-475-Arg-477 pair, forming a gate that functions in modulating the access/reactivity of dioxygen.

  10. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  11. Decreases in mitochondrial reactive oxygen species initiate GABAA receptor-mediated electrical suppression in anoxia-tolerant turtle neurons

    PubMed Central

    Hogg, David W; Pamenter, Matthew E; Dukoff, David J; Buck, Leslie T

    2015-01-01

    Key points Anoxia induces hyper-excitability and cell death in mammalian brain but in the western painted turtle (Chrysemys picta bellii) enhanced GABA transmission prevents injury. The mechanism responsible for increased GABA transmission is unknown; however, reactive oxygen species (ROS) generated by mitochondria may play a role because this is an oxygen-sensitive process. In this study, we show that inhibition of mitochondrial ROS production is sufficient to initiate a redox-sensitive GABA signalling cascade that suppresses pyramidal neuron action potential frequency. These results further our understanding of the turtle's unique strategy for reducing ATP consumption during anoxia and highlights a natural mechanism in which to explore therapies to protect mammalian brain from low-oxygen insults (e.g. cerebral stroke). Abstract Anoxia induces hyper-excitability and cell death in mammalian brain but in the anoxia-tolerant western painted turtle (Chrysemys picta bellii) neuronal electrical activity is suppressed (i.e. spike arrest), adenosine triphosphate (ATP) consumption is reduced, and cell death does not occur. Electrical suppression is primarily the result of enhanced γ-aminobutyric acid (GABA) transmission; however, the underlying mechanism responsible for initiating oxygen-sensitive GABAergic spike arrest is unknown. In turtle cortical pyramidal neurons there are three types of GABAA receptor-mediated currents: spontaneous inhibitory postsynaptic currents (IPSCs), giant IPSCs and tonic currents. The aim of this study was to assess the effects of reactive oxygen species (ROS) scavenging on these three currents since ROS levels naturally decrease with anoxia and may serve as a redox signal to initiate spike arrest. We found that anoxia, pharmacological ROS scavenging, or inhibition of mitochondrial ROS generation enhanced all three types of GABA currents, with tonic currents comprising ∼50% of the total current. Application of hydrogen peroxide inhibited

  12. Involvement of reactive oxygen species in the mechanisms associated with cervical cancer specific treatment.

    PubMed

    Marinescu, S; Anghel, R; Gruia, M I; Beuran, M

    2014-01-01

    Cervical cancer represents a genuine health issue in Romania.The courses of treatment applied are complex, and the accompanying biochemical mechanisms are yet to be fully understood. Thus, radiotherapy, which induces reactive oxygen species, can lead to failure of treatment in hypoxic tissues,tissues which are difficult to identify due to the small quantity in which these cytotoxic species are produced. As a result, the aim of this paper is to identify the production and role of reactive oxygen species, as well as the manner of activation of endogenous antioxidant defense mechanisms in cervical cancer patients admitted to the Oncologic Institute of Bucharest. To this purpose the biochemical parameters of oxidative stress were identified in 30 patients with cervical tumour localization, prior to surgery. The results obtained have showed that a production of reactive oxygen species is identifiable in these patients, having lipids as a primary target and leading to their peroxidation. The extension of protein oxidative degradation takes place at a much lower value, as well as the activation of endogenous antioxidant defence systems, comparing to our expectations. To conclude,we consider that when the production of active oxygen metabolites takes place in small concentrations, associated with hypoxia, the signals transmitted are towards modifying the phenotype under anaerobic conditions into one activating neo vascularization, angiogenesis initiation, new cell growth and proliferation. The moment that this phase is overcome anew oxidative stress is installed, one potentially destructive for biomolecules essential to life, but also useful for further treatment, such as radiotherapy.

  13. Photo-irradiation of proanthocyanidin as a new disinfection technique via reactive oxygen species formation.

    PubMed

    Nakamura, Keisuke; Shirato, Midori; Ikai, Hiroyo; Kanno, Taro; Sasaki, Keiichi; Kohno, Masahiro; Niwano, Yoshimi

    2013-01-01

    In the present study, the bactericidal effect of photo-irradiated proanthocyanidin was evaluated in relation to reactive oxygen species formation. Staphylococcus aureus suspended in proanthocyanidin aqueous solution was irradiated with light from a laser at 405 nm. The bactericidal effect of photo-irradiated proanthocyanidin depended on the concentration of proanthocyanidin, the laser irradiation time, and the laser output power. When proanthocyanidin was used at the concentration of 1 mg/mL, the laser irradiation of the bacterial suspension could kill the bacteria with a >5-log reduction of viable cell counts. By contrast, bactericidal effect was not observed when proanthocyanidin was not irradiated. In electron spin resonance analysis, reactive oxygen species, such as hydroxyl radicals, superoxide anion radicals, and hydrogen peroxide, were detected in the photo-irradiated proanthocyanidin aqueous solution. The yields of the reactive oxygen species also depended on the concentration of proanthocyanidin, the laser irradiation time, and the laser output power as is the case with the bactericidal assay. Thus, it is indicated that the bactericidal effect of photo-irradiated proanthocyanidin is exerted via the reactive oxygen species formation. The bactericidal effect as well as the yield of the oxygen radicals increased with the concentration of proanthocyanidin up to 4 mg/mL, and then decreased with the concentration. These findings suggest that the antioxidative activity of proanthocyanidin might prevail against the radical generation potency of photo-irradiated proanthocyanidin resulting in the decreased bactericidal effect when the concentration is over 4 mg/mL. The present study suggests that photo-irradiated proanthocyanidin whenever used in an optimal concentration range can be a new disinfection technique.

  14. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    PubMed Central

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  15. In vivo electron spin resonance: An effective new tool for reactive oxygen species/reactive nitrogen species measurement.

    PubMed

    Han, Jin Yi; Hong, Jin Tae; Oh, Ki-Wan

    2010-09-01

    Reactive oxygen species are regarded as important factors in the initiation and progression of many diseases. Therefore, measurement of redox status would be helpful in understanding the "Redox Navigation" of such diseases. Because electron spin resonance (ESR) shows good signal responses to nitroxyl radical and various redox-related species, such as oxygen radicals and antioxidants, the in vivo ESR/nitroxyl probe technique can provide useful information on real-time redox status in a living body. ESR spectrometers for in vivo measurements can be operated at lower frequencies (approximately 3.5 GHz, 1 GHz, 700 MHz, and 300 MHz) than usual (9-10 GHz). Several types of resonators were also designed to minimize the dielectric loss of electromagnetic waves caused by water in animal bodies. In vivo ESR spectroscopy and its imaging have been used to analyze radical generation, redox status, partial pressure of oxygen and other conditions in various diseases. In addition, ESR has been used to analyze injury models related to oxidative stresses, such as nitroxyl radicals. The application of in vivo ESR for diseases related to oxidative injuries currently being investigated and the accumulation of basic data for therapy is ongoing. Recent progress in the instrumentation for in vivo ESR spectroscopy and its application to the life sciences are reviewed, because measurement of redox status in vivo is considered necessary to understand the initiation and progression of diseases.

  16. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.

    PubMed

    Fan, Ling; Lu, Bingan

    2016-05-01

    Carbonaceous materials as anodes usually exhibit low capacity for lithium ion batteries (LIBs) and sodium ion batteries (SIBs). Oxygen-doped carbonaceous materials have the potential of high capacity and super rate performance. However, up to now, the reported oxygen-doped carbonaceous materials usually exhibit inferior electrochemical performance. To overcome this problem, a high reactive oxygen-doped 3D interdigital porous carbonaceous material is designed and synthesized through epitaxial growth method and used as anodes for LIBs and SIBs. It delivers high reversible capacity, super rate performance, and long cycling stability (473 mA h g(-1) after 500 cycles for LIBs and 223 mA h g(-1) after 1200 cycles for SIBs, respectively, at the current density of 1000 mA g(-1) ), with a capacity decay of 0.0214% per cycle for LIBs and 0.0155% per cycle for SIBs. The results demonstrate that constructing 3D interdigital porous structure with reactive oxygen functional groups can significantly enhance the electrochemical performance of oxygen-doped carbonaceous material.

  17. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  18. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  19. Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses.

    PubMed

    Schumacker, Paul T

    2011-11-01

    Lung cells experience hypoxia during development, during travel to high altitude, and in acute and chronic lung diseases. The functional responses evoked by hypoxia are diverse and generally act to protect the cells from hypoxic injury, although some lung cell responses are counterproductive because they degrade normal function of the organ. The cellular O(2) sensor responsible for many of these responses involves the mitochondrial electron transport chain. Under hypoxic conditions, increased release of reactive oxygen species from the inner mitochondrial membrane to the intermembrane space leads to the activation of transcription factors, including hypoxia-inducible factor, activation of hypoxic pulmonary vasoconstriction, activation of AMP-dependent protein kinase, and internalization of the membrane Na,K-ATPase from the basolateral membrane of alveolar epithelial cells. Although the specific targets of reactive oxygen species signals are not fully understood, this signaling pathway is critical for development and for normal lung responses in the newborn and the mature lung.

  20. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A.; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y.

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca2+-dependent process involving Ca2+ channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  1. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tüzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologist’s skills, facilitating reliable operational steps. PMID:24753434

  2. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  3. Mitochondrial Reactive Oxygen Species at the Heart of the Matter: New Therapeutic Approaches for Cardiovascular Diseases

    PubMed Central

    Kornfeld, Opher S.; Hwang, Sunhee; Disatnik, Marie-Hélène; Chen, Che-Hong; Qvit, Nir; Mochly-Rosen, Daria

    2015-01-01

    Reactive oxygen species (ROS) have been implicated in a variety of age-related diseases including multiple cardiovascular disorders. However, translation of ROS scavengers (anti-oxidants) into the clinic has not been successful. These anti-oxidants grossly reduce total levels of cellular ROS including ROS that participate in physiological signaling. In this review, we challenge the traditional anti-oxidant therapeutic approach that targets ROS directly with novel approaches that improve mitochondrial functions to more effectively treat cardiovascular diseases. PMID:25999419

  4. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles.

    PubMed

    Zhang, Dinglin; Wei, Yanling; Chen, Kai; Zhang, Xiangjun; Xu, Xiaoqiu; Shi, Qing; Han, Songling; Chen, Xin; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang

    2015-01-01

    A novel reactive oxygen species (ROS)-responsive nanoplatform can be successfully manufactured from a ROS-triggerable β-cyclodextrin material. Extensive in vitro and in vivo studies validate that this nanoscaled system may serve as a new drug delivery vehicle with well-defined ROS-sensitivity and superior biocompatibility. This nanocarrier can be used for ROS-triggered transport of diverse therapeutics and imaging agents.

  5. Bacteriochlorin Dyads as Solvent Polarity Dependent Near-Infrared Fluorophores and Reactive Oxygen Species Photosensitizers.

    PubMed

    Esemoto, Nopondo N; Yu, Zhanqian; Wiratan, Linda; Satraitis, Andrius; Ptaszek, Marcin

    2016-09-16

    Symmetrical, near-infrared absorbing bacteriochlorin dyads exhibit gradual reduction of their fluorescence (intensity and lifetime) and reactive oxygen species photosensitization efficiency (ROS) with increasing solvent dielectric constant ε. For the directly linked dyad, significant reduction is observed even in solvents of moderate ε, while for the dyad containing a 1,4-phenylene linker, reduction is more parallel to an increase in solvent ε. Bacteriochlorin dyads are promising candidates for development of environmentally responsive fluorophores and ROS sensitizers. PMID:27603934

  6. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy.

    PubMed

    Wang, Ming; Sun, Shuo; Neufeld, Caleb I; Perez-Ramirez, Bernardo; Xu, Qiaobing

    2014-12-01

    Herein we report a convenient chemical approach to reversibly modulate protein (RNase A) function and develop a protein that is responsive to reactive oxygen species (ROS) for targeted cancer therapy. The conjugation of RNase A with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzyl carbonate (NBC) blocks protein lysine and temporarily deactivates the protein. However, the treatment of RNase A-NBC with hydrogen peroxide (one major intracellular ROS) efficiently cleaves the NBC conjugation and restores the RNase A activity. Thus, RNase A-NBC can be reactivated inside tumor cells by high levels of intracellular ROS, thereby restoring the cytotoxicity of RNase A for cancer therapy. Due to higher ROS levels inside tumor cells compared to healthy cells, and the resulting different levels of RNase A-NBC reactivation, RNase A-NBC shows a significant specific cytotoxicity against tumor cells.

  7. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-05-11

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.

  8. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species.

    PubMed

    Chisté, Renan Campos; Mercadante, Adriana Zerlotti; Gomes, Ana; Fernandes, Eduarda; Lima, José Luís Fontes da Costa; Bragagnolo, Neura

    2011-07-15

    Bixa orellana L. (annatto), from Bixaceae family, is a native plant of tropical America, which accumulates several carotenoids (including bixin and norbixin), terpenoids, tocotrienols and flavonoids with potential antioxidant activity. In the present study, the in vitro scavenging capacity of annatto seed extracts against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was evaluated and compared to the bixin standard. Annatto extracts were obtained using solvents with different polarities and their phenolic compounds and bixin levels were determined by high performance liquid chromatography coupled to diode array detector. All annatto extracts were able to scavenge all the reactive species tested at the low μg/mL range, with the exception of superoxide radical. The ethanol:ethyl acetate and ethyl acetate extracts of annatto seeds, which presented the highest levels of hypolaetin and bixin, respectively, were the extracts with the highest antioxidant capacity, although bixin standard presented the lowest IC(50) values. PMID:23140681

  9. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-01-01

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars. PMID:25960012

  10. Reactive oxygen species in chick hair cells after gentamicin exposure in vitro.

    PubMed

    Hirose, K; Hockenbery, D M; Rubel, E W

    1997-02-01

    Reactive oxygen species have been invoked as a causative agent of cell death in many different developmental and pathological states. The presence of free radicals and their importance of hair cell death due to aminoglycosides is suggested by a number of studies that have demonstrated a protective effect of antioxidants. By using dichlorofluorescin (DCFH) a fluorescent compound that is a reporter of reactive oxygen species, we have shown that free radicals are rapidly produced by avian hair cells in vitro after exposure to gentamicin. In addition, free radical scavengers, catalase and glutathione, were tested with DCFH fluorescent imaging for their ability to quench the production of reactive oxygen species in hair cells after drug exposure. Both free radical scavengers were very effective in suppressing drug-induced production of free radicals. Next, we investigated the ability of these antioxidants to preserve the structural integrity of hair cells after exposure to gentamicin. We were not able to detect any attenuation of the hair cell loss using antioxidants in conjunction with gentamicin. This result must be qualified by the fact that the antioxidants used were not effective over long-term gentamicin exposure. Therefore, methodological constraints prevented adequately testing possible protective effects of the free radical scavengers in this model system. PMID:9119753

  11. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    PubMed

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae.

  12. Reactive oxygen species (ROS) mediates non-freezing cold injury of rat sciatic nerve

    PubMed Central

    Geng, Zhiwei; Tong, Xiaoyan; Jia, Hongjuan

    2015-01-01

    Non-freezing cold injury is an injury characterized by neuropathy, developing when patients expose to cold environments. Reactive oxygen species (ROS) has been shown as a contributing factor for the non-freezing cold nerve injury. However, the detailed connections between non-freezing cold nerve injury and ROS have not been described. In order to investigate the relationship between non-freezing cold nerve injury and reactive oxygen species, we study the effects of two cooling methods-the continuous cooling and the intermittent cooling with warming intervals-on rat sciatic nerves. Specifically, we assess the morphological changes and ROS production of the sciatic nerves underwent different cooling treatments. Our data shows both types of cooling methods cause nerve injury and ROS production. However, despite of identical cooling degree and duration, the sciatic nerves processed by intermittent cooling with warming intervals present more ROS production, severer reperfusion injury and pathological destructions than the sciatic nerves processed by continuous cooling. This result indicates reactive oxygen species, as a product of reperfusion, facilitates non-freezing cold nerve injury. PMID:26629065

  13. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    PubMed Central

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  14. Photochemical transformation of carboxylated multiwalled carbon nanotubes: role of reactive oxygen species.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-12-17

    The study investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH-MWCNTs), an important environmental process affecting their physicochemical characteristics and hence fate and transport. UVA irradiation removed carboxyl groups from COOH-MWCNT surface while creating other oxygen-containing functional groups with an overall decrease in total surface oxygen content. This was attributed to reactions with photogenerated reactive oxygen species (ROS). COOH-MWCNTs generated singlet oxygen ((1)O2) and hydroxyl radical ((•)OH) under UVA light, which exhibited different reactivity toward the COOH-MWCNT surface. Inhibition experiments that isolate the effects of (•)OH and (1)O2 as well as experiments using externally generated (•)OH and (1)O2 separately revealed that (•)OH played an important role in the photochemical transformation of COOH-MWCNTs under UVA irradiation. The Raman spectroscopy and surface functional group analysis results suggested that (•)OH initially reacted with the surface carboxylated carbonaceous fragments, resulting in their degradation or exfoliation. Further reaction between (•)OH and the graphitic sidewall led to formation of defects including functional groups and vacancies. These reactions reduced the surface potential and colloidal stability of COOH-MWCNTs, and are expected to reduce their mobility in aquatic systems. PMID:24255932

  15. Comparison of sensitizers by detecting reactive oxygen species after photodynamic reaction in vitro.

    PubMed

    Kolarova, H; Bajgar, R; Tomankova, K; Nevrelova, P; Mosinger, J

    2007-10-01

    The production of reactive oxygen species (ROS) has a crucial effect on the result of photodynamic therapy (PDT). Because of this fact, we examined the ROS formation by means of three porphyrin sensitizers (TPPS(4), ZnTPPS(4) and PdTPPS(4)) and compared their effectivity for induction of cell death in the G361 (human melanoma) cell line. The porphyrins used are very efficient water-soluble aromatic dyes with a potential application in photomedicine and have a high tendency to accumulate in the membranes of intracellular organelles such as lysosomes and mitochondria. Interaction between the triplet excited state of the sensitizer and molecular oxygen leads to the production singlet oxygen and other reactive oxygen species to induce cell death. Production of ROS was investigated by molecular probe CM-H(2)DCFDA. Our results demonstrated that ZnTPPS(4) induces the highest ROS production in the cell line compared to TPPS(4) and PdTPPS(4) at concentrations of 1, 10, and 100 microM and light dose of 1 J cm(-2). We also observed a consequence between ROS production and cell survival. In conclusion, these results demonstrate that photodynamic effect depends on sensitizer type, its concentration and light dose.

  16. Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

    NASA Astrophysics Data System (ADS)

    Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

    2013-05-01

    Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

  17. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.

    PubMed

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen ((1)O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer (1)O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of (1)O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design.

  18. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy

    PubMed Central

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen (1O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer 1O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of 1O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. PMID:26525216

  19. Identification of Surface Reactivity Descriptor for Transition Metal Oxides in Oxygen Evolution Reaction.

    PubMed

    Tao, Hua Bing; Fang, Liwen; Chen, Jiazang; Yang, Hong Bin; Gao, Jiajian; Miao, Jianwei; Chen, Shengli; Liu, Bin

    2016-08-10

    A number of important reactions such as the oxygen evolution reaction (OER) are catalyzed by transition metal oxides (TMOs), the surface reactivity of which is rather elusive. Therefore, rationally tailoring adsorption energy of intermediates on TMOs to achieve desirable catalytic performance still remains a great challenge. Here we show the identification of a general and tunable surface structure, coordinatively unsaturated metal cation (MCUS), as a good surface reactivity descriptor for TMOs in OER. Surface reactivity of a given TMO increases monotonically with the density of MCUS, and thus the increase in MCUS improves the catalytic activity for weak-binding TMOs but impairs that for strong-binding ones. The electronic origin of the surface reactivity can be well explained by a new model proposed in this work, wherein the energy of the highest-occupied d-states relative to the Fermi level determines the intermediates' bonding strength by affecting the filling of the antibonding states. Our model for the first time well describes the reactivity trends among TMOs, and would initiate viable design principles for, but not limited to, OER catalysts. PMID:27441842

  20. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  1. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  2. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    SciTech Connect

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun; Kim, Hyoung Kyu; Han, Jin; Kwon, Ho Jeong

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identification and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.

  3. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields.

  4. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-25

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  5. The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Bowes, M.; Bradley, J. W.

    2014-07-01

    Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n-, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon-oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O-) was of the order of 1016 m-3 for all conditions. The O- concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, α = n-/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O- ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion-ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m-2 s-1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O- ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

  6. Fundamental Role of Oxygen Stoichiometry in Controlling the Band Gap and Reactivity of Cupric Oxide Nanosheets.

    PubMed

    Fishman, Zachary S; Rudshteyn, Benjamin; He, Yulian; Liu, Bolun; Chaudhuri, Subhajyoti; Askerka, Mikhail; Haller, Gary L; Batista, Victor S; Pfefferle, Lisa D

    2016-08-31

    CuO is a nonhazardous, earth-abundant material that has exciting potential for use in solar cells, photocatalysis, and other optoelectronic applications. While progress has been made on the characterization of properties and reactivity of CuO, there remains significant controversy on how to control the precise band gap by tuning conditions of synthetic methods. Here, we combine experimental and theoretical methods to address the origin of the wide distribution of reported band gaps for CuO nanosheets. We establish reaction conditions to control the band gap and reactivity via a high-temperature treatment in an oxygen-rich environment. SEM, TEM, XRD, and BET physisorption reveals little to no change in nanostructure, crystal structure, or surface area. In contrast, UV-vis spectroscopy shows a modulation in the material band gap over a range of 330 meV. A similar trend is found in H2 temperature-programmed reduction where peak H2 consumption temperature decreases with treatment. Calculations of the density of states show that increasing the oxygen to copper coverage ratio of the surface accounts for most of the observed changes in the band gap. An oxygen exchange mechanism, supported by (18)O2 temperature-programmed oxidation, is proposed to be responsible for changes in the CuO nanosheet oxygen to copper stoichiometry. The changes induced by oxygen depletion/deposition serve to explain discrepancies in the band gap of CuO, as reported in the literature, as well as dramatic differences in catalytic performance.

  7. Binding of Reactive Oxygen Species at Fe-S Cubane Clusters.

    PubMed

    Bruska, Marta K; Stiebritz, Martin T; Reiher, Markus

    2015-12-21

    Reactive oxygen species (ROS) play an important role in the biochemistry of the cell and occur in degenerative processes as well as in signal transduction. Iron-sulfur proteins are particularly oxygen-sensitive and their inorganic cofactors frequently undergo ROS-induced decomposition reactions. As experimental knowledge about these processes is still incomplete we present here a quantum chemical study of the relative energetics for the binding of the most relevant ROS to [Fe4S4] clusters. We find that cubane clusters with one uncoordinated Fe atom (as found, for instance, in aconitase) bind all oxygen derivatives considered, whereas activation of triplet O2 to singlet O2 is required for binding to valence-saturated iron centers in these clusters. The radicals NO and OH feature the most exothermic binding energies to Fe atoms. Direct sulfoxidation of coordinating cysteine residues is only possible by OH or H2O2 as attacking agents. The thermodynamic picture of ROS binding to iron-sulfur clusters established here can serve as a starting point for studying reactivity-modulating effects of the cluster-embedding protein environment on ROS-induced decomposition of iron-sulfur proteins. PMID:26585994

  8. Deconvoluting the role of reactive oxygen species and autophagy in human diseases.

    PubMed

    Wen, Xin; Wu, Jinming; Wang, Fengtian; Liu, Bo; Huang, Canhua; Wei, Yuquan

    2013-12-01

    Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases.

  9. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand.

    PubMed

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G

    2013-01-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of "on demand" reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently "on demand".

  10. Roles of reactive oxygen species and selected antioxidants in regulation of cellular metabolism.

    PubMed

    Stańczyk, Małgorzata; Gromadzińska, Jolanta; Wasowicz, Wojciech

    2005-01-01

    Reactive oxygen species (ROS) are essential for life of aerobic organisms. They are produced in normal cells and formed as a result of exposure to numerous factors, both chemical and physical. In normal cells, oxygen derivatives are neutralized or eliminated owing to the presence of a natural defense mechanism that involves enzymatic antioxidants (glutathione peroxidase, superoxide dismutase, catalase) and water or fat-soluble non-enzymatic antioxidants (vitamins C and E, glutathione, selenium). Under certain conditions, however, ROS production during cellular metabolism also stimulated by external agents may exceed the natural ability of cells to eliminate them from the organism. The disturbed balance leads to the state known as oxidative stress inducing damage of DNA, proteins, and lipids. An inefficient repair mechanism may finally trigger the process of neoplastic transformation or cell death. Reactive oxygen species are also an integral part of signal transduction essential for intercellular communication. The balance between pro- and antioxidative processes determines normal cellular metabolism manifested by genes activation and/or proteins expression in response to exo- and endogenous stimuli. PMID:16052887

  11. Reactive lattice oxygen sites for C sub 4 -hydrocarbon selective oxidation over. beta. -VOPO sub 4

    SciTech Connect

    Lashier, M.E.; Schrader, G.L. )

    1991-03-01

    The role of lattice oxygen species in the catalytic oxidation of n-butene to maleic anhydride has been investigated using {beta}-VOPO{sub 4} labeled with {sup 18}O. The catalyst was prepared by stoichiometric reaction of (VO){sub 2}P{sub 2}O{sub 7} with {sup 18}O{sub 2} using solid state preparation techniques. The {beta}-VOPO{sub 7/2} {sup 18}O{sub 1/2} was characterized using laser Raman and Fourier transform infrared spectroscopies: preferential incorporation at P-O-V sites was observed. A pulse reactor was used to react n-butane, 1-butene, 1,3-butadiene, furan, {gamma}-butyrolactone, and maleic anhydride with the catalyst in the absence of gas-phase O{sub 2}. Incorporation of {sup 18}O into the products was monitored by mass spectrometry. Specific lattice oxygen sites could be associated with the reaction pathways for selective or nonselective oxidation. The results of this study also indicate that the initial interaction of n-butane with {beta}-VOPO{sub 4} is fundamentally different from the initial interaction of olefins or oxygenated species. The approach used in this research-referred to as Isotopic Reactive-Site Mapping-is a potentially powerful method for probing the reactive lattice sites of other selective oxidation catalysts.

  12. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  13. Leukotoxicity of pyoverdin, production of reactive oxygen species, and effect of UV radiation.

    PubMed

    Becerra, C; Albesa, I; Eraso, A J

    2001-07-13

    Pyoverdin was purified by solvent extraction, gel filtration, and ionic exchange chromatography. Assays of cytotoxic of pyoverdin were done with human leukocytes and macrophages from the peritoneum of mice. Both cell quantities showed a significant reduction. Death was followed by lysis in a dose-dependent form. The mechanism of action of pyoverdin involved the stimulation of reactive oxygen species (ROS) measured by Nitroblue Tetrazolium (NBT) reaction and chemiluminescence (CL). UV radiation at 368 nm increased the leukotoxicity; expositions of 5 min were enough to photostimulate the effect of pyoverdin on cellular oxydative metabolism, which increased between 35.4 and 53.2%. Genestein, an inhibitor of tyrosine kinases, counteracted the ROS stimuli of pyoverdin, suggesting endocytic mechanism of action for this pigment. The little chloroquine interference on oxydative stress indicated that intraphagosomal pH and the stimuli of reactive nitrogen intermediaries (RNI) seem to be of less importance than ROS in pyoverdin action on leukocytes. PMID:11444858

  14. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    SciTech Connect

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. )

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  15. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    PubMed

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined.

  16. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    SciTech Connect

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  17. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species.

    PubMed

    Anca, Iulia-Andra; Fromentin, Jérôme; Bui, Quynh Trang; Mhiri, Corinne; Grandbastien, Marie-Angèle; Simon-Plas, Françoise

    2014-10-15

    Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation. PMID:25128785

  18. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  19. NQO2 is a reactive oxygen species generating off-target for acetaminophen.

    PubMed

    Miettinen, Teemu P; Björklund, Mikael

    2014-12-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity.

  20. Function of reactive oxygen species during animal development: passive or active?

    PubMed

    Covarrubias, Luis; Hernández-García, David; Schnabel, Denhí; Salas-Vidal, Enrique; Castro-Obregón, Susana

    2008-08-01

    Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). Here we review recent data that are suggestive of specific ROS functions during development of animals, particularly mammals.

  1. Role of auxin-induced reactive oxygen species in root gravitropism.

    PubMed

    Joo, J H; Bae, Y S; Lee, J S

    2001-07-01

    We report our studies on root gravitropism indicating that reactive oxygen species (ROS) may function as a downstream component in auxin-mediated signal transduction. A transient increase in the intracellular concentration of ROS in the convex endodermis resulted from either gravistimulation or unilateral application of auxin to vertical roots. Root bending was also brought about by unilateral application of ROS to vertical roots pretreated with the auxin transport inhibitor N-1-naphthylphthalamic acid. Furthermore, the scavenging of ROS by antioxidants (N-acetylcysteine, ascorbic acid, and Trolox) inhibited root gravitropism. These results indicate that the generation of ROS plays a role in root gravitropism. PMID:11457956

  2. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species

    PubMed Central

    Nathan, Carl; Cunningham-Bussel, Amy

    2014-01-01

    Reactive oxygen species (ROS) react preferentially with certain atoms to modulate functions ranging from cell homeostasis to cell death. Molecular actions include both inhibition and activation of proteins, mutagenesis of DNA and activation of gene transcription. Cellular actions include promotion or suppression of inflammation, immunity and carcinogenesis. ROS help the host to compete against microorganisms and are also involved in intermicrobial competition. ROS chemistry and their pleiotropy make them difficult to localize, to quantify and to manipulate — challenges we must overcome to translate ROS biology into medical advances. PMID:23618831

  3. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  4. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    PubMed Central

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity. PMID:25313982

  5. Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling

    NASA Astrophysics Data System (ADS)

    Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2000-01-01

    Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

  6. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    PubMed

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells. PMID:27599911

  7. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  8. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.

    PubMed

    Blackstone, N W

    2001-06-01

    Colonial metazoans often encrust surfaces over which the food supply varies in time or space. In such an environment, adaptive colony development entails adjusting the timing and spacing of feeding structures and gastrovascular connections to correspond to this variable food supply. To investigate the possibility of such adaptive growth, within-colony differential feeding experiments were carried out using the hydroid Podocoryna carnea. Indeed, such colonies strongly exhibited adaptive growth, developing dense arrays of polyps (feeding structures) and gastrovascular connections in areas that were fed relative to areas that were starved, and this effect became more consistent over time. To investigate mechanisms of signaling between the food supply and colony development, measurements were taken of metabolic parameters that have been implicated in signal transduction in other systems, particularly redox state and levels of reactive oxygen species. Utilizing fluorescence microscopy of P. carnea cells in vivo, simultaneous measurements of redox state [using NAD(P)H] and hydrogen peroxide (using 2',7'-dichlorofluorescin diacetate) were taken. Both measures focused on polyp epitheliomuscular cells, since these exhibit the greatest metabolic activity. Colonies 3-5h after feeding were relatively oxidized, with low levels of peroxide, while colonies 24h after feeding were relatively reduced, with high levels of peroxide. The functional role of polyps in feeding and generating gastrovascular flow probably produced this dichotomy. Polyps 3-5h after feeding contract maximally, and this metabolic demand probably shifts the redox state in the direction of oxidation and diminishes levels of reactive oxygen species. In contrast, 24h after feeding, polyps are quiescent, and this lack of metabolic demand probably shifts the redox state in the direction of reduction and increases levels of reactive oxygen species. Within-colony differential feeding experiments were carried out on

  9. Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells.

    PubMed

    Banerjee, Tinku; Kuypers, Frans A

    2004-02-01

    Due to their role in oxygen transport and the presence of redox active haemoglobin molecules, red blood cells (RBC) generate relatively high levels of reactive oxygen species (ROS). To counteract the potential deleterious effects of ROS, RBCs have a well-integrated network of anti-oxidant mechanisms to combat this oxidative stress. ROS formation is increased in sickle-cell disease (SCD) and our studies in a murine SCD model showed a significant increase in the generation of ROS when compared with normal mice. Our data also indicated that murine sickle RBCs exhibit a significantly increased ATP catabolism, partly due to the increased activity of glucose-6-phosphate dehydrogenase and glutathione reductase to regenerate intracellular glutathione (GSH) levels to neutralize the adverse milieu of oxidative stress. Higher ATP consumption by the murine sickle RBCs, together with the increased ROS formation and impairment of the aminophospholipid translocase or flipase may underlie the exposure of phosphatidylserine on the surface of these cells.

  10. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    SciTech Connect

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert

    2012-12-01

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  11. A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.

    PubMed

    Criado, Susana; García, Norman A

    2010-01-01

    Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.

  12. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  13. Contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality.

    PubMed

    Ajiboye, T O; Aliyu, M; Isiaka, I; Haliru, F Z; Ibitoye, O B; Uwazie, J N; Muritala, H F; Bello, S A; Yusuf, I I; Mohammed, A O

    2016-10-25

    The contribution of reactive oxygen species to (+)-catechin-mediated bacterial lethality was investigated. Minimum inhibitory concentrations (MIC) and minimum bactericidal concentration (MBC) of (+)-catechin against E. coli, P. aeruginosa and S. aureus were investigated using 96-well microtitre plate. MIC and MBC of (+)-catechin against E. coli, P. aeruginosa and S. aureus are 600 and 700; 600 and 800; 600 and 800 μg/mL respectively. The optical densities and colony forming units of (+)-catechin-treated bacteria decreased. (+)-Catechin (4× MIC) significantly increased the superoxide anion content of E. coli, P. aeruginosa and S. aureus compared to DMSO. Superoxide dismutase and catalase in (+)-catechin treated E. coli, P. aeruginosa and S. aureus increased significantly. Conversely, level of reduced glutathione in (+)-catechin-treated E. coli, P. aeruginosa and S. aureus decreased significantly while glutathione disulfide increased significantly. Furthermore, malondialdehyde and fragmented DNA increased significantly following exposure to (+)-catechin. From the above findings, (+)-catechin enhanced the generation of reactive oxygen species (superoxide anion radical and hydroxyl radical) in E. coli, P. aeruginosa and S. aureus, possibly by autoxidation, Fenton chemistry and inhibiting electron transport chain resulting into lipid peroxidation and DNA fragmentation and consequentially bacterial cell death. PMID:27634360

  14. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought. PMID:19483186

  15. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome.

    PubMed

    Cruz, Josiane C; Flôr, Atalia F L; França-Silva, Maria S; Balarini, Camille M; Braga, Valdir A

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  16. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  17. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  18. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds.

    PubMed

    Zhang, Tong; Hansel, Colleen M; Voelker, Bettina M; Lamborg, Carl H

    2016-03-15

    Within natural waters, photodependent processes are generally considered the predominant source of reactive oxygen species (ROS), a suite of biogeochemically important molecules. However, recent discoveries of dark particle-associated ROS production in aquatic environments and extracellular ROS production by various microorganisms point to biological activity as a significant source of ROS in the absence of light. Thus, the objective of this study was to explore the occurrence of dark biological production of the ROS superoxide (O2(-)) and hydrogen peroxide (H2O2) in brackish and freshwater ponds. Here we show that the ROS superoxide and hydrogen peroxide were present in dark waters at comparable concentrations as in sunlit waters. This suggests that, at least for the short-lived superoxide species, light-independent processes were an important control on ROS levels in these natural waters. Indeed, we demonstrated that dark biological production of ROS extensively occurred in brackish and freshwater environments, with greater dark ROS production rates generally observed in the aphotic relative to the photic zone. Filtering and formaldehyde inhibition confirmed the biological nature of a majority of this dark ROS production, which likely involved phytoplankton, particle-associated heterotrophic bacteria, and NADH-oxidizing enzymes. We conclude that biological ROS production is widespread, including regions devoid of light, thereby expanding the relevance of these reactive molecules to all regions of our oxygenated global habit.

  19. Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice.

    PubMed

    Konno, Tasuku; Otsuki, Noriyuki; Kurahashi, Toshihiro; Kibe, Noriko; Tsunoda, Satoshi; Iuchi, Yoshihito; Fujii, Junichi

    2013-12-01

    Elevated reactive oxygen species (ROS) and oxidative damage occur in the red blood cells (RBCs) of SOD1-deficient C57BL/6 mice. This leads to autoimmune responses against RBCs in aged mice that are similar to autoimmune hemolytic anemia (AIHA). We examined whether a SOD1 deficiency and/or the human SOD1 transgene (hSOD1) would affect phenotypes of AIHA-prone New Zealand Black (NZB) mice by establishing three congenic strains: those lacking SOD1, those expressing hSOD1 under a GATA-1 promoter, and those lacking mouse SOD1 but expressing hSOD1. Levels of intracellular ROS and oxidative stress markers increased, and the severity of the AIHA phenotype was aggravated by a SOD1 deficiency. In contrast, the transgenic expression of hSOD1 in an erythroid cell-specific manner averted most of the AIHA phenotype evident in the SOD1-deficient mice and also ameliorated the AIHA phenotype in the mice possessing intrinsic SOD1. These data suggest that oxidative stress in RBCs may be an underlying mechanism for autoimmune responses in NZB mice. These results were consistent with the hypothetical role of reactive oxygen species in triggering the autoimmune reaction in RBCs and may provide a novel approach to mitigating the progression of AIHA by reducing oxidative stress.

  20. Seed birth to death: dual functions of reactive oxygen species in seed physiology

    PubMed Central

    Jeevan Kumar, S. P.; Rajendra Prasad, S.; Banerjee, Rintu; Thammineni, Chakradhar

    2015-01-01

    Background Reactive oxygen species (ROS) are considered to be detrimental to seed viability. However, recent studies have demonstrated that ROS have key roles in seed germination particularly in the release of seed dormancy and embryogenesis, as well as in protection from pathogens. Scope This review considers the functions of ROS in seed physiology. ROS are present in all cells and at all phases of the seed life cycle. ROS accumulation is important in breaking seed dormancy, and stimulating seed germination and protection from pathogens. However, excessive ROS accumulation can be detrimental. Therefore, knowledge of the mechanisms by which ROS influence seed physiology will provide insights that may not only allow the development of seed quality markers but also help us understand how dormancy can be broken in several recalcitrant species. Conclusions Reactive oxygen species have a dual role in seed physiology. Understanding the relative importance of beneficial and detrimental effects of ROS provides great scope for the improvement and maintenance of seed vigour and quality, factors that may ultimately increase crop yields. PMID:26271119

  1. Inelastic and Reactive Scattering Dynamics of Hyperthermal Oxygen Atoms on Ionic Liquid Surfaces: [emim][NTf2] and [C12mim][NTf2

    NASA Astrophysics Data System (ADS)

    Wu, Bohan; Zhang, Jianming; Minton, Timothy K.; McKendrick, Kenneth G.; Slattery, John M.; Yockel, Scott; Schatz, George C.

    2011-05-01

    Collisions of hyperthermal oxygen atoms, with an average translational energy of 520 kJ mol-1, on continuously refreshed ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([emim][NTf2]) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([C12mim][NTf2]), were studied with the use of a beam-surface scattering technique. Time-of-flight and angular distributions of inelastically scattered O and reactively scattered OH and H2O were collected for various angles of incidence with the use of a rotatable mass spectrometer detector. For both O and OH, two distinct scattering processes were identified, which can be empirically categorized as thermal and non-thermal. Non-thermal scattering is more probable for both O and OH products. The observation of OH confirms that at least some reactive sites, presumably alkyl groups, must be exposed at the surface. The ionic liquid with the longer alkyl chain, [C12mim][NTf2], is substantially more reactive than the liquid with the shorter alkyl chain, [emim][NTf2], and proportionately much more so than would be predicted simply from stoichiometry based on the number of abstractable hydrogen atoms. Molecular dynamics models of these surfaces shed light on this change in reactivity. The scattering behavior of O is distinctly different from that of OH. However, no such differences between inelastic and reactive scattering dynamics have been seen in previous work on pure hydrocarbon liquids, in particular the benchmark, partially branched hydrocarbon, squalane (C30H62). The comparison between inelastic and reactive scattering dynamics indicates that inelastic scattering from the ionic liquid surfaces takes place predominantly at non-reactive sites that are effectively stiffer than the reactive alkyl chains, with a higher proportion of collisions sampling such sites for [emim][NTf2] than for [C12mim][NTf2].

  2. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    PubMed Central

    Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  3. Effect of reactive oxygen and carbonyl species on crucial cellular antioxidant enzymes.

    PubMed

    Lesgards, Jean-François; Gauthier, Cyrielle; Iovanna, Juan; Vidal, Nicolas; Dolla, Alain; Stocker, Pierre

    2011-03-15

    Numerous reactive oxygen species (ROS) and reactive carbonyl species (RCS) issuing from lipid and sugar oxidation are known to damage a large number of proteins leading to enzyme inhibition and alteration of cellular functions. Whereas studies in literature only focus on the reactivity of one or two of these compounds, we aimed at comparing in the same conditions of incubations (4 and 24h at 37°C) the effects of both various RCS (4-hydroxynonenal, 4-hydroxyhexenal, acrolein, methylglyoxal, glyoxal, malondialdehyde) and ROS (H₂O₂, AAPH) on the activity of key enzymes involved in cellular oxidative stress: superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). This was realized both in vitro on purified proteins and MIAPaCa-2 cells. Incubation of these enzymes with RCS resulted in a significant time- and concentration-dependent inhibition for both pure enzymes and in cell lysates. Among all RCS and ROS, hydroxynonenal (HNE) was observed as the most toxic for all studied enzymes except for SOD and is followed by hydrogen peroxide. At 100μM, HNE resulted in a 50% reduction of GPx, 56% of GST, 65% of G6PDH, and only 10% of Cu,Zn-SOD. Meanwhile it seems that concentrations used in our study are closer to biological conditions for ROS than for RCS. H₂O₂ and AAPH-induced peroxyl radicals may be probably more toxic towards the studied enzymes in vivo.

  4. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.

    PubMed

    Smeets, Pieter J; Hadt, Ryan G; Woertink, Julia S; Vanelderen, Pieter; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2010-10-27

    The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu(2)O](2+). In this communication we report the formation of an O(2)-precursor of this reactive site with an associated absorption band at 29,000 cm(-1). Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by (18)O(2) isotope sensitive and insensitive vibrations, νO-O and νCu-Cu, at 736 (Δ(18)O(2) = 41 cm(-1)) and 269 cm(-1), respectively. These define the precursor to be a μ-(η(2):η(2)) peroxo dicopper(II) species, [Cu(2)(O(2))](2+). rR experiments in combination with UV-vis absorption data show that this [Cu(2)(O(2))](2+) species transforms directly into the [Cu(2)O](2+) reactive site. Spectator Cu(+) sites in the zeolite ion-exchange sites provide the two electrons required to break the peroxo bond in the precursor. O(2)-TPD experiments with (18)O(2) show the incorporation of the second (18)O atom into the zeolite lattice in the transformation of [Cu(2)(O(2))](2+) into [Cu(2)O](2+). This study defines the mechanism of oxo-active site formation in Cu-ZSM-5.

  5. The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal.

    PubMed

    Forman, Henry Jay; Fukuto, Jon M; Miller, Tom; Zhang, Hongqiao; Rinna, Alessandra; Levy, Smadar

    2008-09-15

    During the past several years, major advances have been made in understanding how reactive oxygen species (ROS) and nitrogen species (RNS) participate in signal transduction. Identification of the specific targets and the chemical reactions involved still remains to be resolved with many of the signaling pathways in which the involvement of reactive species has been determined. Our understanding is that ROS and RNS have second messenger roles. While cysteine residues in the thiolate (ionized) form found in several classes of signaling proteins can be specific targets for reaction with H(2)O(2) and RNS, better understanding of the chemistry, particularly kinetics, suggests that for many signaling events in which ROS and RNS participate, enzymatic catalysis is more likely to be involved than non-enzymatic reaction. Due to increased interest in how oxidation products, particularly lipid peroxidation products, also are involved with signaling, a review of signaling by 4-hydroxy-2-nonenal (HNE) is included. This article focuses on the chemistry of signaling by ROS, RNS, and HNE and will describe reactions with selected target proteins as representatives of the mechanisms rather attempt to comprehensively review the many signaling pathways in which the reactive species are involved.

  6. Nonmetal haptens induce ATP release from keratinocytes through opening of pannexin hemichannels by reactive oxygen species.

    PubMed

    Onami, Kaoru; Kimura, Yutaka; Ito, Yumiko; Yamauchi, Takeshi; Yamasaki, Kenshi; Aiba, Setsuya

    2014-07-01

    Although extracellular adenosine 5'-triphosphate (eATP) has a crucial role in the sensitization phase of contact hypersensitivity (CHS), the mechanism by which hapten causes keratinocyte cell death and ATP release is unknown. We examined the time course of cell death, reactive oxygen species (ROS) production, and ATP release in HaCaT cells and in normal human keratinocytes after exposure to nonmetal haptens, NiCl2, or irritants. Both haptens and irritants caused cell death of keratinocytes but with different time courses. N-acetylcysteine (NAC) significantly reduced only nonmetal hapten-induced cell death as assessed by propidium iodide exclusion. We examined the effects of antioxidants and pannexin (Panx) inhibitors on cell death, ROS production, and ATP release by chemical-treated HaCaT cells. Nonmetal hapten-induced cell death, but not NiCl2- or irritant-related cell death, was dependent on reactivity to thiol residues in the cells. NAC reduced cell death and ATP release, whereas antioxidants and Panx inhibitors did not inhibit cell death but significantly attenuated ATP release. Panx1 small interfering RNA (siRNA) also suppressed ATP release from hapten-exposed HaCaT cells. Intraperitoneal injection of a Panx1 inhibitor attenuated murine CHS. These findings suggest that nonmetal hapten reactivity to thiol residues causes membrane disruption of keratinocytes and ROS production that leads to ATP release through opening of Panx hemichannels. PMID:24531690

  7. Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand

    NASA Astrophysics Data System (ADS)

    Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G.

    2012-12-01

    Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''.Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that

  8. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.

  9. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  10. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology.

    PubMed

    Oliveira, Matheus P; Correa Soares, Juliana B R; Oliveira, Marcus F

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  11. Sexual Preferences in Nutrient Utilization Regulate Oxygen Consumption and Reactive Oxygen Species Generation in Schistosoma mansoni: Potential Implications for Parasite Redox Biology

    PubMed Central

    Oliveira, Matheus P.; Correa Soares, Juliana B. R.; Oliveira, Marcus F.

    2016-01-01

    Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute

  12. Negative catalytic effect of water on the reactivity of hydrogen abstraction from the C-H bond of dimethyl ether by deuterium atoms through tunneling at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-10-01

    We report an experimental study on the catalytic effect of solid water on the reactivity of hydrogen abstraction (H-abstraction) from dimethyl ether (DME) in the low-temperature solid DME-H2O complex. When DME reacted with deuterium atoms on a surface at 15-25 K, it was efficiently deuterated via successive tunneling H-abstraction and deuterium (D)-addition reactions. The 'effective' rate constant for DME-H2O + D was found to be about 20 times smaller than that of pure DME + D. This provides the first evidence that the presence of solid water has a negative catalytic effect on tunneling H-abstraction reactions.

  13. Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea

    PubMed Central

    Henneberg, Railson; Otuki, Michel Fleith; Furman, Aline Emmer Ferreira; Hermann, Priscila; do Nascimento, Aguinaldo José; Leonart, Maria Suely Soares

    2013-01-01

    Objective The aim of this study was to evaluate the protective effects of quercetin, rutin, hesperidin and myricetin against reactive oxygen species production with the oxidizing action of tert-butylhydroperoxide in erythrocytes from normal subjects and sickle cell anemia carriers treated with hydroxyurea. Methods Detection of intracellular reactive oxygen species was carried out using a liposoluble probe, 2',7'-dichlorfluorescein-diacetate (DCFH-DA). A 10% erythrocyte suspension was incubated with flavonoids (quercetin, rutin, hesperidin or myricetin; 30, 50, and 100 µmol/L), and then incubated with tert-butylhydroperoxide (75 µmol/L). Untreated samples were used as controls. Results Red blood cell exposure to tert-butylhydroperoxide resulted in significant increases in the generation of intracellular reactive oxygen species compared to basal levels. Reactive oxygen species production was significantly inhibited when red blood cells were pre-incubated with flavonoids, both in normal individuals and in patients with sickle cell anemia. Quercetin and rutin had the highest antioxidant activity, followed by myricetin and hesperidin. CONCLUSION: Flavonoids, in particular quercetin and rutin, showed better antioxidant effects against damage caused by excess reactive oxygen species characteristic of sickle cell anemia. Results obtained with patients under treatment with hydroxyurea suggest an additional protective effect when associated with the use of flavonoids. PMID:23580885

  14. Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers.

    PubMed

    Kolarova, H; Nevrelova, P; Tomankova, K; Kolar, P; Bajgar, R; Mosinger, J

    2008-06-01

    The objectives of this study was to investigate the production of reactive oxygen species (ROS) after photodynamic therapy (PDT) in vitro. We examined second generation sensitizers, porphyrines (TPPS4, ZnTPPS4 and PdTPPS4) and compared their effectivity on ROS generation in G361 cell line. Used porphyrines are very efficient water-soluble aromatic dyes with potential to use in photomedicine and have a high propensity to accumulate in the membranes of intracellular organelles like lysosomes and mitochondria. Interaction between the triplet excited state of the sensitizer and molecular oxygen leads to produce singlet oxygen and other ROS to induce cell death. Production of ROS was verificated by molecular probe CM-H2DCFDA and viability of cells was determined by MTT assay. Our results demonstrated that ZnTPPS4 induces the highest ROS production in cell line compared to TPPS4 and PdTPPS4 at each used concentration and light dose. These results consist with a fact that photodynamic effect depends on sensitizer type, its concentration and light dose.

  15. Iron-induced tissue damage and cancer: the role of reactive oxygen species-free radicals.

    PubMed

    Okada, S

    1996-05-01

    Oxygen is poisonous, but we cannot live without it. The high oxidizing potential of oxygen molecules (dioxygen) is a valuable source of energy for the organism and its reactivity is low; that is, spin forbidden. However, the dioxygen itself is a 'free radical' and, especially in the presence of transition metals, it is a major promoter of radical reactions in the cell. Humans survive only by virtue of their elaborate defense mechanisms against oxygen toxicity. Iron is the most abundant transition metal in the human body. Because iron shows wide variation in redox potential with different co-ordination ligands, it may be used as a redox intermediate in many biological mechanism. However, it is precisely this redox activeness that makes iron a key participant in free radical production. The current research on the relationship between iron and cancer is briefly reviewed. Research results are reported here which indicate that iron, when bound to certain ligands, can cause free-radical mediated tissue damage and become carcinogenic. The present study also suggests that iron may also have a significant role in spontaneous human cancer. PMID:8809878

  16. Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy.

    PubMed

    Rowley, Shane; Liang, Li-Ping; Fulton, Ruth; Shimizu, Takahiko; Day, Brian; Patel, Manisha

    2015-03-01

    Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2(fl/fl)NEX(Cre/Cre)) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development.

  17. Reactive Oxygen Species Mediate Epstein-Barr Virus Reactivation by N-Methyl-N’-Nitro-N-Nitrosoguanidine

    PubMed Central

    Huang, Sheng-Yen; Fang, Chih-Yeu; Wu, Chung-Chun; Tsai, Ching-Hwa; Lin, Su-Fang; Chen, Jen-Yang

    2013-01-01

    N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H2O2 treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies. PMID:24376853

  18. Reactive oxygen species exert opposite effects on Tyr23 phosphorylation of the nuclear and cortical pools of annexin A2

    PubMed Central

    Grindheim, Ann Kari; Hollås, Hanne; Raddum, Aase M.; Saraste, Jaakko; Vedeler, Anni

    2016-01-01

    ABSTRACT Annexin A2 (AnxA2) is a multi-functional and -compartmental protein whose subcellular localisation and functions are tightly regulated by its post-translational modifications. AnxA2 and its Tyr23-phosphorylated form (pTyr23AnxA2) are involved in malignant cell transformation, metastasis and angiogenesis. Here, we show that H2O2 exerts rapid, simultaneous and opposite effects on the Tyr23 phosphorylation status of AnxA2 in two distinct compartments of rat pheochromocytoma (PC12) cells. Reactive oxygen species induce dephosphorylation of pTyr23AnxA2 located in the PML bodies of the nucleus, whereas AnxA2 associated with F-actin at the cell cortex is Tyr23 phosphorylated. The H2O2-induced responses in both compartments are transient and the pTyr23AnxA2 accumulating at the cell cortex is subsequently incorporated into vesicles and then released to the extracellular space. Blocking nuclear export by leptomycin B does not affect the nuclear pool of pTyr23AnxA2, but increases the amount of total AnxA2 in this compartment, indicating that the protein might have several functions in the nucleus. These results suggest that Tyr23 phosphorylation can regulate the function of AnxA2 at distinct subcellular sites. PMID:26644180

  19. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    SciTech Connect

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  20. Endoplasmic Reticulum Stress and Nox-Mediated Reactive Oxygen Species Signaling in the Peripheral Vasculature: Potential Role in Hypertension

    PubMed Central

    Nabeebaccus, Adam A.; Shah, Ajay M.; Camargo, Livia L.; Filho, Sidney V.; Lopes, Lucia R.

    2014-01-01

    Abstract Significance: Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. Recent Advances: Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). Critical Issues: A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. Future Directions: The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension. Antioxid. Redox Signal. 20, 121–134. PMID:23472786

  1. Constitutive NF-κB activation and tumor-growth promotion by Romo1-mediated reactive oxygen species production

    SciTech Connect

    Chung, Jin Sil; Lee, Sora; Yoo, Young Do

    2014-08-08

    Highlights: • Romo1 expression is required for constitutive nuclear DNA-binding activity of NF-κB. • Romo1 depletion suppresses tumor growth in vivo. • Romo1 presents a potential therapeutic target for diseases. - Abstract: Deregulation of nuclear factor-κB (NF-κB) and related pathways contribute to tumor cell proliferation and invasion. Mechanisms for constitutive NF-κB activation are not fully explained; however, the underlying defects appear to generate and maintain pro-oxidative conditions. In hepatocellular carcinoma (HCC) tissues, up-regulation of reactive oxygen species modulator 1 (Romo1) correlates positively with tumor size. In the present study, we showed that Romo1 expression is required to maintain constitutive nuclear DNA-binding activity of NF-κB and transcriptional activity through constitutive IκBα phosphorylation. Overexpression of Romo1 promoted p65 nuclear translocation and DNA-binding activity. We also show that Romo1 depletion suppressed anchorage-independent colony formation by HCC cells and suppressed tumor growth in vivo. Based on these findings, Romo1 may be a principal regulatory factor in the maintenance of constitutive NF-κB activation in tumor cells. In the interest of anti-proliferative treatments for cancer, Romo1 may also present a productive target for drug development.

  2. Reactive Oxygen Species Generation by Lunar Simulants in Simulated Lung Fluid

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Kaur, J.; Rickman, D.

    2015-12-01

    The current interest in human exploration of the Moon and other airless planetary bodies has rekindled research into the harmful effects of Lunar dust on human health. Our team has evaluated the spontaneous formation of Reactive Oxygen Species (ROS; hydroxyl radicals, superoxide, and hydrogen peroxide) of a suite of lunar simulants when dispersed in deionized water. Of these species, hydroxyl radical reacts almost immediately with any biomolecule leading to oxidative damage. Sustained production of OH radical as a result of mineral exposure can initiate or enhance disease. The results in deionized water indicate that mechanical stress and the absence of molecular oxygen and water, important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. On the basis of the results with deionized water, a few of the simulants were selected for additional studies to evaluate the formation of hydrogen peroxide, a precursor of hydroxyl radical in Simulated Lung Fluid. These simulants dispersed in deionized water typically produce a maximum in H2O2 within 10 to 40 minutes. However, experiments in SLF show a slow steady increase in H2O2 concentration that has been documented to continue for as long as 7 hours. Control experiments with one simulant demonstrate that the rise in H2O2 depends on the availability of dissolved O2. We speculate that this continuous rise in oxygenated SLF might be a result of metal ion-mediated oxidation of organic components, such as glycine in SLF. Ion-mediated oxidation essentially allows dissolved molecular oxygen to react with dissolved organic compounds by forming a metal-organic complex. Results of separate experiments with dissolved Fe, Ni, and Cu and speciation calculations support this notion.

  3. Generation of reactive oxygen species by a novel berberine–bile acid analog mediates apoptosis in hepatocarcinoma SMMC-7721 cells

    SciTech Connect

    Li, Qingyong; Zhang, Li; Zu, Yuangang; Liu, Tianyu; Zhang, Baoyou; He, Wuna

    2013-04-19

    Graphical abstract: - Highlights: • Anticancer effects of B4, a novel berberine–bile acid analog, were tested. • B4 inhibited cell proliferation in hepatocellular carcinoma cells. • It also stimulated mitochondrial ROS production and membrane depolarization. • Effects of B4 were inhibited by a non-specific ROS scavenger. • Regulation of ROS generation may be a strategy for treating hepatic carcinoma. - Abstract: 2,3-Methenedioxy-9-O-(3′α,7′α-dihydroxy-5′β-cholan-24′-propy-lester) berberine (B4) is a novel berberine–bile acid analog synthesized in our laboratory. Previously, we showed that B4 exerted greater cytotoxicity than berberine in several human cancer cell lines. Therefore, we further evaluated the mechanism governing its anticancer actions in hepatocellular carcinoma SMMC-7721 cells. B4 inhibited the proliferation of SMMC-7721 cells, and stimulated reactive oxygen species (ROS) production and mitochondrial membrane depolarization; anti-oxidant capacity was reduced. B4 also induced the release of cytochrome c from the mitochondria to the cytosol and an increase in poly ADP-ribose polymerase (PARP) cleavage products, reflective of caspase-3 activation. Moreover, B4 induced the nuclear translocation of apoptosis-inducing factor (AIF) and a rise in DNA fragmentation. Pretreatment with the anti-oxidant N-acetylcysteine (NAC) inhibited B4-mediated effects, including cytotoxicity, ROS production, mitochondrial membrane depolarization increase in intracellular Ca{sup 2+}, cytochrome c release, PARP cleavage, and AIF translocation. Our data suggest that B4 induces ROS-triggered caspase-dependent and caspase-independent apoptosis pathways in SMMC-7721 cells and that ROS production may be a specific potential strategy for treating hepatic carcinoma.

  4. [Reactive oxygen species are triggers and mediators of an increase in cardiac tolerance to impact of ischemia-reperfusion].

    PubMed

    Maslov, L N; Naryzhnaia, N V; Podoksenov, Iu K; Prokudina, E S; Gorbunov, A S; Zhang, I; Peĭ, Zh-M

    2015-01-01

    Reactive oxygen species (ROS) are triggers of ischemic preconditioning (IP). On the role of intracellular messengers of such cardioprotective effect of preconditioning claim: O2*, H2O2, OH*. However, we cannot exclude the possibility that other reactive oxygen metabolites also involved in the IP. Presented data suggest that IP enhances the production of ROS. The source of ROS may be mitochondrial respiratory chain and NADPH oxidase. Exogenous reactive oxygen species (O2*, H2O2) mimic the cardioprotective effect of preconditioning. Preconditioning prevents free radical damage of the heart during ischemia-reperfusion. The protective effect of IP is the consequence of reducing the production of ROS or the result of increased formation of endogenous antioxidants. Antioxidant enzymes are not involved in the protective effect of IP. Cardioprotective effect of many compounds (bradykinin, opioids, acetylcholine, phenylephrine, tumor necrosis factor-α, volatile anesthetics, protonophores, diazoxide, angiotensin II) depends on the increased production of ROS. PMID:25868322

  5. Reactive Oxygen Species in the Regulation of Stomatal Movements1[OPEN

    PubMed Central

    Sierla, Maija; Waszczak, Cezary; Vahisalu, Triin

    2016-01-01

    Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca2+ concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells. PMID:27208297

  6. Reactive oxygen species and glutathione dual redox-responsive micelles for selective cytotoxicity of cancer.

    PubMed

    Chiang, Yi-Ting; Yen, Yu-Wei; Lo, Chun-Liang

    2015-08-01

    This study developed reactive oxygen species (ROS) and glutathione (GSH) dual redox-responsive micelles, which encapsulate anticancer drug camptothecin (CPT), protect CPT activity, and trigger CPT release in cancer cell H2O2- or GSH-rich surroundings. Experimental results show that CPT-loaded dual redox-responsive micelles remain stable at low levels of ROS and GSH in blood circulation, have high redox sensitivities needed to CPT release in cancer cells with high ROS or GSH (e.g., lung, gastric, and colon cancer cells), and prevent undersigned CPT toxicity in ROS/GSH balanced normal cells (e.g., fibroblast cells, etc.) or normal organs (e.g., liver, kidney, etc.). The CPT-loaded dual redox-responsive micelles also had high in vivo antitumor efficacy. This study demonstrates that ROS and GSH dual redox-responsive micelles have potential use as anticancer therapeutic nanomedicine in various cancer therapies.

  7. Tks5-dependent, Nox-mediated Generation of Reactive Oxygen Species is Necessary for Invadopodia Formation*

    PubMed Central

    Diaz, Begoña; Shani, Gidon; Pass, Ian; Anderson, Diana; Quintavalle, Manuela; Courtneidge, Sara A.

    2009-01-01

    Invadopodia are actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. We show here that reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) system are necessary for invadopodia formation and function. The invadopodia protein Tks5 is structurally related to p47phox, a Nox component in phagocytic cells. Knockdown of Tks5 reduces total ROS levels in cancer cells. Furthermore, Tks5 and p22phox can associate with each other, suggesting that Tks5 is part of the Nox complex. Tyrosine phosphorylation of Tks5 and Tks4, but not other Src substrates, is reduced by Nox inhibition. We propose that Tks5 facilitates the production of ROS necessary for invadopodia formation, and that in turn ROS modulates Tks5 tyrosine phosphorylation in a positive feedback loop. PMID:19755709

  8. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin.

  9. Specific Cancer Cytosolic Drug Delivery Triggered by Reactive Oxygen Species-Responsive Micelles.

    PubMed

    Yu, Lu-Yi; Su, Geng-Min; Chen, Chi-Kang; Chiang, Yi-Ting; Lo, Chun-Liang

    2016-09-12

    Cytosolic drug delivery, a major route in cancer therapy, is limited by the lack of efficient and safe endosomal escape techniques. Herein, we demonstrate a reactive oxygen species (ROS)-responsive micelle composed of methoxy polyethylene glycol-b-poly(diethyl sulfide) (mPEG-PS) copolymers which can induce specific endosome escape in cancer cells by changes in the hydrophobicity of copolymers. Owing to the more ROS levels in cancer cells than normal cells, the copolymers can be converted into more hydrophilic and insert into and destabilize the cancer intracellular endosome membrane after cellular uptake. More importantly, we show that acid-intolerant drugs successfully maintain their bioactivity and cause selective cytotoxicity for cancer cells over normal cells. Our results suggest that the endosomal escape induced by hydrophobic-hydrophilic exchange of copolymers has great potential to locally and efficiently deliver biological agents (e.g., proteins and genes) in the cancer cell cytosol. PMID:27536957

  10. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system

    PubMed Central

    Fujii, Junichi; Iuchi, Yoshihito; Okada, Futoshi

    2005-01-01

    Controlled oxidation, such as disulfide bond formation in sperm nuclei and during ovulation, plays a fundamental role in mammalian reproduction. Excess oxidation, however, causes oxidative stress, resulting in the dysfunction of the reproductive process. Antioxidation reactions that reduce the levels of reactive oxygen species are of prime importance in reproductive systems in maintaining the quality of gametes and support reproduction. While anti-oxidative enzymes, such as superoxide dismutase and peroxidase, play a central role in eliminating oxidative stress, reduction-oxidation (redox) systems, comprised of mainly glutathione and thioredoxin, function to reduce the levels of oxidized molecules. Aldo-keto reductase, using NADPH as an electron donor, detoxifies carbonyl compounds resulting from the oxidation of lipids and proteins. Thus, many antioxidative and redox enzyme genes are expressed and aggressively protect gametes and embryos in reproductive systems. PMID:16137335

  11. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies.

    PubMed

    Kim, Ha-Jung; Lee, Eun; Lee, Seung-Hwa; Kang, Mi-Jin; Hong, Soo-Jong

    2015-12-01

    Mold has been implicated in the development of atopic dermatitis (AD); however, the underlying mechanisms remain unknown. The aim of the study was to investigate the effects of mold exposure in early life through epidemiologic and mechanistic studies in vivo and in vitro. Exposure to visible mold inside the home during the first year of life was associated with an increased risk for current AD by two population-based cross-sectional human studies. Children with the AG+GG genotype of GSTP1 showed increased risk for current AD when exposed to mold. In the mouse model, treatment with patulin induced and aggravated clinically significant AD and Th2-related inflammation of the affected mouse skin. Additionally, reactive oxygen species (ROS) were released in the mouse skin as well by human keratinocytes. In conclusions, mold exposure increases the risk for AD related to ROS generation mediated by Th2-promoting inflammatory cytokines.

  12. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  13. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species.

    PubMed

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-11-27

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential.

  14. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats.

    PubMed

    Kojima, Ryosuke; Takakura, Hideo; Kamiya, Mako; Kobayashi, Eiji; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2015-12-01

    A sensitive bioluminogenic probe for highly reactive oxygen species (hROS), SO3 H-APL, was developed based on the concept of dual control of bioluminescence emission by means of bioluminescent enzyme-induced electron transfer (BioLeT) and modulation of cell-membrane permeability. This probe enables non-invasive visualization of physiologically relevant amounts of hROS generated deep inside the body of living rats for the first time. It is expected to serve as a practical analytical tool for investigating a wide range of biological functions of hROS in vivo. The design concept should be applicable to other in vivo bioluminogenic probes. PMID:26474404

  15. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria

    PubMed Central

    Qu, Jie; Chen, Weixiang; Hu, Rong; Feng, Hua

    2016-01-01

    Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS) have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required. PMID:27293511

  16. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides.

    PubMed

    Wu, Haohao; Yin, Jun-Jie; Wamer, Wayne G; Zeng, Mingyong; Lo, Y Martin

    2014-03-01

    Nano-iron metal and nano-iron oxides are among the most widely used engineered and naturally occurring nanostructures, and the increasing incidence of biological exposure to these nanostructures has raised concerns about their biotoxicity. Reactive oxygen species (ROS)-induced oxidative stress is one of the most accepted toxic mechanisms and, in the past decades, considerable efforts have been made to investigate the ROS-related activities of iron nanostructures. In this review, we summarize activities of nano-iron metal and nano-iron oxides in ROS-related redox processes, addressing in detail the known homogeneous and heterogeneous redox mechanisms involved in these processes, intrinsic ROS-related properties of iron nanostructures (chemical composition, particle size, and crystalline phase), and ROS-related bio-microenvironmental factors, including physiological pH and buffers, biogenic reducing agents, and other organic substances.

  17. INTERACTIONS BETWEEN CALCIUM AND REACTIVE OXYGEN SPECIES IN PULMONARY ARTERIAL SMOOTH MUSCLE RESPONSES TO HYPOXIA

    PubMed Central

    Shimoda, Larissa A.; Undem, Clark

    2010-01-01

    In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia. PMID:20801238

  18. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  19. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  20. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  1. Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis

    PubMed Central

    Aprioku, Jonah Sydney

    2013-01-01

    The role of free radicals in normal cellular functions and different pathological conditions has been a focus of pharmacological studies in the recent past. Reactive oxygen species (ROS) and free radicals in general are essential for cell signaling and other vital physiological functions; however, excessive amounts can cause alteration in cellular reduction-oxidation (redox) balance, and disrupt normal biological functions. When there is an imbalance between activities of ROS and antioxidant/scavenging defense systems, oxidative stress (OS) occurs. A good number of studies have shown OS is involved in the development of several disease conditions, including male infertility. In the present article, generation of free radicals and their effects, as well as the mechanisms of antioxidant/scavenging defense systems are discussed, with particular focus on the testis. The review also discusses the contribution of OS on testicular dysfunction and briefly focuses on some OS-induced conditions that will alter testicular function. PMID:24551570

  2. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase.

    PubMed

    Joo, Jung Hee; Yoo, Ho Jung; Hwang, Inhwan; Lee, June Seung; Nam, Kyoung Hee; Bae, Yun Soo

    2005-02-14

    We recently reported that production of reactive oxygen species (ROS) is essential for auxin-induced gravitropic signaling. Here, we investigated the role of phosphatidylinositol 3-kinase and its product, PtdIns(3)P, in auxin-mediated ROS production and the root gravitropic response. Pretreatment with LY294002, an inhibitor of PtdIns 3-kinase activity, blocked auxin-mediated ROS generation, and reduced the sensitivity of root tissue to gravistimulation. The amount of PtdIns(3)P increased in response to auxin, and this effect was abolished by pretreatment with LY294002. In addition, sequestration of PtdIns(3)P by transient expression of the endosome binding domain in protoplasts abrogated IAA-induced ROS accumulation. These results indicate that activation of PtdIns 3-kinase and its product PtdIns(3)P are required for auxin-induced production of ROS and root gravitropism. PMID:15710420

  3. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    PubMed Central

    Paes, Marcia Cristina; Cosentino-Gomes, Daniela; de Souza, Cíntia Fernandes; Nogueira, Natália Pereira de Almeida; Meyer-Fernandes, José Roberto

    2011-01-01

    Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. PMID:22007287

  4. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants.

    PubMed

    Huang, Shaobai; Van Aken, Olivier; Schwarzländer, Markus; Belt, Katharina; Millar, A Harvey

    2016-07-01

    Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.

  5. Reactive oxygen species (ROS) is not a promotor of taxol-induced cytoplasmic vacuolization

    NASA Astrophysics Data System (ADS)

    Sun, Qingrui; Chen, Tongsheng

    2009-02-01

    we have previously reported that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Reactive oxygen species (ROS) has been reported to be involved in the taxol-induced cell death. Here, we employed confocal fluorescence microscopy imaging to explore the role of ROS in taxol-induced cytoplasmic vacuolization. We found that ROS inhibition by addition of N-acetycysteine (NAC), a total ROS scavenger, did not suppress these vacuolization but instead increased vacuolization. Take together, our results showed that ROS is not a promotor of the taxol-induced cytoplasmic vacuolization.

  6. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand.

  7. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  8. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity.

    PubMed

    Tian, Shiping; Qin, Guozheng; Li, Boqiang

    2013-08-01

    Senescence is a vital aspect of fruit life cycles, and directly affects fruit quality and resistance to pathogens. Reactive oxygen species (ROS), as the primary mediators of oxidative damage in plants, are involved in senescence. Mitochondria are the main ROS and free radical source. Oxidative damage to mitochondrial proteins caused by ROS is implicated in the process of senescence, and a number of senescence-related disorders in a variety of organisms. However, the specific sites of ROS generation in mitochondria remain largely unknown. Recent discoveries have ascertained that fruit senescence is greatly related to ROS and incidental oxidative damage of mitochondrial protein. Special mitochondrial proteins involved in fruit senescence have been identified as the targets of ROS. We focus in discussion on our recent advances in exploring the mechanisms of how ROS regulate fruit senescence and fungal pathogenicity.

  9. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  10. Current progress in Reactive Oxygen Species (ROS)-Responsive materials for biomedical applications.

    PubMed

    Lee, Sue Hyun; Gupta, Mukesh K; Bang, Jae Beum; Bae, Hojae; Sung, Hak-Joon

    2013-01-01

    Recently, significant progress has been made in developing “stimuli-sensitive” biomaterials as a new therapeutic approach to interact with dynamic physiological conditions. Reactive oxygen species (ROS) production has been implicated in important pathophysiological events, such as atherosclerosis,aging, and cancer. ROS are often overproduced locally in diseased cells and tissues, and they individually and synchronously contribute to many of the abnormalities associated with local pathogenesis. Therefore, the advantages of developing ROS-responsive materials extend beyond site-specific targeting of therapeutic delivery, and potentially include navigating,sensing, and repairing the cellular damages via programmed changes in material properties. Here we review the mechanism and development of biomaterials with ROS-induced solubility switch or degradation, as well as their performance and potential for future biomedical applications.

  11. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses.

    PubMed

    Zhang, Ming; Smith, J Andrew C; Harberd, Nicholas P; Jiang, Caifu

    2016-08-01

    Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance. PMID:27233644

  12. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Arenas-Ríos, Edith; Rosado García, Adolfo; Cortés-Barberena, Edith; Königsberg, Mina; Arteaga-Silva, Marcela; Rodríguez-Tobón, Ahiezer; Fuentes-Mascorro, Gisela; León-Galván, Miguel Angel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage.

  13. Protective mechanisms of helminths against reactive oxygen species are highly promising drug targets.

    PubMed

    Perbandt, Markus; Ndjonka, Dieudonne; Liebau, Eva

    2014-01-01

    Helminths that are the causative agents of numerous neglected tropical diseases continue to be a major problem for human global health. In the absence of vaccines, control relies solely on pharmacoprophylaxis and pharmacotherapy to reduce transmission and to relieve symptoms. There are only a few drugs available and resistance in helminths of lifestock has been observed to the same drugs that are also used to treat humans. Clearly there is an urgent need to find novel antiparasitic compounds. Not only are helminths confronted with their own metabolically derived toxic and redox-active byproducts but also with the production of reactive oxygen species (ROS) by the host immune system, adding to the overall oxidative burden of the parasite. Antioxidant enzymes of helminths have been identified as essential proteins, some of them biochemically distinct to their host counterpart and thus appealing drug targets. In this review we have selected a few enzymatic antioxidants of helminths that are thought to be druggable.

  14. Baicalin Scavenged Reactive Oxygen Species and Protected Human Keratinocytes Against UVB-induced Cytotoxicity.

    PubMed

    Chang, Wen-Shin; Lin, En-Yuan; Hsu, Shih-Wei; Hu, Pei-Shin; Chuang, Chin-Liang; Liao, Cheng-Hsi; Fu, Chun-Kai; Su, Chung-Hao; Gong, Chi-Li; Hsiao, Chieh-Lun; Bau, DA-Tian; Tsai, Chia-Wen

    Ultraviolet B (UVB), with a wavelength of 280-320 nm, represents one of the most important environmental factors for skin disorders, including sunburn, hyperpigmentation, solar keratosis, solar elastosis and skin cancer. Therefore, protection against excessive UVA-induced damage is useful for prevention of sunburn and other human diseases. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to possess antioxidant and cytostatic capacities. In this study, we examined whether baicalin is also capable of protecting human keratinocytes from UVB irradiation. The results showed that baicalin effectively scavenged reactive oxygen species (ROS) elevated within 4 h after UVB radiation and reversed the UVB-suppressed cell viability and UVB-induced apoptosis after 24 h. Our results demonstrated the utility of baicalin to complement the contributions of traditional Chinese medicine in UVB-induced damage to skin and suggested their potential application as pharmaceutical agents in long-term sun-shining injury prevention. PMID:27566079

  15. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end. PMID:25620241

  16. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic–eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  17. Regulation of signal transduction by reactive oxygen species in the cardiovascular system.

    PubMed

    Brown, David I; Griendling, Kathy K

    2015-01-30

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.

  18. Early Increase of Reactive Oxygen Species in Pea Seedling Roots Under Hypergravity

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy; Syvash, Alexander; Klymchuk, Dmytro

    Early increase of intensity of peroxidation and formation of reactive oxygen species (ROS) in plant cells take place under various impacts. The ROS can act as second messengers in mechanism of cell responses (Mittler et al 2006; Jadko et al 2007). Early stages of ROS content (chemiluminescence, ChL) in pea root cells under 3, 5, 10 and 15g during centrifugation have been investigated. After 30 min of centrifugation, especially under 10 and 15g, the intensity of ChL increased and was higher on 40-50% comparing to controls. Than the ChL slowly decreased and reached the controls in 1 hour. The changes of the ChL depend on both the dose and the duration of centrifugation. The role of ROS in mechanism of cell response to hypergravity is discussed.

  19. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  20. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria.

    PubMed

    Qu, Jie; Chen, Weixiang; Hu, Rong; Feng, Hua

    2016-01-01

    Intracerebral hemorrhage is an emerging major health problem often resulting in death or disability. Reactive oxygen species (ROS) have been identified as one of the major damaging factors in ischemic stroke. However, there is less discussion about ROS in hemorrhage stroke. Metabolic products of hemoglobin, excitatory amino acids, and inflammatory cells are all sources of ROS, and ROS harm the central nervous system through cell death and structural damage, especially disruption of the blood-brain barrier. We have considered the antioxidant system of the CNS itself and the drugs aiming to decrease ROS after ICH, and we find that mitochondria are key players in all of these aspects. Moreover, when the mitochondrial permeability transition pore opens, ROS-induced ROS release, which leads to extensive liberation of ROS and mitochondrial failure, occurs. Therefore, the mitochondrion may be a significant target for elucidating the problem of ROS in ICH; however, additional experimental support is required.

  1. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. PMID:25658194

  2. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  3. Evidence that reactive oxygen species do not mediate NF-κB activation

    PubMed Central

    Hayakawa, Makio; Miyashita, Hiroshi; Sakamoto, Isao; Kitagawa, Masatoshi; Tanaka, Hirofumi; Yasuda, Hideyo; Karin, Michael; Kikugawa, Kiyomi

    2003-01-01

    It has been postulated that reactive oxygen species (ROS) may act as second messengers leading to nuclear factor (NF)-κB activation. This hypothesis is mainly based on the findings that N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), compounds recognized as potential antioxidants, can inhibit NF-κB activation in a wide variety of cell types. Here we reveal that both NAC and PDTC inhibit NF-κB activation independently of antioxidative function. NAC selectively blocks tumor necrosis factor (TNF)-induced signaling by lowering the affinity of receptor to TNF. PDTC inhibits the IκB–ubiquitin ligase activity in the cell-free system where extracellular stimuli-regulated ROS production does not occur. Furthermore, we present evidence that endogenous ROS produced through Rac/NADPH oxidase do not mediate NF-κB signaling, but instead lower the magnitude of its activation. PMID:12839997

  4. Modulation of Crassostrea virginica hemocyte reactive oxygen species production by Listonella anguillarum.

    PubMed

    Bramble, L; Anderson, R S

    1997-01-01

    Luminol- and lucigenin-augmented chemiluminescence (CL) were used to evaluate the ability of Listonella (formerly Vibrio) anguillarum to stimulate the production of reactive oxygen species (ROS) by Crassostrea virginica hemocytes. Whereas heat-killed L. anguillarum stimulated hemocyte CL in the lucigenin system, viable L. anguillarum did not. Neither viable nor heat-killed bacteria stimulated hemocyte production of luminol CL. Metabolically active L. anguillarum generated ROS, as indicated by luminol and lucigenin CL. It is proposed that bacterial catalase suppressed hemocyte-derived luminol CL. L. anguillarum, which possesses the antioxidant enzyme catalase, suppressed luminol CL generated by zymosan-stimulated hemocytes. Conversely, the catalase negative bacterium Carnobacterium piscicola had no effect on hemocyte-derived luminol CL elicited by zymosan. The inability of viable L. anguillarum to stimulate hemocyte ROS production, as measured by CL, does not support the proposed role for ROS in hemocyte-mediated bactericidal activity. PMID:9303272

  5. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-02-08

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration.

  6. Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species.

    PubMed

    Rojas-Rivera, Diego; Díaz-Elizondo, Jessica; Parra, Valentina; Salas, Daniela; Contreras, Ariel; Toro, Barbra; Chiong, Mario; Olea-Azar, Claudio; Lavandero, Sergio

    2009-11-01

    We investigated the role of Ca(2+) in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca(2+). Nifedipine (Nife) inhibited both Hypo-induced Ca(2+) and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca(2+) influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca(2+) increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.

  7. Reactive oxygen species as transducers of sphinganine-mediated cell death pathway

    PubMed Central

    Saucedo-García, Mariana; González-Solís, Ariadna; Rodríguez-Mejía, Priscila; de Jesús Olivera-Flores, Teresa; Vázquez-Santana, Sonia; Cahoon, Edgar B

    2011-01-01

    Long chain bases or sphingoid bases are building blocks of complex sphingolipids that display a signaling role in programmed cell death in plants. So far, the type of programmed cell death in which these signaling lipids have been demonstrated to participate is the cell death that occurs in plant immunity, known as the hypersensitive response. The few links that have been described in this pathway are: MPK6 activation, increased calcium concentrations and reactive oxygen species (ROS) generation. The latter constitute one of the more elusive loops because of the chemical nature of ROS, the multiple possible cell sites where they can be formed and the ways in which they influence cell structure and function. PMID:21921699

  8. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor.

    PubMed

    Rawson, Frankie J; Hicks, Jacqueline; Dodd, Nicholas; Abate, Wondwossen; Garrett, David J; Yip, Nga; Fejer, Gyorgy; Downard, Alison J; Baronian, Kim H R; Jackson, Simon K; Mendes, Paula M

    2015-10-28

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  9. Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications

    PubMed Central

    Lee, Sue Hyun; Gupta, Mukesh K.; Bang, Jae Beum; Bae, Hojae

    2013-01-01

    Recently, significant progress has been made in developing “stimuli-sensitive” biomaterials as a new therapeutic approach to interact with dynamic physiological conditions. Reactive oxygen species (ROS) production has been implicated in important pathophysiological events, such as atherosclerosis, aging, and cancer. ROS are often overproduced locally in diseased cells and tissues, and they individually and synchronously contribute to many of the abnormalities associated with local pathogenesis. Therefore, the advantages of developing ROS-responsive materials extend beyond site-specific targeting of therapeutic delivery, and potentially include navigating, sensing, and repairing the cellular damages via programmed changes in material properties. Here we review the mechanism and development of biomaterials with ROS-induced solubility switch or degradation, as well as their performance and potential for future biomedical applications. PMID:25136729

  10. Reactive oxygen species production in single cells following laser irradiation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Duquette, Michelle L.; Kim, Justine; Shi, Linda Z.; Berns, Michael W.

    2015-08-01

    Region specific DNA breaks can be created in single cells using laser light that damages DNA but does not directly generate reactive oxygen species (ROS). We have examined the cellular response to directly generated DNA breaks in single cells. Using a combination of ROS specific dyes and oxidase inhibitors we have found that the oxidase and chromatin remodeling protein Lysine demethylase I (LSD1) generates detectable ROS as a byproduct of its chromatin remodeling activity during the initial DNA damage response. ROS is produced at detectable amounts primarily within the first 3 minutes post irradiation. LSD1 activity has been previously associated with transcriptional regulation therefore these findings have implications for regulation of gene expression following DNA damage particularly in cells with altered redox states.

  11. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species.

    PubMed

    Jha, Bijay Kumar; Jung, Hui-Jung; Seo, Incheol; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2015-12-01

    Juglone (5-hydroxy-1,4-naphthoquinone) is a major chemical constituent of Juglans mandshruica Maxim. Recent studies have demonstrated that juglone exhibits anti-cancer, anti-bacterial, anti-viral, and anti-parasitic properties. However, its effect against Acanthamoeba has not been defined yet. The aim of this study was to investigate the effect of juglone on Acanthamoeba. We demonstrate that juglone significantly inhibits the growth of Acanthamoeba castellanii at 3-5 μM concentrations. Juglone increased the production of reactive oxygen species (ROS) and caused cell death of A. castellanii. Inhibition of ROS by antioxidant N-acetyl-l-cysteine (NAC) restored the cell viability. Furthermore, our results show that juglone increased the uptake of mitochondrial specific dye. Collectively, these results indicate that ROS played a significant role in the juglone-induced cell death of Acanthamoeba.

  12. Behind the scenes: the roles of reactive oxygen species in guard cells.

    PubMed

    Song, Yuwei; Miao, Yuchen; Song, Chun-Peng

    2014-03-01

    Guard cells regulate stomatal pore size through integration of both endogenous and environmental signals; they are widely recognized as providing a key switching mechanism that maximizes both the efficient use of water and rates of CO₂ exchange for photosynthesis; this is essential for the adaptation of plants to water stress. Reactive oxygen species (ROS) are widely considered to be an important player in guard cell signalling. In this review, we focus on recent progress concerning the role of ROS as signal molecules in controlling stomatal movement, the interaction between ROS and intrinsic and environmental response pathways, the specificity of ROS signalling, and how ROS signals are sensed and relayed. However, the picture of ROS-mediated signalling is still fragmented and the issues of ROS sensing and the specificity of ROS signalling remain unclear. Here, we review some recent advances in our understanding of ROS signalling in guard cells, with an emphasis on the main players known to interact with abscisic acid signalling.

  13. Evaluation of denture base resin after disinfection method using reactive oxygen species (ROS).

    PubMed

    Odagiri, Ken; Sawada, Tomofumi; Hori, Norio; Seimiya, Kazuhide; Otsuji, Takeshi; Hamada, Nobushiro; Kimoto, Katsuhiko

    2012-01-01

    The effects of certain disinfectants on the stability of a polymethyl methacrylate denture base resin were investigated, including those of a novel disinfection method using reactive oxygen species (ROS). The surface roughness and flexural strength were analyzed to assess the effects of the disinfectants on material properties. The following disinfectants were tested: 5% sodium hypochlorite, 70% alcohol, and ROS. Furthermore, the attachment of Candida albicans to the resin surface was investigated. The disinfection method using sodium hypochlorite significantly increased the surface roughness and decreased flexural strength. The surface roughness and flexural strength of the ROS-treated specimens did not significantly differ from those of the control specimens, and the ROS-treated specimens exhibited diminished Candida attachment. These results demonstrate that the ROS disinfection method preserves acceptable material stability levels in polymethyl methacrylate resins.

  14. Reactive Oxygen Species and Autophagy Modulation in Non-Marine Drugs and Marine Drugs

    PubMed Central

    Farooqi, Ammad Ahmad; Fayyaz, Sundas; Hou, Ming-Feng; Li, Kun-Tzu; Tang, Jen-Yang; Chang, Hsueh-Wei

    2014-01-01

    It is becoming more understandable that an existing challenge for translational research is the development of pharmaceuticals that appropriately target reactive oxygen species (ROS)-mediated molecular networks in cancer cells. In line with this approach, there is an overwhelmingly increasing list of many non-marine drugs and marine drugs reported to be involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. In this review, we describe the strategy of oxidative stress-based therapy and connect the ROS modulating effect to the regulation of apoptosis and autophagy. Finally, we focus on exploring the function and mechanism of cancer therapy by the autophagy modulators including inhibitors and inducers from non-marine drugs and marine drugs. PMID:25402829

  15. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria

    SciTech Connect

    Puranam, Kasturi L.; Wu, Guanghong; Strittmatter, Warren J.; Burke, James R. . E-mail: james.burke@duke.edu

    2006-03-10

    Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

  16. Generation of reactive oxygen species by lethal attacks from competing microbes

    PubMed Central

    Dong, Tao G.; Dong, Shiqi; Catalano, Christy; Moore, Richard; Liang, Xiaoye; Mekalanos, John J.

    2015-01-01

    Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells. PMID:25646446

  17. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production.

  18. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1.

  19. Signaling Networks Involving Reactive Oxygen Species and Ca2+ in Plants

    NASA Astrophysics Data System (ADS)

    Kuchitsu, Kazuyuki

    2013-01-01

    Although plants never evolved central information processing organs such as brains, plants have evolved distributed information processing systems and are able to sense various environmental changes and reorganize their body plan coordinately without moving. Recent molecular biological studies revealed molecular bases for elementary processes of signal transduction in plants. Though reactive oxygen species (ROS) are highly toxic substances produced through aerobic respiration and photosynthesis, plants possess ROS-producing enzymes whose activity is highly regulated by binding of Ca2+. In turn, Ca2+- permeable channel proteins activated by ROS are shown to be localized to the cell membrane. These two components are proposed to constitute a positive feedback loop to amplify cellular signals. Such molecular physiological studies should be important steps to understand information processing systems in plants and future application for technology related to environmental, energy and food sciences.

  20. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination.

    PubMed

    Kai, Kyohei; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Watabe, Gaku; Yuasa, Takashi; Iwaya-Inoue, Mari; Ishibashi, Yushi

    2016-05-01

    NADPH oxidase catalyzes the production of the superoxide anion (O2(-)), a reactive oxygen species (ROS), and regulates the germination of barley (Hordeum vulgare L.). Diphenyleneiodonium (DPI) chloride, an NADPH oxidase inhibitor, delayed barley germination, and exogenous H2O2 (an ROS) partially rescued it. Six enzymes, ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), catalyze the transformation of trans-geranylgeranyl diphosphate to active gibberellin, which promotes germination. Exogenous H2O2 promoted the expressions of HvKAO1 and HvGA3ox1 in barley embryos. These results suggest that ROS produced by NADPH oxidase are involved in gibberellin biosynthesis through the regulation of HvKAO1 and HvGA3ox1. PMID:27110861

  1. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  2. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species.

    PubMed

    Jha, Bijay Kumar; Jung, Hui-Jung; Seo, Incheol; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2015-12-01

    Juglone (5-hydroxy-1,4-naphthoquinone) is a major chemical constituent of Juglans mandshruica Maxim. Recent studies have demonstrated that juglone exhibits anti-cancer, anti-bacterial, anti-viral, and anti-parasitic properties. However, its effect against Acanthamoeba has not been defined yet. The aim of this study was to investigate the effect of juglone on Acanthamoeba. We demonstrate that juglone significantly inhibits the growth of Acanthamoeba castellanii at 3-5 μM concentrations. Juglone increased the production of reactive oxygen species (ROS) and caused cell death of A. castellanii. Inhibition of ROS by antioxidant N-acetyl-l-cysteine (NAC) restored the cell viability. Furthermore, our results show that juglone increased the uptake of mitochondrial specific dye. Collectively, these results indicate that ROS played a significant role in the juglone-induced cell death of Acanthamoeba. PMID:26358271

  3. Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species.

    PubMed

    Rojas-Rivera, Diego; Díaz-Elizondo, Jessica; Parra, Valentina; Salas, Daniela; Contreras, Ariel; Toro, Barbra; Chiong, Mario; Olea-Azar, Claudio; Lavandero, Sergio

    2009-11-01

    We investigated the role of Ca(2+) in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca(2+). Nifedipine (Nife) inhibited both Hypo-induced Ca(2+) and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca(2+) influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca(2+) increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis. PMID:19818777

  4. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.

  5. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants.

  6. A photo-triggered layered surface coating producing reactive oxygen species.

    PubMed

    Gabriel, Doris; Monteiro, Isa P; Huang, David; Langer, Robert; Kohane, Daniel S

    2013-12-01

    We report a photoactive surface coating which produces cytotoxic reactive oxygen species (ROS) upon irradiation with near infrared (NIR) light. The coating is assembled layer-by-layer, and consists of cross-linked hyaluronic acid (HA) and poly-l-lysine (PLL) modified with the photoactive molecule pheophorbide a. Pheophorbide a loading can be fine-tuned by varying the number of bilayers, yielding stable materials with the capacity to generate repeated and/or prolonged light-triggered ROS release. Light irradiation of the photoactive surface coatings provides a versatile platform for the spatiotemporal control of events at the material-tissue interface, such as bacterial colonization, platelet adhesion, and mammalian cell attachment.

  7. Exendin-4 Protects Mitochondria from Reactive Oxygen Species Induced Apoptosis in Pancreatic Beta Cells

    PubMed Central

    Li, Zhen; Zhou, Zhiguang; Huang, Gan; Hu, Fang; Xiang, Yufei; He, Lining

    2013-01-01

    Objective Mitochondrial oxidative stress is the basis for pancreatic β-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic β-cell tumor Min6 cell lines in vitro and observed pancreatic β-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations, we discuss the protective role of Exendin-4 against mitochondrial oxidative damage and its relationship with Ca2+-independent phospholipase A2. Methods We established a pancreatic β-cell oxidative stress damage model using Min6 cell lines cultured in vitro with tert-buty1 hydroperoxide and hydrogen peroxide. We then added Exendin-4 to observe changes in the rate of cell apoptosis (Annexin-V-FITC-PI staining flow cytometry and DNA ladder). We detected the activity of the caspase 3 and 8 apoptotic factors, measured the mitochondrial membrane potential losses and reactive oxygen species production levels, and detected the expression of cytochrome c and Smac/DLAMO in the cytosol and mitochondria, mitochondrial Ca2-independent phospholipase A2 and Ca2+-independent phospholipase A2 mRNA. Results The time-concentration curve showed that different percentages of apoptosis occurred at different time-concentrations in tert-buty1 hydroperoxide- and hydrogen peroxide-induced Min6 cells. Incubation with 100 µmol/l of Exendin-4 for 48 hours reduced the Min6 cell apoptosis rate (p<0.05). The mitochondrial membrane potential loss and total reactive oxygen species levels decreased (p<0.05), and the release of cytochrome c and Smac/DLAMO from the mitochondria was reduced. The study also showed that Ca2+-independent phospholipase A2 activity was positively related to Exendin-4 activity. Conclusion Exendin-4 reduces Min6 cell oxidative damage and the cell apoptosis rate, which may be related to Ca2-independent phospholipase A2. PMID:24204601

  8. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    SciTech Connect

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  9. Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

    PubMed Central

    Lee, Jong Gwan; Noh, Won Jun; Kim, Hwa

    2011-01-01

    Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 μg/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 μg/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 μg/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure. PMID:24278567

  10. Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide.

    PubMed

    Munoz, Juan Pablo; Chiong, Mario; García, Lorena; Troncoso, Rodrigo; Toro, Barbra; Pedrozo, Zully; Diaz-Elizondo, Jessica; Salas, Daniela; Parra, Valentina; Núñez, Marco T; Hidalgo, Cecilia; Lavandero, Sergio

    2010-02-15

    We investigate here the role of reactive oxygen species and nitric oxide in iron-induced cardiomyocyte hypertrophy or cell death. Cultured rat cardiomyocytes incubated with 20 microM iron (added as FeCl(3)-Na nitrilotriacetate, Fe-NTA) displayed hypertrophy features that included increased protein synthesis and cell size, plus realignment of F-actin filaments along with sarcomeres and activation of the atrial natriuretic factor gene promoter. Incubation with higher Fe-NTA concentrations (100 microM) produced cardiomyocyte death by necrosis. Incubation for 24 h with Fe-NTA (20-40 microM) or the nitric oxide donor Delta-nonoate increased iNOS mRNA but decreased iNOS protein levels; under these conditions, iron stimulated the activity and the dimerization of iNOS. Fe-NTA (20 microM) promoted short- and long-term generation of reactive oxygen species, whereas preincubation with l-arginine suppressed this response. Preincubation with 20 microM Fe-NTA also attenuated the necrotic cell death triggered by 100 microM Fe-NTA, suggesting that these preincubation conditions have cardioprotective effects. Inhibition of iNOS activity with 1400 W enhanced iron-induced ROS generation and prevented both iron-dependent cardiomyocyte hypertrophy and cardioprotection. In conclusion, we propose that Fe-NTA (20 microM) stimulates iNOS activity and that the enhanced NO production, by promoting hypertrophy and enhancing survival mechanisms through ROS reduction, is beneficial to cardiomyocytes. At higher concentrations, however, iron triggers cardiomyocyte death by necrosis. PMID:19969068

  11. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    SciTech Connect

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-12-03

    Research highlights: {yields} Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. {yields} Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. {yields} Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1{sup -/-} mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1{sup -/-} mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm{sup 2}) and strength (MPa) is diminished in Sod1{sup -/-} compared to WT mice. Femurs were obtained from male and female WT and Sod1{sup -/-} mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1{sup -/-} mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1{sup -/-} mice compared to WT as well as between genders. These

  12. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction.

    PubMed

    Weidinger, Adelheid; Kozlov, Andrey V

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  13. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  14. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production.

    PubMed

    Spencer, Nicholas G; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  15. Production characteristics of reactive oxygen/nitrogen species in water using atmospheric pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuhiro; Satoh, Kohki; Itoh, Hidenori; Kawaguchi, Hideki; Timoshkin, Igor; Given, Martin; MacGregor, Scott

    2016-07-01

    A pulsed discharge, a DC corona discharge, and a plasma jet are separately generated above a water surface, and reactive oxygen species and reactive nitrogen species (ROS/RNS) in the water are investigated. ROS/RNS in water after the sparging of the off-gas of a packed-bed dielectric barrier discharge (PB-DBD) are also investigated. H2O2, NO2 -, and NO3 - are detected after plasma exposure and only NO3 - after off-gas sparging. Short-lifetime species in plasma are found to play an important role in H2O2 and NO2 - production and long-lifetime species in NO3 - production. NO x may inhibit H2O2 production through OH consumption to produce HNO2 and HNO3. O3 does not contribute to ROS/RNS production. The pulsed plasma exposure is found to be effective for the production of H2O2 and NO2 -, and the off-gas sparging of the PB-DBD for the production of NO3 -.

  16. Mechanisms Underlying Interferon-γ-Induced Priming of Microglial Reactive Oxygen Species Production

    PubMed Central

    Spencer, Nicholas G.; Schilling, Tom; Miralles, Francesc; Eder, Claudia

    2016-01-01

    Microglial priming and enhanced reactivity to secondary insults cause substantial neuronal damage and are hallmarks of brain aging, traumatic brain injury and neurodegenerative diseases. It is, thus, of particular interest to identify mechanisms involved in microglial priming. Here, we demonstrate that priming of microglia with interferon-γ (IFN γ) substantially enhanced production of reactive oxygen species (ROS) following stimulation of microglia with ATP. Priming of microglial ROS production was substantially reduced by inhibition of p38 MAPK activity with SB203580, by increases in intracellular glutathione levels with N-Acetyl-L-cysteine, by blockade of NADPH oxidase subunit NOX2 activity with gp91ds-tat or by inhibition of nitric oxide production with L-NAME. Together, our data indicate that priming of microglial ROS production involves reduction of intracellular glutathione levels, upregulation of NADPH oxidase subunit NOX2 and increases in nitric oxide production, and suggest that these simultaneously occurring processes result in enhanced production of neurotoxic peroxynitrite. Furthermore, IFNγ-induced priming of microglial ROS production was reduced upon blockade of Kir2.1 inward rectifier K+ channels with ML133. Inhibitory effects of ML133 on microglial priming were mediated via regulation of intracellular glutathione levels and nitric oxide production. These data suggest that microglial Kir2.1 channels may represent novel therapeutic targets to inhibit excessive ROS production by primed microglia in brain pathology. PMID:27598576

  17. Methylglyoxal Induces Apoptosis Mediated by Reactive Oxygen Species in Bovine Retinal Pericytes

    PubMed Central

    Son, Jang-Won; Lee, Jeong-An; Oh, Yeon-Sahng; Shinn, Soon-Hyun

    2004-01-01

    One of the histopathologic hallmarks of early diabetic retinopathy is the loss of pericytes. Evidences suggest that the pericyte loss in vivo is mediated by apoptosis. However, the underlying cause of pericyte apoptosis is not fully understood. This study investigated the influence of methylglyoxal (MGO), a reactive α-dicarbonyl compound of glucose metabolism, on apoptotic cell death in bovine retinal pericytes. Analysis of internucleosomal DNA fragmentation by ELISA showed that MGO (200 to 800 µM) induced apoptosis in a concentration-dependent manner. Intracellular reactive oxygen species were generated earlier and the antioxidant, N-acetyl cysteine, inhibited the MGO-induced apoptosis. NF-κB activation and increased caspase-3 activity were detected. Apoptosis was also inhibited by the caspase-3 inhibitor, Z-DEVD-fmk, or the NF-κB inhibitor, pyrrolidine dithiocarbamate. These data suggest that elevated MGO levels observed in diabetes may cause apoptosis in bovine retinal pericytes through an oxidative stress mechanism and suggests that the nuclear activation of NF-κB are involved in the apoptotic process. PMID:14966349

  18. Probing the magic numbers of aluminum-magnesium cluster anions and their reactivity toward oxygen.

    PubMed

    Luo, Zhixun; Grover, Cameron J; Reber, Arthur C; Khanna, Shiv N; Castleman, A W

    2013-03-20

    We report a joint experimental and theoretical investigation into the geometry, stability, and reactivity with oxygen of alloy metal clusters Al(n)Mg(m)(-) (4 ≤ n+m ≤ 15; 0 ≤ m ≤ 3). Considering that Al and Mg possess three and two valence electrons, respectively, clusters with all possible valence electron counts from 11 to 46 are studied to probe the magic numbers predicted by the spherical jellium model, and to determine whether enhanced stability and reduced reactivity may be found for some Al(n)Mg(m)(-) at non-magic numbers. Al5Mg2(-) and Al11Mg3(-) exhibit enhanced stability corresponding to the expected magic numbers of 20 and 40 electrons, respectively; while Al7Mg3(-), Al11Mg(-), and Al11Mg2(-) turn out to be unexpectedly stable at electron counts of 28, 36, and 38, respectively. The enhanced stability at non-magic numbers is explained through a crystal-field-like splitting of degenerate shells by the geometrical distortions of the clusters. Al(n)Mg(m)(-) clusters appear to display higher oxidation than pure Al(n)(-) clusters, suggesting that the addition of Mg atoms enhances the combustion of pure aluminum clusters.

  19. Anchoring PEG-oleate to cell membranes stimulates reactive oxygen species production.

    PubMed

    Sakai, Shinji; Nomura, Koujiro; Mochizuki, Kei; Taya, Masahito

    2016-11-01

    Polyethylene glycol (PEG) derivatives possessing oleyl and reactive groups for conjugating functional substrates, such as proteins and quantum dots, are useful materials for cell-surface engineering and cell immobilization onto substrates. The reagent is known as a biocompatible anchor for cell membranes (BAM). Here, BAM-anchoring on cell membranes is reported to stimulate reactive oxygen species (ROS) production in those cells. Significant increases in ROS production and release to the surrounding environment were detected in mouse fibroblast cell line 10T1/2 when soaked in a solution containing BAM conjugated with 1/10mol/mol bovine serum albumin at 1.5μM-protein. ROS production stimulation was confirmed to be independent of the protein crosslinked with BAM and of cell type. Similar stimulation was detected for BAMs conjugated with ovalbumin and casein, in human hepatoma cell line HepG2, and human umbilical vein endothelial cells. Considering the effects of ROS on a variety of cellular processes, these results demonstrated the necessity for focusing attention on the effects of generated and released ROS on the behaviors of cells in the studies applying BAM to cells.

  20. Chemical mechanisms of the toxicological properties of nanomaterials: generation of intracellular reactive oxygen species.

    PubMed

    Yan, Liang; Gu, Zhanjun; Zhao, Yuliang

    2013-10-01

    As more and more nanomaterials with novel physicochemical properties or new functions are created and used in different research fields and industrial sectors, the scientific and public concerns about their toxic effects on human health and the environment are also growing quickly. In the past decade, the study of the toxicological properties of nanomaterials/nanoparticles has formed a new research field: nanotoxicology. However, most of the data published relate to toxicological phenomena and there is less understanding of the underlying mechanism for nanomaterial-induced toxicity. Nanomaterial-induced reactive oxygen species (ROS) play a key role in cellular and tissue toxicity. Herein, we classify the pathways for intracellular ROS production by nanomaterials into 1) the direct generation of ROS through nanomaterial-catalyzed free-radical reactions in cells, and 2) the indirect generation of ROS through disturbing the inherent biochemical equilibria in cells. We also discuss the chemical mechanisms associated with above pathways of intracellular ROS generation, from the viewpoint of the high reactivity of atoms on the nanosurface. We hope to aid in the understanding of the chemical origin of nanotoxicity to provide new insights for chemical and material scientists for the rational design and creation of safer and greener nanomaterials.

  1. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  2. A novel biointerface that suppresses cell morphological changes by scavenging excess reactive oxygen species.

    PubMed

    Ikeda, Yutaka; Yoshinari, Tomoki; Nagasaki, Yukio

    2015-09-01

    During cell cultivation on conventional culture dishes, various events results in strong stresses that lead to the production of bioactive species such as reactive oxygen species (ROS) and nitric oxide. These reactive species cause variable damage to cells and stimulate cellular responses. Here, we report the design of a novel biocompatible surface that decreases stress by not only morphologically modifying the dish surface by using poly(ethylene glycol) tethered chains, but also actively scavenging oxidative stress by using our novel nitroxide radical-containing polymer. A block copolymer, poly(ethylene glycol)-b-poly[(2,2,6,6-tetramethylpiperidine-N-oxyl)aminomethylstyrene] (PEG-b-PMNT) was used to coat the surface of a dish. Differentiation of undifferentiated human leukemia (HL-60) cells was found to be suppressed on the polymer-coated dish. Notably, HL-60 cell cultivation caused apoptosis under high-density conditions, while spontaneous apoptosis was suppressed in cells plated on the PEG-b-PMNT-modified surface, because a healthy mitochondrial membrane potential was maintained. In contrast, low molecular weight antioxidants did not have apparent effects on the maintenance of mitochondria. We attribute this to the lack of cellular internalization of our immobilized polymer and selective scavenging of excessive ROS generated outside of cells. These results demonstrate the utility of our novel biocompatible material for actively scavenging ROS and thus maintaining cellular morphology. PMID:25691268

  3. Dental resin curing blue light induced oxidative stress with reactive oxygen species production.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Okada, Eizo; Okada, Yasue; Maehata, Yojiro; Miyamoto, Chihiro; Kishimoto, Sachi; Otsuka, Takero; Nishimura, Tomoko; Lee, Masaichi Chang-il

    2012-09-01

    Dental resin curing blue light has been used in the treatment of tooth bleaching and to restore teeth with resin-based composite fillings. However, there has been little consideration of its effect on oral tissues such as dental pulp and oral mucosa. The aim of this study was to investigate whether dental resin curing blue light irradiation affects the dental pulp, especially the blood vessels that are known as the first target of reactive oxygen species (ROS), which play an important role in vascular reactivity. We found that blue light irradiation increased the level of lipid peroxidation in isolated rat aorta blood vessels by measuring malondialdehyde. Furthermore, cell proliferative activity was decreased in a time-dependent manner and apoptosis of human aorta vascular smooth muscle cells (VSMCs) was induced. These results indicated that (ROS) such as hydrogen peroxide and hydroxyl radicals were generated in VSMCs by irradiation with blue light, and they induced cytotoxicity associated with oxidative stress, which increased lipid peroxidation and apoptosis. In addition, N-acetyl-l-cysteine, which is a typical intracellular antioxidant, protected VSMCs against cytotoxicity associated with oxidative stress. These findings suggested that antioxidants may be used to prevent oxidative stress in dental pulp by repeated and/or multiple treatments with blue light irradiation in future dental treatments.

  4. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.

    PubMed

    Chin, Ya-Huei Cathy; Buda, Corneliu; Neurock, Matthew; Iglesia, Enrique

    2011-10-12

    Kinetic and isotopic data and density functional theory treatments provide evidence for the elementary steps and the active site requirements involved in the four distinct kinetic regimes observed during CH(4) oxidation reactions using O(2), H(2)O, or CO(2) as oxidants on Pt clusters. These four regimes exhibit distinct rate equations because of the involvement of different kinetically relevant steps, predominant adsorbed species, and rate and equilibrium constants for different elementary steps. Transitions among regimes occur as chemisorbed oxygen (O*) coverages change on Pt clusters. O* coverages are given, in turn, by a virtual O(2) pressure, which represents the pressure that would give the prevalent steady-state O* coverages if their adsorption-desorption equilibrium was maintained. The virtual O(2) pressure acts as a surrogate for oxygen chemical potentials at catalytic surfaces and reflects the kinetic coupling between C-H and O═O activation steps. O* coverages and virtual pressures depend on O(2) pressure when O(2) activation is equilibrated and on O(2)/CH(4) ratios when this step becomes irreversible as a result of fast scavenging of O* by CH(4)-derived intermediates. In three of these kinetic regimes, C-H bond activation is the sole kinetically relevant step, but occurs on different active sites, which evolve from oxygen-oxygen (O*-O*), to oxygen-oxygen vacancy (O*-*), and to vacancy-vacancy (*-*) site pairs as O* coverages decrease. On O*-saturated cluster surfaces, O*-O* site pairs activate C-H bonds in CH(4) via homolytic hydrogen abstraction steps that form CH(3) groups with significant radical character and weak interactions with the surface at the transition state. In this regime, rates depend linearly on CH(4) pressure but are independent of O(2) pressure. The observed normal CH(4)/CD(4) kinetic isotope effects are consistent with the kinetic-relevance of C-H bond activation; identical (16)O(2)-(18)O(2) isotopic exchange rates in the presence or

  5. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers.

    PubMed

    Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu

    2016-05-11

    The generation of reactive oxygen species (ROS) is an important mechanism of nanomaterial toxicity. We found that Prussian blue nanoparticles (PBNPs) can effectively scavenge ROS via multienzyme-like activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activity. Instead of producing hydroxyl radicals (•OH) through the Fenton reaction, PBNPs were shown to be POD mimetics that can inhibit •OH generation. We theorized for the first time that the multienzyme-like activities of PBNPs were likely caused by the abundant redox potentials of their different forms, making them efficient electron transporters. To study the ROS scavenging ability of PBNPs, a series of in vitro ROS-generating models was established using chemicals, UV irradiation, oxidized low-density lipoprotein, high glucose contents, and oxygen glucose deprivation and reperfusion. To demonstrate the ROS scavenging ability of PBNPs, an in vivo inflammation model was established using lipoproteins in Institute for Cancer Research (ICR) mice. The results indicated that PBNPs hold great potential for inhibiting or relieving injury induced by ROS in these pathological processes.

  6. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes.

    PubMed

    Markovic, Zoran; Todorovic-Markovic, Biljana; Kleut, Duska; Nikolic, Nadezda; Vranjes-Djuric, Sanja; Misirkic, Maja; Vucicevic, Ljubica; Janjetovic, Kristina; Isakovic, Aleksandra; Harhaji, Ljubica; Babic-Stojic, Branka; Dramicanin, Miroslav; Trajkovic, Vladimir

    2007-12-01

    Because of the ability to induce cell death in certain conditions, the fullerenes (C(60)) are potential anticancer and toxic agents. The colloidal suspension of crystalline C(60) (nano-C(60), nC(60)) is extremely toxic, but the mechanisms of its cytotoxicity are not completely understood. By combining experimental analysis and mathematical modelling, we investigate the requirements for the reactive oxygen species (ROS)-mediated cytotoxicity of different nC(60) suspensions, prepared by solvent exchange method in tetrahydrofuran (THF/nC(60)) and ethanol (EtOH/nC(60)), or by extended mixing in water (aqu/nC(60)). With regard to their capacity to generate ROS and cause mitochondrial depolarization followed by necrotic cell death, the nC(60) suspensions are ranked in the following order: THF/nC(60)>EtOH/nC(60)>aqu/nC(60). Mathematical modelling of singlet oxygen ((1)O(2)) generation indicates that the (1)O(2)-quenching power (THF/nC(60)

  7. Ultraviolet Irradiation-Dependent Fluorescence Enhancement of Hemoglobin Catalyzed by Reactive Oxygen Species

    PubMed Central

    Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A.; Xu, Jingjun

    2012-01-01

    Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H2O2), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H2O2 is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb. PMID:22952902

  8. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    PubMed Central

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS. PMID:27190574

  9. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy

    PubMed Central

    Pearson, Jennifer N.; Rowley, Shane; Liang, Li-Ping; White, Andrew M.; Day, Brian J.; Patel, Manisha

    2016-01-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it. PMID:26184893

  10. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast.

    PubMed

    Shirai, Akihiro; Ueta, Shouko; Maseda, Hideaki; Kourai, Hiroki; Omasa, Takeshi

    2012-06-01

    We previously found that the gemini quaternary salt (gemini-QUAT) containing two pyridinium residues per molecule, 3,3'- (2,7-dioxaoctane) bis (1-decylpyridinium bromide) (3DOBP-4,10) , exerted fungicidal activity against Saccharomyces cerevisiae and caused respiration inhibition and the cytoplasmic leakage of ATP, magnesium, and potassium ions. Here, we investigated how the gemini-QUAT, 3DOBP-4,10, exerts more powerful antimicrobial activity than the mono-QUAT N-cetylpyridinium chloride (CPC) and examined the association between reactive oxygen species (ROS) and the antimicrobial mechanism. Antifungal assays showed that the activity of 3DOBP-4,10 against two yeasts, S. cerevisiae and Candida albicans, was significantly elevated under aerobic conditions, and largely reduced under anaerobic conditions (nitrogen atmosphere) . Adding radical scavengers such as superoxide dismutase, catalase and potassium iodide (KI) also decreased the fungicidal activity of 3DOBP-4,10 but negligibly affected that of CPC. We measured survival under static conditions and found that the rapid fungicidal profile of 3DOBP-4,10 was lost, whereas that of CPC was slightly affected in the presence of KI. Our results suggest that 3DOBP-4,10 exerts powerful antimicrobial activity by penetrating the cell wall and membrane, which then allows oxygen to enter the cells, where it participates in the generation of intracellular ROS. The activity could thus be attributable to a synergic antimicrobial combination of the disruption of organelle membranes by the QUAT and oxidative stress imposed by ROS.

  11. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    PubMed

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids.

  12. Reactive oxygen species and the bacteriostatic and bactericidal effects of isoconazole nitrate.

    PubMed

    Czaika, Viktor A; Siebenbrock, Jan; Czekalla, Frank; Zuberbier, Torsten; Sieber, Martin A

    2013-05-01

    Bacterial superinfections often occur in dermatomycoses, resulting in greatly inflamed or eczematous skin. The objective of this study was to evaluate the antibacterial efficacy of isoconazole nitrate (ISN), a broad-spectrum antimicrobial imidazole, commonly used to treat dermatomycoses. Several gram-positive bacteria minimal inhibitory concentrations (MICs) for ISN (ISN solution or ISN-containing creams: Travogen or corticosteroid-containing Travocort) and ampicillin were obtained using the broth-dilution method. Speed of onset of the bactericidal effect was determined with bacterial killing curves. Reactive oxygen species (ROS) were visualised by staining cells with singlet oxygen detector stain. Compared with ampicillin MICs, ISN MICs for Bacillus cereus, Staphylococcus haemolyticus and Staphylococcus hominis were lower and ISN MICs for Corynebacterium tuberculostearicum and Streptococcus salivarius were similar. Incubation with ISN led to a 50% kill rate for Staphylococcus aureus and methicillin-resistant strains (MRSA). Post-ISN incubation, 36% (30 min) and 90% (60 min) of S. aureus cells were positive for ROS. Isoconazole nitrate has a broad bacteriostatic and bactericidal action, also against a MRSA strain that was not reduced by the corticosteroid in the Travocort cream. Data suggest that the antibacterial effect of ISN may be ROS dependent. An antifungal agent with robust antibacterial activity can provide a therapeutic advantage in treating dermatomycoses with suspected bacterial superinfections.

  13. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.

    PubMed

    Pearson, Jennifer N; Rowley, Shane; Liang, Li-Ping; White, Andrew M; Day, Brian J; Patel, Manisha

    2015-10-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it.

  14. Effects of autoregulation and CO2 reactivity on cerebral oxygen transport.

    PubMed

    Payne, S J; Selb, J; Boas, D A

    2009-11-01

    Both autoregulation and CO(2) reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO(2) concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

  15. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.

    PubMed

    Pearson, Jennifer N; Rowley, Shane; Liang, Li-Ping; White, Andrew M; Day, Brian J; Patel, Manisha

    2015-10-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it. PMID:26184893

  16. Peroxisome Proliferation in Foraminifera Inhabiting the Chemocline: An Adaptation to Reactive Oxygen Species Exposure?1

    PubMed Central

    BERNHARD, JOAN M.; BOWSER, SAMUEL S.

    2009-01-01

    Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum; mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide, a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 μM H2O2 than in specimens incubated in the absence of H2O2. New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H2O2. Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-endoplasmic reticulum complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H2O2 could have facilitated diversification of foraminiferans during the Neoproterozoic. PMID:18460150

  17. Photolysis of atrazine in aqueous solution: role of process variables and reactive oxygen species.

    PubMed

    Silva, Marcela Prado; Batista, Ana Paula dos Santos; Borrely, Sueli Ivone; Silva, Vanessa Honda Ogihara; Teixeira, Antonio Carlos Silva Costa

    2014-11-01

    Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87 × 10(18)-3.6 × 10(18) photons L(-1) s(-1) and [ATZ]0 = 5 and 20 mg L(-1) were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.

  18. Peroxisome proliferation in Foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure?

    PubMed

    Bernhard, Joan M; Bowser, Samuel S

    2008-01-01

    Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum (ER); mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide (H(2)O(2)), a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 microM H(2)O(2) than in specimens incubated in the absence of H(2)O(2). New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H(2)O(2). Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-ER complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H(2)O(2) could have facilitated diversification of foraminiferans during the Neoproterozoic.

  19. Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp.

    PubMed

    He, Yu Ying; Häder, Donat P

    2002-02-01

    Reactive oxygen species (ROS) are involved the damage of living organisms under environmental stress including UV radiation. Cyanobacteria, photoautotrophic prokaryotic organisms, also suffer from increasing UV-B due to the depletion of the stratospheric ozone layer. The increased UV-B induces the production of ROS in vivo detected by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Ascorbic acid and N-acetyl-L-cysteine (NAC) scavenged ROS effectively, while alpha-tocopherol acetate or pyrrolidine dithiocarbamate (PDTC) did not. The presence of rose bengal and hypocrellin A increased the ROS level by photodynamic action in the visible light. The presence of the herbicide, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), increased ROS production slightly, and ROS formation was greatly enhanced by the addition of methyl viologen due to the fact that this redox system diverts electrons from PSI to oxygen and thus forms ROS. UV-B induces ROS generation by photodynamic action and inhibition of the electron transport by damaging the electron receptors or enzymes associated with the electron transport chain during photosynthesis.

  20. Vitamin B1 as a scavenger of reactive oxygen species photogenerated by vitamin B2.

    PubMed

    Natera, José; Massad, Walter A; García, Norman A

    2011-01-01

    Kinetics and mechanism of photoprocesses generated by visible light-irradiation of the system riboflavin (Rf, vitamin B2) plus Thiamine (Th) and Thiamine pyrophosphate (ThDP), representing vitamin B1, was studied in pH 7 water. A weak dark complex vitamin B2-vitamin B1, with a mean value of 4 ± 0.4 M(-1) is formed. An intricate mechanism of competitive reactions operates upon photoirradiation, being the light only absorbed by Rf. Th and ThDP quench excited singlet and triplet states of Rf, with rate constants in the order of 10(9) and 10(6 ) M(-1 ) s(-1), respectively. With Vitamin B1 in a concentration similar to that of dissolved molecular oxygen in water, the quenching of triplet excited Rf by the latter is highly predominant, resulting in the generation of O(2)((1)Δ(g)). Superoxide radical anion was not detected under work conditions. A relatively slow O(2)((1)Δ(g))-mediated photodegradation of Th and ThDP was observed. Nevertheless, Th and especially ThDP behave as efficient physical deactivators of O(2)((1)Δ(g)). The thiazol structure in vitamin B1 appears as a good scavenger of this reactive oxygen species. This characteristic, that presents at vitamin B1 as a potential photoprotector of biological entities against O(2)((1)Δ(g)) attack, was been experimentally confirmed employing the protein lisozime as a photo-oxidizable target.

  1. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast.

    PubMed

    Dietz, Karl-Josef; Turkan, Ismail; Krieger-Liszkay, Anja

    2016-07-01

    Photosynthesis is a high-rate redox metabolic process that is subjected to rapid changes in input parameters, particularly light. Rapid transients of photon capture, electron fluxes, and redox potentials during photosynthesis cause reactive oxygen species (ROS) to be released, including singlet oxygen, superoxide anion radicals, and hydrogen peroxide. Thus, the photosynthesizing chloroplast functions as a conditional source of important redox and ROS information, which is exploited to tune processes both inside the chloroplast and, following retrograde release or processing, in the cytosol and nucleus. Analyses of mutants and comparative transcriptome profiling have led to the identification of these processes and associated players and have allowed the specificity and generality of response patterns to be defined. The release of ROS and oxidation products, envelope permeabilization (for larger molecules), and metabolic interference with mitochondria and peroxisomes produce an intricate ROS and redox signature, which controls acclimation processes. This photosynthesis-related ROS and redox information feeds into various pathways (e.g. the mitogen-activated protein kinase and OXI1 signaling pathways) and controls processes such as gene expression and translation. PMID:27255485

  2. Synergistic photogeneration of reactive oxygen species by dissolved organic matter and C60 in aqueous phase.

    PubMed

    Li, Yang; Niu, Junfeng; Shang, Enxiang; Crittenden, John Charles

    2015-01-20

    We investigated the photogeneration of reactive oxygen species (ROS) by C60 under UV irradiation, when humic acid (HA) or fulvic acid (FA) is present. When C60 and dissolved organic matter (DOM) were present as a mixture, singlet oxygen ((1)O2) generation concentrations were 1.2–1.5 times higher than the sum of (1)O2 concentrations that were produced when C60 and DOM were present in water by themselves. When C60 and HA were present as a mixture, superoxide radicals (O2(•–)) were 2.2–2.6 times more than when C60 and HA were present in water by themselves. A synergistic ROS photogeneration mechanism involved in energy and electron transfer between DOM and C60 was proposed. Enhanced (1)O2 generation in the mixtures was partly due to (3)DOM* energy transfer to O2. However, it was mostly due to (3)DOM* energy transfer to C60 producing (3)C60*. (3)C60* has a prolonged lifetime (>4 μs) in the mixture and provides sufficient time for energy transfer to O2, which produces (1)O2. The enhanced O2(•–) generation for HA/C60 mixture was because (3)C60* mediated electron transfer from photoionized HA to O2. This study demonstrates the importance of considering DOM when investigating ROS production by C60.

  3. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast.

    PubMed

    Shirai, Akihiro; Ueta, Shouko; Maseda, Hideaki; Kourai, Hiroki; Omasa, Takeshi

    2012-06-01

    We previously found that the gemini quaternary salt (gemini-QUAT) containing two pyridinium residues per molecule, 3,3'- (2,7-dioxaoctane) bis (1-decylpyridinium bromide) (3DOBP-4,10) , exerted fungicidal activity against Saccharomyces cerevisiae and caused respiration inhibition and the cytoplasmic leakage of ATP, magnesium, and potassium ions. Here, we investigated how the gemini-QUAT, 3DOBP-4,10, exerts more powerful antimicrobial activity than the mono-QUAT N-cetylpyridinium chloride (CPC) and examined the association between reactive oxygen species (ROS) and the antimicrobial mechanism. Antifungal assays showed that the activity of 3DOBP-4,10 against two yeasts, S. cerevisiae and Candida albicans, was significantly elevated under aerobic conditions, and largely reduced under anaerobic conditions (nitrogen atmosphere) . Adding radical scavengers such as superoxide dismutase, catalase and potassium iodide (KI) also decreased the fungicidal activity of 3DOBP-4,10 but negligibly affected that of CPC. We measured survival under static conditions and found that the rapid fungicidal profile of 3DOBP-4,10 was lost, whereas that of CPC was slightly affected in the presence of KI. Our results suggest that 3DOBP-4,10 exerts powerful antimicrobial activity by penetrating the cell wall and membrane, which then allows oxygen to enter the cells, where it participates in the generation of intracellular ROS. The activity could thus be attributable to a synergic antimicrobial combination of the disruption of organelle membranes by the QUAT and oxidative stress imposed by ROS. PMID:22790843

  4. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals.

    PubMed

    Gao, Yuxian; Li, Rongtan; Chen, Shilong; Luo, Liangfeng; Cao, Tian; Huang, Weixin

    2015-12-21

    Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

  5. Growth properties and reactivity of oxygen phases on platinum (111) and palladiium (111)

    NASA Astrophysics Data System (ADS)

    Devarajan, Sunil Poondi

    Oxidation reactions of Pt and Pd under lean burn or oxygen rich conditions are crucial to heterogeneous catalysis systems used in oxidation of hydrocarbons, fabrication of specialty chemicals, power generation through catalytic oxidation, fuel cells and most significantly pollution control through remediation of industrial and automotive exhaust. In spite of their tremendous appeal and widespread use in many important applications, knowledge used to formulate catalytic systems based on the transition metals has chiefly been derived from empirical data, because of their low reactivity towards molecular oxygen under experimental conditions of Ultra High Vacuum (UHV). Thanks to recent advances in surface science techniques, path breaking research through innovative experimental methods coupled with a renewed vigor towards computational ab-initio simulations, have opened avenues for fundamental understanding of this important class of reactions. We utilized strong oxidizing agents like nitrogen di-oxide and atomic oxygen beams to grow oxygen phases on platinum and palladium single crystals and studied their characteristics using various surface analytic techniques. Our STM work on Pt(111), ends a long standing debate on whether the oxygen atoms continue filling up fcc hollow sites or start filling up hcp hollow sites beyond the well understood 0.25 ML coverage. We also present evidence to demonstrate formation of a Pt oxide chain compound which appears as protrusions on the surface and arrange themselves into a well networked superstructure during initial oxidation. Our work on Pd(111) using TPRS, reveals for the first time that C-H bond cleavage of propane occurs on a PdO(101) thin film at temperatures below 200 K under UHV conditions. It is also observed that the hydrogen, and propyl fragments resulting from the bond cleavage react with the thin film oxide to undergo complete oxidation releasing H2O and CO2 at higher temperatures. The C-H bond cleavage occurs only

  6. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rudolf, Agata M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  7. Reactive Oxygen Species Production by Potato Tuber Mitochondria Is Modulated by Mitochondrially Bound Hexokinase Activity1

    PubMed Central

    Camacho-Pereira, Juliana; Meyer, Laudiene Evangelista; Machado, Lilia Bender; Oliveira, Marcus Fernandes; Galina, Antonio

    2009-01-01

    Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc = 140 μm versus KMFrc = 1,375 μm). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers. PMID:19109413

  8. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    PubMed Central

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  9. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.

    PubMed

    Zhao, Yuewei; Xia, Qingsu; Yin, Jun Jie; Lin, Ge; Fu, Peter P

    2011-09-10

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and human. PAs require metabolic activation to generate pyrrolic metabolites (dehydro-PAs) that bind cellular protein and DNA, leading to hepatotoxicity and genotoxicity, including tumorigenicity. In this study we report that UVA photoirradiation of a series of dehydro-PAs, e.g., dehydromonocrotaline, dehydroriddelliine, dehydroretrorsine, dehydrosenecionine, dehydroseneciphylline, dehydrolasiocarpine, dehydroheliotrine, and dehydroretronecine (DHR) at 0-70 J/cm2 in the presence of a lipid, methyl linoleate, resulted in lipid peroxidation in a light dose-responsive manner. When irradiated in the presence of sodium azide, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a photo-induced product. When irradiated in the presence of superoxide dismutase, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. Electron spin resonance (ESR) spin trapping studies confirmed that both singlet oxygen and superoxide anion radical were formed during photoirradiation. These results indicate that UVA photoirradiation of dehydro-PAs generates reactive oxygen species (ROS) that mediated the initiation of lipid peroxidation. UVA irradiation of the parent PAs and other PA metabolites, including PA N-oxides, under similar experimental conditions did not produce lipid peroxidation. It is known that PAs induce skin cancer and are secondary (hepatogenous) photosensitization agents. Our results suggest that dehydro-PAs are the active metabolites responsible for skin cancer formation and PA-induced secondary photosensitization. PMID:21723383

  10. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  11. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  12. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  13. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  14. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  15. Generation of Reactive Oxygen and Anti-Oxidant Species by Hydrodynamically-Stressed Suspensions of Morinda citrofolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically-stressed cultures of Morinda citrifolia, over a 5-ho...

  16. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.

    PubMed

    Griendling, K K; Sorescu, D; Lassègue, B; Ushio-Fukai, M

    2000-10-01

    Emerging evidence indicates that reactive oxygen species, especially superoxide and hydrogen peroxide, are important signaling molecules in cardiovascular cells. Their production is regulated by hormone-sensitive enzymes such as the vascular NAD(P)H oxidases, and their metabolism is coordinated by antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Both of these reactive oxygen species serve as second messengers to activate multiple intracellular proteins and enzymes, including the epidermal growth factor receptor, c-Src, p38 mitogen-activated protein kinase, Ras, and Akt/protein kinase B. Activation of these signaling cascades and redox-sensitive transcription factors leads to induction of many genes with important functional roles in the physiology and pathophysiology of vascular cells. Thus, reactive oxygen species participate in vascular smooth muscle cell growth and migration; modulation of endothelial function, including endothelium-dependent relaxation and expression of a proinflammatory phenotype; and modification of the extracellular matrix. All of these events play important roles in vascular diseases such as hypertension and atherosclerosis, suggesting that the sources of reactive oxygen species and the signaling pathways that they modify may represent important therapeutic targets.

  17. Differential accumulation of reactive oxygen and nitrogen species in maize lines with contrasting drought tolerance and aflatoxin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses such as drought stress can exacerbate aflatoxin contamination of maize kernels. Previous studies showed that maize lines resistance to aflatoxin contamination tend to exhibit enhanced drought tolerance and accumulate lower levels of reactive oxygen species (ROS) and nitrogen species...

  18. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  19. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  20. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity.

    PubMed

    Toma, Vlad Al; Farcaș, Anca D; Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  1. Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere

    SciTech Connect

    Watanabe, Ken; Lee, Dong-Hee; Sakaguchi, Isao; Haneda, Hajime; Nomura, Kenji; Kamiya, Toshio; Hosono, Hideo; Ohashi, Naoki

    2013-11-11

    An isotope tracer study, i.e., {sup 18}O/{sup 16}O exchange using {sup 18}O{sub 2} and H{sub 2}{sup 18}O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium–gallium–zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200 °C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for {sup 18}O{sub 2} than for H{sub 2}{sup 18}O. PDA in a humid atmosphere at 400 °C further suppressed the reactivity of O{sub 2} at the a-IGZO film surface, which is attributable to –OH-terminated surface formation.

  2. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells

    PubMed Central

    Santini, Paolo

    2016-01-01

    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment. PMID:26881022

  3. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells.

    PubMed

    Falabella, Micol; Forte, Elena; Magnifico, Maria Chiara; Santini, Paolo; Arese, Marzia; Giuffrè, Alessandro; Radić, Kristina; Chessa, Luciana; Coarelli, Giulia; Buscarinu, Maria Chiara; Mechelli, Rosella; Salvetti, Marco; Sarti, Paolo

    2016-01-01

    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment.

  4. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  5. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations.

  6. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  7. Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.

    PubMed

    Maas, Matthias; Wang, Ronggang; Paddock, Cathy; Kotamraju, Srigiridhar; Kalyanaraman, Balaraman; Newman, Peter J; Newman, Debra K

    2003-12-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) functions to control the activation and survival of the cells on which it is expressed. Many of the regulatory functions of PECAM-1 are dependent on its tyrosine phosphorylation and subsequent recruitment of the Src homology (SH2) domain containing protein tyrosine phosphatase SHP-2. The recent demonstration that PECAM-1 tyrosine phosphorylation occurs in cells exposed to the reactive oxygen species hydrogen peroxide (H2O2) suggested that this form of oxidative stress may also support PECAM-1/SHP-2 complex formation. In the present study, we show that PECAM-1 tyrosine phosphorylation in response to exposure of cells to H2O2 is reversible, involves a shift in the balance between kinase and phosphatase activities, and supports binding of SHP-2 and recruitment of this phosphatase to cell-cell borders. We speculate, however, that the unique ability of H2O2 to reversibly oxidize the reactive site cysteine residues of protein tyrosine phosphatases may result in transient inactivation of the SHP-2 that is bound to PECAM-1 under these conditions. Finally, we provide evidence that PECAM-1 tyrosine phosphorylation and SHP-2 binding in endothelial cells requires exposure to an "oxidative burst" of H2O2, but that exposure of these cells to sufficiently high concentrations of H2O2 for a sufficiently long period of time abrogates binding of SHP-2 to tyrosine-phosphorylated PECAM-1. These findings support a role for PECAM-1 as a sensor of oxidative stress, perhaps most importantly during the process of inflammation. PMID:12893640

  8. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    SciTech Connect

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  9. Reactive and Inelastic Scattering Dynamics of Hyperthermal Oxygen Atoms on a Liquid Hydrocarbon Surface

    NASA Astrophysics Data System (ADS)

    Minton, Timothy K.

    2004-03-01

    The saturated hydrocarbon liquid, squalane (2,6,10,15,19,23-hexamethyltetracosane), was used as a target surface for model studies of hyperthermal O-atom reactions with a hydrocarbon surface. Beams containing hyperthermal O(^3P) atoms at average translational energies of 3.0 or 5.2 eV were directed at a continuously refreshed squalane surface, and products that scattered from the surface were monitored with a rotatable mass spectrometer detector. Inelastically scattered O and reactively scattered OH and H_2O have been detected, and the dynamical behavior of these products has been characterized. Both the reactive and nonreactive channels were found to occur through thermal and nonthermal processes, with the nonthermal processes dominating. The initial step leading to formation of OH and H_2O products is believed to be H-atom abstraction to form OH. The direct inelastic scattering of O and the direct H-atom abstraction to form OH occur through gas-phase-like collisions, which may be described by a kinematic picture similar to that used to describe scattering in crossed-beams experiments. This kinematic picture allows the determination of the effective surface mass encountered by the incident O atom, the atom-surface collision energy in the center-of-mass (c.m.) frame, and the fraction of the c.m. collision energy that goes into translation of the scattered gaseous product and the recoiling surface fragment. Center-of-mass velocity-flux maps for scattered OH indicate either single-collision events through a largely collinear O-H-C transition state or multiple-collision events in which OH, likely formed by a stripping mechanism, scatters inelastically from the surface. Further studies are underway to investigate experimentally the dynamics of a possible carbon-containing product (OCH_3) that is predicted by theory to be formed (in addition to OH and H_2O) in the hyperthermal reaction of O(^3P) with a hydrocarbon surface.

  10. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    SciTech Connect

    Minissale, M. Congiu, E.; Dulieu, F.

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ∼150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  11. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    PubMed

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential.

  12. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    PubMed

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.

  13. Reactive oxygen species are involved in nickel inhibition of dna repair

    SciTech Connect

    Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y.

    1997-06-01

    Nickel has been shown to inhibit DNA repair in a way that may play a role in its toxicity. Since nickel treatment increases cellular reactive oxygen species (ROS), we have investigated the involvement of ROS in nickel inhibition of DNA repair. Inhibition of glutathione synthesis or catalase activity increased the enhancing effect of nickel on the cytotoxicity of ultraviolet (UV) light. Inhibition of catalase and glutathione peroxidase activities also enhanced the retardation effect of nickel on the rejoining of DNA strand breaks accumulated by hydroxyurea plus cytosine-{beta}-D-arabinofuranoside in UV-irradiated cells. Since DNA polymerization and ligation are involved in the DNA-break rejoining, we have investigated the effect of ROS on these two steps in an extract of Chinese hamster ovary cells. Nickel inhibition of the incorporation of ({sup 3}H)dTTP into the DNase l-activated calf thymus DNA was stronger than the ligation of poly(dA){center_dot}oligo(dT), whereas H{sub 2}O{sub 2} was more potent in inhibiting DNA ligation than DNA polymerization. Nickel, in the presence of H{sub 2}O{sub 2}, exhibited a synergistic inhibition on both DNA polymerization and ligation and caused protein fragmentation. In addition, glutathione could completely recover the inhibition by nickel or H{sub 2}O{sub 2} alone but only partially recover the inhibition by nickel plus H{sub 2}O{sub 2}. Therefore, nickel may bind to DNA-repair enzymes and generate oxygen-free radicals to cause protein degradation in situ. This irreversible damage to the proteins involved in DNA repair, replication, recombination, and transcription could be important for the toxic effects of nickel. 60 refs., 6 figs., 4 tabs.

  14. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  15. Reactivity of retinal blood flow to 100% oxygen breathing after lipopolysaccharide administration in healthy subjects.

    PubMed

    Kolodjaschna, Julia; Berisha, Fatmire; Lasta, Michael; Polska, Elzbieta; Fuchsjäger-Mayrl, Gabriele; Schmetterer, Leopold

    2008-08-01

    Administration of low doses of Escherichia coli endotoxin (LPS) to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate the retinal vascular reactivity after LPS infusion. In a randomized placebo-controlled cross-over study, 18 healthy male volunteers received 20 IU/kg LPS or placebo as an intravenous bolus infusion. Outcome parameters were measured at baseline and 4h after LPS/placebo administration. At baseline and at 4h after administration a short period of 100% oxygen inhalation was used to assess retinal vasoreactivity to this stimulus. Perimacular white blood cell velocity, density and flux were assessed with the blue-field entoptic technique, retinal branch arterial and venous diameters were measured with a retinal vessel analyzer and red blood cell velocity in retinal branch veins was measured with laser Doppler velocimetry. LPS is associated with peripheral blood leukocytosis and increased white blood cell density in ocular microvessels (p<0.001). In addition, retinal arterial (p=0.02) and venous (p<0.01) diameters were increased. All retinal hemodynamic parameters showed a decrease during 100% oxygen breathing. This decrease was significantly blunted by LPS for all retinal outcome parameters except venous diameter (p=0.04 for white blood cell velocity, p=0.0002 for white blood cell density, p<0.0001 for white blood cell flux, p=0.01 for arterial diameter, p=0.02 for red blood cell velocity and p=0.006 for red blood cell flux). These data indicate that LPS-induced inflammation induces vascular dysregulation in the retina. This may provide a link between inflammation and vascular dysregulation. Further studies are warranted to investigate whether this model may be suitable to study inflammation induced vascular dysregulation in the eye.

  16. Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction.

    PubMed

    Usatyuk, Peter V; Kotha, Sainath R; Parinandi, Narasimham L; Natarajan, Viswanathan

    2013-01-01

    Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

  17. Reactive Oxygen Species are involved in BMP-Induced Dendritic Growth in Cultured Rat Sympathetic Neurons

    PubMed Central

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J.

    2015-01-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons. PMID:26079955

  18. Hydrogen Sulfide Decreases Reactive Oxygen in a Model of Lung Transplantation

    PubMed Central

    George, Timothy J.; Arnaoutakis, George J.; Beaty, Claude A.; Jandu, Simran K.; Santhanam, Lakshmi; Berkowitz, Dan E.; Shah, Ashish S.

    2012-01-01

    Objectives Ischemia-reperfusion injury(IRI) is a common complication following lung transplantation(LTx). IRI is thought to be mediated by reactive oxygen species(ROS). Hydrogen sulfide(H2S) is a novel agent that has been previously shown to scavenge ROS and slow metabolism. We evaluated the impact of infused H2S on the presence of ROS after reperfusion in an ex vivo model of LTx. Methods Heart-Lung blocks were recovered from New Zealand White rabbits(n=12) and cold stored in Perfadex solution for 18 hours. Following storage, the heart-lung blocks were reperfused ex vivo with donor rabbit blood. In the treatment group(n=7), a bolus of sodium hydrogen sulfide was added at the beginning of reperfusion(100ug/kg) and continuously infused throughout the two hour experiment(1mg/kg/hr). The vehicle group(n=5) received an equivalent volume of saline. Serial airway and pulmonary artery pressures were measured along with arterial and venous blood gases. Results Oxygenation and pulmonary artery pressures were similar between the two groups. However, treatment with H2S resulted in a dramatic reduction in the presence of ROS after 2 hours of reperfusion(4851 ± 2139 vs. 235 ± 462 RFU/mg protein, p=0.003). There was a trend toward increased levels of cGMP in the H2S treated group(3.08 ± 1.69 vs. 1.73 ± 1.41 fmol/mg tissue, p=0.23). Conclusions After prolonged ischemia, infusion of H2S during reperfusion is associated with a significant decrease in the presence of ROS, a suspected mediator of IRI. To our knowledge, this study represents the first reported therapeutic use of H2S in an experimental model of lung transplant. PMID:22464394

  19. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    SciTech Connect

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer Chronic exposure to arsenite induces cell proliferation and transformation. Black-Right-Pointing-Pointer Arsenite-induced transformation increases ROS production and downstream signalings. Black-Right-Pointing-Pointer Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. Black-Right-Pointing-Pointer Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  20. TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO

    PubMed Central

    Aubdool, Aisah A; Kodji, Xenia; Abdul‐Kader, Nayaab; Heads, Richard; Fernandes, Elizabeth S; Bevan, Stuart

    2016-01-01

    Abstract Background and Purpose Transient receptor potential ankyrin‐1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1‐mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental Approach Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key Results Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild‐type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde‐induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS‐derived NO pathways. Cinnamaldehyde‐mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1‐mediated response. Co‐treatment with a non‐selective NOS inhibitor L‐NAME and antioxidant apocynin further inhibited the TRPA1‐mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice. Conclusion and Implications This study provides in vivo evidence that TRPA1‐induced vasodilatation mediated by cinnamaldehyde requires neuronal NOS‐derived NO, in addition to the traditional neuropeptide component. A novel role of peroxynitrite is revealed, which is generated downstream of TRPA1 activation by cinnamaldehyde. This mechanistic pathway underlying TRPA1‐mediated vasodilatation may be important in understanding the role of TRPA1 in pathophysiological situations. PMID:27189253

  1. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    SciTech Connect

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  2. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    SciTech Connect

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup; Kwon, Ki-Sun

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer H{sub 2}O{sub 2} differently adjusted senescence and proliferation in normal and cancer cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently decreased PCNA levels in normal cells. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} exposure transiently increased CDK2 activity in cancer cells. Black-Right-Pointing-Pointer p21{sup Cip1} is likely dispensable when H{sub 2}O{sub 2} induces senescence in normal cells. Black-Right-Pointing-Pointer Suggestively, CDK2 and PCNA play critical roles in H{sub 2}O{sub 2}-induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H{sub 2}O{sub 2} decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H{sub 2}O{sub 2} increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H{sub 2}O{sub 2}-induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21{sup Cip1}/PCNA complex plays an important role as a regulator of cell fate decisions.

  3. Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment

    PubMed Central

    Ludin, Aya; Gur-Cohen, Shiri; Golan, Karin; Kaufmann, Kerstin B.; Itkin, Tomer; Medaglia, Chiara; Lu, Xin-Jiang; Ledergor, Guy; Kollet, Orit

    2014-01-01

    Abstract Significance: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. Recent Advances: ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROShigh short-term repopulating stem cells, and ROSlow quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. Critical Issues: Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. Future Directions: Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development. Antioxid. Redox Signal. 21, 1605–1619. PMID:24762207

  4. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    PubMed Central

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  5. Trolox-Sensitive Reactive Oxygen Species Regulate Mitochondrial Morphology, Oxidative Phosphorylation and Cytosolic Calcium Handling in Healthy Cells

    PubMed Central

    Distelmaier, Felix; Valsecchi, Federica; Forkink, Marleen; van Emst-de Vries, Sjenet; Swarts, Herman G.; Rodenburg, Richard J.T.; Verwiel, Eugène T.P.; Smeitink, Jan A.M.; Willems, Peter H.G.M.

    2012-01-01

    Abstract Aims: Cell regulation by signaling reactive oxygen species (sROS) is often incorrectly studied through extracellular oxidant addition. Here, we used the membrane-permeable antioxidant Trolox to examine the role of sROS in mitochondrial morphology, oxidative phosphorylation (OXPHOS), and cytosolic calcium (Ca2+) handling in healthy human skin fibroblasts. Results and Innovation: Trolox treatment reduced the levels of 5-(and-6)-chloromethyl-2′,7′-dichlorodihydro-fluorescein (CM-H2DCF) oxidizing ROS, lowered cellular lipid peroxidation, and induced a less oxidized mitochondrial thiol redox state. This was paralleled by increased glutathione- and mitofusin-dependent mitochondrial filamentation, increased expression of fully assembled mitochondrial complex I, elevated activity of citrate synthase and OXPHOS enzymes, and a higher cellular O2 consumption. In contrast, Trolox did not alter hydroethidium oxidation, cytosolic thiol redox state, mitochondrial NAD(P)H levels, or mitochondrial membrane potential. Whole genome expression profiling revealed that Trolox did not trigger significant changes in gene expression, suggesting that Trolox acts downstream of this process. Cytosolic Ca2+ transients, induced by the hormone bradykinin, were of a higher amplitude and decayed faster in Trolox-treated cells. These effects were dose-dependently antagonized by hydrogen peroxide. Conclusions: Our findings suggest that Trolox-sensitive sROS are upstream regulators of mitochondrial mitofusin levels, morphology, and function in healthy human skin fibroblasts. This information not only facilitates the interpretation of antioxidant effects in cell models (of oxidative-stress), but also contributes to a better understanding of ROS-related human pathologies, including mitochondrial disorders. Antioxid. Redox Signal. 17, 1657–1669. PMID:22559215

  6. Control of vascular smooth muscle function by Src-family kinases and reactive oxygen species in health and disease

    PubMed Central

    MacKay, Charles E; Knock, Greg A

    2015-01-01

    Abstract Reactive oxygen species (ROS) are now recognised as second messenger molecules that regulate cellular function by reversibly oxidising specific amino acid residues of key target proteins. Amongst these are the Src-family kinases (SrcFKs), a multi-functional group of non-receptor tyrosine kinases highly expressed in vascular smooth muscle (VSM). In this review we examine the evidence supporting a role for ROS-induced SrcFK activity in normal VSM contractile function and in vascular remodelling in cardiovascular disease. VSM contractile responses to G-protein-coupled receptor stimulation, as well as hypoxia in pulmonary artery, are shown to be dependent on both ROS and SrcFK activity. Specific phosphorylation targets are identified amongst those that alter intracellular Ca2+ concentration, including transient receptor potential channels, voltage-gated Ca2+ channels and various types of K+ channels, as well as amongst those that regulate actin cytoskeleton dynamics and myosin phosphatase activity, including focal adhesion kinase, protein tyrosine kinase-2, Janus kinase, other focal adhesion-associated proteins, and Rho guanine nucleotide exchange factors. We also examine a growing weight of evidence in favour of a key role for SrcFKs in multiple pro-proliferative and anti-apoptotic signalling pathways relating to oxidative stress and vascular remodelling, with a particular focus on pulmonary hypertension, including growth-factor receptor transactivation and downstream signalling, hypoxia-inducible factors, positive feedback between SrcFK and STAT3 signalling and positive feedback between SrcFK and NADPH oxidase dependent ROS production. We also discuss evidence for and against the potential therapeutic targeting of SrcFKs in the treatment of pulmonary hypertension. PMID:25384773

  7. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    PubMed

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D; Westin, Erik R

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism

  8. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway.

    PubMed

    Wang, Liping; Tian, Zhufang; Yang, Qi; Li, Heng; Guan, Haixia; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2015-09-22

    Sulforaphane (SFN), a natural compound derived from broccoli/broccoli sprouts, has been demonstrated to be used as an antitumor agent in different types of cancers. However, its antitumor effect in thyroid cancer remains largely unknown. The aim of the study was to investigate the therapeutic potential of SFN for thyroid cancer and explore the mechanisms underlying antitumor effects of SFN by in vitro and in vivo studies. Our data demonstrated that SFN significantly inhibited thyroid cancer cell proliferation in a dose- and time-dependent manner, induced G2/M phase cell cycle arrest and apoptosis, and inhibited thyroid cancer cell migration and invasion by suppressing epithelial-mesenchymal transition (EMT) process and expression of Slug, Twist, MMP-2 and -9. Mechanically, SFN inhibited thyroid cancer cell growth and invasiveness through repressing phosphorylation of Akt, enhancing p21 expression by the activation of Erk and p38 signaling cascades, and promoting mitochondrial-mediated apoptosis via reactive oxygen species (ROS)-dependent pathway. Growth of xenograft tumors derived from thyroid cancer cell line FTC133 in nude mice was also significantly inhibited by SFN. Importantly, we did not find significant effect of SFN on body weight and liver function of mice. Collectively, we for the first time demonstrate that SFN is a potentially effective antitumor agent for thyroid cancer.

  9. Paradoxical action of reactive oxygen species in creation and therapy of cancer.

    PubMed

    Kardeh, Sina; Ashkani-Esfahani, Soheil; Alizadeh, Ali Mohammad

    2014-07-15

    A great number of comprehensive literature believe that reactive oxygen species (ROS) and their products play a significant role in cell homeostasis maintenance, tissue protection against further insults by controlling cells proliferation through inducing apoptosis, and defending against cancer. ROS is believed to be like a potential double-edged sword in both cancer progression and prevention. Although at low and moderate levels ROS affect some of the most essential mechanisms of cell survival such as proliferation, angiogenesis and tumor invasion, at higher levels these agents can expose cells to detrimental consequences of oxidative stress including DNA damage and apoptosis that result in therapeutic effects on cancer. Understanding the new aspects on molecular mechanisms and signaling pathways modulating creation and therapy of cancers by ROS is critical in development of therapeutic strategies for patients suffering from cancer. This paper presents a general overview and rationale of paradoxical action of ROS in creation and therapy of cancer, tests to be used, and examples of how it may be applied.

  10. Reactive oxygen species mediated apoptosis of esophageal cancer cells induced by marine triprenyl toluquinones and toluhydroquinones.

    PubMed

    Whibley, Catherine E; McPhail, Kerry L; Keyzers, Robert A; Maritz, Michelle F; Leaner, Virna D; Birrer, Michael J; Davies-Coleman, Michael T; Hendricks, Denver T

    2007-09-01

    Marine invertebrates, algae, and microorganisms are prolific producers of novel secondary metabolites. Some of these secondary metabolites have the potential to be developed as chemotherapeutic agents for the treatment of a wide variety of diseases, including cancer. We describe here the mechanism leading to apoptosis of esophageal cancer cell lines in the presence of triprenylated toluquinones and toluhydroquinones originally isolated from the Arminacean nudibranch Leminda millecra. Triprenylated toluquinone-induced and toluhydroquinone-induced cell death is mediated via apoptosis after a cell cycle block. Molecular events include production of reactive oxygen species (ROS), followed by induction and activation of c-Jun (AP1) via c-Jun-NH2-kinase-mediated and extracellular signal-regulated kinase-mediated pathways. Partial resistance to these compounds could be conferred by the ROS scavengers Trolox and butylated hydroxyanisol, a c-Jun-NH2-kinase inhibitor, and inhibition of c-Jun with a dominant negative mutant (TAM67). Interestingly, the levels of ROS produced varied between compounds, but was proportional to the ability of each compound to kill cells. Because cancer cells are often more susceptible to ROS, these compounds present a plausible lead for new antiesophageal cancer treatments and show the potential of the South African marine environment to provide new chemical entities with potential clinical significance. PMID:17876050

  11. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae).

    PubMed

    Zhang, Zhong-chun; Qiu, Bao-Sheng

    2007-01-01

    Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation. PMID:18232224

  12. Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum).

    PubMed

    Muzila, Mbaki; Rumpunen, Kimmo; Wright, Helen; Roberts, Helen; Grant, Melissa; Nybom, Hilde; Sehic, Jasna; Ekholm, Anders; Widén, Cecilia

    2016-01-01

    Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum.

  13. Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species.

    PubMed

    Wang, Huai-Song; Bao, Wen-Jing; Ren, Shi-Bin; Chen, Ming; Wang, Kang; Xia, Xing-Hua

    2015-07-01

    Oxidative stress caused by reactive oxygen species (ROS) is harmful to biological systems and implicated in various diseases. A variety of selective fluorescent probes have been developed for detecting ROS to uncover their biological functions. Generally, the preparation of the fluorescent probes usually undergoes multiple synthetic steps, and the successful fluorescent sensing usually relies on trial-and-error tests. Herein we present a simple way to prepare fluorescent ROS probes that can be used both in biological and environmental systems. The fluorescent europium(III) coordination polymers (CPs) are prepared by simply mixing the precursors [2,2'-thiodiacetic acid and Eu(NO3)3·6H2O] in ethanol. Interestingly, with the increase of reaction temperature, the product undergoes a morphological transformation from microcrystal to nanoparticle while the structure and fluorescent properties retain. The fluorescence of the sulfur-tagged europium(III) CPs can be selectively quenched by ROS, and thus, sensitive and selective monitoring of ROS in aerosols by the microcrystals and in live cells by the nanoparticles has been achieved. The results reveal that the sulfur-tagged europium(III) CPs provide a novel sensor for imaging ROS in biological and environmental systems.

  14. Role of Reactive Oxygen Intermediates in Cellular Responses to Dietary Cancer Chemopreventive Agents

    PubMed Central

    Antosiewicz, Jedrzej; Ziolkowski, Wieslaw; Kar, Siddhartha; Powolny, Anna A.; Singh, Shivendra V.

    2008-01-01

    Epidemiological studies continue to support the premise that diets rich in fruits and vegetables may offer protection against cancer of various anatomical sites. This correlation is quite persuasive for some vegetables including Allium (e.g., garlic) and cruciferous (e.g., broccoli and watercress) vegetables. The bioactive food components responsible for cancer chemopreventive effects of various edible plants have been identified. For instance, anticancer effects of Allium and cruciferous vegetables are attributed to organosulfur compounds (e.g., diallyl trisulfide) and isothiocyanates (e.g., sulforaphane and phenethyl isothiocyanate), respectively. Bioactive food components with anticancer activity are generally considered antioxidants due to their ability to modulate expression/activity of anti-oxidative and phase 2 drug metabolizing enzymes and scavenging free radicals. At the same time, more recent studies have provided convincing evidence to indicate that certain dietary cancer chemopreventive agents cause generation of reactive oxygen species to trigger signal transduction culminating in cell cycle arrest and/or programmed cell death (apoptosis). Interestingly, the ROS generation by some dietary anticancer agents is tumor cell specific and does not occur in normal cells. This review summarizes experimental evidence supporting involvement of ROS in cellular responses to cancer chemopreventive agents derived from common edible plants. PMID:18671201

  15. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  16. The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro.

    PubMed

    Poniedzialek, Barbara; Rzymski, Piotr; Nawrocka-Bogusz, Honorata; Jaroszyk, Feliks; Wiktorowicz, Krzysztof

    2013-09-01

    The present study was undertaken in order to determine the effect of low frequency electromagnetic field (EMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. We investigated how differently generated EMF and several levels of magnetic induction affect ROS production. To evaluate the level of ROS production, two fluorescent dyes were used: 2'7'-dichlorofluorscein-diacetate and dihydrorhodamine. Phorbol 12-myristate 13-acetate (PMA), known as strong stimulator of the respiratory burst, was also used. Alternating magnetic field was generated by means of Viofor JPS apparatus. Three different levels of magnetic induction have been analyzed (10, 40 and 60 μT). Fluorescence of dichlorofluorescein and 123 rhodamine was measured by flow cytometry. The experiments demonstrated that only EMF tuned to the calcium ion cyclotron resonance frequency was able to affect ROS production in neutrophils. Statistical analysis showed that this effect depended on magnetic induction value of applied EMF. Incubation in EMF inhibited cell activity slightly in unstimulated neutrophils, whereas the activity of PMA-stimulated neutrophils has increased after incubation in EMF.

  17. Iberis amara Extract Induces Intracellular Formation of Reactive Oxygen Species and Inhibits Colon Cancer.

    PubMed

    Weidner, Christopher; Rousseau, Morten; Plauth, Annabell; Wowro, Sylvia J; Fischer, Cornelius; Abdel-Aziz, Heba; Sauer, Sascha

    2016-01-01

    Massively increasing global incidences of colorectal cancer require efficient treatment and prevention strategies. Here, we report unexpected anticancerogenic effects of hydroethanolic Iberis amara extract (IAE), which is known as a widely used phytomedical product for treating gastrointestinal complaints. IAE significantly inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 6 and 9 μg/ml, respectively, and further generated inhibitory effects in PC-3 prostate and MCF7 breast cancer cells. Inhibition of proliferation in HT-29 cells was associated with a G2/M phase cell cycle arrest including reduced expression of various regulatory marker proteins. Notably, in HT-29 cells IAE further induced apoptosis by intracellular formation of reactive oxygen species (ROS). Consistent with predictions derived from our in vitro experiments, bidaily oral gavage of 50 mg/kg of IAE over 4 weeks resulted in significant inhibition of tumor growth in a mouse HT-29 tumor xenograft model. Taken together, Iberis amara extracts could become useful alternatives for preventing and treating the progression of colon cancer.

  18. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species.

    PubMed

    Oelkrug, Rebecca; Goetze, Nadja; Meyer, Carola W; Jastroch, Martin

    2014-12-01

    Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of "mild uncoupling". Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis.

  19. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance.

    PubMed

    Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan

    2015-05-01

    As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades.

  20. The bright side of reactive oxygen species: lifespan extension without cellular demise

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Oxidative stress and the generation of reactive oxygen species (ROS) can lead to mitochondrial dysfunction, DNA damage, protein misfolding, programmed cell death with apoptosis and autophagy, and the promotion of aging –dependent processes. Mitochondria control the processing of redox energy that yields adenosine triphosphate (ATP) through the oxidation of glucose, pyruvate, and nicotinamide adenine dinucleotide. Ultimately, the generation of ROS occurs with the aerobic production of ATP. Although reduced levels of ROS may lead to tolerance against metabolic, mechanical, and oxidative stressors and the generation of brief periods of ROS during ischemia-reperfusion models may limit cellular injury, under most circumstances ROS and mitochondrial dysfunction can lead to apoptotic caspase activation and autophagy induction that can result in cellular demise. Yet, new work suggests that ROS generation may have a positive impact through respiratory complex I reverse electron transport that can extend lifespan. Such mechanisms may bring new insight into clinically relevant disorders that are linked to cellular senescence and aging of the body’s system. Further investigation of the potential “bright side” of ROS and mitochondrial respiration is necessary to target specific pathways, such as the mechanistic target of rapamycin, nicotinamidases, sirtuins, mRNA decoupling and protein expression, and Wnt signaling, that can impact oxidative stress-ROS mechanisms to extend lifespan and eliminate disease onset. PMID:27200181

  1. Redox cycling and generation of reactive oxygen species in commercial infant formulas.

    PubMed

    Boatright, William L; Crum, Andrea D

    2016-04-01

    Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62 μM, when prepared according to the manufacturer's instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138 nM to 40 nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas. PMID:26593482

  2. Fish oil increases mitochondrial phospholipid unsaturation, upregulating reactive oxygen species and apoptosis in rat colonocytes

    NASA Technical Reports Server (NTRS)

    Hong, Mee Young; Chapkin, Robert S.; Barhoumi, Rola; Burghardt, Robert C.; Turner, Nancy D.; Henderson, Cara E.; Sanders, Lisa M.; Fan, Yang-Yi; Davidson, Laurie A.; Murphy, Mary E.; Spinka, Christine M.; Carroll, Raymond J.; Lupton, Joanne R.

    2002-01-01

    We have shown that a combination of fish oil (high in n-3 fatty acids) with the butyrate-producing fiber pectin, upregulates apoptosis in colon cells exposed to the carcinogen azoxymethane, protecting against colon tumor development. We now hypothesize that n-3 fatty acids prime the colonocytes such that butyrate can initiate apoptosis. To test this, 30 Sprague-Dawley rats were provided with diets differing in the fatty acid composition (corn oil, fish oil or a purified fatty acid ethyl ester diet). Intact colon crypts were exposed ex vivo to butyrate, and analyzed for reactive oxygen species (ROS), mitochondrial membrane potential (MMP), translocation of cytochrome C to the cytosol, and caspase-3 activity (early events in apoptosis). The fatty acid composition of the three major mitochondrial phospholipids was also determined, and an unsaturation index calculated. The unsaturation index in cardiolipin was correlated with ROS levels (R = 0.99; P = 0.02). When colon crypts from fish oil and FAEE-fed rats were exposed to butyrate, MMP decreased (P = 0.041); and translocation of cytochrome C to the cytosol (P = 0.037) and caspase-3 activation increased (P = 0.032). The data suggest that fish oil may prime the colonocytes for butyrate-induced apoptosis by enhancing the unsaturation of mitochondrial phospholipids, especially cardiolipin, resulting in an increase in ROS and initiating apoptotic cascade.

  3. Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species.

    PubMed

    Han, Sang Jun; Jang, Hee-Seong; Kim, Jee In; Lipschutz, Joshua H; Park, Kwon Moo

    2016-02-29

    The length of primary cilia is associated with normal cell and organ function. In the kidney, the change of functional cilia length/mass is associated with various diseases such as ischemia/reperfusion injury, polycystic kidney disease, and congenital solitary kidney. Here, we investigate whether renal mass reduction affects primary cilia length and function. To induce renal mass reduction, mice were subjected to unilateral nephrectomy (UNx). UNx increased kidney weight and superoxide formation in the remaining kidney. Primary cilia were elongated in proximal tubule cells, collecting duct cells and parietal cells of the remaining kidney. Mn(III) Tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, reduced superoxide formation in UNx-mice and prevented the elongation of primary cilia. UNx increased the expression of phosphorylated ERK, p21, and exocyst complex members Sec8 and Sec10, in the remaining kidney, and these increases were prevented by MnTMPyP. In MDCK, a kidney tubular epithelial cell line, cells, low concentrations of H2O2 treatment elongated primary cilia. This H2O2-induced elongation of primary cilia was also prevented by MnTMPyP treatment. Taken together, these data demonstrate that kidney compensation, induced by a reduction of renal mass, results in primary cilia elongation, and this elongation is associated with an increased production of reactive oxygen species (ROS).

  4. Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species

    PubMed Central

    Han, Sang Jun; Jang, Hee-Seong; Kim, Jee In; Lipschutz, Joshua H.; Park, Kwon Moo

    2016-01-01

    The length of primary cilia is associated with normal cell and organ function. In the kidney, the change of functional cilia length/mass is associated with various diseases such as ischemia/reperfusion injury, polycystic kidney disease, and congenital solitary kidney. Here, we investigate whether renal mass reduction affects primary cilia length and function. To induce renal mass reduction, mice were subjected to unilateral nephrectomy (UNx). UNx increased kidney weight and superoxide formation in the remaining kidney. Primary cilia were elongated in proximal tubule cells, collecting duct cells and parietal cells of the remaining kidney. Mn(III) Tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, reduced superoxide formation in UNx-mice and prevented the elongation of primary cilia. UNx increased the expression of phosphorylated ERK, p21, and exocyst complex members Sec8 and Sec10, in the remaining kidney, and these increases were prevented by MnTMPyP. In MDCK, a kidney tubular epithelial cell line, cells, low concentrations of H2O2 treatment elongated primary cilia. This H2O2-induced elongation of primary cilia was also prevented by MnTMPyP treatment. Taken together, these data demonstrate that kidney compensation, induced by a reduction of renal mass, results in primary cilia elongation, and this elongation is associated with an increased production of reactive oxygen species (ROS). PMID:26923764

  5. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  6. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road.

    PubMed

    Sewelam, Nasser; Kazan, Kemal; Schenk, Peer M

    2016-01-01

    Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide. PMID:26941757

  7. Role of reactive oxygen species in the defective regeneration seen in aging muscle.

    PubMed

    Vasilaki, Aphrodite; Jackson, Malcolm J

    2013-12-01

    The ability of muscles to regenerate successfully following damage diminishes with age and this appears to be a major contributor to the development of muscle weakness and physical frailty. Successful muscle regeneration is dependent on appropriate reinnervation of regenerating muscle. Age-related changes in the interactions between nerve and muscle are poorly understood but may play a major role in the defective regeneration. During aging there is defective redox homeostasis and an accumulation of oxidative damage in nerve and muscle that may contribute to defective regeneration. The aim of this review is to summarise the evidence that abnormal reactive oxygen species (ROS) generation in nerve and/or muscle may be responsible for the defective regeneration that contributes to the degeneration of skeletal muscle observed during aging. Identifying the importance of ROS generation in skeletal muscle during aging could have fundamental implications for interventions to prevent muscle degeneration and treatments to reverse the age-related decline in muscle mass and function. PMID:23851030

  8. Selenium-Containing Amphiphiles Reduced and Stabilized Gold Nanoparticles: Kill Cancer Cells via Reactive Oxygen Species.

    PubMed

    Li, Tianyu; Li, Feng; Xiang, Wentian; Yi, Yu; Chen, Yuyan; Cheng, Liang; Liu, Zhuang; Xu, Huaping

    2016-08-31

    Selenium has attracted increasing interest in recent decades because of the function of regulating the redox balance in the human body. However, biomedical studies of selenium are still limited. Gold nanoparticles (AuNPs), typically prepared by a first reduction step followed by a second stabilization step, are widely applied in biomedical studies. However, their own anticancer activity is less studied. Here, we report 2 nm AuNPs with significant anticancer activity (IC50 = 20 μM) that is stabilized by a selenium-containing amphiphile EGSe-tMe. The AuNPs are prepared by simply mixing chloroauric acid (HAuCl4) with EGSe-tMe, which acts as both a reducing agent and a stabilizer. In contrast to AuNPs prepared by EGSe-tMe, EGSe-tMe alone and typically prepared AuNPs show little anticancer activity even at concentrations up to 250 μM. Mechanistic studies suggest that selenium in cooperation with AuNPs can induce high concentrations of reactive oxygen species (ROS) in cancer cells, leading to cellular apoptosis. PMID:27517121

  9. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Allen, Brett L.; Johnson, Jermaine D.; Walker, Jeremy P.

    2012-07-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO2 (100 ppm).

  10. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function

    PubMed Central

    Burger, Dylan; Turner, Maddison; Munkonda, Mercedes N.; Touyz, Rhian M.

    2016-01-01

    Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2∙−) generation, and nitric oxide (NO) production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47phox, p67phox, and p22phox and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2∙− production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation. PMID:27313830

  11. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp.

    PubMed

    Yang, Hui-Ting; Yang, Ming-Chong; Sun, Jie-Jie; Guo, Fang; Lan, Jiang-Feng; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-11-01

    Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level.

  12. Mitochondrial reactive oxygen species: Do they extend or shorten animal lifespan?

    PubMed

    Sanz, Alberto

    2016-08-01

    Testing the predictions of the Mitochondrial Free Radical Theory of Ageing (MFRTA) has provided a deep understanding of the role of reactive oxygen species (ROS) and mitochondria in the aging process. However those data, which support MFRTA are in the majority correlative (e.g. increasing oxidative damage with age). In contrast the majority of direct experimental data contradict MFRTA (e.g. changes in ROS levels do not alter longevity as expected). Unfortunately, in the past, ROS measurements have mainly been performed using isolated mitochondria, a method which is prone to experimental artifacts and does not reflect the complexity of the in vivo process. New technology to study different ROS (e.g. superoxide or hydrogen peroxide) in vivo is now available; these new methods combined with state-of-the-art genetic engineering technology will allow a deeper interrogation of, where, when and how free radicals affect aging and pathological processes. In fact data that combine these new approaches, indicate that boosting mitochondrial ROS in lower animals is a way to extend both healthy and maximum lifespan. In this review, I discuss the latest literature focused on the role of mitochondrial ROS in aging, and how these new discoveries are helping to better understand the role of mitochondria in health and disease. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26997500

  13. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship?

    PubMed

    Van Raamsdonk, Jeremy Michael; Hekimi, Siegfried

    2010-12-15

    The free radical theory of aging proposes a causal relationship between reactive oxygen species (ROS) and aging. While it is clear that oxidative damage increases with age, its role in the aging process is uncertain. Testing the free radical theory of aging requires experimentally manipulating ROS production or detoxification and examining the resulting effects on lifespan. In this review, we examine the relationship between ROS and aging in the genetic model organism Caenorhabditis elegans, summarizing experiments using long-lived mutants, mutants with altered mitochondrial function, mutants with decreased antioxidant defenses, worms treated with antioxidant compounds, and worms exposed to different environmental conditions. While there is frequently a negative correlation between oxidative damage and lifespan, there are many examples in which they are uncoupled. Neither is resistance to oxidative stress sufficient for a long life nor are all long-lived mutants more resistant to oxidative stress. Similarly, sensitivity to oxidative stress does not necessarily shorten lifespan and is in fact compatible with long life. Overall, the data in C. elegans indicate that oxidative damage can be dissociated from aging in experimental situations. PMID:20568954

  14. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  15. Antimalarial action of artesunate involves DNA damage mediated by reactive oxygen species.

    PubMed

    Gopalakrishnan, Anusha M; Kumar, Nirbhay

    2015-01-01

    Artemisinin-based combination therapy (ACT) is the recommended first-line treatment for Plasmodium falciparum malaria. It has been suggested that the cytotoxic effect of artemisinin is mediated by free radicals followed by the alkylation of P. falciparum proteins. The endoperoxide bridge, the active moiety of artemisinin derivatives, is cleaved in the presence of ferrous iron, generating reactive oxygen species (ROS) and other free radicals. However, the emergence of resistance to artemisinin in P. falciparum underscores the need for new insights into the molecular mechanisms of antimalarial activity of artemisinin. Here we show that artesunate (ART) induces DNA double-strand breaks in P. falciparum in a physiologically relevant dose- and time-dependent manner. DNA damage induced by ART was accompanied by an increase in the intracellular ROS level in the parasites. Mannitol, a ROS scavenger, reversed the cytotoxic effect of ART and reduced DNA damage, and modulation of glutathione (GSH) levels was found to impact ROS and DNA damage induced by ART. Accumulation of ROS, increased DNA damage, and the resulting antiparasite effect suggest a causal relationship between ROS, DNA damage, and parasite death. Finally, we also show that ART-induced ROS production involves a potential role for NADPH oxidase, an enzyme involved in the production of superoxide anions. Our results with P. falciparum provide novel insights into previously unknown molecular mechanisms underlying the antimalarial activity of artemisinin derivatives and may help in the design of next-generation antimalarial drugs against the most virulent Plasmodium species.

  16. Bufalin Induces Reactive Oxygen Species Dependent Bax Translocation and Apoptosis in ASTC-a-1 Cells

    PubMed Central

    Sun, Lei; Chen, Tongsheng; Wang, Xiaoping; Chen, Yun; Wei, Xunbin

    2011-01-01

    Bufalin has been shown to induce cancer cell death through apoptotic pathways. However, the molecular mechanisms are not well understood. In this study, we used the confocal fluorescence microscopy (CFM) to monitor the spatio-temporal dynamics of reactive oxygen species (ROS) production, Bax translocation and caspase-3 activation during bufalin-induced apoptosis in living human lung adenocarcinoma (ASTC-a-1) cells. Bufalin induced ROS production and apoptotic cell death, demonstrated by Hoechst 33258 staining as well as flow cytometry analysis. Bax redistributed from cytosol to mitochondria from 12 to 48 h after bufalin treatment in living cells expressed with green fluorescent protein Bax. Treatment with the antioxidant N-acetyl-cysteine (NAC), a ROS scavenger, inhibited ROS generation and Bax translocation and led to a significant protection against bufalin-induced apoptosis. Our results also revealed that bufalin induced a prominent increase of caspase-3 activation blocked potently by NAC. Taken together, bufalin induced ROS-mediated Bax translocation, mitochondrial permeability transition and caspase-3 activation, implying that bufalin induced apoptosis via ROS-dependent mitochondrial death pathway in ASTC-a-1 cells. PMID:19592481

  17. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  18. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.

    PubMed

    Kulik, Anna; Noirot, Elodie; Grandperret, Vincent; Bourque, Stéphane; Fromentin, Jérôme; Salloignon, Pauline; Truntzer, Caroline; Dobrowolska, Grażyna; Simon-Plas, Françoise; Wendehenne, David

    2015-02-01

    Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways. PMID:24506708

  19. Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications.

    PubMed

    Radomska-Leśniewska, Dorota M; Hevelke, Agata; Skopiński, Piotr; Bałan, Barbara; Jóźwiak, Jarosław; Rokicki, Dariusz; Skopińska-Różewska, Ewa; Białoszewska, Agata

    2016-04-01

    Angiogenesis is important for normal functioning of organism and its disturbances are observed in many diseases, called angiogenesis-related states. Reactive oxygen species (ROSs) play an important role in physiology, but high level of cellular ROSs is cytotoxic and mutagenic for the cells, i.e. it can lead to oxidative stress. In this review we discuss close relationship between ROSs and angiogenesis process. Substances counteracting free radicals or their action and oxidative stress are known as antioxidants. We postulate that antioxidants, by affecting angiogenesis, may modulate therapy results in the case of angiogenesis-related disease. Herein, we present some antioxidant preparations of synthetic (N-acetylcysteine, curcumin and its analogs, Probucol, oleane tripertenoid, EGCG synthetic analogs) and nature-identical (vitamin E and C) origin. Then, we analyze their angiogenic properties and their multidirectional molecular effect on angiogenesis. Most preparations reduce neovascularization and diminish the level of proangiogenic molecules, downregulating signaling pathways related to angiogenesis. Moreover, we discuss studies concerning anticancer properties of presented synthetic antioxidants and their application in several angiogenesis-related diseases. We conclude that therapy in angiogenesis-related diseases should be planned with consideration of the angiogenic status of the patient. PMID:26922554

  20. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning

    PubMed Central

    Kalogeris, Theodore; Bao, Yimin; Korthuis, Ronald J.

    2014-01-01

    Reductions in the blood supply produce considerable injury if the duration of ischemia is prolonged. Paradoxically, restoration of perfusion to ischemic organs can exacerbate tissue damage and extend the size of an evolving infarct. Being highly metabolic organs, the heart and brain are particularly vulnerable to the deleterious effects of ischemia/reperfusion (I/R). While the pathogenetic mechanisms contributing to I/R-induced tissue injury and infarction are multifactorial, the relative importance of each contributing factor remains unclear. However, an emerging body of evidence indicates that the generation of reactive oxygen species (ROS) by mitochondria plays a critical role in damaging cellular components and initiating cell death. In this review, we summarize our current understanding of the mechanisms whereby mitochondrial ROS generation occurs in I/R and contributes to myocardial infarction and stroke. In addition, mitochondrial ROS have been shown to participate in preconditioning by several pharmacologic agents that target potassium channels (e.g., ATP-sensitive potassium (mKATP) channels or large conductance, calcium-activated potassium (mBKCa) channels) to activate cell survival programs that render tissues and organs more resistant to the deleterious effects of I/R. Finally, we review novel therapeutic approaches that selectively target mROS production to reduce postischemic tissue injury, which may prove efficacious in limiting myocardial dysfunction and infarction and abrogating neurocognitive deficits and neuronal cell death in stroke. PMID:24944913

  1. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation.

    PubMed

    Aizawa, Ken; Takahari, Youko; Higashijima, Naoko; Serizawa, Kenichi; Yogo, Kenji; Ishizuka, Nobuhiko; Endo, Koichi; Fukuyama, Naoto; Hirano, Katsuya; Ishida, Hideyuki

    2015-03-01

    Sirolimus (SRL) is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS) play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC), an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs), SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22(phox) mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  2. Myomir dysregulation and reactive oxygen species in aged human satellite cells.

    PubMed

    Di Filippo, Ester Sara; Mancinelli, Rosa; Pietrangelo, Tiziana; La Rovere, Rita Maria Laura; Quattrocelli, Mattia; Sampaolesi, Maurilio; Fulle, Stefania

    2016-04-29

    Satellite cells that reside on the myofibre surface are crucial for the muscle homeostasis and regeneration. Aging goes along with a less effective regeneration of skeletal muscle tissue mainly due to the decreased myogenic capability of satellite cells. This phenomenon impedes proper maintenance and contributes to the age-associated decline in muscle mass, known as sarcopenia. The myogenic potential impairment does not depend on a reduced myogenic cell number, but mainly on their difficulty to complete a differentiation program. The unbalanced production of reactive oxygen species in elderly people could be responsible for skeletal muscle impairments. microRNAs are conserved post-transcriptional regulators implicated in numerous biological processes including adult myogenesis. Here, we measure the ROS level and analyze myomiR (miR-1, miR-133b and miR-206) expression in human myogenic precursors obtained from Vastus lateralis of elderly and young subjects to provide the molecular signature responsible for the differentiation impairment of elderly activated satellite cells.

  3. Effects of various physical stress factors on mitochondrial function and reactive oxygen species in rat spermatozoa

    PubMed Central

    Kim, Suhee; Agca, Cansu; Agca, Yuksel

    2013-01-01

    The aim of the present study was to evaluate the effects of various physical interventions on the function of epididymal rat spermatozoa and determine whether there are correlations among these functional parameters. Epididymal rat spermatozoa were subjected to various mechanical (pipetting, centrifugation and Percoll gradient separation) and anisotonic conditions, and sperm motility, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) were evaluated. Repeated pipetting caused a loss in motility, PMI and MMP (P < 0.05). Minimal centrifugation force (200g) had no effect on motility, PMI and MMP, whereas an increase in the centrifugation force to 400g or 600g decreased sperm function (P < 0.005). Percoll gradient separation increased total motility, PMI and MMP (P < 0.05). However, the spermatozoa that were subjected to mechanical interventions showed high susceptibility to a ROS stimulant (P < 0.005). Anisotonic conditions decreased motility, PMI and MMP, and hypotonic conditions in particular increased basal ROS (P < 0.05). In correlation tests, there were strong positive correlations among total motility, PMI and MMP, whereas ROS showed no or negatively weak correlations with the other parameters. In conclusion, the physical interventions may act as important variables, affecting functional parameters of epididymal rat spermatozoa. Therefore, careful consideration and proper protocols for handling of rat spermatozoa and osmotic conditions are required to achieve reliable results and minimise damage. PMID:23140582

  4. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment.

    PubMed

    Chen, Xinfeng; Song, Mengjia; Zhang, Bin; Zhang, Yi

    2016-01-01

    Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity. PMID:27547291

  5. Redox cycling and generation of reactive oxygen species in commercial infant formulas.

    PubMed

    Boatright, William L; Crum, Andrea D

    2016-04-01

    Three nationally prominent commercial powdered infant formulas generated hydrogen peroxide, ranging from 10.46 to 11.62 μM, when prepared according to the manufacturer's instructions. Treating infant formulas with the chelating agent diethylene triamine pentaacetic acid (DTPA) significantly reduced H2O2 generation. In contrast, the addition of disodium ethylenediaminetetraacetic acid (EDTA) elevated the level of H2O2 generated in the same infant formulas by approximately 3- to 4-fold above the untreated infant formulas. The infant formulas contained ascorbate radicals ranging from about 138 nM to 40 nM. Treatment with catalase reduced the ascorbate radical contents by as much as 67%. Treatment with DTPA further reduced ascorbate radical signals to below quantifiable levels in most samples, further implicating the involvement of transition metal redox cycling in reactive oxygen species (ROS) formation. Supportive evidence of the generation of ROS is provided using luminol-enhanced luminescence (LEL) in both model mixtures of ascorbic acid and in commercial infant formulas.

  6. Reactive oxygen species regulate lovastatin biosynthesis in Aspergillus terreus during submerged and solid-state fermentations.

    PubMed

    Miranda, Roxana U; Gómez-Quiroz, Luis E; Mendoza, Mariel; Pérez-Sánchez, Ailed; Fierro, Francisco; Barrios-González, Javier

    2014-12-01

    In a previous work we detected an important increase in reactive oxygen species (ROS) concentrations during idiophase in lovastatin fermentations. Hence, the objective of the present work was to determine if ROS contributes to the regulation of lovastatin biosynthesis. Exogenous antioxidants were used to reduce ROS accumulation. The addition of N-Acetyl-L-cysteine (NAC) decreased ROS accumulation and concurrent lovastatin production. In solid-state fermentation (SSF), the addition of 100 mM of NAC lowered ROS accumulation by 53%, together with a 79% decrease in lovastatin biosynthesis. A similarly, situation was observed in submerged fermentation (SmF). Decreased lovastatin production was due to a lower expression of the regulatory gene lovE, and gene lovF. Moreover, the addition of H2O2 to the culture caused precocious gene expression and lovastatin biosynthesis. These results indicate that ROS accumulation in idiophase contributes to the regulation of the biosynthetic genes. It was considered that Yap1 (Atyap1) could be a transcription factor linking ROS with lovastatin biosynthesis. In a Northern analysis, Aspergillus terreus yap1 gene (Atyap1) was highly expressed during trophophase but down regulated during idiophase. Conversely, expression pattern of srrA gene, suggested that SrrA could positively control lovastatin biosynthesis, and also explaining the characteristics of the biosynthesis in SSF.

  7. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials.

    PubMed

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots--along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20-80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations ofpolycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  8. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  9. The role of reactive oxygen species in the electrochemical inactivation of microorganisms.

    PubMed

    Jeong, Joonseon; Kim, Jee Yeon; Yoon, Jeyong

    2006-10-01

    Electrochemical disinfection has emerged as one of the most promising alternatives to the conventional disinfection of water in many applications. Although the mechanism of electrochemical disinfection has been largely attributed to the action of electro-generated active chlorine, the role of other oxidants, such as the reactive oxygen species (ROS) *OH, O3, H2O2, and *O2- remains unclear. In this study, we examined the role of ROS in the electrochemical disinfection using a boron-doped diamond (BDD) electrode in a chloride-free phosphate buffer medium, in order to avoid any confusion caused by the generation of chlorine. To determine which species of ROS plays the major role in the inactivation, the effects of several operating factors, such as the presence of *OH scavenger, pH, temperature, and the initial population of microorganisms, were systematically investigated. This study clearly showed that the *OH is the major lethal species responsible for the E. coli inactivation in the chloride-free electrochemical disinfection process, and that the E. coli inactivation was highly promoted at a lower temperature, which was ascribed to the enhanced generation of O3.

  10. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling

    PubMed Central

    Corcionivoschi, Nicolae; Alvarez, Luis A.; Sharp, Thomas H.; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G.; Bourke, Billy

    2013-01-01

    Summary Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer membrane / periplasmic proteins including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  11. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B.

    PubMed

    Frädrich, Claudia; Beer, Lara-Antonia; Gerhard, Ralf

    2016-01-18

    Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms.

  12. Alliin Attenuated RANKL-Induced Osteoclastogenesis by Scavenging Reactive Oxygen Species through Inhibiting Nox1

    PubMed Central

    Chen, Yueqi; Sun, Jingjing; Dou, Ce; Li, Nan; Kang, Fei; Wang, Yuan; Cao, Zhen; Yang, Xiaochao; Dong, Shiwu

    2016-01-01

    The healthy skeleton requires a perfect coordination of the formation and degradation of bone. Metabolic bone disease like osteoporosis is resulted from the imbalance of bone formation and/or bone resorption. Osteoporosis also reflects lower level of bone matrix, which is contributed by up-regulated osteoclast-mediated bone resorption. It is reported that monocytes/macrophage progenitor cells or either hematopoietic stem cells (HSCs) gave rise to multinucleated osteoclasts. Thus, inhibition of osteoclastic bone resorption generally seems to be a predominant therapy for treating osteoporosis. Recently, more and more natural compounds have been discovered, which have the ability of inhibiting osteoclast differentiation and fusion. Alliin (S-allyl-l-cysteine sulfoxides, SACSO) is the major component of aged garlic extract (AGE), bearing broad-spectrum natural antioxidant properties. However, its effects on bone health have not yet been explored. Hence, we designed the current study to explore its effects and role in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast fusion and differentiation. It was revealed that alliin had an inhibitory effect in osteoclasteogenesis with a dose-dependent manner via blocking the c-Fos-NFATc1 signaling pathway. In addition, alliin decreased the generation of reactive oxygen species (ROS) and down-regulated the expression of NADPH oxidase 1 (Nox1). The overall results revealed that alliin could be a potential therapeutic agent in the treatment of osteoporosis. PMID:27657047

  13. Lanthanum regulates the reactive oxygen species in the roots of rice seedlings

    PubMed Central

    Liu, Dongwu; Zheng, Shengnan; Wang, Xue

    2016-01-01

    In this study, the effects of La3+ on the reactive oxygen species (ROS) and antioxidant metabolism were studied in the roots of rice (Oryza sativa L. cv Shengdao 16) exposed to increasing concentrations of La3+ (0.05, 0.1, 0.5, 1.0, and 1.5 mM). The level of hydrogen peroxide, superoxide anion, and malondialdehyde was increased by 0.5, 1.0 and 1.5 mM La3+, and the activity of catalase and peroxidase was increased by 0.05 and 0.1 mM La3+. However, La3+ treatments stimulated superoxide dismutase activity in the roots of rice seedlings at all tested concentrations. In addition, the probe 2′,7′-dichlorofluorescein diacetate (H2DCF-DA) was used to investigate the instantaneous change of ROS in the root cells with the laser-scanning confocal microscopy. The result indicated that ROS level was declined after treated with 0.05 mM La3+. The results showed that the appropriate concentration of La3+ decreased the level of ROS, and hormetic effects on the antioxidant metabolism were found in the roots of rice exposed to 0.05, 0.1, 0.5, 1.0, and 1.5 mM La3+. PMID:27546334

  14. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  15. Preliminary study on overproduction of reactive oxygen species by neutrophils in diabetes mellitus

    PubMed Central

    Ridzuan, Noridzzaida; John, Cini Mathew; Sandrasaigaran, Pratheep; Maqbool, Maryam; Liew, Lee Chuen; Lim, Jonathan; Ramasamy, Rajesh

    2016-01-01

    AIM: To assess the amount and pattern of reactive oxygen species (ROS) production in diabetic patient-derived neutrophils. METHODS: Blood samples from type 2 diabetes mellitus (DM) patients and volunteers (controls) were subjected to neutrophil isolation and the assessment of neutrophil oxidative burst using chemiluminescence assay. Neutrophils were activated by using phorbol myristate acetate (PMA) and neutrophils without activation were kept as a negative control. The chemiluminescence readings were obtained by transferring cell suspension into a 1.5 mL Eppendorf tube, with PMA and luminol. Reaction mixtures were gently vortexed and placed inside luminometer for a duration of 5 min. RESULTS: Our results showed that in the resting condition, the secretion of ROS in normal non-diabetic individuals was relatively low compared to diabetic patients. However, the time scale observation revealed that the secreted ROS declined accordingly with time in non-diabetic individuals, yet such a reduction was not detected in diabetic patients where at all the time points, the secretion of ROS was maintained at similar magnitudes. This preliminary study demonstrated that ROS production was significantly higher in patients with DM compared to non-diabetic subjects in both resting and activated conditions. CONCLUSION: The respiratory burst activity of neutrophils could be affected by DM and the elevation of ROS production might be an aggravating factor in diabetic-related complications. PMID:27433296

  16. Reactive Oxygen Species, Endoplasmic Reticulum Stress and Mitochondrial Dysfunction: The Link with Cardiac Arrhythmogenesis

    PubMed Central

    Tse, Gary; Yan, Bryan P.; Chan, Yin W. F.; Tian, Xiao Yu; Huang, Yu

    2016-01-01

    Background: Cardiac arrhythmias represent a significant problem globally, leading to cerebrovascular accidents, myocardial infarction, and sudden cardiac death. There is increasing evidence to suggest that increased oxidative stress from reactive oxygen species (ROS), which is elevated in conditions such as diabetes and hypertension, can lead to arrhythmogenesis. Method: A literature review was undertaken to screen for articles that investigated the effects of ROS on cardiac ion channel function, remodeling and arrhythmogenesis. Results: Prolonged endoplasmic reticulum stress is observed in heart failure, leading to increased production of ROS. Mitochondrial ROS, which is elevated in diabetes and hypertension, can stimulate its own production in a positive feedback loop, termed ROS-induced ROS release. Together with activation of mitochondrial inner membrane anion channels, it leads to mitochondrial depolarization. Abnormal function of these organelles can then activate downstream signaling pathways, ultimately culminating in altered function or expression of cardiac ion channels responsible for generating the cardiac action potential (AP). Vascular and cardiac endothelial cells become dysfunctional, leading to altered paracrine signaling to influence the electrophysiology of adjacent cardiomyocytes. All of these changes can in turn produce abnormalities in AP repolarization or conduction, thereby increasing likelihood of triggered activity and reentry. Conclusion: ROS plays a significant role in producing arrhythmic substrate. Therapeutic strategies targeting upstream events include production of a strong reducing environment or the use of pharmacological agents that target organelle-specific proteins and ion channels. These may relieve oxidative stress and in turn prevent arrhythmic complications in patients with diabetes, hypertension, and heart failure. PMID:27536244

  17. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  18. Reactive oxygen species stimulate mitochondrial allele segregation toward homoplasmy in human cells.

    PubMed

    Ling, Feng; Niu, Rong; Hatakeyama, Hideyuki; Goto, Yu-Ichi; Shibata, Takehiko; Yoshida, Minoru

    2016-05-15

    Mitochondria that contain a mixture of mutant and wild-type mitochondrial (mt) DNA copies are heteroplasmic. In humans, homoplasmy is restored during early oogenesis and reprogramming of somatic cells, but the mechanism of mt-allele segregation remains unknown. In budding yeast, homoplasmy is restored by head-to-tail concatemer formation in mother cells by reactive oxygen species (ROS)-induced rolling-circle replication and selective transmission of concatemers to daughter cells, but this mechanism is not obvious in higher eukaryotes. Here, using heteroplasmic m.3243A > G primary fibroblast cells derived from MELAS patients treated with hydrogen peroxide (H2O2), we show that an optimal ROS level promotes mt-allele segregation toward wild-type and mutant mtDNA homoplasmy. Enhanced ROS level reduced the amount of intact mtDNA replication templates but increased linear tandem multimers linked by head-to-tail unit-sized mtDNA (mtDNA concatemers). ROS-triggered mt-allele segregation correlated with mtDNA-concatemer production and enabled transmission of multiple identical mt-genome copies as a single unit. Our results support a mechanism by which mt-allele segregation toward mt-homoplasmy is mediated by concatemers. PMID:27009201

  19. Reactive Oxygen Species Regulate Innate But Not Adaptive Inflammation in ZAP70-Mutated SKG Arthritic Mice.

    PubMed

    Guerard, Simon; Holmdahl, Rikard; Wing, Kajsa

    2016-09-01

    Polysaccharides from Saccharomyces cerevisiae can induce arthritis, ileitis, and interstitial pneumonitis in BALB/c ZAP70 (W163C)-mutant (SKG) mice via T helper 17-cell-dependent pathways. However, little is known regarding the factors influencing disease severity. We investigated mannan-induced arthritis in SKG mice and how NADPH oxidase 2-derived reactive oxygen species (ROS) regulate disease. SKG mice were highly susceptible to both IL-17-mediated T-cell-driven arthritis and T-cell-independent acute psoriasis-like dermatitis. In vivo imaging revealed more ROS in joints of arthritic SKG mice compared to wild-type mice, which links ROS and joint inflammation. Still, ROS deficiency in SKG.Ncf1(m1j/m1j) mice greatly increased severity of arthritis and dermatitis, a difference that could not be attributed to increased T-cell activation, thymic selection, or antibody production. However, when ROS production was restored in CD68(+) macrophages, inflammation reverted to baseline, demonstrating a regulatory role of macrophage-derived ROS in autoimmunity. Thus, arthritis in SKG mice is a useful model to study the role of ROS in innate-driven chronic inflammation independently of adaptive immunity. PMID:27427418

  20. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  1. Oxidized low density lipoprotein increases acetylcholinesterase activity correlating with reactive oxygen species production.

    PubMed

    Yamchuen, Panit; Aimjongjun, Sathid; Limpeanchob, Nanteetip

    2014-12-01

    Hyperlipidemia, low density lipoproteins (LDL) and their oxidized forms, and oxidative stress are suspected to be a key combination in the onset of AD and acetylcholinesterase (AChE) plays a part in this pathology. The present study aimed to link these parameters using differentiated SH-SY5Y human neuroblastoma cells in culture. Both mildly and fully oxidized human LDL (mox- and fox-LDL), but not native (non-oxidized) LDL were cytotoxic in dose- and time-dependent patterns and this was accompanied by an increased production of intracellular reactive oxygen species (ROS). Oxidized LDL (10-200 μg/mL) augmented AChE activity after 4 and 24h treatments, respectively while the native LDL was without effect. The increased AChE with oxidized LDLs was accompanied by a proportionate increase in intracellular ROS formation (R=0.904). These findings support the notion that oxidized LDLs are cytotoxic and that their action on AChE may reduce central cholinergic transmission in AD and affirm AChE as a continued rational for anticholinesterase therapy but in conjunction with antioxidant/antihyperlipidemic cotreatments.

  2. Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects.

    PubMed

    He, Di; Dorantes-Aranda, Juan José; Waite, T David

    2012-08-21

    The short-term toxicity of citrate-stabilized silver nanoparticles (AgNPs) and ionic silver Ag(I) to the ichthyotoxic marine raphidophyte Chattonella marina has been examined using the fluorometric indicator alamarBlue. Aggregation and dissolution of AgNPs occurred after addition to GSe medium while uptake of dissolved Ag(I) occurred in the presence of C. marina. Based on total silver mass, toxicity was much higher for Ag(I) than for AgNPs. Cysteine, a strong Ag(I) ligand, completely removed the inhibitory effects of Ag(I) and AgNPs on the metabolic activity of C. marina, suggesting that the toxicity of AgNPs was due to the release of Ag(I). Synergistic toxic effects of AgNPs/Ag(I) and C. marina to fish gill cells were observed with these effects possibly attributable to enhancement in the generation of reactive oxygen species by C. marina on exposure of the organism to silver.

  3. Reactive oxygen species production in mitochondria of human gingival fibroblast induced by blue light irradiation.

    PubMed

    Yoshida, Ayaka; Yoshino, Fumihiko; Makita, Tetsuya; Maehata, Yojiro; Higashi, Kazuyoshi; Miyamoto, Chihiro; Wada-Takahashi, Satoko; Takahashi, Shun-suke; Takahashi, Osamu; Lee, Masaichi Chang-il

    2013-12-01

    In recent years, it has become well known that the production of reactive oxygen species (ROS) induced by blue-light irradiation causes adverse effects of photo-aging, such as age-related macular degeneration of the retina. Thus, orange-tinted glasses are used to protect the retina during dental treatment involving blue-light irradiation (e.g., dental resin restorations or tooth bleaching treatments). However, there are few studies examining the effects of blue-light irradiation on oral tissue. For the first time, we report that blue-light irradiation by quartz tungsten halogen lamp (QTH) or light-emitting diode (LED) decreased cell proliferation activity of human gingival fibroblasts (HGFs) in a time-dependent manner (<5 min). Additionally, in a morphological study, the cytotoxic effect was observed in the cell organelles, especially the mitochondria. Furthermore, ROS generation induced by the blue-light irradiation was detected in mitochondria of HGFs using fluorimetry. In all analyses, the cytotoxicity was significantly higher after LED irradiation compared with cytotoxicity after QTH irradiation. These results suggest that blue light irradiation, especially by LED light sources used in dental aesthetic treatment, might have adverse effects on human gingival tissue. Hence, this necessitates the development of new dental aesthetic treatment methods and/or techniques to protect HGFs from blue light irradiation during dental therapy.

  4. Controlled intracellular generation of reactive oxygen species in human mesenchymal stem cells using porphyrin conjugated nanoparticles.

    PubMed

    Lavado, Andrea S; Chauhan, Veeren M; Zen, Amer Alhaj; Giuntini, Francesca; Jones, D Rhodri E; Boyle, Ross W; Beeby, Andrew; Chan, Weng C; Aylott, Jonathan W

    2015-09-14

    Nanoparticles capable of generating controlled amounts of intracellular reactive oxygen species (ROS), that advance the study of oxidative stress and cellular communication, were synthesized by functionalizing polyacrylamide nanoparticles with zinc(II) porphyrin photosensitisers. Controlled ROS production was demonstrated in human mesenchymal stem cells (hMSCs) through (1) production of nanoparticles functionalized with varying percentages of Zn(II) porphyrin and (2) modulating the number of doses of excitation light to internalized nanoparticles. hMSCs challenged with nanoparticles functionalized with increasing percentages of Zn(II) porphyrin and high numbers of irradiations of excitation light were found to generate greater amounts of ROS. A novel dye, which is transformed into fluorescent 7-hydroxy-4-trifluoromethyl-coumarin in the presence of hydrogen peroxide, provided an indirect indicator for cumulative ROS production. The mitochondrial membrane potential was monitored to investigate the destructive effect of increased intracellular ROS production. Flow cytometric analysis of nanoparticle treated hMSCs suggested irradiation with excitation light signalled controlled apoptotic cell death, rather than uncontrolled necrotic cell death. Increased intracellular ROS production did not induce phenotypic changes in hMSC subcultures.

  5. Reactive Oxygen Species in the Signaling and Adaptation of Multicellular Microbial Communities

    PubMed Central

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2012-01-01

    One of the universal traits of microorganisms is their ability to form multicellular structures, the cells of which differentiate and communicate via various signaling molecules. Reactive oxygen species (ROS), and hydrogen peroxide in particular, have recently become well-established signaling molecules in higher eukaryotes, but still little is known about the regulatory functions of ROS in microbial structures. Here we summarize current knowledge on the possible roles of ROS during the development of colonies and biofilms, representatives of microbial multicellularity. In Saccharomyces cerevisiae colonies, ROS are predicted to participate in regulatory events involved in the induction of ammonia signaling and later on in programmed cell death in the colony center. While the latter process seems to be induced by the total ROS, the former event is likely to be regulated by ROS-homeostasis, possibly H2O2-homeostasis between the cytosol and mitochondria. In Candida albicans biofilms, the predicted signaling role of ROS is linked with quorum sensing molecule farnesol that significantly affects biofilm formation. In bacterial biofilms, ROS induce genetic variability, promote cell death in specific biofilm regions, and possibly regulate biofilm development. Thus, the number of examples suggesting ROS as signaling molecules and effectors in the development of microbial multicellularity is rapidly increasing. PMID:22829965

  6. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2•−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2•− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2•− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2•− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2•− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  7. Roles of reactive oxygen species and mitochondria in cadmium-induced injury of liver cells.

    PubMed

    Liu, Tao; He, Wenting; Yan, Chuan; Qi, Yongmei; Zhang, Yingmei

    2011-04-01

    The roles of reactive oxygen species (ROS) and mitochondrial damage in the cadmium (Cd)-induced injury of liver cells were studied by using N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine hydrochloride (ALCAR). After exposure of experimental rats to cadmium (Cd) for 16 h, mitochondrial membrane potential (MMP), ROS production, glutathione peroxidase (GSH-Px) activity, glutathione (GSH) content, malondialdehyde (MDA) content and DNA single-strand break (DNA-SSB) were analyzed. Loss of MMP, increase of ROS production, inhibition of GSH-Px activity, elevation of GSH content, rise of MDA content and DNA-SSB level suggest the participation of ROS and mitochondrion in Cd-induced injury of liver cell. NAC pretreatment attenuated oxidative stress, reversed the decline in GSH-Px activity and reduced GSH and MDA levels significantly. However, Cd-induced loss in MMP was significantly exacerbated by NAC. For another, ALCAR did not perform as well as NAC in terms of reducing ROS production, restoring GSH-Px activity and reducing GSH content. Nevertheless, it significantly improved the recovery of MMP and reduction of MDA content. In addition, conspicuous DNA damage was observed in the samples treated with NAC or ALCAR, indicating Cd could attack DNA through other pathways. These results suggest that oxidative stress or mitochondrial impairment plays a main role in different injuries respectively.

  8. Membrane-bound globin X protects the cell from reactive oxygen species.

    PubMed

    Koch, Jonas; Burmester, Thorsten

    2016-01-01

    Globin X (GbX) is a member of the globin family that emerged early in the evolution of Metazoa. In vertebrates, GbX is restricted to lampreys, fish, amphibians and some reptiles, and is expressed in neurons. Unlike any other metazoan globin, GbX is N-terminally acylated and anchored in the cell membrane via myristoyl and palmitoyl groups, suggesting a unique function. Here, we compared the capacity of GbX to protect a mouse neuronal cell line from hypoxia and reactive oxygen species (ROS) with that of myoglobin. To evaluate the contribution of membrane-binding, we generated a mutated version of GbX without acyl groups. All three globins enhanced cell viability under hypoxia, with myoglobin having the most pronounced effect. GbX but not myoglobin protected the cells from hydrogen peroxide (H2O2)-induced stress. Membrane-bound GbX was significantly more efficient than its mutated, soluble form. Furthermore, myoglobin and mutated GbX increased production of ROS upon H2O2-treatment, while membrane-bound GbX did not. The results indicate that myoglobin enhances O2 supply while GbX protects the cell membrane from ROS-stress. The ancient origin of GbX suggests that ROS-protection reflects the function of the early globins before they acquired a respiratory role.

  9. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges.

    PubMed

    Zhang, X; Gao, F

    2015-04-01

    Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.

  10. Negative Regulation of Autophagy by Sulfide Is Independent of Reactive Oxygen Species.

    PubMed

    Laureano-Marín, Ana M; Moreno, Inmaculada; Romero, Luis C; Gotor, Cecilia

    2016-06-01

    Accumulating experimental evidence in mammalian, and recently plant, systems has led to a change in our understanding of the role played by hydrogen sulfide in life processes. In plants, hydrogen sulfide mitigates stress and regulates important plant processes such as photosynthesis, stomatal movement, and autophagy, although the underlying mechanism is not well known. In this study, we provide new experimental evidence that, together with our previous findings, demonstrates the role of hydrogen sulfide in regulating autophagy. We used green fluorescent protein fluorescence associated with autophagic bodies and immunoblot analysis of the ATG8 protein to show that sulfide (and no other molecules such as sulfur-containing molecules or ammonium) was able to inhibit the autophagy induced in Arabidopsis (Arabidopsis thaliana) roots under nitrogen deprivation. Our results showed that sulfide was unable to scavenge reactive oxygen species generated by nitrogen limitation, in contrast to well-established reducers. In addition, reducers were unable to inhibit the accumulation of autophagic bodies and ATG8 protein forms to the same extent as sulfide. Therefore, we conclude that sulfide represses autophagy via a mechanism that is independent of redox conditions.

  11. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress.

    PubMed

    Hossain, M Sazzad; Dietz, Karl-Josef

    2016-01-01

    Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g., the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS) generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH), alternative oxidase (AOX), the plastid terminal oxidase (PTOX) and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants. PMID:27242807

  12. C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice

    PubMed Central

    Li, Yan-Jiao; Han, Zhe; Ge, Lei; Zhou, Cheng-Jie; Zhao, Yue-Fang; Wang, Dong-Hui; Ren, Jing; Niu, Xin-Xin; Liang, Cheng-Guang

    2016-01-01

    Women over 35 have higher rates of infertility, largely due to deterioration of oocyte quality characterized by fragmentation, abnormal meiotic spindle-chromosome complexes, and oxidative stress. C-phycocyanin (PC) is a biliprotein enriched in Spirulina platensis that is known to possess antioxidant, anti-inflammatory, and radical-scavenging properties. D-galactose-induced aging acceleration in mice has been extensively used to study aging mechanisms and for pharmaceutical screening. In this study, adult female B6D2F/1 mice injected with D-galactose were used as a model to test the age-reversing effects of PC on degenerated reproductive ability. Our results show that PC can prevent oocyte fragmentation and aneuploidy by maintaining cytoskeletal integrity. Moreover, PC can reverse the expression of antioxidant genes, increase superoxide dismutase (SOD) activity and decrease methane dicarboxylic aldehyde (MDA) content, and normalize mitochondria distribution. PC exerts its benefit by inhibiting reactive oxygen species (ROS) production, which decreases apoptosis. Finally, we observe a significant increase in litter size after PC administration to D-galactose-induced aging mice. Our study demonstrates for the first time that D-galactose-induced impaired female reproductive capability can be partially rescued by the antioxidant effects of PC. PMID:27008700

  13. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease.

    PubMed

    Coughlan, Melinda T; Sharma, Kumar

    2016-08-01

    The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens. PMID:27217197

  14. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis

    PubMed Central

    Lebedeva, Maria A.; Eaton, Jana S.; Shadel, Gerald S.

    2009-01-01

    In addition to its central role in cellular stress signaling, the tumor suppressor p53 modulates mitochondrial respiration through its nuclear transcription factor activity and localizes to mitochondria where it enhances apoptosis and suppresses mitochondrial DNA (mtDNA) mutagenesis. Here we demonstrate a new conserved role for p53 in mtDNA copy number maintenance and mitochondrial reactive oxygen species (ROS) homeostasis. In mammals, mtDNA is present in thousands of copies per cell and is essential for normal development and cell function. We show that p53 null mouse and p53 knock-down human primary fibroblasts exhibit mtDNA depletion and decreased mitochondrial mass under normal culture growth conditions. This is accompanied by a reduction of the p53R2 subunit of ribonucleotide reductase mRNA and protein and of mitochondrial transcription factor A (mtTFA) at the protein level only. Finally, p53-depleted cells exhibit significant disruption of cellular ROS homeostasis, characterized by reduced mitochondrial and cellular superoxide levels and increased cellular hydrogen peroxide. Altogether, these results elucidate additional mitochondria-related functions for p53 and implicate mtDNA depletion and ROS alterations as potentially relevant to cellular transformation, cancer cell phenotypes, and the Warburg Effect. PMID:19413947

  15. MITOCHONDRIA-DERIVED REACTIVE OXYGEN SPECIES MEDIATE CASPASE- DEPENDENT AND-INDEPENDENT NEURONAL DEATH

    PubMed Central

    McManus, Meagan J.; Murphy, Michael P.

    2014-01-01

    Mitochondrial dysfunction and oxidative stress are implicated in many neurodegenerative diseases. Mitochondria-targeted drugs that effectively decrease oxidative stress, protect mitochondrial energetics, and prevent neuronal loss may therefore lend therapeutic benefit to these currently incurable diseases. To investigate the efficacy of such drugs, we examined the effects of mitochondria-targeted antioxidants MitoQ10 and MitoE2 on neuronal death induced by neurotrophin deficiency. Our results indicate that MitoQ10 blocked apoptosis by preventing increased mitochondria-derived reactive oxygen species (ROS) and subsequent cytochrome c release, caspase activation, and mitochondrial damage in nerve growth factor (NGF)-deprived sympathetic neurons, while MitoE2 was largely ineffective. In this paradigm, the most proximal point of divergence was the ability of MitoQ10 to scavenge mitochondrial superoxide (O2•−). MitoQ10 also prevented caspase-independent neuronal death in these cells demonstrating that the mitochondrial redox state significantly influences both apoptotic and nonapoptotic pathways leading to neuronal death. We suggest that mitochondria-targeted antioxidants may provide tools for delineating the role and significance of mitochondrial ROS in neuronal death and provide a new therapeutic approach for neurodegenerative conditions involving trophic factor deficits and multiple modes