Science.gov

Sample records for abstract rule learning

  1. Individual Differences in Learning and Transfer: Stable Tendencies for Learning Exemplars versus Abstracting Rules

    PubMed Central

    McDaniel, Mark A.; Cahill, Michael J.; Robbins, Mathew; Wiener, Chelsea

    2013-01-01

    We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants either displayed an extrapolation profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by Ospan) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency. PMID:23750912

  2. Neural correlates of abstract rule learning: an event-related potential study.

    PubMed

    Sun, Fang; Hoshi-Shiba, Reiko; Abla, Dilshat; Okanoya, Kazuo

    2012-09-01

    Abstract rule learning is a fundamental aspect of human cognition, and is essential for language acquisition. However, despite its importance, the neural mechanisms underlying abstract rule learning are still largely unclear. In this study, we investigated the neural correlates of abstract rule learning by recording auditory event-related potentials (ERPs). Participants were first presented with artificial three-syllable sequences containing ABA or ABB abstract rules for learning. They were then tested on sequences of novel syllables following the ABA or ABB abstract rules, half of which were inconsistent with the rule previously learned. Grand-averaged ERPs revealed significant decreases in positivity at 200-260ms in response to consistent sequences during the earlier session of the test phase, and increased negativity at around 400ms in response to inconsistent sequences in the later session. The potentials exhibited a left anterior-dominant distribution. The appearance of the N400-like negativity in the later session suggests that temporal ERP changes occurred with the abstract rule learning process, and that the N400-like negativity is associated with the acquisition of abstract rules.

  3. Communicative signals support abstract rule learning by 7-month-old infants.

    PubMed

    Ferguson, Brock; Lew-Williams, Casey

    2016-01-01

    The mechanisms underlying the discovery of abstract rules like those found in natural language may be evolutionarily tuned to speech, according to previous research. When infants hear speech sounds, they can learn rules that govern their combination, but when they hear non-speech sounds such as sine-wave tones, they fail to do so. Here we show that infants' rule learning is not tied to speech per se, but is instead enhanced more broadly by communicative signals. In two experiments, infants succeeded in learning and generalizing rules from tones that were introduced as if they could be used to communicate. In two control experiments, infants failed to learn the very same rules when familiarized to tones outside of a communicative exchange. These results reveal that infants' attention to social agents and communication catalyzes a fundamental achievement of human learning. PMID:27150270

  4. Communicative signals support abstract rule learning by 7-month-old infants

    PubMed Central

    Ferguson, Brock; Lew-Williams, Casey

    2016-01-01

    The mechanisms underlying the discovery of abstract rules like those found in natural language may be evolutionarily tuned to speech, according to previous research. When infants hear speech sounds, they can learn rules that govern their combination, but when they hear non-speech sounds such as sine-wave tones, they fail to do so. Here we show that infants’ rule learning is not tied to speech per se, but is instead enhanced more broadly by communicative signals. In two experiments, infants succeeded in learning and generalizing rules from tones that were introduced as if they could be used to communicate. In two control experiments, infants failed to learn the very same rules when familiarized to tones outside of a communicative exchange. These results reveal that infants’ attention to social agents and communication catalyzes a fundamental achievement of human learning. PMID:27150270

  5. Abstract rule learning: the differential effects of lesions in frontal cortex.

    PubMed

    Kayser, Andrew S; D'Esposito, Mark

    2013-01-01

    Learning progressively more abstract stimulus-response mappings requires progressively more anterior regions of the lateral frontal cortex. Using an individual differences approach, we studied subjects with frontal lesions performing a hierarchical reinforcement-learning task to investigate how frontal cortex contributes to abstract rule learning. We predicted that subjects with lesions of the left pre-premotor (pre-PMd) cortex, a region implicated in abstract rule learning, would demonstrate impaired acquisition of second-order, as opposed to first-order, rules. We found that 4 subjects with such lesions did indeed demonstrate a second-order rule-learning impairment, but that these subjects nonetheless performed better than subjects with other frontal lesions in a second-order rule condition. This finding resulted from both their restricted exploration of the feature space and the task structure of this condition, for which they identified partially representative first-order rules. Significantly, across all subjects, suboptimal but above-chance performance in this condition correlated with increasing disconnection of left pre-PMd from the putative functional hierarchy, defined by reduced functional connectivity between left pre-PMd and adjacent nodes. These findings support the theory that activity within lateral frontal cortex shapes the search for relevant stimulus-response mappings, while emphasizing that the behavioral correlate of impairments depends critically on task structure.

  6. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.

    PubMed

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-05-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. PMID:26280911

  7. Bimodal Emotion Congruency Is Critical to Preverbal Infants' Abstract Rule Learning

    ERIC Educational Resources Information Center

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-01-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of…

  8. Abstract Rule Learning for Visual Sequences in 8- and 11-Month-Olds

    ERIC Educational Resources Information Center

    Johnson, Scott P.; Fernandes, Keith J.; Frank, Michael C.; Kirkham, Natasha; Marcus, Gary; Rabagliati, Hugh; Slemmer, Jonathan A.

    2009-01-01

    The experiments reported here investigated the development of a fundamental component of cognition: to recognize and generalize abstract relations. Infants were presented with simple rule-governed patterned sequences of visual shapes (ABB, AAB, and ABA) that could be discriminated from differences in the position of the repeated element (late,…

  9. Category learning strategies in younger and older adults: Rule abstraction and memorization.

    PubMed

    Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L

    2016-06-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record PMID:26950225

  10. Category learning strategies in younger and older adults: Rule abstraction and memorization.

    PubMed

    Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L

    2016-06-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record

  11. Abstract Rule Learning in 11- and 14-Month-Old Infants

    ERIC Educational Resources Information Center

    Koulaguina, Elena; Shi, Rushen

    2013-01-01

    This study tests the hypothesis that distributional information can guide infants in the generalization of word order movement rules at the initial stage of language acquisition. Participants were 11- and 14-month-old infants. Stimuli were sentences in Russian, a language that was unknown to our infants. During training the word order of each…

  12. Superior abstract-concept learning by Clark's nutcrackers (Nucifraga columbiana)

    PubMed Central

    Magnotti, John F.; Katz, Jeffrey S.; Wright, Anthony A.; Kelly, Debbie M.

    2015-01-01

    The ability to learn abstract relational concepts is fundamental to higher level cognition. In contrast to item-specific concepts (e.g. pictures containing trees versus pictures containing cars), abstract relational concepts are not bound to particular stimulus features, but instead involve the relationship between stimuli and therefore may be extrapolated to novel stimuli. Previous research investigating the same/different abstract concept has suggested that primates might be specially adapted to extract relations among items and would require fewer exemplars of a rule to learn an abstract concept than non-primate species. We assessed abstract-concept learning in an avian species, Clark's nutcracker (Nucifraga columbiana), using a small number of exemplars (eight pairs of the same rule, and 56 pairs of the different rule) identical to that previously used to compare rhesus monkeys, capuchin monkeys and pigeons. Nutcrackers as a group (N = 9) showed more novel stimulus transfer than any previous species tested with this small number of exemplars. Two nutcrackers showed full concept learning and four more showed transfer considerably above chance performance, indicating partial concept learning. These results show that the Clark's nutcracker, a corvid species well known for its amazing feats of spatial memory, learns the same/different abstract concept better than any non-human species (including non-human primates) yet tested on this same task. PMID:25972399

  13. Matching-to-sample abstract-concept learning by pigeons.

    PubMed

    Bodily, Kent D; Katz, Jeffrey S; Wright, Anthony A

    2008-01-01

    Abstract concepts--rules that transcend training stimuli--have been argued to be unique to some species. Pigeons, a focus of much concept-learning research, were tested for learning a matching-to-sample abstract concept. Five pigeons were trained with three cartoon stimuli. Pigeons pecked a sample 10 times and then chose which of two simultaneously presented comparison stimuli matched the sample. After acquisition, abstract-concept learning was tested by presenting novel cartoons on 12 out of 96 trials for 4 consecutive sessions. A cycle of doubling the training set followed by retraining and novel-testing was repeated eight times, increasing the set size from 3 to 768 items. Transfer performance improved from chance (i.e., no abstract-concept learning) to a level equivalent to baseline performance (>80%) and was similar to an equivalent function for same/different abstract-concept learning. Analyses assessed the possibility that item-specific choice strategies accounted for acquisition and transfer performance. These analyses converged to rule out item-specific strategies at all but the smallest set-sizes (3-24 items). Ruling out these possibilities adds to the evidence that pigeons learned the relational abstract concept of matching-to-sample.

  14. Superior abstract-concept learning by Clark's nutcrackers (Nucifraga columbiana).

    PubMed

    Magnotti, John F; Katz, Jeffrey S; Wright, Anthony A; Kelly, Debbie M

    2015-05-01

    The ability to learn abstract relational concepts is fundamental to higher level cognition. In contrast to item-specific concepts (e.g. pictures containing trees versus pictures containing cars), abstract relational concepts are not bound to particular stimulus features, but instead involve the relationship between stimuli and therefore may be extrapolated to novel stimuli. Previous research investigating the same/different abstract concept has suggested that primates might be specially adapted to extract relations among items and would require fewer exemplars of a rule to learn an abstract concept than non-primate species. We assessed abstract-concept learning in an avian species, Clark's nutcracker (Nucifraga columbiana), using a small number of exemplars (eight pairs of the same rule, and 56 pairs of the different rule) identical to that previously used to compare rhesus monkeys, capuchin monkeys and pigeons. Nutcrackers as a group (N = 9) showed more novel stimulus transfer than any previous species tested with this small number of exemplars. Two nutcrackers showed full concept learning and four more showed transfer considerably above chance performance, indicating partial concept learning. These results show that the Clark's nutcracker, a corvid species well known for its amazing feats of spatial memory, learns the same/different abstract concept better than any non-human species (including non-human primates) yet tested on this same task.

  15. Abstraction processes in artificial grammar learning.

    PubMed

    Shanks, D R; Johnstone, T; Staggs, L

    1997-02-01

    Four experiments explored the extent the extent to which abstract knowledge may underlie subjects' performance when asked to judge the grammaticality of letter strings generated from an artificial grammar. In Experiment 1 and 2 subjects studied grammatical strings instantiated with one set of letters and were then tested on grammatical and ungrammatical strings formed either from the same or a changed letter-set. Even with a change of letter-set, subjects were found to be sensitive to a variety of violation of the grammar. In Experiments 3 and 4, the critical manipulation involved the way in which the training strings were studied: an incidental learning procedure was used for some subjects, and others engaged in an explicit code-breaking task to try to learn the rules of the grammar. When strings were generated from a biconditional (Experiment 4) but not from a standard finite-state grammar (Experiment 3), grammaticality judgements for test strings were independent of their surface similarity to specific studied strings. Overall, the results suggest that transfer in this simple memory task is mediated at least to some extent by abstract knowledge.

  16. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer.

    PubMed

    Lu, Hongjing; Rojas, Randall R; Beckers, Tom; Yuille, Alan L

    2016-03-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about abstract causal constraints? Recent empirical studies have revealed that experience with one set of causal cues can dramatically alter subsequent learning and performance with entirely different cues, suggesting that learning involves abstract transfer, and such transfer effects involve sequential presentation of distinct sets of causal cues. It has been demonstrated that pre-training (or even post-training) can modulate classic causal learning phenomena such as forward and backward blocking. To account for these effects, we propose a Bayesian theory of sequential causal learning. The theory assumes that humans are able to consider and use several alternative causal generative models, each instantiating a different causal integration rule. Model selection is used to decide which integration rule to use in a given learning environment in order to infer causal knowledge from sequential data. Detailed computer simulations demonstrate that humans rely on the abstract characteristics of outcome variables (e.g., binary vs. continuous) to select a causal integration rule, which in turn alters causal learning in a variety of blocking and overshadowing paradigms. When the nature of the outcome variable is ambiguous, humans select the model that yields the best fit with the recent environment, and then apply it to subsequent learning tasks. Based on sequential patterns of cue-outcome co-occurrence, the theory can account for a range of phenomena in sequential causal learning, including various blocking effects, primacy effects in some experimental conditions, and apparently abstract transfer of causal knowledge.

  17. Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    PubMed Central

    Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.

    2011-01-01

    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519

  18. Abstracting in the Context of Spontaneous Learning

    ERIC Educational Resources Information Center

    Williams, Gaye

    2007-01-01

    There is evidence that spontaneous learning leads to relational understanding and high positive affect. To study spontaneous abstracting, a model was constructed by combining the RBC model of abstraction with Krutetskii's mental activities. Using video-stimulated interviews, the model was then used to analyze the behavior of two Year 8 students…

  19. Sleep facilitates learning a new linguistic rule.

    PubMed

    Batterink, Laura J; Oudiette, Delphine; Reber, Paul J; Paller, Ken A

    2014-12-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. PMID:25447376

  20. Sleep facilitates learning a new linguistic rule

    PubMed Central

    Batterink, Laura J.; Oudiette, Delphine; Reber, Paul J.; Paller, Ken A.

    2014-01-01

    Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. PMID:25447376

  1. Rule Learning in Autism: The Role of Reward Type and Social Context

    PubMed Central

    Jones, E. J. H.; Webb, S. J.; Estes, A.; Dawson, G.

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts. PMID:23311315

  2. Rule learning in autism: the role of reward type and social context.

    PubMed

    Jones, E J H; Webb, S J; Estes, A; Dawson, G

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts.

  3. a Heterosynaptic Learning Rule for Neural Networks

    NASA Astrophysics Data System (ADS)

    Emmert-Streib, Frank

    In this article we introduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.

  4. Relative entropy and learning rules

    NASA Astrophysics Data System (ADS)

    Qian, Minping; Gong, Guanglu; Clark, John W.

    1991-01-01

    The dynamics of a probabilistic neural network is characterized by the distribution ν(x'||x) of successor states x' of an arbitrary state x of the network. A prescribed memory or behavior pattern is represented in terms of an ordered sequence of network states x(1),x(2),...,x(l). A successful procedure for learning this pattern must modify the neuronal interactions in such a way that the dynamical successor of x(s) is likely to be x(s+1), with x(l+1)=x(1). The relative entropy G of the probability distribution δ(s+1)x,x' concentrated at the desired successor state, evaluated with respect to the dynamical distribution ν(x'||x(s)), is used to quantify this criterion, by providing a measure of the distance between actual and ideal probability distributions. Minimization of G subject to appropriate resource constraints leads to ``optimal'' learning rules for pairwise and higher-order neuronal interactions. The degree to which optimality is approached by simple learning rules in current use is considered, and it is found, in particular, that the algorithm adopted in the Hopfield model is more effective in minimizing G than the original Hebb law.

  5. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.

  6. Myths and legends in learning classification rules

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1990-01-01

    A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.

  7. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  8. Generalization hypothesis of abstract-concept learning: learning strategies and related issues in Macaca mulatta, Cebus apella, and Columba livia.

    PubMed

    Wright, Anthony A; Katz, Jeffrey S

    2007-11-01

    The generalization hypothesis of abstract-concept learning was tested with a meta-analysis of rhesus monkeys (Macaca mulatta), capuchin monkeys (Cebus apella), and pigeons (Columba livia) learning a same/different (S/D) task with expanding training sets. The generalization hypothesis states that as the number of training items increases, generalization from the training pairs will increase and could explain the subjects' accurate novel-stimulus transfer. By contrast, concept learning is learning the relationship between each pair of items; with more training items subjects learn more exemplars of the rule and transfer better. Having to learn the stimulus pairs (the generalization hypothesis) would require more training as the set size increases, whereas learning the concept might require less training because subjects would be learning an abstract rule. The results strongly support concept or rule learning despite severely relaxing the generalization-hypothesis parameters. Thus, generalization was not a factor in the transfer from these experiments, adding to the evidence that these subjects were learning the S/D abstract concept.

  9. Effects of Abstract and Concrete Simulation Elements on Science Learning

    ERIC Educational Resources Information Center

    Jaakkola, T.; Veermans, K.

    2015-01-01

    Contemporary evidence on the effectiveness of concrete and abstract representations in science education is based solely on studies conducted in college context. There it has been found that learning with abstract representations produces predominantly better outcomes than learning with concrete representations and combining the representations…

  10. Reflective Abstraction and Mathematics Education: The Genetic Decomposition of the Chain Rule--Work in Progress

    ERIC Educational Resources Information Center

    Jojo, Zingiswa Monica Mybert; Maharaj, Aneshkumar; Brijlall, Deonarain

    2012-01-01

    Students have experienced difficulty in understanding and using the chain rule. This study aims at assisting the students to understand and apply the chain rule and thus inform the author's teaching for future learning of students. A questionnaire will be designed to explore the conceptual understanding of the concept of the chain rule by first…

  11. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  12. A Bayesian Theory of Sequential Causal Learning and Abstract Transfer

    ERIC Educational Resources Information Center

    Lu, Hongjing; Rojas, Randall R.; Beckers, Tom; Yuille, Alan L.

    2016-01-01

    Two key research issues in the field of causal learning are how people acquire causal knowledge when observing data that are presented sequentially, and the level of abstraction at which learning takes place. Does sequential causal learning solely involve the acquisition of specific cause-effect links, or do learners also acquire knowledge about…

  13. Effects of Variation and Prior Knowledge on Abstract Concept Learning

    ERIC Educational Resources Information Center

    Braithwaite, David W.; Goldstone, Robert L.

    2015-01-01

    Learning abstract concepts through concrete examples may promote learning at the cost of inhibiting transfer. The present study investigated one approach to solving this problem: systematically varying superficial features of the examples. Participants learned to solve problems involving a mathematical concept by studying either superficially…

  14. Refining Linear Fuzzy Rules by Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  15. Learning with LOGO: Abstracts from the LOGO '84 Conference.

    ERIC Educational Resources Information Center

    Estes, Yvonne

    1984-01-01

    Presents abstracts of three papers given at the first national LOGO conference. They are: "LOGO as an Empirical Window" (Sylvia Weir); "Quasi-Piagetian Learning in LOGO" (Uri Leron); and "Theories of LOGO" (Guy Groen). (JN)

  16. Harder Words: Learning Abstract Verbs with Opaque Syntax

    ERIC Educational Resources Information Center

    Becker, Misha; Estigarribia, Bruno

    2013-01-01

    Highly abstract predicates (e.g. "think") present a number of difficulties for language learners (Gleitman et al., 2005). A partial solution to learning these verbs is that learners exploit regularities in the syntactic frames in which these verbs occur. While agreeing with this general approach to learning verbs, we caution that this…

  17. Concrete-Semiconcrete-Abstract (CSA) Instruction: A Decision Rule for Improving Instructional Efficacy

    ERIC Educational Resources Information Center

    Sealander, Karen A.; Johnson, Gae R.; Lockwood, Adam B.; Medina, Catherine M.

    2012-01-01

    A concrete-semiconcrete-abstract (CSA) instructional approach derived from discovery learning (DIS) was embedded in a direct instruction (DI) methodology to teach eight elementary students with math disabilities. One-minute abstract-level probes were the primary metric used to assess student performance on subtraction problems (minuends 0-9). A…

  18. Brain correlates of language learning: the neuronal dissociation of rule-based versus similarity-based learning.

    PubMed

    Opitz, Bertram; Friederici, Angela D

    2004-09-29

    Language learning is one of the mysteries of human cognition. One of the crucial questions is the following: Does acquisition of grammatical knowledge depend primarily on abstract rules or on item-specific information? Although there is evidence that both mechanisms contribute to language acquisition, their relative importance during the process of language learning is unknown. Using an artificial grammar paradigm, we show by means of functional magnetic resonance imaging that the brain dissociates the two mechanisms: the left anterior hippocampus supports similarity-based learning, whereas the left ventral premotor cortex is selectively engaged by abstract rule processing. Moreover, data analysis over time on learning suggests that similarity-based learning plays a nonobligatory role during the initial phase, and that rule-based abstraction plays a crucial role during later learning.

  19. On learning dynamics underlying the evolution of learning rules.

    PubMed

    Dridi, Slimane; Lehmann, Laurent

    2014-02-01

    In order to understand the development of non-genetically encoded actions during an animal's lifespan, it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often studied in evolutionary biology via agent-based computer simulations. In this paper, we show that stochastic approximation theory can help to qualitatively understand learning dynamics and formulate analytical models for the evolution of learning rules. We consider a population of individuals repeatedly interacting during their lifespan, and where the stage game faced by the individuals fluctuates according to an environmental stochastic process. Individuals adjust their behavioral actions according to learning rules belonging to the class of experience-weighted attraction learning mechanisms, which includes standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory in order to derive differential equations governing action play probabilities, which turn out to have qualitative features of mutator-selection equations. We then perform agent-based simulations to find the conditions where the deterministic approximation is closest to the original stochastic learning process for standard 2-action 2-player fluctuating games, where interaction between learning rules and preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in a producer-scrounger game, which shows that the exploration rate can interact in a non-intuitive way with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying stochastic approximation theory in the study of animal learning.

  20. Episodes to Scripts to Rules: Concrete-Abstractions in Kindergarten Children's Explanations of a Robot's Behavior

    ERIC Educational Resources Information Center

    Mioduser, David; Levy, Sharona T.; Talis, Vadim

    2009-01-01

    This study explores young children's abstraction of the rules underlying a robot's emergent behavior. The study was conducted individually with six kindergarten children, along five sessions that included description and construction tasks, ordered by increasing difficulty. We developed and used a robotic control interface, structured as…

  1. Post-analysis of learned rules

    SciTech Connect

    Liu, Bing; Hsu, W.

    1996-12-31

    Rule induction research implicitly assumes that after producing the rules from a dataset, these rules will be used directly by an expert system or a human user. In real-life applications, the situation may not be as simple as that, particularly, when the user of the rules is a human being. The human user almost always has some previous concepts or knowledge about the domain represented by the dataset. Naturally, he/she wishes to know how the new rules compare with his/her existing knowledge. In dynamic domains where the rules may change over time, it is important to know what the changes are. These aspects of research have largely been ignored in the past. With the increasing use of machine learning techniques in practical applications such as data mining, this issue of post analysis of rules warrants greater emphasis and attention. In this paper, we propose a technique to deal with this problem. A system has been implemented to perform the post analysis of classification rules generated by systems such as C4.5. The proposed technique is general and highly interactive. It will be particularly useful in data mining and data analysis.

  2. Signals and learning rules guiding oculomotor plasticity.

    PubMed

    Shin, Soon-Lim; Zhao, Grace Q; Raymond, Jennifer L

    2014-08-01

    The learning of motor skills is thought to occur largely through trial and error; however, the error signals and rules controlling the induction of motor learning have not been fully elucidated. We evaluated the learning rules that translate the sensory and motor cues available during training into learned changes in the gain and phase of the vestibulo-ocular reflex (VOR) of mice. Contrary to previous theories, neither the phase of retinal image motion relative to head motion nor the phase of retinal image motion relative to eye movement could consistently predict the direction of the learned change in the gain of the VOR across all training conditions tested. Instead, the phase of the gaze movement relative to head motion during training was the best predictor of whether learning would increase or decrease the gain of the VOR. Learned changes in the phase of the VOR were best predicted by a different cue--the phase of the eye movement relative to head motion during training. These results provide new constraints on the neural mechanisms implementing the adaptive calibration of the VOR by cerebellum-dependent motor learning.

  3. Alternate Learning Center. Abstracts of Inservice Training Programs.

    ERIC Educational Resources Information Center

    Rhode Island State Dept. of Education, Providence. Div. of Development and Operations.

    This booklet is a collection of abstracts describing the 18 programs offered at the Alternate Learning Center of the Rhode Island Teacher Center which has as its Primary function school based inservice training for local teachers and administrators. Each project is described in detail, including course goals, specific objectives, training…

  4. From action to abstraction: Using the hands to learn math

    PubMed Central

    Novack, Miriam A.; Congdon, Eliza L.; Hemani-Lopez, Naureen; Goldin-Meadow, Susan

    2014-01-01

    Previous research has shown that children benefit from gesturing during math instruction. Here we ask whether gesturing promotes learning because it is itself a physical action, or because it uses physical action to represent abstract ideas. To address this question, we taught third-grade children a strategy for solving mathematical equivalence problems that was instantiated in one of three ways: (1) in the physical action children performed on objects, (2) in a concrete gesture miming that action, or (3) in an abstract gesture. All three types of hand movements helped children learn how to solve the problems on which they were trained. However, only gesture led to success on problems that required generalizing the knowledge gained. The results provide the first evidence that gesture promotes transfer of knowledge better than action, and suggest that the beneficial effects gesture has on learning may reside in the features that differentiate it from action. PMID:24503873

  5. Temporal dynamics of task switching and abstract-concept learning in pigeons.

    PubMed

    Daniel, Thomas A; Cook, Robert G; Katz, Jeffrey S

    2015-01-01

    The current study examined whether pigeons could learn to use abstract concepts as the basis for conditionally switching behavior as a function of time. Using a mid-session reversal task, experienced pigeons were trained to switch from matching-to-sample (MTS) to non-matching-to-sample (NMTS) conditional discriminations within a session. One group had prior training with MTS, while the other had prior training with NMTS. Over training, stimulus set size was progressively doubled from 3 to 6 to 12 stimuli to promote abstract concept development. Prior experience had an effect on the initial learning at each of the set sizes but by the end of training there were no group differences, as both groups showed similar within-session linear matching functions. After acquiring the 12-item set, abstract-concept learning was tested by placing novel stimuli at the beginning and end of a test session. Prior matching and non-matching experience affected transfer behavior. The matching experienced group transferred to novel stimuli in both the matching and non-matching portion of the sessions using a matching rule. The non-matching experienced group transferred to novel stimuli in both portions of the session using a non-matching rule. The representations used as the basis for mid-session reversal of the conditional discrimination behaviors and subsequent transfer behavior appears to have different temporal sources. The implications for the flexibility and organization of complex behaviors are considered. PMID:26388825

  6. Temporal dynamics of task switching and abstract-concept learning in pigeons.

    PubMed

    Daniel, Thomas A; Cook, Robert G; Katz, Jeffrey S

    2015-01-01

    The current study examined whether pigeons could learn to use abstract concepts as the basis for conditionally switching behavior as a function of time. Using a mid-session reversal task, experienced pigeons were trained to switch from matching-to-sample (MTS) to non-matching-to-sample (NMTS) conditional discriminations within a session. One group had prior training with MTS, while the other had prior training with NMTS. Over training, stimulus set size was progressively doubled from 3 to 6 to 12 stimuli to promote abstract concept development. Prior experience had an effect on the initial learning at each of the set sizes but by the end of training there were no group differences, as both groups showed similar within-session linear matching functions. After acquiring the 12-item set, abstract-concept learning was tested by placing novel stimuli at the beginning and end of a test session. Prior matching and non-matching experience affected transfer behavior. The matching experienced group transferred to novel stimuli in both the matching and non-matching portion of the sessions using a matching rule. The non-matching experienced group transferred to novel stimuli in both portions of the session using a non-matching rule. The representations used as the basis for mid-session reversal of the conditional discrimination behaviors and subsequent transfer behavior appears to have different temporal sources. The implications for the flexibility and organization of complex behaviors are considered.

  7. Stimulus Coding Rules for Perceptual Learning

    PubMed Central

    Klein, Stanley A; Levi, Dennis M; Yu, Cong

    2008-01-01

    Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning consolidation is subject to disruption by roving up to 4 h after each practice session; (3) importantly, after completion of temporal-patterned learning, performance is undisrupted by extended roving training; (4) roving is ineffective if each stimulus is presented for five or more consecutive trials; and (5) roving is also ineffective if each stimulus has a distinct identity. We propose that for multi-stimulus learning to occur, the brain needs to conceptually “tag” each stimulus, in order to switch attention to the appropriate perceptual template. Stimulus temporal patterning assists in tagging stimuli and switching attention through its rhythmic stimulus sequence. PMID:18707195

  8. Same/Different Abstract Concept Learning by Archerfish (Toxotes chatareus)

    PubMed Central

    Newport, Cait; Wallis, Guy; Siebeck, Ulrike E.

    2015-01-01

    While several phylogenetically diverse species have proved capable of learning abstract concepts, previous attempts to teach fish have been unsuccessful. In this report, the ability of archerfish (Toxotes chatareus) to learn the concepts of sameness and difference using a simultaneous two-item discrimination task was tested. Six archerfish were trained to either select a pair of same or different stimuli which were presented simultaneously. Training consisted of a 2-phase approach. Training phase 1: the symbols in the same and different pair did not change, thereby allowing the fish to solve the test through direct association. The fish were trained consecutively with four different sets of stimuli to familiarize them with the general procedure before moving on to the next training phase. Training phase 2: six different symbols were used to form the same or different pairs. After acquisition, same/different concept learning was tested by presenting fish with six novel stimuli (transfer test). Five fish successfully completed the first training phase. Only one individual passed the second training phase, however, transfer performance was consistent with chance. This individual was given further training using 60 training exemplars but the individual was unable to reach the training criterion. We hypothesize that archerfish are able to solve a limited version of the same/different test by learning the response to each possible stimulus configuration or by developing a series of relatively simple choice contingencies. We conclude that the simultaneous two-item discrimination task we describe cannot be successfully used to test the concepts of same and different in archerfish. In addition, despite considerable effort training archerfish using several tests and training methods, there is still no evidence that fish can learn an abstract concept-based test. PMID:26599071

  9. Same/Different Abstract Concept Learning by Archerfish (Toxotes chatareus).

    PubMed

    Newport, Cait; Wallis, Guy; Siebeck, Ulrike E

    2015-01-01

    While several phylogenetically diverse species have proved capable of learning abstract concepts, previous attempts to teach fish have been unsuccessful. In this report, the ability of archerfish (Toxotes chatareus) to learn the concepts of sameness and difference using a simultaneous two-item discrimination task was tested. Six archerfish were trained to either select a pair of same or different stimuli which were presented simultaneously. Training consisted of a 2-phase approach. Training phase 1: the symbols in the same and different pair did not change, thereby allowing the fish to solve the test through direct association. The fish were trained consecutively with four different sets of stimuli to familiarize them with the general procedure before moving on to the next training phase. Training phase 2: six different symbols were used to form the same or different pairs. After acquisition, same/different concept learning was tested by presenting fish with six novel stimuli (transfer test). Five fish successfully completed the first training phase. Only one individual passed the second training phase, however, transfer performance was consistent with chance. This individual was given further training using 60 training exemplars but the individual was unable to reach the training criterion. We hypothesize that archerfish are able to solve a limited version of the same/different test by learning the response to each possible stimulus configuration or by developing a series of relatively simple choice contingencies. We conclude that the simultaneous two-item discrimination task we describe cannot be successfully used to test the concepts of same and different in archerfish. In addition, despite considerable effort training archerfish using several tests and training methods, there is still no evidence that fish can learn an abstract concept-based test.

  10. An implementation and analysis of the Abstract Syntax Notation One and the basic encoding rules

    NASA Technical Reports Server (NTRS)

    Harvey, James D.; Weaver, Alfred C.

    1990-01-01

    The details of abstract syntax notation one standard (ASN.1) and the basic encoding rules standard (BER) that collectively solve the problem of data transfer across incompatible host environments are presented, and a compiler that was built to automate their use is described. Experiences with this compiler are also discussed which provide a quantitative analysis of the performance costs associated with the application of these standards. An evaluation is offered as to how well suited ASN.1 and BER are in solving the common data representation problem.

  11. Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats.

    PubMed

    Lloyd, Kevin; Becker, Nadine; Jones, Matthew W; Bogacz, Rafal

    2012-01-01

    Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551

  12. Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats

    PubMed Central

    Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal

    2012-01-01

    Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551

  13. How learning to abstract shapes neural sound representations

    PubMed Central

    Ley, Anke; Vroomen, Jean; Formisano, Elia

    2014-01-01

    The transformation of acoustic signals into abstract perceptual representations is the essence of the efficient and goal-directed neural processing of sounds in complex natural environments. While the human and animal auditory system is perfectly equipped to process the spectrotemporal sound features, adequate sound identification and categorization require neural sound representations that are invariant to irrelevant stimulus parameters. Crucially, what is relevant and irrelevant is not necessarily intrinsic to the physical stimulus structure but needs to be learned over time, often through integration of information from other senses. This review discusses the main principles underlying categorical sound perception with a special focus on the role of learning and neural plasticity. We examine the role of different neural structures along the auditory processing pathway in the formation of abstract sound representations with respect to hierarchical as well as dynamic and distributed processing models. Whereas most fMRI studies on categorical sound processing employed speech sounds, the emphasis of the current review lies on the contribution of empirical studies using natural or artificial sounds that enable separating acoustic and perceptual processing levels and avoid interference with existing category representations. Finally, we discuss the opportunities of modern analyses techniques such as multivariate pattern analysis (MVPA) in studying categorical sound representations. With their increased sensitivity to distributed activation changes—even in absence of changes in overall signal level—these analyses techniques provide a promising tool to reveal the neural underpinnings of perceptually invariant sound representations. PMID:24917783

  14. A Local Learning Rule for Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Isomura, Takuya; Toyoizumi, Taro

    2016-06-01

    Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering.

  15. A Local Learning Rule for Independent Component Analysis

    PubMed Central

    Isomura, Takuya; Toyoizumi, Taro

    2016-01-01

    Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering. PMID:27323661

  16. Beyond Explicit Rule Learning: Automatizing Second Language Morphosyntax.

    ERIC Educational Resources Information Center

    DeKeyser, Robert M.

    1997-01-01

    Presents a fine-grained analysis of extensive empirical data on the automatization of explicitly learned rules of morphosyntax in a second language. Results indicate that the learning of morphosyntactic rules is highly skill-specific and that these skills develop gradually over time, adhering to the same power function learning curve as the…

  17. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning

    PubMed Central

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context

  18. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning.

    PubMed

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context

  19. The POP learning algorithms: reducing work in identifying fuzzy rules.

    PubMed

    Quek, C; Zhou, R W

    2001-12-01

    A novel fuzzy neural network, the Pseudo Outer-Product based Fuzzy Neural Network (POPFNN), and its two fuzzy-rule-identification algorithms are proposed in this paper. They are the Pseudo Outer-Product (POP) learning and the Lazy Pseudo Outer-Product (LazyPOP) leaning algorithms. These two learning algorithms are used in POPFNN to identify relevant fuzzy rules. In contrast with other rule-learning algorithms, the proposed algorithms have many advantages, such as being fast, reliable, efficient, and easy to understand. POP learning is a simple one-pass learning algorithm. It essentially performs rule-selection. Hence, it suffers from the shortcoming of having to consider all the possible rules. The second algorithm, the LazyPOP learning algorithm, truly identifies the fuzzy rules which are relevant and does not use a rule-selection method whereby irrelevant fuzzy rules are eliminated from an initial rule set. In addition, it is able to adjust the structure of the fuzzy neural network. The proposed LazyPOP learning algorithm is able to delete invalid feature inputs according to the fuzzy rules that have been identified. Extensive experimental results and discussions are presented for a detailed analysis of the proposed algorithms.

  20. Preattentive Extraction of Abstract Auditory Rules in Speech Sound Stream: A Mismatch Negativity Study Using Lexical Tones

    PubMed Central

    Wang, Xiao-Dong; Gu, Feng; He, Kang; Chen, Ling-Hui; Chen, Lin

    2012-01-01

    Background Extraction of linguistically relevant auditory features is critical for speech comprehension in complex auditory environments, in which the relationships between acoustic stimuli are often abstract and constant while the stimuli per se are varying. These relationships are referred to as the abstract auditory rule in speech and have been investigated for their underlying neural mechanisms at an attentive stage. However, the issue of whether or not there is a sensory intelligence that enables one to automatically encode abstract auditory rules in speech at a preattentive stage has not yet been thoroughly addressed. Methodology/Principal Findings We chose Chinese lexical tones for the current study because they help to define word meaning and hence facilitate the fabrication of an abstract auditory rule in a speech sound stream. We continuously presented native Chinese speakers with Chinese vowels differing in formant, intensity, and level of pitch to construct a complex and varying auditory stream. In this stream, most of the sounds shared flat lexical tones to form an embedded abstract auditory rule. Occasionally the rule was randomly violated by those with a rising or falling lexical tone. The results showed that the violation of the abstract auditory rule of lexical tones evoked a robust preattentive auditory response, as revealed by whole-head electrical recordings of the mismatch negativity (MMN), though none of the subjects acquired explicit knowledge of the rule or became aware of the violation. Conclusions/Significance Our results demonstrate that there is an auditory sensory intelligence in the perception of Chinese lexical tones. The existence of this intelligence suggests that the humans can automatically extract abstract auditory rules in speech at a preattentive stage to ensure speech communication in complex and noisy auditory environments without drawing on conscious resources. PMID:22238691

  1. Many faces, one rule: the role of perceptual expertise in infants’ sequential rule learning

    PubMed Central

    Bulf, Hermann; Brenna, Viola; Valenza, Eloisa; Johnson, Scott P.; Turati, Chiara

    2015-01-01

    Rule learning is a mechanism that allows infants to recognize and generalize rule-like patterns, such as ABB or ABA. Although infants are better at learning rules from speech vs. non-speech, rule learning can be applied also to frequently experienced visual stimuli, suggesting that perceptual expertise with material to be learned is critical in enhancing rule learning abilities. Yet infants’ rule learning has never been investigated using one of the most commonly experienced visual stimulus category available in infants’ environment, i.e., faces. Here, we investigate 7-month-olds’ ability to extract rule-like patterns from sequences composed of upright faces and compared their results to those of infants who viewed inverted faces, which presumably are encountered far less frequently than upright faces. Infants were habituated with face triads in either an ABA or ABB condition followed by a test phase with ABA and ABB triads composed of faces that differed from those showed during habituation. When upright faces were used, infants generalized the pattern presented during habituation to include the new face identities showed during testing, but when inverted faces were presented, infants failed to extract the rule. This finding supports the idea that perceptual expertise can modulate 7-month-olds’ abilities to detect rule-like patterns. PMID:26539142

  2. Learning categories via rules and similarity: comparing adults and children.

    PubMed

    Rabi, Rahel; Miles, Sarah J; Minda, John Paul

    2015-03-01

    Two experiments explored the different strategies used by children and adults when learning new perceptual categories. Participants were asked to learn a set of categories for which both a single-feature rule and overall similarity would allow for perfect performance. Other rules allowed for suboptimal performance. Transfer stimuli (Experiments 1 and 2) and single features (Experiment 2) were presented after training to help determine how the categories were learned. In both experiments, we found that adults made significantly more optimal rule-based responses to the test stimuli than children. Children showed a variety of categorization styles, with a few relying on the optimal rules, many relying on suboptimal single-feature rules, and only a few relying on overall family resemblance. We interpret these results within a multiple systems framework, and we argue that children show the pattern they do because they lack the necessary cognitive resources to fully engage in hypothesis testing, rule selection, and verbally mediated category learning.

  3. Learning general phonological rules from distributional information: a computational model.

    PubMed

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles.

  4. Implicit sequence learning is represented by stimulus-response rules.

    PubMed

    Schwarb, Hillary; Schumacher, Eric H

    2010-09-01

    For nearly two decades, researchers have investigated spatial sequence learning in an attempt to identify what specifically is learned during sequential tasks (e.g., stimulus order, response order, etc.). Despite extensive research, controversy remains concerning the information-processing locus of this learning effect. There are three main theories concerning the nature of spatial sequence learning, corresponding to the perceptual, motor, or response selection (i.e., central mechanisms underlying the association between stimulus and response pairs) processes required for successful task performance. The present data investigate this controversy and support the theory that stimulus-response (S-R) rules are critical for sequence learning. The results from two experiments demonstrate that sequence learning is disrupted only when the S-R rules for the task are altered. When the S-R rules remain constant or involve only a minor transformation, significant sequence learning occurs. These data implicate spatial response selection as a likely mechanism mediating spatial sequential learning.

  5. RULE GENERALITY AND CONSISTENCY IN MATHEMATICS LEARNING.

    ERIC Educational Resources Information Center

    SCANDURA, JOSEPH M.

    PSYCHOLOGICAL PRINCIPLES INVOLVED WITH RULE GENERALITY (DEGREE OF NONSPECIFICITY) AND PERFORMANCE CONSISTENCY IN MATHEMATICAL PRESENTATIONS WERE STUDIED. SPECIFICALLY, THE PURPOSES WERE (1) TO DETERMINE IF TEST BEHAVIOR CONFORMS TO THE SCOPE OF A VERBALLY ADMINISTERED TEST RULE, (2) TO EXPLORE THE INTERPRETABILITY OF VERBAL TEST RULES, AND (3) TO…

  6. Implicit Learning of Nonlocal Musical Rules: Implicitly Learning More Than Chunks

    ERIC Educational Resources Information Center

    Kuhn, Gustav; Dienes, Zoltan

    2005-01-01

    Dominant theories of implicit learning assume that implicit learning merely involves the learning of chunks of adjacent elements in a sequence. In the experiments presented here, participants implicitly learned a nonlocal rule, thus suggesting that implicit learning can go beyond the learning of chunks. Participants were exposed to a set of…

  7. Prior Knowledge of Rules in Concept Learning.

    ERIC Educational Resources Information Center

    Brainerd, Charles J.

    This paper briefly reviews the literature concerning the Paiget-Burner debate over the roles of identify and reversibility rules in conservation acquisition, and describes an experiment designed to determine whether one group of rules is more closely related to conservation than the other. A group of children, aged 4-6 years, received tests of…

  8. Learning to Think by Learning LOGO: Rule Learning in Third-Grade Computer Programmers.

    ERIC Educational Resources Information Center

    Gorman, Henry, Jr.; Bourne, Lyle E., Jr.

    1983-01-01

    Fifteen third-grade students learned LOGO during the school year. The group who received one hour per week of individual computer time (separate from in-class instruction) did significantly better on a conditional rule-learning task than did students who received one-half hour per week of individual computer time. (GC)

  9. A general framework for learning rules from data.

    PubMed

    Apolloni, Bruno; Esposito, Anna; Malchiodi, Dario; Orovas, Christos; Palmas, Giorgio; Taylor, John G

    2004-11-01

    With the aim of getting understandable symbolic rules to explain a given phenomenon, we split the task of learning these rules from sensory data in two phases: a multilayer perceptron maps features into propositional variables and a set of subsequent layers operated by a PAC-like algorithm learns Boolean expressions on these variables. The special features of this procedure are that: i) the neural network is trained to produce a Boolean output having the principal task of discriminating between classes of inputs; ii) the symbolic part is directed to compute rules within a family that is not known a priori; iii) the welding point between the two learning systems is represented by a feedback based on a suitability evaluation of the computed rules. The procedure we propose is based on a computational learning paradigm set up recently in some papers in the fields of theoretical computer science, artificial intelligence and cognitive systems. The present article focuses on information management aspects of the procedure. We deal with the lack of prior information about the rules through learning strategies that affect both the meaning of the variables and the description length of the rules into which they combine. The paper uses the task of learning to formally discriminate among several emotional states as both a working example and a test bench for a comparison with previous symbolic and subsymbolic methods in the field.

  10. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  11. Bayesian Learning and the Psychology of Rule Induction

    ERIC Educational Resources Information Center

    Endress, Ansgar D.

    2013-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…

  12. Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuhiko; Hoshina, Akemi

    This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.

  13. Dissertation Abstracts: Scientific Evidence Related to Teaching and Learning Mathematics

    ERIC Educational Resources Information Center

    Cicmanec, Karen B.

    2008-01-01

    This categorical analysis explores the mathematics education doctoral dissertations archived in UMI "Digital Dissertations" (1991-2005) and 115 abstracts of doctoral dissertations from 46 institutions offering doctoral degrees in 2004. The goal of this study is to a) index changes in the numbers of mathematics education doctoral candidates and b)…

  14. Dopaminergic Genetic Polymorphisms Predict Rule-Based Category Learning

    PubMed Central

    Byrne, Kaileigh A.; Davis, Tyler; Worthy, Darrell A.

    2016-01-01

    Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, while the Val158Met single nucleotide polymorphism of the COMT gene moderates dopamine availability in the prefrontal cortex. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task-type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, while prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes while cortical genes mediate the ability to update complex rule-representations. PMID:26918585

  15. Learning a New Selection Rule in Visual and Frontal Cortex.

    PubMed

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. PMID:27269960

  16. Learning a New Selection Rule in Visual and Frontal Cortex

    PubMed Central

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R.

    2016-01-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. PMID:27269960

  17. Switching between Abstract Rules Reflects Disease Severity but Not Dopaminergic Status in Parkinson's Disease

    ERIC Educational Resources Information Center

    Kehagia, Angie A.; Cools, Roshan; Barker, Roger A.; Robbins, Trevor W.

    2009-01-01

    This study sought to disambiguate the impact of Parkinson's disease (PD) on cognitive control as indexed by task set switching, by addressing discrepancies in the literature pertaining to disease severity and paradigm heterogeneity. A task set is governed by a rule that determines how relevant stimuli (stimulus set) map onto specific responses…

  18. Importance of Fe and Mn Pipe Deposits to Lead and Copper Rule Compliance - abstract

    EPA Science Inventory

    When Madison, WI exceeded the lead Action Level in 1992, residential and off-line tests suggested that lead release into the water was more complex than a lead solubility mechanism. The water utility chose to address the Lead and Copper Rule (LCR) exceedance by implementing full ...

  19. Abstraction, ethics and software: Why don`t the rules work?

    SciTech Connect

    Warwick, S.

    1994-12-31

    A theory is presented that one of the reasons why the use of unlicensed software is so widespread and unstigmatized is that legislatures, courts and other bodies which create policy operate at a higher level of abstraction than do individuals, and that abstraction is a key factor in the divergence of societal behavior from that condoned by legal statute. This theory is explored through a pilot study consisting of medium depth interviews with two volunteers who had used unlicensed software. Their attitudes, understanding of the law, and characterization of the their use of unlicensed software as based on {open_quotes}need{close_quotes} is reported. In addition, the concept of face is examined, and how it is maintained while violating law. It is suggested that further studies, using multiple methodologies, (in-depth interview, focus groups, and surveys) be conducted prior to developing further policy or legislation regarding intellectual property protection for software.

  20. Does hearing two dialects at different times help infants learn dialect-specific rules?

    PubMed

    Gonzales, Kalim; Gerken, LouAnn; Gómez, Rebecca L

    2015-07-01

    Infants might be better at teasing apart dialects with different language rules when hearing the dialects at different times, since language learners do not always combine input heard at different times. However, no previous research has independently varied the temporal distribution of conflicting language input. Twelve-month-olds heard two artificial language streams representing different dialects-a "pure stream" whose sentences adhered to abstract grammar rules like aX bY, and a "mixed stream" wherein any a- or b-word could precede any X- or Y-word. Infants were then tested for generalization of the pure stream's rules to novel sentences. Supporting our hypothesis, infants showed generalization when the two streams' sentences alternated in minutes-long intervals without any perceptually salient change across streams (Experiment 2), but not when all sentences from these same streams were randomly interleaved (Experiment 3). Results are interpreted in light of temporal context effects in word learning.

  1. Regulation of Parvalbumin Basket cell plasticity in rule learning.

    PubMed

    Caroni, Pico

    2015-04-24

    Local inhibitory Parvalbumin (PV)-expressing Basket cell networks shift to one of two possible opposite configurations depending on whether behavioral learning involves acquisition of new information or consolidation of validated rules. This reflects the existence of PV Basket cell subpopulations with distinct schedules of neurogenesis, output target neurons and roles in learning. Plasticity of hippocampal early-born PV neurons is recruited in rule consolidation, whereas plasticity of late-born PV neurons is recruited in new information acquisition. This involves regulation of early-born PV neuron plasticity specifically through excitation, and of late-born PV neuron plasticity specifically through inhibition. Therefore, opposite learning requirements are implemented by distinct local networks involving PV Basket cell subpopulations specifically regulated through inhibition or excitation.

  2. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    PubMed

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  3. Proof Rules for Automated Compositional Verification through Learning

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Giannakopoulou, Dimitra; Pasareanu, Corina S.

    2003-01-01

    Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compositionality. However, this style of reasoning is often non-trivial, typically requiring human input to determine appropriate assumptions. In this paper, we present novel assume- guarantee rules in the setting of finite labelled transition systems with blocking communication. We show how these rules can be applied in an iterative and fully automated fashion within a framework based on learning.

  4. Exact learning and default-rule governed behaviour

    NASA Astrophysics Data System (ADS)

    Kohan, A. F.; Perazzo, R. P. J.

    1992-06-01

    We have modeled “exact” and “regularized” learning in artificial neural networks (ANNs), which can be trained to reproduce the Markovian state transition matrix of a time sequence. We consider that a “quasi-regular” mapping corresponds to a sequence in which transition rules of widely different orders coexist. To train the network a cost function is minimized that counts the number of times that each rule is violated in a sufficiently long string. “Generalization” is checked comparing the sequences generated during training with the target one. We find that for all realistic situations the ANN rapidly convergences to a “default rule”. The default rule governed behaviour appears within the present model as a consequence of the special training protocol and the structure of the synaptic phase space.

  5. Ego depletion interferes with rule-defined category learning but not non-rule-defined category learning

    PubMed Central

    Minda, John P.; Rabi, Rahel

    2015-01-01

    Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants’ executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory. PMID:25688220

  6. Interactions of the hippocampal system and the prefrontal cortex in learning language-like rules.

    PubMed

    Opitz, Bertram; Friederici, Angela D

    2003-08-01

    One of the most influential views on the hippocampal function suggests that this brain region is critically involved in relational memory processing, that is, binding converging inputs to mediate the representation of relationships among the constituents of episodes. It has been proposed that this binding is automatic and obligatory during learning and remembering In addition, neuroimaging studies have highlighted the importance of the prefrontal cortex, in learning, memory, and language processing. However, the posited importance of hippocampal-prefrontal interaction remains to be empirically tested. In the present study we used functional magnetic resonance imaging to examine in detail this interaction by assessing learning-related changes in hemodynamic activity during artificial language acquisition. It has been shown previously that artificial grammar systems might be learned by evaluating pattern-based relations in word sequences and generalizing beyond specific word order, that is, rule abstraction. During scanning, participants learned an artificial language whose miniature grammar meets the universal principles of a natural language. Increased proficiency level of the artificial language is associated with decreased left hippocampal activity. In contrast, we observed an increased recruitment of the left inferior frontal gyrus (Broca's area), a region that contributes to syntax processing in natural language. The present results, therefore, indicate a learning-related change in brain circuitry underlying relational processes of language learning, with a transition from a similarity-based learning system in the medial temporal lobes to a language-related processing system in the left prefrontal cortex.

  7. Children with specific language impairment show rapid, implicit learning of stress assignment rules

    PubMed Central

    Plante, Elena; Bahl, Megha; Vance, Rebecca; Gerken, LouAnn

    2010-01-01

    An implicit learning paradigm was used to assess children's sensitivity to syllable stress information in an artificial language. Study 1 demonstrated that preschool children, with and without specific language impairment (SLI), can generalize patterns of stress heard during a brief period of familiarization, and can also abstract underlying ordered rules by which stress patterns were assigned to syllables. In Study 2, the salience of stressed elements was acoustically enhanced. Counter to expectations, there was no evidence of learning with this manipulation for either the typically developing children or children with SLI. The results suggest that children with SLI and their typically-developing peers are sensitive to syllable stress cues to language structure. However, attempts to draw attention to these patterns by making them more salient may prompt children to use alternate learning strategies that do not lead to an implicit understanding of how stress contributes to the structure of language. PMID:20542518

  8. Statistical learning is constrained to less abstract patterns in complex sensory input (but not the least).

    PubMed

    Emberson, Lauren L; Rubinstein, Dani Y

    2016-08-01

    The influence of statistical information on behavior (either through learning or adaptation) is quickly becoming foundational to many domains of cognitive psychology and cognitive neuroscience, from language comprehension to visual development. We investigate a central problem impacting these diverse fields: when encountering input with rich statistical information, are there any constraints on learning? This paper examines learning outcomes when adult learners are given statistical information across multiple levels of abstraction simultaneously: from abstract, semantic categories of everyday objects to individual viewpoints on these objects. After revealing statistical learning of abstract, semantic categories with scrambled individual exemplars (Exp. 1), participants viewed pictures where the categories as well as the individual objects predicted picture order (e.g., bird1-dog1, bird2-dog2). Our findings suggest that participants preferentially encode the relationships between the individual objects, even in the presence of statistical regularities linking semantic categories (Exps. 2 and 3). In a final experiment we investigate whether learners are biased towards learning object-level regularities or simply construct the most detailed model given the data (and therefore best able to predict the specifics of the upcoming stimulus) by investigating whether participants preferentially learn from the statistical regularities linking individual snapshots of objects or the relationship between the objects themselves (e.g., bird_picture1-dog_picture1, bird_picture2-dog_picture2). We find that participants fail to learn the relationships between individual snapshots, suggesting a bias towards object-level statistical regularities as opposed to merely constructing the most complete model of the input. This work moves beyond the previous existence proofs that statistical learning is possible at both very high and very low levels of abstraction (categories vs. individual

  9. A hierarchical structure for representing and learning fuzzy rules

    NASA Technical Reports Server (NTRS)

    Yager, Ronald R.

    1993-01-01

    Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.

  10. Rule-based category learning in Down syndrome.

    PubMed

    Phillips, B Allyson; Conners, Frances A; Merrill, Edward; Klinger, Mark R

    2014-05-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III ( Woodock, McGrew, & Mather, 2001 ). In regression-based analyses, DS and ID groups performed below the level expected for their nonverbal ability. In cross-sectional developmental trajectory analyses, results depended on the task. On the MCST, the DS and ID groups were similar to the TD group. On the Concept Formation test, the DS group had slower cross-sectional change than the other 2 groups. Category learning may be an area of difficulty for those with ID, but task-related factors may affect trajectories for youths with DS.

  11. Implicit Learning of Semantic Category Sequences: Response-Independent Acquisition of Abstract Sequential Regularities

    ERIC Educational Resources Information Center

    Goschke, Thomas; Bolte, Annette

    2007-01-01

    Through the use of a new serial naming task, the authors investigated implicit learning of repeating sequences of abstract semantic categories. Participants named objects (e.g., table, shirt) appearing in random order. Unbeknownst to them, the semantic categories of the objects (e.g., furniture, clothing) followed a repeating sequence.…

  12. An Eye-Tracking Study of Learning from Science Text with Concrete and Abstract Illustrations

    ERIC Educational Resources Information Center

    Mason, Lucia; Pluchino, Patrik; Tornatora, Maria Caterina; Ariasi, Nicola

    2013-01-01

    This study investigated the online process of reading and the offline learning from an illustrated science text. The authors examined the effects of using a concrete or abstract picture to illustrate a text and adopted eye-tracking methodology to trace text and picture processing. They randomly assigned 59 eleventh-grade students to 3 reading…

  13. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    ERIC Educational Resources Information Center

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  14. Some aspects of using new techniques of teaching/learning in education in optics (Abstract only)

    NASA Astrophysics Data System (ADS)

    Suchanska, Malgorzata

    2003-11-01

    The deep learning in Optics can be encouraged by stimulating and considerate teaching. It means that teacher should demonstrate his/her personal commitment to the subject and stress its meaning, relevance and importance to the students. It is also important to allow students to be creative in solving problems and in interpretation of its contents. In order to help the students to become more creative persons it is necessary to enhance the learning process of modern knowledge in Optics, to design and conduct experiments, stimulate passions and interests, allow an access to the e-learning system (Internet) and introduce the psychological training (creativity, communication, lateral thinking etc.) (Abstract only available)

  15. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    NASA Astrophysics Data System (ADS)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  16. A neuronal learning rule for sub-millisecond temporal coding

    NASA Astrophysics Data System (ADS)

    Gerstner, Wulfram; Kempter, Richard; van Hemmen, J. Leo; Wagner, Hermann

    1996-09-01

    A PARADOX that exists in auditory and electrosensory neural systems1,2 is that they encode behaviourally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The importance of temporal coding in neural information processing is not clear yet3-8. A central question is whether neuronal firing can be more precise than the time constants of the neuronal processes involved9. Here we address this problem using the auditory system of the barn owl as an example. We present a modelling study based on computer simulations of a neuron in the laminar nucleus. Three observations explain the paradox. First, spiking of an 'integrate-and-fire' neuron driven by excitatory postsynaptic potentials with a width at half-maximum height of 250 μs, has an accuracy of 25 μs if the presynaptic signals arrive coherently. Second, the necessary degree of coherence in the signal arrival times can be attained during ontogenetic development by virtue of an unsupervised hebbian learning rule. Learning selects connections with matching delays from a broad distribution of axons with random delays. Third, the learning rule also selects the correct delays from two independent groups of inputs, for example, from the left and right ear.

  17. Finding Influential Users in Social Media Using Association Rule Learning

    NASA Astrophysics Data System (ADS)

    Erlandsson, Fredrik; Bródka, Piotr; Borg, Anton; Johnson, Henric

    2016-04-01

    Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

  18. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  19. Abstract or Concrete Examples in Learning Mathematics? A Replication and Elaboration of Kaminski, Sloutsky, and Heckler's Study

    ERIC Educational Resources Information Center

    De Bock, Dirk; Deprez, Johan; Van Dooren, Wim; Roelens, Michel; Verschaffel, Lieven

    2011-01-01

    Kaminski, Sloutsky, and Heckler (2008a) published in "Science" a study on "The advantage of abstract examples in learning math," in which they claim that students may benefit more from learning mathematics through a single abstract, symbolic representation than from multiple concrete examples. This publication elicited both enthusiastic and…

  20. Bothered by abstractness or engaged by cohesion? Experts' explanations enhance novices' deep-learning.

    PubMed

    Lachner, Andreas; Nückles, Matthias

    2015-03-01

    Experts' explanations have been shown to better enhance novices' transfer as compared with advanced students' explanations. Based on research on expertise and text comprehension, we investigated whether the abstractness or the cohesion of experts' and intermediates' explanations accounted for novices' learning. In Study 1, we showed that the superior cohesion of experts' explanations accounted for most of novices' transfer, whereas the degree of abstractness did not impact novices' transfer performance. In Study 2, we investigated novices' processing while learning with experts' and intermediates' explanations. We found that novices studying experts' explanations actively self-regulated their processing of the explanations, as they showed mainly deep-processing activities, whereas novices learning with intermediates' explanations were mainly engaged in shallow-processing activities by paraphrasing the explanations. Thus, we concluded that subject-matter expertise is a crucial prerequisite for instructors. Despite the abstract character of experts' explanations, their subject-matter expertise enables them to generate highly cohesive explanations that serve as a valuable scaffold for students' construction of flexible knowledge by engaging them in deep-level processing.

  1. Prototype Abstraction and Distinctive Feature Learning: An Application to Learning Chinese Characters

    ERIC Educational Resources Information Center

    Matsuda, Noriyuki; Robbins, Donald

    1977-01-01

    Using recognition tests with new and old exemplars (multiple-component characters) and prototypes (common components), the traditional language learning technique of paired-associate training with exemplars of Chinese characters and specific English translations led to the poorest performance of the three methods tested. Learning either exemplars…

  2. Newly learned word forms are abstract and integrated immediately after acquisition.

    PubMed

    Kapnoula, Efthymia C; McMurray, Bob

    2016-04-01

    A hotly debated question in word learning concerns the conditions under which newly learned words compete or interfere with familiar words during spoken word recognition. This has recently been described as a key marker of the integration of a new word into the lexicon and was thought to require consolidation Dumay & Gaskell, (Psychological Science, 18, 35-39, 2007; Gaskell & Dumay, Cognition, 89, 105-132, 2003). Recently, however, Kapnoula, Packard, Gupta, and McMurray, (Cognition, 134, 85-99, 2015) showed that interference can be observed immediately after a word is first learned, implying very rapid integration of new words into the lexicon. It is an open question whether these kinds of effects derive from episodic traces of novel words or from more abstract and lexicalized representations. Here we addressed this question by testing inhibition for newly learned words using training and test stimuli presented in different talker voices. During training, participants were exposed to a set of nonwords spoken by a female speaker. Immediately after training, we assessed the ability of the novel word forms to inhibit familiar words, using a variant of the visual world paradigm. Crucially, the test items were produced by a male speaker. An analysis of fixations showed that even with a change in voice, newly learned words interfered with the recognition of similar known words. These findings show that lexical competition effects from newly learned words spread across different talker voices, which suggests that newly learned words can be sufficiently lexicalized, and abstract with respect to talker voice, without consolidation.

  3. Learning trees and rules with set-valued features

    SciTech Connect

    Cohen, W.W.

    1996-12-31

    In most learning systems examples are represented as fixed-length {open_quotes}feature vectors{close_quotes}, the components of which are either real numbers or nominal values. We propose an extension of the feature-vector representation that allows the value of a feature to be a set of strings; for instance, to represent a small white and black dog with the nominal features size and species and the set-valued feature color, one might use a feature vector with size-small, species-canis-familiaris and color-(white, black). Since we make no assumptions about the number of possible set elements, this extension of the traditional feature-vector representation is closely connected to Blum`s {open_quotes}infinite attribute{close_quotes} representation. We argue that many decision tree and rule learning algorithms can be easily extended to set-valued features. We also show by example that many real-world learning problems can be efficiently and naturally represented with set-valued features; in particular, text categorization problems and problems that arise in propositionalizing first-order representations lend themselves to set-valued features.

  4. Recognition by variance: learning rules for spatiotemporal patterns.

    PubMed

    Barak, Omri; Tsodyks, Misha

    2006-10-01

    Recognizing specific spatiotemporal patterns of activity, which take place at timescales much larger than the synaptic transmission and membrane time constants, is a demand from the nervous system exemplified, for instance, by auditory processing. We consider the total synaptic input that a single readout neuron receives on presentation of spatiotemporal spiking input patterns. Relying on the monotonic relation between the mean and the variance of a neuron's input current and its spiking output, we derive learning rules that increase the variance of the input current evoked by learned patterns relative to that obtained from random background patterns. We demonstrate that the model can successfully recognize a large number of patterns and exhibits a slow deterioration in performance with increasing number of learned patterns. In addition, robustness to time warping of the input patterns is revealed to be an emergent property of the model. Using a leaky integrate-and-fire realization of the readout neuron, we demonstrate that the above results also apply when considering spiking output. PMID:16907629

  5. Discovering Abstract Concepts to Aid Cross-Map Transfer for a Learning Agent

    NASA Astrophysics Data System (ADS)

    Herpson, Cédric; Corruble, Vincent

    The capacity to apply knowledge in a context different than the one in which it was learned has become crucial within the area of autonomous agents. This paper specifically addresses the issue of transfer of knowledge acquired through online learning in partially observable environments. We investigate the discovery of relevant abstract concepts which help the transfer of knowledge in the context of an environment characterized by its 2D geographical configuration. The architecture proposed is tested in a simple grid-world environment where two agents duel each other. Results show that an agent’s performances are improved through learning, including when it is tested on a map it has not yet seen.

  6. High stimulus variability in nonnative speech learning supports formation of abstract categories: evidence from Japanese geminates.

    PubMed

    Sadakata, Makiko; McQueen, James M

    2013-08-01

    This study reports effects of a high-variability training procedure on nonnative learning of a Japanese geminate-singleton fricative contrast. Thirty native speakers of Dutch took part in a 5-day training procedure in which they identified geminate and singleton variants of the Japanese fricative /s/. Participants were trained with either many repetitions of a limited set of words recorded by a single speaker (low-variability training) or with fewer repetitions of a more variable set of words recorded by multiple speakers (high-variability training). Both types of training enhanced identification of speech but not of nonspeech materials, indicating that learning was domain specific. High-variability training led to superior performance in identification but not in discrimination tests, and supported better generalization of learning as shown by transfer from the trained fricatives to the identification of untrained stops and affricates. Variability thus helps nonnative listeners to form abstract categories rather than to enhance early acoustic analysis.

  7. Learning Problem-Solving Rules as Search through a Hypothesis Space

    ERIC Educational Resources Information Center

    Lee, Hee Seung; Betts, Shawn; Anderson, John R.

    2016-01-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem…

  8. Rule learning enhances structural plasticity of long-range axons in frontal cortex

    PubMed Central

    Johnson, Carolyn M.; Peckler, Hannah; Tai, Lung-Hao; Wilbrecht, Linda

    2016-01-01

    Rules encompass cue-action-outcome associations used to guide decisions and strategies in a specific context. Subregions of the frontal cortex including the orbitofrontal cortex (OFC) and dorsomedial prefrontal cortex (dmPFC) are implicated in rule learning, although changes in structural connectivity underlying rule learning are poorly understood. We imaged OFC axonal projections to dmPFC during training in a multiple choice foraging task and used a reinforcement learning model to quantify explore–exploit strategy use and prediction error magnitude. Here we show that rule training, but not experience of reward alone, enhances OFC bouton plasticity. Baseline bouton density and gains during training correlate with rule exploitation, while bouton loss correlates with exploration and scales with the magnitude of experienced prediction errors. We conclude that rule learning sculpts frontal cortex interconnectivity and adjusts a thermostat for the explore–exploit balance. PMID:26949122

  9. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  10. Imitation as a mechanism in cognitive development: a cross-cultural investigation of 4-year-old children's rule learning.

    PubMed

    Wang, Zhidan; Williamson, Rebecca A; Meltzoff, Andrew N

    2015-01-01

    Children learn about the social and physical world by observing other people's acts. This experiment tests both Chinese and American children's learning of a rule. For theoretical reasons we chose the rule of categorizing objects by the weight. Children, age 4 years, saw an adult heft four visually-identical objects and sort them into two bins based on an invisible property-the object's weight. Children who saw this categorization behavior were more likely to sort those objects by weight than were children who saw control actions using the same objects and the same bins. Crucially, children also generalized to a novel set of objects with no further demonstration, suggesting rule learning. We also report that high-fidelity imitation of the adult's "hefting" acts may give children crucial experience with the objects' weights, which could then be used to infer the more abstract rule. The connection of perception, action, and cognition was found in children from both cultures, which leads to broad implications for how the imitation of adults' acts functions as a lever in cognitive development.

  11. Concurrence of rule- and similarity-based mechanisms in artificial grammar learning.

    PubMed

    Opitz, Bertram; Hofmann, Juliane

    2015-03-01

    A current theoretical debate regards whether rule-based or similarity-based learning prevails during artificial grammar learning (AGL). Although the majority of findings are consistent with a similarity-based account of AGL it has been argued that these results were obtained only after limited exposure to study exemplars, and performance on subsequent grammaticality judgment tests has often been barely above chance level. In three experiments the conditions were investigated under which rule- and similarity-based learning could be applied. Participants were exposed to exemplars of an artificial grammar under different (implicit and explicit) learning instructions. The analysis of receiver operating characteristics (ROC) during a final grammaticality judgment test revealed that explicit but not implicit learning led to rule knowledge. It also demonstrated that this knowledge base is built up gradually while similarity knowledge governed the initial state of learning. Together these results indicate that rule- and similarity-based mechanisms concur during AGL. Moreover, it could be speculated that two different rule processes might operate in parallel; bottom-up learning via gradual rule extraction and top-down learning via rule testing. Crucially, the latter is facilitated by performance feedback that encourages explicit hypothesis testing.

  12. Learning Syntactic Rules and Tags with Genetic Algorithms for Information Retrieval and Filtering: An Empirical Basis for Grammatical Rules.

    ERIC Educational Resources Information Center

    Losee, Robert M.

    1996-01-01

    The grammars of natural languages may be learned by using genetic algorithm systems such as LUST (Linguistics Using Sexual Techniques) that reproduce and mutate grammatical rules and parts-of-speech tags. In document retrieval or filtering systems, applying tags to the list of terms representing a document provides additional information about…

  13. Teaching with Concrete and Abstract Visual Representations: Effects on Students' Problem Solving, Problem Representations, and Learning Perceptions

    ERIC Educational Resources Information Center

    Moreno, Roxana; Ozogul, Gamze; Reisslein, Martin

    2011-01-01

    In 3 experiments, we examined the effects of using concrete and/or abstract visual problem representations during instruction on students' problem-solving practice, near transfer, problem representations, and learning perceptions. In Experiments 1 and 2, novice students learned about electrical circuit analysis with an instructional program that…

  14. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  15. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design.

  16. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  17. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  18. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  19. A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules

    PubMed Central

    Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.

    2013-01-01

    Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082

  20. Code-specific learning rules improve action selection by populations of spiking neurons.

    PubMed

    Friedrich, Johannes; Urbanczik, Robert; Senn, Walter

    2014-08-01

    Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space. PMID:24875790

  1. Age affects chunk-based, but not rule-based learning in artificial grammar acquisition.

    PubMed

    Kürten, Julia; De Vries, Meinou H; Kowal, Kristina; Zwitserlood, Pienie; Flöel, Agnes

    2012-07-01

    Explicit learning is well known to decline with age, but divergent results have been reported for implicit learning. Here, we assessed the effect of aging on implicit vs. explicit learning within the same task. Fifty-five young (mean 32 years) and 55 elderly (mean 64 years) individuals were exposed to letter strings generated by an artificial grammar. Subsequently, participants classified novel strings as grammatical or nongrammatical. Acquisition of superficial ("chunk-based") and structural ("rule-based") features of the grammar were analyzed separately. We found that overall classification accuracy was diminished in the elderly, driven by decreased performance on items that required chunk-based knowledge. Performance on items requiring rule-based knowledge was comparable between groups. Results indicate that rule-based and chunk-based learning are differentially affected by age: while rule-based learning, reflecting implicit learning, is preserved, chunk-based learning, which contains at least some explicit learning aspects, declines with age. Our findings may explain divergent results on implicit learning tasks in previous studies on aging. They may also help to better understand compensatory mechanisms during the aging process.

  2. 8-Month-Old Infants Spontaneously Learn and Generalize Hierarchical Rules

    PubMed Central

    Werchan, Denise M.; Collins, Anne G. E.; Frank, Michael J.; Amso, Dima

    2015-01-01

    The ability to extract hierarchically organized rule structures from noisy environments is critical to human cognitive, social, and emotional intelligence. Adults spontaneously create hierarchical rule structures of this sort. In the present research, we conducted two experiments to examine the previously unknown developmental origins of this hallmark skill. In Experiment 1, we exploited a visual paradigm previously shown to elicit incidental hierarchical rule learning in adults. In Experiment 2, we used the same learning structure to examine whether these hierarchical-rule-learning mechanisms are domain general and can help infants learn spoken object-label mappings across different speaker contexts. In both experiments, we found that 8-month-olds created and generalized hierarchical rules during learning. Eyeblink rate, an exploratory indicator of striatal dopamine activity, mirrored behavioral-learning patterns. Our results provide direct evidence that the human brain is predisposed to extract knowledge from noisy environments, and they add a fundamental learning mechanism to what is currently known about the neurocognitive toolbox available to infants. PMID:25878172

  3. The effects of age on associative and rule-based causal learning and generalization.

    PubMed

    Mutter, Sharon A; Plumlee, Leslie F

    2014-06-01

    We assessed how age influences associative and rule-based processes in causal learning using the Shanks and Darby (1998) concurrent patterning discrimination task. In Experiment 1, participants were divided into groups based on their learning performance after 6 blocks of training trials. High discrimination mastery young adults learned the patterning discrimination more rapidly and accurately than moderate mastery young adults. They were also more likely to induce the patterning rule and use this rule to generate predictions for novel cues, whereas moderate mastery young adults were more likely to use cue similarity as the basis for their predictions. Like moderate mastery young adults, older adults used similarity-based generalization for novel cues, but they did not achieve the same level of patterning discrimination. In Experiment 2, young and older adults were trained to the same learning criterion. Older adults again showed deficits in patterning discrimination and, in contrast to young adults, even when they reported awareness of the patterning rule, they used only similarity-based generalization in their predictions for novel cues. These findings suggest that it is important to consider how the ability to code or use cue representations interacts with the requirements of the causal learning task. In particular, age differences in causal learning seem to be greatest for tasks that require rapid coding of configural representations to control associative interference between similar cues. Configural coding may also be related to the success of rule-based processes in these types of learning tasks.

  4. Brain activity and learning of mathematical rules--effects on the frequencies of EEG.

    PubMed

    Skrandies, Wolfgang; Klein, Alexander

    2015-04-01

    We investigated the change of evoked EEG frequencies induced by learning to solve mathematical tasks by applying divisibility rules. The performance on easy (divisibility by 2, 3, or 5) and hard tasks (divisibility by 9 or by 11) was compared. In a behavioral experiment on 52 adults we found a significant increase in performance from 67% to 90% correct responses induced by rule learning. Subsequently, the EEG data recorded from 30 additional volunteers were analyzed. EEG recordings were performed in two parts: First, subjects had to solve 200 tasks without knowing the divisibility rules. Then the rules were explained, followed by another set of 200 tasks. EEG was measured simultaneously in 30 channels, artifacts were removed offline, and the data before and after rule learning were compared. A wavelet transformation with the Morlet-5 wavelet was computed, and the scalp topography of the maximal frequency and its occurrence time was compared. Largest effects were observed with frequencies between about 6 and 18 Hz. In the frequency band between 12 and 30 Hz maximal frequencies were significantly different after successful learning over frontal and centro-parietal scalp areas of the right hemisphere. These changes were paralleled by decreased response times. In summary, our data illustrate a significant relation between successful learning divisibility rules and changes in the frequency content of the task-related EEG. Significant effects were observed after a very short training period of less than 10 min.

  5. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  6. Inferring learning rules from distributions of firing rates in cortical neurons.

    PubMed

    Lim, Sukbin; McKee, Jillian L; Woloszyn, Luke; Amit, Yali; Freedman, David J; Sheinberg, David L; Brunel, Nicolas

    2015-12-01

    Information about external stimuli is thought to be stored in cortical circuits through experience-dependent modifications of synaptic connectivity. These modifications of network connectivity should lead to changes in neuronal activity as a particular stimulus is repeatedly encountered. Here we ask what plasticity rules are consistent with the differences in the statistics of the visual response to novel and familiar stimuli in inferior temporal cortex, an area underlying visual object recognition. We introduce a method that allows one to infer the dependence of the presumptive learning rule on postsynaptic firing rate, and we show that the inferred learning rule exhibits depression for low postsynaptic rates and potentiation for high rates. The threshold separating depression from potentiation is strongly correlated with both mean and s.d. of the firing rate distribution. Finally, we show that network models implementing a rule extracted from data show stable learning dynamics and lead to sparser representations of stimuli. PMID:26523643

  7. LDA '94: A Capital IDEA. Poster Session Abstracts of the International Conference of the Learning Disabilities Association of America (Washington, D.C., March 16-19, 1994).

    ERIC Educational Resources Information Center

    Russell, Steven C., Comp.

    This booklet brings together one-page to two-page abstracts from research poster sessions held at a conference on learning disabilities. The 17 research abstracts are presented within four poster session categories: (1) research on assessment and characteristics of students with learning disabilities (with abstracts on handwriting, mainstreaming…

  8. How Do Infants and Toddlers Learn the Rules? Family Discipline and Young Children

    ERIC Educational Resources Information Center

    Smith, Anne B.

    2004-01-01

    This paper examines the issue of how under three year-olds learn the rules of appropriate behaviour in the light of sociocultural, attachment, social learning, ecological theory and sociology of childhood theories. Discipline involves teaching children how to behave acceptably in their family and society, while physical punishment is the use of…

  9. Dog Is a Dog Is a Dog: Infant Rule Learning Is Not Specific to Language

    ERIC Educational Resources Information Center

    Saffran, Jenny R.; Pollak, Seth D.; Seibel, Rebecca L.; Shkolnik, Anna

    2007-01-01

    Human infants possess powerful learning mechanisms used for the acquisition of language. To what extent are these mechanisms domain specific? One well-known infant language learning mechanism is the ability to detect and generalize rule-like similarity patterns, such as ABA or ABB [Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999).…

  10. Bending the Rules or Fudging the Paperwork? Documenting Learning in SMEs.

    ERIC Educational Resources Information Center

    Martin, Lynn

    2001-01-01

    Responses about organizational learning from 128 British small business owners were compared to workers' statements about training. Owners often bent rules and fudged paperwork to access funding or demonstrate compliance. Workplace imperatives and government program regulations often drove these practices and subverted learning. (Contains 41…

  11. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  12. Dog is a dog is a dog: infant rule learning is not specific to language.

    PubMed

    Saffran, Jenny R; Pollak, Seth D; Seibel, Rebecca L; Shkolnik, Anna

    2007-12-01

    Human infants possess powerful learning mechanisms used for the acquisition of language. To what extent are these mechanisms domain specific? One well-known infant language learning mechanism is the ability to detect and generalize rule-like similarity patterns, such as ABA or ABB [Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283, 77-80.]. The results of three experiments demonstrate that 7-month-old infants can detect and generalize these same patterns when the elements consist of pictures of animals (dogs and cats). These findings indicate that rule learning of this type is not specific to language acquisition.

  13. Multi Objective Dynamic Job Shop Scheduling using Composite Dispatching Rule and Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Chen, Xili; Hao, Xinchang; Lin, Hao Wen; Murata, Tomohiro

    The applications of composite dispatching rules for multi objective dynamic scheduling have been widely studied in literature. In general, a composite dispatching rule is a combination of several elementary dispatching rules, which is designed to optimize multiple objectives of interest under a certain scheduling environment. The relative importance of elementary dispatching rules is modeled by weight factors. A critical issue for implementation of composite dispatching rule is that the inappropriate weight values may result in poor performance. This paper presents an offline scheduling knowledge acquisition method based on reinforcement learning using simulation technique. The scheduling knowledge is applied to adjust the appropriate weight values of elementary dispatching rules in composite manner with respect to work in process fluctuation of machines during online scheduling. Implementation of the proposed method in a two objectives dynamic job shop scheduling problem is demonstrated and the results are satisfactory.

  14. Robert's Rules for Optimal Learning: Model Development, Field Testing, Implications!

    ERIC Educational Resources Information Center

    McGinty, Robert L.

    The value of accelerated learning techniques developed by the national organization for Suggestive Accelerated Learning Techniques (SALT) was tested in a study using Administrative Policy students taking the capstone course in the Eastern Washington University School of Business. Educators have linked the brain and how it functions to various…

  15. Birth of an Abstraction: A Dynamical Systems Account of the Discovery of an Elsewhere Principle in a Category Learning Task

    ERIC Educational Resources Information Center

    Tabor, Whitney; Cho, Pyeong W.; Dankowicz, Harry

    2013-01-01

    Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the…

  16. Mathematical properties of neuronal TD-rules and differential Hebbian learning: a comparison.

    PubMed

    Kolodziejski, Christoph; Porr, Bernd; Wörgötter, Florentin

    2008-03-01

    A confusingly wide variety of temporally asymmetric learning rules exists related to reinforcement learning and/or to spike-timing dependent plasticity, many of which look exceedingly similar, while displaying strongly different behavior. These rules often find their use in control tasks, for example in robotics and for this rigorous convergence and numerical stability is required. The goal of this article is to review these rules and compare them to provide a better overview over their different properties. Two main classes will be discussed: temporal difference (TD) rules and correlation based (differential hebbian) rules and some transition cases. In general we will focus on neuronal implementations with changeable synaptic weights and a time-continuous representation of activity. In a machine learning (non-neuronal) context, for TD-learning a solid mathematical theory has existed since several years. This can partly be transferred to a neuronal framework, too. On the other hand, only now a more complete theory has also emerged for differential Hebb rules. In general rules differ by their convergence conditions and their numerical stability, which can lead to very undesirable behavior, when wanting to apply them. For TD, convergence can be enforced with a certain output condition assuring that the delta-error drops on average to zero (output control). Correlation based rules, on the other hand, converge when one input drops to zero (input control). Temporally asymmetric learning rules treat situations where incoming stimuli follow each other in time. Thus, it is necessary to remember the first stimulus to be able to relate it to the later occurring second one. To this end different types of so-called eligibility traces are being used by these two different types of rules. This aspect leads again to different properties of TD and differential Hebbian learning as discussed here. Thus, this paper, while also presenting several novel mathematical results, is mainly

  17. Research Abstracts.

    ERIC Educational Resources Information Center

    Plotnick, Eric

    2001-01-01

    Presents research abstracts from the ERIC Clearinghouse on Information and Technology. Topics include: classroom communication apprehension and distance education; outcomes of a distance-delivered science course; the NASA/Kennedy Space Center Virtual Science Mentor program; survey of traditional and distance learning higher education members;…

  18. Transfer in Rule-Based Category Learning Depends on the Training Task

    PubMed Central

    Kattner, Florian; Cox, Christopher R.; Green, C. Shawn

    2016-01-01

    While learning is often highly specific to the exact stimuli and tasks used during training, there are cases where training results in learning that generalizes more broadly. It has been previously argued that the degree of specificity can be predicted based upon the learning solution(s) dictated by the particular demands of the training task. Here we applied this logic in the domain of rule-based categorization learning. Participants were presented with stimuli corresponding to four different categories and were asked to perform either a category discrimination task (which permits learning specific rule to discriminate two categories) or a category identification task (which does not permit learning a specific discrimination rule). In a subsequent transfer stage, all participants were asked to discriminate stimuli belonging to two of the categories which they had seen, but had never directly discriminated before (i.e., this particular discrimination was omitted from training). As predicted, learning in the category-discrimination tasks tended to be specific, while the category-identification task produced learning that transferred to the transfer discrimination task. These results suggest that the discrimination and identification tasks fostered the acquisition of different category representations which were more or less generalizable. PMID:27764221

  19. Neural learning rules for the vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Raymond, J. L.; Lisberger, S. G.

    1998-01-01

    Mechanisms for the induction of motor learning in the vestibulo-ocular reflex (VOR) were evaluated by recording the patterns of neural activity elicited in the cerebellum by a range of stimuli that induce learning. Patterns of climbing-fiber, vestibular, and Purkinje cell simple-spike signals were examined during sinusoidal head movement paired with visual image movement at stimulus frequencies from 0.5 to 10 Hz. A comparison of simple-spike and vestibular signals contained the information required to guide learning only at low stimulus frequencies, and a comparison of climbing-fiber and simple-spike signals contained the information required to guide learning only at high stimulus frequencies. Learning could be guided by comparison of climbing-fiber and vestibular signals at all stimulus frequencies tested, but only if climbing fiber responses were compared with the vestibular signals present 100 msec earlier. Computational analysis demonstrated that this conclusion is valid even if there is a broad range of vestibular signals at the site of plasticity. Simulations also indicated that the comparison of vestibular and climbing-fiber signals across the 100 msec delay must be implemented by a subcellular "eligibility" trace rather than by neural circuits that delay the vestibular inputs to the site of plasticity. The results suggest two alternative accounts of learning in the VOR. Either there are multiple mechanisms of learning that use different combinations of neural signals to drive plasticity, or there is a single mechanism tuned to climbing-fiber activity that follows activity in vestibular pathways by approximately 100 msec.

  20. Deriving rules from activity diary data: A learning algorithm and results of computer experiments

    NASA Astrophysics Data System (ADS)

    Arentze, Theo A.; Hofman, Frank; Timmermans, Harry J. P.

    Activity-based models consider travel as a derived demand from the activities households need to conduct in space and time. Over the last 15 years, computational or rule-based models of activity scheduling have gained increasing interest in time-geography and transportation research. This paper argues that a lack of techniques for deriving rules from empirical data hinders the further development of rule-based systems in this area. To overcome this problem, this paper develops and tests an algorithm for inductively deriving rules from activity-diary data. The decision table formalism is used to exhaustively represent the theoretically possible decision rules that individuals may use in sequencing a given set of activities. Actual activity patterns of individuals are supplied to the system as examples. In an incremental learning process, the system progressively improves on the selection of rules used for reproducing the examples. Computer experiments based on simulated data are performed to fine-tune rule selection and rule value update functions. The results suggest that the system is effective and fairly robust for parameter settings. It is concluded, therefore, that the proposed approach opens up possibilities to derive empirically tested rule-based models of activity scheduling. Follow-up research will be concerned with testing the system on empirical data.

  1. Lexical distributional cues, but not situational cues, are readily used to learn abstract locative verb-structure associations.

    PubMed

    Twomey, Katherine E; Chang, Franklin; Ambridge, Ben

    2016-08-01

    Children must learn the structural biases of locative verbs in order to avoid making overgeneralisation errors (e.g., (∗)I filled water into the glass). It is thought that they use linguistic and situational information to learn verb classes that encode structural biases. In addition to situational cues, we examined whether children and adults could use the lexical distribution of nouns in the post-verbal noun phrase of transitive utterances to assign novel verbs to locative classes. In Experiment 1, children and adults used lexical distributional cues to assign verb classes, but were unable to use situational cues appropriately. In Experiment 2, adults generalised distributionally-learned classes to novel verb arguments, demonstrating that distributional information can cue abstract verb classes. Taken together, these studies show that human language learners can use a lexical distributional mechanism that is similar to that used by computational linguistic systems that use large unlabelled corpora to learn verb meaning. PMID:27183399

  2. Learning and innovative elements of strategy adoption rules expand cooperative network topologies.

    PubMed

    Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter

    2008-01-01

    Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.

  3. Learning diagnostic features: the delta rule does Bubbles.

    PubMed

    Hannagan, Thomas; Grainger, Jonathan

    2013-07-17

    It has been shown (Murray & Gold, 2004a) that the Bubbles paradigm for studying human perceptual identification can be formally analyzed and compared to reverse correlation methods when the underlying identification model is conceived as a linear amplifier (LAM). However the usefulness of a LAM for characterizing human perceptual identification mechanisms has subsequently been questioned (Gosselin & Schyns, 2004). In this article we show that a simple linear model that is formally analogous to the LAM--a linear perceptron trained with the delta rule--can make sense of several Bubbles experiments in the context of letter identification. Specifically, an analysis of input-output connection weights after training revealed that the most positive weights clustered around letter parts in a way that mimicked the diagnostic parts of letters revealed by the Bubbles technique (Fiset et al., 2008). Our results suggest that linear observer models are indeed unreasonably effective, at least as first approximations to human letter identification mechanisms.

  4. Learning "Rules" of Practice within the Context of the Practicum Triad: A Case Study of Learning to Teach

    ERIC Educational Resources Information Center

    Chalies, Sebastien; Escalie, Guillaume; Stefano, Bertone; Clarke, Anthony

    2012-01-01

    This case study sought to determine the professional development circumstances in which a preservice teacher learned rules of practice (Wittgenstein, 1996) on practicum while interacting with a cooperating teacher and university supervisor. Borrowing from a theoretical conceptualization of teacher professional development based on the postulates…

  5. A biologically plausible learning rule for the Infomax on recurrent neural networks.

    PubMed

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. PMID:25505404

  6. A biologically plausible learning rule for the Infomax on recurrent neural networks

    PubMed Central

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. PMID:25505404

  7. Meaningful Cultural Learning by Imitative Participation: The Case of Abstract Thinking in Primary School

    ERIC Educational Resources Information Center

    van Oers, Bert

    2012-01-01

    The article describes a theory-driven approach to meaningful learning in primary schools, based on the Vygotskian cultural-historical theory of human development and learning. This approach is elaborated into an educational concept called "developmental education" that is implemented in the Netherlands in many primary schools. In this approach,…

  8. Learning of Abstract Concepts through Full-Body Interaction: A Systematic Review

    ERIC Educational Resources Information Center

    Malinverni, Laura; Pares, Narcis

    2014-01-01

    Over the past ten years several learning environments based on novel interaction modalities have been developed. Within this field, Full-body Interaction Learning Environments open promising possibilities given their capacity to involve the users at different levels, such as sensorimotor experience, cognitive aspects and affective factors.…

  9. Explicating a Mechanism for Conceptual Learning: Elaborating the Construct of Reflective Abstraction

    ERIC Educational Resources Information Center

    Simon, Martin A.; Tzur, Ron; Heinz, Karen; Kinzel, Margaret

    2004-01-01

    We articulate and explicate a mechanism for mathematics conceptual learning that can serve as a basis for the design of mathematics lessons. The mechanism, reflection on activity-effect relationships, addresses the learning paradox (Pascual-Leone, 1976), a paradox that derives from careful attention to the construct of assimilation (Piaget, 1970).…

  10. An Examination of Strategy Implementation during Abstract Nonlinguistic Category Learning in Aphasia

    ERIC Educational Resources Information Center

    Vallila-Rohter, Sofia; Kiran, Swathi

    2015-01-01

    Purpose: Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method: Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases…

  11. Enabling Active Learning. Conference Programme and Abstracts of the Association for Learning Technology Conference (1st, Hull, England, United Kingdom, September 19-21, 1994).

    ERIC Educational Resources Information Center

    Heath, Simon, Ed.

    This program for the 1994 Association for Learning Technology Conference provides a conference schedule and summarizes the presentations of the discussion workshops, hands-on workshops, live demonstrations, and poster sessions. Abstracts of the following papers presented at the conference are included: "The Conceptualisation Cycle" (J. Mayes & L.…

  12. The Effectiveness of Education and Schooling Activities with Respect to Learning Styles on the Learning of Abstract and Tangible Concepts of Social Studies by Students

    ERIC Educational Resources Information Center

    Seker, Mustafa

    2013-01-01

    This research reviews the effects of education and schooling activities that are conducted with respect to different learning styles on the success of teaching abstract and tangible concepts of 6th Grade Social Studies, and researches whether the demographic variables (age, gender) of the students had any effect on this success levels. To do so, 2…

  13. Learning the Rules: Language Development and Cultural Adjustment during Study Abroad.

    ERIC Educational Resources Information Center

    Bacon, Susan M.

    2002-01-01

    An ethnographic study examined the language development and cultural and academic adjustment of a student in her first semester of a year-long program in Mexico. Data reveal that the most dramatic change in her proficiency came about as she learned the rules, both societal and academic, that allowed her to function within the culture and that…

  14. Conference on Learning Disabilities: A Review of Indiana's Rule S-1. LD Series #5.

    ERIC Educational Resources Information Center

    Gillespie, Patricia H., Ed.; Middleton, Thomas O., Ed.

    The document is a collection of papers presented at a conference on the delivery of services to learning disabled children in Indiana that focused on Indiana's Rule S-1, which implements the mandatory special education act through multidisciplinary identification, assessment, and placement of handicapped children. Titles and authors include "The…

  15. The Aptitude-Treatment Interaction Effects on the Learning of Grammar Rules

    ERIC Educational Resources Information Center

    Hwu, Fenfang; Sun, Shuyan

    2012-01-01

    The present study investigates the interaction between two types of explicit instructional approaches, deduction and explicit-induction, and the level of foreign language aptitude in the learning of grammar rules. Results indicate that on the whole the two equally explicit instructional approaches did not differentially affect learning…

  16. On the Relationship between Implicit and Explicit Modes in the Learning of a Complex Rule Structure.

    ERIC Educational Resources Information Center

    Reber, Arthur S.; And Others

    1980-01-01

    Reber found that subjects given neutral instructions to memorize letter strings from a synthetic language learned more about the underlying grammar than those instructed to try discovering the rules for letter order. Two experiments explored the relationship between implicit and explicit processes in the acquisition of complex knowledge.…

  17. A Theory of Conditioning: Inductive Learning within Rule-Based Default Hierarchies.

    ERIC Educational Resources Information Center

    Holyoak, Keith J.; And Others

    1989-01-01

    A theory of classical conditioning is presented, which is based on a parallel, rule-based performance system integrated with mechanisms for inductive learning. A major inferential heuristic incorporated into the theory involves "unusualness," which is focused on novel cues. The theory is implemented via computer simulation. (TJH)

  18. Beyond Motivation: History as a Method for Learning Meta-Discursive Rules in Mathematics

    ERIC Educational Resources Information Center

    Kjeldsen, Tinne Hoff; Blomhoj, Morten

    2012-01-01

    In this paper, we argue that history might have a profound role to play for learning mathematics by providing a self-evident (if not indispensable) strategy for revealing meta-discursive rules in mathematics and turning them into explicit objects of reflection for students. Our argument is based on Sfard's theory of "Thinking as Communicating",…

  19. Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation

    PubMed Central

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359

  20. Imitation as a mechanism in cognitive development: a cross-cultural investigation of 4-year-old children’s rule learning

    PubMed Central

    Wang, Zhidan; Williamson, Rebecca A.; Meltzoff, Andrew N.

    2015-01-01

    Children learn about the social and physical world by observing other people’s acts. This experiment tests both Chinese and American children’s learning of a rule. For theoretical reasons we chose the rule of categorizing objects by the weight. Children, age 4 years, saw an adult heft four visually-identical objects and sort them into two bins based on an invisible property—the object’s weight. Children who saw this categorization behavior were more likely to sort those objects by weight than were children who saw control actions using the same objects and the same bins. Crucially, children also generalized to a novel set of objects with no further demonstration, suggesting rule learning. We also report that high-fidelity imitation of the adult’s “hefting” acts may give children crucial experience with the objects’ weights, which could then be used to infer the more abstract rule. The connection of perception, action, and cognition was found in children from both cultures, which leads to broad implications for how the imitation of adults’ acts functions as a lever in cognitive development. PMID:26029132

  1. Accessing first-grade teachers' images and beliefs about teaching, learning, and students: The use of abstract symbolic drawing

    NASA Astrophysics Data System (ADS)

    Droy, Karen A.

    The purpose of this study was to explore teacher beliefs and images of students, learning, and teaching. The study was designed to elicit images and beliefs with the use of teachers' symbolic drawing and subsequent interpretation of their drawings. Twelve first grade teachers with teaching experience ranging from 1½ to 25 years, and from a variety of educational settings (i.e., urban, suburban, traditional public schools, non-traditional public or private schools) participated. Data collection utilized two primary methods of qualitative inquiry: teacher created abstract symbolic drawings and interviewing. The combination of symbolic drawings and interviewing provided an effective means for teachers to access, reflect upon, and express their tacit images and beliefs in a cohesive and holistic manner. The twelve teachers in this study appeared on the surface to have similar images of learning and teaching. Teachers talked about learning as a process that involved images of filtering, connecting, becoming stuck, and disconnecting. One major difference emerged that separated teachers into two distinct groups. The majority of teachers, ten out of twelve, viewed learning as a fact-based associative categorization where students either made connections through associations or replaced old information with new information. Only two teachers talked about learning as theory-based, describing learning as making connection through an assimilatory categorization process or making revisions to personal theories. Teachers who viewed learning as fact based also viewed teaching as fact-based. In general, these teachers used discussion, teacher questions, and a large variety of activities to help students collect new facts and make associative connections. Teachers who viewed learning as theory-based used activities, discussion, and teacher questions to promote conversation and thinking. They expected students to use new facts to build and revise theories with the use of logical

  2. The application of top-down abstraction learning using prediction as a supervisory signal to cyber security

    NASA Astrophysics Data System (ADS)

    Mugan, Jonathan; Khalili, Aram E.

    2014-05-01

    Current computer systems are dumb automatons, and their blind execution of instructions makes them open to attack. Their inability to reason means that they don't consider the larger, constantly changing context outside their immediate inputs. Their nearsightedness is particularly dangerous because, in our complex systems, it is difficult to prevent all exploitable situations. Additionally, the lack of autonomous oversight of our systems means they are unable to fight through attacks. Keeping adversaries completely out of systems may be an unreasonable expectation, and our systems need to adapt to attacks and other disruptions to achieve their objectives. What is needed is an autonomous controller within the computer system that can sense the state of the system and reason about that state. In this paper, we present Self-Awareness Through Predictive Abstraction Modeling (SATPAM). SATPAM uses prediction to learn abstractions that allow it to recognize the right events at the right level of detail. These abstractions allow SATPAM to break the world into small, relatively independent, pieces that allow employment of existing reasoning methods. SATPAM goes beyond classification-based machine learning and statistical anomaly detection to be able to reason about the system, and SATPAM's knowledge representation and reasoning is more like that of a human. For example, humans intuitively know that the color of a car is not relevant to any mechanical problem, and SATPAM provides a plausible method whereby a machine can acquire such reasoning patterns. In this paper, we present the initial experimental results using SATPAM.

  3. Topic Categorisation of Statements in Suicide Notes with Integrated Rules and Machine Learning

    PubMed Central

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A.; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes. PMID:22879767

  4. Effects of Inter- and Intra-Modal Redundancy on Infants' Rule Learning

    ERIC Educational Resources Information Center

    Thiessen, Erik D.

    2012-01-01

    Previous research indicates that infants generalize syntactic-like structures to novel exemplars in a way that has been characterized as abstract and algebraic (Marcus et al., 1999). Infants appear to learn and generalize from speech more successfully than from nonspeech stimuli (Marcus, Fernandes, & Johnson, 2007). In this series of experiments,…

  5. Children with Specific Language Impairment Show Rapid, Implicit Learning of Stress Assignment Rules

    ERIC Educational Resources Information Center

    Plante, Elena; Bahl, Megha; Vance, Rebecca; Gerken, LouAnn

    2010-01-01

    An implicit learning paradigm was used to assess children's sensitivity to syllable stress information in an artificial language. Study 1 demonstrated that preschool children, with and without specific language impairment (SLI), can generalize patterns of stress heard during a brief period of familiarization, and can also abstract underlying…

  6. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    PubMed Central

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  7. Mining Formative Evaluation Rules Using Web-Based Learning Portfolios for Web-Based Learning Systems

    ERIC Educational Resources Information Center

    Chen, Chih-Ming; Hong, Chin-Ming; Chen, Shyuan-Yi; Liu, Chao-Yu

    2006-01-01

    Learning performance assessment aims to evaluate what knowledge learners have acquired from teaching activities. Objective technical measures of learning performance are difficult to develop, but are extremely important for both teachers and learners. Learning performance assessment using learning portfolios or web server log data is becoming an…

  8. Identification and Descriptions of the Momentum Effect in Studies of Learning: An Abstract Science Concept.

    ERIC Educational Resources Information Center

    Kwon, Jae-Sool; Mayer, Victor J.

    1985-01-01

    Several studies of the validity of the intensive time-series design have revealed a post-intervention increase in the level of achievement data (the "momentum effect"). Reports on the development and use of a technique to study the effect as it is observed in several data sets on the learning of plate tectonics. (Author/JN)

  9. Analogical Scaffolding and the Learning of Abstract Ideas in Physics: An Example from Electromagnetic Waves

    ERIC Educational Resources Information Center

    Podolefsky, Noah S.; Finkelstein, Noah D.

    2007-01-01

    This paper describes a model of analogy, analogical scaffolding, which explains present and prior results of student learning with analogies. We build on prior models of representation, blending, and layering of ideas. Extending this model's explanatory power, we propose ways in which the model can be applied to design a curriculum directed at…

  10. Implementation of Abstract Data Types in Dynamic Sketches for Learning Geometry

    ERIC Educational Resources Information Center

    Jasute, Egle; Dagiene, Valentina

    2014-01-01

    A long-term observation of students' usage of a dynamic geometry in a classroom at all grade levels has challenged to develop an approach for learning and understanding mathematics in an easier way for both students and teachers. The paper deals with the results of a study that investigates the process and outcomes of the implementation of…

  11. An onset is an onset: Evidence from abstraction of newly-learned phonotactic constraints.

    PubMed

    Bernard, Amélie

    2015-01-01

    Phonotactic constraints are language-specific patterns in the sequencing of speech sounds. Are these constraints represented at the syllable level (ng cannot begin syllables in English) or at the word level (ng cannot begin words)? In a continuous recognition-memory task, participants more often falsely recognized novel test items that followed than violated the training constraints, whether training and test items matched in word structure (one or two syllables) or position of restricted consonants (word-edge or word-medial position). E.g., learning that ps are onsets and fs codas, participants generalized from pef (one syllable) to putvif (two syllables), and from putvif (word-edge positions) to bufpak (word-medial positions). These results suggest that newly-learned phonotactic constraints are represented at the syllable level. The syllable is a representational unit available and spontaneously used when learning speech-sound constraints. In the current experiments, an onset is an onset and a coda a coda, regardless of word structure or word position.

  12. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    NASA Astrophysics Data System (ADS)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  13. The speed of learning instructed stimulus-response association rules in human: experimental data and model.

    PubMed

    Bugmann, Guido; Goslin, Jeremy; Duchamp-Viret, Patricia

    2013-11-01

    Humans can learn associations between visual stimuli and motor responses from just a single instruction. This is known to be a fast process, but how fast is it? To answer this question, we asked participants to learn a briefly presented (200ms) stimulus-response rule, which they then had to rapidly apply after a variable delay of between 50 and 1300ms. Participants showed a longer response time with increased variability for short delays. The error rate was low and did not vary with the delay, showing that participants were able to encode the rule correctly in less than 250ms. This time is close to the fastest synaptic learning speed deemed possible by diffusive influx of AMPA receptors. Learning continued at a slower pace in the delay period and was fully completed in average 900ms after rule presentation onset, when response latencies dropped to levels consistent with basic reaction times. A neural model was proposed that explains the reduction of response times and of their variability with the delay by (i) a random synaptic learning process that generates weights of average values increasing with the learning time, followed by (ii) random crossing of the firing threshold by a leaky integrate-and-fire neuron model, and (iii) assuming that the behavioural response is initiated when all neurons in a pool of m neurons have fired their first spike after input onset. Values of m=2 or 3 were consistent with the experimental data. The proposed model is the simplest solution consistent with neurophysiological knowledge. Additional experiments are suggested to test the hypothesis underlying the model and also to explore forgetting effects for which there were indications for the longer delay conditions. This article is part of a Special Issue entitled Neural Coding 2012.

  14. Bigger knows better: young children selectively learn rule games from adults rather than from peers.

    PubMed

    Rakoczy, Hannes; Hamann, Katharina; Warneken, Felix; Tomasello, Michael

    2010-11-01

    Preschoolers' selective learning from adult versus peer models was investigated. Extending previous research, children from age 3 were shown to selectively learn simple rule games from adult rather than peer models. Furthermore, this selective learning was not confined to preferentially performing certain acts oneself, but more specifically had a normative dimension to it: children understood the way the adult demonstrated an act not only as the better one, but as the normatively appropriate/correct one. This was indicated in their spontaneous normative interventions (protest, critique, etc.) in response to third party acts deviating from the one demonstrated by the adult model. Various interpretations of these findings are discussed in the broader context of the development of children's social cognition and cultural learning. PMID:21121467

  15. Rule extraction from support vector machines using ensemble learning approach: an application for diagnosis of diabetes.

    PubMed

    Han, Longfei; Luo, Senlin; Yu, Jianmin; Pan, Limin; Chen, Songjing

    2015-03-01

    Diabetes mellitus is a chronic disease and a worldwide public health challenge. It has been shown that 50-80% proportion of T2DM is undiagnosed. In this paper, support vector machines are utilized to screen diabetes, and an ensemble learning module is added, which turns the "black box" of SVM decisions into comprehensible and transparent rules, and it is also useful for solving imbalance problem. Results on China Health and Nutrition Survey data show that the proposed ensemble learning method generates rule sets with weighted average precision 94.2% and weighted average recall 93.9% for all classes. Furthermore, the hybrid system can provide a tool for diagnosis of diabetes, and it supports a second opinion for lay users.

  16. A cortico-hippocampal learning rule shapes inhibitory microcircuit activity to enhance hippocampal information flow

    PubMed Central

    Basu, Jayeeta; Srinivas, Kalyan V.; Cheung, Stephanie K.; Taniguchi, Hiroki; Huang, Z. Josh

    2013-01-01

    Summary How does coordinated activity between distinct brain regions implement a set of learning rules to sculpt information processing in a given neural circuit? Using interneuron cell-type specific optical activation and pharmacogenetic silencing in vitro, we show that temporally precise pairing of direct entorhinal perforant path (PP) and trisynaptic Schaffer collateral (SC) inputs to CA1 pyramidal cells selectively suppresses SC-associated perisomatic inhibition from cholecystokinin (CCK) expressing interneurons. The CCK interneurons provide a surprisingly strong feed-forward inhibitory drive to effectively control the coincident excitation of CA1 pyramidal neurons by convergent inputs. Thus, in-phase cortico-hippocampal activity provides a powerful heterosynaptic learning rule for long-term gating of information flow through the hippocampal excitatory macrocircuit by the silencing of the CCK inhibitory microcircuit. PMID:24050406

  17. Fuzzy-rule emulated networks, based on reinforcement learning for nonlinear discrete-time controllers.

    PubMed

    Treesatayapun, Chidentree

    2008-10-01

    This article introduces an adaptive controller for a class of nonlinear discrete-time systems, based on self adjustable networks called Multi-Input Fuzzy Rules Emulated Networks (MIFRENs), and its reinforcement learning algorithm. Because of the universal function approximation of MIFREN, the first MIFREN called MIFREN(c) is used to estimate a long-term cost function, which demonstrates as a performance index for the tuning procedure. Another network or MIFREN(a) is designed as a direct controller via the human knowledge through defined If-Then rules. The selection procedure for any system parameters, such as learning rates and some constant parameters, is represented by the proof of proposed theorems. The system's performance is demonstrated by computer simulations via selected nonlinear discrete-time systems, and comparison results with other controllers to validate theoretical development.

  18. Learning the exception to the rule: model-based FMRI reveals specialized representations for surprising category members.

    PubMed

    Davis, Tyler; Love, Bradley C; Preston, Alison R

    2012-02-01

    Category knowledge can be explicit, yet not conform to a perfect rule. For example, a child may acquire the rule "If it has wings, then it is a bird," but then must account for exceptions to this rule, such as bats. The current study explored the neurobiological basis of rule-plus-exception learning by using quantitative predictions from a category learning model, SUSTAIN, to analyze behavioral and functional magnetic resonance imaging (fMRI) data. SUSTAIN predicts that exceptions require formation of specialized representations to distinguish exceptions from rule-following items in memory. By incorporating quantitative trial-by-trial predictions from SUSTAIN directly into fMRI analyses, we observed medial temporal lobe (MTL) activation consistent with 2 predicted psychological processes that enable exception learning: item recognition and error correction. SUSTAIN explains how these processes vary in the MTL across learning trials as category knowledge is acquired. Importantly, MTL engagement during exception learning was not captured by an alternate exemplar-based model of category learning or by standard contrasts comparing exception and rule-following items. The current findings thus provide a well-specified theory for the role of the MTL in category learning, where the MTL plays an important role in forming specialized category representations appropriate for the learning context. PMID:21666132

  19. Identifying relevant data for a biological database: handcrafted rules versus machine learning.

    PubMed

    Sehgal, Aditya Kumar; Das, Sanmay; Noto, Keith; Saier, Milton H; Elkan, Charles

    2011-01-01

    With well over 1,000 specialized biological databases in use today, the task of automatically identifying novel, relevant data for such databases is increasingly important. In this paper, we describe practical machine learning approaches for identifying MEDLINE documents and Swiss-Prot/TrEMBL protein records, for incorporation into a specialized biological database of transport proteins named TCDB. We show that both learning approaches outperform rules created by hand by a human expert. As one of the first case studies involving two different approaches to updating a deployed database, both the methods compared and the results will be of interest to curators of many specialized databases.

  20. Learning about time within the spinal cord: evidence that spinal neurons can abstract and store an index of regularity

    PubMed Central

    Lee, Kuan H.; Turtle, Joel D.; Huang, Yung-Jen; Strain, Misty M.; Baumbauer, Kyle M.; Grau, James W.

    2015-01-01

    Prior studies have shown that intermittent noxious stimulation has divergent effects on spinal cord plasticity depending upon whether it occurs in a regular (fixed time, FT) or irregular (variable time, VT) manner: In spinally transected animals, VT stimulation to the tail or hind leg impaired spinal learning whereas an extended exposure to FT stimulation had a restorative/protective effect. These observations imply that lower level systems are sensitive to temporal relations. Using spinally transected rats, it is shown that the restorative effect of FT stimulation emerges after 540 shocks; fewer shocks generate a learning impairment. The transformative effect of FT stimulation is related to the number of shocks administered, not the duration of exposure. Administration of 360 FT shocks induces a learning deficit that lasts 24 h. If a second bout of FT stimulation is given a day after the first, it restores the capacity to learn. This savings effect implies that the initial training episode had a lasting (memory-like) effect. Two bouts of shock have a transformative effect when applied at different locations or at difference frequencies, implying spinal systems abstract and store an index of regularity (rather than a specific interval). Implications of the results for step training and rehabilitation after injury are discussed. PMID:26539090

  1. Artificial grammar learning by 1-year-olds leads to specific and abstract knowledge.

    PubMed

    Gomez, R L; Gerken, L

    1999-03-01

    Four experiments used the head-turn preference procedure to assess whether infants could extract and remember information from auditory strings produced by a miniature artificial grammar. In all four experiments, infants generalized to new structure by discriminating new grammatical strings from ungrammatical ones after less than 2 min exposure to the grammar. Infants acquired specific information about the grammar as demonstrated by the ability to discriminate new grammatical strings from those with illegal endpoints (Experiment 1). Infants also discriminated new grammatical strings from those with string-internal pairwise violations (Experiments 2 and 3). Infants in Experiment 4 abstracted beyond specific word order as demonstrated by the ability to discriminate new strings produced by their training grammar from strings produced by another grammar despite a change in vocabulary between training and test. We discuss the implications of these findings for the study of language acquisition.

  2. Information theory and local learning rules in a self-organizing network of Ising spins

    NASA Astrophysics Data System (ADS)

    Haft, Michael; Schlang, Martin; Deco, Gustavo

    1995-09-01

    The Boltzmann machine uses the relative entropy as a cost function to fit the Boltzmann distribution to a fixed given distribution. Instead of the relative entropy, we use the mutual information between input and output units to define an unsupervised analogy to the conventional Boltzmann machine. Our network of Ising spins is fed by an external field via the input units. The output units should self-organize to form an ``internal'' representation of the ``environmental'' input, thereby compressing the data and extracting relevant features. The mutual information and its gradient with respect to the weights principally require nonlocal information, e.g., in the form of multipoint correlation functions. Hence the exact gradient can hardly be boiled down to a local learning rule. Conversely, by using only local terms and two-point interactions, the entropy of the output layer cannot be ensured to reach the maximum possible entropy for a fixed number of output neurons. Some redundancy may remain in the representation of the data at the output. We account for this limitation from the very beginning by reformulating the cost function correspondingly. From this cost function, local Hebb-like learning rules can be derived. Some experiments with these local learning rules are presented.

  3. Category Number Impacts Rule-Based "and" Information-Integration Category Learning: A Reassessment of Evidence for Dissociable Category-Learning Systems

    ERIC Educational Resources Information Center

    Stanton, Roger D.; Nosofsky, Robert M.

    2013-01-01

    Researchers have proposed that an explicit reasoning system is responsible for learning rule-based category structures and that a separate implicit, procedural-learning system is responsible for learning information-integration category structures. As evidence for this multiple-system hypothesis, researchers report a dissociation based on…

  4. Evidence for concrete but not abstract representation of length during spatial learning in rats.

    PubMed

    Dumont, Julie R; Jones, Peter M; Pearce, John M; Kosaki, Yutaka

    2015-01-01

    In 4 experiments, rats had to discriminate between the lengths of 2 objects of the same color, black or white, before a test trial with the same objects but of opposite color. The experiments took place in a pool from which rats had to escape by swimming to 1 of 2 submerged platforms. For Experiments 1 and 2, the platforms were situated near the centers of panels of 1 length, but not another, that were pasted onto the gray walls of a square arena. The acquired preference for the correct length was eliminated by changing the color of the panels. In Experiment 3, the platforms were situated near the middle of the long walls of a rectangular pool, and in Experiment 4 they were situated in 1 pair of diagonally opposite corners of the same pool. Changing the color of the walls markedly disrupted the effects of the original training in both experiments. The results indicate that rats represent the length of objects not by their abstract, geometric attributes but in a more concrete fashion such as by a mental snapshot or by the amount of color stimulation they provide.

  5. A stimulus-location effect in contingency-governed, but not rule-based, discrimination learning.

    PubMed

    Meier, Christina; Lea, Stephen E G; McLaren, Ian P L

    2016-04-01

    We tested pigeons' acquisition of a conditional discrimination task between colored grating stimuli that included choosing 1 of 2 response keys, which either appeared as white keys to the left and right of the discriminative stimulus, or were replicas of the stimulus. Pigeons failed to acquire the discrimination when the response keys were white disks but succeeded when directly responding to a replica of the stimulus. These results highlight how conditioning processes shape learning in pigeons: The results can be accounted for by supposing that, when pigeons were allowed to respond directly toward the stimulus, learning was guided by classical conditioning, but that responding to white keys demanded instrumental learning, which impaired task acquisition for pigeons. In contrast, humans completing the same paradigm showed no differential learning success depending on whether figure or position indicated the correct key. However, only participants who could state the underlying discrimination rule acquired the task, which implies that human performance in this situation relied on the deduction and application of task rules instead of associative processes.

  6. A stimulus-location effect in contingency-governed, but not rule-based, discrimination learning.

    PubMed

    Meier, Christina; Lea, Stephen E G; McLaren, Ian P L

    2016-04-01

    We tested pigeons' acquisition of a conditional discrimination task between colored grating stimuli that included choosing 1 of 2 response keys, which either appeared as white keys to the left and right of the discriminative stimulus, or were replicas of the stimulus. Pigeons failed to acquire the discrimination when the response keys were white disks but succeeded when directly responding to a replica of the stimulus. These results highlight how conditioning processes shape learning in pigeons: The results can be accounted for by supposing that, when pigeons were allowed to respond directly toward the stimulus, learning was guided by classical conditioning, but that responding to white keys demanded instrumental learning, which impaired task acquisition for pigeons. In contrast, humans completing the same paradigm showed no differential learning success depending on whether figure or position indicated the correct key. However, only participants who could state the underlying discrimination rule acquired the task, which implies that human performance in this situation relied on the deduction and application of task rules instead of associative processes. PMID:26866376

  7. Mixing Languages during Learning? Testing the One Subject-One Language Rule.

    PubMed

    Antón, Eneko; Thierry, Guillaume; Duñabeitia, Jon Andoni

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish-adults (Experiment 1) and children (Experiment 2)-learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject-one language rule. PMID:26107624

  8. Mixing Languages during Learning? Testing the One Subject—One Language Rule

    PubMed Central

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish—adults (Experiment 1) and children (Experiment 2)—learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject—one language rule. PMID:26107624

  9. Mixing Languages during Learning? Testing the One Subject-One Language Rule.

    PubMed

    Antón, Eneko; Thierry, Guillaume; Duñabeitia, Jon Andoni

    2015-01-01

    In bilingual communities, mixing languages is avoided in formal schooling: even if two languages are used on a daily basis for teaching, only one language is used to teach each given academic subject. This tenet known as the one subject-one language rule avoids mixing languages in formal schooling because it may hinder learning. The aim of this study was to test the scientific ground of this assumption by investigating the consequences of acquiring new concepts using a method in which two languages are mixed as compared to a purely monolingual method. Native balanced bilingual speakers of Basque and Spanish-adults (Experiment 1) and children (Experiment 2)-learnt new concepts by associating two different features to novel objects. Half of the participants completed the learning process in a multilingual context (one feature was described in Basque and the other one in Spanish); while the other half completed the learning phase in a purely monolingual context (both features were described in Spanish). Different measures of learning were taken, as well as direct and indirect indicators of concept consolidation. We found no evidence in favor of the non-mixing method when comparing the results of two groups in either experiment, and thus failed to give scientific support for the educational premise of the one subject-one language rule.

  10. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

    PubMed

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-08-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored

  11. Teaching Spelling to Students with Learning Disabilities: A Comparison of Rule-Based Strategies versus Traditional Instruction

    ERIC Educational Resources Information Center

    Darch, Craig; Eaves, Ronald C.; Crowe, D. Alan; Simmons, Kate; Conniff, Alexandra

    2006-01-01

    This study compared two instructional methods for teaching spelling to elementary students with learning disabilities (LD). Forty-two elementary students with LD were randomly assigned to one of two instructional groups to teach spelling words: (a) a rule-based strategy group that focused on teaching students spelling rules (based on the "Spelling…

  12. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.

    PubMed

    Frémaux, Nicolas; Gerstner, Wulfram

    2015-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568

  13. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.

    PubMed

    Frémaux, Nicolas; Gerstner, Wulfram

    2015-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  14. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules

    PubMed Central

    Frémaux, Nicolas; Gerstner, Wulfram

    2016-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide “when” to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568

  15. Reading to learn experimental practice: The role of text and firsthand experience in the acquisition of an abstract science principle

    NASA Astrophysics Data System (ADS)

    Richmond, Erica Kesin

    2008-10-01

    From the onset of schooling, texts are used as important educational tools. In the primary years, they are integral to learning how to decode and develop fluency. In the later elementary years, they are often essential to the acquisition of academic content. Unfortunately, many children experience difficulties with this process, which is due in large part to their unfamiliarity with the genre of academic texts. The articles presented in this dissertation share an underlying theme of how to develop children's ability to comprehend and learn from academic, and specifically, non-narrative texts. The first article reviews research on the development of non-narrative discourse to elucidate the linguistic precursors to non-narrative text comprehension. The second and third articles draw from an empirical study that investigated the best way to integrate text, manipulation, and first-hand experience for children's acquisition and application of an abstract scientific principle. The scientific principle introduced in the study was the Control of Variables Strategy (CVS), a fundamental idea underlying scientific reasoning and a strategy for designing unconfounded experiments. Eight grade 4 classes participated in the study (N = 129), in one of three conditions: (a) read procedural text and manipulate experimental materials, (b) listen to procedural text and manipulate experimental materials, or (c) read procedural text with no opportunity to manipulate experimental materials. Findings from the study indicate that children who had the opportunity to read and manipulate materials were most effective at applying the strategy to designing and justifying unconfounded experiments, and evaluating written and physical experimental designs; however, there was no effect of instructional condition on a written assessment of evaluating familiar and unfamiliar experimental designs one week after the intervention. These results suggest that the acquisition and application of an abstract

  16. Rules and construction effects in learning the argument structure of verbs.

    PubMed

    Demuth, Katherine; Machobane, Malillo; Moloi, Francina

    2003-11-01

    Theorists of language acquisition have long debated the means by which children learn the argument structure of verbs (e.g. Bowerman, 1974, 1990; Pinker, 1984, 1989; Tomasello, 1992). Central to this controversy has been the possible role of verb semantics, especially in learning which verbs undergo dative-shift alternation in languages like English. The learning problem is somewhat simplified in Bantu double object constructions, where all applicative verbs show the same order of postverbal objects. However, Bantu languages differ as to what that order is, some placing the benefactive argument first, and others placing the animate argument first. Learning the language-specific word-order restrictions on Bantu double object applicative constructions is therefore more akin to setting a parameter (cf. Hyams, 1986). This study examined 100 three- to eight-year-old children's knowledge of word order restrictions in Sesotho double object applicatives. Performance on forced choice elicited production tasks found that four-year-olds showed evidence of rule learning, although eight-year-olds had not yet attained adult levels of performance. Further investigation found lexical construction effects for three-year-olds. These findings suggest that learning the argument structure of verbs, even when lexical semantics is not involved, may be more sensitive to lexical construction effects than previously thought. PMID:14686085

  17. Applying cognitive developmental psychology to middle school physics learning: The rule assessment method

    NASA Astrophysics Data System (ADS)

    Hallinen, Nicole R.; Chi, Min; Chin, Doris B.; Prempeh, Joe; Blair, Kristen P.; Schwartz, Daniel L.

    2013-01-01

    Cognitive developmental psychology often describes children's growing qualitative understanding of the physical world. Physics educators may be able to use the relevant methods to advantage for characterizing changes in students' qualitative reasoning. Siegler developed the "rule assessment" method for characterizing levels of qualitative understanding for two factor situations (e.g., volume and mass for density). The method assigns children to rule levels that correspond to the degree they notice and coordinate the two factors. Here, we provide a brief tutorial plus a demonstration of how we have used this method to evaluate instructional outcomes with middle-school students who learned about torque, projectile motion, and collisions using different instructional methods with simulations.

  18. Numerical rule-learning in ring-tailed lemurs (lemur catta).

    PubMed

    Merritt, Dustin J; Maclean, Evan L; Crawford, Jeremy Chase; Brannon, Elizabeth M

    2011-01-01

    We investigated numerical discrimination and numerical rule-learning in ring-tailed lemurs (Lemur catta). Two ring-tailed lemurs were trained to respond to two visual arrays, each of which contained between one and four elements, in numerically ascending order. In Experiment 1, lemurs were trained with 36 exemplars of each of the numerosities 1-4 and then showed positive transfer to trial-unique novel exemplars of the values 1-4. In Experiments 2A and 2B, lemurs were tested on their ability to transfer an ascending numerical rule from the values 1-4 to novel values 5-9. Both lemurs successfully ordered the novel values with above chance accuracy. Accuracy was modulated by the ratio between the two numerical values suggesting that lemurs accessed the approximate number system when performing the task. PMID:21713071

  19. Modulated Hebb-Oja learning rule--a method for principal subspace analysis.

    PubMed

    Jankovic, Marko V; Ogawa, Hidemitsu

    2006-03-01

    This paper presents analysis of the recently proposed modulated Hebb-Oja (MHO) method that performs linear mapping to a lower-dimensional subspace. Principal component subspace is the method that will be analyzed. Comparing to some other well-known methods for yielding principal component subspace (e.g., Oja's Subspace Learning Algorithm), the proposed method has one feature that could be seen as desirable from the biological point of view--synaptic efficacy learning rule does not need the explicit information about the value of the other efficacies to make individual efficacy modification. Also, the simplicity of the "neural circuits" that perform global computations and a fact that their number does not depend on the number of input and output neurons, could be seen as good features of the proposed method.

  20. Modulated Hebb-Oja learning rule--a method for principal subspace analysis.

    PubMed

    Jankovic, Marko V; Ogawa, Hidemitsu

    2006-03-01

    This paper presents analysis of the recently proposed modulated Hebb-Oja (MHO) method that performs linear mapping to a lower-dimensional subspace. Principal component subspace is the method that will be analyzed. Comparing to some other well-known methods for yielding principal component subspace (e.g., Oja's Subspace Learning Algorithm), the proposed method has one feature that could be seen as desirable from the biological point of view--synaptic efficacy learning rule does not need the explicit information about the value of the other efficacies to make individual efficacy modification. Also, the simplicity of the "neural circuits" that perform global computations and a fact that their number does not depend on the number of input and output neurons, could be seen as good features of the proposed method. PMID:16566463

  1. Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    NASA Astrophysics Data System (ADS)

    Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki

    Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.

  2. Lessons learned from early implementation of the maintenance rule at nine nuclear power plants

    SciTech Connect

    Petrone, C.D.; Correia, R.P.; Black, S.C.

    1995-06-01

    This report summarizes the lessons learned from the nine pilot site visits that were performed to review early implementation of the maintenance rule using the draft NRC Maintenance Inspection Procedure. Licensees followed NUMARC 93-01, ``Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants.`` In general, the licensees were thorough in determining which structures, systems, and components (SSCS) were within the scope of the maintenance rule at each site. The use of an expert panel was an appropriate and practical method of determining which SSCs are risk significant. When setting goals, all licensees considered safety but many licensees did not consider operating experience throughout the industry. Although required to do so, licensees were not monitoring at the system or train level the performance or condition for some systems used in standby service but not significant to risk. Most licensees had not established adequate monitoring of structures under the rule. Licensees established reasonable plans for doing periodic evaluations, balancing unavailability and reliability, and assessing the effect of taking equipment out of service for maintenance. However, these plans were not evaluated because they had not been fully implemented at the time of the site visits.

  3. Mimicking of pulse shape-dependent learning rules with a quantum dot memristor

    NASA Astrophysics Data System (ADS)

    Maier, P.; Hartmann, F.; Rebello Sousa Dias, M.; Emmerling, M.; Schneider, C.; Castelano, L. K.; Kamp, M.; Marques, G. E.; Lopez-Richard, V.; Worschech, L.; Höfling, S.

    2016-10-01

    We present the realization of four different learning rules with a quantum dot memristor by tuning the shape, the magnitude, the polarity and the timing of voltage pulses. The memristor displays a large maximum to minimum conductance ratio of about 57 000 at zero bias voltage. The high and low conductances correspond to different amounts of electrons localized in quantum dots, which can be successively raised or lowered by the timing and shapes of incoming voltage pulses. Modifications of the pulse shapes allow altering the conductance change in dependence on the time difference. Hence, we are able to mimic different learning processes in neural networks with a single device. In addition, the device performance under pulsed excitation is emulated combining the Landauer-Büttiker formalism with a dynamic model for the quantum dot charging, which allows explaining the whole spectrum of learning responses in terms of structural parameters that can be adjusted during fabrication, such as gating efficiencies and tunneling rates. The presented memristor may pave the way for future artificial synapses with a stimulus-dependent capability of learning.

  4. Inter-synaptic learning of combination rules in a cortical network model

    PubMed Central

    Lavigne, Frédéric; Avnaïm, Francis; Dumercy, Laurent

    2014-01-01

    Selecting responses in working memory while processing combinations of stimuli depends strongly on their relations stored in long-term memory. However, the learning of XOR-like combinations of stimuli and responses according to complex rules raises the issue of the non-linear separability of the responses within the space of stimuli. One proposed solution is to add neurons that perform a stage of non-linear processing between the stimuli and responses, at the cost of increasing the network size. Based on the non-linear integration of synaptic inputs within dendritic compartments, we propose here an inter-synaptic (IS) learning algorithm that determines the probability of potentiating/depressing each synapse as a function of the co-activity of the other synapses within the same dendrite. The IS learning is effective with random connectivity and without either a priori wiring or additional neurons. Our results show that IS learning generates efficacy values that are sufficient for the processing of XOR-like combinations, on the basis of the sole correlational structure of the stimuli and responses. We analyze the types of dendrites involved in terms of the number of synapses from pre-synaptic neurons coding for the stimuli and responses. The synaptic efficacy values obtained show that different dendrites specialize in the detection of different combinations of stimuli. The resulting behavior of the cortical network model is analyzed as a function of inter-synaptic vs. Hebbian learning. Combinatorial priming effects show that the retrospective activity of neurons coding for the stimuli trigger XOR-like combination-selective prospective activity of neurons coding for the expected response. The synergistic effects of inter-synaptic learning and of mixed-coding neurons are simulated. The results show that, although each mechanism is sufficient by itself, their combined effects improve the performance of the network. PMID:25221529

  5. A reward-modulated Hebbian learning rule can explain experimentally observed network reorganization in a brain control task

    PubMed Central

    Legenstein, Robert; Chase, Steven M.; Schwartz, Andrew B.; Maass, Wolfgang

    2010-01-01

    It has recently been shown in a brain-computer interface experiment that motor cortical neurons change their tuning properties selectively to compensate for errors induced by displaced decoding parameters. In particular, it was shown that the 3D tuning curves of neurons whose decoding parameters were re-assigned changed more than those of neurons whose decoding parameters had not been re-assigned. In this article, we propose a simple learning rule that can reproduce this effect. Our learning rule uses Hebbian weight updates driven by a global reward signal and neuronal noise. In contrast to most previously proposed learning rules, this approach does not require extrinsic information to separate noise from signal. The learning rule is able to optimize the performance of a model system within biologically realistic periods of time under high noise levels. Furthermore, when the model parameters are matched to data recorded during the brain-computer interface learning experiments described above, the model produces learning effects strikingly similar to those found in the experiments. PMID:20573887

  6. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning.

  7. Rules and Resemblance: Their Changing Balance in the Category Learning of Humans (Homo sapiens) and Monkeys (Macaca mulatta)

    PubMed Central

    Couchman, Justin J.; Coutinho, Mariana V. C.; Smith, J. David

    2010-01-01

    In an early dissociation between intentional and incidental category learning, Kemler Nelson (1984) gave participants a categorization task that could be performed by responding either to a single-dimensional rule or to overall family resemblance. Humans learning intentionally deliberately adopted rule-based strategies; humans learning incidentally adopted family-resemblance strategies. The present authors replicated Kemler Nelson’s human experiment and found a similar dissociation. They also extended her paradigm so as to evaluate the balance between rules and family-resemblance in determining the category decisions of rhesus monkeys. Monkeys heavily favored the family-resemblance strategy. Formal models showed that even after many sessions and thousands of trials, they spread attention across all stimulus dimensions rather than focus on a single, criterial dimension that could also produce perfect categorization. PMID:20384398

  8. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  9. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  10. The Effects of the Concrete-Representational-Abstract Integration Strategy on the Ability of Students with Learning Disabilities to Multiply Linear Expressions within Area Problems

    ERIC Educational Resources Information Center

    Strickland, Tricia K.; Maccini, Paula

    2013-01-01

    We examined the effects of the Concrete-Representational-Abstract Integration strategy on the ability of secondary students with learning disabilities to multiply linear algebraic expressions embedded within contextualized area problems. A multiple-probe design across three participants was used. Results indicated that the integration of the…

  11. Extradural middle fossa approach. Proposal of a learning method: the "rule of two fans." Technical note.

    PubMed

    Mastronardi, Luciano; Sameshima, Tetsuro; Ducati, Alessandro; De Waele, Luc F; Ferrante, Luigi; Fukushima, Takanori

    2006-08-01

    The extradural middle fossa approach is used to access lesions of the petroclival and cavernous sinus regions. It may be included in combined petrosal and anterolateral transcavernous approaches. Technically, it is a demanding exposure that provides a wide extradural corridor between the 5th, 7th, and 8th cranial nerves. Its major advantages are that it offers extradural dissection, limits temporal lobe retraction, and avoids the transposition of nerves or vessels. Its disadvantages are primarily related to the complicated anatomy of the petrous apex from the middle fossa trajectory, which can be unfamiliar to neurosurgeons. To facilitate the first attempts with this relatively uncommon approach during dissections of human cadaveric injected heads and isolated temporal bones, we developed a simple learning method useful for localizing all anatomical structures. Using this "rule of two fans," vascular, nervous, fibrous, and osseous structures are localized within two bordering fans with a 90-degree relationship to each other.

  12. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.

    PubMed

    Grouin, Cyril; Zweigenbaum, Pierre

    2013-01-01

    In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.

  13. Making Implicit Metalevel Rules of the Discourse on Function Explicit Topics of Reflection in the Classroom to Foster Student Learning

    ERIC Educational Resources Information Center

    Güçler, Beste

    2016-01-01

    Despite the existence of extensive literature on functions, fewer studies used sociocultural views to explore the development of student learning about the concept. This study uses a discursive lens to examine whether an instructional approach that specifically attends to particular metalevel rules in the mathematical discourse on functions…

  14. Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task

    ERIC Educational Resources Information Center

    Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2010-01-01

    Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…

  15. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data.

    PubMed

    Glaab, Enrico; Bacardit, Jaume; Garibaldi, Jonathan M; Krasnogor, Natalio

    2012-01-01

    Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.

  16. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  17. "Stars Shine Bright Deep in the Heart of LDA." Poster Session Abstracts of the International Conference of the Learning Disabilities Association of America (Dallas, Texas, March 6-9, 1996).

    ERIC Educational Resources Information Center

    Russell, Steven C., Comp.

    This monograph brings together 16 one- to two-page abstracts from research poster sessions held at the March 1996 international conference of the Learning Disabilities Association of America. The first section, addressing research on assessment and characteristics of students with learning disabilities, includes abstracts on the Woodcock-Johnson…

  18. Rules, Technique, and Practical Knowledge: A Wittgensteinian Exploration of Vocational Learning

    ERIC Educational Resources Information Center

    Winch, Christopher

    2006-01-01

    In this essay, Christopher Winch explores the relevance of Ludwig Wittgenstein's account of rule-following to vocational education with particular reference to the often-made claim that any account of an activity in terms of rule-following implies rigidity and inflexibility. He argues that most rule-following is only successful when it involves a…

  19. Learning of Aurally Received Verbal Material. Including Comparisons with Learning and Memory Under Visual Conditions of Reception as a Function of Meaningfulness, Abstractness or Similarity.

    ERIC Educational Resources Information Center

    Schulz, Rudolph W.

    The objectives of this study were to determine: (1) the variables that influence the learning of verbal material received by subjects via the aural modality, (2) how learning under conditions of aural reception compare with learning of the same materials under appropriately equivalent visual conditions, and (3) in what combinations learning is…

  20. Automated Assume-Guarantee Reasoning by Abstraction Refinement

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Giannakopoulous, Dimitra; Glannakopoulou, Dimitra

    2008-01-01

    Current automated approaches for compositional model checking in the assume-guarantee style are based on learning of assumptions as deterministic automata. We propose an alternative approach based on abstraction refinement. Our new method computes the assumptions for the assume-guarantee rules as conservative and not necessarily deterministic abstractions of some of the components, and refines those abstractions using counter-examples obtained from model checking them together with the other components. Our approach also exploits the alphabets of the interfaces between components and performs iterative refinement of those alphabets as well as of the abstractions. We show experimentally that our preliminary implementation of the proposed alternative achieves similar or better performance than a previous learning-based implementation.

  1. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  2. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2003-08-01

    This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.

  3. A new modulated Hebbian learning rule--biologically plausible method for local computation of a principal subspace.

    PubMed

    Jankovic, Marko; Ogawa, Hidemitsu

    2003-08-01

    This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too. PMID:12964209

  4. Learning with Technology: Video Modeling with Concrete-Representational-Abstract Sequencing for Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Yakubova, Gulnoza; Hughes, Elizabeth M.; Shinaberry, Megan

    2016-01-01

    The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the…

  5. Retention of Minorities in Higher Education: An Abstracted Bibliographic Review (1978-82). EXCEL (EXChange for Enrichment of Learning) Report.

    ERIC Educational Resources Information Center

    Sullivan, LeRoy L.

    Abstracts of 76 documents on retention of minorities in higher education are presented in a bibliography created to provide faculty and administrators access to unpublished works and journal articles on minority retention. The materials, which were produced between 1978-1982, include unpublished reports, conference papers, and dissertations.…

  6. Physiological expression of olfactory discrimination rule learning balances whole-population modulation and circuit stability in the piriform cortex network.

    PubMed

    Jammal, Luna; Whalley, Ben; Ghosh, Sourav; Lamrecht, Raphael; Barkai, Edi

    2016-07-01

    Once trained, rats are able to execute particularly difficult olfactory discrimination tasks with exceptional accuracy. Such skill acquisition, termed "rule learning", is accompanied by a series of long-lasting modifications to three cellular properties which modulate pyramidal neuron activity in piriform cortex; intrinsic excitability, synaptic excitation, and synaptic inhibition. Here, we explore how these changes, which are seemingly contradictory at the single-cell level in terms of their effect on neuronal excitation, are manifested within the piriform cortical neuronal network to store the memory of the rule, while maintaining network stability. To this end, we monitored network activity via multisite extracellular recordings of field postsynaptic potentials (fPSPS) and with single-cell recordings of miniature inhibitory and excitatory synaptic events in piriform cortex slices. We show that although 5 days after rule learning the cortical network maintains its basic activity patterns, synaptic connectivity is strengthened specifically between spatially proximal cells. Moreover, while the enhancement of inhibitory and excitatory synaptic connectivity is nearly identical, strengthening of synaptic inhibition is equally distributed between neurons while synaptic excitation is particularly strengthened within a specific subgroup of cells. We suggest that memory for the acquired rule is stored mainly by strengthening excitatory synaptic connection between close pyramidal neurons and runaway synaptic activity arising from this change is prevented by a nonspecific enhancement of synaptic inhibition. PMID:27449811

  7. Physiological expression of olfactory discrimination rule learning balances whole-population modulation and circuit stability in the piriform cortex network.

    PubMed

    Jammal, Luna; Whalley, Ben; Ghosh, Sourav; Lamrecht, Raphael; Barkai, Edi

    2016-07-01

    Once trained, rats are able to execute particularly difficult olfactory discrimination tasks with exceptional accuracy. Such skill acquisition, termed "rule learning", is accompanied by a series of long-lasting modifications to three cellular properties which modulate pyramidal neuron activity in piriform cortex; intrinsic excitability, synaptic excitation, and synaptic inhibition. Here, we explore how these changes, which are seemingly contradictory at the single-cell level in terms of their effect on neuronal excitation, are manifested within the piriform cortical neuronal network to store the memory of the rule, while maintaining network stability. To this end, we monitored network activity via multisite extracellular recordings of field postsynaptic potentials (fPSPS) and with single-cell recordings of miniature inhibitory and excitatory synaptic events in piriform cortex slices. We show that although 5 days after rule learning the cortical network maintains its basic activity patterns, synaptic connectivity is strengthened specifically between spatially proximal cells. Moreover, while the enhancement of inhibitory and excitatory synaptic connectivity is nearly identical, strengthening of synaptic inhibition is equally distributed between neurons while synaptic excitation is particularly strengthened within a specific subgroup of cells. We suggest that memory for the acquired rule is stored mainly by strengthening excitatory synaptic connection between close pyramidal neurons and runaway synaptic activity arising from this change is prevented by a nonspecific enhancement of synaptic inhibition.

  8. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  9. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  10. Implementation of a spike-based perceptron learning rule using TiO2−x memristors

    PubMed Central

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G.; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic “cognitive” capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2−x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode. PMID:26483629

  11. Storing cycles in Hopfield-type networks with pseudoinverse learning rule: admissibility and network topology.

    PubMed

    Zhang, Chuan; Dangelmayr, Gerhard; Oprea, Iuliana

    2013-10-01

    Cyclic patterns of neuronal activity are ubiquitous in animal nervous systems, and partially responsible for generating and controlling rhythmic movements such as locomotion, respiration, swallowing and so on. Clarifying the role of the network connectivities for generating cyclic patterns is fundamental for understanding the generation of rhythmic movements. In this paper, the storage of binary cycles in Hopfield-type and other neural networks is investigated. We call a cycle defined by a binary matrix Σ admissible if a connectivity matrix satisfying the cycle's transition conditions exists, and if so construct it using the pseudoinverse learning rule. Our main focus is on the structural features of admissible cycles and the topology of the corresponding networks. We show that Σ is admissible if and only if its discrete Fourier transform contains exactly r=rank(Σ) nonzero columns. Based on the decomposition of the rows of Σ into disjoint subsets corresponding to loops, where a loop is defined by the set of all cyclic permutations of a row, cycles are classified as simple cycles, and separable or inseparable composite cycles. Simple cycles contain rows from one loop only, and the network topology is a feedforward chain with feedback to one neuron if the loop-vectors in Σ are cyclic permutations of each other. For special cases this topology simplifies to a ring with only one feedback. Composite cycles contain rows from at least two disjoint loops, and the neurons corresponding to the loop-vectors in Σ from the same loop are identified with a cluster. Networks constructed from separable composite cycles decompose into completely isolated clusters. For inseparable composite cycles at least two clusters are connected, and the cluster-connectivity is related to the intersections of the spaces spanned by the loop-vectors of the clusters. Simulations showing successfully retrieved cycles in continuous-time Hopfield-type networks and in networks of spiking neurons

  12. Effects of abstract versus concrete visual representations in an instructional simulation on students' declarative knowledge, learning transfer, and perceptions of the simulation

    NASA Astrophysics Data System (ADS)

    Mejia, William Ernesto

    2011-12-01

    Thanks to different multimedia authoring tools and specialized software that facilitate the design and development of computer-based simulations, science teachers and instructional media designers have a variety of simulations to support instructional delivery. However, there is a lack of research on how instructional designers and science teachers can select, design, and implement science simulations most effectively based on the simulations' visual attributes. One of the design principles that play an important part in the simulation design process is the visual representation of on-screen objects used to describe science concepts or principles. The purpose of this study was to investigate the effects of abstract and concrete visual representation of electricity concepts and principles in an instructional simulation on students' declarative knowledge, learning transfer, and perceptions of the simulation. The participants in this study were 39 elementary education pre-service teachers who were randomly assigned to either the concrete or the abstract treatment. The educational intervention was conducted over three 100-minute sessions. Since the sample violated the normality assumption, Mann-Whitney tests were conducted to verify whether the independent variable had significant effects on the three dependent variables. The data analysis found no statistically significant difference on learners' declarative knowledge, learning transfer, and perceptions about the simulation's attributes between those assigned to the concrete treatment and those assigned to the abstract treatment (p>.05). This finding did not favor one type of visual representation over the other.

  13. A Rule-Based System for Hybrid Search and Delivery of Learning Objects to Learners

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Baghi, Hamidreza; Steele, Jarrett; Vovk, Ruslan

    2012-01-01

    Purpose: Presently, searching the internet for learning material relevant to ones own interest continues to be a time-consuming task. Systems that can suggest learning material (learning objects) to a learner would reduce time spent searching for material, and enable the learner to spend more time for actual learning. The purpose of this paper is…

  14. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  15. Environmental Sense Box: A Strategy for Helping Elementary School Students Understand Abstract Environments through Concrete Learning Activities.

    ERIC Educational Resources Information Center

    Sesow, F. Wm.

    This paper suggests a technique for the development, collection, and organization of materials that will aid learning through the use of the senses by building an environmental sense box. England is used as an example of a place that provides many sensory experiences which can be duplicated in such a box. The box can be made from a cardboard…

  16. Multimedia Football Viewing: Embedded Rules, Practice, and Video Context in IVD Procedural Learning.

    ERIC Educational Resources Information Center

    Kim, Eunsoon; Young, Michael F.

    This study investigated the effects of interactive video (IVD) instruction with embedded rules (production system rules) and practice with feedback on learners' academic achievement and perceived self efficacy in the domain of procedural knowledge for watching professional football. Subjects were 71 female volunteers from undergraduate education…

  17. Innovation Abstracts.

    ERIC Educational Resources Information Center

    Watkins, Karen, Ed.

    1981-01-01

    Brief, two-page papers are presented on 33 educational topics of interest to community college faculty, administrators, and staff. The following topics are considered: (1) strengthening the humanities; (2) common behavioral cycles evidenced in student-teacher relations; (3) irreducible factors for teaching and learning; (4) understanding problems…

  18. Aqui y Alla (Here and There) Information-Based Learning Corridors between Tennessee and Puerto Rico: The Five Golden Rules in Intercultural Education

    ERIC Educational Resources Information Center

    Mehra, Bharat; Allard, Suzie; Qayyum, M. Asim; Barclay-McLaughlin, Gina

    2008-01-01

    This article proposes five information-based Golden Rules in intercultural education that represent a holistic approach to creating learning corridors across geographically dispersed academic communities. The Golden Rules are generated through qualitative analysis, grounded theory application, reflective practice, and critical research to…

  19. Learning with Technology: Video Modeling with Concrete-Representational-Abstract Sequencing for Students with Autism Spectrum Disorder.

    PubMed

    Yakubova, Gulnoza; Hughes, Elizabeth M; Shinaberry, Megan

    2016-07-01

    The purpose of this study was to determine the effectiveness of a video modeling intervention with concrete-representational-abstract instructional sequence in teaching mathematics concepts to students with autism spectrum disorder (ASD). A multiple baseline across skills design of single-case experimental methodology was used to determine the effectiveness of the intervention on the acquisition and maintenance of addition, subtraction, and number comparison skills for four elementary school students with ASD. Findings supported the effectiveness of the intervention in improving skill acquisition and maintenance at a 3-week follow-up. Implications for practice and future research are discussed. PMID:26983919

  20. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response.

    PubMed

    Tedjakumala, Stevanus Rio; Giurfa, Martin

    2013-08-15

    Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.

  1. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    SciTech Connect

    Bornholdt, S.; Graudenz, D.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  2. Young Children's Selective Learning of Rule Games from Reliable and Unreliable Models

    ERIC Educational Resources Information Center

    Rakoczy, Hannes; Warneken, Felix; Tomasello, Michael

    2009-01-01

    We investigated preschoolers' selective learning from models that had previously appeared to be reliable or unreliable. Replicating previous research, children from 4 years selectively learned novel words from reliable over unreliable speakers. Extending previous research, children also selectively learned other kinds of acts--novel games--from…

  3. Online Learning Behaviors for Radiology Interns Based on Association Rules and Clustering Technique

    ERIC Educational Resources Information Center

    Chen, Hsing-Shun; Liou, Chuen-He

    2014-01-01

    In a hospital, clinical teachers must also care for patients, so there is less time for the teaching of clinical courses, or for discussing clinical cases with interns. However, electronic learning (e-learning) can complement clinical skills education for interns in a blended-learning process. Students discuss and interact with classmates in an…

  4. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment (Presentation)

    EPA Science Inventory

    Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or ...

  5. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment

    EPA Science Inventory

    Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or ...

  6. A Rule-Based and Hypertextual Electronic Mail System for Electronic Learning Environments: Applying the Distributed Network Learning Framework.

    ERIC Educational Resources Information Center

    Jacobson, Michael J.; Levin, James A.

    This paper discusses issues related to the design of software tools that support learners in their participation in network-based learning activities. To guide the development and use of a new class of educationally-oriented network tools, this paper proposes a cognitively-based, distributed network learning framework (DNLF). This framework has…

  7. Abstraction and Assume-Guarantee Reasoning for Automated Software Verification

    NASA Technical Reports Server (NTRS)

    Chaki, S.; Clarke, E.; Giannakopoulou, D.; Pasareanu, C. S.

    2004-01-01

    Compositional verification and abstraction are the key techniques to address the state explosion problem associated with model checking of concurrent software. A promising compositional approach is to prove properties of a system by checking properties of its components in an assume-guarantee style. This article proposes a framework for performing abstraction and assume-guarantee reasoning of concurrent C code in an incremental and fully automated fashion. The framework uses predicate abstraction to extract and refine finite state models of software and it uses an automata learning algorithm to incrementally construct assumptions for the compositional verification of the abstract models. The framework can be instantiated with different assume-guarantee rules. We have implemented our approach in the COMFORT reasoning framework and we show how COMFORT out-performs several previous software model checking approaches when checking safety properties of non-trivial concurrent programs.

  8. Flexibility for Fairness: Crafting Business Rules for Student Learning Objectives. Ask the Team

    ERIC Educational Resources Information Center

    Potemski, Amy

    2013-01-01

    Across the United States, a wide cross-section of administrators and teachers are learning the ins and outs of setting, assessing, and scoring student learning objectives (SLOs). An SLO is a set of goals that measures an educator's progress in achieving student growth targets. SLOs are particularly helpful for teachers in nontested subjects and…

  9. Rules and Construction Effects in Learning the Argument Structure of Verbs

    ERIC Educational Resources Information Center

    Demuth, Katherine; Machobane, 'Malillo; Moloi, Francina

    2003-01-01

    Theorists of language acquisition have long debated the means by which children learn the argument structure of verbs (e.g. Bowerman, 1974, 1990; Pinker, 1984, 1989; Tomasello, 1992). Central to this controversy has been the possible role of verb semantics, especially in learning which verbs undergo dative-shift alternation in languages like…

  10. ALT-C 95: Changing Education, Changing Technology. Conference Abstracts of the Association for Learning Technology Conference (2nd, Milton Keynes, England, United Kingdom, September 11-13, 1995).

    ERIC Educational Resources Information Center

    Hawkridge, David, Ed.

    This program for the 1995 Association for Learning Technology Conference summarizes the presentations of the discussions, demonstrations, workshops, and poster sessions. Abstracts of the following papers presented at the conference are included: "New Structures for Learning" (Patrick Allen & Kate Sankey); "Multiple System Conferencing" (Susan…

  11. "Renewing the Commitment: 1963-1997." Poster Session Abstracts from the International Conference of the Learning Disabilities Association of America (Chicago, Illinois, February 19-22, 1997). Volume 6.

    ERIC Educational Resources Information Center

    Russell, Steven C., Comp.

    Extensive abstracts of papers presented at two poster sessions of a conference on learning disabilities (LD) are included. The first session of the conference focused on research on assessment and characteristics of students with learning disabilities. Individual papers covered the following topics: longitudinal case studies of college students…

  12. Rule Learning over Consonants and Vowels in a Non-Human Animal

    ERIC Educational Resources Information Center

    de la Mora, Daniela M.; Toro, Juan M.

    2013-01-01

    Perception studies have shown similarities between humans and other animals in a wide array of language-related processes. However, the components of language that make it uniquely human have not been fully identified. Here we show that nonhuman animals extract rules over speech sequences that are difficult for humans. Specifically, animals easily…

  13. Social Interaction Rules in Cooperative Learning Groups for Students at Risk for ADHD

    ERIC Educational Resources Information Center

    Kuester, Deitra A.; Zentall, Sydney S.

    2012-01-01

    This study assessed the effects of providing social participation rules on the performance and social behavior of a school-based sample of 10-14-year-old students at risk for attention deficit hyperactivity disorder (n = 34) who worked cooperatively in same-gender triads with typical peers (n = 92). The design was primarily a 2 (population group)…

  14. Drawing Rules: The Importance of the Whole Brain for Learning Realistic Drawing.

    ERIC Educational Resources Information Center

    Clare, Scott M.

    1983-01-01

    Two experiments were conducted with fourth- through eighth-grade students to study two problems in drawing faces realistically: placement of features and the use of light-dark gradients to render depth. Results indicated that drawing rules are practical and effective for teaching realistic drawing to children. (Author/SR)

  15. A Comparison of the neural correlates that underlie rule-based and information-integration category learning.

    PubMed

    Carpenter, Kathryn L; Wills, Andy J; Benattayallah, Abdelmalek; Milton, Fraser

    2016-10-01

    The influential competition between verbal and implicit systems (COVIS) model proposes that category learning is driven by two competing neural systems-an explicit, verbal, system, and a procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive, rule-based (RB), category structure that is believed to engage the explicit system, or an information-integration category structure that is thought to preferentially recruit the implicit system. The RB and information-integration category structures were matched for participant error rate, the number of relevant stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active in the information-integration condition than in the RB condition. No regions were more activated in RB than information-integration category learning. The implications of these results for theories of category learning are discussed. Hum Brain Mapp 37:3557-3574, 2016. © 2016 Wiley Periodicals, Inc. PMID:27199090

  16. A Comparison of the neural correlates that underlie rule-based and information-integration category learning.

    PubMed

    Carpenter, Kathryn L; Wills, Andy J; Benattayallah, Abdelmalek; Milton, Fraser

    2016-10-01

    The influential competition between verbal and implicit systems (COVIS) model proposes that category learning is driven by two competing neural systems-an explicit, verbal, system, and a procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive, rule-based (RB), category structure that is believed to engage the explicit system, or an information-integration category structure that is thought to preferentially recruit the implicit system. The RB and information-integration category structures were matched for participant error rate, the number of relevant stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active in the information-integration condition than in the RB condition. No regions were more activated in RB than information-integration category learning. The implications of these results for theories of category learning are discussed. Hum Brain Mapp 37:3557-3574, 2016. © 2016 Wiley Periodicals, Inc.

  17. Innovation Abstracts; Volume XIV, 1992.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1992-01-01

    This series of 30 one- to two-page abstracts covering 1992 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) faculty recognition and orientation; (2) the Amado M. Pena, Jr., Scholarship Program; (3) innovative teaching techniques, with individual abstracts…

  18. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2011-07-01 2011-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  19. 37 CFR 1.438 - The abstract.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false The abstract. 1.438 Section 1... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES International Processing Provisions The International Application § 1.438 The abstract. (a) Requirements as to the content and form of the abstract are set forth...

  20. Rule-based category use in preschool children.

    PubMed

    Mathy, Fabien; Friedman, Ori; Courenq, Brigitte; Laurent, Lucie; Millot, Jean-Louis

    2015-03-01

    We report two experiments suggesting that development of rule use in children can be predicted by applying metrics of complexity from studies of rule-based category learning in adults. In Experiment 1, 124 3- to 5-year-olds completed three new rule-use tasks. The tasks featured similar instructions but varied in the complexity of the rule structures that could be abstracted from the instructions. This measure of complexity predicted children's difficulty with the tasks. Children also completed a version of the Advanced Dimensional Change Card Sorting task. Although this task featured quite different instructions from those in our "complex" task, performance on these two tasks was correlated, as predicted by the rule-based category approach. Experiment 2 predicted findings of the relative difficulty of the three new tasks in 36 5-year-olds and also showed that response times varied with rule structure complexity. Together, these findings suggest that children's rule use depends on processes also involved in rule-based category learning. The findings likewise suggest that the development of rule use during childhood is protracted, and the findings bolster claims that some of children's difficulty in rule use stems from limits in their ability to represent complex rule structures. PMID:25463350

  1. Innovation Abstracts, Volume XX, 1998.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1998-01-01

    The 52 abstracts in these 29 serial issues describe innovative approaches to teaching and learning in the community college. Sample topics include reading motivation, barriers to academic success, the learning environment, writing skills, leadership in the criminal justice profession, role-playing strategies, cooperative education, distance…

  2. Epistemological Change through Peer Apprenticeship Learning: From Rule-Based to Idea-Based Social Constructivism.

    ERIC Educational Resources Information Center

    Loong, David Hung Wei

    1998-01-01

    Describes the peer-apprenticeship learning situation between two students in distributed computer-mediated co-construction of mathematical meanings. As a result of assimilating the disposition towards playing with ideas, students were able to engage in meaningful idea-based social constructivism. Contains 60 references. (Author/ASK)

  3. Two fast and accurate heuristic RBF learning rules for data classification.

    PubMed

    Rouhani, Modjtaba; Javan, Dawood S

    2016-03-01

    This paper presents new Radial Basis Function (RBF) learning methods for classification problems. The proposed methods use some heuristics to determine the spreads, the centers and the number of hidden neurons of network in such a way that the higher efficiency is achieved by fewer numbers of neurons, while the learning algorithm remains fast and simple. To retain network size limited, neurons are added to network recursively until termination condition is met. Each neuron covers some of train data. The termination condition is to cover all training data or to reach the maximum number of neurons. In each step, the center and spread of the new neuron are selected based on maximization of its coverage. Maximization of coverage of the neurons leads to a network with fewer neurons and indeed lower VC dimension and better generalization property. Using power exponential distribution function as the activation function of hidden neurons, and in the light of new learning approaches, it is proved that all data became linearly separable in the space of hidden layer outputs which implies that there exist linear output layer weights with zero training error. The proposed methods are applied to some well-known datasets and the simulation results, compared with SVM and some other leading RBF learning methods, show their satisfactory and comparable performance. PMID:26797472

  4. Learning the Rules: Observation and Imitation of a Sorting Strategy by 36-Month-Old Children

    ERIC Educational Resources Information Center

    Williamson, Rebecca A.; Jaswal, Vikram K.; Meltzoff, Andrew N.

    2010-01-01

    Two experiments were used to investigate the scope of imitation by testing whether 36-month-olds can learn to produce a categorization strategy through observation. After witnessing an adult sort a set of objects by a visible property (their color; Experiment 1) or a nonvisible property (the particular sounds produced when the objects were shaken;…

  5. Two fast and accurate heuristic RBF learning rules for data classification.

    PubMed

    Rouhani, Modjtaba; Javan, Dawood S

    2016-03-01

    This paper presents new Radial Basis Function (RBF) learning methods for classification problems. The proposed methods use some heuristics to determine the spreads, the centers and the number of hidden neurons of network in such a way that the higher efficiency is achieved by fewer numbers of neurons, while the learning algorithm remains fast and simple. To retain network size limited, neurons are added to network recursively until termination condition is met. Each neuron covers some of train data. The termination condition is to cover all training data or to reach the maximum number of neurons. In each step, the center and spread of the new neuron are selected based on maximization of its coverage. Maximization of coverage of the neurons leads to a network with fewer neurons and indeed lower VC dimension and better generalization property. Using power exponential distribution function as the activation function of hidden neurons, and in the light of new learning approaches, it is proved that all data became linearly separable in the space of hidden layer outputs which implies that there exist linear output layer weights with zero training error. The proposed methods are applied to some well-known datasets and the simulation results, compared with SVM and some other leading RBF learning methods, show their satisfactory and comparable performance.

  6. Stable Rules: Science and Social Transmission. Studies in the Learning Sciences.

    ERIC Educational Resources Information Center

    Nathan, Henry

    In laying the groundwork for a co-operative scientific inquiry in the field of learning sciences the following five areas of access to the study are considered in this introductory inquiry statement: 1) genetic sociology (symbolic systems and early socialization); 2) experimental ethnography (the effect of literacy on the structure of skill and…

  7. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    PubMed

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  8. Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets.

    PubMed

    Bassel, George W; Glaab, Enrico; Marquez, Julietta; Holdsworth, Michael J; Bacardit, Jaume

    2011-09-01

    The meta-analysis of large-scale postgenomics data sets within public databases promises to provide important novel biological knowledge. Statistical approaches including correlation analyses in coexpression studies of gene expression have emerged as tools to elucidate gene function using these data sets. Here, we present a powerful and novel alternative methodology to computationally identify functional relationships between genes from microarray data sets using rule-based machine learning. This approach, termed "coprediction," is based on the collective ability of groups of genes co-occurring within rules to accurately predict the developmental outcome of a biological system. We demonstrate the utility of coprediction as a powerful analytical tool using publicly available microarray data generated exclusively from Arabidopsis thaliana seeds to compute a functional gene interaction network, termed Seed Co-Prediction Network (SCoPNet). SCoPNet predicts functional associations between genes acting in the same developmental and signal transduction pathways irrespective of the similarity in their respective gene expression patterns. Using SCoPNet, we identified four novel regulators of seed germination (ALTERED SEED GERMINATION5, 6, 7, and 8), and predicted interactions at the level of transcript abundance between these novel and previously described factors influencing Arabidopsis seed germination. An online Web tool to query SCoPNet has been developed as a community resource to dissect seed biology and is available at http://www.vseed.nottingham.ac.uk/. PMID:21896882

  9. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.

    PubMed

    Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L

    2013-12-01

    Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain. PMID:23994510

  10. Categorization and decision-making in a neurobiologically plausible spiking network using a STDP-like learning rule.

    PubMed

    Beyeler, Michael; Dutt, Nikil D; Krichmar, Jeffrey L

    2013-12-01

    Understanding how the human brain is able to efficiently perceive and understand a visual scene is still a field of ongoing research. Although many studies have focused on the design and optimization of neural networks to solve visual recognition tasks, most of them either lack neurobiologically plausible learning rules or decision-making processes. Here we present a large-scale model of a hierarchical spiking neural network (SNN) that integrates a low-level memory encoding mechanism with a higher-level decision process to perform a visual classification task in real-time. The model consists of Izhikevich neurons and conductance-based synapses for realistic approximation of neuronal dynamics, a spike-timing-dependent plasticity (STDP) synaptic learning rule with additional synaptic dynamics for memory encoding, and an accumulator model for memory retrieval and categorization. The full network, which comprised 71,026 neurons and approximately 133 million synapses, ran in real-time on a single off-the-shelf graphics processing unit (GPU). The network was constructed on a publicly available SNN simulator that supports general-purpose neuromorphic computer chips. The network achieved 92% correct classifications on MNIST in 100 rounds of random sub-sampling, which is comparable to other SNN approaches and provides a conservative and reliable performance metric. Additionally, the model correctly predicted reaction times from psychophysical experiments. Because of the scalability of the approach and its neurobiological fidelity, the current model can be extended to an efficient neuromorphic implementation that supports more generalized object recognition and decision-making architectures found in the brain.

  11. Abstract shape analysis of RNA.

    PubMed

    Janssen, Stefan; Giegerich, Robert

    2014-01-01

    Abstract shape analysis abstract shape analysis is a method to learn more about the complete Boltzmann ensemble of the secondary structures of a single RNA molecule. Abstract shapes classify competing secondary structures into classes that are defined by their arrangement of helices. It allows us to compute, in addition to the structure of minimal free energy, a set of structures that represents relevant and interesting structural alternatives. Furthermore, it allows to compute probabilities of all structures within a shape class. This allows to ensure that our representative subset covers the complete Boltzmann ensemble, except for a portion of negligible probability. This chapter explains the main functions of abstract shape analysis, as implemented in the tool RNA shapes. RNA shapes It reports on some other types of analysis that are based on the abstract shapes idea and shows how you can solve novel problems by creating your own shape abstractions.

  12. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

    PubMed

    Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M

    2016-09-01

    The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria. PMID:27667641

  13. Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA.

    PubMed

    Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M

    2016-09-01

    The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.

  14. Rule-based learning of regular past tense in children with specific language impairment.

    PubMed

    Smith-Lock, Karen M

    2015-01-01

    The treatment of children with specific language impairment was used as a means to investigate whether a single- or dual-mechanism theory best conceptualizes the acquisition of English past tense. The dual-mechanism theory proposes that regular English past-tense forms are produced via a rule-based process whereas past-tense forms of irregular verbs are stored in the lexicon. Single-mechanism theories propose that both regular and irregular past-tense verbs are stored in the lexicon. Five 5-year-olds with specific language impairment received treatment for regular past tense. The children were tested on regular past-tense production and third-person singular "s" twice before treatment and once after treatment, at eight-week intervals. Treatment consisted of one-hour play-based sessions, once weekly, for eight weeks. Crucially, treatment focused on different lexical items from those in the test. Each child demonstrated significant improvement on the untreated past-tense test items after treatment, but no improvement on the untreated third-person singular "s". Generalization to untreated past-tense verbs could not be attributed to a frequency effect or to phonological similarity of trained and tested items. It is argued that the results are consistent with a dual-mechanism theory of past-tense inflection.

  15. Informal Learning in Science. Final Program and Abstracts of the National Association for Research in Science Teaching Annual Meeting (68th, San Francisco, California, April 22-25, 1995).

    ERIC Educational Resources Information Center

    National Association for Research in Science Teaching.

    This document is divided into five parts: general information about the National Association for Research in Science Teaching (NARST), the 1995 NARST annual meeting program, abstracts of papers presented at this meeting, first authors' addresses, and a participant index. The 10 strands concerning science education are: (1) Learning: Students'…

  16. ALT-C 96: Integrating Technology into the Curriculum. Conference Programme and Abstracts of the Association for Learning Technology Conference (3rd, Glasgow, Scotland, September 16-18, 1996).

    ERIC Educational Resources Information Center

    Cameron, Shona, Ed.

    This program for the 1996 Association for Learning Technology Conference summarizes the poster sessions, discussions, workshops, and software demonstrations, and provides abstracts of the 38 papers presented. Topics covered by the papers include: hand-held technology for mathematics; modeling global warming; computer-mediated communications; Java;…

  17. Abstraction and natural language semantics.

    PubMed Central

    Kayser, Daniel

    2003-01-01

    According to the traditional view, a word prototypically denotes a class of objects sharing similar features, i.e. it results from an abstraction based on the detection of common properties in perceived entities. I explore here another idea: words result from abstraction of common premises in the rules governing our actions. I first argue that taking 'inference', instead of 'reference', as the basic issue in semantics does matter. I then discuss two phenomena that are, in my opinion, particularly difficult to analyse within the scope of traditional semantic theories: systematic polysemy and plurals. I conclude by a discussion of my approach, and by a summary of its main features. PMID:12903662

  18. Sleep Promotes the Extraction of Grammatical Rules

    PubMed Central

    Nieuwenhuis, Ingrid L. C.; Folia, Vasiliki; Forkstam, Christian; Jensen, Ole; Petersson, Karl Magnus

    2013-01-01

    Grammar acquisition is a high level cognitive function that requires the extraction of complex rules. While it has been proposed that offline time might benefit this type of rule extraction, this remains to be tested. Here, we addressed this question using an artificial grammar learning paradigm. During a short-term memory cover task, eighty-one human participants were exposed to letter sequences generated according to an unknown artificial grammar. Following a time delay of 15 min, 12 h (wake or sleep) or 24 h, participants classified novel test sequences as Grammatical or Non-Grammatical. Previous behavioral and functional neuroimaging work has shown that classification can be guided by two distinct underlying processes: (1) the holistic abstraction of the underlying grammar rules and (2) the detection of sequence chunks that appear at varying frequencies during exposure. Here, we show that classification performance improved after sleep. Moreover, this improvement was due to an enhancement of rule abstraction, while the effect of chunk frequency was unaltered by sleep. These findings suggest that sleep plays a critical role in extracting complex structure from separate but related items during integrative memory processing. Our findings stress the importance of alternating periods of learning with sleep in settings in which complex information must be acquired. PMID:23755173

  19. Identifying users of traditional and Internet-based resources for meal ideas: An association rule learning approach.

    PubMed

    Doub, Allison E; Small, Meg L; Levin, Aron; LeVangie, Kristie; Brick, Timothy R

    2016-08-01

    Increasing home cooking while decreasing the consumption of food prepared away from home is a commonly recommended weight management strategy, however research on where individuals obtain ideas about meals to cook at home is limited. This study examined the characteristics of individuals who reported using traditional and Internet-based resources for meal ideas. 583 participants who were ≥50% responsible for household meal planning were recruited to approximate the 2014 United States Census distribution on sex, age, race/ethnicity, and household income. Participants reported demographic characteristics, home cooking frequency, and their use of 4 traditional resources for meal ideas (e.g., cookbooks), and 7 Internet-based resources for meal ideas (e.g., Pinterest) in an online survey. Independent samples t-tests compared home cooking frequency by resource use. Association rule learning identified those demographic characteristics that were significantly associated with resource use. Family and friends (71%), food community websites (45%), and cookbooks (41%) were the most common resources reported. Cookbook users reported preparing more meals at home per week (M = 9.65, SD = 5.28) compared to non-cookbook users (M = 8.11, SD = 4.93; t = -3.55, p < 0.001). Resource use was generally higher among parents and varied systematically with demographic characteristics. Findings suggest that home cooking interventions may benefit by modifying resources used by their target population.

  20. Identifying users of traditional and Internet-based resources for meal ideas: An association rule learning approach.

    PubMed

    Doub, Allison E; Small, Meg L; Levin, Aron; LeVangie, Kristie; Brick, Timothy R

    2016-08-01

    Increasing home cooking while decreasing the consumption of food prepared away from home is a commonly recommended weight management strategy, however research on where individuals obtain ideas about meals to cook at home is limited. This study examined the characteristics of individuals who reported using traditional and Internet-based resources for meal ideas. 583 participants who were ≥50% responsible for household meal planning were recruited to approximate the 2014 United States Census distribution on sex, age, race/ethnicity, and household income. Participants reported demographic characteristics, home cooking frequency, and their use of 4 traditional resources for meal ideas (e.g., cookbooks), and 7 Internet-based resources for meal ideas (e.g., Pinterest) in an online survey. Independent samples t-tests compared home cooking frequency by resource use. Association rule learning identified those demographic characteristics that were significantly associated with resource use. Family and friends (71%), food community websites (45%), and cookbooks (41%) were the most common resources reported. Cookbook users reported preparing more meals at home per week (M = 9.65, SD = 5.28) compared to non-cookbook users (M = 8.11, SD = 4.93; t = -3.55, p < 0.001). Resource use was generally higher among parents and varied systematically with demographic characteristics. Findings suggest that home cooking interventions may benefit by modifying resources used by their target population. PMID:27067739

  1. A LARI Experience (Abstract)

    NASA Astrophysics Data System (ADS)

    Cook, M.

    2015-12-01

    (Abstract only) In 2012, Lowell Observatory launched The Lowell Amateur Research Initiative (LARI) to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their astronomical research. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. A summary of the scientific and organizational aspects of this LARI project, including its goals and science motivation, the process for getting involved with the project, a description of the team members, their equipment and methods of collaboration, and an overview of the programme stars, preliminary findings, and lessons learned is presented.

  2. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  3. Rolloff Roof Observatory Construction (Abstract)

    NASA Astrophysics Data System (ADS)

    Ulowetz, J. H.

    2015-12-01

    (Abstract only) Lessons learned about building an observatory by someone with limited construction experience, and the advantages of having one for imaging and variable star studies. Sample results shown of composite light curves for cataclysmic variables UX UMa and V1101 Aql with data from my observatory combined with data from others around the world.

  4. Abstract Expressionism. Clip and Save.

    ERIC Educational Resources Information Center

    Hubbard, Guy

    2002-01-01

    Provides information on the art movement, Abstract Expressionism, and includes learning activities. Focuses on the artist Jackson Pollock, offering a reproduction of his artwork, "Convergence: Number 10." Includes background information on the life and career of Pollock and a description of the included artwork. (CMK)

  5. Motor Demands Constrain Cognitive Rule Structures.

    PubMed

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-03-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist.

  6. Motor Demands Constrain Cognitive Rule Structures

    PubMed Central

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-01-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  7. Motor Demands Constrain Cognitive Rule Structures.

    PubMed

    Collins, Anne Gabrielle Eva; Frank, Michael Joshua

    2016-03-01

    Study of human executive function focuses on our ability to represent cognitive rules independently of stimulus or response modality. However, recent findings suggest that executive functions cannot be modularized separately from perceptual and motor systems, and that they instead scaffold on top of motor action selection. Here we investigate whether patterns of motor demands influence how participants choose to implement abstract rule structures. In a learning task that requires integrating two stimulus dimensions for determining appropriate responses, subjects typically structure the problem hierarchically, using one dimension to cue the task-set and the other to cue the response given the task-set. However, the choice of which dimension to use at each level can be arbitrary. We hypothesized that the specific structure subjects adopt would be constrained by the motor patterns afforded within each rule. Across four independent data-sets, we show that subjects create rule structures that afford motor clustering, preferring structures in which adjacent motor actions are valid within each task-set. In a fifth data-set using instructed rules, this bias was strong enough to counteract the well-known task switch-cost when instructions were incongruent with motor clustering. Computational simulations confirm that observed biases can be explained by leveraging overlap in cortical motor representations to improve outcome prediction and hence infer the structure to be learned. These results highlight the importance of sensorimotor constraints in abstract rule formation and shed light on why humans have strong biases to invent structure even when it does not exist. PMID:26966909

  8. Piaget on Abstraction.

    ERIC Educational Resources Information Center

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  9. Cognitive Control over Learning: Creating, Clustering, and Generalizing Task-Set Structure

    ERIC Educational Resources Information Center

    Collins, Anne G. E.; Frank, Michael J.

    2013-01-01

    Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for…

  10. Automatic learning of rules. A practical example of using artificial intelligence to improve computer-based detection of myocardial infarction and left ventricular hypertrophy in the 12-lead ECG.

    PubMed

    Kaiser, W; Faber, T S; Findeis, M

    1996-01-01

    The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.

  11. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2014-03-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume

  12. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    PubMed Central

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2015-01-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA – a cohort of asymptomatic patients; and b) DETERMINE – a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end

  13. Changing the Rules: Making Space for Interactive Learning in the Galleries of the Detroit Institute of Arts

    ERIC Educational Resources Information Center

    Czajkowski, Jennifer Wild

    2011-01-01

    Three years after the Detroit Institute of Arts opened with all new, "visitor-centered" galleries, the museum's executive director of learning and interpretation shares the processes, successes, and lessons learned at an institution that embraced an array of hands-on learning models. The models are discussed as components of a comprehensive…

  14. Feature- versus rule-based generalization in rats, pigeons and humans.

    PubMed

    Maes, Elisa; De Filippo, Guido; Inkster, Angus B; Lea, Stephen E G; De Houwer, Jan; D'Hooge, Rudi; Beckers, Tom; Wills, Andy J

    2015-11-01

    Humans can spontaneously create rules that allow them to efficiently generalize what they have learned to novel situations. An enduring question is whether rule-based generalization is uniquely human or whether other animals can also abstract rules and apply them to novel situations. In recent years, there have been a number of high-profile claims that animals such as rats can learn rules. Most of those claims are quite weak because it is possible to demonstrate that simple associative systems (which do not learn rules) can account for the behavior in those tasks. Using a procedure that allows us to clearly distinguish feature-based from rule-based generalization (the Shanks-Darby procedure), we demonstrate that adult humans show rule-based generalization in this task, while generalization in rats and pigeons was based on featural overlap between stimuli. In brief, when learning that a stimulus made of two components ("AB") predicts a different outcome than its elements ("A" and "B"), people spontaneously abstract an opposites rule and apply it to new stimuli (e.g., knowing that "C" and "D" predict one outcome, they will predict that "CD" predicts the opposite outcome). Rats and pigeons show the reverse behavior-they generalize what they have learned, but on the basis of similarity (e.g., "CD" is similar to "C" and "D", so the same outcome is predicted for the compound stimulus as for the components). Genuinely rule-based behavior is observed in humans, but not in rats and pigeons, in the current procedure.

  15. Collaboration rules.

    PubMed

    Evans, Philip; Wolf, Bob

    2005-01-01

    Corporate leaders seeking to boost growth, learning, and innovation may find the answer in a surprising place: the Linux open-source software community. Linux is developed by an essentially volunteer, self-organizing community of thousands of programmers. Most leaders would sell their grandmothers for workforces that collaborate as efficiently, frictionlessly, and creatively as the self-styled Linux hackers. But Linux is software, and software is hardly a model for mainstream business. The authors have, nonetheless, found surprising parallels between the anarchistic, caffeinated, hirsute world of Linux hackers and the disciplined, tea-sipping, clean-cut world of Toyota engineering. Specifically, Toyota and Linux operate by rules that blend the self-organizing advantages of markets with the low transaction costs of hierarchies. In place of markets' cash and contracts and hierarchies' authority are rules about how individuals and groups work together (with rigorous discipline); how they communicate (widely and with granularity); and how leaders guide them toward a common goal (through example). Those rules, augmented by simple communication technologies and a lack of legal barriers to sharing information, create rich common knowledge, the ability to organize teams modularly, extraordinary motivation, and high levels of trust, which radically lowers transaction costs. Low transaction costs, in turn, make it profitable for organizations to perform more and smaller transactions--and so increase the pace and flexibility typical of high-performance organizations. Once the system achieves critical mass, it feeds on itself. The larger the system, the more broadly shared the knowledge, language, and work style. The greater individuals' reputational capital, the louder the applause and the stronger the motivation. The success of Linux is evidence of the power of that virtuous circle. Toyota's success is evidence that it is also powerful in conventional companies. PMID

  16. Collaboration rules.

    PubMed

    Evans, Philip; Wolf, Bob

    2005-01-01

    Corporate leaders seeking to boost growth, learning, and innovation may find the answer in a surprising place: the Linux open-source software community. Linux is developed by an essentially volunteer, self-organizing community of thousands of programmers. Most leaders would sell their grandmothers for workforces that collaborate as efficiently, frictionlessly, and creatively as the self-styled Linux hackers. But Linux is software, and software is hardly a model for mainstream business. The authors have, nonetheless, found surprising parallels between the anarchistic, caffeinated, hirsute world of Linux hackers and the disciplined, tea-sipping, clean-cut world of Toyota engineering. Specifically, Toyota and Linux operate by rules that blend the self-organizing advantages of markets with the low transaction costs of hierarchies. In place of markets' cash and contracts and hierarchies' authority are rules about how individuals and groups work together (with rigorous discipline); how they communicate (widely and with granularity); and how leaders guide them toward a common goal (through example). Those rules, augmented by simple communication technologies and a lack of legal barriers to sharing information, create rich common knowledge, the ability to organize teams modularly, extraordinary motivation, and high levels of trust, which radically lowers transaction costs. Low transaction costs, in turn, make it profitable for organizations to perform more and smaller transactions--and so increase the pace and flexibility typical of high-performance organizations. Once the system achieves critical mass, it feeds on itself. The larger the system, the more broadly shared the knowledge, language, and work style. The greater individuals' reputational capital, the louder the applause and the stronger the motivation. The success of Linux is evidence of the power of that virtuous circle. Toyota's success is evidence that it is also powerful in conventional companies.

  17. Psychological Abstracts/BRS.

    ERIC Educational Resources Information Center

    Dolan, Donna R.

    1978-01-01

    Discusses particular problems and possible solutions in searching the Psychological Abstracts database, with special reference to its loading on BRS. Included are examples of typical searches, citations (with or without abstract/annotation), a tabulated searchguide to Psychological Abstracts on BRS and specifications for the database. (Author/JD)

  18. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  19. Bridging History of the Concept of Function with Learning of Mathematics: Students' Meta-Discursive Rules, Concept Formation and Historical Awareness

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Tinne Hoff; Petersen, Pernille Hviid

    2013-08-01

    In this paper we present a matrix-organised implementation of an experimental course in the history of the concept of a function. The course was implemented in a Danish high school. One of the aims was to bridge history of mathematics with the teaching and learning of mathematics. The course was designed using the theoretical frameworks of a multiple perspective approach to history, Sfard's theory of thinking as communicating, and theories from mathematics education about concept image, concept definition and concept formation. It will be explained how history and extracts of original sources by Euler from 1748 and Dirichlet from 1837 were used to (1) reveal students' meta-discursive rules in mathematics and make them objects of students' reflections, (2) support students' learning of the concept of a function, and (3) develop students' historical awareness. The results show that it is possible to diagnose (some) of students' meta-discursive rules, that some of the students acted according to meta-discursive rules that coincide with Euler's from the 1700s, and that reading a part of a text by Dirichlet from 1837 created obstacles for the students that can be referenced to differences in meta-discursive rules. The experiment revealed that many of the students have a concept image that was in accordance with Euler's rather than with our modern concept definition and that they have process oriented thinking about functions. The students' historical awareness was developed through the course with respect to actors' influence on the formation of mathematical concepts and the notions of internal and external driving forces in the historical development of mathematics.

  20. Striatal degeneration impairs language learning: evidence from Huntington's disease.

    PubMed

    De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C

    2008-11-01

    Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly

  1. Born Rule(s)

    SciTech Connect

    Sinha, Urbasi

    2011-09-23

    This paper is based on work published in [1]. It describes a triple slit experiment using single photons that has been used to provide a bound on one of the most fundamental axioms of quantum mechanics i.e. Born's rule for probabilities [2]. In spite of being one of the most successful theories which describes various natural phenomena, quantum mechanics has enough intricacies and ''weirdness'' associated with it which makes many physicists believe that it may not be the final theory and hints towards the possibility of more generalized versions. Quantum interference as shown by a double slit diffraction experiment only occurs from pairs of paths. Even in multi-slit versions, interference can only occur between pairs of possibilities and increasing the number of slits does not increase the complexity of the theory that still remains second-order. However, more generalized versions of quantum mechanics may allow for multi-path i.e. higher than second order interference. This experiment also provides a bound on the magnitude of such higher order interference. We have been able to bound the magnitude of three-path interference to less than 10{sup -2} of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule.

  2. Born Rule(s)

    NASA Astrophysics Data System (ADS)

    Sinha, Urbasi

    2011-09-01

    This paper is based on work published in [1]. It describes a triple slit experiment using single photons that has been used to provide a bound on one of the most fundamental axioms of quantum mechanics i.e. Born's rule for probabilities [2]. In spite of being one of the most successful theories which describes various natural phenomena, quantum mechanics has enough intricacies and "weirdness" associated with it which makes many physicists believe that it may not be the final theory and hints towards the possibility of more generalized versions. Quantum interference as shown by a double slit diffraction experiment only occurs from pairs of paths. Even in multi-slit versions, interference can only occur between pairs of possibilities and increasing the number of slits does not increase the complexity of the theory that still remains second-order. However, more generalized versions of quantum mechanics may allow for multi-path i.e. higher than second order interference. This experiment also provides a bound on the magnitude of such higher order interference. We have been able to bound the magnitude of three-path interference to less than 10-2 of the expected two-path interference, thus ruling out third and higher order interference and providing a bound on the accuracy of Born's rule.

  3. Students with Learning Disability in Math Are Left Behind in Multiplicative Reasoning? Number as Abstract Composite Unit Is a Likely "Culprit"

    ERIC Educational Resources Information Center

    Tzur, Ron; Xin, Yan Ping; Si, Luo; Kenney, Rachael; Guebert, Adam

    2010-01-01

    This study addressed the problem of why students with learning disabilities in mathematics too often fail to develop multiplicative and divisional concepts/operations. We conducted a constructivist teaching experiment with 12 students (nine 5th and three 4th graders). This report focuses on three students' conceptual progress, particularly on…

  4. Distinct contributions of lateral orbito-frontal cortex, striatum, and fronto-parietal network regions for rule encoding and control of memory-based implementation during instructed reversal learning.

    PubMed

    Ruge, Hannes; Wolfensteller, Uta

    2016-01-15

    A key element of behavioral flexibility is to quickly learn to modify or reverse previously acquired stimulus-response associations. Such reversal learning (RL) can either be driven by feedback or by explicit instruction, informing either retrospectively or prospectively about the changed response requirements. Neuroimaging studies have thus far exclusively focused either on feedback-driven RL or on instructed initial learning of novel rules. The present study examined the neural basis of instructed RL as compared to instructed initial learning, separately assessing reversal-related instruction-based encoding processes and reversal-related control processes required for implementing reversed rules under competition from the initially learned rules. We found that instructed RL is partly supported by similar regions as feedback-driven RL, including lateral orbitofrontal cortex (lOFC) and anterior dorsal caudate. Encoding-related activation in both regions determined resilience against response competition during subsequent memory-based reversal implementation. Different from feedback-driven RL, instruction-based RL relied heavily on the generic fronto-parietal cognitive control network--not for encoding but for reversal-related control processes during memory-based implementation. These findings are consistent with a model of partly decoupled, yet interacting, systems of (i) symbolic rule representations that are instantaneously updated upon instruction and (ii) pragmatic representations of reward-associated S-R links mediating the enduring competition from initially learned rules.

  5. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel. PMID:26227680

  6. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  7. The Influence of Ground Rules on Chinese Students' Learning of Critical Thinking in Group Work: A Cultural Perspective

    ERIC Educational Resources Information Center

    Fung, Dennis

    2014-01-01

    This article reports the results of a one-year longitudinal study examining a teaching intervention designed to enhance students' learning of critical thinking in Hong Kong. Seventy participating students (age 16-18) learned how to make reasoned arguments through a series of collaborative activities, including critical-thinking modelling…

  8. Loving Those Abstracts

    ERIC Educational Resources Information Center

    Stevens, Lori

    2004-01-01

    The author describes a lesson she did on abstract art with her high school art classes. She passed out a required step-by-step outline of the project process. She asked each of them to look at abstract art. They were to list five or six abstract artists they thought were interesting, narrow their list down to the one most personally intriguing,…

  9. Playing by the Rules: Researching, Teaching and Learning Sexual Ethics with Young Men in the Australian National Rugby League

    ERIC Educational Resources Information Center

    Albury, Kath; Carmody, Moira; Evers, Clifton; Lumby, Catharine

    2011-01-01

    In 2004, the Australian National Rugby League (NRL) commissioned the Playing By The Rules research project in response to allegations of sexual assault by members of a professional rugby league team. This article offers an overview of the theoretical and methodological approaches adopted by the team, and the subsequent workplace education…

  10. Reflections on Reflective Abstractions in Creative Thinking.

    ERIC Educational Resources Information Center

    Cohen, Leonora Marx

    This report proposes a modification of Jean Piaget's concept of "creative abstraction," the mechanism of creative thought, which develops both intelligence and creative ideas. By reflecting on one's actions and the coordinations of actions, the individual constructs new relationships, links, rules, or correspondences between and among them.…

  11. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  12. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  13. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  14. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  15. Leadership Abstracts, 1995.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1995-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, and teaching in community colleges. The 12 abstracts for Volume 8, 1995, are: (1) "Redesigning the System To Meet the Workforce Training Needs of the Nation," by Larry Warford; (2) "The College President, the Board, and the Board Chair: A…

  16. Concept Formation and Abstraction.

    ERIC Educational Resources Information Center

    Lunzer, Eric A.

    1979-01-01

    This paper examines the nature of concepts and conceptual processes and the manner of their formation. It argues that a process of successive abstraction and systematization is central to the evolution of conceptual structures. Classificatory processes are discussed and three levels of abstraction outlined. (Author/SJL)

  17. Data Abstraction in GLISP.

    ERIC Educational Resources Information Center

    Novak, Gordon S., Jr.

    GLISP is a high-level computer language (based on Lisp and including Lisp as a sublanguage) which is compiled into Lisp. GLISP programs are compiled relative to a knowledge base of object descriptions, a form of abstract datatypes. A primary goal of the use of abstract datatypes in GLISP is to allow program code to be written in terms of objects,…

  18. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  19. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  20. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  1. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts

    SciTech Connect

    Taylor, Ronald C.; Sanfilippo, Antonio P.; McDermott, Jason E.; Baddeley, Robert L.; Riensche, Roderick M.; Jensen, Russell S.; Verhagen, Marc; Pustejovsky, James

    2011-02-18

    Transcriptional regulatory networks are being determined using “reverse engineering” methods that infer connections based on correlations in gene state. Corroboration of such networks through independent means such as evidence from the biomedical literature is desirable. Here, we explore a novel approach, a bootstrapping version of our previous Cross-Ontological Analytic method (XOA) that can be used for semi-automated annotation and verification of inferred regulatory connections, as well as for discovery of additional functional relationships between the genes. First, we use our annotation and network expansion method on a biological network learned entirely from the literature. We show how new relevant links between genes can be iteratively derived using a gene similarity measure based on the Gene Ontology that is optimized on the input network at each iteration. Second, we apply our method to annotation, verification, and expansion of a set of regulatory connections found by the Context Likelihood of Relatedness algorithm.

  2. Experience with abstract notation one

    NASA Technical Reports Server (NTRS)

    Harvey, James D.; Weaver, Alfred C.

    1990-01-01

    The development of computer science has produced a vast number of machine architectures, programming languages, and compiler technologies. The cross product of these three characteristics defines the spectrum of previous and present data representation methodologies. With regard to computer networks, the uniqueness of these methodologies presents an obstacle when disparate host environments are to be interconnected. Interoperability within a heterogeneous network relies upon the establishment of data representation commonality. The International Standards Organization (ISO) is currently developing the abstract syntax notation one standard (ASN.1) and the basic encoding rules standard (BER) that collectively address this problem. When used within the presentation layer of the open systems interconnection reference model, these two standards provide the data representation commonality required to facilitate interoperability. The details of a compiler that was built to automate the use of ASN.1 and BER are described. From this experience, insights into both standards are given and potential problems relating to this development effort are discussed.

  3. 2016 ACPA MEETING ABSTRACTS.

    PubMed

    2016-07-01

    The peer-reviewed abstracts presented at the 73rd Annual Meeting of the ACPA are published as submitted by the authors. For financial conflict of interest disclosure, please visit http://meeting.acpa-cpf.org/disclosures.html. PMID:27447885

  4. Abstracts--Citations

    ERIC Educational Resources Information Center

    Occupational Mental Health, 1971

    1971-01-01

    Provides abstracts and citations of journal articles and reports dealing with aspects of mental health. Topics include alcoholism, drug abuse, disadvantaged, mental health programs, rehabilitation, student mental health, and others. (SB)

  5. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  6. Introducing Abstract Design

    ERIC Educational Resources Information Center

    Ciscell, Bob

    1973-01-01

    A functional approach involving collage, two-dimensional design, three-dimensional construction, and elements of Cubism, is used to teach abstract design in elementary and junior high school art classes. (DS)

  7. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1991

    1991-01-01

    Presents abstracts of 36 special interest group (SIG) sessions. Highlights include the Chemistry Online Retrieval Experiment; organizing and retrieving images; intelligent information retrieval using natural language processing; interdisciplinarity; libraries as publishers; indexing hypermedia; cognitive aspects of classification; computer-aided…

  8. 1971 Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1971

    1971-01-01

    Included are 112 abstracts listed under headings such as: acoustics, continuing engineering studies, educational research and methods, engineering design, libraries, liberal studies, and materials. Other areas include agricultural, electrical, mechanical, mineral, and ocean engineering. (TS)

  9. Paradigms for Abstracting Systems.

    ERIC Educational Resources Information Center

    Pinto, Maria; Galvez, Carmen

    1999-01-01

    Discussion of abstracting systems focuses on the paradigm concept and identifies and explains four paradigms: communicational, or information theory; physical, including information retrieval; cognitive, including information processing and artificial intelligence; and systemic, including quality management. Emphasizes multidimensionality and…

  10. Abstracts of contributed papers

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  11. The Rules of Evidence: Focus on Key Points to Develop the Best Strategy to Evaluate Professional Learning

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2012-01-01

    Gathering evidence on the outcomes of any professional learning experience can be a challenging and complicated task. It involves consideration of a wide variety of perceptual and contextual issues, some obvious to education leaders and others not. Those who want to succeed in this process may find the following points helpful: (1) Always begin…

  12. The Efficacy of Explicit Grammar Instruction and Its Impact on L2 Rule-Learning: A Literature Review

    ERIC Educational Resources Information Center

    Gabriel, Raafat

    2009-01-01

    It is crucial that foreign language teachers know well what kinds of grammar teaching strategies best aid learning in the classroom in order to adjust their teaching toward a practical and successful approach. Much of the debate about how to help EFL learners achieve grammatical proficiency centers on the implicit versus explicit, or deductive…

  13. Rules of Engagement: The Joint Influence of Trainer Expressiveness and Trainee Experiential Learning Style on Engagement and Training Transfer

    ERIC Educational Resources Information Center

    Rangel, Bertha; Chung, Wonjoon; Harris, T. Brad; Carpenter, Nichelle C.; Chiaburu, Dan S.; Moore, Jenna L.

    2015-01-01

    We investigated the joint effect of trainer expressiveness and trainee experiential learning style on training transfer intentions. Extending prior research where trainer expressiveness has been established as a positive predictor of transfer, we show that trainer expressiveness is more impactful for trainees with high (vs. low) experiential…

  14. On the emergence of rules in neural networks.

    PubMed

    Hanson, Stephen José; Negishi, Michiro

    2002-09-01

    A simple associationist neural network learns to factor abstract rules (i.e., grammars) from sequences of arbitrary input symbols by inventing abstract representations that accommodate unseen symbol sets as well as unseen but similar grammars. The neural network is shown to have the ability to transfer grammatical knowledge to both new symbol vocabularies and new grammars. Analysis of the state-space shows that the network learns generalized abstract structures of the input and is not simply memorizing the input strings. These representations are context sensitive, hierarchical, and based on the state variable of the finite-state machines that the neural network has learned. Generalization to new symbol sets or grammars arises from the spatial nature of the internal representations used by the network, allowing new symbol sets to be encoded close to symbol sets that have already been learned in the hidden unit space of the network. The results are counter to the arguments that learning algorithms based on weight adaptation after each exemplar presentation (such as the long term potentiation found in the mammalian nervous system) cannot in principle extract symbolic knowledge from positive examples as prescribed by prevailing human linguistic theory and evolutionary psychology.

  15. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue.

  16. Raising the Level of Abstraction in Online Education: The Context

    ERIC Educational Resources Information Center

    Natale, Samuel M.; Libertella, Anthony F.; Sora, Sebastian A.; Ulin, John

    2007-01-01

    A commonly accepted definition of online learning is that students have access to learning experiences in: time, place, pace, learning style, content, assessment, and pathways (Chen, 2003). Although this is true, there is a considerable concern about the level of abstraction involved in online education. Critics of flexible learning call it just…

  17. Abstracting and indexing guide

    USGS Publications Warehouse

    U.S. Department of the Interior; Office of Water Resources Research

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  18. Thyra Abstract Interface Package

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  19. Association rules for rat spatial learning: the importance of the hippocampus for binding item identity with item location.

    PubMed

    Albasser, Mathieu M; Dumont, Julie R; Amin, Eman; Holmes, Joshua D; Horne, Murray R; Pearce, John M; Aggleton, John P

    2013-12-01

    Three cohorts of rats with extensive hippocampal lesions received multiple tests to examine the relationships between particular forms of associative learning and an influential account of hippocampal function (the cognitive map hypothesis). Hippocampal lesions spared both the ability to discriminate two different digging media and to discriminate two different room locations in a go/no-go task when each location was approached from a single direction. Hippocampal lesions had, however, differential effects on a more complex task (biconditional discrimination) where the correct response was signaled by the presence or absence of specific cues. For all biconditional tasks, digging in one medium (A) was rewarded in the presence of cue C, while digging in medium B was rewarded in the presences of cue D. Such biconditional tasks are "configural" as no individual cue or element predicts the solution (AC+, AD-, BD+, and BC-). When proximal context cues signaled the correct digging choice, biconditional learning was seemingly unaffected by hippocampal lesions. Severe deficits occurred, however, when the correct digging choice was signaled by distal room cues. Also, impaired was the ability to discriminate two locations when each location was approached from two directions. A task demand that predicted those tasks impaired by hippocampal damage was the need to combine specific cues with their relative spatial positions ("structural learning"). This ability makes it possible to distinguish the same cues set in different spatial arrays. Thus, the hippocampus appears necessary for configural discriminations involving structure, discriminations that potentially underlie the creation of cognitive maps.

  20. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  1. Seismic Consequence Abstraction

    SciTech Connect

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  2. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  3. Making the Abstract Concrete

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2005-01-01

    President Ronald Reagan nominated a woman to serve on the United States Supreme Court. He did so through a single-page form letter, completed in part by hand and in part by typewriter, announcing Sandra Day O'Connor as his nominee. While the document serves as evidence of a historic event, it is also a tangible illustration of abstract concepts…

  4. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  5. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  6. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  7. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  8. Leadership Abstracts, 2002.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.; Milliron, Mark David, Ed.

    2002-01-01

    This 2002 volume of Leadership Abstracts contains issue numbers 1-12. Articles include: (1) "Skills Certification and Workforce Development: Partnering with Industry and Ourselves," by Jeffrey A. Cantor; (2) "Starting Again: The Brookhaven Success College," by Alice W. Villadsen; (3) "From Digital Divide to Digital Democracy," by Gerardo E. de los…

  9. Water reuse. [Lead abstract

    SciTech Connect

    Middlebrooks, E.J.

    1982-01-01

    Separate abstracts were prepared for the 31 chapters of this book which deals with all aspects of wastewater reuse. Design data, case histories, performance data, monitoring information, health information, social implications, legal and organizational structures, and background information needed to analyze the desirability of water reuse are presented. (KRM)

  10. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  11. The Acquisition of Abstract Words by Young Infants

    ERIC Educational Resources Information Center

    Bergelson, Elika; Swingley, Daniel

    2013-01-01

    Young infants' learning of words for abstract concepts like "all gone" and "eat," in contrast to their learning of more concrete words like "apple" and "shoe," may follow a relatively protracted developmental course. We examined whether infants know such abstract words. Parents named one of two events shown in side-by-side videos while their…

  12. An Abstract Data Interface

    NASA Astrophysics Data System (ADS)

    Allan, D. J.

    The Abstract Data Interface (ADI) is a system within which both abstract data models and their mappings on to file formats can be defined. The data model system is object-oriented and closely follows the Common Lisp Object System (CLOS) object model. Programming interfaces in both C and \\fortran are supplied, and are designed to be simple enough for use by users with limited software skills. The prototype system supports access to those FITS formats most commonly used in the X-ray community, as well as the Starlink NDF data format. New interfaces can be rapidly added to the system---these may communicate directly with the file system, other ADI objects or elsewhere (e.g., a network connection).

  13. Meeting Abstracts - Nexus 2015.

    PubMed

    2015-10-01

    The AMCP Abstracts program provides a forum through which authors can share their insights and outcomes of advanced managed care practice through publication in AMCP's Journal of Managed Care Specialty Pharmacy (JMCP). Of the abstracts accepted for publication, most are presented as posters, so interested AMCP meeting attendees can review findings and query authors. The main poster presentation is Tuesday, October 27, 2015; posters are also displayed on Wednesday, October 28, 2015. The AMCP Nexus 2015 in Orlando, Florida, is expected to attract more than 3,500 managed care pharmacists and other health care professionals who manage and evaluate drug therapies, develop and manage networks, and work with medical managers and information specialists to improve the care of all individuals enrolled in managed care programs.  Abstracts were submitted in the following categories:  Research Report: describe completed original research on managed care pharmacy services or health care interventions. Examples include (but are not limited to) observational studies using administrative claims, reports of the impact of unique benefit design strategies, and analyses of the effects of innovative administrative or clinical programs.Economic Model: describe models that predict the effect of various benefit design or clinical decisions on a population. For example, an economic model could be used to predict the budget impact of a new pharmaceutical product on a health care system. Solving Problems in Managed Care: describe the specific steps taken to introduce a needed change, develop and implement a new system or program, plan and organize an administrative function, or solve other types of problems in managed care settings. These abstracts describe a course of events; they do not test a hypothesis, but they may include data.

  14. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  15. Abstracts of Research Papers 1977 AAHPER Convention.

    ERIC Educational Resources Information Center

    Sage, George H., Ed.

    This volume of abstracts describes papers written on the following topics: (1) Strength Physiology; (2) Learning Disabilities (motor); (3) Physiology - General; (4) Work Capacity; (5) Measurement and Recreation; (6) Biomechanics; (7) Professional Preparation (physical education); (8) Muscle Performance; (9) Sociology of Sport; (10) History of…

  16. Using Group Explorer in Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-01-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in…

  17. Development of Abstract Grammatical Categorization in Infants

    ERIC Educational Resources Information Center

    Cyr, Marilyn; Shi, Rushen

    2013-01-01

    This study examined abstract syntactic categorization in infants, using the case of grammatical gender. Ninety-six French-learning 14-, 17-, 20-, and 30-month-olds completed the study. In a preferential looking procedure infants were tested on their generalized knowledge of grammatical gender involving pseudonouns and gender-marking determiners.…

  18. Cool Cats: Feline Fun with Abstract Art.

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2002-01-01

    Presents a lesson that teaches students about abstract art in a fun way. Explains that students draw cats, learn about the work of Pablo Picasso, and, in the style of Picasso, combine the parts of the cats (tail, legs, head, body) together in unconventional ways. (CMK)

  19. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  20. Innovation Abstracts, 2000.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    2000-01-01

    This document is a series of short papers (47) on topics of interest to community college instructors and practitioners. The topics covered in the papers include: study and writing tips for students, teaching strategies and tips, descriptions of innovative programs, using technology in teaching and learning, interacting with students, and…

  1. Greenbook Abstract & Catalog--4.

    ERIC Educational Resources Information Center

    Coole, Walter A.; And Others

    This catalog is the fourth in a series extending and updating teaching materials previously disseminated through the ERIC system, including the "Greenbook System" of training materials for higher education professionals (ED 103 083-084 and 148 438), Open Classroom Documentation, a procedural manual for an autoinstructional learning laboratory at…

  2. Transfer, Abstraction, and Context

    ERIC Educational Resources Information Center

    Jones, Matthew G.

    2009-01-01

    The author responds to the recent work of Kaminski, Sloutsky, and Heckler (2008) and advances two major concerns about their research and its applicability to learning mathematics: a confounding variable that arises from the mathematical differences between the generic examples and concrete examples poses a threat to the construct validity of the…

  3. Self-organizing ARTMAP rule discovery.

    PubMed

    Carpenter, Gail A; Olivera, Santiago

    2012-01-01

    The self-organizing ARTMAP rule discovery (SOARD) system derives relationships among recognition classes during online learning. SOARD training on input/output pairs produces the basic competence of direct recognition of individual class labels for new test inputs. As a typical supervised system, it learns many-to-one maps, which recognize different inputs (Spot, Rex) as belonging to one class (dog). As an ARTMAP system, it also learns one-to-many maps, allowing a given input (Spot) to learn a new class (animal) without forgetting its previously learned output (dog), even as it corrects erroneous predictions (cat). As it learns individual input/output class predictions, SOARD employs distributed code representations that support online rule discovery. When the input Spot activates the classes dogand animal, confidence in the rule dog→animal begins to grow. When other inputs simultaneously activate classes cat and animal, confidence in the converse rule, animal→dog, decreases. Confidence in a self-organized rule is encoded as the weight in a path from one class node to the other. An experience-based mechanism modulates the rate of rule learning, to keep inaccurate predictions from creating false rules during early learning. Rules may be excitatory or inhibitory so that rule-based activation can add missing classes and remove incorrect ones. SOARD rule activation also enables inputs to learn to make direct predictions of output classes that they have never experienced during supervised training. When input Rex activates its learned class dog, the rule dog→animal indirectly activates the output class animal. The newly activated class serves as a teaching signal which allows input Rex to learn direct activation of the output class animal. Simulations using small-scale and large-scale datasets demonstrate functional properties of the SOARD system in both spatial and time-series domains.

  4. Using Group Explorer in teaching abstract algebra

    NASA Astrophysics Data System (ADS)

    Schubert, Claus; Gfeller, Mary; Donohue, Christopher

    2013-04-01

    This study explores the use of Group Explorer in an undergraduate mathematics course in abstract algebra. The visual nature of Group Explorer in representing concepts in group theory is an attractive incentive to use this software in the classroom. However, little is known about students' perceptions on this technology in learning concepts in abstract algebra. A total of 26 participants in an undergraduate course studying group theory were surveyed regarding their experiences using Group Explorer. Findings indicate that all participants believed that the software was beneficial to their learning and described their attitudes regarding the software in terms of using the technology and its helpfulness in learning concepts. A multiple regression analysis reveals that representational fluency of concepts with the software correlated significantly with participants' understanding of group concepts yet, participants' attitudes about Group Explorer and technology in general were not significant factors.

  5. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  6. Binary translation using peephole translation rules

    DOEpatents

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  7. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  8. Writing a successful research abstract.

    PubMed

    Bliss, Donna Z

    2012-01-01

    Writing and submitting a research abstract provides timely dissemination of the findings of a study and offers peer input for the subsequent development of a quality manuscript. Acceptance of abstracts is competitive. Understanding the expected content of an abstract, the abstract review process and tips for skillful writing will improve the chance of acceptance.

  9. Adaptation and Extension of the Framework of Reducing Abstraction in the Case of Differential Equations

    ERIC Educational Resources Information Center

    Raychaudhuri, Debasree

    2014-01-01

    Although there is no consensus in regard to a unique meaning for abstraction, there is a recognition of the existence of several theories of abstraction, and that the ability to abstract is imperative to learning and doing meaningful mathematics. The theory of "reducing abstraction" maps the abstract nature of mathematics to the nature…

  10. Linking Research to Policy, Practice, and Education: Lessons Learned, Tasks Ahead. Program Abstracts. Annual Scientific Meeting of the Gerontological Society of America (53rd, Washington, DC, November 17-21, 2000).

    ERIC Educational Resources Information Center

    Gerontologist, 2000

    2000-01-01

    This publication contains abstracts from the 53rd annual meeting of the Gerontological Society of America. The abstracts are arranged numerically by the session number in which they appear. Several abstracts are listed under each of the 388 sessions. Although the sessions are not limited to one topic, the dominant theme is education concerning all…

  11. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  12. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  13. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  14. Abstracts and reviews.

    PubMed

    Liebmann, G H; Wollman, L; Woltmann, A G

    1966-09-01

    Abstract Eric Berne, M.D.: Games People Play. Grove Press, New York, 1964. 192 pages. Price $5.00. Reviewed by Hugo G. Beigel Finkle, Alex M., Ph.D., M.D. and Prian, Dimitry F. Sexual Potency in Elderly Men before and after Prostatectomy. J.A.M.A., 196: 2, April, 1966. Reviewed by H. George Liebman Calvin C. Hernton: Sex and Racism In America. Grove Press, Inc. Black Cat Edition No. 113 (Paperback), 1966, 180 pp. Price $.95. Reviewed by Gus Woltmann Hans Lehfeldt, M.D., Ernest W. Kulka, M.D., H. George Liebman, M.D.: Comparative Study of Uterine Contraceptive Devices. Obstetrics and Gynecology, 26: 5, 1965, pp. 679-688. Lawrence Lipton. The Erotic Revolution. Sherbourne Press, Los Angeles, 1965. 322 pp., Price $7.50. Masters, William H., M.D. and Johnson, Virginia E. Human Sexual Response. Boston: Little, Brown and Co., 1966. 366 pages. Price $.10.00. Reviewed by Hans Lehfeldt Douglas P. Murphy, M.D. and Editha F. Torrano, M.D. Male Fertility in 3620 Childless Couples. Fertility and Sterility, 16: 3, May-June, 1965. Reviewed by Leo Wollman, M.D. Edwin M. Schur, Editor: The Family and the Sexual Revolution, Indiana University Press, Bloomington, Indiana, 1964. 427 pgs. Weldon, Virginia F., M.D., Blizzard, Robert M., M.D., and Migeon, Claude, M.D. Newborn Girls Misdiagnosed as Bilaterally Chryptorchid Males. The New England Journal of Medicine, April 14, 1966. Reviewed by H. George Liebman.

  15. Attracting Girls into Physics (abstract)

    NASA Astrophysics Data System (ADS)

    Gadalla, Afaf

    2009-04-01

    A recent international study of women in physics showed that enrollment in physics and science is declining for both males and females and that women are severely underrepresented in careers requiring a strong physics background. The gender gap begins early in the pipeline, from the first grade. Girls are treated differently than boys at home and in society in ways that often hinder their chances for success. They have fewer freedoms, are discouraged from accessing resources or being adventurous, have far less exposure to problem solving, and are not encouraged to choose their lives. In order to motivate more girl students to study physics in the Assiut governorate of Egypt, the Assiut Alliance for the Women and Assiut Education District collaborated in renovating the education of physics in middle and secondary school classrooms. A program that helps in increasing the number of girls in science and physics has been designed in which informal groupings are organized at middle and secondary schools to involve girls in the training and experiences needed to attract and encourage girls to learn physics. During implementation of the program at some schools, girls, because they had not been trained in problem-solving as boys, appeared not to be as facile in abstracting the ideas of physics, and that was the primary reason for girls dropping out of science and physics. This could be overcome by holding a topical physics and technology summer school under the supervision of the Assiut Alliance for the Women.

  16. Learning to Learn about Uncertain Feedback

    ERIC Educational Resources Information Center

    Faraut, Mailys C. M.; Procyk, Emmanuel; Wilson, Charles R. E.

    2016-01-01

    Unexpected outcomes can reflect noise in the environment or a change in the current rules. We should ignore noise but shift strategy after rule changes. How we learn to do this is unclear, but one possibility is that it relies on learning to learn in uncertain environments. We propose that acquisition of latent task structure during learning to…

  17. Abstracts of Review Articles and Educational Materials in Physiology

    ERIC Educational Resources Information Center

    Physiology Teacher, 1977

    1977-01-01

    Contained are 99 abstracts of review articles, texts, books, manuals, learning programs, and audiovisual material used in teaching physiology. Specific fields include cell physiology, circulation, comparative physiology, development and aging, endocrinology and metabolism, environmental and exercise physiology, gastrointestinal physiology, muscle…

  18. Accepted scientific research works (abstracts).

    PubMed

    2014-01-01

    These are the 39 accepted abstracts for IAYT's Symposium on Yoga Research (SYR) September 24-24, 2014 at the Kripalu Center for Yoga & Health and published in the Final Program Guide and Abstracts. PMID:25645134

  19. Leadership Abstracts, Volume 11, Numbers 1-10, 1998.

    ERIC Educational Resources Information Center

    Milliron, Mark D. Ed.

    1998-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 11 for 1998 contains the following 10 abstracts: (1) "What If They Learn Differently: Applying Multiple Intelligences Theory in the Community College" (Rene…

  20. Innovation Abstracts, Volume X, Numbers 1-30. 1988.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1988-01-01

    This series of one- to two-page abstracts highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) staff development; (2) integrating computers into the curriculum; (3) a strategy for selecting and hiring good teachers; (4) faculty involvement in support services…

  1. Investigations with Calculators: Abstracts and Critical Analyses of Research.

    ERIC Educational Resources Information Center

    Suydam, Marilyn N., Ed.

    The abstracts and critical analyses of research in this document were prepared and compiled to add to the fund of information on the effects of hand-held calculators on achievement and learning. Since many persons find it difficult to secure original copies of all research studies, the expanded abstracts should provide specific information…

  2. Categorization of sentence types in medical abstracts.

    PubMed

    McKnight, Larry; Srinivasan, Padmini

    2003-01-01

    This study evaluated the use of machine learning techniques in the classification of sentence type. 7253 structured abstracts and 204 unstructured abstracts of Randomized Controlled Trials from MedLINE were parsed into sentences and each sentence was labeled as one of four types (Introduction, Method, Result, or Conclusion). Support Vector Machine (SVM) and Linear Classifier models were generated and evaluated on cross-validated data. Treating sentences as a simple "bag of words", the SVM model had an average ROC area of 0.92. Adding a feature of relative sentence location improved performance markedly for some models and overall increasing the average ROC to 0.95. Linear classifier performance was significantly worse than the SVM in all datasets. Using the SVM model trained on structured abstracts to predict unstructured abstracts yielded performance similar to that of models trained with unstructured abstracts in 3 of the 4 types. We conclude that classification of sentence type seems feasible within the domain of RCT's. Identification of sentence types may be helpful for providing context to end users or other text summarization techniques.

  3. Using abstract language signals power.

    PubMed

    Wakslak, Cheryl J; Smith, Pamela K; Han, Albert

    2014-07-01

    Power can be gained through appearances: People who exhibit behavioral signals of power are often treated in a way that allows them to actually achieve such power (Ridgeway, Berger, & Smith, 1985; Smith & Galinsky, 2010). In the current article, we examine power signals within interpersonal communication, exploring whether use of concrete versus abstract language is seen as a signal of power. Because power activates abstraction (e.g., Smith & Trope, 2006), perceivers may expect higher power individuals to speak more abstractly and therefore will infer that speakers who use more abstract language have a higher degree of power. Across a variety of contexts and conversational subjects in 7 experiments, participants perceived respondents as more powerful when they used more abstract language (vs. more concrete language). Abstract language use appears to affect perceived power because it seems to reflect both a willingness to judge and a general style of abstract thinking.

  4. Grounding Abstractness: Abstract Concepts and the Activation of the Mouth

    PubMed Central

    Borghi, Anna M.; Zarcone, Edoardo

    2016-01-01

    One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools) proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth). While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk) are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts. PMID:27777563

  5. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1. Fully Understand the Task 2. Develop an Error Budget 3. Continuous Metrology Coverage 4. Know where you are 5. 'Test like you fly' 6. Independent Cross-Checks 7. Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  6. Rules for Optical Testing

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.

  7. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1.Fully Understand the Task 2.Develop an Error Budget 3.Continuous Metrology Coverage 4.Know where you are 5. 'Test like you fly' 6.Independent Cross-Checks 7.Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  8. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  9. An Integrated Planning Representation Using Macros, Abstractions, and Cases

    NASA Technical Reports Server (NTRS)

    Baltes, Jacky; MacDonald, Bruce

    1992-01-01

    Planning will be an essential part of future autonomous robots and integrated intelligent systems. This paper focuses on learning problem solving knowledge in planning systems. The system is based on a common representation for macros, abstractions, and cases. Therefore, it is able to exploit both classical and case based techniques. The general operators in a successful plan derivation would be assessed for their potential usefulness, and some stored. The feasibility of this approach was studied through the implementation of a learning system for abstraction. New macros are motivated by trying to improve the operatorset. One heuristic used to improve the operator set is generating operators with more general preconditions than existing ones. This heuristic leads naturally to abstraction hierarchies. This investigation showed promising results on the towers of Hanoi problem. The paper concludes by describing methods for learning other problem solving knowledge. This knowledge can be represented by allowing operators at different levels of abstraction in a refinement.

  10. Learning.

    ERIC Educational Resources Information Center

    Glaser, Robert

    A report on learning psychology and its relationship to the study of school learning emphasizes the increasing interaction between theorists and educational practitioners, particularly in attempting to learn which variables influence the instructional process and to find an appropriate methodology to measure and evaluate learning. "Learning…

  11. Evidence for the application of rules in Pavlovian electrodermal conditioning with humans.

    PubMed

    Lachnit, H; Lober, K; Reinhard, G; Kinder, A

    2001-05-01

    Two Pavlovian SCR conditioning experiments investigated interference effects in sequential training of positive and negative patterning discriminations in humans. In Experiment 1, positive patterning (A-, B-, AB+) was trained in Phase 1, immediately followed by a negative patterning schedule (C+, D+, CD-). We predicted that human participants would learn a specific numerosity rule in positive patterning, which interferes with the subsequent negative patterning schedule. In Experiment 2, negative patterning (C+, D+, CD-) was trained in Phase 1, followed by a positive patterning schedule (A-, B-, AB+) in Phase 2. Because human participants would learn an abstract 'separate-versus-together'- or 'opposite'-rule to solve the negative patterning discrimination in Phase 1, there should be less interference in positive patterning in Phase 2 where the separate/together-rule could be applied, too. In both experiments, the initial patterning discriminations were acquired successfully. In Experiment 1, human participants totally failed to solve the Phase 2 discrimination, while in Experiment 2 appropriate response differentiation developed in Phase 2. Thus, without pre-experience human participants seem to utilize a specific numerosity-rule in positive patterning and a separate/together-rule in negative patterning.

  12. An investigation of care-based vs. rule-based morality in frontotemporal dementia, Alzheimer's disease, and healthy controls.

    PubMed

    Carr, Andrew R; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S; Mather, Michelle; Jimenez, Elvira E; Thompson, Paul; Mendez, Mario F

    2015-11-01

    Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer's disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules.

  13. Leadership Abstracts; Volume 4, 1991.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1991-01-01

    "Leadership Abstracts" is published bimonthly and distributed to the chief executive officer of every two-year college in the United States and Canada. This document consists of the 15 one-page abstracts published in 1991. Addressing a variety of topics of interest to the community college administrators, this volume includes: (1) "Delivering the…

  14. Student Success with Abstract Art

    ERIC Educational Resources Information Center

    Hamidou, Kristine

    2009-01-01

    An abstract art project can be challenging or not, depending on the objectives the teacher sets up. In this article, the author describes an abstract papier-mache project that is a success for all students, and is a versatile project easily manipulated to suit the classroom of any art teacher.

  15. Food Science and Technology Abstracts.

    ERIC Educational Resources Information Center

    Cohen, Elinor; Federman, Joan

    1979-01-01

    Introduces the reader to the Food Science and Technology Abstracts, a data file that covers worldwide literature on human food commodities and aspects of food processing. Topics include scope, subject index, thesaurus, searching online, and abstracts; tables provide a comparison of ORBIT and DIALOG versions of the file. (JD)

  16. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect

    Broesius, J.Y.

    1991-03-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  17. Metaphor: Bridging embodiment to abstraction.

    PubMed

    Jamrozik, Anja; McQuire, Marguerite; Cardillo, Eileen R; Chatterjee, Anjan

    2016-08-01

    Embodied cognition accounts posit that concepts are grounded in our sensory and motor systems. An important challenge for these accounts is explaining how abstract concepts, which do not directly call upon sensory or motor information, can be informed by experience. We propose that metaphor is one important vehicle guiding the development and use of abstract concepts. Metaphors allow us to draw on concrete, familiar domains to acquire and reason about abstract concepts. Additionally, repeated metaphoric use drawing on particular aspects of concrete experience can result in the development of new abstract representations. These abstractions, which are derived from embodied experience but lack much of the sensorimotor information associated with it, can then be flexibly applied to understand new situations. PMID:27294425

  18. The effect of negative performance stereotypes on learning.

    PubMed

    Rydell, Robert J; Rydell, Michael T; Boucher, Kathryn L

    2010-12-01

    Stereotype threat (ST) research has focused exclusively on how negative group stereotypes reduce performance. The present work examines if pejorative stereotypes about women in math inhibit their ability to learn the mathematical rules and operations necessary to solve math problems. In Experiment 1, women experiencing ST had difficulty encoding math-related information into memory and, therefore, learned fewer mathematical rules and showed poorer math performance than did controls. In Experiment 2, women experiencing ST while learning modular arithmetic (MA) performed more poorly than did controls on easy MA problems; this effect was due to reduced learning of the mathematical operations underlying MA. In Experiment 3, ST reduced women's, but not men's, ability to learn abstract mathematical rules and to transfer these rules to a second, isomorphic task. This work provides the first evidence that negative stereotypes about women in math reduce their level of mathematical learning and demonstrates that reduced learning due to stereotype threat can lead to poorer performance in negatively stereotyped domains.

  19. Abstracts.

    PubMed

    Gandelman, Kuan; Lamson, Michael; Bramson, Candace; Matschke, Kyle; Salageanu, Joanne; Malhotra, Bimal

    2015-09-01

    ALO-02 capsules (ALO-02) contain pellets that consist of extended-release oxycodone that surrounds sequestered naltrexone. The primary objective was to characterize the pharmacokinetics (PK) of oxycodone following single- and multiple-dose oral administration of ALO-02 40 mg BID in healthy volunteers. Secondary objectives were to characterize (1) the PK of oxycodone following single- and multiple-dose administration of a comparator OxyContin (OXY-ER) 40 mg BID as well as an alternate regimen of ALO-02 80 mg QD, and (2) the safety and tolerability assessments. Healthy volunteers received three treatments on a background of oral naltrexone (50 mg). Noncompartmental PK parameters were calculated for oxycodone. All 12 subjects were male with a mean age (SD, range) of 44.6 years (7.6, 25-55). Single-dose PK results for ALO-02 indicate that median peak plasma oxycodone concentrations were reached by 12 hours compared to 4 hours for OXY-ER. Compared to OXY-ER, mean dose-normalized, single-dose Cmax values were approximately 27% and 23% lower for ALO-02 40 mg BID and ALO-02 80 mg QD treatments, respectively. Following multiple doses all treatments reached steady state by 3 days. At steady state, oxycodone peak-to-trough fluctuation was significantly lower for ALO-02 BID versus OXY-ER. Adverse events were consistent with opioid therapy. ALO-02 40 mg BID treatment provided a PK profile appropriate for around-the-clock treatment of chronic pain. PMID:27137145

  20. A grounded theory of abstraction in artificial intelligence.

    PubMed Central

    Zucker, Jean-Daniel

    2003-01-01

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed. PMID:12903672

  1. Multistrategy learning: A case study

    SciTech Connect

    Domingos, P.

    1996-12-31

    Two of the most popular approaches to induction are instance-based learning (IBL) and rule generation. Their strengths and weaknesses are largely complementary. IBL methods are able to identify small details in the instance space, but have trouble with attributes that are relevant in some parts of the space but not others. Conversely, rule induction methods may overlook small exception regions, but are able to select different attributes in different parts of the instance space. The two methods have been unified in the RISE algorithm. RISE views instances as maximally specific rules, forms more general rules by gradually clustering instances of the same class, and classifies a test example by letting the nearest rule win. This approach potentially combines the advantages of rule induction and IBL, and has indeed been observed to be more accurate than each on a large number of bench-mark datasets. However, it is important to determine if this performance is indeed due to the hypothesized advantages, and to define the situations in which RISE`s bias will and will not be preferable to those of the individual approaches. This abstract reports experiments to this end in artificial domains.

  2. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  3. How Long Does It Take to Learn a Second Language?: Applying the "10,000-Hour Rule" as a Model for Fluency

    ERIC Educational Resources Information Center

    Eaton, Sarah Elaine

    2011-01-01

    This study applies the model of expertise developed by Ericsson et al (2007) to second and foreign language learning. Ericsson et al posits that in order to achieve expertise (as they define it) requires 10,000 or longer of "intense training". Applying this model to language learning, equating an expert level of competence with fluency, various…

  4. Guess My Rule Revisited

    ERIC Educational Resources Information Center

    Carraher, David W.; Earnest, Darrell

    2003-01-01

    We present classroom research on a variant of the guess-my-rule game, in which nine-year-old students make up linear functions and challenge classmates to determine their secret rule. We focus on issues students and their teacher confronted in inferring underlying rules and in deciding whether the conjectured rule matched the rule of the creators.…

  5. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.

    PubMed

    Saez, A; Rigotti, M; Ostojic, S; Fusi, S; Salzman, C D

    2015-08-19

    Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior.

  6. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.

    PubMed

    Saez, A; Rigotti, M; Ostojic, S; Fusi, S; Salzman, C D

    2015-08-19

    Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  7. Abstract context representations in primate amygdala and prefrontal cortex

    PubMed Central

    Saez, A.; Rigotti, M.; Ostojic, S.; Fusi, S.; Salzman, C. D.

    2015-01-01

    Summary Neurons in prefrontal cortex (PFC) encode rules, goals and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  8. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.

    PubMed

    Burbank, Kendra S

    2015-12-01

    The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.

  9. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  10. Abstract communication for coordinated planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Durfee, Edmund H.

    2003-01-01

    work offers evidence that distributed planning agents can greatly reduce communication costs by reasoning at abstract levels. While it is intuitive that improved search can reduce communication in such cases, there are other decisions about how to communicate plan information that greatly affect communication costs. This paper identifies cases independent of search where communicating at multiple levels of abstraction can exponentially decrease costs and where it can exponentially add costs. We conclude with a process for determining appropriate levels of communication based on characteristics of the domain.

  11. Handedness Shapes Children's Abstract Concepts

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Henetz, Tania

    2012-01-01

    Can children's handedness influence how they represent abstract concepts like "kindness" and "intelligence"? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on…

  12. ERGONOMICS ABSTRACTS 48347-48982.

    ERIC Educational Resources Information Center

    Ministry of Technology, London (England). Warren Spring Lab.

    IN THIS COLLECTION OF ERGONOMICS ABSTRACTS AND ANNOTATIONS THE FOLLOWING AREAS OF CONCERN ARE REPRESENTED--GENERAL REFERENCES, METHODS, FACILITIES, AND EQUIPMENT RELATING TO ERGONOMICS, SYSTEMS OF MAN AND MACHINES, VISUAL, AUDITORY, AND OTHER SENSORY INPUTS AND PROCESSES (INCLUDING SPEECH AND INTELLIGIBILITY), INPUT CHANNELS, BODY MEASUREMENTS,…

  13. Does "Social Work Abstracts" Work?

    ERIC Educational Resources Information Center

    Holden, Gary; Barker, Kathleen; Covert-Vail, Lucinda; Rosenberg, Gary; Cohen, Stephanie A.

    2008-01-01

    Objective: The current study seeks to provide estimates of the adequacy of journal coverage in the Social Work Abstracts (SWA) database. Method: A total of 23 journals listed in the Journal Citation Reports social work category during the 1997 to 2005 period were selected for study. Issue-level coverage estimates were obtained for SWA and…

  14. Conference Abstracts: Microcomputers in Education.

    ERIC Educational Resources Information Center

    Baird, William E.

    1985-01-01

    Provides abstracts of five papers presented at the Fourth Annual Microcomputers in Education Conference. Papers considered microcomputers in science laboratories, Apple II Plus/e computer-assisted instruction in chemistry, computer solutions for space mechanics concerns, computer applications to problem solving and hypothesis testing, and…

  15. Metaphoric Images from Abstract Concepts.

    ERIC Educational Resources Information Center

    Vizmuller-Zocco, Jana

    1992-01-01

    Discusses children's use of metaphors to create meaning, using as an example the pragmatic and "scientific" ways in which preschool children explain thunder and lightning to themselves. Argues that children are being shortchanged by modern scientific notions of abstractness and that they should be encouraged to create their own explanations of…

  16. What Is It? Elementary Abstraction

    ERIC Educational Resources Information Center

    Von Sossan, Joanne

    2010-01-01

    Abstraction can be hard for older students to understand, and it usually involves simplifying or rearranging natural objects to meet the needs of the artist, whether it be for organization or expression. But, in reality, that is what young artists do when they draw from life. They do not have enough experience--and sometimes the patience--to see…

  17. Brain Research: Implications for the Education of Exceptional Children. Abstract XV: Research & Resources on Special Education.

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Handicapped and Gifted Children, Reston, VA.

    The one-page abstract summarizes "Brain Research: Implications for the Education of Exceptional Children," an ERIC Computer Search Reprint containing bibliographic information and abstracts of 115 documents. Citations are described in five sections: learning disabilities, autism, other learning handicaps, assessment techniques, and instructional…

  18. Using Monte Carlo Software to Teach Abstract Statistical Concepts: A Case Study

    ERIC Educational Resources Information Center

    Raffle, Holly; Brooks, Gordon P.

    2005-01-01

    Violations of assumptions, inflated Type I error rates, and robustness are important concepts for students to learn in an introductory statistics course. However, these abstract ideas can be difficult for students to understand. Monte Carlo simulation methods can provide a concrete way for students to learn abstract statistical concepts. This…

  19. Bridging History of the Concept of Function with Learning of Mathematics: Students' Meta-Discursive Rules, Concept Formation and Historical Awareness

    ERIC Educational Resources Information Center

    Kjeldsen, Tinne Hoff; Petersen, Pernille Hviid

    2014-01-01

    In this paper we present a matrix-organised implementation of an experimental course in the history of the concept of a function. The course was implemented in a Danish high school. One of the aims was to bridge history of mathematics with the teaching and learning of mathematics. The course was designed using the theoretical frameworks of a…

  20. Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Stewart, Phillip Michael, Jr.

    2013-01-01

    Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled "Learning Science Through Computer Games and Simulations" (2011). The report recommends moving beyond typical proof-of-concept…

  1. Mental Ability and Mismatch Negativity: Pre-Attentive Discrimination of Abstract Feature Conjunctions in Auditory Sequences

    ERIC Educational Resources Information Center

    Houlihan, Michael; Stelmack, Robert M.

    2012-01-01

    The relation between mental ability and the ability to detect violations of an abstract, third-order conjunction rule was examined using event-related potential measures, specifically mismatch negativity (MMN). The primary objective was to determine whether the extraction of invariant relations based on abstract conjunctions between two…

  2. An Investigation of Care-Based vs. Rule-Based Morality in Frontotemporal Dementia, Alzheimer’s Disease, and Healthy Controls

    PubMed Central

    Carr, Andrew R.; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S.; Mather, Michelle; Jimenez, Elvira E.; Thompson, Paul; Mendez, Mario F.

    2015-01-01

    Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer’s disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. PMID:26432341

  3. From Referents to Symbols: Visual Cues and Pointing Effects on Children's Acquisition of Linear Function Rules

    ERIC Educational Resources Information Center

    Lee, Seong-Soo; Dobson, Leona N.

    1977-01-01

    Children learned two linear function rules under varying conditions: presence vs. absence of pointing; visual cues (context vs. weight vs. both pictured); and a verbal-only baseline condition. A complex rule was learned as a transfer task. Visual cues aided both learning and transfer; pointing helped initial learning, but retarded transfer.…

  4. Abstraction of Seepage into Drifts

    SciTech Connect

    WILSON,MICHAEL L.; HO,CLIFFORD K.

    2000-10-16

    The abstraction model used for seepage into emplacement drifts in recent TSPA simulations has been presented. This model contributes to the calculation of the quantity of water that might contact waste if it is emplaced at Yucca Mountain. Other important components of that calculation not discussed here include models for climate, infiltration, unsaturated-zone flow, and thermohydrology; drip-shield and waste-package degradation; and flow around and through the drip shield and waste package. The seepage abstraction model is stochastic because predictions of seepage are necessarily quite uncertain. The model provides uncertainty distributions for seepage fraction fraction of waste-package locations flow rate as functions of percolation flux. In addition, effects of intermediate-scale flow with seepage and seep channeling are included by means of a flow-focusing factor, which is also represented by an uncertainty distribution.

  5. An Abstract Plan Preparation Language

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2006-01-01

    This paper presents a new planning language that is more abstract than most existing planning languages such as the Planning Domain Definition Language (PDDL) or the New Domain Description Language (NDDL). The goal of this language is to simplify the formal analysis and specification of planning problems that are intended for safety-critical applications such as power management or automated rendezvous in future manned spacecraft. The new language has been named the Abstract Plan Preparation Language (APPL). A translator from APPL to NDDL has been developed in support of the Spacecraft Autonomy for Vehicles and Habitats Project (SAVH) sponsored by the Explorations Technology Development Program, which is seeking to mature autonomy technology for application to the new Crew Exploration Vehicle (CEV) that will replace the Space Shuttle.

  6. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  7. American Educational Research Association Paper Abstracts, 1967 Annual Meeting.

    ERIC Educational Resources Information Center

    Page, Ellis B., Ed.

    This document contains abstracts of approximately 300 papers presented at the 1967 annual meeting of the American Educational Research Association. A sampling of the varied subjects covered includes: dynamics of the school board role, concept learning, programed instruction, administrative behavior and organizational characteristics, correlates of…

  8. Non-Traditional Methods of Teaching Abstract Algebra

    ERIC Educational Resources Information Center

    Capaldi, Mindy

    2014-01-01

    This article reports on techniques of teaching abstract algebra which were developed to achieve multiple student objectives: reasoning and communication skills, deep content knowledge, student engagement, independence, and pride. The approach developed included a complementary combination of inquiry-based learning, individual (not group) homework…

  9. Development: Ages & Stages--How Abstract Thinking Develops

    ERIC Educational Resources Information Center

    Poole, Carla; Miller, Susan A.; Church, Ellen Booth

    2005-01-01

    Babies are active participants in their learning and need to explore a variety of objects. Nurturing relationships support these explorations. Objects are more clearly remembered and understood. Thus, one activity this article suggests doing with a 12-month-old to encourage abstract thinking, is talking about how squeezing the bottle of ketchup…

  10. Innovation Abstracts, Vol. IX, No. 1-28.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1987-01-01

    This series of one- and two-page abstracts highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the articles include the use of Hollywood films as a tool for teaching history; displaced homemaker programs; the relationship between teaching and scholarship; helping students write for the…

  11. Functional Neuroanatomy of Contextual Acquisition of Concrete and Abstract Words

    ERIC Educational Resources Information Center

    Mestres-Misse, Anna; Munte, Thomas F.; Rodriguez-Fornells, Antoni

    2009-01-01

    The meaning of a novel word can be acquired by extracting it from linguistic context. Here we simulated word learning of new words associated to concrete and abstract concepts in a variant of the human simulation paradigm that provided linguistic context information in order to characterize the brain systems involved. Native speakers of Spanish…

  12. Representations of Abstract Grammatical Feature Agreement in Young Children

    ERIC Educational Resources Information Center

    Melançon, Andréane; Shi, Rushen

    2015-01-01

    A fundamental question in language acquisition research is whether young children have abstract grammatical representations. We tested this question experimentally. French-learning 30-month-olds were first taught novel word-object pairs in the context of a gender-marked determiner (e.g., un[subscript MASC]ravole "a ravole"). Test trials…

  13. Promoting Early Abstraction to Promote Early Literacy and Numeracy

    ERIC Educational Resources Information Center

    Pasnak, Robert; Kidd, Julie K.; Gadzichowski, Marinka K.; Gallington, Debbie A.; Saracina, Robin P.; Addison, Katherine T.

    2009-01-01

    A learning-set procedure was used to teach the oddity principle, insertions into series, and number conservation to 85 kindergarten children who did not grasp these abstractions. Control groups were given lessons in kindergarten literacy, numeracy, or art in sessions matched in timing and extent. The children who were taught the principles of…

  14. Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

    NASA Astrophysics Data System (ADS)

    Stewart, Phillip Michael, Jr.

    Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found

  15. From Abstract to Concrete Norms in Agent Institutions

    NASA Technical Reports Server (NTRS)

    Grossi, Davide; Dignum, Frank

    2004-01-01

    Norms specifying constraints over institutions are stated in such a form that allows them to regulate a wide range of situations over time without need for modification. To guarantee this stability, the formulation of norms need to abstract from a variety of concrete aspects, which are instead relevant for the actual operationalization of institutions. If agent institutions are to be built, which comply with a set of abstract requirements, how can those requirements be translated in more concrete constraints the impact of which can be described directly in the institution? In this work we make use of logical methods in order to provide a formal characterization of the translation rules that operate the connection between abstract and concrete norms. On the basis of this characterization, a comprehensive formalization of the notion of institution is also provided.

  16. What is learned in sequential learning? An associative model of reward magnitude serial-pattern learning.

    PubMed

    Wallace, Douglas G; Fountain, Stephen B

    2002-01-01

    A computational model of sequence learning is described that is based on pairwise associations and generalization. Simulations by the model predicted that rats should learn a long monotonic pattern of food quantities better than a nonmonotonic pattern, as predicted by rule-learning theory, and that they should learn a short nonmonotonic pattern with highly discriminable elements better than 1 with less discriminable elements, as predicted by interitem association theory. In 2 other studies, the model also simulated behavioral "rule generalization," "extrapolation," and associative transfer data motivated by both rule-learning and associative perspectives. Although these simulations do not rule out the possibility that rats can use rule induction to learn serial patterns, they show that a simple associative model can account for the classical behavioral studies implicating rule learning in reward magnitude serial-pattern learning.

  17. IEEE conference record--Abstracts

    SciTech Connect

    Not Available

    1992-01-01

    The following topics were covered in this meeting: basic plasma phenomena and plasma waves; plasma diagnostics; space plasma diagnostics; magnetic fusion; electron, ion and plasma sources; intense electron and ion beams; intense beam microwaves; fast wave M/W devices; microwave plasma interactions; plasma focus; ultrafast Z-pinches; plasma processing; electrical gas discharges; fast opening switches; magnetohydrodynamics; electromagnetic and electrothermal launchers; x-ray lasers; computational plasma science; solid state plasmas and switches; environmental/energy issues in plasma science; vacuum electronics; plasmas for lighting; gaseous electronics; and ball lightning and other spherical plasmas. Separate abstracts were prepared for 278 papers of this conference.

  18. Operating System Abstraction Layer (OSAL)

    NASA Technical Reports Server (NTRS)

    Yanchik, Nicholas J.

    2007-01-01

    This viewgraph presentation reviews the concept of the Operating System Abstraction Layer (OSAL) and its benefits. The OSAL is A small layer of software that allows programs to run on many different operating systems and hardware platforms It runs independent of the underlying OS & hardware and it is self-contained. The benefits of OSAL are that it removes dependencies from any one operating system, promotes portable, reusable flight software. It allows for Core Flight software (FSW) to be built for multiple processors and operating systems. The presentation discusses the functionality, the various OSAL releases, and describes the specifications.

  19. The learnability of abstract syntactic principles.

    PubMed

    Perfors, Amy; Tenenbaum, Joshua B; Regier, Terry

    2011-03-01

    Children acquiring language infer the correct form of syntactic constructions for which they appear to have little or no direct evidence, avoiding simple but incorrect generalizations that would be consistent with the data they receive. These generalizations must be guided by some inductive bias - some abstract knowledge - that leads them to prefer the correct hypotheses even in the absence of directly supporting evidence. What form do these inductive constraints take? It is often argued or assumed that they reflect innately specified knowledge of language. A classic example of such an argument moves from the phenomenon of auxiliary fronting in English interrogatives to the conclusion that children must innately know that syntactic rules are defined over hierarchical phrase structures rather than linear sequences of words (e.g., Chomsky, 1965, 1971, 1980; Crain & Nakayama, 1987). Here we use a Bayesian framework for grammar induction to address a version of this argument and show that, given typical child-directed speech and certain innate domain-general capacities, an ideal learner could recognize the hierarchical phrase structure of language without having this knowledge innately specified as part of the language faculty. We discuss the implications of this analysis for accounts of human language acquisition.

  20. Abstraction of Seepage into Drifts

    SciTech Connect

    M.L. Wilson; C.K. Ho

    2000-09-26

    A total-system performance assessment (TSPA) for a potential nuclear-waste repository requires an estimate of the amount of water that might contact waste. This paper describes the model used for part of that estimation in a recent TSPA for the Yucca Mountain site. The discussion is limited to estimation of how much water might enter emplacement drifts; additional considerations related to flow within the drifts, and how much water might actually contact waste, are not addressed here. The unsaturated zone at Yucca Mountain is being considered for the potential repository, and a drift opening in unsaturated rock tends to act as a capillary barrier and divert much of the percolating water around it. For TSPA, the important questions regarding seepage are how many waste packages might be subjected to water flow and how much flow those packages might see. Because of heterogeneity of the rock and uncertainty about the future (how the climate will evolve, etc.), it is not possible to predict seepage amounts or locations with certainty. Thus, seepage is treated as a stochastic quantity in TSPA simulations, with the magnitude and spatial distribution of seepage sampled from uncertainty distributions. The distillation of the essential components of process modeling into a form suitable for use in TSPA simulations is referred to as abstraction. In the following sections, seepage process models and abstractions will be summarized and then some illustrative results are presented.

  1. Revisiting the syntactic abilities of non-human animals: natural vocalizations and artificial grammar learning.

    PubMed

    ten Cate, Carel; Okanoya, Kazuo

    2012-07-19

    The domain of syntax is seen as the core of the language faculty and as the most critical difference between animal vocalizations and language. We review evidence from spontaneously produced vocalizations as well as from perceptual experiments using artificial grammars to analyse animal syntactic abilities, i.e. abilities to produce and perceive patterns following abstract rules. Animal vocalizations consist of vocal units (elements) that are combined in a species-specific way to create higher order strings that in turn can be produced in different patterns. While these patterns differ between species, they have in common that they are no more complex than a probabilistic finite-state grammar. Experiments on the perception of artificial grammars confirm that animals can generalize and categorize vocal strings based on phonetic features. They also demonstrate that animals can learn about the co-occurrence of elements or learn simple 'rules' like attending to reduplications of units. However, these experiments do not provide strong evidence for an ability to detect abstract rules or rules beyond finite-state grammars. Nevertheless, considering the rather limited number of experiments and the difficulty to design experiments that unequivocally demonstrate more complex rule learning, the question of what animals are able to do remains open. PMID:22688634

  2. Discrimination theory of rule-governed behavior

    PubMed Central

    Cerutti, Daniel T.

    1989-01-01

    In rule-governed behavior, previously established elementary discriminations are combined in complex instructions and thus result in complex behavior. Discriminative combining and recombining of responses produce behavior with characteristics differing from those of behavior that is established through the effects of its direct consequences. For example, responding in instructed discrimination may be occasioned by discriminative stimuli that are temporally and situationally removed from the circumstances under which the discrimination is instructed. The present account illustrates properties of rule-governed behavior with examples from research in instructional control and imitation learning. Units of instructed behavior, circumstances controlling compliance with instructions, and rule-governed problem solving are considered. PMID:16812579

  3. Rule Breaking in the Child Care Centre: Tensions for Children and Teachers

    ERIC Educational Resources Information Center

    Brennan, Margaret

    2016-01-01

    Research suggests that young children transgress conventional rules in every culture and society. In this article, the argument is made that rule teaching and learning provide insight into how children learn to be part of a group. The research question addressed is, "Why do some children transgress the rules if their actions risk jeopardising…

  4. IMM: a multisystem memory model for conceptual learning.

    PubMed

    Saleh, Mai Sabry

    2014-01-01

    Concepts of learning and memory are closely related, and the terms often describe the same processes. Conceptual learning is known to be the process of developing abstract rules or mental constructs based on sensory experience. The Integrated Model of Mind (IMM), introduced in the present work, is a theoretical multisystem memory model that describes how concepts are formed. The IMM in its design arranges memory systems after their function in an integrated and harmonized sequence. It provides answers to some limitations of Tulving's serial-parallel-independent (SPI) model and suggests a new assumption with respect to mental representation and image schema construction through the process of encoding.

  5. Neural networks supporting switching, hypothesis testing, and rule application.

    PubMed

    Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A

    2015-10-01

    We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest

  6. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  7. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  8. Toward Millimagnitude Photometric Calibration (Abstract)

    NASA Astrophysics Data System (ADS)

    Dose, E.

    2014-12-01

    (Abstract only) Asteroid roation, exoplanet transits, and similar measurements will increasingly call for photometric precisions better than about 10 millimagnitudes, often between nights and ideally between distant observers. The present work applies detailed spectral simulations to test popular photometric calibration practices, and to test new extensions of these practices. Using 107 synthetic spectra of stars of diverse colors, detailed atmospheric transmission spectra computed by solar-energy software, realistic spectra of popular astronomy gear, and the option of three sources of noise added at realistic millimagnitude levels, we find that certain adjustments to current calibration practices can help remove small systematic errors, especially for imperfect filters, high airmasses, and possibly passing thin cirrus clouds.

  9. The acquisition of abstract words by young infants.

    PubMed

    Bergelson, Elika; Swingley, Daniel

    2013-06-01

    Young infants' learning of words for abstract concepts like 'all gone' and 'eat,' in contrast to their learning of more concrete words like 'apple' and 'shoe,' may follow a relatively protracted developmental course. We examined whether infants know such abstract words. Parents named one of two events shown in side-by-side videos while their 6-16-month-old infants (n=98) watched. On average, infants successfully looked at the named video by 10 months, but not earlier, and infants' looking at the named referent increased robustly at around 14 months. Six-month-olds already understand concrete words in this task (Bergelson & Swingley, 2012). A video-corpus analysis of unscripted mother-infant interaction showed that mothers used the tested abstract words less often in the presence of their referent events than they used concrete words in the presence of their referent objects. We suggest that referential uncertainty in abstract words' teaching conditions may explain the later acquisition of abstract than concrete words, and we discuss the possible role of changes in social-cognitive abilities over the 6-14 month period.

  10. The Acquisition of Abstract Words by Young Infants

    PubMed Central

    Bergelson, Elika; Swingley, Daniel

    2013-01-01

    Young infants’ learning of words for abstract concepts like ‘all gone’ and ‘eat,’ in contrast to their learning of more concrete words like ‘apple’ and ‘shoe,’ may follow a relatively protracted developmental course. We examined whether infants know such abstract words. Parents named one of two events shown in side-by-side videos while their 6-16-month-old infants (n=98) watched. On average, infants successfully looked at the named video by 10 months, but not earlier, and infants’ looking at the named referent increased robustly at around 14 months. 6-month-olds already understand concrete words in this task (Bergelson & Swingley, 2012). A video-corpus analysis of unscripted mother-infant interaction showed that mothers used the tested abstract words less often in the presence of their referent events than they used concrete words in the presence of their referent objects. We suggest that referential uncertainty in abstract words’ teaching conditions may explain the later acquisition of abstract than concrete words, and we discuss the possible role of changes in social-cognitive abilities over the 6—14 month period. PMID:23542412

  11. Strategies for writing a competitive research abstract.

    PubMed

    Lindquist, R A

    1993-01-01

    This article focuses on the process of preparing research abstracts for submission to scientific meetings of professional organizations. Perspectives on the process of specifying an abstract's focus, choosing a scientific meeting, selecting the type of presentation, developing an abstract, and writing an abstract in its form are presented.

  12. Phonological reduplication in sign language: Rules rule.

    PubMed

    Berent, Iris; Dupuis, Amanda; Brentari, Diane

    2014-01-01

    Productivity-the hallmark of linguistic competence-is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)-a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal.

  13. Phonological reduplication in sign language: Rules rule

    PubMed Central

    Berent, Iris; Dupuis, Amanda; Brentari, Diane

    2014-01-01

    Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal. PMID:24959158

  14. Development of abstract mathematical reasoning: the case of algebra

    PubMed Central

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students’ first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students’ ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16–17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15–16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students’ transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition. PMID:25228874

  15. Development of abstract mathematical reasoning: the case of algebra.

    PubMed

    Susac, Ana; Bubic, Andreja; Vrbanc, Andrija; Planinic, Maja

    2014-01-01

    Algebra typically represents the students' first encounter with abstract mathematical reasoning and it therefore causes significant difficulties for students who still reason concretely. The aim of the present study was to investigate the developmental trajectory of the students' ability to solve simple algebraic equations. 311 participants between the ages of 13 and 17 were given a computerized test of equation rearrangement. Equations consisted of an unknown and two other elements (numbers or letters), and the operations of multiplication/division. The obtained results showed that younger participants are less accurate and slower in solving equations with letters (symbols) than those with numbers. This difference disappeared for older participants (16-17 years), suggesting that they had reached an abstract reasoning level, at least for this simple task. A corresponding conclusion arises from the analysis of their strategies which suggests that younger participants mostly used concrete strategies such as inserting numbers, while older participants typically used more abstract, rule-based strategies. These results indicate that the development of algebraic thinking is a process which unfolds over a long period of time. In agreement with previous research, we can conclude that, on average, children at the age of 15-16 transition from using concrete to abstract strategies while solving the algebra problems addressed within the present study. A better understanding of the timing and speed of students' transition from concrete arithmetic reasoning to abstract algebraic reasoning might help in designing better curricula and teaching materials that would ease that transition.

  16. Extended abstracts: Ninth battery and electrochemical contractors' conference

    SciTech Connect

    Not Available

    1989-11-01

    This document contains the extended abstracts for presentations scheduled for the Ninth Battery and Electrochemical Contractors' Conference, highlighting research supporting by the US Department of Energy and the Electric Power Research Institute. It is intended to be a technical overview for engineers and scientists in government, industry, and academia who are interested in learning more about electrochemical energy storage. The abstracts are grouped according to the following technical sessions: Introductory Session; Sodium/Sulfur Battery Development; Planning, Analysis, and Technology Transfer; Fuel Cells; Zinc/Bromine Battery Development; Aqueous Battery Development; Non-Aqueous Batteries; Battery Testing and Evaluation; and Metal/Air Batteries.

  17. A Better Budget Rule

    ERIC Educational Resources Information Center

    Dothan, Michael; Thompson, Fred

    2009-01-01

    Debt limits, interest coverage ratios, one-off balanced budget requirements, pay-as-you-go rules, and tax and expenditure limits are among the most important fiscal rules for constraining intertemporal transfers. There is considerable evidence that the least costly and most effective of such rules are those that focus directly on the rate of…

  18. Improving drivers' knowledge of road rules using digital games.

    PubMed

    Li, Qing; Tay, Richard

    2014-04-01

    Although a proficient knowledge of the road rules is important to safe driving, many drivers do not retain the knowledge acquired after they have obtained their licenses. Hence, more innovative and appealing methods are needed to improve drivers' knowledge of the road rules. This study examines the effect of game based learning on drivers' knowledge acquisition and retention. We find that playing an entertaining game that is designed to impart knowledge of the road rules not only improves players' knowledge but also helps them retain such knowledge. Hence, learning by gaming appears to be a promising learning approach for driver education.

  19. Rules on determining hearing appearances. Final rule.

    PubMed

    2013-05-21

    This final rule is another step in our continual efforts to handle workloads more effectively and efficiently. We are publishing final rules for portions of the rules we proposed in October 2007 that relate to persons, other than the claimant or any other party to the hearing, appearing by telephone. We are also clarifying that the administrative law judge (ALJ) will allow the claimant or any other party to a hearing to appear by telephone under certain circumstances when the claimant or other party requests to make his or her appearance in that manner. We expect that these final rules will make the hearings process more efficient and help us continue to reduce the hearings backlog. In addition, we made some minor editorial changes to our regulations that do not have any effect on the rights of claimants or any other parties.

  20. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule

    SciTech Connect

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-15

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  1. Effects of bursting dynamic features on the generation of multi-clustered structure of neural network with symmetric spike-timing-dependent plasticity learning rule.

    PubMed

    Liu, Hui; Song, Yongduan; Xue, Fangzheng; Li, Xiumin

    2015-11-01

    In this paper, the generation of multi-clustered structure of self-organized neural network with different neuronal firing patterns, i.e., bursting or spiking, has been investigated. The initially all-to-all-connected spiking neural network or bursting neural network can be self-organized into clustered structure through the symmetric spike-timing-dependent plasticity learning for both bursting and spiking neurons. However, the time consumption of this clustering procedure of the burst-based self-organized neural network (BSON) is much shorter than the spike-based self-organized neural network (SSON). Our results show that the BSON network has more obvious small-world properties, i.e., higher clustering coefficient and smaller shortest path length than the SSON network. Also, the results of larger structure entropy and activity entropy of the BSON network demonstrate that this network has higher topological complexity and dynamical diversity, which benefits for enhancing information transmission of neural circuits. Hence, we conclude that the burst firing can significantly enhance the efficiency of clustering procedure and the emergent clustered structure renders the whole network more synchronous and therefore more sensitive to weak input. This result is further confirmed from its improved performance on stochastic resonance. Therefore, we believe that the multi-clustered neural network which self-organized from the bursting dynamics has high efficiency in information processing.

  2. 1986 annual information meeting. Abstracts

    SciTech Connect

    Not Available

    1986-01-01

    Abstracts are presented for the following papers: Geohydrological Research at the Y-12 Plant (C.S. Haase); Ecological Impacts of Waste Disposal Operations in Bear Creek Valley Near the Y-12 Plant (J.M. Loar); Finite Element Simulation of Subsurface Contaminant Transport: Logistic Difficulties in Handling Large Field Problems (G.T. Yeh); Dynamic Compaction of a Radioactive Waste Burial Trench (B.P. Spalding); Comparative Evaluation of Potential Sites for a High-Level Radioactive Waste Repository (E.D. Smith); Changing Priorities in Environmental Assessment and Environmental Compliance (R.M. Reed); Ecology, Ecotoxicology, and Ecological Risk Assessment (L.W. Barnthouse); Theory and Practice in Uncertainty Analysis from Ten Years of Practice (R.H. Gardner); Modeling Landscape Effects of Forest Decline (V.H. Dale); Soil Nitrogen and the Global Carbon Cycle (W.M. Post); Maximizing Wood Energy Production in Short-Rotation Plantations: Effect of Initial Spacing and Rotation Length (L.L. Wright); and Ecological Communities and Processes in Woodland Streams Exhibit Both Direct and Indirect Effects of Acidification (J.W. Elwood).

  3. Ozone Conference II: Abstract Proceedings

    SciTech Connect

    1999-11-01

    Ozone Conference II: Pre- and Post-Harvest Applications Two Years After Gras, was held September 27-28, 1999 in Tulare, California. This conference, sponsored by EPRI's Agricultural Technology Alliance and Southern California Edison's AgTAC facility, was coordinated and organized by the on-site ATA-AgTAC Regional Center. Approximately 175 people attended the day-and-a-half conference at AgTAC. During the Conference twenty-two presentations were given on ozone food processing and agricultural applications. Included in the presentations were topics on: (1) Ozone fumigation; (2) Ozone generation techniques; (3) System and design applications; (4) Prewater treatment requirements; (5) Poultry water reuse; (6) Soil treatments with ozone gas; and (7) Post-harvest aqueous and gaseous ozone research results. A live videoconference between Tulare and Washington, D.C. was held to discuss the regulators' view from inside the beltway. Attendees participated in two Roundtable Question and Answer sessions and visited fifteen exhibits and demonstrations. The attendees included university and governmental researchers, regulators, consultants and industry experts, technology developers and providers, and corporate and individual end-users. This report is comprised of the Abstracts of each presentation, biographical sketches for each speaker and a registration/attendees list.

  4. Handedness shapes children's abstract concepts.

    PubMed

    Casasanto, Daniel; Henetz, Tania

    2012-03-01

    Can children's handedness influence how they represent abstract concepts like kindness and intelligence? Here we show that from an early age, right-handers associate rightward space more strongly with positive ideas and leftward space with negative ideas, but the opposite is true for left-handers. In one experiment, children indicated where on a diagram a preferred toy and a dispreferred toy should go. Right-handers tended to assign the preferred toy to a box on the right and the dispreferred toy to a box on the left. Left-handers showed the opposite pattern. In a second experiment, children judged which of two cartoon animals looked smarter (or dumber) or nicer (or meaner). Right-handers attributed more positive qualities to animals on the right, but left-handers to animals on the left. These contrasting associations between space and valence cannot be explained by exposure to language or cultural conventions, which consistently link right with good. Rather, right- and left-handers implicitly associated positive valence more strongly with the side of space on which they can act more fluently with their dominant hands. Results support the body-specificity hypothesis (Casasanto, 2009), showing that children with different kinds of bodies think differently in corresponding ways. PMID:21916951

  5. An abstract approach to music.

    SciTech Connect

    Kaper, H. G.; Tipei, S.

    1999-04-19

    In this article we have outlined a formal framework for an abstract approach to music and music composition. The model is formulated in terms of objects that have attributes, obey relationships, and are subject to certain well-defined operations. The motivation for this approach uses traditional terms and concepts of music theory, but the approach itself is formal and uses the language of mathematics. The universal object is an audio wave; partials, sounds, and compositions are special objects, which are placed in a hierarchical order based on time scales. The objects have both static and dynamic attributes. When we realize a composition, we assign values to each of its attributes: a (scalar) value to a static attribute, an envelope and a size to a dynamic attribute. A composition is then a trajectory in the space of aural events, and the complex audio wave is its formal representation. Sounds are fibers in the space of aural events, from which the composer weaves the trajectory of a composition. Each sound object in turn is made up of partials, which are the elementary building blocks of any music composition. The partials evolve on the fastest time scale in the hierarchy of partials, sounds, and compositions. The ideas outlined in this article are being implemented in a digital instrument for additive sound synthesis and in software for music composition. A demonstration of some preliminary results has been submitted by the authors for presentation at the conference.

  6. When felids and hominins ruled at Olduvai Gorge: A machine learning analysis of the skeletal profiles of the non-anthropogenic Bed I sites

    NASA Astrophysics Data System (ADS)

    Arriaza, Mari Carmen; Domínguez-Rodrigo, Manuel

    2016-05-01

    In the past twenty years, skeletal part profiles, which are prone to equifinality, have not occupied a prominent role in the interpretation of early Pleistocene sites on Africa. Alternatively, taphonomic studies on bone surface modifications and bone breakage patterns, have provided heuristic interpretations of some of the best preserved archaeological record of this period; namely, the Olduvai Bed I sites. The most recent and comprehensive taphonomic study of these sites (Domínguez-Rodrigo et al., 2007a) showed that FLK Zinj was an anthropogenic assemblage in which hominins acquired carcasses via primary access. That study also showed that the other sites were palimpsests with minimal or no intervention by hominins. The FLK N, FLK NN and DK sequence seemed to be dominated by single-agent (mostly, felid) or multiple-agent (mostly, felid-hyenid) processes. The present study re-analyzes the Bed I sites focusing on skeletal part profiles. Machine learning methods, which incorporate complex algorithms, are powerful predictive and classification methods and have the potential to better extract information from skeletal part representation than past approaches. Here, multiple algorithms (via decision trees, neural networks, random forests and support vector machines) are combined to produce a solid interpretation of bone accumulation agency at the Olduvai Bed I sites. This new approach virtually coincides with previous taphonomic interpretations on a site by site basis and shows that felids were dominant accumulating agents over hyenas during Bed I times. The recent discovery of possibly a modern lion-accumulated assemblage at Olduvai Gorge (Arriaza et al., submitted) provides a very timely analog for this interpretation.

  7. Complex linguistic rules modulate early auditory brain responses.

    PubMed

    Sun, Yue; Giavazzi, Maria; Adda-Decker, Martine; Barbosa, Leonardo S; Kouider, Sid; Bachoud-Lévi, Anne-Catherine; Jacquemot, Charlotte; Peperkamp, Sharon

    2015-10-01

    During speech perception, listeners compensate for phonological rules of their language. For instance, English place assimilation causes green boat to be typically pronounced as greem boat; English listeners, however, perceptually compensate for this rule and retrieve the intended sound (n). Previous research using EEG has focused on rules with clear phonetic underpinnings, showing that perceptual compensation occurs at an early stage of speech perception. We tested whether this early mechanism also accounts for the compensation for more complex rules. We examined compensation for French voicing assimilation, a rule with abstract phonological restrictions on the contexts in which it applies. Our results reveal that perceptual compensation for this rule by French listeners modulates an early ERP component. This is evidence that early stages of speech sound categorization are sensitive to complex phonological rules of the native language.

  8. Attentional effects on rule extraction and consolidation from speech

    PubMed Central

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-01-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24 h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. PMID:27031495

  9. Annotating user-defined abstractions for optimization

    SciTech Connect

    Quinlan, D; Schordan, M; Vuduc, R; Yi, Q

    2005-12-05

    This paper discusses the features of an annotation language that we believe to be essential for optimizing user-defined abstractions. These features should capture semantics of function, data, and object-oriented abstractions, express abstraction equivalence (e.g., a class represents an array abstraction), and permit extension of traditional compiler optimizations to user-defined abstractions. Our future work will include developing a comprehensive annotation language for describing the semantics of general object-oriented abstractions, as well as automatically verifying and inferring the annotated semantics.

  10. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  11. Journalism and Journalism Education: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1980 (Vol. 40 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 30 titles deal with a variety of topics, including the following: (1) the Nigerian press under military rule; (2) the agrarian myth in eighteenth and nineteenth century United States magazines; (3) editorial opinion on education…

  12. Mass Communication: Abstracts of Doctoral Dissertations Published in "Dissertation Abstracts International," January through June 1980 (Vol. 40 Nos. 7 through 12).

    ERIC Educational Resources Information Center

    ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.

    This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 55 titles deal with a variety of topics, including the following: (1) the prime time access rule; (2) media education; (3) magazine and children's advertising; (4) Irish national and Third World cinema; (5) international radio…

  13. Another Look at the Rules of Differentiation

    ERIC Educational Resources Information Center

    Cupillari, Antonella

    2004-01-01

    It is an eye opening experience for students to find out that even a great mathematician like Leibniz made mistakes, forgot to check carefully his calculations, and was temporarily misled by user-friendly but incorrect formulas. From Leibniz's mishap with the derivation of the rules of differentiation students can learn the importance of spending…

  14. Invented Rule with English Language Learners

    ERIC Educational Resources Information Center

    Boyer, Valerie E.; Martin, Kathryn Y.

    2012-01-01

    The purpose of this study was to utilize an invented rule with English language learners (ELLs) in a clinical setting to determine differences based on language and age of the children. The performance was correlated with teacher reports of strong and weak language learning. Using a within-participants design, ELLs of age three to five were taught…

  15. A Collaborative Educational Association Rule Mining Tool

    ERIC Educational Resources Information Center

    Garcia, Enrique; Romero, Cristobal; Ventura, Sebastian; de Castro, Carlos

    2011-01-01

    This paper describes a collaborative educational data mining tool based on association rule mining for the ongoing improvement of e-learning courses and allowing teachers with similar course profiles to share and score the discovered information. The mining tool is oriented to be used by non-expert instructors in data mining so its internal…

  16. Scientific meeting abstracts: significance, access, and trends.

    PubMed Central

    Kelly, J A

    1998-01-01

    Abstracts of scientific papers and posters that are presented at annual scientific meetings of professional societies are part of the broader category of conference literature. They are an important avenue for the dissemination of current data. While timely and succinct, these abstracts present problems such as an abbreviated peer review and incomplete bibliographic access. METHODS: Seventy societies of health sciences professionals were surveyed about the publication of abstracts from their annual meetings. Nineteen frequently cited journals also were contacted about their policies on the citation of meeting abstracts. Ten databases were searched for the presence of meetings abstracts. RESULTS: Ninety percent of the seventy societies publish their abstracts, with nearly half appearing in the society's journal. Seventy-seven percent of the societies supply meeting attendees with a copy of each abstract, and 43% make their abstracts available in an electronic format. Most of the journals surveyed allow meeting abstracts to be cited. Bibliographic access to these abstracts does not appear to be widespread. CONCLUSIONS: Meeting abstracts play an important role in the dissemination of scientific knowledge. Bibliographic access to meeting abstracts is very limited. The trend toward making meeting abstracts available via the Internet has the potential to give a broader audience access to the information they contain. PMID:9549015

  17. The role of salience in the extraction of algebraic rules.

    PubMed

    Endress, Ansgar D; Scholl, Brian J; Mehler, Jacques

    2005-08-01

    Recent research suggests that humans and other animals have sophisticated abilities to extract both statistical dependencies and rule-based regularities from sequences. Most of this research stresses the flexibility and generality of such processes. Here the authors take up an equally important project, namely, to explore the limits of such processes. As a case study for rule-based generalizations, the authors demonstrate that only repetition-based structures with repetitions at the edges of sequences (e.g., ABCDEFF but not ABCDDEF) can be reliably generalized, although token repetitions can easily be discriminated at both sequence edges and middles. This finding suggests limits on rule-based sequence learning and new interpretations of earlier work alleging rule learning in infants. Rather than implementing a computerlike, formal process that operates over all patterns equally well, rule-based learning may be a highly constrained and piecemeal process driven by perceptual primitives--specialized type operations that are highly sensitive to perceptual factors.

  18. Searching for Atmospheric Signatures of Other Worlds (Abstract)

    NASA Astrophysics Data System (ADS)

    Lopez-Morales, M.

    2016-06-01

    (Abstract only) The field of exoplanets continues to evolve at giant steps. With about 2000 planets already discovered around other stars, the next big challenge is to detect and characterize their atmospheres: What is the chemical composition of the atmospheres of those planets? What is their temperature? Do they have clouds? In this talk I will review what we have learned about exoplanets in the past two decades and the current and future efforts to unveil their atmospheres.

  19. Working memory updating and the development of rule-guided behavior.

    PubMed

    Amso, Dima; Haas, Sara; McShane, Lauren; Badre, David

    2014-10-01

    The transition from middle childhood into adolescence is marked by both increasing independence and also extensive change in the daily requirements of familial demands, social pressures, and academic achievement. To manage this increased complexity, children must develop the ability to use abstract rules that guide the choice of behavior across a range of circumstances. Here, we tested children through adults in a task that requires increasing levels of rule abstraction, while separately manipulating competition among alternatives in working memory. We found that age-related differences in rule-guided behavior can be explained in terms of improvement in rule abstraction, which we suggest involves a working memory updating mechanism. Furthermore, family socioeconomic status (SES) predicted change in rule-guided behavior, such that higher SES predicted better performance with development. We discuss these results within a working memory gating framework for abstract rule-guided behavior.

  20. Working memory updating and the development of rule-guided behavior.

    PubMed

    Amso, Dima; Haas, Sara; McShane, Lauren; Badre, David

    2014-10-01

    The transition from middle childhood into adolescence is marked by both increasing independence and also extensive change in the daily requirements of familial demands, social pressures, and academic achievement. To manage this increased complexity, children must develop the ability to use abstract rules that guide the choice of behavior across a range of circumstances. Here, we tested children through adults in a task that requires increasing levels of rule abstraction, while separately manipulating competition among alternatives in working memory. We found that age-related differences in rule-guided behavior can be explained in terms of improvement in rule abstraction, which we suggest involves a working memory updating mechanism. Furthermore, family socioeconomic status (SES) predicted change in rule-guided behavior, such that higher SES predicted better performance with development. We discuss these results within a working memory gating framework for abstract rule-guided behavior. PMID:25044248

  1. An algorithm for generating abstract syntax trees

    NASA Technical Reports Server (NTRS)

    Noonan, R. E.

    1985-01-01

    The notion of an abstract syntax is discussed. An algorithm is presented for automatically deriving an abstract syntax directly from a BNF grammar. The implementation of this algorithm and its application to the grammar for Modula are discussed.

  2. Abstracted model for ceramic coating

    SciTech Connect

    Farmer, J C; Stockman, C

    1998-11-14

    Engineers are exploring several mechanisms to delay corrosive attack of the CAM (corrosion allowance material) by dripping water, including drip shields and ceramic coatings. Ceramic coatings deposited with high-velocity oxyfuels (HVOF's) have exhibited a porosity of only 2% at a thickness of 0.15 cm. The primary goal of this document is to provide a detailed description of an abstracted process-level model for Total System Performance Assessment (TSPA) that has been developed to account for the inhibition of corrosion by protective ceramic coatings. A second goal was to address as many of the issues raised during a recent peer review as possible (direct reaction of liquid water with carbon steel, stress corrosion cracking of the ceramic coating, bending stresses in coatings of finite thickness, limitations of simple correction factors, etc.). During the periods of dry oxidation (T ≥ 100°C) and humid-air corrosion (T ≤ 100°C & RH < 8O%), it is assumed that the growth rate of oxide on the surface is diminished in proportion to the surface covered by solid ceramic. The mass transfer impedance imposed by a ceramic coating with gas-filled pores is assumed to be negligible. During the period of aqueous phase corrosion (T ≤ 100°C & RH ≥ 80%), it is assumed that the overall mass transfer resistance governing the corrosion rate is due to the combined resistance of ceramic coating & interfacial corrosion products. Two porosity models (simple cylinder & cylinder-sphere chain) are considered in estimation of the mass transfer resistance of the ceramic coating. It is evident that substantial impedance to 0₂ transport is encountered if pores are filled with liquid water. It may be possible to use a sealant to eliminate porosity. Spallation (rupture) of the ceramic coating is assumed to occur if the stress introduced by the expanding corrosion products at the ceramic- CAM interface exceeds fracture stress. Since this model does not account for the possibility of

  3. Invented rule with English language learners.

    PubMed

    Boyer, Valerie E; Martin, Kathryn Y

    2012-07-01

    The purpose of this study was to utilize an invented rule with English language learners (ELLs) in a clinical setting to determine differences based on language and age of the children. The performance was correlated with teacher reports of strong and weak language learning. Using a within-participants design, ELLs of age three to five were taught to apply a nonsense morpheme to signal a semantic difference. The invented rule was taught and responses were elicited in both English and English with Spanish interpretation. No significant difference for language was identified. Effect sizes for age were large (English, eta = 0.389, and English + Spanish, eta = 0.430) with five-year-old participants more likely to apply the rule to novel stimuli regardless of language. The performance of the majority of the participants correlated with teacher reports. The invented rule may provide a mechanism for assessing processing independent of prior language knowledge.

  4. Writing a Structured Abstract for the Thesis

    ERIC Educational Resources Information Center

    Hartley, James

    2010-01-01

    This article presents the author's suggestions on how to improve thesis abstracts. The author describes two books on writing abstracts: (1) "Creating Effective Conference Abstracts and Posters in Biomedicine: 500 tips for Success" (Fraser, Fuller & Hutber, 2009), a compendium of clear advice--a must book to have in one's hand as one prepares a…

  5. On abstract degenerate neutral differential equations

    NASA Astrophysics Data System (ADS)

    Hernández, Eduardo; O'Regan, Donal

    2016-10-01

    We introduce a new abstract model of functional differential equations, which we call abstract degenerate neutral differential equations, and we study the existence of strict solutions. The class of problems and the technical approach introduced in this paper allow us to generalize and extend recent results on abstract neutral differential equations. Some examples on nonlinear partial neutral differential equations are presented.

  6. At the HeART of Abstraction

    ERIC Educational Resources Information Center

    Berdit, Nancy

    2006-01-01

    Abstraction has long been a concept difficult to define for students. Students often feel the pressure of making their artwork "look real" and frustration can often lead to burnout in the classroom. In this article, the author describes how her lesson on abstraction has alleviated much of that pressure as students created an abstract acrylic…

  7. Children's implicit learning of graphotactic and morphological regularities.

    PubMed

    Pacton, Sébastien; Fayol, Michel; Perruchet, Pierre

    2005-01-01

    In French, the transcription of the same sound can be guided by both probabilistic graphotactic constraints (e.g., /epsilon t/ is more often transcribed ette after -v than after -f) and morphological constraints (e.g., /epsilon t/ is always transcribed ette when used as a diminutive suffix). Three experiments showed that pseudo-word spellings of 8-to 11-year-old children and adults were influenced by both types of constraints. The influence of graphotactic regularities persisted when reliance on morphological rules was possible, without any falling off as a function of age. This suggests that rules are not abstracted, even after massive amounts of exposure to a rule-based material. These results can be accounted for by a statistical model of implicit learning. PMID:15784085

  8. Genetic algorithm for extracting rules in discrete domain

    SciTech Connect

    Neruda, R.

    1995-09-20

    We propose a genetic algorithm that evolves families of rules from a set of examples. Inputs and outputs of the problem are discrete and nominal values which makes it difficult to use alternative learning methods that implicitly regard a metric space. A way how to encode sets of rules is presented together with special variants of genetic operators suitable for this encoding. The solution found by means of this process can be used as a core of a rule-based expert system.

  9. Abstract models of molecular walkers

    NASA Astrophysics Data System (ADS)

    Semenov, Oleg

    Recent advances in single-molecule chemistry have led to designs for artificial multi-pedal walkers that follow tracks of chemicals. The walkers, called molecular spiders, consist of a rigid chemically inert body and several flexible enzymatic legs. The legs can reversibly bind to chemical substrates on a surface, and through their enzymatic action convert them to products. We study abstract models of molecular spiders to evaluate how efficiently they can perform two tasks: molecular transport of cargo over tracks and search for targets on finite surfaces. For the single-spider model our simulations show a transient behavior wherein certain spiders move superdiffusively over significant distances and times. This gives the spiders potential as a faster-than-diffusion transport mechanism. However, analysis shows that single-spider motion eventually decays into an ordinary diffusive motion, owing to the ever increasing size of the region of products. Inspired by cooperative behavior of natural molecular walkers, we propose a symmetric exclusion process (SEP) model for multiple walkers interacting as they move over a one-dimensional lattice. We show that when walkers are sequentially released from the origin, the collective effect is to prevent the leading walkers from moving too far backwards. Hence, there is an effective outward pressure on the leading walkers that keeps them moving superdiffusively for longer times. Despite this improvement the leading spider eventually slows down and moves diffusively, similarly to a single spider. The slowdown happens because all spiders behind the leading spiders never encounter substrates, and thus they are never biased. They cannot keep up with leading spiders, and cannot put enough pressure on them. Next, we investigate search properties of a single and multiple spiders moving over one- and two-dimensional surfaces with various absorbing and reflecting boundaries. For the single-spider model we evaluate by how much the

  10. New Light on Old Horizon: Constructing Mathematical Concepts, Underlying Abstraction Processes, and Sense Making Strategies

    ERIC Educational Resources Information Center

    Scheiner, Thorsten

    2016-01-01

    The initial assumption of this article is that there is an overemphasis on abstraction-from-actions theoretical approaches in research on knowing and learning mathematics. This article uses a critical reflection on research on students' ways of constructing mathematical concepts to distinguish between abstraction-from-actions theoretical…

  11. Simplicity and Generalization: Short-Cutting Abstraction in Children's Object Categorizations

    ERIC Educational Resources Information Center

    Son, Ji Y.; Smith, Linda B.; Goldstone, Robert L.

    2008-01-01

    Development in any domain is often characterized by increasingly abstract representations. Recent evidence in the domain of shape recognition provides one example; between 18 and 24 months children appear to build increasingly abstract representations of object shape [Smith, L. B. (2003). Learning to recognize objects. "Psychological Science," 14,…

  12. Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction

    ERIC Educational Resources Information Center

    Muller, Orna; Haberman, Bruria

    2008-01-01

    Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…

  13. Investigations in Science Education, Vol. 7, No. 1. Expanded Abstracts and Critical Analyses of Recent Research.

    ERIC Educational Resources Information Center

    Blosser, Patricia E., Ed.; Mayer, Victor J., Ed.

    Presented are analytical abstracts, prepared by science educators, of research reports in the areas of instruction, mainstreaming, curriculum, classroom learning environment, and the educational use of planetaria. Each abstract includes bibliographical data, research design and procedure, purpose, research rationale, and an abstractor's analysis…

  14. Pericyclic Reactions: FMO Approach-Abstract of Issue 9904M

    NASA Astrophysics Data System (ADS)

    Lee, Albert W. M.; So, C. T.; Chan, C. L.; Wu, Y. K.

    1999-05-01

    Pericyclic Reactions: FMO Approach is a program for Macintosh computers in which the frontier molecular orbital approaches to electrocyclic and cycloaddition reactions are animated. The bonding or antibonding interactions of the frontier molecular orbital(s) determine whether the reactions are thermally or photochemically allowed or forbidden. Pericyclic reactions that involve a redistribution of bonding and nonbonding electrons in a cyclic, concerted manner are an important class of organic reactions. Since the publications of the Woodward-Hoffmann rules on the conservation of orbital symmetry (1) and the frontier molecular orbital theory (FMO) by Fukui first described in the late 1960s (2), the underlying principles of these processes at the molecular level have become fully understood. Many modern organic chemistry textbooks include pericyclic reactions as a major topic. They are usually covered in detail in a typical introductory organic chemistry course. In the Classroom Between the two fundamental approaches to pericyclic reactions, the FMO approach has gained some popularity at the undergraduate teaching level. It is simpler and can be based on a pictorial approach. A detailed understanding of molecular orbital theories and symmetry is not required. Screen from Pericyclic Reactions: FMO Approach When learning the mechanisms of organic reactions, our students have often expressed a wish that they could see how the electrons "jump" and the orbitals "move" in the microscopic world. Pericyclic Reactions: FMO Approach has partially fulfilled the students' request. With its color 3-D graphics and animation, Pericyclic Reactions: FMO Approach can greatly enhance the teaching and learning of the FMO approach to pericyclic reactions. The stereochemical outcomes of these highly stereospecific reactions can be seen clearly as the reaction process is animated on the computer screen. Based on the

  15. Research & writing basics: elements of the abstract.

    PubMed

    Krasner, D; Van Rijswijk, L

    1995-04-01

    Writing an abstract is a challenging skill that requires precision and care. Criteria for well-formulated abstracts and abstract guidelines for 2 types of articles (empirical studies and reviews or theoretical articles) as well as a description of the content of a structured abstract are presented. Details were gleaned from a review of the literature including the American Medical Association Manual of Style, Eighth Edition and the Publication Manual of the American Psychological Association, Fourth Edition. A good abstract is like a crystal: it is a clear, sharp synthesis that elucidates meaning for the reader.

  16. Research & writing basics: elements of the abstract.

    PubMed

    Krasner, D; Van Rijswijk, L

    1995-04-01

    Writing an abstract is a challenging skill that requires precision and care. Criteria for well-formulated abstracts and abstract guidelines for 2 types of articles (empirical studies and reviews or theoretical articles) as well as a description of the content of a structured abstract are presented. Details were gleaned from a review of the literature including the American Medical Association Manual of Style, Eighth Edition and the Publication Manual of the American Psychological Association, Fourth Edition. A good abstract is like a crystal: it is a clear, sharp synthesis that elucidates meaning for the reader. PMID:7546111

  17. Writing Abstracts for MLIS Research Proposals Using Worked Examples: An Innovative Approach to Teaching the Elements of Research Design

    ERIC Educational Resources Information Center

    Ondrusek, Anita L.; Thiele, Harold E.; Yang, Changwoo

    2014-01-01

    The authors examined abstracts written by graduate students for their research proposals as a requirement for a course in research methods in a distance learning MLIS program. The students learned under three instructional conditions that involved varying levels of access to worked examples created from abstracts representing research in the LIS…

  18. Strategy as simple rules.

    PubMed

    Eisenhardt, K M; Sull, D N

    2001-01-01

    The success of Yahoo!, eBay, Enron, and other companies that have become adept at morphing to meet the demands of changing markets can't be explained using traditional thinking about competitive strategy. These companies have succeeded by pursuing constantly evolving strategies in market spaces that were considered unattractive according to traditional measures. In this article--the third in an HBR series by Kathleen Eisenhardt and Donald Sull on strategy in the new economy--the authors ask, what are the sources of competitive advantage in high-velocity markets? The secret, they say, is strategy as simple rules. The companies know that the greatest opportunities for competitive advantage lie in market confusion, but they recognize the need for a few crucial strategic processes and a few simple rules. In traditional strategy, advantage comes from exploiting resources or stable market positions. In strategy as simple rules, advantage comes from successfully seizing fleeting opportunities. Key strategic processes, such as product innovation, partnering, or spinout creation, place the company where the flow of opportunities is greatest. Simple rules then provide the guidelines within which managers can pursue such opportunities. Simple rules, which grow out of experience, fall into five broad categories: how- to rules, boundary conditions, priority rules, timing rules, and exit rules. Companies with simple-rules strategies must follow the rules religiously and avoid the temptation to change them too frequently. A consistent strategy helps managers sort through opportunities and gain short-term advantage by exploiting the attractive ones. In stable markets, managers rely on complicated strategies built on detailed predictions of the future. But when business is complicated, strategy should be simple. PMID:11189455

  19. Rules, culture, and fitness.

    PubMed

    Baum, W M

    1995-01-01

    Behavior analysis risks intellectual isolation unless it integrates its explanations with evolutionary theory. Rule-governed behavior is an example of a topic that requires an evolutionary perspective for a full understanding. A rule may be defined as a verbal discriminative stimulus produced by the behavior of a speaker under the stimulus control of a long-term contingency between the behavior and fitness. As a discriminative stimulus, the rule strengthens listener behavior that is reinforced in the short run by socially mediated contingencies, but which also enters into the long-term contingency that enhances the listener's fitness. The long-term contingency constitutes the global context for the speaker's giving the rule. When a rule is said to be "internalized," the listener's behavior has switched from short- to long-term control. The fitness-enhancing consequences of long-term contingencies are health, resources, relationships, or reproduction. This view ties rules both to evolutionary theory and to culture. Stating a rule is a cultural practice. The practice strengthens, with short-term reinforcement, behavior that usually enhances fitness in the long run. The practice evolves because of its effect on fitness. The standard definition of a rule as a verbal statement that points to a contingency fails to distinguish between a rule and a bargain ("If you'll do X, then I'll do Y"), which signifies only a single short-term contingency that provides mutual reinforcement for speaker and listener. In contrast, the giving and following of a rule ("Dress warmly; it's cold outside") can be understood only by reference also to a contingency providing long-term enhancement of the listener's fitness or the fitness of the listener's genes. Such a perspective may change the way both behavior analysts and evolutionary biologists think about rule-governed behavior.

  20. 2013 SYR Accepted Poster Abstracts.

    PubMed

    2013-01-01

    SYR 2013 Accepted Poster abstracts: 1. Benefits of Yoga as a Wellness Practice in a Veterans Affairs (VA) Health Care Setting: If You Build It, Will They Come? 2. Yoga-based Psychotherapy Group With Urban Youth Exposed to Trauma. 3. Embodied Health: The Effects of a Mind�Body Course for Medical Students. 4. Interoceptive Awareness and Vegetable Intake After a Yoga and Stress Management Intervention. 5. Yoga Reduces Performance Anxiety in Adolescent Musicians. 6. Designing and Implementing a Therapeutic Yoga Program for Older Women With Knee Osteoarthritis. 7. Yoga and Life Skills Eating Disorder Prevention Among 5th Grade Females: A Controlled Trial. 8. A Randomized, Controlled Trial Comparing the Impact of Yoga and Physical Education on the Emotional and Behavioral Functioning of Middle School Children. 9. Feasibility of a Multisite, Community based Randomized Study of Yoga and Wellness Education for Women With Breast Cancer Undergoing Chemotherapy. 10. A Delphi Study for the Development of Protocol Guidelines for Yoga Interventions in Mental Health. 11. Impact Investigation of Breathwalk Daily Practice: Canada�India Collaborative Study. 12. Yoga Improves Distress, Fatigue, and Insomnia in Older Veteran Cancer Survivors: Results of a Pilot Study. 13. Assessment of Kundalini Mantra and Meditation as an Adjunctive Treatment With Mental Health Consumers. 14. Kundalini Yoga Therapy Versus Cognitive Behavior Therapy for Generalized Anxiety Disorder and Co-Occurring Mood Disorder. 15. Baseline Differences in Women Versus Men Initiating Yoga Programs to Aid Smoking Cessation: Quitting in Balance Versus QuitStrong. 16. Pranayam Practice: Impact on Focus and Everyday Life of Work and Relationships. 17. Participation in a Tailored Yoga Program is Associated With Improved Physical Health in Persons With Arthritis. 18. Effects of Yoga on Blood Pressure: Systematic Review and Meta-analysis. 19. A Quasi-experimental Trial of a Yoga based Intervention to Reduce Stress and