Science.gov

Sample records for abstract situation awareness

  1. Personalizing situation awareness

    SciTech Connect

    Collins, Linn Marks; Powell, James E; Roman, Jorge R; Martinez, Mark L B; Mane, Ketan K

    2009-01-01

    Emergency responders need access to information but what counts as actionable information depends on their role, task, location, and other variables. For example, experts who have unique knowledge and experience and are called on to serve as scientific and teclmical responders, require correspondingly unique situation awareness in order to do their work. In our research-in-progress we leverage emerging and evolving web and digital library technologies to create personalized situation awareness tools that address the needs of these scientific and technical responders in real time, through focused information collection, extraction, integration, representation, and dissemination. We describe three personalized situation awareness tools in this paper: the Theme Awareness Tool (THEMAT), Social Awareness Tool (SAT), and Expertise Awareness Tool (EXPAT). The concepts and technologies we are developing in collaboration with experts apply to those who use the Web, in general, and offer an approach to the general issue of HCI design for emergencies.

  2. Abstractions of Awareness: Aware of What?

    NASA Astrophysics Data System (ADS)

    Metaxas, Georgios; Markopoulos, Panos

    This chapter presents FN-AAR, an abstract model of awareness systems. The purpose of the model is to capture in a concise and abstract form essential aspects of awareness systems, many of which have been discussed in design essays or in the context of evaluating specific design solutions.

  3. Situation awareness system for Canada

    NASA Astrophysics Data System (ADS)

    Hill, Andrew

    1999-07-01

    Situation awareness encompasses a knowledge of orders, plans and current knowledge of friendly force actions. Knowing where you are and being able to transmit that information in near real-time to other friendly forces provides the ability to exercise precise command and control over those forces. With respect to current command and control using voice methods, between 40 percent and 60 percent of Combat Net Radio traffic relates to location reporting of some sort. Commanders at Battle Group and below spend, on average, 40 percent of their total time performing position and navigation related functions. The need to rapidly transfer own force location information throughout a force and to process the received information quickly, accurately and reliably provides the rationale for the requirement for an automated situation awareness system. This paper describes the Situation Awareness System (SAS) being developed by Computing Devices Canada for the Canadian Department of National Defence as a component of the Position Determination and Navigation for Land Forces program. The SAS is being integrated with the Iris Tactical Command, Control, Communications System, which is also being developed by Computing Devices. The SAS software provides a core operating environment onto which command and control functionality can be easily added to produce general and specialist battlefield management systems.

  4. A schema-based model of situation awareness: Implications for measuring situation awareness

    NASA Technical Reports Server (NTRS)

    Fracker, Martin L.

    1988-01-01

    Measures of pilot situation awareness (SA) are needed in order to know whether new concepts in display design help pilots keep track of rapidly changing tactical situations. In order to measure SA, a theory of situation assessment is needed. Such a theory is summarized, encompassing both a definition of SA and a model of situation assessment. SA is defined as the pilot's knowledge about a zone of interest at a given level of abstraction. Pilots develop this knowledge by sampling data from the environment and matching the sampled data to knowledge structures stored in long-term memory. Matched knowledge structures then provide the pilot's assessment of the situation and serve to guide his attention. A number of cognitive biases that result from the knowledge matching process are discussed, as are implications for partial report measures of situation awareness.

  5. Global Space Situational Awareness Sensors

    NASA Astrophysics Data System (ADS)

    Weeden, B.; Cefola, P.; Sankaran, J.

    2010-09-01

    Space situational awareness (SSA) is an essential and integral piece of space operations. Although the U.S. military's Space Surveillance Network (SSN) is currently the single best source of SSA in the world, it does not provide the level of SSA currently needed to support space operations. The lack of geographical sensor distribution and coverage outside of the continental U.S., particularly in the Southern Hemisphere, is a significant limitation of the SSN. There exist a large number of individual sensors across the globe and smaller sensor networks which already provide some level of SSA data to various users, and could also provide data to support the U.S. need for SSA. These sensors are being developed for a variety of missions, including space surveillance, missile warning, missile defense and testing, and scientific applications. This paper summarizes the work currently underway as a joint project by the Secure World Foundation and the Center for International and Security Studies at Maryland (CISSM), University of Maryland, to document these global sensors including networks from Europe, Russia, and China. This information will be collated in a publicly-accessible database which will serve as the foundation for future analyses to assess the utility of these sensors as complements to the existing plans by the U.S. military to acquire new sensors to enhance SSA. It is also part of a broader project which includes development of an open source software suite for SSA analysis.

  6. Increasing situational awareness using smartphones

    NASA Astrophysics Data System (ADS)

    Boddhu, Sanjay K.; Williams, Robert L.; Wasser, Edward; Kode, Niranjan

    2012-06-01

    In recent years, the United States Armed Services and various law enforcement agencies have shown increasing interest in evaluating the feasibility of using smartphones and hand-held devices as part of the standard gear for its personnel, who are actively engaged on battlefield or in crime-prone areas. The primary motive driving analysis efforts to employ smartphone-based technologies is the prospect of the increased "Situational Awareness" achievable thru a digitally connected network of armed personnel. Personnel would be equipped with customized smart applications that use the device's sensors (GPS, camera, compass, etc...) to sense the hostile environments as well as enabling them to perform collaborative tasks to effectively complete a given mission. In this vein, as part of the Summer At The Edge (SATE) program, a group of student interns under the guidance of mentors from Qbase and AFRL, have employed smartphones and built three smart applications to tackle three real-world scenarios: PinPoint, IStream, and Cooperative GPS. This paper provides implementation details for these prototype applications, along with the supporting visualization and sensor cloud platforms and discusses results obtained from field testing of the same. Further, the paper concludes by providing the implications of the present work and insights into future work.

  7. Sharing Space Situational Awareness Data

    NASA Astrophysics Data System (ADS)

    Bird, D.

    2010-09-01

    The Commander, United States Strategic Command (CDRUSSTRATCOM) accepted responsibility for sharing space situational awareness (SSA) information/services with commercial & foreign entities from the US Air Force on 22 Dec 09 (formerly the Commercial & Foreign Entities Pilot Program). The requirement to share SSA services with non-US Government (USG) entities is derived from Title 10, United States Code, Section 2274 (2010) and is consistent with the new National Space Policy. US Strategic Command’s (USSTRATCOM’s) sharing of SSA services consists of basic services (Two-Line Elements, decay data and satellite catalog details) available on www.space-track.org and advanced services (conjunction assessment, launch support, etc) available with a signed agreement. USSTRATCOM has requested USG permission to enter into international agreements to enable SSA data exchange with our foreign partners. USSTRATCOM recently authorized Joint Functional Component Command for Space (JFCC SPACE) to share Conjunction Summary Messages (CSMs) with satellite owner/operators whose satellites have been identified as closely approaching another space object. CSMs contain vector and covariance data computed using Special Perturbations theory. To facilitate the utility of the CSMs, USSTRATCOM has and is hosting CSM Workshops to ensure satellite operators fully understand the data contained in the CSM in order to provide an informed recommendation to their leadership. As JFCC SPACE matures its ability to accept ephemeris data from a satellite operator, it will be necessary to automatically transfer that data from one security level to another. USSTRATCOM and Air Force Space Command are coordinating the integration of a cross domain solution that will allow JFCC SPACE to do just that. Finally, USSTRATCOM is also working with commercial and governmental organizations to develop an internationally-accepted conjunction assessment message. The United States Government (USG), specifically the

  8. Artificial Experience: Situation Awareness Training in Nursing

    ERIC Educational Resources Information Center

    Hinton, Janine E.

    2011-01-01

    The quasi-experimental research study developed and tested an education process to reduce and trap medication errors. The study was framed by Endsley's (1995a) model of situation awareness in dynamic decision making. Situation awareness improvement strategies were practiced during high-fidelity clinical simulations. Harmful medication errors occur…

  9. Collaborative Commercial Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.; Hendrix, D.; Sibert, D.; Hall, R. A.; Therien, W.

    2013-09-01

    There is an increasing recognition by commercial and civil space operators of the need for space situational awareness (SSA) data to support ongoing conjunction analysis, maneuver planning, and radio frequency interference mitigation as part of daily operations. While some SSA data is available from the Joint Space Operations Center via the Space Track web site, access to raw observations and photometric data is limited due to national security considerations. These data, however, are of significant value in calibrating intra- and inter-operator orbit determination results, determining inter-system biases, and assessing operating profiles in the geostationary orbit. This paper details an ongoing collaborative effort to collect and process optical observations and photometric data using a network of low-cost telescope installations and shows how these data are being used to support ongoing operations in the Space Data Center. This presentation will demonstrate how by leveraging advance photometric processing algorithms developed for Missile Defense Agency and the Ballistic Missile Defense (BMD) mission ExoAnalytic and AGI have been able to provide actionable SSA for satellite operators from small telescopes in less than optimal viewing conditions. Space has become an increasingly cluttered environment requiring satellite operators to remain forever vigilant in order to prevent collisions to preserve their assets and prevent further cluttering the space environment. The Joint Space Operations Center (JSpOC), which tracks all objects in earth orbit, reports possible upcoming conjunctions to operators by providing Conjunction Summary Messages (CSMs). However due to large positional uncertainties in the forward predicted position of space objects at the time closest approach the volume of CSMs is excessive to the point that maneuvers in response to CSMs without additional screening is cost prohibitive. CSSI and the Space Data Association have been able to screen most

  10. Knowledge-based public health situation awareness

    NASA Astrophysics Data System (ADS)

    Mirhaji, Parsa; Zhang, Jiajie; Srinivasan, Arunkumar; Richesson, Rachel L.; Smith, Jack W.

    2004-09-01

    There have been numerous efforts to create comprehensive databases from multiple sources to monitor the dynamics of public health and most specifically to detect the potential threats of bioterrorism before widespread dissemination. But there are not many evidences for the assertion that these systems are timely and dependable, or can reliably identify man made from natural incident. One must evaluate the value of so called 'syndromic surveillance systems' along with the costs involved in design, development, implementation and maintenance of such systems and the costs involved in investigation of the inevitable false alarms1. In this article we will introduce a new perspective to the problem domain with a shift in paradigm from 'surveillance' toward 'awareness'. As we conceptualize a rather different approach to tackle the problem, we will introduce a different methodology in application of information science, computer science, cognitive science and human-computer interaction concepts in design and development of so called 'public health situation awareness systems'. We will share some of our design and implementation concepts for the prototype system that is under development in the Center for Biosecurity and Public Health Informatics Research, in the University of Texas Health Science Center at Houston. The system is based on a knowledgebase containing ontologies with different layers of abstraction, from multiple domains, that provide the context for information integration, knowledge discovery, interactive data mining, information visualization, information sharing and communications. The modular design of the knowledgebase and its knowledge representation formalism enables incremental evolution of the system from a partial system to a comprehensive knowledgebase of 'public health situation awareness' as it acquires new knowledge through interactions with domain experts or automatic discovery of new knowledge.

  11. Situational awareness is more than exceptional vision.

    PubMed

    Hartman, B O; Secrist, G E

    1991-11-01

    Superior situational awareness, an extraordinary awareness of the total flight environment and aerial combat situation, is a significant contributor to success in aerial engagement. Review of over 1,000 published sources has led to the formulation of situational awareness as being principally in the cognitive domain. Superior awareness involves exceptional sensitivity to performance-critical cues in the operational environment, an exceptional capacity to anticipate changes in system states and operational conditions, and the ability to act on those changes in a proactive mode. Three important constructs are described: 1) automatic information processing; 2) near-threshold processing; and 3) skilled memory. In combination, they constitute a pilot attribute which uniquely facilitates the full armamentarium of skills and abilities of the superior tactical pilot. PMID:1741725

  12. Advancing Space Situational Awareness through International Coordination

    NASA Astrophysics Data System (ADS)

    Onsager, Terrance

    2012-07-01

    The growing interest in Space Situational Awareness and the recognized need for global coordination has led to the involvement of numerous international activities to increase awareness and foster cooperation. These activities are serving to prioritize and to coordinate our efforts and helping to establish a stronger, global Space Situational Awareness enterprise. This coordination is important for our data infrastructure, research developments, and the provision of operational services. Among the organizations that are contributing to this global coordination are: the International Space Environment Service, the World Meteorological Organization, the United Nations Office for Outer Space Affairs, the International Civil Aviation Organization, the Coordination Group for Meteorological Satellites, and the International Committee on GNSS. In this presentation, the contributions of these various organizations to coordinating our Space Situational Awareness efforts will be described, with an emphasis on space weather.

  13. Space Situational Awareness Architecture Vision

    NASA Astrophysics Data System (ADS)

    Richmond, D.

    2013-09-01

    Vast amounts of Space Situational data are collected each day. Net-Centric approaches are being developed to expose this data. The need to shift from our closed legacy systems to an open scalable architecture has begun through the JMS efforts. Cloud computing/Big Data concepts are also desired to store and process this data. Architecture insights will be provided to highlight how these apparently competing concepts can work together to provide a robust system of systems. Key items that will be covered include: 1) An overview of the "As-Is" system of JMS and Web Services 2) Definition of "Cloud Computing" and "Big Data" 3) Vision of To-Be SSA system of systems 4) Benefits of future approach 5) Path forward Governance and Oversight

  14. Cognitive dynamic logic algorithms for situational awareness

    NASA Astrophysics Data System (ADS)

    Perlovsky, L. I.; Ilin, R.

    2010-04-01

    Autonomous situational awareness (SA) requires an ability to learn situations. It is mathematically difficult because in every situation there are many objects nonessential for this situation. Moreover, most objects around are random, unrelated to understanding contexts and situations. We learn in early childhood to ignore these irrelevant objects effortlessly, usually we do not even notice their existence. Here we consider an agent that can recognize a large number of objects in the world; in each situation it observes many objects, while only few of them are relevant to the situation. Most of situations are collections of random objects containing no relevant objects, only few situations "make sense," they contain few objects, which are always present in these situations. The training data contains sufficient information to identify these situations. However, to discover this information all objects in all situations should be sorted out to find regularities. This "sorting out" is computationally complex; its combinatorial complexity exceeds by far all events in the Universe. The talk relates this combinatorial complexity to Gödelian limitations of logic. We describe dynamic logic (DL) that quickly learns essential regularities-relevant, repeatable objects and situations. DL is related to mechanisms of the brain-mind and we describe brain-imaging experiments that have demonstrated these relations.

  15. Modeling situation awareness and crash risk.

    PubMed

    Fisher, Donald L; Strayer, David L

    2014-01-01

    In this article we develop a model of the relationship between crash risk and a driver's situation awareness. We consider a driver's situation awareness to reflect the dynamic mental model of the driving environment and to be dependent upon several psychological processes including Scanning the driving environment, Predicting and anticipating hazards, Identifying potential hazards in the driving scene as they occur, Deciding on an action, and Executing an appropriate Response (SPIDER). Together, SPIDER is important for establishing and maintaining good situation awareness of the driving environment and good situation awareness is important for coordinating and scheduling the SPIDER-relevant processes necessary for safe driving. An Order-of-Processing (OP) model makes explicit the SPIDER-relevant processes and how they predict the likelihood of a crash when the driver is or is not distracted by a secondary task. For example, the OP model shows how a small decrease in the likelihood of any particular SPIDER activity being completed successfully (because of a concurrent secondary task performance) would lead to a large increase in the relative risk of a crash. PMID:24776225

  16. Conflict Resolution Automation and Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Dao, Arik-Quang V.; Brandt, Summer L.; Bacon, Paige; Kraut, Josh; Nguyen, Jimmy; Minakata, Katsumi; Raza, Hamzah; Rozovski, David; Johnson, Walter W.

    2010-01-01

    This study compared pilot situation awareness across three traffic management concepts. The Concepts varied in terms of the allocation of traffic avoidance responsibility between the pilot on the flight deck, the air traffic controllers, and a conflict resolution automation system. In Concept 1, the flight deck was equipped with conflict resolution tools that enable them to fully handle the responsibility of weather avoidance and maintaining separation between ownship and surrounding traffic. In Concept 2, pilots were not responsible for traffic separation, but were provided tools for weather and traffic avoidance. In Concept 3, flight deck tools allowed pilots to deviate for weather, but conflict detection tools were disabled. In this concept pilots were dependent on ground based automation for conflict detection and resolution. Situation awareness of the pilots was measured using online probes. Results showed that individual situation awareness was highest in Concept 1, where the pilots were most engaged, and lowest in Concept 3, where automation was heavily used. These findings suggest that for conflict resolution tasks, situation awareness is improved when pilots remain in the decision-making loop.

  17. Modeling Situation Awareness and Crash Risk

    PubMed Central

    Fisher, Donald L.; Strayer, David. L.

    2014-01-01

    In this article we develop a model of the relationship between crash risk and a driver’s situation awareness. We consider a driver’s situation awareness to reflect the dynamic mental model of the driving environment and to be dependent upon several psychological processes including Scanning the driving environment, Predicting and anticipating hazards, Identifying potential hazards in the driving scene as they occur, Deciding on an action, and Executing an appropriate Response (SPIDER). Together, SPIDER is important for establishing and maintaining good situation awareness of the driving environment and good situation awareness is important for coordinating and scheduling the SPIDER-relevant processes necessary for safe driving. An Order-of-Processing (OP) model makes explicit the SPIDER-relevant processes and how they predict the likelihood of a crash when the driver is or is not distracted by a secondary task. For example, the OP model shows how a small decrease in the likelihood of any particular SPIDER activity being completed successfully (because of a concurrent secondary task performance) would lead to a large increase in the relative risk of a crash. PMID:24776225

  18. Situation Awareness and Workload Measures for SAFOR

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe; Hart, Sandra G.; Allen, Ed (Technical Monitor)

    1999-01-01

    The present research was conducted in support of the NASA Safe All-Weather Flight Operations for Rotorcraft (SAFOR) program. The purpose of the work was to investigate the utility of two measurement tools developed by the British Defense Evaluation Research Agency. These tools were a subjective workload assessment scale, the DRA Workload Scale (DRAWS), and a situation awareness measurement tool in which the crews self-evaluation of performance is compared against actual performance. These two measurement tools were evaluated in the context of a test of an innovative approach to alerting the crew by way of a helmet mounted display. The DRAWS was found to be usable, but it offered no advantages over extant scales, and it had only limited resolution. The performance self-evaluation metric of situation awareness was found to be highly effective.

  19. Oceanic Situational Awareness Over the Pacific Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Pacific Ocean. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the Pacific Corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  20. Providing Situational Awareness for Pipeline Control Operations

    NASA Astrophysics Data System (ADS)

    Butts, Jonathan; Kleinhans, Hugo; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet

    A SCADA system for a single 3,000-mile-long strand of oil or gas pipeline may employ several thousand field devices to measure process parameters and operate equipment. Because of the vital tasks performed by these sensors and actuators, pipeline operators need accurate and timely information about their status and integrity. This paper describes a realtime scanner that provides situational awareness about SCADA devices and control operations. The scanner, with the assistance of lightweight, distributed sensors, analyzes SCADA network traffic, verifies the operational status and integrity of field devices, and identifies anomalous activity. Experimental results obtained using real pipeline control traffic demonstrate the utility of the scanner in industrial settings.

  1. Increasing situational awareness in DVE with advanced synthetic vision

    NASA Astrophysics Data System (ADS)

    Schafhitzel, T.; Hoyer, M.; Völschow, P.

    2013-05-01

    One of the major causes for hazardous situations in aviation is the lack of a pilot's situational awareness. Common causes for degraded situational awareness are Brownout and Whiteout situations, low level flights, and flights in DVE. In this paper, we propose Advanced Synthetic Vision (ASV), a modern situational awareness solution. ASV combines both Synthetic Vision and Enhanced Vision in order to provide the pilot most timeliness information without being restricted in the spatial coverage of the synthetic representation. The advantages to a common Enhanced Synthetic Vision System are the following: (1) ASV uses 3D ladar data instead of a 2D sensor. The 3D point cloud is classified in real-time to distinguish between ground, wires, poles and buildings; (2) the classified sensor data is fused with onboard data base contents like elevation or obstacles. The entire data fusion is performed in 3D, i.e. output is a merged 3D scenario instead of a blended 2D image. Once the sensor stopped recording due to occlusion, ASV switches to pure data base mode; (3) the merged data is passed to a 3D visualization module, which is fully configurable in order to support synthetic views on head down displays as well as more abstract augmented representations on helmet mounted displays; (4) the extendable design of ASV supports the graphical linking of functions like 3D landing aid, TAWS, or navigation aids.

  2. Situation Awareness of Onboard System Autonomy

    NASA Technical Reports Server (NTRS)

    Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth

    2005-01-01

    We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.

  3. Gamification for Measuring Cyber Security Situational Awareness

    SciTech Connect

    Fink, Glenn A.; Best, Daniel M.; Manz, David O.; Popovsky, V. M.; Endicott-Popovsky, Barbara E.

    2013-03-01

    Cyber defense competitions arising from U.S. service academy exercises, offer a platform for collecting data that can inform research that ranges from characterizing the ideal cyber warrior to describing behaviors during certain challenging cyber defense situations. This knowledge could lead to better preparation of cyber defenders in both military and civilian settings. This paper describes how one regional competition, the PRCCDC, a participant in the national CCDC program, conducted proof of concept experimentation to collect data during the annual competition for later analysis. The intent is to create an ongoing research agenda that expands on this current work and incorporates augmented cognition and gamification methods for measuring cybersecurity situational awareness under the stress of cyber attack.

  4. Visual analysis of situationally aware building evacuations

    NASA Astrophysics Data System (ADS)

    Guest, Jack; Eaglin, Todd; Subramanian, Kalpathi; Ribarsky, William

    2013-01-01

    Rapid evacuation of large urban structures (campus buildings, arenas, stadiums, etc.) is a complex operation and of prime interest to emergency responders and planners. Although there is a considerable body of work in evacuation algorithms and methods, most of these are impractical to use in real-world scenarios (non real-time, for instance) or have difficulty handling scenarios with dynamically changing conditions. Our goal in this work is towards developing computer visualizations and real-time visual analytic tools for building evacuations, in order to provide situational awareness and decision support to first responders and emergency planners. We have augmented traditional evacuation algorithms in the following important ways, (1) facilitate real-time complex user interaction with first responder teams, as information is received during an emergency, (2) visual reporting tools for spatial occupancy, temporal cues, and procedural recommendations are provided automatically and at adjustable levels, and (3) multi-scale building models, heuristic evacuation models, and unique graph manipulation techniques for producing near real-time situational awareness. We describe our system, methods and their application using campus buildings as an example. We also report the results of evaluating our system in collaboration with our campus police and safety personnel, via a table-top exercise consisting of 3 different scenarios, and their resulting assessment of the system.

  5. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  6. USAF Academy Center for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Dearborn, M.; Chun, F.; Liu, J.; Tippets, R.

    2011-09-01

    Since the days of Sputnik, the Air Force has maintained the surveillance of space and a position catalog of objects that can be tracked by primarily ground-based radars and optical systems. Recent events in space such as the test of the Chinese anti-satellite weapon in 2007 and the collision between an Iridium and Russian Cosmo satellite have demonstrated the great need to have a more comprehensive awareness of the situation in space. Hence space situational awareness (SSA) has become an increasingly important mission to the Air Force and to the security of the United States. To help meet the need for future leaders knowledgeable about SSA, the Air Force Academy formally stood up the Center for Space Situational Awareness (CSSAR). The goal of the CSSAR is to provide a unique combination of educational operational experience as well as a world-class research capability for hands-on education in SSA. In order to meet this goal, the CSSAR is implementing an array of sensors, operations center, and associated software, and analysis tools. For example we have radar receivers for bi-static returns from the VHF space fence, a network of small aperture telescopes, AFSPC astro standards software, and Joint Mission System software. This paper focuses on the observational capabilities of our telescopes. In general, the preferable method for characterizing a satellite is to obtain a high-resolution image. However, high-resolution images from groundbased telescopes are only achievable if the satellite is large and close in range. Thus small satellites in low-earth orbits and large satellites in geosynchronous orbits are essentially unresolved in the focal plane of a ground-based telescope. Building ever larger telescopes capable of tracking fast enough for satellites at high resolution requires tremendous resources and funding. Cost is one of the reasons we decided to develop a network of small, commercially available telescopes spatially diverse and networked together. We call

  7. Situated Learning in an Abstract Algebra Classroom

    ERIC Educational Resources Information Center

    Ticknor, Cindy S.

    2012-01-01

    Advisory committees of mathematics consider abstract algebra as an essential component of the mathematical preparation of secondary teachers, yet preservice teachers find it challenging to connect the topics addressed in this advanced course with the high school algebra they must someday teach. This study analyzed the mathematical content…

  8. Improving situation awareness with the Android Team Awareness Kit (ATAK)

    NASA Astrophysics Data System (ADS)

    Usbeck, Kyle; Gillen, Matthew; Loyall, Joseph; Gronosky, Andrew; Sterling, Joshua; Kohler, Ralph; Hanlon, Kelly; Scally, Andrew; Newkirk, Richard; Canestrare, David

    2015-05-01

    To make appropriate, timely decisions in the field, Situational Awareness (SA) needs to be conveyed in a decentralized manner to the users at the edge of the network as well as at operations centers. Sharing real-time SA efficiently between command centers and operational troops poses many challenges, including handling heterogeneous and dynamic networks, resource constraints, and varying needs for the collection, dissemination, and display of information, as well as recording that information. A mapping application that allows teams to share relevant geospatial information efficiently and to communicate effectively with one another and command centers has wide applicability to many vertical markets across the Department of Defense, as well as a wide variety of federal, state local, and non-profit agencies that need to share locations, text, photos, and video. This paper describes the Android Team Awareness Kit (ATAK), an advanced, distributed tool for commercial- off-the-shelf (COTS) mobile devices such as smartphones and tablets. ATAK provides a variety of useful SA functions for soldiers, law enforcement, homeland defense, and civilian collaborative use; including mapping and navigation, range and bearing, text chat, force tracking, geospatial markup tools, image and file sharing, video playback, site surveys, and many others. This paper describes ATAK, the SA tools that ATAK has built-in, and the ways it is being used by a variety of military, homeland security, and law enforcement users.

  9. Situation Awareness Information Requirements for Commercial Airline Pilots

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Farley, Todd C.; Jones, William M.; Midkiff, Alan H.; Hansman, R. John

    1998-01-01

    Situation awareness is presented as a fundamental requirement for good airmanship, forming the basis for pilot decision making and performance. To develop a better understanding of the role of situation awareness in flying, an analysis was performed to determine the specific situation awareness information requirements for commercial aircraft pilots. This was conducted as a goal-directed task analysis in which pilots' major goals, subgoals, decisions, and associated situation awareness information requirements were delineated based on elicitation from experienced commercial airline pilots. A determination of the major situation awareness information requirements for visual and instrument flight was developed from this analysis, providing a foundation for future system development which seeks to enhance pilot situation awareness and provide a basis for the development of situation awareness measures for commercial flight.

  10. Cockpit System Situational Awareness Modeling Tool

    NASA Technical Reports Server (NTRS)

    Keller, John; Lebiere, Christian; Shay, Rick; Latorella, Kara

    2004-01-01

    This project explored the possibility of predicting pilot situational awareness (SA) using human performance modeling techniques for the purpose of evaluating developing cockpit systems. The Improved Performance Research Integration Tool (IMPRINT) was combined with the Adaptive Control of Thought-Rational (ACT-R) cognitive modeling architecture to produce a tool that can model both the discrete tasks of pilots and the cognitive processes associated with SA. The techniques for using this tool to predict SA were demonstrated using the newly developed Aviation Weather Information (AWIN) system. By providing an SA prediction tool to cockpit system designers, cockpit concepts can be assessed early in the design process while providing a cost-effective complement to the traditional pilot-in-the-loop experiments and data collection techniques.

  11. Increasing Space Situational Awareness for NEOs

    NASA Astrophysics Data System (ADS)

    Hestroffer, Daniel J. G. J.; Eggl, Siegfried; Thuillot, William

    2015-05-01

    Over the past years, Europe has strengthened its commitment to foster space situational awareness. Apart from the current efforts in tracking space weather, artificial satellites and space debris, Near Earth Asteroid threat assessment is a key task. NEOshield has been part of this European effort. We will give an overview over national projects and European programs with French participation such as PoDET, ESTERS, FRIPON, NEOShield, Gaia-FUN-SSO and Stardust. Future plans regarding Near Earth Object threat assessment and mitigation are described. The role of the IMCCE in this framework is discussed using the example of the post mitigation impact risk analyis of Gravity Tractor and Kinetic Impactor based asteroid deflection demonstration mission designs.

  12. Situation Awareness and Levels of Automation

    NASA Technical Reports Server (NTRS)

    Kaber, David B.

    1999-01-01

    During the first year of this project, a taxonomy of theoretical levels of automation (LOAs) was applied to the advanced commercial aircraft by categorizing actual modes of McDonald Douglas MD-11 autoflight system operation in terms of the taxonomy. As well, high LOAs included in the taxonomy (e.g., supervisory control) were modeled in the context of MD-11 autoflight systems through development of a virtual flight simulator. The flight simulator was an integration of a re-configurable simulator developed by the Georgia Institute Technology and new software prototypes of autoflight system modules found in the MD-11 cockpit. In addition to this work, a version of the Situation Awareness Global Assessment Technique (SAGAT) was developed for application to commercial piloting tasks. A software package was developed to deliver the SAGAT and was integrated with the virtual flight simulator.

  13. Data Quality Assessment for Maritime Situation Awareness

    NASA Astrophysics Data System (ADS)

    Iphar, C.; Napoli, A.; Ray, C.

    2015-08-01

    The Automatic Identification System (AIS) initially designed to ensure maritime security through continuous position reports has been progressively used for many extended objectives. In particular it supports a global monitoring of the maritime domain for various purposes like safety and security but also traffic management, logistics or protection of strategic areas, etc. In this monitoring, data errors, misuse, irregular behaviours at sea, malfeasance mechanisms and bad navigation practices have inevitably emerged either by inattentiveness or voluntary actions in order to circumvent, alter or exploit such a system in the interests of offenders. This paper introduces the AIS system and presents vulnerabilities and data quality assessment for decision making in maritime situational awareness cases. The principles of a novel methodological approach for modelling, analysing and detecting these data errors and falsification are introduced.

  14. Employing Honeynets For Network Situational Awareness

    NASA Astrophysics Data System (ADS)

    Barford, Paul; Chen, Yan; Goyal, Anup; Li, Zhichun; Paxson, Vern; Yegneswaran, Vinod

    Effective network security administration depends to a great extent on having accurate, concise, high-quality information about malicious activity in one’s network. Honeynets can potentially provide such detailed information, but the volume and diversity of this data can prove overwhelming. We explore ways to integrate honeypot data into daily network security monitoring with a goal of sufficiently classifying and summarizing the data to provide ongoing “situational awareness.” We present such a system, built using the Bro network intrusion detection system coupled with statistical analysis of numerous honeynet “events”, and discuss experiences drawn from many months of operation. In particular, we develop methodologies by which sites receiving such probes can infer—using purely local observation—information about the probing activity: What scanning strategies does the probing employ? Is this an attack that specifically targets the site, or is the site only incidentally probed as part of a larger, indiscriminant attack? One key aspect of this environment is its ability to provide insight into large-scale events. We look at the problem of accurately classifying botnet sweeps and worm outbreaks, which turns out to be difficult to grapple with due to the high dimensionality of such incidents. Using datasets collected during a number of these events, we explore the utility of several analysis methods, finding that when used together they show good potential for contributing towards effective situational awareness. Our analysis draws upon extensive honeynet data to explore the prevalence of different types of scanning, including properties, such as trend, uniformity, coordination, and darknet-avoidance. In addition, we design schemes to extrapolate the global properties of scanning events (e.g., total population and target scope) as inferred from the limited local view of a honeynet. Cross-validating with data from DShield shows that such inferences

  15. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  16. Modeling Being "Lost": Imperfect Situation Awareness

    NASA Technical Reports Server (NTRS)

    Middleton, Victor E.

    2011-01-01

    Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.

  17. Treemap Visualizations for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Gorrell, Z.

    Making sense of massive data sets is a problem for many military domains including space. With unwieldy big data sets used for space situational awareness (SSA), important trends and outliers may not be easy to spot especially not at-a-glance. One method being explored to visualize SSA data sets is called treemapping. Treemaps fill screen space with nested rectangles (tiles) of various sizes and colors to represent multiple dimensions of hierarchical data sets. By mapping these dimensions effectively with a tiling algorithm that maintains an appropriate aspect ratio, patterns can emerge that often would have gone unnoticed. The ability to interactively perform range filtering (in our case with sliders) and object drill-downs (hyperlinking the tiles) make this technology powerful for in-depth analyses in addition to at-a-glance awareness. For one SSA analysis, the tiles could represent satellites that are grouped by country, sized by apogee, and colored/shaded by the launch date. Filter sliders could allow apogee range or launch dates to be narrowed for better resolution of a smaller data set. The application of this technology for the Joint Space Operations Center (JSpOC) Mission System (JMS) is being explored on a DARPA Small Business Innovative Research (SBIR) effort as a plug-in to the existing User-Defined Operational Picture (UDOP). In addition, visualization of DARPA OrbitOutlook small telescope data will be demonstrated. This research will investigate what SSA analyses are best served by treemaps, the best tiling algorithms for these problems, and how the treemaps should be integrated into the existing JMS UDOP workflow. Finally, we introduce a variation of treemaps that help leaders allocate their time to tasks based on importance and urgency.

  18. Understanding situation awareness and its importance in patient safety.

    PubMed

    Gluyas, Heather; Harris, Sarah-Jane

    2016-04-20

    Situation awareness describes an individual's perception, comprehension and subsequent projection of what is going on in the environment around them. The concept of situation awareness sits within the group of non-technical skills that include teamwork, communication and managing hierarchical lines of communication. The importance of non-technical skills has been recognised in safety-critical industries such as aviation, the military, nuclear, and oil and gas. However, health care has been slow to embrace the role of non-technical skills such as situation awareness in improving outcomes and minimising the risk of error. This article explores the concept of situation awareness and the cognitive processes involved in maintaining it. In addition, factors that lead to a loss of situation awareness and strategies to improve situation awareness are discussed. PMID:27097212

  19. Space Situational Awareness (SSA) research findings

    NASA Astrophysics Data System (ADS)

    Richmond, D.

    Space Situational Awareness (SSA) is the foundation for space superiority and has become a national priority. Providing full SSA requires knowledge of space and ground assets along with communication links between these assets. It also requires an understanding of potential events and threats that may affect these assets. This paper summarizes the findings resulting from a research environment established to explore SSA issues. Non-traditional data sources available on the internet are identified along with methods to mine relevant data. Algorithms to augment this data with value added processing were evaluated and key features are presented. These include all-on-all conjunction analysis utilizing analytical distributed processing approaches and maneuver detection utilizing an approach described in the AMOS 2007 paper "Satellite Maneuver Detection Using Two-line Elements". Data fusion techniques are presented which were utilized to evaluate space launches, enhance maneuver detection capabilities, characterize events and determine possible intent. Several visualization approaches were explored and the key features/limitations are discussed to include performance consideration, event models between visualization components, and data needs at the tactical, operational, and strategic levels. Data dissemination approaches utilizing a Service Oriented Architecture (SOA) are highlighted along with challenges such as Multiple Levels of Security associated with the data. Dependencies between visualization and dissemination that impact the system's performance are discussed. Alternatives to balance system performance and application of a User Defined Operational Picture (UDOP) are explored.

  20. Situational awareness in public health preparedness settings

    NASA Astrophysics Data System (ADS)

    Mirhaji, Parsa; Michea, Yanko F.; Zhang, Jiajie; Casscells, Samuel W.

    2005-05-01

    September 11 2001 attacks and following Anthrax mailings introduced emergent need for developing technologies that can distinguish between man made and natural incidents in the public health level. With this objective in mind, government agencies started a funding effort to foster the design, development and implementation of such systems on a wide scale. But the outcomes have not met the expectations set by the resources invested. Multiple elements explain this phenomenon: As it has been frequent with technology, introduction of new surveillance systems to the workflow equation has occurred without taking into consideration the need for understanding and inclusion of deeper personal, psychosocial, organizational and methodological concepts. The environment, in which these systems are operating, is complex, highly dynamic, uncertain, risky, and subject to intense time pressures. Such 'difficult' environments are very challenging to the human as a decision maker. In this paper we will challenge these systems from the perspective of human factors design. We will propose employment of systematic situational awareness research for design and implementation of the next generation public health preparedness infrastructures. We believe that systems designed based on results of such analytical definition of the domain enable public health practitioners to effectively collect the most important cues from the environment, process, interpret and understand the information in the context of organizational objectives and immediate tasks at hand, and use that understanding to forecast the short term and long term impact of the events in the safety and well being of the community.

  1. Modeling the situation awareness by the analysis of cognitive process.

    PubMed

    Liu, Shuang; Wanyan, Xiaoru; Zhuang, Damin

    2014-01-01

    To predict changes of situation awareness (SA) for pilot operating with different display interfaces and tasks, a qualitative analysis and quantitative calculation joint SA model was proposed. Based on the situational awareness model according to the attention allocation built previously, the pilot cognitive process for the situation elements was analyzed according to the ACT-R (Adaptive Control of Thought, Rational) theory, which explained how the SA was produced. To verify the validity of this model, 28 subjects performed an instrument supervision task under different experiment conditions. Situation Awareness Global Assessment Technique (SAGAT), 10-dimensional Situational Awareness Rating Technique (10-D SART), performance measure and eye movement measure were adopted for evaluating SAs under different conditions. Statistical analysis demonstrated that the changing trend of SA calculated by this model was highly correlated with the experimental results. Therefore the situational awareness model can provide a reference for designing new cockpit display interfaces and help reducing human errors. PMID:25226931

  2. Situational awareness of a coordinated cyber attack

    NASA Astrophysics Data System (ADS)

    Sudit, Moises; Stotz, Adam; Holender, Michael

    2005-03-01

    As technology continues to advance, services and capabilities become computerized, and an ever increasing amount of business is conducted electronically the threat of cyber attacks gets compounded by the complexity of such attacks and the criticality of the information which must be secured. A new age of virtual warfare has dawned in which seconds can differentiate between the protection of vital information and/or services and a malicious attacker attaining their goal. In this paper we present a novel approach in the real-time detection of multistage coordinated cyber attacks and the promising initial testing results we have obtained. We introduce INFERD (INformation Fusion Engine for Real-time Decision-making), an adaptable information fusion engine which performs fusion at levels zero, one, and two to provide real-time situational assessment and its application to the cyber domain in the ECCARS (Event Correlation for Cyber Attack Recognition System) system. The advantages to our approach are fourfold: (1) The complexity of the attacks which we consider, (2) the level of abstraction in which the analyst interacts with the attack scenarios, (3) the speed at which the information fusion is presented and performed, and (4) our disregard for ad-hoc rules or a priori parameters.

  3. Review of game theory applications for situation awareness

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Shen, Dan; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    Game theoretical methods have been used for spectral awareness, space situational awareness (SSA), cyber situational awareness (CSA), and Intelligence, Surveillance, and Reconnaissance situation awareness (ISA). Each of these cases, awareness is supported by sensor estimation for assessment and the situation is determined from the actions of multiple players. Game theory assumes rational actors in a defined scenario; however, variations in social, cultural and behavioral factors include the dynamic nature of the context. In a dynamic data-driven application system (DDDAS), modeling must include both the measurements but also how models are used by different actors with different priorities. In this paper, we highlight the applications of game theory by reviewing the literature to determine the current state of the art and future needs. Future developments would include building towards knowledge awareness with information technology (e.g., data aggregation, access, indexing); multiscale analysis (e.g., space, time, and frequency), and software methods (e.g., architectures, cloud computing, protocols).

  4. A Sensemaking Perspective on Situation Awareness in Power Grid Operations

    SciTech Connect

    Greitzer, Frank L.; Schur, Anne; Paget, Mia L.; Guttromson, Ross T.

    2008-07-21

    With increasing complexity and interconnectivity of the electric power grid, the scope and complexity of grid operations continues to grow. New paradigms are needed to guide research to improve operations by enhancing situation awareness of operators. Research on human factors/situation awareness is described within a taxonomy of tools and approaches that address different levels of cognitive processing. While user interface features and visualization approaches represent the predominant focus of human factors studies of situation awareness, this paper argues that a complementary level, sensemaking, deserves further consideration by designers of decision support systems for power grid operations. A sensemaking perspective on situation aware-ness may reveal new insights that complement ongoing human factors research, where the focus of the investigation of errors is to understand why the decision makers experienced the situation the way they did, or why what they saw made sense to them at the time.

  5. Toward Microsatellite Based Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Scott, L.; Wallace, B.; Sale, M.; Thorsteinson, S.

    2013-09-01

    The NEOSSat microsatellite is a dual mission space telescope which will perform asteroid detection and Space Situational Awareness (SSA) observation experiments on deep space, earth orbiting objects. NEOSSat was launched on 25 February 2013 into a 800 dawn-dusk sun synchronous orbit and is currently undergoing satellite commissioning. The microsatellite consists of a small aperture optical telescope, GPS receiver, high performance attitude control system, and stray light rejection baffle designed to reject stray light from the Sun while searching for asteroids with elongations 45 degrees along the ecliptic. The SSA experimental mission, referred to as HEOSS (High Earth Orbit Space Surveillance), will focus on objects in deep space orbits. The HEOSS mission objective is to evaluate the utility of microsatellites to perform catalog maintenance observations of resident space objects in a manner consistent with the needs of the Canadian Forces. The advantages of placing a space surveillance sensor in low Earth orbit are that the observer can conduct observations without the day-night interruption cycle experienced by ground based telescopes, the telescope is insensitive to adverse weather and the system has visibility to deep space resident space objects which are not normally visible from ground based sensors. Also, from a photometric standpoint, the microsatellite is able to conduct observations on objects with a rapidly changing observer position. The possibility of spin axis estimation on geostationary satellites may be possible and an experiment characterize spin axis of distant resident space objects is being planned. Also, HEOSS offers the ability to conduct observations of satellites at high phase angles which can potentially extend the trackable portion of space in which deep space objects' orbits can be monitored. In this paper we describe the HEOSS SSA experimental data processing system and the preliminary findings of the catalog maintenance experiments

  6. Measuring situation awareness in emergency settings: a systematic review of tools and outcomes

    PubMed Central

    Cooper, Simon; Porter, Joanne; Peach, Linda

    2014-01-01

    Background Nontechnical skills have an impact on health care outcomes and improve patient safety. Situation awareness is core with the view that an understanding of the environment will influence decision-making and performance. This paper reviews and describes indirect and direct measures of situation awareness applicable for emergency settings. Methods Electronic databases and search engines were searched from 1980 to 2010, including CINAHL, Ovid Medline, Pro-Quest, Cochrane, and the search engine, Google Scholar. Access strategies included keyword, author, and journal searches. Publications identified were assessed for relevance, and analyzed and synthesized using Oxford evidence levels and the Critical Appraisal Skills Programme guidelines in order to assess their quality and rigor. Results One hundred and thirteen papers were initially identified, and reduced to 55 following title and abstract review. The final selection included 14 papers drawn from the fields of emergency medicine, intensive care, anesthetics, and surgery. Ten of these discussed four general nontechnical skill measures (including situation awareness) and four incorporated the Situation Awareness Global Assessment Technique. Conclusion A range of direct and indirect techniques for measuring situation awareness is available. In the medical literature, indirect approaches are the most common, with situation awareness measured as part of a nontechnical skills assessment. In simulation-based studies, situation awareness in emergencies tends to be suboptimal, indicating the need for improved training techniques to enhance awareness and improve decision-making. PMID:27147872

  7. Design Concept for Garbage Bin with Situation Awareness Feature

    NASA Astrophysics Data System (ADS)

    Supattatham, Montri; Papasratorn, Borworn

    Many measures to prevent wide-spread of communicable diseases depends on embedded IT into objects found in public places. This makes it possible to have objects with awareness on surrounding environment, or having situation awareness. This paper presents design concept to add situation awareness features to automatic garbage bin. There are three design levels for including situation awareness features with garbage bin. From awareness goals, required features are identified. Perception, comprehension, and projection are then aligned with the required features, in order to have desired awareness. Automatic garbage bin is implemented using design specification from the proposed design concept. Result from convenience sampling survey reveals that users are satisfied with the implemented garbage bin.

  8. Situational awareness in the commercial aircraft cockpit - A cognitive perspective

    NASA Technical Reports Server (NTRS)

    Adams, Marilyn J.; Pew, Richard W.

    1990-01-01

    A cognitive theory is presented that has relevance for the definition and assessment of situational awareness in the cockpit. The theory asserts that maintenance of situation awareness is a constructive process that demands mental resources in competition with ongoing task performance. Implications of this perspective for assessing and improving situational awareness are discussed. It is concluded that the goal of inserting advanced technology into any system is that it results in an increase in the effectiveness, timeliness, and safety with which the system's activities can be accomplished. The inherent difficulties of the multitask situation are very often compounded by the introduction of automation. To maximize situational awareness, the dynamics and capabilities of such technologies must be designed with thorough respect for the dynamics and capabilities of human information-processing.

  9. Situation awareness and virtual globes: Applications for disaster management

    NASA Astrophysics Data System (ADS)

    Tomaszewski, Brian

    2011-01-01

    This paper presents research on the use of virtual globes to support the development of disaster event situation awareness in humans via open source information analysis and visualization. The key technology used for this research is the Context Discovery Application (CDA), which is a geovisual analytic environment designed to integrate implicit geographic information with Google Earth™. A case study of humanitarian disaster management is used to demonstrate the unique abilities of the CDA and Google Earth TM to support situation awareness. The paper provides some of the first empirical evidence on the utility of the virtual globes to support situation awareness for disaster management using implicit geographic information. The evidence presented was derived from evaluations by disaster management practitioners at the United Nations (UN) ReliefWeb project, an extremely relevant, yet difficult group to access for conducting academic disaster management research. Finally, ideas for future research on developing virtual globe applications to support situation awareness are described.

  10. Image processing for flight crew enhanced situation awareness

    NASA Technical Reports Server (NTRS)

    Roberts, Barry

    1993-01-01

    This presentation describes the image processing work that is being performed for the Enhanced Situational Awareness System (ESAS) application. Specifically, the presented work supports the Enhanced Vision System (EVS) component of ESAS.

  11. Situational awareness and its application in the delivery suite.

    PubMed

    Edozien, Leroy C

    2015-01-01

    The delivery suite is a high-risk environment. Transitions between low-risk and high-risk can be swift, and sentinel events can occur without warning. The prevention of accidents in this environment rests on the vigilance of the individual practitioner at the frontline. It is, therefore, important that the individual practitioner should develop and maintain the cognitive skills to anticipate, recognize, and intercept unfolding error chains. This commentary gives an overview of a nontechnical skill that is essential for safe practice in a delivery suite: situational awareness. A basic description of situational awareness is provided, using examples of loss of situational awareness in the delivery suite and examples of simple interventions that could promote situational awareness. Involuntary automaticity readily creeps in during performance of routine tasks, and cognitive overload could deplete attentional resources that are, by nature, limited. Strategies and tactics for maintaining situational awareness include proactively seeking and managing information on unfolding events, continually updating individual and team mental models, mindful use of checklists and scoreboards, and avoidance of attentional blindness. These simple interventions require minimal financial resources but could immensely enhance clinical performance and patient safety. Situational awareness should be included in the training of obstetrician-gynecologists and other staff working in a delivery suite. PMID:25560106

  12. Learning to Fly--The Progressive Development of Situation Awareness

    ERIC Educational Resources Information Center

    Melander, Helen; Sahlstrom, Fritjof

    2009-01-01

    The aim of this article is to argue learning as interaction, and how processes of learning a content as constituted in interaction, can be approached analytically and theoretically. Within aviation, the concept of situation awareness (SA) is used to describe a pilot's capability of correctly perceiving and interpreting a situation, and of…

  13. Objective Situation Awareness Measurement Based on Performance Self-Evaluation

    NASA Technical Reports Server (NTRS)

    DeMaio, Joe

    1998-01-01

    The research was conducted in support of the NASA Safe All-Weather Flight Operations for Rotorcraft (SAFOR) program. The purpose of the work was to investigate the utility of two measurement tools developed by the British Defense Evaluation Research Agency. These tools were a subjective workload assessment scale, the DRA Workload Scale and a situation awareness measurement tool. The situation awareness tool uses a comparison of the crew's self-evaluation of performance against actual performance in order to determine what information the crew attended to during the performance. These two measurement tools were evaluated in the context of a test of innovative approach to alerting the crew by way of a helmet mounted display. The situation assessment data are reported here. The performance self-evaluation metric of situation awareness was found to be highly effective. It was used to evaluate situation awareness on a tank reconnaissance task, a tactical navigation task, and a stylized task used to evaluated handling qualities. Using the self-evaluation metric, it was possible to evaluate situation awareness, without exact knowledge the relevant information in some cases and to identify information to which the crew attended or failed to attend in others.

  14. RPD-based Hypothesis Reasoning for Cyber Situation Awareness

    NASA Astrophysics Data System (ADS)

    Yen, John; McNeese, Michael; Mullen, Tracy; Hall, David; Fan, Xiaocong; Liu, Peng

    Intelligence workers such as analysts, commanders, and soldiers often need a hypothesis reasoning framework to gain improved situation awareness of the highly dynamic cyber space. The development of such a framework requires the integration of interdisciplinary techniques, including supports for distributed cognition (human-in-the-loop hypothesis generation), supports for team collaboration (identification of information for hypothesis evaluation), and supports for resource-constrained information collection (hypotheses competing for information collection resources). We here describe a cognitively-inspired framework that is built upon Klein’s recognition-primed decision model and integrates the three components of Endsley’s situation awareness model. The framework naturally connects the logic world of tools for cyber situation awareness with the mental world of human analysts, enabling the perception, comprehension, and prediction of cyber situations for better prevention, survival, and response to cyber attacks by adapting missions at the operational, tactical, and strategic levels.

  15. Situation models, mental simulations, and abstract concepts in discourse comprehension.

    PubMed

    Zwaan, Rolf A

    2016-08-01

    This article sets out to examine the role of symbolic and sensorimotor representations in discourse comprehension. It starts out with a review of the literature on situation models, showing how mental representations are constrained by linguistic and situational factors. These ideas are then extended to more explicitly include sensorimotor representations. Following Zwaan and Madden (2005), the author argues that sensorimotor and symbolic representations mutually constrain each other in discourse comprehension. These ideas are then developed further to propose two roles for abstract concepts in discourse comprehension. It is argued that they serve as pointers in memory, used (1) cataphorically to integrate upcoming information into a sensorimotor simulation, or (2) anaphorically integrate previously presented information into a sensorimotor simulation. In either case, the sensorimotor representation is a specific instantiation of the abstract concept. PMID:26088667

  16. A Situation Awareness Assistant for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; Platt, Donald

    2013-01-01

    This paper presents the development and testing of a Virtual Camera (VC) system to improve astronaut and mission operations situation awareness while exploring other planetary bodies. In this embodiment, the VC is implemented using a tablet-based computer system to navigate through inter active database application. It is claimed that the advanced interaction media capability of the VC can improve situation awareness as the distribution of hu man space exploration roles change in deep space exploration. The VC is being developed and tested for usability and capability to improve situation awareness. Work completed thus far as well as what is needed to complete the project will be described. Planned testing will also be described.

  17. Situational Awareness Issues in the Implementation of Datalink: Shared Situational Awareness in the Joint Flight Deck-ATC Aviation System

    NASA Technical Reports Server (NTRS)

    Hansman, Robert John, Jr.

    1999-01-01

    MIT has investigated Situational Awareness issues relating to the implementation of Datalink in the Air Traffic Control environment for a number of years under this grant activity. This work has investigated: 1) The Effect of "Party Line" Information. 2) The Effect of Datalink-Enabled Automated Flight Management Systems (FMS) on Flight Crew Situational Awareness. 3) The Effect of Cockpit Display of Traffic Information (CDTI) on Situational Awareness During Close Parallel Approaches. 4) Analysis of Flight Path Management Functions in Current and Future ATM Environments. 5) Human Performance Models in Advanced ATC Automation: Flight Crew and Air Traffic Controllers. 6) CDTI of Datalink-Based Intent Information in Advanced ATC Environments. 7) Shared Situational Awareness between the Flight Deck and ATC in Datalink-Enabled Environments. 8) Analysis of Pilot and Controller Shared SA Requirements & Issues. 9) Development of Robust Scenario Generation and Distributed Simulation Techniques for Flight Deck ATC Simulation. 10) Methods of Testing Situation Awareness Using Testable Response Techniques. The work is detailed in specific technical reports that are listed in the following bibliography, and are attached as an appendix to the master final technical report.

  18. Enhanced Oceanic Situational Awareness for the North Atlantic Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfield, Israel

    2004-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans, impose a limitation of traffic capacity for a given corridor. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. Traffic loading from a specific day are used as a benchmark against which to compare several approaches for coordinating data transmissions from aircraft to the satellites.

  19. INL Control System Situational Awareness Technology Annual Report 2012

    SciTech Connect

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin; Robert Erbes

    2012-10-01

    The overall goal of this project is to develop an interoperable set of tools to provide a comprehensive, consistent implementation of cyber security and overall situational awareness of control and sensor network implementations. The operation and interoperability of these tools will fill voids in current technological offerings and address issues that remain an impediment to the security of control systems. This report provides an FY 2012 update on the Sophia, Mesh Mapper, Intelligent Cyber Sensor, and Data Fusion projects with respect to the year-two tasks and annual reporting requirements of the INL Control System Situational Awareness Technology report (July 2010).

  20. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. J.; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1992-01-01

    An overview of the Advanced Cockpit Simulation Facility at the Massachusetts Institute of Technology is presented. Though detailed results depend on the specific application, graphical presentation of flight control and alert information has generally been found to be effective for situational awareness and subjectively selected by flight crews. Graphical display is most effective when it is consistent with the pilots cognitive map of the process being displayed or of the situation.

  1. Modeling situated abstraction : action coalescence via multidimensional coherence.

    SciTech Connect

    Sallach, D. L.; Decision and Information Sciences; Univ. of Chicago

    2007-01-01

    Situated social agents weigh dozens of priorities, each with its own complexities. Domains of interest are intertwined, and progress in one area either complements or conflicts with other priorities. Interpretive agents address these complexities through: (1) integrating cognitive complexities through the use of radial concepts, (2) recognizing the role of emotion in prioritizing alternatives and urgencies, (3) using Miller-range constraints to avoid oversimplified notions omniscience, and (4) constraining actions to 'moves' in multiple prototype games. Situated agent orientations are dynamically grounded in pragmatic considerations as well as intertwined with internal and external priorities. HokiPoki is a situated abstraction designed to shape and focus strategic agent orientations. The design integrates four pragmatic pairs: (1) problem and solution, (2) dependence and power, (3) constraint and affordance, and (4) (agent) intent and effect. In this way, agents are empowered to address multiple facets of a situation in an exploratory, or even arbitrary, order. HokiPoki is open to the internal orientation of the agent as it evolves, but also to the communications and actions of other agents.

  2. On-line situation awareness and knowledge acquisition

    NASA Astrophysics Data System (ADS)

    Burge, Janet; Gonsalves, Paul; Call, Catherine

    2005-05-01

    In dynamic environments (e.g. an Air Operations Center (AOC)), effective decision-making is highly dependent on situation awareness (SA). SA is formally defined as a person's "perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future". Belief networks (BNs) are an ideal tool for modeling and meeting the requirements of tactical situation awareness. BNs emulate a skilled human's information fusion and reasoning process in a multi-task environment in the presence of uncertainty. While belief networks offer significant advantages for SA, a key drawback to their use is the daunting issue of how the requisite knowledge is captured or elicited to both build the network and populate the Conditional Probability Tables (CPTs). To address this issue, we have built the Situation Awareness and Knowledge Acquisition (OSAKA) system. This system consists of two parts: development of a library of BN components that can be combined to describe different air operation situations and enhancing our BNet:Buildertoolkit to learn CPT values for these components based on data obtained from running an external simulation. This allows the initial CPT values obtained from our Subject Matter Expert to be tuned based on what actually happens. The ability to tune the network over time can aid in supplying information not initially available when constructing the network and to help ensure that it continues to provide current, useful, information.

  3. Coordinated machine learning and decision support for situation awareness.

    PubMed

    Brannon, N G; Seiffertt, J E; Draelos, T J; Wunsch, D C

    2009-04-01

    Domains such as force protection require an effective decision maker to maintain a high level of situation awareness. A system that combines humans with neural networks is a desirable approach. Furthermore, it is advantageous for the calculation engine to operate in three learning modes: supervised for initial training and known updating, reinforcement for online operational improvement, and unsupervised in the absence of all external signaling. An Adaptive Resonance Theory based architecture capable of seamlessly switching among the three types of learning is discussed that can be used to help optimize the decision making of a human operator in such a scenario. This is followed by a situation assessment module. PMID:19395234

  4. Oceanic Situational Awareness Over the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Gulf of Mexico. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the Gulf of Mexico to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  5. Uncertainty and Risk Management in Cyber Situational Awareness

    NASA Astrophysics Data System (ADS)

    Li, Jason; Ou, Xinming; Rajagopalan, Raj

    Handling cyber threats unavoidably needs to deal with both uncertain and imprecise information. What we can observe as potential malicious activities can seldom give us 100% confidence on important questions we care about, e.g. what machines are compromised and what damage has been incurred. In security planning, we need information on how likely a vulnerability can lead to a successful compromise to better balance security and functionality, performance, and ease of use. These information are at best qualitative and are often vague and imprecise. In cyber situational awareness, we have to rely on such imperfect information to detect real attacks and to prevent an attack from happening through appropriate risk management. This chapter surveys existing technologies in handling uncertainty and risk management in cyber situational awareness.

  6. Increasing situation awareness of the CBRNE robot operators

    NASA Astrophysics Data System (ADS)

    Jasiobedzki, Piotr; Ng, Ho-Kong; Bondy, Michel; McDiarmid, Carl H.

    2010-04-01

    Situational awareness of CBRN robot operators is quite limited, as they rely on images and measurements from on-board detectors. This paper describes a novel framework that enables a uniform and intuitive access to live and recent data via 2D and 3D representations of visited sites. These representations are created automatically and augmented with images, models and CBRNE measurements. This framework has been developed for CBRNE Crime Scene Modeler (C2SM), a mobile CBRNE mapping system. The system creates representations (2D floor plans and 3D photorealistic models) of the visited sites, which are then automatically augmented with CBRNE detector measurements. The data stored in a database is accessed using a variety of user interfaces providing different perspectives and increasing operators' situational awareness.

  7. Loss of Situation Awareness in Pilots: Analysis of Incident Reports

    NASA Technical Reports Server (NTRS)

    Villeda, Eric B.

    1996-01-01

    Introduction Approximately 75% of all aviation accidents and incidents are attributable to human failures in monitoring, managing, and operating system. Tactical decision errors were found to be a factor in 25 of 37 major US air transport accidents between 1978 and 1990. These two facts demonstrate the inability of some pilots to maintain situation awareness. Situation awareness (SA) is defined as 'the perception of elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future". Thus, when a pilot loses SA, he or she is unable to ether perceive, comprehend, or project the status of the aircraft. In pilots terms, he or she has 'fallen behind the airplane'. Our study this summer involved an analysis of 190 NASA Aviation Safety Reporting System (ASRS) reports.

  8. Oceanic Situational Awareness Over the Western Atlantic Track Routing System

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfeld, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the Western Atlantic Track Routing System (WATRS). The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the WATRS corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  9. Oceanic Situational Awareness over the North Atlantic Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfield, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the oceanic domain. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the North Atlantic Corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  10. Stay Alive--Simulation for Situational Safety Awareness

    NASA Technical Reports Server (NTRS)

    Ruder, Michelle

    2008-01-01

    STAY ALIVE is an idea for a safety awareness simulation prototype, powered by gaming technology, that would make safety training enlightening, engaging and fun. Recalling initial instructions and using situational awareness principles, participants would escape a fire by choosing the appropriate door. Escape times would be measured while stressors increased. This presentation describes how STAY ALIVE utilizes first person point of view (PoV), a generic scenario, immersion- and presence-enhancing design, and ease of distribution to provide more people opportunity to realize, review, analyze and practice effective awareness behaviors. The goals for this prototype include facilitating interest in first-person PoV safety training and eliciting further suggestions on prevention technologies.

  11. Improving Situational Awareness for First Responders via Mobile Computing

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles

    2005-01-01

    This project looks to improve first responder situational awareness using tools and techniques of mobile computing. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802.11 network. Responders can also wirelessly share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of a particular emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercise at NASA Ames.

  12. Improving Situational Awareness for First Responders via Mobile Computing

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Mah, Robert W.; Papasin, Richard; Del Mundo, Rommel; McIntosh, Dawn M.; Jorgensen, Charles

    2006-01-01

    This project looks to improve first responder incident command, and an appropriately managed flow of situational awareness using mobile computing techniques. The prototype system combines wireless communication, real-time location determination, digital imaging, and three-dimensional graphics. Responder locations are tracked in an outdoor environment via GPS and uploaded to a central server via GPRS or an 802. II network. Responders can also wireless share digital images and text reports, both with other responders and with the incident commander. A pre-built three dimensional graphics model of the emergency scene is used to visualize responder and report locations. Responders have a choice of information end points, ranging from programmable cellular phones to tablet computers. The system also employs location-aware computing to make responders aware of particular hazards as they approach them. The prototype was developed in conjunction with the NASA Ames Disaster Assistance and Rescue Team and has undergone field testing during responder exercises at NASA Ames.

  13. Optical modeling in Testbed Environment for Space Situational Awareness (TESSA).

    PubMed

    Nikolaev, Sergei

    2011-08-01

    We describe optical systems modeling in the Testbed Environment for Space Situational Awareness (TESSA) simulator. We begin by presenting a brief outline of the overall TESSA architecture and focus on components for modeling optical sensors. Both image generation and image processing stages are described in detail, highlighting the differences in modeling ground- and space-based sensors. We conclude by outlining the applicability domains for the TESSA simulator, including potential real-life scenarios. PMID:21833092

  14. Public health situation awareness: toward a semantic approach

    NASA Astrophysics Data System (ADS)

    Mirhaji, Parsa; Richesson, Rachel L.; Turley, James P.; Zhang, Jiajie; Smith, Jack W.

    2004-04-01

    We propose a knowledge-based public health situation awareness system. The basis for this system is an explicit representation of public health situation awareness concepts and their interrelationships. This representation is based upon the users" (public health decision makers) cognitive model of the world, and optimized towards the efficacy of performance and relevance to the public health situation awareness processes and tasks. In our approach, explicit domain knowledge is the foundation for interpretation of public health data, as apposed to conventional systems where the statistical methods are the essence of the processes. Objectives: To develop a prototype knowledge-based system for public health situation awareness and to demonstrate the utility of knowledge intensive approaches in integration of heterogeneous information, eliminating the effects of incomplete and poor quality surveillance data, uncertainty in syndrome and aberration detection and visualization of complex information structures in public health surveillance settings, particularly in the context of bioterrorism (BT) preparedness. The system employs the Resource Definition Framework (RDF) and additional layers of more expressive languages to explicate the knowledge of domain experts into machine interpretable and computable problem-solving modules that can then guide users and computer systems in sifting through the most "relevant" data for syndrome and outbreak detection and investigation of root cause of the event. The Center for Biosecurity and Public Health Informatics Research is developing a prototype knowledge-based system around influenza, which has complex natural disease patterns, many public health implications, and is a potential agent for bioterrorism. The preliminary data from this effort may demonstrate superior performance in information integration, syndrome and aberration detection, information access through information visualization, and cross-domain investigation of the

  15. Evaluation of a Computational Model of Situational Awareness

    NASA Technical Reports Server (NTRS)

    Burdick, Mark D.; Shively, R. Jay; Rutkewski, Michael (Technical Monitor)

    2000-01-01

    Although the use of the psychological construct of situational awareness (SA) assists researchers in creating a flight environment that is safer and more predictable, its true potential remains untapped until a valid means of predicting SA a priori becomes available. Previous work proposed a computational model of SA (CSA) that sought to Fill that void. The current line of research is aimed at validating that model. The results show that the model accurately predicted SA in a piloted simulation.

  16. Integrated situational awareness for cyber attack detection, analysis, and mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, Yi; Sagduyu, Yalin; Deng, Julia; Li, Jason; Liu, Peng

    2012-06-01

    Real-time cyberspace situational awareness is critical for securing and protecting today's enterprise networks from various cyber threats. When a security incident occurs, network administrators and security analysts need to know what exactly has happened in the network, why it happened, and what actions or countermeasures should be taken to quickly mitigate the potential impacts. In this paper, we propose an integrated cyberspace situational awareness system for efficient cyber attack detection, analysis and mitigation in large-scale enterprise networks. Essentially, a cyberspace common operational picture will be developed, which is a multi-layer graphical model and can efficiently capture and represent the statuses, relationships, and interdependencies of various entities and elements within and among different levels of a network. Once shared among authorized users, this cyberspace common operational picture can provide an integrated view of the logical, physical, and cyber domains, and a unique visualization of disparate data sets to support decision makers. In addition, advanced analyses, such as Bayesian Network analysis, will be explored to address the information uncertainty, dynamic and complex cyber attack detection, and optimal impact mitigation issues. All the developed technologies will be further integrated into an automatic software toolkit to achieve near real-time cyberspace situational awareness and impact mitigation in large-scale computer networks.

  17. Situational Awareness in Mass Emergency: A Behavioral and Linguistic Analysis of Microblogged Communications

    ERIC Educational Resources Information Center

    Vieweg, Sarah Elizabeth

    2012-01-01

    In times of mass emergency, users of Twitter (a popular microblogging service) often communicate information about the event, some of which contributes to situational awareness. Situational awareness refers to a state of understanding the "big picture" in time- and safety-critical situations. The more situational awareness people have,…

  18. Operationally Responsive Space Launch for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The

  19. Context-Aware Intelligent Assistant Approach to Improving Pilot's Situational Awareness

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2004-01-01

    Faulty decision making due to inaccurate or incomplete awareness of the situation tends to be the prevailing cause of fatal general aviation accidents. Of these accidents, loss of weather situational awareness accounts for the largest number of fatalities. We describe a method for improving weather situational awareness through the support of a contextaware,domain and task knowledgeable, personalized and adaptive assistant. The assistant automatically monitors weather reports for the pilot's route of flight and warns her of detected anomalies. When and how warnings are issued is determined by phase of flight, the pilot s definition of acceptable weather conditions, and the pilot's preferences for automatic notification. In addition to automatic warnings, the pilot is able to verbally query for weather and airport information. By noting the requests she makes during the approach phase of flight, our system learns to provide the information without explicit requests on subsequent flights with similar conditions. We show that our weather assistant decreases the effort required to maintain situational awareness by more than 5.5 times when compared to the conventional method of in-flight weather briefings.

  20. Improved Conjunction Analysis via Collaborative Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Kelso, T. S.; Vallado, D.; Chan, J.; Buckwalter, B.

    2009-03-01

    Satellite operators are becoming increasingly aware of the threat of on-orbit collisions—between satellites or with orbital debris. Successful conjunction monitoring and collision avoidance activities require accurate orbital information for as many space objects as possible. Current sources of orbital data are of low fidelity, as a result of how those data are generated, and are of limited value to conjunction analysis. However, satellite operators have much better data for their own satellites. When that data is shared among operators, overall space situational awareness can be significantly improved. This paper will demonstrate the potential improvements and discuss an operational implementation— SOCRATES-GEO—which uses operator data to improve conjunction monitoring.

  1. Performance-based and physiological measures of situational awareness.

    PubMed

    Vidulich, M A; Stratton, M; Crabtree, M; Wilson, G

    1994-05-01

    Several situational awareness (SA) and workload measurement techniques were investigated in simulated air-to-ground missions. These techniques included measures of effectiveness, subjective ratings, performance measures, and physiological measures. The results demonstrated strengths and weaknesses in all of these techniques. Measures of effectiveness and subjective ratings suggested that the experimental manipulations were effective in altering SA. The performance measures produced mixed results. Physiological measures detected some intriguing effects in the EEG. Overall, the complexity of the relationship between SA and workload encourages the use of multiple tools in any SA evaluation. PMID:8018083

  2. Near Real Time Applications for Maritime Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schwarz, E.; Krause, D.; Berg, M.; Daedelow, H.; Maass, H.

    2015-04-01

    Applications to derive maritime value added products like oil spill and ship detection based on remote sensing SAR image data are being developed and integrated at the Ground Station Neustrelitz, part of the German Remote Sensing Data Center. Products of meteo-marine parameters like wind and wave will complement the product portfolio. Research and development aim at the implementation of highly automated services for operational use. SAR images are being used because of the possibility to provide maritime products with high spatial resolution over wide swaths and under all weather conditions. In combination with other information like Automatic Identification System (AIS) data fusion products are available to support the Maritime Situational Awareness.

  3. Audio-Visual Situational Awareness for General Aviation Pilots

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Weather is one of the major causes of general aviation accidents. Researchers are addressing this problem from various perspectives including improving meteorological forecasting techniques, collecting additional weather data automatically via on-board sensors and "flight" modems, and improving weather data dissemination and presentation. We approach the problem from the improved presentation perspective and propose weather visualization and interaction methods tailored for general aviation pilots. Our system, Aviation Weather Data Visualization Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.

  4. INL Control System Situational Awareness Technology Final Report 2013

    SciTech Connect

    Gordon Rueff; Bryce Wheeler; Todd Vollmer; Tim McJunkin

    2013-01-01

    The Situational Awareness project is a comprehensive undertaking of Idaho National Laboratory (INL) in an effort to produce technologies capable of defending the country’s energy sector infrastructure from cyber attack. INL has addressed this challenge through research and development of an interoperable suite of tools that safeguard critical energy sector infrastructure. The technologies in this project include the Sophia Tool, Mesh Mapper (MM) Tool, Intelligent Cyber Sensor (ICS) Tool, and Data Fusion Tool (DFT). Each is designed to function effectively on its own, or they can be integrated in a variety of customized configurations based on the end user’s risk profile and security needs.

  5. Prototyping of a Situation Awareness System in the Maritime Surveillance

    NASA Astrophysics Data System (ADS)

    Handayani, D. O. D.; Sediono, W.; Shah, A.

    2013-12-01

    This paper discusses about the design of a Situation Awareness (SA) system to support vessel crews and control room operators in improving the decision making process. The architecture of the system is ontology based. The vessel crews and control room operators may face a loss of SA. They may have limited cognitive abilities which make it difficult to make a decision in a high stress level, short time availability and continuously evolving situation with incomplete information. In this work, we describe the application of Semantic Web Rule Language to represent corresponding knowledge in the maritime surveillance domain. The result of this research will demonstrate that an ontology based system can be used to remodel the information into a meaningful and valuable form to predict the future states of SA and improve the decision making process.

  6. Cross-Layer Damage Assessment for Cyber Situational Awareness

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Jia, Xiaoqi; Zhang, Shengzhi; Xiong, Xi; Jhi, Yoon-Chan; Bai, Kun; Li, Jason

    Damage assessment plays a very important role in securing enterprise networks and systems. Gaining good awareness about the effects and impact of cyber attack actions would enable security officers to make the right cyber defense decisions and take the right cyber defense actions. A good number of damage assessment techniques have been proposed in the literature, but they typically focus on a single abstraction level (of the software system in concern). As a result, existing damage assessment techniques and tools are still very limited in satisfying the needs of comprehensive damage assessment which should not result in any “blind spots”.

  7. Modeling Learner Situation Awareness in Collaborative Mobile Web 2.0 Learning

    ERIC Educational Resources Information Center

    Norman, Helmi; Nordin, Norazah; Din, Rosseni; Ally, Mohamed

    2016-01-01

    The concept of situation awareness is essential in enhancing collaborative learning. Learners require information from different awareness aspects to deduce a learning situation for decision-making. Designing learning environments that assist learners to understand situation awareness via monitoring actions and reaction of other learners has been…

  8. Tools for assessing situational awareness in an operational fighter environment.

    PubMed

    Waag, W L; Houck, M R

    1994-05-01

    Three Situational Awareness Rating Scales (SARS) were developed to measure pilot performance in an operational fighter environment. These instruments rated situational awareness (SA) from three perspectives: supervisors, peers, and self-report. SARS data were gathered from 205 mission-ready USAF F-15C pilots from 8 operational squadrons. Reliabilities of the SARS were quite high, as measured by their internal consistency (0.95 to 0.99) and inter-rater agreement (0.88 to 0.97). Correlations between the supervisory and peer SARS were strongly positive (0.89 to 0.92), while correlations with the self-report SARS were positive, but smaller (0.45 to 0.57). A composite SA score was developed from the supervisory and peer SARS using a principal components analysis. The resulting score was found to be highly related to previous flight experience and current flight qualification. A prediction equation derived from available background and experience factors accounted for 73% of its variance. Implications for use of the composite SA score as a criterion measure are discussed. PMID:8018073

  9. Cyber situation awareness as distributed socio-cognitive work

    NASA Astrophysics Data System (ADS)

    Tyworth, Michael; Giacobe, Nicklaus A.; Mancuso, Vincent

    2012-06-01

    A key challenge for human cybersecurity operators is to develop an understanding of what is happening within, and to, their network. This understanding, or situation awareness, provides the cognitive basis for human operators to take action within their environments. Yet developing situation awareness of cyberspace (cyber-SA) is understood to be extremely difficult given the scope of the operating environment, the highly dynamic nature of the environment and the absence of physical constraints that serve to bound the cognitive task23. As a result, human cybersecurity operators are often "flying blind" regarding understanding the source, nature, and likely impact of malicious activity on their networked assets. In recent years, many scholars have dedicated their attention to finding ways to improve cyber-SA in human operators. In this paper we present our findings from our ongoing research of how cybersecurity analysts develop and maintain cyber-SA. Drawing from over twenty interviews of analysts working in the military, government, industrial, and educational domains, we find that cyber-SA to be distributed across human operators and technological artifacts operating in different functional areas.

  10. Ego-location and situational awareness in semistructured environments

    NASA Astrophysics Data System (ADS)

    Goodsell, Thomas G.; Snorrason, Magnus S.; Stevens, Mark R.; Stube, Brian; McBride, Jonah

    2003-09-01

    The success of any potential application for mobile robots depends largely on the specific environment where the application takes place. Practical applications are rarely found in highly structured environments, but unstructured environments (such as natural terrain) pose major challenges to any mobile robot. We believe that semi-structured environments-such as parking lots-provide a good opportunity for successful mobile robot applications. Parking lots tend to be flat and smooth, and cars can be uniquely identified by their license plates. Our scenario is a parking lot where only known vehicles are supposed to park. The robot looks for vehicles that do not belong in the parking lot. It checks both license plates and vehicle types, in case the plate is stolen from an approved vehicle. It operates autonomously, but reports back to a guard who verifies its performance. Our interest is in developing the robot's vision system, which we call Scene Estimation & Situational Awareness Mapping Engine (SESAME). In this paper, we present initial results from the development of two SESAME subsystems, the ego-location and license plate detection systems. While their ultimate goals are obviously quite different, our design demonstrates that by sharing intermediate results, both tasks can be significantly simplified. The inspiration for this design approach comes from the basic tenets of Situational Awareness (SA), where the benefits of holistic perception are clearly demonstrated over the more typical designs that attempt to solve each sensing/perception problem in isolation.

  11. Sensor and information fusion for improved hostile fire situational awareness

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.; Ludwig, William D.

    2010-04-01

    A research-oriented Army Technology Objective (ATO) named Sensor and Information Fusion for Improved Hostile Fire Situational Awareness uniquely focuses on the underpinning technologies to detect and defeat any hostile threat; before, during, and after its occurrence. This is a joint effort led by the Army Research Laboratory, with the Armaments and the Communications and Electronics Research, Development, and Engineering Centers (CERDEC and ARDEC) partners. It addresses distributed sensor fusion and collaborative situational awareness enhancements, focusing on the underpinning technologies to detect/identify potential hostile shooters prior to firing a shot and to detect/classify/locate the firing point of hostile small arms, mortars, rockets, RPGs, and missiles after the first shot. A field experiment conducted addressed not only diverse modality sensor performance and sensor fusion benefits, but gathered useful data to develop and demonstrate the ad hoc networking and dissemination of relevant data and actionable intelligence. Represented at this field experiment were various sensor platforms such as UGS, soldier-worn, manned ground vehicles, UGVs, UAVs, and helicopters. This ATO continues to evaluate applicable technologies to include retro-reflection, UV, IR, visible, glint, LADAR, radar, acoustic, seismic, E-field, narrow-band emission and image processing techniques to detect the threats with very high confidence. Networked fusion of multi-modal data will reduce false alarms and improve actionable intelligence by distributing grid coordinates, detection report features, and imagery of threats.

  12. The "Support to Precursor Space Situational Awareness Services" (SPA) Project

    NASA Astrophysics Data System (ADS)

    Valero, J. L.; Albani, S.; Gallardo, B.; Matute, J.; O'Dwyer, A.

    2012-01-01

    Space activities are increasingly important in areas such as environment, science, navigation and security. Space Situational Awareness (SSA) refers to the knowledge of location and function of space objects and the space environment. The development of an SSA capability will allow the European Union (EU) and its Member States to better use space, strengthening their security and economy. The "Support to Precursor space situational Awareness services" (SPA) project is an FP7 Support Action managed by the European Union Satellite Centre (EUSC) under the full control of EU Member States and implemented with the collaboration of SSA Key Stakeholders. SPA is studying possible SSA Governance and Data Policy models in the EUSC secure environment by experimenting with a number of SSA preliminary services relevant to civilian security and to the Common Foreign and Security Policy (CFSP) such as Satellite Over-flight, Satellite Conjunction Warning and Space Re-entry Prediction. The final output of the SPA project will be a report providing recommendations for further development of SSA in Europe, particularly on the technical aspects of its Governance and Data Policy.

  13. Refractive Turbulence, Transient Propagation Disturbances, and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Cote, O.; Wroblewski, D.; Hacker, J.

    This paper examines the proposition that mission limiting space situational awareness (SSA) has important and fundamental turbulence and propagation physics issues to be investigated. We propose to call these aspects, propagation situational awareness (PSA). Transient disturbances can be present in communication to and from ground stations and satellites and in the performance of ground based and space based optical and infra-red imaging and tracking systems. Propagation frequency is important in characterizing whether the source of the disturbance lay in the electron density fluctuations of ionosphere or the refractive turbulence of the neutral atmosphere. Over the past ten years high altitude airborne measurements of clear air and refractive turbulence were made in Australia to support design and performance evaluations of the Airborne Laser. More recently in collaboration with the Australian Defence Science & Technology Organization (DSTO) smaller aircraft were used to investigate the effect of ducting layers on the signal strength of an airborne emitter as a low cost simulation of potential for loss of track in the coverage pattern of an airborne radar. From 2002 onward we were also tasked to do fundamental investigations of clear air turbulence for flight safety evaluations of both manned and unmanned high altitude surveillance aircraft. These investigations covered a wide spread in frequency, from infra-red to microwave. Most of these investigations were confined to measurement days and altitudes where strong turbulence was expected. The decision to measure was based on predictions of the location of jet streams relative to the measurement area as well as bulk gradient Richardson (Ri) vertical profiles derived from radio sound measurements from stations surround the potential measurement location. We will show how all these analyses and decision aids, including the Ri profiles, can be used to estimate potential for propagation disturbances to SSA. Current DOD

  14. A Simulation and Modeling Framework for Space Situational Awareness

    SciTech Connect

    Olivier, S S

    2008-09-15

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.

  15. On detection and visualization techniques for cyber security situation awareness

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Wei, Shixiao; Shen, Dan; Blowers, Misty; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe; Zhang, Hanlin; Lu, Chao

    2013-05-01

    Networking technologies are exponentially increasing to meet worldwide communication requirements. The rapid growth of network technologies and perversity of communications pose serious security issues. In this paper, we aim to developing an integrated network defense system with situation awareness capabilities to present the useful information for human analysts. In particular, we implement a prototypical system that includes both the distributed passive and active network sensors and traffic visualization features, such as 1D, 2D and 3D based network traffic displays. To effectively detect attacks, we also implement algorithms to transform real-world data of IP addresses into images and study the pattern of attacks and use both the discrete wavelet transform (DWT) based scheme and the statistical based scheme to detect attacks. Through an extensive simulation study, our data validate the effectiveness of our implemented defense system.

  16. Audio-visual situational awareness for general aviation pilots

    NASA Astrophysics Data System (ADS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2003-05-01

    Weather is one of the major causes of general aviation accidents. One possible cause is that the pilot may not absorb and retain all the weather information she is required to review prior to flight. A second cause is the inadequacy of in-flight weather updates: pilots are limited to verbal updates via aircraft radio contact with a ground-based weather specialist. We propose weather visualization and interaction methods tailored for general aviation pilots to improve understanding of pre-flight weather data and improve in-flight weather updates. Our system, Aviation Weather Environment (AWE), utilizes information visualization techniques, a direct manipulation graphical interface, and a speech-based interface to improve a pilot's situational awareness of relevant weather data. The system design is based on a user study and feedback from pilots.

  17. Data quality for situational awareness during mass-casualty events.

    PubMed

    Demchak, Barry; Griswold, William G; Lenert, Leslie A

    2007-01-01

    Incident Command systems often achieve situational awareness through manual paper-tracking systems. Such systems often produce high latencies and in-complete data, resulting in inefficient and ineffective resource deployment. WIISARD (Wireless Internet Information System for Medical Response in Disasters) collects much more data than a paper-based system, dramatically reducing latency while increasing the kinds and quality of information available to incident commanders. Yet, the introduction of IT into a disaster setting is not problem-free. Notably, system component failures can delay the delivery of data. The type and extent of a failure can have varying effects on the usefulness of information displays. We describe a small, coherent set of customizble information overlays to address this problem, and we discuss reactions to these displays by medical commanders. PMID:18693821

  18. Using Visual Analytics to Maintain Situation Awareness in Astrophysics

    SciTech Connect

    Aragon, Cecilia R.; Poon, Sarah S.; Aldering, Gregory S.; Thomas, Rollin C.; Quimby, Robert

    2008-07-01

    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists needing to analyze heterogeneous, complex data under time pressure, and then make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes severalnovel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in use for over eighteen months by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture, and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley?s three levels of situation awareness.

  19. Surveillance systems integrating multiple sensors for enhanced situational awareness

    NASA Astrophysics Data System (ADS)

    Van Anda, J. B.; Van Anda, J. D.

    2005-05-01

    In the modern world of high value security systems a successful installation requires the sensors to produce more than just good IR images, preprocessed data from these images, imagery in multiple bands fused in intelligent ways with each other and with non imaging information such as Laser ranging is required. This paper describes a system where LW uncooled, color TV, low light level TV, and laser ranging information are fused in a integral Pan and Tilt system to provide a sensor suite with exceptional capabilities for seamlessly integration into an advanced security system. Advances integrated in this system includes the advances sensor suite, sensible symbology for situational awareness in case of operator intervention, parallax and focus tracking through zoom and sensor changes to enhance auto tracking and motion detection algorithms.

  20. High Performance Computing Software Applications for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Giuliano, C.; Schumacher, P.; Matson, C.; Chun, F.; Duncan, B.; Borelli, K.; Desonia, R.; Gusciora, G.; Roe, K.

    The High Performance Computing Software Applications Institute for Space Situational Awareness (HSAI-SSA) has completed its first full year of applications development. The emphasis of our work in this first year was in improving space surveillance sensor models and image enhancement software. These applications are the Space Surveillance Network Analysis Model (SSNAM), the Air Force Space Fence simulation (SimFence), and physically constrained iterative de-convolution (PCID) image enhancement software tool. Specifically, we have demonstrated order of magnitude speed-up in those codes running on the latest Cray XD-1 Linux supercomputer (Hoku) at the Maui High Performance Computing Center. The software applications improvements that HSAI-SSA has made, has had significant impact to the warfighter and has fundamentally changed the role of high performance computing in SSA.

  1. Cloud-based space situational awareness: initial design and evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2013-05-01

    The need for a global collaborating space situational awareness (SSA) network, including radars, optical and other sensors for communication and surveillance, has become a top priority for most countries who own or operate man-made space-crafts. Such a SSA system requires vast storage, powerful computing capacity and the ability to serve hundreds of thousands of users to access the same database. These requirements make traditional distributed networking system insufficient. Cloud computing, which features scalable and elastic storage and computing services, has been recognized as an ideal candidate that can meet the challenges of SSA systems' requirements. In this paper, we propose a Cloud-based information fusion system for SSA and examine a prototype that serves space tracking algorithms. We discuss the benefits of using Cloud Computing as an alternative for data processing and storage and explore details of Cloud implementation for a representative SSA system environment.

  2. The use of configural displays to promote pilot situation awareness

    NASA Astrophysics Data System (ADS)

    Jenkins, Joseph C.; Gallimore, Jennie J.

    2007-04-01

    Previous research has shown that the use of configural displays allows people to more easily detect changes in dynamic processes for integration tasks thereby enhancing operator performance, yet the benefit of configural displays on operator situation awareness (SA) has yet to be assessed. To test whether or not the use of configural displays impacts the formation of pilot SA, a computer-based study was undertaken using two presentation rates (500ms and 1000ms) and three configural display formats (Mil-Std-1787 HUD, Dual-articulated (DA) HUD, and the Arc Segment Attitude Reference (ASAR)) to present aircraft flight reference information to pilots. One of five questions were possible following the removal of the display from the screen, a query about aircraft airspeed, altitude, flight path angle (climb or dive) or bank angle. The aim of the study was to demonstrate the ability to provide an increase in operator SA by utilizing emergent features in configural displays to increase cue saliency and thereby increase operator SA. The analysis of pilots' recall of aircraft flight path angle (percent correct) showed that pilots were significantly more aware of aircraft attitude with the ASAR than with either the MIL-STD 1787 or DA HUD formats. There was no difference among displays for recall of actual flight path angle (RMS error). The results are discussed in terms of the use of configural displays as a design approach in representing task goals to facilitate operator SA.

  3. Enhanced situational awareness in the maritime domain: an agent-based approach for situation management

    NASA Astrophysics Data System (ADS)

    Brax, Christoffer; Niklasson, Lars

    2009-05-01

    Maritime Domain Awareness is important for both civilian and military applications. An important part of MDA is detection of unusual vessel activities such as piracy, smuggling, poaching, collisions, etc. Today's interconnected sensorsystems provide us with huge amounts of information over large geographical areas which can make the operators reach their cognitive capacity and start to miss important events. We propose and agent-based situation management system that automatically analyse sensor information to detect unusual activity and anomalies. The system combines knowledge-based detection with data-driven anomaly detection. The system is evaluated using information from both radar and AIS sensors.

  4. Situational Changes in Self-Awareness Influence 3- and 4-Year-Olds' Self-Regulation

    ERIC Educational Resources Information Center

    Ross, J.; Anderson, J. R.; Campbell, R. N.

    2011-01-01

    In adults, heightened self-awareness leads to adherence to socially valued norms, whereas lowered self-awareness is associated with antinormative behavior. Levels of self-awareness are influenced by environmental cues such as mirrors. Do situational changes in self-awareness also have an impact on preschoolers' self-regulation? Adherence to a…

  5. Space Situational Awareness Data Processing Scalability Utilizing Google Cloud Services

    NASA Astrophysics Data System (ADS)

    Greenly, D.; Duncan, M.; Wysack, J.; Flores, F.

    Space Situational Awareness (SSA) is a fundamental and critical component of current space operations. The term SSA encompasses the awareness, understanding and predictability of all objects in space. As the population of orbital space objects and debris increases, the number of collision avoidance maneuvers grows and prompts the need for accurate and timely process measures. The SSA mission continually evolves to near real-time assessment and analysis demanding the need for higher processing capabilities. By conventional methods, meeting these demands requires the integration of new hardware to keep pace with the growing complexity of maneuver planning algorithms. SpaceNav has implemented a highly scalable architecture that will track satellites and debris by utilizing powerful virtual machines on the Google Cloud Platform. SpaceNav algorithms for processing CDMs outpace conventional means. A robust processing environment for tracking data, collision avoidance maneuvers and various other aspects of SSA can be created and deleted on demand. Migrating SpaceNav tools and algorithms into the Google Cloud Platform will be discussed and the trials and tribulations involved. Information will be shared on how and why certain cloud products were used as well as integration techniques that were implemented. Key items to be presented are: 1.Scientific algorithms and SpaceNav tools integrated into a scalable architecture a) Maneuver Planning b) Parallel Processing c) Monte Carlo Simulations d) Optimization Algorithms e) SW Application Development/Integration into the Google Cloud Platform 2. Compute Engine Processing a) Application Engine Automated Processing b) Performance testing and Performance Scalability c) Cloud MySQL databases and Database Scalability d) Cloud Data Storage e) Redundancy and Availability

  6. CubeSat Integration into the Space Situational Awareness Architecture

    NASA Astrophysics Data System (ADS)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of

  7. Improving land vehicle situational awareness using a distributed aperture system

    NASA Astrophysics Data System (ADS)

    Fortin, Jean; Bias, Jason; Wells, Ashley; Riddle, Larry; van der Wal, Gooitzen; Piacentino, Mike; Mandelbaum, Robert

    2005-05-01

    U.S. Army Research, Development, and Engineering Command (RDECOM) Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (NVESD) has performed early work to develop a Distributed Aperture System (DAS). The DAS aims at improving the situational awareness of armored fighting vehicle crews under closed-hatch conditions. The concept is based on a plurality of sensors configured to create a day and night dome of surveillance coupled with heads up displays slaved to the operator's head to give a "glass turret" feel. State-of-the-art image processing is used to produce multiple seamless hemispherical views simultaneously available to the vehicle commander, crew members and dismounting infantry. On-the-move automatic cueing of multiple moving/pop-up low silhouette threats is also done with the possibility to save/revisit/share past events. As a first step in this development program, a contract was awarded to United Defense to further develop the Eagle VisionTM system. The second-generation prototype features two camera heads, each comprising four high-resolution (2048x1536) color sensors, and each covering a field of view of 270°hx150°v. High-bandwidth digital links interface the camera heads with a field programmable gate array (FPGA) based custom processor developed by Sarnoff Corporation. The processor computes the hemispherical stitch and warp functions required for real-time, low latency, immersive viewing (360°hx120°v, 30° down) and generates up to six simultaneous extended graphics array (XGA) video outputs for independent display either on a helmet-mounted display (with associated head tracking device) or a flat panel display (and joystick). The prototype is currently in its last stage of development and will be integrated on a vehicle for user evaluation and testing. Near-term improvements include the replacement of the color camera heads with a pixel-level fused combination of

  8. Improved Conjunction Analysis via Collaborative Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Kelso, T.; Vallado, D.; Chan, J.; Buckwalter, B.

    With recent events such as the Chinese ASAT test in 2007 and the USA 193 intercept in 2008, many satellite operators are becoming increasingly aware of the potential threat to their satellites as the result of orbital debris or even other satellites. However, to be successful at conjunction monitoring and collision avoidance requires accurate orbital information for as many space objects (payloads, dead satellites, rocket bodies, and debris) as possible. Given the current capabilities of the US Space Surveillance Network (SSN), approximately 18,500 objects are now being tracked and orbital data (in the form of two-line element sets) is available to satellite operators for 11,750 of them (as of 2008 September 1). The capability to automatically process this orbital data to look for close conjunctions and provide that information to satellite operators via the Internet has been continuously available on CelesTrak, in the form of Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space (SOCRATES), since May 2004. Those reports are used by many operators as one way to keep apprised of these potential threats. However, the two-line element sets (TLEs) are generated using non-cooperative tracking via the SSN's network of radar and optical sensors. As a result, the relatively low accuracy of the data results in a large number of false alarms that satellite operators must routinely deal with. Yet, satellite operators typically perform orbit maintenance for their own satellites, using active ranging and GPS systems. These data are often an order of magnitude more accurate than those available using TLEs. When combined (in the form of ephemerides) with maneuver planning information, the ability to maintain predictive awareness increases significantly. And when satellite operators share this data, the improved space situational awareness, particularly in the crowded geosynchronous belt, can be dramatic and the number of false alarms can be reduced

  9. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness.

    PubMed

    Pimentel-Niño, M A; Saxena, Paresh; Vazquez-Castro, M A

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  10. Reliable Adaptive Video Streaming Driven by Perceptual Semantics for Situational Awareness

    PubMed Central

    Pimentel-Niño, M. A.; Saxena, Paresh; Vazquez-Castro, M. A.

    2015-01-01

    A novel cross-layer optimized video adaptation driven by perceptual semantics is presented. The design target is streamed live video to enhance situational awareness in challenging communications conditions. Conventional solutions for recreational applications are inadequate and novel quality of experience (QoE) framework is proposed which allows fully controlled adaptation and enables perceptual semantic feedback. The framework relies on temporal/spatial abstraction for video applications serving beyond recreational purposes. An underlying cross-layer optimization technique takes into account feedback on network congestion (time) and erasures (space) to best distribute available (scarce) bandwidth. Systematic random linear network coding (SRNC) adds reliability while preserving perceptual semantics. Objective metrics of the perceptual features in QoE show homogeneous high performance when using the proposed scheme. Finally, the proposed scheme is in line with content-aware trends, by complying with information-centric-networking philosophy and architecture. PMID:26247057

  11. Wide-area situation awareness in electric power grid

    NASA Astrophysics Data System (ADS)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  12. Situation awareness and driving performance in a simulated navigation task.

    PubMed

    Ma, R; Kaber, D B

    2007-08-01

    The objective of this study was to identify task and vehicle factors that may affect driver situation awareness (SA) and its relationship to performance, particularly in strategic (navigation) tasks. An experiment was conducted to assess the effects of in-vehicle navigation aids and reliability on driver SA and performance in a simulated navigation task. A total of 20 participants drove a virtual car and navigated a large virtual suburb. They were required to follow traffic signs and navigation directions from either a human aid via a mobile phone or an automated aid presented on a laptop. The navigation aids operated under three different levels of information reliability (100%, 80% and 60%). A control condition was used in which each aid presented a telemarketing survey and participants navigated using a map. Results revealed perfect navigation information generally improved driver SA and performance compared to unreliable navigation information and the control condition (task-irrelevant information). In-vehicle automation appears to mediate the relationship of driver SA to performance in terms of operational and strategic (navigation) behaviours. The findings of this work support consideration of driver SA in the design of future vehicle automation for navigation tasks. PMID:17558674

  13. Wide-area situation awareness in electric power grid

    SciTech Connect

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  14. Maintaining Situation Awareness with Autonomous Airborne Observation Platforms

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Fitzgerald, Will

    2005-01-01

    Unmanned Aerial Vehicles (UAVs) offer tremendous potential as intelligence, surveillance and reconnaissance (ISR) platforms for early detection of security threats and for acquisition and maintenance of situation awareness in crisis conditions. However, using their capabilities effectively requires addressing a range of practical and theoretical problems. The paper will describe progress by the "Autonomous Rotorcraft Project," a collaborative effort between NASA and the U.S. Army to develop a practical, flexible capability for UAV-based ISR. Important facets of the project include optimization methods for allocating scarce aircraft resources to observe numerous, distinct sites of interest; intelligent flight automation software than integrates high-level plan generation capabilities with executive control, failure response and flight control functions; a system architecture supporting reconfiguration of onboard sensors to address different kinds of threats; and an advanced prototype vehicle designed to allow large-scale production at low cost. The paper will also address human interaction issues including an empirical method for determining how to allocate roles and responsibilities between flight automation and human operations.

  15. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  16. Space situational awareness applications for radio astronomy assets

    NASA Astrophysics Data System (ADS)

    Watts, Galen; Ford, John M.; Ford, H. Alyson

    2015-05-01

    The National Radio Astronomy Observatory (NRAO) builds, operates, and maintains a suite of premier radio antennas, including the 100m aperture Green Bank Telescope, the largest fully-steerable antenna in the world. For more than five decades the NRAO has focused on astrophysics, providing researchers with the most advanced instruments possible: large apertures, extremely low-noise receivers, and signal processors with high frequency and time resolution. These instruments are adaptable to Space Situational Awareness (SSA) tasks such as radar detection of objects in near-Earth and cis-Lunar space, high accuracy orbit determination, object surveillance with passive methods, and uplink and downlink communications. We present the capabilities of antennas and infrastructure at the NRAO Green Bank Observatory in the context of SSA tasks, and discuss what additions and modifications would be necessary to achieve SSA goals while preserving existing radio astronomy performance. We also discuss how the Green Bank Observatory's surrounding topography and location within the National Radio Quiet Zone will enhance SSA endeavors.

  17. Exploring schema-driven differences in situation awareness between road users: an on-road study of driver, cyclist and motorcyclist situation awareness.

    PubMed

    Salmon, Paul M; Lenne, Michael G; Walker, Guy H; Stanton, Neville A; Filtness, Ashleigh

    2014-01-01

    Collisions between different road users make a substantial contribution to road trauma. Although evidence suggests that different road users interpret the same road situations differently, it is not clear how road users' situation awareness differs, nor is it clear which differences might lead to conflicts. This article presents the findings from an on-road study conducted to examine driver, motorcyclist and cyclist situation awareness in different road environments. The findings suggest that, in addition to minor differences in the structure of different road users' situation awareness (i.e. amount of information and how it is integrated), the actual content of situation awareness in terms of road user schemata, the resulting interaction with the world and the information underpinning situation awareness is markedly different. Further examination indicates that the differences are likely to be compatible along arterial roads, shopping strips and at roundabouts, but that they may create conflicts between different road users at intersections. Interventions designed to support compatible situation awareness and behaviour between different road users are discussed. PMID:24444299

  18. Influence versus intent for predictive analytics in situation awareness

    NASA Astrophysics Data System (ADS)

    Cui, Biru; Yang, Shanchieh J.; Kadar, Ivan

    2013-05-01

    Predictive analytics in situation awareness requires an element to comprehend and anticipate potential adversary activities that might occur in the future. Most work in high level fusion or predictive analytics utilizes machine learning, pattern mining, Bayesian inference, and decision tree techniques to predict future actions or states. The emergence of social computing in broader contexts has drawn interests in bringing the hypotheses and techniques from social theory to algorithmic and computational settings for predictive analytics. This paper aims at answering the question on how influence and attitude (some interpreted such as intent) of adversarial actors can be formulated and computed algorithmically, as a higher level fusion process to provide predictions of future actions. The challenges in this interdisciplinary endeavor include drawing existing understanding of influence and attitude in both social science and computing fields, as well as the mathematical and computational formulation for the specific context of situation to be analyzed. The study of `influence' has resurfaced in recent years due to the emergence of social networks in the virtualized cyber world. Theoretical analysis and techniques developed in this area are discussed in this paper in the context of predictive analysis. Meanwhile, the notion of intent, or `attitude' using social theory terminologies, is a relatively uncharted area in the computing field. Note that a key objective of predictive analytics is to identify impending/planned attacks so their `impact' and `threat' can be prevented. In this spirit, indirect and direct observables are drawn and derived to infer the influence network and attitude to predict future threats. This work proposes an integrated framework that jointly assesses adversarial actors' influence network and their attitudes as a function of past actions and action outcomes. A preliminary set of algorithms are developed and tested using the Global Terrorism

  19. Wired Widgets: Agile Visualization for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Gerschefske, K.; Witmer, J.

    2012-09-01

    Continued advancement in sensors and analysis techniques have resulted in a wealth of Space Situational Awareness (SSA) data, made available via tools and Service Oriented Architectures (SOA) such as those in the Joint Space Operations Center Mission Systems (JMS) environment. Current visualization software cannot quickly adapt to rapidly changing missions and data, preventing operators and analysts from performing their jobs effectively. The value of this wealth of SSA data is not fully realized, as the operators' existing software is not built with the flexibility to consume new or changing sources of data or to rapidly customize their visualization as the mission evolves. While tools like the JMS user-defined operational picture (UDOP) have begun to fill this gap, this paper presents a further evolution, leveraging Web 2.0 technologies for maximum agility. We demonstrate a flexible Web widget framework with inter-widget data sharing, publish-subscribe eventing, and an API providing the basis for consumption of new data sources and adaptable visualization. Wired Widgets offers cross-portal widgets along with a widget communication framework and development toolkit for rapid new widget development, giving operators the ability to answer relevant questions as the mission evolves. Wired Widgets has been applied in a number of dynamic mission domains including disaster response, combat operations, and noncombatant evacuation scenarios. The variety of applications demonstrate that Wired Widgets provides a flexible, data driven solution for visualization in changing environments. In this paper, we show how, deployed in the Ozone Widget Framework portal environment, Wired Widgets can provide an agile, web-based visualization to support the SSA mission. Furthermore, we discuss how the tenets of agile visualization can generally be applied to the SSA problem space to provide operators flexibility, potentially informing future acquisition and system development.

  20. PMMW/DGPS/GPS integrated situation awareness system

    NASA Astrophysics Data System (ADS)

    Tarleton, Norman G.; Symosek, Peter F.; Hartman, Randy

    1998-07-01

    Integrating Passive Millimeter Wave camera (PMMW), Global Positioning System (GPS), and Differential Global Positioning System (DGPS) provides a pilot with a visual precision approach and landing in inclement weather conditions conceivably down to CAT III conditions. A DARPA funded, NASA Langley managed Technology Reinvestment Program (TRP) consortium consisting of Honeywell, TRW, Boeing, and Composite Optics Corporations is demonstrating the PMMW camera. The TRW developed PMMW camera displays the runway through fog, smoke, and clouds in day or night conditions. The Global Air Traffic Program Office entered into a Cooperative Research and Development Agreement (CRDA) with Honeywell to demonstrate DGPS. The Honeywell developed DGPS provides precision navigational data to within 1 m error where GPS has 100 m of error. In inclement weather the runway approach is initiated using GPS data until a range where DGPS data can be received. The runway is presented to the pilot using the PMMW image viewed via a Heads Up Display (HUD) or Head Mounted Display (HMD). At a range where DGPS data is available, a precise runway and horizon symbology is computed in the Flight Display Computer and overlaid on the PMMW image. Image processing algorithms operate on the PMMW image to identify and highlight obstacles on the runway. The integrated system provides the pilot with an enhanced situation awareness of the runway approach in inclement weather. When a DGPS ground station is not available at the landing area, image processing algorithms (again operating on the PMMW image) generate the runway and horizon symbology. GPS provides the algorithm with initial conditions for runway location and perspective. The algorithm then locates and highlights the runway and any obstacles on the runway. Honeywell Technology Center is performing research in the area of integrating the PMMW, DGPS, and GPS technologies to provide the pilot with the most necessary features of each system; namely

  1. Shared Situation Awareness in the Flight Deck-ATC System

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.; Hansman, R. John; Farley, Todd C.

    1998-01-01

    New technologies and operational concept changes have been proposed for implementation in the National Airspace System (NAS). These changes include improved datalink (CPDLC) technologies for providing improved weather, traffic, Flight Object (FO) and navigation information to the pilot and controller, and new forms of automation for both the flight deck and air traffic management system. In addition, the way business is conducted in the NAS is under consideration. Increases in the discretion provided to pilots (and dispatchers in commercial airlines) are being contemplated in an effort to increase system capacity and flexibility. New concepts of operation (e.g., Collaborative Decision Making and Free Flight) allow for more control to be given to the cockpit or airline with correspondingly greater monitoring responsibilities on the ground. In addition, new technologies and displays make possible much greater information flow between the ground and the cockpit and also dramatic changes in the type of information provided. Designing to support these changes suggests two integrally linked questions: (1) What display technologies and information are needed to support desired changes responsibilities? (2) How will the changes in information availability influence the negotiation process between the cockpit and the ground? Each of these proposed changes (both in technology and operational concept) will have a marked impact on the performance, workload, and Situation Awareness (SA) of both pilots and controllers. Typically such changes are evaluated independently in terms of the effects of the proposed change on either pilot performance or ATC performance. It is proposed here, however, that in order to fully understand the effects of such changes, the joint pilot/controller system must be considered.

  2. Exploring Situational Awareness in Diagnostic Errors in Primary Care

    PubMed Central

    Singh, Hardeep; Giardina, Traber Davis; Petersen, Laura A.; Smith, Michael; Wilson, Lindsey; Dismukes, Key; Bhagwath, Gayathri; Thomas, Eric J.

    2013-01-01

    Objective Diagnostic errors in primary care are harmful but poorly studied. To facilitate understanding of diagnostic errors in real-world primary care settings using electronic health records (EHRs), this study explored the use of the Situational Awareness (SA) framework from aviation human factors research. Methods A mixed-methods study was conducted involving reviews of EHR data followed by semi-structured interviews of selected providers from two institutions in the US. The study population included 380 consecutive patients with colorectal and lung cancers diagnosed between February 2008 and January 2009. Using a pre-tested data collection instrument, trained physicians identified diagnostic errors, defined as lack of timely action on one or more established indications for diagnostic work-up for lung and colorectal cancers. Twenty-six providers involved in cases with and without errors were interviewed. Interviews probed for providers' lack of SA and how this may have influenced the diagnostic process. Results Of 254 cases meeting inclusion criteria, errors were found in 30 (32.6%) of 92 lung cancer cases and 56 (33.5%) of 167 colorectal cancer cases. Analysis of interviews related to error cases revealed evidence of lack of one of four levels of SA applicable to primary care practice: information perception, information comprehension, forecasting future events, and choosing appropriate action based on the first three levels. In cases without error, the application of the SA framework provided insight into processes involved in attention management. Conclusions A framework of SA can help analyze and understand diagnostic errors in primary care settings that use EHRs. PMID:21890757

  3. Cross-Organization Service Use Management for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Witmer, J.; Gerschefske, K.

    2012-09-01

    With the Joint Space Operations Center Mission Systems (JMS) focus to deploy a service-oriented architecture (SOA) environment, the Space Situational Awareness (SSA) community is moving rapidly toward a platform environment. Organizations will no longer rely entirely on systems within their boundaries. Instead, services and data are shared across organizational boundaries between diverse organizations. For SSA to succeed, JMS and similar efforts must employ and share resources across organizational boundaries (from AFSPC, to other US partners, to non-US partners and even universities). However, sharing services across organizational boundaries presents visibility and dependency issues. What information does an organization need to rely on these external services for mission critical needs? This paper presents an approach to dynamic service use agreement (SUA) negotiation that provides service platforms (and SOAs) the ability to dynamically negotiate the use of services across organizational boundaries. Using a small set of common service level agreement metadata (SLA metadata) parameters, service use can automatically be negotiated between SOAs. The Managing Aggregated Services (MASS) toolkit is designed to enable automated SUA across organizational boundaries by standardizing the service use parameters (the SLA metadata) as the foundation for SUA. The MASS toolkit demonstrates that this SUA can be done between systems as the SLA metadata provides the necessary visibility for the consuming organization into the provider organization services. The MASS toolkit also answers the question "who is using my service?" Service access can be limited to only SOAs which have negotiated an SUA, providing information security for service providers. In the highly dynamic SSA environment, where services will be provided by a variety of organizations, previous work has shown that SOA can shorten service integration from months to weeks. MASS demonstrates the potential to move this

  4. Objective evaluation of situation awareness for dynamic decision makers in teleoperations

    NASA Technical Reports Server (NTRS)

    Endsley, Mica R.

    1991-01-01

    Situation awareness, a current mental mode of the environment, is critical to the ability of operators to perform complex and dynamic tasks. This should be particularly true for teleoperators, who are separated from the situation they need to be aware of. The design of the man-machine interface must be guided by the goal of maintaining and enhancing situation awareness. The objective of this work has been to build a foundation upon which research in the area can proceed. A model of dynamic human decision making which is inclusive of situation awareness will be presented, along with a definition of situation awareness. A method for measuring situation awareness will also be presented as a tool for evaluating design concepts. The Situation Awareness Global Assessment Technique (SAGAT) is an objective measure of situation awareness originally developed for the fighter cockpit environment. The results of SAGAT validation efforts will be presented. Implications of this research for teleoperators and other operators of dynamic systems will be discussed.

  5. Integration of space weather into space situational awareness

    SciTech Connect

    Reeves, Geoffrey D

    2010-11-09

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those

  6. Integration Of Space Weather Into Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2010-09-01

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent complexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbitdependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which allows operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather effects, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This

  7. Enhanced Collaboration for Space Situational Awareness via Proxy Agents

    NASA Astrophysics Data System (ADS)

    Picciano, P.; Schurr, N.

    2012-09-01

    The call for dynamic partnerships demanded in the US. Space Policy confronts two formidable challenges. The first is evident in the lack of the adoption of technical innovations that could substantially enhance collaboration. The second category, and perhaps a greater impediment, involves organizational and social constraints that minimize information sharing. Compounding the technical challenges, the organizational barriers to collaboration present a different problem set. There is a culture in the space domain that predisposes most stakeholders to guard their information. Most owner/operators are reluctant to share asset data, whether experiencing an anomaly or just providing status updates. This is unfortunate, because the owner/operators generally have the most accurate and timely data pertaining to their satellite. Comprehensive Space Situational Awareness (SSA) requires the marshaling of disparate mission critical elements. The mission threads reliant on SSA are complex and often require analysis from a diverse team of experts with sophisticated systems and tools that may be dispersed across multiple entities including military, commercial, and public interests. Two significant trends are likely to further perpetuate this state of affairs: 1) the space environment continues to be more congested, contested, and competitive, and 2) further pressures to increase SSA Sharing with a greater number of stakeholders throughout the world. The challenge of delivering the right information to the right people, while protecting national security and privacy interests, is in need of an innovative solution. Our approach, entitled Space Collaboration via an Agent Network (SCAN), enables proxy software agents to represent stakeholders (as individuals and organizations) to enhance collaboration among various agency producers and consumers of space information The SCAN agent network will facilitate collaboration by identifying opportunities to collaborate, as well as optimize

  8. A Korean Space Situational Awareness Program : OWL Network

    NASA Astrophysics Data System (ADS)

    Park, J.; Choi, Y.; Jo, J.; Moon, H.; Im, H.; Park, J.

    2012-09-01

    We are going to present a brief introduction to the OWL (Optical Wide-field patroL) network, one of Korean space situational awareness facilities. Primary objectives of the OWL network are 1) to obtain orbital information of Korean domestic LEOs using optical method, 2) to monitor GEO-belt over territory of Korea, and 3) to alleviate collisional risks posed to Korean satellites from space debris. For these purposes, we are planning to build a global network of telescopes which consists of five small wide-field telescopes and one 2m class telescope. The network of small telescopes will be dedicated mainly to the observation of domestic LEOs, but many slots will be open to other scientific programs such as GRB follow-up observations. Main targets of 2m telescope not only include artificial objects such as GEO debris and LEO debris with low inclination and high eccentricity, but also natural objects such as near Earth asteroids. We expect to monitor space objects down to 10cm in size in GEO using the 2m telescope system. Main research topics include size distribution and evolution of space debris. We also expect to utilize this facility for physical characterization and population study of near Earth asteroids. The aperture size of the small telescope system is 0.5m with Rechey-Cretian configuration and its field of view is 1.75 deg x 1.75 deg. It is equipped with 4K CCD with 9um pixel size, and its plate scale is 1.3 arcsec/pixel. A chopper wheel is employed to maximize astrometric solutions in a single CCD frame, and a de-rotator is used to compensate field rotation of the alt-az type mount. We have designed a compact end unit in which three rotating parts (chopper wheel, filter wheel, de-rotator) and a CCD camera are integrated, and dedicated telescope/site control boards for the OWL network. The design of 2m class telescope is still under discussion yet is expected to be fixed in the first half of 2013 at the latest. The OWL network will be operated in a fully

  9. Situational awareness: the trainability of the near-threshold information acquisition dimension.

    PubMed

    Secrist, G E; Hartman, B O

    1993-10-01

    Ten subjects participated in training to identify abstract visual stimuli under three successively more difficult protocols where the stimuli (targets) were small, and target-on time was 67 ms (2,100 trials) or 33 ms (2,100 trials). Joysticks and push buttons were used for responses. The protocols were target detection, recognition, and identification. Backward masking was used to control visual access time. The experimental design was repeated measurements, each subject as his own control. Subjects exceeded 95% correct responses early under the 67 ms target-on time condition. For the 33 ms condition, most subjects achieved between 70 and 95% correct responses at the end of the training. Differences between protocol challenges at 33 ms were significant (at or beyond p < 0.01). The outcome of this study is consistent with our concept of situational awareness described in our overview paper. PMID:8240191

  10. User Situational Context: An Essential Challenge to Context Awareness

    ERIC Educational Resources Information Center

    Mowafi, Yaser Abdallah

    2009-01-01

    Existing research on context and context awareness has broadly focused on the technical aspects of context acquisition and interpretation of users' surroundings, also called physical or sensor-based context. Such an approach has lacked from reconciling the perception of real-world context exhibited by humans, also known as user context, and…

  11. The emerging role of global situational awareness 2.0 resources in disaster response

    NASA Astrophysics Data System (ADS)

    Taylor, Carl

    2010-04-01

    Public Health organizations throughout the world are called upon to be at the forefront of responding to emerging infectious disease events or natural catastrophes such as the Haitian and Chilean earthquakes. One of the key components to effective public health engagement is situational awareness. Situational awareness means understanding what is going on around you. Whilst that may seem to be a simple statement it is not. True situational awareness means acquiring all relevant information about the event and translating that information into actionable knowledge.

  12. An Adaptive Fault-Tolerance Agent Running on Situation-Aware Environment

    NASA Astrophysics Data System (ADS)

    Kim, Soongohn; Ko, Eungnam

    The focus of situation-aware ubiquitous computing has increased lately. An example of situation-aware applications is a multimedia education system. Since ubiquitous applications need situation-aware middleware services and computing environment keeps changing as the applications change, it is challenging to detect errors and recover them in order to provide seamless services and avoid a single point of failure. This paper proposes an Adaptive Fault Tolerance Agent (AFTA) in situation-aware middleware framework and presents its simulation model of AFT-based agents. The strong point of this system is to detect and recover error automatically in case that the session's process comes to an end through a software error.

  13. The Effects of Shared Information on Pilot-Controller Situation Awareness And Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith

    1999-01-01

    The effect of shared information is assessed in terms of pilot-controller negotiating behavior and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. An exploratory, part-task simulator experiment is described which evaluates the extent to which shared information may lead pilots and controllers to cooperate or compete when negotiating route amendments. Results are presented which indicate that shared information enhances situation awareness and can engender more collaborative interaction between pilots and air traffic controllers. Furthermore, the value of providing controllers with a good-quality weather overlay on their plan view displays is demonstrated. Observed improvements in situation awareness and separation assurance are discussed.

  14. A principled approach to the measurement of situation awareness in commercial aviation

    NASA Technical Reports Server (NTRS)

    Tenney, Yvette J.; Adams, Marilyn Jager; Pew, Richard W.; Huggins, A. W. F.; Rogers, William H.

    1992-01-01

    The issue of how to support situation awareness among crews of modern commercial aircraft is becoming especially important with the introduction of automation in the form of sophisticated flight management computers and expert systems designed to assist the crew. In this paper, cognitive theories are discussed that have relevance for the definition and measurement of situation awareness. These theories suggest that comprehension of the flow of events is an active process that is limited by the modularity of attention and memory constraints, but can be enhanced by expert knowledge and strategies. Three implications of this perspective for assessing and improving situation awareness are considered: (1) Scenario variations are proposed that tax awareness by placing demands on attention; (2) Experimental tasks and probes are described for assessing the cognitive processes that underlie situation awareness; and (3) The use of computer-based human performance models to augment the measures of situation awareness derived from performance data is explored. Finally, two potential example applications of the proposed assessment techniques are described, one concerning spatial awareness using wide field of view displays and the other emphasizing fault management in aircraft systems.

  15. Development of a Computerized Current Awareness Service Using "Chemical Abstracts" Condensates

    ERIC Educational Resources Information Center

    Roberts, Anita B.; And Others

    1972-01-01

    The experiences in developing current awareness services for selective dissemination of information from Chemical Abstracts'' Condensates data base are described. File standardization, the weighted-term method of searching, and the algorithm used to perform the search on the CDC 6600 computer and a user survey are discussed. (2 references)…

  16. Individual differences in situation awareness: Validation of the Situationism Scale

    PubMed Central

    Roberts, Megan E.; Gibbons, Frederick X.; Gerrard, Meg; Klein, William M. P.

    2015-01-01

    This paper concerns the construct of lay situationism—an individual’s belief in the importance of a behavior’s context. Study 1 identified a 13-item Situationism Scale, which demonstrated good reliability and validity. In particular, higher situationism was associated with greater situation-control (strategies to manipulate the environment in order to avoid temptation). Subsequent laboratory studies indicated that people higher on the situationism subscales used greater situation-control by sitting farther from junk food (Study 2) and choosing to drink non-alcoholic beverages before a cognitive task (Study 3). Overall, findings provide preliminary support for the psychometric validity and predictive utility of the Situationism Scale and offer this individual difference construct as a means to expand self-regulation theory. PMID:25329242

  17. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  18. Uncertainty Reasoning for Service-Based Situational Awareness Information on the Semantic Web

    ERIC Educational Resources Information Center

    Dinkel, Stephen C.

    2012-01-01

    Accurate situational assessment is key to any decision maker and especially crucial in military command and control, air traffic control, and complex system decision making. Endsley described three dependent levels of situational awareness, (1) perception, (2) understanding, and (3) projection. This research was focused on Endsley's…

  19. SAWA: an assistant for higher-level fusion and situation awareness

    NASA Astrophysics Data System (ADS)

    Matheus, Christopher J.; Kokar, Mieczyslaw M.; Baclawski, Kenneth; Letkowski, Jerzy A.; Call, Catherine; Hinman, Michael L.; Salerno, John J.; Boulware, Douglas M.

    2005-03-01

    Situation awareness involves the identification and monitoring of relationships among level-one objects. This problem in general is intractable (i.e., there is a potentially infinite number of relations that could be tracked) and thus requires additional constraints and guidance defined by the user if there is to be any hope of creating practical situation awareness systems. This paper describes a Situation Awareness Assistant (SAWA) that facilitates the development of user-defined domain knowledge in the form of formal ontologies and rule sets and then permits the application of the domain knowledge to the monitoring of relevant relations as they occur in evolving situations. SAWA includes tools for developing ontologies in OWL and rules in SWRL and provides runtime components for collecting event data, storing and querying the data, monitoring relevant relations and viewing the results through a graphical user interface. An application of SAWA to a scenario from the domain of supply logistics is also presented.

  20. Context-Aware Users' Preference Models by Integrating Real and Supposed Situation Data

    NASA Astrophysics Data System (ADS)

    Ono, Chihiro; Takishima, Yasuhiro; Motomura, Yoichi; Asoh, Hideki; Shinagawa, Yasuhide; Imai, Michita; Anzai, Yuichiro

    This paper proposes a novel approach of constructing statistical preference models for context-aware personalized applications such as recommender systems. In constructing context-aware statistical preference models, one of the most important but difficult problems is acquiring a large amount of training data in various contexts/situations. In particular, some situations require a heavy workload to set them up or to collect subjects capable of answering the inquiries under those situations. Because of this difficulty, it is usually done to simply collect a small amount of data in a real situation, or to collect a large amount of data in a supposed situation, i.e., a situation that the subject pretends that he is in the specific situation to answer inquiries. However, both approaches have problems. As for the former approach, the performance of the constructed preference model is likely to be poor because the amount of data is small. For the latter approach, the data acquired in the supposed situation may differ from that acquired in the real situation. Nevertheless, the difference has not been taken seriously in existing researches. In this paper we propose methods of obtaining a better preference model by integrating a small amount of real situation data with a large amount of supposed situation data. The methods are evaluated using data regarding food preferences. The experimental results show that the precision of the preference model can be improved significantly.

  1. The application of microbolometers in 360° ground vehicle situational awareness

    NASA Astrophysics Data System (ADS)

    Breakfield, David K.; Plemons, Dan

    2009-05-01

    BAE Systems and the US Army have conducted a series of investigative studies and on-vehicle evaluations of 360°, indirect viewing and ground vehicle vision systems. The studies consider a range of system options for establishing a close-in, real-time, image-based situational awareness system for day and nighttime vehicle operation. Multi-spectral imaging assets were utilized in combination with image processing techniques to extend situational awareness and support the operation of armored vehicles during "closed-hatch" exercises. The study findings include the central role of uncooled IR Microbolometers as a foundational element of day/night vehicle indirect vision systems.

  2. The Effect of Shared Information on Pilot/Controller Situation Awareness and Re-Route Negotiation

    NASA Technical Reports Server (NTRS)

    Farley, Todd C.; Hansman, R. John; Endsley, Mica R.; Amonlirdviman, Keith; Vigeant-Langlois, Laurence

    1998-01-01

    The effect of shared information is assessed in terms of pilot/controller negotiation and shared situation awareness. Pilot goals and situation awareness requirements are developed and compared against those of air traffic controllers to identify areas of common and competing interest. A part-task simulator experiment is described which probes pilot/controller interaction in areas where common information has the potential to lead to contention, as identified in the comparative analysis. Preliminary results are presented which suggest that shared information can effect more collaborative interaction between pilots and air traffic controllers.

  3. Pilot and Controller Workload and Situation Awareness with Three Traffic Management Concept

    NASA Technical Reports Server (NTRS)

    Vu, Kim-Phuong L.; Strybel, Thomas Z.; Kraut, Joshua; Bacon, Paige; Minakata, Katsumi; Battiste, Vernol; Johnson, Walter

    2010-01-01

    This paper reports on workload and situation awareness of pilots and controllers participating in a human-in-the-loop simulation using three different distributed air-ground traffic management concepts. Eight experimental pilots started the scenario in an en-route phase of flight and were asked to avoid convective weather while performing spacing and merging tasks along with a continuous descent approach (CDA) into Louisville Standiford Airport (SDF). Two controllers managed the sectors through which the pilots flew, with one managing a sector that included the Top of Descent, and the other managing a sector that included the merge point for arrival into SDF. At 3-minute intervals in the scenario, pilots and controllers were probed on their workload or situation awareness. We employed one of three concepts of operation that distributed separation responsibility across human controllers, pilots, and automation to measure changes in operator situation awareness and workload. We found that when pilots were responsible for separation, they had higher levels of awareness, but not necessarily higher levels of workload. When controllers are responsible and actively engaged, they showed higher workload levels compared to pilots and changes in awareness that were dependent on sector characteristics.

  4. Novel collaboration and situational awareness environment for leaders and their support staff via self assembling software.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil; Bartholomew, John Warren

    2008-02-01

    This is the final report on the Sandia Fellow LDRD, project 117865, 08-0281. This presents an investigation of self-assembling software intended to create shared workspace environment to allow online collaboration and situational awareness for use by high level managers and their teams.

  5. The Impact of Automated Cognitive Assistants on Situational Awareness in the Brigade Combat Team

    ERIC Educational Resources Information Center

    Fischer, Carl E.

    2010-01-01

    This research investigated the impact of automated cognitive assistants, specifically, the Personalized Assistant that Learns (PAL), on situational awareness, efficiency and effectiveness of decision making in the brigade combat team. PAL was recently commissioned by Defense Advanced Research Projects Agency (DARPA) to enhance decision making with…

  6. Investigating the Effect of Situational Awareness on Persistence of Doctoral Distance Learners

    ERIC Educational Resources Information Center

    Harleman, Thomas G.

    2013-01-01

    This quantitative study sought to identify the effect of heightened situational awareness (SA) on persistence of doctoral distance learners. Factors in the distance learners' micro-environment, vis-à-vis Urie Bronfenbrenner's (1979) ecology theory of human development, were the focus. Study participants included new doctoral candidates continuing…

  7. Research on the Wireless Sensor Networks Applied in the Battlefield Situation Awareness System

    NASA Astrophysics Data System (ADS)

    Hua, Guan; Li, Yan-Xiao; Yan, Xiao-Mei

    In the modern warfare information is the crucial key of winning. Battlefield situation awareness contributes to grasping and retaining the intelligence predominance. Due to its own special characteristics Wireless Sensor Networks (WSN) have been widely used to realize reconnaissance and surveillance in the joint operations and provide simultaneous, comprehensive, accurate data to multiechelon commanders and the combatant personnel for decision making and rapid response. Military sensors have drawn great attention in the ongoing projects which have satisfied the initial design or research purpose. As the interface of the "Internet of Things" which will have an eye on every corner of the battlespace WSNs play the necessary role in the incorporated situation awareness system. WSNs, radar, infrared ray or other means work together to acquire awareness intelligence for the deployed functional units to enhance the fighting effect.

  8. Automatic Dependent Surveillance Broadcast (ADS-B) System for Ownership and Traffic Situational Awareness

    NASA Technical Reports Server (NTRS)

    Arteaga, Ricardo A. (Inventor)

    2016-01-01

    The present invention proposes an automatic dependent surveillance broadcast (ADS-B) architecture and process, in which priority aircraft and ADS-B IN traffic information are included in the transmission of data through the telemetry communications to a remote ground control station. The present invention further proposes methods for displaying general aviation traffic information in three and/or four dimension trajectories using an industry standard Earth browser for increased situation awareness and enhanced visual acquisition of traffic for conflict detection. The present invention enable the applications of enhanced visual acquisition of traffic, traffic alerts, and en-route and terminal surveillance used to augment pilot situational awareness through ADS-B IN display and information in three or four dimensions for self-separation awareness.

  9. Semantic-Aware Automatic Parallelization of Modern Applications Using High-Level Abstractions

    SciTech Connect

    Liao, C; Quinlan, D J; Willcock, J J; Panas, T

    2009-12-21

    Automatic introduction of OpenMP for sequential applications has attracted significant attention recently because of the proliferation of multicore processors and the simplicity of using OpenMP to express parallelism for shared-memory systems. However, most previous research has only focused on C and Fortran applications operating on primitive data types. Modern applications using high-level abstractions, such as C++ STL containers and complex user-defined class types, are largely ignored due to the lack of research compilers that are readily able to recognize high-level object-oriented abstractions and leverage their associated semantics. In this paper, we use a source-to-source compiler infrastructure, ROSE, to explore compiler techniques to recognize high-level abstractions and to exploit their semantics for automatic parallelization. Several representative parallelization candidate kernels are used to study semantic-aware parallelization strategies for high-level abstractions, combined with extended compiler analyses. Preliminary results have shown that semantics of abstractions can help extend the applicability of automatic parallelization to modern applications and expose more opportunities to take advantage of multicore processors.

  10. Situational Awareness as a Measure of Performance in Cyber Security Collaborative Work

    SciTech Connect

    Malviya, Ashish; Fink, Glenn A.; Sego, Landon H.; Endicott-Popovsky, Barbara E.

    2011-04-11

    Cyber defense competitions arising from U.S. service academy exercises, offer a platform for collecting data that can inform research that ranges from characterizing the ideal cyber warrior to describing behaviors during certain challenging cyber defense situations. This knowledge in turn could lead to better preparation of cyber defenders in both military and civilian settings. We conducted proof of concept experimentation to collect data during the Pacific-rim Regional Collegiate Cyber Defense Competition (PRCCDC) and analyzed it to study the behavior of cyber defenders. We propose that situational awareness predicts performance of cyber security professionals, and in this paper we focus on our collection and analysis of competition data to determine whether it supports our hypothesis. In addition to normal cyber data, we collected situational awareness and workload data and compared it against the performance of cyber defenders as indicated by their competition score. We conclude that there is a weak correlation between our measure of situational awareness and performance that we hope to exploit in further studies.

  11. Application of a plume model for decision makers' situation awareness during an outdoor airborne HAZMAT release.

    PubMed

    Meris, Ronald G; Barbera, Joseph A

    2014-01-01

    In a large-scale outdoor, airborne, hazardous materials (HAZMAT) incident, such as ruptured chlorine rail cars during a train derailment, the local Incident Commanders and HAZMAT emergency responders must obtain accurate information quickly to assess the situation and act promptly and appropriately. HAZMAT responders must have a clear understanding of key information and how to integrate it into timely and effective decisions for action planning. This study examined the use of HAZMAT plume modeling as a decision support tool during incident action planning in this type of extreme HAZMAT incident. The concept of situation awareness as presented by Endsley's dynamic situation awareness model contains three levels: perception, comprehension, and projection. It was used to examine the actions of incident managers related to adequate data acquisition, current situational understanding, and accurate situation projection. Scientists and engineers have created software to simulate and predict HAZMAT plume behavior, the projected hazard impact areas, and the associated health effects. Incorporating the use of HAZMAT plume projection modeling into an incident action plan may be a complex process. The present analysis used a mixed qualitative and quantitative methodological approach and examined the use and limitations of a "HAZMAT Plume Modeling Cycle" process that can be integrated into the incident action planning cycle. HAZMAT response experts were interviewed using a computer-based simulation. One of the research conclusions indicated the "HAZMAT Plume Modeling Cycle" is a critical function so that an individual/team can be tasked with continually updating the hazard plume model with evolving data, promoting more accurate situation awareness. PMID:25350360

  12. The Space Situational Assessment Report to Improve Public Awareness in China

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Qi; Xie, Zebing; Wei, Xiangwang; Wang, Tao

    For improvement of public awareness of the impact of space activities in China, a Space Situational Assessment Report 2013 will be issued in March 2014. More than ten Chinese main medium are invited for a special press conference. The Space Situational Assessment Report aims to introduce international space activities to Chinese public, and provide a common, comprehensive knowledge base to support the development of national policies and international security cooperation of outer space. The full report organizes international space activities until 2013 according to three parts those are Foundations, Strategies and Environment, including nine chapters, such as Space laws and policies; Space facility and equipment; Institutions and Human Resource; Military space, Civil space and Commercial space; Natural space environment; Space situational awareness, etc. A kind of Space Situational Assessment Index System is presented as a globally-focused analytic framework that defines, measures, and ranks national space activity. To use for a variety of public themes, different assessment indexes are constituted by scores of individual qualitative and quantitative metrics based on the Index System. Three research organizaitons of space sciences and technologies collaborated on the Space Situational Assessment Report. It is a scholarly and ungovernmental work.

  13. High-frequency imaging radar for robotic navigation and situational awareness

    NASA Astrophysics Data System (ADS)

    Thomas, David J.; Luo, Changan; Knox, Robert

    2011-05-01

    With increasingly available high frequency radar components, the practicality of imaging radar for mobile robotic applications is now practical. Navigation, ODOA, situational awareness and safety applications can be supported in small light weight packaging. Radar has the additional advantage of being able sense through aerosols, smoke and dust that can be difficult for many optical systems. The ability to directly measure the range rate of an object is also an advantage in radar applications. This paper will explore the applicability of high frequency imaging radar for mobile robotics and examine a W-band 360 degree imaging radar prototype. Indoor and outdoor performance data will be analyzed and evaluated for applicability to navigation and situational awareness.

  14. [Situational awareness: you won't see it unless you understand it].

    PubMed

    Graafland, Maurits; Schijven, Marlies P

    2015-01-01

    In dynamic, high-risk environments such as the modern operating theatre, healthcare providers are required to identify a multitude of signals correctly and in time. Errors resulting from failure to identify or interpret signals correctly lead to calamities. Medical training curricula focus largely on teaching technical skills and knowledge, not on the cognitive skills needed to interact appropriately with fast-changing, complex environments in practice. The term 'situational awareness' describes the dynamic process of receiving, interpreting and processing information in such dynamic environments. Improving situational awareness in high-risk environments should be part of medical curricula. In addition, the flood of information in high-risk environments should be presented more clearly and effectively. It is important that physicians become more involved in this regard. PMID:26173660

  15. Rotorcraft visual situational awareness (VSA): solving the pilotage problem for landing in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Taylor, Trevor

    2009-05-01

    BAE Systems has developed a solution to the problem of helicopter low visibility landings. The passive part of the system displays 3-D conformal symbology on a tracked helmet mounted display. This provides the pilot with situational awareness while the helicopter is in brownout/whiteout conditions. A Millimetric Wave Radar detects any stationary or dynamic obstacles within the landing zone. The pilot is presented with a synthetic view of the area which is produced using advanced signal and display algorithms.

  16. High-reliability teams and situation awareness: implementing a hospital emergency incident command system.

    PubMed

    Autrey, Pamela; Moss, Jacqueline

    2006-02-01

    To enhance disaster preparedness, hospitals are beginning to implement the Hospital Emergency Incident Command System. Although Hospital Emergency Incident Command System provides a template for disaster preparation, its successful implementation requires an understanding of situation awareness (SA) and high-reliability teams. The authors present the concept of SA and how this concept relates to team reliability in dynamic environments. Then strategies for increasing SA and team reliability through education, training, and improved communication systems are discussed. PMID:16528147

  17. NASA Headquarters Space Operations Center: Providing Situational Awareness for Spaceflight Contingency Response

    NASA Technical Reports Server (NTRS)

    Maxwell, Theresa G.; Bihner, William J.

    2010-01-01

    This paper discusses the NASA Headquarters mishap response process for the Space Shuttle and International Space Station programs, and how the process has evolved based on lessons learned from the Space Shuttle Challenger and Columbia accidents. It also describes the NASA Headquarters Space Operations Center (SOC) and its special role in facilitating senior management's overall situational awareness of critical spaceflight operations, before, during, and after a mishap, to ensure a timely and effective contingency response.

  18. Cockpit Displays for Enhancing Terminal-Area Situational Awareness and Runway Safety

    NASA Technical Reports Server (NTRS)

    Hyer, Paul V.; Otero, Sharon; Jones, Denise R. (Technical Monitor)

    2007-01-01

    HUD and PFD displays have been developed to enhance situational awareness and improve runway safety. These displays were designed to seamlessly transition through all phases of flight providing guidance and information to the pilot. This report describes the background of the Langley Research Center (LaRC) HUD and PFD work, the steps required to integrate the displays with those of other LaRC programs, the display characteristics of the several operational modes and the transitional logic governing the transition between displays.

  19. Using Twitter and other social media platforms to provide situational awareness during an incident.

    PubMed

    Tobias, Ed

    2011-10-01

    The recent use of social media by protesters in Iran, Egypt, Yemen and elsewhere has focused new attention on this communications medium. Government agencies and businesses, as well, are using social media to push information to their stakeholders. Those who are on the front lines of this information revolution, however, realise that social media is most effective when the communication is two-way. Unlike other media, social media allows information sharing. This, in turn, provides emergency managers with new situational-awareness resources when trying to mitigate an incident. As Federal Emergency Management Agency (FEMA) Administrator Craig Fugate told Information Week on January 19th, 2011: 'We can adjust much quicker if we can figure out how to have (a) two-way conversation and if we can look at the public as a resource. The public is putting out better situational awareness than many of our own agencies can.' This paper provides examples of how social media can be used as a situational-awareness resource and specific 'tools' that can be used to assist with this task. PMID:22130339

  20. Distributed sensor management for space situational awareness via a negotiation game

    NASA Astrophysics Data System (ADS)

    Jia, Bin; Shen, Dan; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2015-05-01

    Space situational awareness (SSA) is critical to many space missions serving weather analysis, communications, and navigation. However, the number of sensors used in space situational awareness is limited which hinders collision avoidance prediction, debris assessment, and efficient routing. Hence, it is critical to use such sensor resources efficiently. In addition, it is desired to develop the SSA sensor management algorithm in a distributed manner. In this paper, a distributed sensor management approach using the negotiation game (NG-DSM) is proposed for the SSA. Specifically, the proposed negotiation game is played by each sensor and its neighboring sensors. The bargaining strategies are developed for each sensor based on negotiating for accurately tracking desired targets (e.g., satellite, debris, etc.) . The proposed NG-DSM method is tested in a scenario which includes eight space objects and three different sensor modalities which include a space based optical sensor, a ground radar, or a ground Electro-Optic sensor. The geometric relation between the sensor, the Sun, and the space object is also considered. The simulation results demonstrate the effectiveness of the proposed NG-DSM sensor management methods, which facilitates an application of multiple-sensor multiple-target tracking for space situational awareness.

  1. Experimental studies on the effect of automation on pilot situational awareness in the datalink ATC environment

    NASA Technical Reports Server (NTRS)

    Hahn, Edward C.; Hansman, R. J., Jr.

    1992-01-01

    An experiment to study how automation, when used in conjunction with datalink for the delivery of ATC clearance amendments, affects the situational awareness of aircrews was conducted. The study was focused on the relationship of situational awareness to automated Flight Management System (FMS) programming of datalinked clearances and the readback of ATC clearances. Situational awareness was tested by issuing nominally unacceptable ATC clearances and measuring whether the error was detected by the subject pilots. The experiment also varied the mode of clearance delivery: Verbal, Textual, and Graphical. The error detection performance and pilot preference results indicate that the automated programming of the FMS may be superior to manual programming. It is believed that automated FMS programming may relieve some of the cognitive load, allowing pilots to concentrate on the strategic implications of a clearance amendment. Also, readback appears to have value, but the small sample size precludes a definite conclusion. Furthermore, because textual and graphical modes of delivery offer different but complementary advantages for cognitive processing, a combination of these modes of delivery may be advantageous in a datalink presentation.

  2. The explosion at institute: modeling and analyzing the situation awareness factor.

    PubMed

    Naderpour, Mohsen; Lu, Jie; Zhang, Guangquan

    2014-12-01

    In 2008 a runaway chemical reaction caused an explosion at a methomyl unit in West Virginia, USA, killing two employees, injuring eight people, evacuating more than 40,000 residents adjacent to the facility, disrupting traffic on a nearby highway and causing significant business loss and interruption. Although the accident was formally investigated, the role of the situation awareness (SA) factor, i.e., a correct understanding of the situation, and appropriate models to maintain SA, remain unexplained. This paper extracts details of abnormal situations within the methomyl unit and models them into a situational network using dynamic Bayesian networks. A fuzzy logic system is used to resemble the operator's thinking when confronted with these abnormal situations. The combined situational network and fuzzy logic system make it possible for the operator to assess such situations dynamically to achieve accurate SA. The findings show that the proposed structure provides a useful graphical model that facilitates the inclusion of prior background knowledge and the updating of this knowledge when new information is available from monitoring systems. PMID:25247552

  3. Improving situation awareness using a hub architecture for friendly force tracking

    NASA Astrophysics Data System (ADS)

    Karkkainen, Anssi P.

    2010-04-01

    Situation Awareness (SA) is the perception of environmental elements within a volume of time and space, the comprehension of their meaning, and the projection of their future status. In a military environment the most critical elements to be tracked are followed elements are either friendly or hostile forces. Poor knowledge of locations of friendly forces easily leads into the situation in which the troops could be under firing by own troops or in which decisions in a command and control system are based on incorrect tracking. Thus the Friendly Force Tracking (FFT) is a vital part of building situation awareness. FFT is basically quite simple in theory; collected tracks are shared through the networks to all troops. In real world, the situation is not so clear. Poor communication capabilities, lack of continuous connectivity n and large number of user on different level provide high requirements for FFT systems. In this paper a simple architecture for Friendly Force Tracking is presented. The architecture is based on NFFI (NATO Friendly Force Information) hubs which have two key features; an ability to forward tracking information and an ability to convert information into the desired format. The hub based approach provides a lightweight and scalable solution, which is able to use several types of communication media (GSM, tactical radios, TETRA etc.). The system is also simple to configure and maintain. One main benefit of the proposed architecture is that it is independent on a message format. It communicates using NFFI messages, but national formats are also allowed.

  4. Effects of Perceptual Augmentation Of Visual Displays: Dissociation of Performance and Situational Awareness

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay; Goodman, Allen D.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    It is intuitive that good performance is associated with, if not caused by, good situational awareness. There are, however, some situations in which these two concepts diverge. There are some trivial examples that have been identified, such as auto-pilots. However, it is also possible that these concepts diverge in a much more subtle manner. This research is focused on investigating those more subtle situations. Specifically, this research addresses the effects of perceptual display enhancement based upon Ecological Task Analysis (ETA) on performance and situational awareness. A perceptually augmented display was designed based upon ETA. Globally, performance advantages were found for the group with the enhanced display. Further, the findings demonstrate a dissociation of sub-task performance and operators' knowledge of the system subtask. The mechanisms involved in this dissociation are related to the characteristics of the display augmentation that led to the increased performance. The level of processing, and presence of feedback seem to play an important mediating role. These findings have important implications for both designers and researchers.

  5. The study of disaster situation awareness based on volunteered geographic information

    NASA Astrophysics Data System (ADS)

    Zhao, Qiansheng; Chen, Zi; Li, Shengming; Luo, Nianxue

    2015-12-01

    As the development of Web 2.0, the social media like microblog, blogs and social network have supplied a bunch of information with locations (Volunteered Geographical Information, VGI).Recent years many cases have shown that, if disaster happened, the cyber citizens will get together very quickly and share the disaster information, this results a bunch of volunteered geographical information about disaster situation which is very valuable for disaster response if this VGIs are used efficiently and properly. This project will take typhoon disaster as case study. In this paper, we study the relations between weibo messages and the real typhoon situation, we proposed an analysis framework for mine the relations between weibo messages distribution and physical space. We found that the number of the weibo messages, key words frequency and spatial temporary distribution of the messages have strong relations with the disaster spread in the real world, and this research results can improve our disaster situation awareness in the future. The achievement of the study will give a method for typhoon disaster situation awareness based on VGI from the bottom up, and will locate the disaster spot and evolution quickly which is very important for disaster response and recover.

  6. Enhancing evacuation plans with a situation awareness system based on end-user knowledge provision.

    PubMed

    Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas

    2014-01-01

    Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating. PMID:24961212

  7. Enhancing Evacuation Plans with a Situation Awareness System Based on End-User Knowledge Provision

    PubMed Central

    Morales, Augusto; Alcarria, Ramon; Martin, Diego; Robles, Tomas

    2014-01-01

    Recent disasters have shown that having clearly defined preventive procedures and decisions is a critical component that minimizes evacuation hazards and ensures a rapid and successful evolution of evacuation plans. In this context, we present our Situation-Aware System for enhancing Evacuation Plans (SASEP) system, which allows creating end-user business rules that technically support the specific events, conditions and actions related to evacuation plans. An experimental validation was carried out where 32 people faced a simulated emergency situation, 16 of them using SASEP and the other 16 using a legacy system based on static signs. From the results obtained, we compare both techniques and discuss in which situations SASEP offers a better evacuation route option, confirming that it is highly valuable when there is a threat in the evacuation route. In addition, a study about user satisfaction using both systems is presented showing in which cases the systems are assessed as satisfactory, relevant and not frustrating. PMID:24961212

  8. Using message brokering and data mediation on earth science data to enhance global maritime situational awareness

    NASA Astrophysics Data System (ADS)

    Delaney, C.; Alessandrini, A.; Greidanus, H.

    2016-04-01

    Maritime Situational Awareness is the understanding of anything associated with the maritime domain that could impact the security, safety, economy, or environment. The European Commission's Joint Research Centre (JRC) has developed an in-house data collection, data analysis and data visualiztion facility, known as the Blue Hub. The Blue Hub operates as a research and development platform for integrated maritime surveillance and maritime situational awareness. It has global coverage and has been applied, for example, to support counter-piracy around Africa, to investigate fishing activity and to monitor the growing ship traffic in the Arctic. In order to improve maritime awareness and support risk assessment, the JRC has started to integrate data from the marine and atmosheric science community. In particular the JRC is interested in using forecasts from operational ocean models and weather models. For the Blue Hub a new type of data server, called ERDDAP, that performs message brokering and data mediation has become an essential tool for the accessing of ocean forecast data as quickly as possible in easy to use formats. NOAA (National Oceanic and Atmospheric Administration of the USA) is making global oceanography and weather data available through the Environmental Research Division's Data Access Program (ERDDAP) data broker. ERDDAP provides RESTful machine to machine communication, data brokering and data mediation by converting data to a number of standard and developer friendly formats, including some Open Geospatial Consortium formats. In this paper, we demonstrate how data brokering and mediation is making complex scientific data accessible. We show how such data is being integrated into the Blue Hub system to enhance maritime situational awareness.

  9. Synthetic Vision Enhances Situation Awareness and RNP Capabilities for Terrain-Challenged Approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Bailey, Randall E.; Arthur, Jarvis J., III

    2003-01-01

    The Synthetic Vision Systems (SVS) Project of Aviation Safety Program is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-Up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation / Terrain Awareness and Warning System displays. These independent variables were evaluated for situation awareness, path error, and workload while making approaches to Runway 25 and 07 and during simulated engine-out Cottonwood 2 and KREMM departures. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the pathway and pursuit guidance used within the SVS concepts achieved required navigation performance (RNP) criteria.

  10. Boosting intelligence analysis process and situation awareness using the self-organizing map

    NASA Astrophysics Data System (ADS)

    Kärkkäinen, Anssi P.

    2009-05-01

    Situational awareness is critical on the modern battlefield. A large amount of intelligence information is collected to improve decision-making processes, but in many cases this huge information load is even decelerating analysis and decision-making because of the lack of reasonable tools and methods to process information. To improve the decision making process and situational awareness, lots of research is done to analyze and visualize intelligence information data automatically. Different data fusion and mining techniques are applied to produce an understandable situational picture. Automated processes are based on a data model which is used in information exchange between war operators. The data model requires formal message structures which makes information processing simpler in many cases. In this paper, generated formal intelligence message data is visualized and analyzed by using the self-organizing map (SOM). The SOM is a widely used neural network model, and it has shown its effectiveness in representing multi-dimensional data in two or three dimensional space. The results show that multidimensional intelligence data can be visualized and classified with this technique. The SOM can be used for monitoring intelligence message data (e.g. in purpose of error hunting), message classification and hunting correlations. Thus with the SOM it is possible to speed up the intelligence process and make better and faster decisions.

  11. Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Busquets, Anthony M.

    2000-01-01

    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.

  12. Autonomous mobile platform for enhanced situational awareness in Mass Casualty Incidents.

    PubMed

    Yang, Dongyi; Schafer, James; Wang, Sili; Ganz, Aura

    2014-01-01

    To enhance the efficiency of the search and rescue process of a Mass Casualty Incident, we introduce a low cost autonomous mobile platform. The mobile platform motion is controlled by an Android Smartphone mounted on a robot. The pictures and video captured by the Smartphone camera can significantly enhance the situational awareness of the incident commander leading to a more efficient search and rescue process. Moreover, the active RFID readers mounted on the mobile platform can improve the localization accuracy of victims in the disaster site in areas where the paramedics are not present, reducing the triage and evacuation time. PMID:25570104

  13. Structure mapping for improved situational awareness, missions planning, and operator tracking

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan; Reese, Matt; Calcutt, Wade; Morrison, James; Roehrich, Gregory J.

    2010-04-01

    McQ developed for the U.S. Army Armament Research, Development and Engineering Center (ARDEC) an acoustic and infrared measurement, node localization, and building characterization prototype system. The system is designed for both manned and unmanned use to develop greater situational awareness through the exploration of unknown structures and relay of mapping data through ARDEC's Firestorm network. This research covers ultrasonic and infrared ranging sensor performance, GPS-denied positioning solutions, sensor data fusion, and mapping algorithms. Applications of McQ's Structure Mapping system also include first responder mapping and positioning. McQ will present development methodology and performance.

  14. On the Use of Long-Range Radars for Space Situational Awareness: An Experimental Test

    NASA Astrophysics Data System (ADS)

    Vigilante, D.; Farina, A.; Feudo, F.; Pagliai, S.; Petrucci, R.; Timmoneri, L.

    2013-08-01

    This paper reports on the results achieved in an experimental test conducted with the Selex ES RAT (Radar Avvistamento Terrestre) 31DL/M long range radar in February 2012. The objective of the test was to determine the capability of the radar of detecting and tracking Low Earth Orbit (LEO) satellites without modifications of the sensor hardware or software. The test have been prepared and conducted in the frame of the Company initiatives dedicated to the Space Situational Awareness (SSA) program and in particular for the development of a dual-use function for the detection and tracking of space or orbital debris.

  15. Homeland situation awareness through mining and fusing heterogeneous information from intelligence databases and field sensors

    NASA Astrophysics Data System (ADS)

    Digioia, Giusj; Panzieri, Stefano

    2012-06-01

    One of the most felt issues in the defence domain is that of having huge quantities of data stored in databases and acquired from field sensors, without being able to infer information from them. Usually databases are continuously updated with observations, and are related to heterogeneous data. Deep and continuous analysis on data could mine useful correlations, explain relations existing among data and cue searches for further evidences. The solution to the problem addressed before seems to deal both with the domain of Data Mining and with the domain of high level Data Fusion, that is Situation Assessment, Threat Assessment and Process Refinement, also synthesised as Situation Awareness. The focus of this paper is the definition of an architecture for a system adopting data mining techniques to adaptively discover clusters of information and relation among them, to classify observations acquired and to use the model of knowledge and the classification derived in order to assess situations, threats and refine the search for evidences. Sources of information taken into account are those related to the intelligence domain, as IMINT, HUMINT, ELINT, COMINT and other non-conventional sources. The algorithms applied refer to not supervised and supervised classification for rule exploitation, and adaptively built Hidden Markov Model for situation and threat assessment.

  16. Incongruity, incongruity resolution, and mental states: The measure and modification of situational awareness and control

    NASA Technical Reports Server (NTRS)

    Derks, Peter L.; Gillikin, Lynn S.

    1993-01-01

    The research reported here describes the process of induction of various mental states. Our goals were to measure and to manipulate both the behavioral and the neurological correlates of particular mental states that have previously been demonstrated to be either beneficial or deleterious to in-flight performance situations. The experimental paradigm involved developing a context of which the participants were aware, followed by the introduction of an incongruity into that context. The empirical questions involved how the incongruity was resolved and the consequent effects on mental state. The dependent variables were measures of both the short-term ERP changes and the longer-term brain mapping indications of predominant mental states. The mission of NASA Flight Management Division and Human/Automation Integration Branch centers on the understanding and improvement of interaction between a complex system and a human operator. Specifically, the goal is improved efficiency through better operative procedures and control strategies. More efficient performance in demanding flight environments depends on improved situational awareness and replanning for fault management.

  17. Situational awareness for unmanned ground vehicles in semi-structured environments

    NASA Astrophysics Data System (ADS)

    Goodsell, Thomas G.; Snorrason, Magnus; Stevens, Mark R.

    2002-07-01

    Situational Awareness (SA) is a critical component of effective autonomous vehicles, reducing operator workload and allowing an operator to command multiple vehicles or simultaneously perform other tasks. Our Scene Estimation & Situational Awareness Mapping Engine (SESAME) provides SA for mobile robots in semi-structured scenes, such as parking lots and city streets. SESAME autonomously builds volumetric models for scene analysis. For example, a SES-AME equipped robot can build a low-resolution 3-D model of a row of cars, then approach a specific car and build a high-resolution model from a few stereo snapshots. The model can be used onboard to determine the type of car and locate its license plate, or the model can be segmented out and sent back to an operator who can view it from different viewpoints. As new views of the scene are obtained, the model is updated and changes are tracked (such as cars arriving or departing). Since the robot's position must be accurately known, SESAME also has automated techniques for deter-mining the position and orientation of the camera (and hence, robot) with respect to existing maps. This paper presents an overview of the SESAME architecture and algorithms, including our model generation algorithm.

  18. Metrics for Operator Situation Awareness, Workload, and Performance in Automated Separation Assurance Systems

    NASA Technical Reports Server (NTRS)

    Strybel, Thomas Z.; Vu, Kim-Phuong L.; Battiste, Vernol; Dao, Arik-Quang; Dwyer, John P.; Landry, Steven; Johnson, Walter; Ho, Nhut

    2011-01-01

    A research consortium of scientists and engineers from California State University Long Beach (CSULB), San Jose State University Foundation (SJSUF), California State University Northridge (CSUN), Purdue University, and The Boeing Company was assembled to evaluate the impact of changes in roles and responsibilities and new automated technologies, being introduced in the Next Generation Air Transportation System (NextGen), on operator situation awareness (SA) and workload. To meet these goals, consortium members performed systems analyses of NextGen concepts and airspace scenarios, and concurrently evaluated SA, workload, and performance measures to assess their appropriateness for evaluations of NextGen concepts and tools. The following activities and accomplishments were supported by the NRA: a distributed simulation, metric development, systems analysis, part-task simulations, and large-scale simulations. As a result of this NRA, we have gained a greater understanding of situation awareness and its measurement, and have shared our knowledge with the scientific community. This network provides a mechanism for consortium members, colleagues, and students to pursue research on other topics in air traffic management and aviation, thus enabling them to make greater contributions to the field

  19. The Real Time Mission Monitor: A Situational Awareness Tool For Managing Experiment Assets

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Hall, John; Goodman, Michael; Parker, Philip; Freudinger, Larry; He, Matt

    2007-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, airborne and surface data sets; weather information; model and forecast outputs; and vehicle state data (e.g., aircraft navigation, satellite tracks and instrument field-of-views) for field experiment management RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses experiment during summer 2006 in Cape Verde, Africa. The integration and delivery of this information is made possible through data acquisition systems, network communication links and network server resources built and managed by collaborators at NASA Dryden Flight Research Center (DFRC) and Marshall Space Flight Center (MSFC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols.

  20. Empirical evaluation of the Process Overview Measure for assessing situation awareness in process plants.

    PubMed

    Lau, Nathan; Jamieson, Greg A; Skraaning, Gyrd

    2016-03-01

    The Process Overview Measure is a query-based measure developed to assess operator situation awareness (SA) from monitoring process plants. A companion paper describes how the measure has been developed according to process plant properties and operator cognitive work. The Process Overview Measure demonstrated practicality, sensitivity, validity and reliability in two full-scope simulator experiments investigating dramatically different operational concepts. Practicality was assessed based on qualitative feedback of participants and researchers. The Process Overview Measure demonstrated sensitivity and validity by revealing significant effects of experimental manipulations that corroborated with other empirical results. The measure also demonstrated adequate inter-rater reliability and practicality for measuring SA in full-scope simulator settings based on data collected on process experts. Thus, full-scope simulator studies can employ the Process Overview Measure to reveal the impact of new control room technology and operational concepts on monitoring process plants. Practitioner Summary: The Process Overview Measure is a query-based measure that demonstrated practicality, sensitivity, validity and reliability for assessing operator situation awareness (SA) from monitoring process plants in representative settings. PMID:26398584

  1. A full-scale prototype multisensor system for fire detection and situational awareness

    NASA Astrophysics Data System (ADS)

    Minor, Christian P.; Johnson, Kevin J.; Rose-Pehrsson, Susan L.; Owrutsky, Jeffrey C.; Wales, Stephen C.; Steinhurst, Daniel A.; Gottuk, Daniel T.

    2007-04-01

    A data fusion-based, multisensory detection system, called "Volume Sensor", was developed under the Advanced Damage Countermeasures (ADC) portion of the US Navy's Future Naval Capabilities program (FNC) to meet reduced manning goals. A diverse group of sensing modalities was chosen to provide an automated damage control monitoring capability that could be constructed at a relatively low cost and also easily integrated into existing ship infrastructure. Volume Sensor employs an efficient, scalable, and adaptable design framework that can serve as a template for heterogeneous sensor network integration for situational awareness. In the development of Volume Sensor, a number of challenges were addressed and met with solutions that are applicable to heterogeneous sensor networks of any type. These solutions include: 1) a uniform, but general format for encapsulating sensor data, 2) a communications protocol for the transfer of sensor data and command and control of networked sensor systems, 3) the development of event specific data fusion algorithms, and 4) the design and implementation of modular and scalable system architecture. In full-scale testing on a shipboard environment, two prototype Volume Sensor systems demonstrated the capability to provide highly accurate and timely situational awareness regarding damage control events while simultaneously imparting a negligible footprint on the ship's 100 Mbps Ethernet network and maintaining smooth and reliable operation in a real-time fashion.

  2. The NASA Real Time Mission Monitor - A Situational Awareness Tool for Conducting Tropical Cyclone Field Experiments

    NASA Technical Reports Server (NTRS)

    Goodman, Michael; Blakeslee, Richard; Hall, John; Parker, Philip; He, Yubin

    2008-01-01

    The NASA Real Time Mission Monitor (RTMM) is a situational awareness tool that integrates satellite, aircraft state information, airborne and surface instruments, and weather state data in to a single visualization package for real time field experiment management. RTMM optimizes science and logistic decision-making during field experiments by presenting timely data and graphics to the users to improve real time situational awareness of the experiment's assets. The RTMM is proven in the field as it supported program managers, scientists, and aircraft personnel during the NASA African Monsoon Multidisciplinary Analyses (investigated African easterly waves and Tropical Storm Debby and Helene) during August-September 2006 in Cape Verde, the Tropical Composition, Cloud and Climate Coupling experiment during July-August 2007 in Costa Rica, and the Hurricane Aerosonde mission into Hurricane Noel in 2-3 November 2007. The integration and delivery of this information is made possible through data acquisition systems, network communication links, and network server resources built and managed by collaborators at NASA Marshall Space Flight Center (MSFC) and Dryden Flight Research Center (DFRC). RTMM is evolving towards a more flexible and dynamic combination of sensor ingest, network computing, and decision-making activities through the use of a service oriented architecture based on community standards and protocols. Each field experiment presents unique challenges and opportunities for advancing the functionality of RTMM. A description of RTMM, the missions it has supported, and its new features that are under development will be presented.

  3. Leveraging Health Information Exchange to Support Public Health Situational Awareness: The Indiana Experience

    PubMed Central

    Grannis, Shaun J.; Stevens, Kevin C.; Merriwether, Ricardo

    2010-01-01

    Public health situational awareness is contingent upon timely, comprehensive and accurate information from clinical systems. Ad-hoc models for sending non-standard clinical information directly to public health are inefficient and increasingly unsustainable. Information sharing models that leverage Health Information Exchanges (HIEs) are emerging. HIEs standardize, aggregate and streamline information sharing among data partners, including public health stakeholders, and HIE has supported public health practice in Indiana for more than 10 years. To accelerate nationwide adoption of HIE-supported situational awareness processes, the CDC awarded three HIEs across the nation, including Indiana, New York and Washington/Idaho. The Indiana partners included Indiana University School of Medicine, Regenstrief Institute, Indiana Health Information Exchange, Indiana State Department of Health, Health & Hospital Corporation of Marion County, and Children’s Hospital Boston. Activities included augmenting biosurveillance processes, enabling bi-directional communication, enhancing automated detection of notifiable conditions, and demonstrating technological advances at national forums. HIE transactions destined for public health were enhanced with standardized clinical vocabulary and more complete physician contact information. During the 2009 H1N1 flu outbreak, the HIE delivered targeted public health broadcast messages to providers in Marion County, Indiana. We will review the partnership characteristics, activities, accomplishments and future directions for our health information exchange. PMID:23569586

  4. A computational approach to achieve situational awareness from limited observations of a complex system

    NASA Astrophysics Data System (ADS)

    Sherwin, Jason

    At the start of the 21st century, the topic of complexity remains a formidable challenge in engineering, science and other aspects of our world. It seems that when disaster strikes it is because some complex and unforeseen interaction causes the unfortunate outcome. Why did the financial system of the world meltdown in 2008--2009? Why are global temperatures on the rise? These questions and other ones like them are difficult to answer because they pertain to contexts that require lengthy descriptions. In other words, these contexts are complex. But we as human beings are able to observe and recognize this thing we call 'complexity'. Furthermore, we recognize that there are certain elements of a context that form a system of complex interactions---i.e., a complex system. Many researchers have even noted similarities between seemingly disparate complex systems. Do sub-atomic systems bear resemblance to weather patterns? Or do human-based economic systems bear resemblance to macroscopic flows? Where do we draw the line in their resemblance? These are the kinds of questions that are asked in complex systems research. And the ability to recognize complexity is not only limited to analytic research. Rather, there are many known examples of humans who, not only observe and recognize but also, operate complex systems. How do they do it? Is there something superhuman about these people or is there something common to human anatomy that makes it possible to fly a plane? Or to drive a bus? Or to operate a nuclear power plant? Or to play Chopin's etudes on the piano? In each of these examples, a human being operates a complex system of machinery, whether it is a plane, a bus, a nuclear power plant or a piano. What is the common thread running through these abilities? The study of situational awareness (SA) examines how people do these types of remarkable feats. It is not a bottom-up science though because it relies on finding general principles running through a host of varied

  5. Towards an integrated defense system for cyber security situation awareness experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Hanlin; Wei, Sixiao; Ge, Linqiang; Shen, Dan; Yu, Wei; Blasch, Erik P.; Pham, Khanh D.; Chen, Genshe

    2015-05-01

    In this paper, an implemented defense system is demonstrated to carry out cyber security situation awareness. The developed system consists of distributed passive and active network sensors designed to effectively capture suspicious information associated with cyber threats, effective detection schemes to accurately distinguish attacks, and network actors to rapidly mitigate attacks. Based on the collected data from network sensors, image-based and signals-based detection schemes are implemented to detect attacks. To further mitigate attacks, deployed dynamic firewalls on hosts dynamically update detection information reported from the detection schemes and block attacks. The experimental results show the effectiveness of the proposed system. A future plan to design an effective defense system is also discussed based on system theory.

  6. A robust real-time structure from motion for situational awareness and RSTA

    NASA Astrophysics Data System (ADS)

    Shim, M.; Yilma, S.; Bonner, K.

    2008-04-01

    Maintaining real-time situational awareness of military combat vehicles (manned/unmanned) with onboard vision sensors for either autonomous mobility or reconnaissance missions such as moving target indication (MTI) and automatic target recognition (ATR) while the vehicle is on the move has been technically and operationally challenging. In this paper, we investigate and present a practical implementation of a robust real-time structure from motion technique that allows moving robotic vehicles to be able to reconstruct 3D models from observed 2D features with dynamically adjusting motion parameters. We also demonstrate applications that locate and track moving targets within the structured environment built by the SFM and recognize the targets such as vehicles and humans through a hierarchical shape model.

  7. Autonomous Closed-Loop Tasking, Acquisition, Processing, and Evaluation for Situational Awareness Feedback

    NASA Technical Reports Server (NTRS)

    Frye, Stuart; Mandl, Dan; Cappelaere, Pat

    2016-01-01

    This presentation describes the closed loop satellite autonomy methods used to connect users and the assets on Earth Orbiter- 1 (EO-1) and similar satellites. The base layer is a distributed architecture based on Goddard Mission Services Evolution Concept (GMSEC) thus each asset still under independent control. Situational awareness is provided by a middleware layer through common Application Programmer Interface (API) to GMSEC components developed at GSFC. Users setup their own tasking requests, receive views into immediate past acquisitions in their area of interest, and into future feasibilities for acquisition across all assets. Automated notifications via pubsub feeds are returned to users containing published links to image footprints, algorithm results, and full data sets. Theme-based algorithms are available on-demand for processing.

  8. Incongruity, Incongruity Resolution, and Mental States: The Measure and Modification of Situational Awareness and Control

    NASA Technical Reports Server (NTRS)

    Derks, Peter L.; Gillikin, Lynn S.

    1997-01-01

    Cognition and emotion combine to define mental states. Situational awareness depends on both knowledge of the environment and the mood of the individual. Cognitive scientists from William James and Sigmond Freud to contemporary theorists in artificial intelligence and neuropsychology have acknowledged the critical role of subjective state in determining the efficiency and flexibility of information processing. One of the most explicit computational models of mental states to incorporate both knowledge and arousal has been described. Knowledge is carried in a typical neural net with categorical nodes and probabilistic links. Arousal determines the focus among these nodes and links. High arousal results in a restricted range of activation. Low arousal causes a wider range of stimulation and a broader linking of categories or "ideas." From this model Gerlernter generates "creativity" in problem solving from a network that is widely active and the possibility of "fixation" from a highly aroused system.

  9. Status and progress in the Space Surveillance and Tracking Segment of ESA's Space Situational Awareness Programme

    NASA Astrophysics Data System (ADS)

    Fletcher, E.

    2010-09-01

    In November 2008, the European Space Agency (ESA) Council at Ministerial level approved the start of ESA’s Space Situational Awareness programme. Between 2009 and 2012 a preparatory phase will run that will develop the architectural design of the system, the governance and data policy and the provision of precursor services in the areas of: Space Surveillance and Tracking, Space Weather and Near Earth Objects. This paper will concentrate on the first of these segments: Space Surveillance and Tracking. It will develop the following main topics: Customer requirements and their integration, the initiation of an integrated catalogue, extension of correlated data to service provision and international cooperation and data fusion The development of the services resulting from these points will be a key driver in the final architecture. This architecture will be proposed at the next Ministerial Council to further develop a full SSA system from 2012 onwards.

  10. Dynamic Graph Analytic Framework (DYGRAF): greater situation awareness through layered multi-modal network analysis

    NASA Astrophysics Data System (ADS)

    Margitus, Michael R.; Tagliaferri, William A., Jr.; Sudit, Moises; LaMonica, Peter M.

    2012-06-01

    Understanding the structure and dynamics of networks are of vital importance to winning the global war on terror. To fully comprehend the network environment, analysts must be able to investigate interconnected relationships of many diverse network types simultaneously as they evolve both spatially and temporally. To remove the burden from the analyst of making mental correlations of observations and conclusions from multiple domains, we introduce the Dynamic Graph Analytic Framework (DYGRAF). DYGRAF provides the infrastructure which facilitates a layered multi-modal network analysis (LMMNA) approach that enables analysts to assemble previously disconnected, yet related, networks in a common battle space picture. In doing so, DYGRAF provides the analyst with timely situation awareness, understanding and anticipation of threats, and support for effective decision-making in diverse environments.

  11. Random finite set multi-target trackers: stochastic geometry for space situational awareness

    NASA Astrophysics Data System (ADS)

    Vo, Ba-Ngu; Vo, Ba-Tuong

    2015-05-01

    This paper describes the recent development in the random finite set RFS paradigm in multi-target tracking. Over the last decade the Probability Hypothesis Density filter has become synonymous with the RFS approach. As result the PHD filter is often wrongly used as a performance benchmark for the RFS approach. Since there is a suite of RFS-based multi-target tracking algorithms, benchmarking tracking performance of the RFS approach by using the PHD filter, the cheapest of these, is misleading. Such benchmarking should be performed with more sophisticated RFS algorithms. In this paper we outline the high-performance RFS-based multi-target trackers such that the Generalized Labled Multi-Bernoulli filter, and a number of efficient approximations and discuss extensions and applications of these filters. Applications to space situational awareness are discussed.

  12. Cognitive Task Analysis of Network Analysts and Managers for Network Situational Awareness

    SciTech Connect

    Erbacher, Robert; Frincke, Deborah A.; Wong, Pak C.; Moody, Sarah; Fink, Glenn A.

    2010-01-18

    The goal of the project was to create a set of next generation cyber situational awareness capabilities with applications to other domains in the long term. The goal is to improve the decision making process such that decision makers can choose better actions. To this end, we put extensive effort into ensuring we had feedback from network analysts and managers and understood what their needs truly were. Consequently, this is the focus of this portion of the research. This paper discusses the methodology we followed to acquire this feedback from the analysts, namely a cognitive task analysis. Additionally, this paper provides the details we acquired from the analysts. This essentially provides details on their processes, goals, concerns, the data and meta-data they analyze, etc. A final result we describe is the generation of a task-flow diagram.

  13. Flight Envelope Information-Augmented Display for Enhanced Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Ackerman, Kasey A.; Seefeldt, Benjamin D.; Xargay, Enric; Talleur, Donald A.; Carbonari, Ronald S.; Kirlik, Alex; Hovakimyan, Naira; Trujillo, Anna C.; Belcastro, Christine M.; Gregory, Irene M.

    2015-01-01

    This paper presents an interface system display which is conceived to improve pilot situation awareness with respect to a flight envelope protection system developed for a mid-sized transport aircraft. The new display is designed to complement existing cockpit displays, and to augment them with information that relates to both aircraft state and the control automation itself. In particular, the proposed display provides cues about the state of automation directly in terms of pilot control actions, in addition to flight parameters. The paper also describes a forthcoming evaluation test plan that is intended to validate the developed interface by assessing the relevance of the displayed information, as well as the adequacy of the display layout.

  14. Leveraging AMI data for distribution system model calibration and situational awareness

    SciTech Connect

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation and regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.

  15. Leveraging AMI data for distribution system model calibration and situational awareness

    DOE PAGESBeta

    Peppanen, Jouni; Reno, Matthew J.; Thakkar, Mohini; Grijalva, Santiago; Harley, Ronald G.

    2015-01-15

    The many new distributed energy resources being installed at the distribution system level require increased visibility into system operations that will be enabled by distribution system state estimation (DSSE) and situational awareness applications. Reliable and accurate DSSE requires both robust methods for managing the big data provided by smart meters and quality distribution system models. This paper presents intelligent methods for detecting and dealing with missing or inaccurate smart meter data, as well as the ways to process the data for different applications. It also presents an efficient and flexible parameter estimation method based on the voltage drop equation andmore » regression analysis to enhance distribution system model accuracy. Finally, it presents a 3-D graphical user interface for advanced visualization of the system state and events. Moreover, we demonstrate this paper for a university distribution network with the state-of-the-art real-time and historical smart meter data infrastructure.« less

  16. Proximity Operations for Space Situational Awareness Spacecraft Rendezvous and Maneuvering using Numerical Simulations and Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Carrico, T.; Langster, T.; Carrico, J.; Alfano, S.; Loucks, M.; Vallado, D.

    The authors present several spacecraft rendezvous and close proximity maneuvering techniques modeled with a high-precision numerical integrator using full force models and closed loop control with a Fuzzy Logic intelligent controller to command the engines. The authors document and compare the maneuvers, fuel use, and other parameters. This paper presents an innovative application of an existing capability to design, simulate and analyze proximity maneuvers; already in use for operational satellites performing other maneuvers. The system has been extended to demonstrate the capability to develop closed loop control laws to maneuver spacecraft in close proximity to another, including stand-off, docking, lunar landing and other operations applicable to space situational awareness, space based surveillance, and operational satellite modeling. The fully integrated end-to-end trajectory ephemerides are available from the authors in electronic ASCII text by request. The benefits of this system include: A realistic physics-based simulation for the development and validation of control laws A collaborative engineering environment for the design, development and tuning of spacecraft law parameters, sizing actuators (i.e., rocket engines), and sensor suite selection. An accurate simulation and visualization to communicate the complexity, criticality, and risk of spacecraft operations. A precise mathematical environment for research and development of future spacecraft maneuvering engineering tasks, operational planning and forensic analysis. A closed loop, knowledge-based control example for proximity operations. This proximity operations modeling and simulation environment will provide a valuable adjunct to programs in military space control, space situational awareness and civil space exploration engineering and decision making processes.

  17. Advanced situation awareness with localised environmental community observatories in the Future Internet

    NASA Astrophysics Data System (ADS)

    Sabeur, Z. A.; Denis, H.; Nativi, S.

    2012-04-01

    The phenomenal advances in information and communication technologies over the last decade have led to offering unprecedented connectivity with real potentials for "Smart living" between large segments of human populations around the world. In particular, Voluntary Groups(VGs) and individuals with interest in monitoring the state of their local environment can be connected through the internet and collaboratively generate important localised environmental observations. These could be considered as the Community Observatories(CO) of the Future Internet(FI). However, a set of FI enablers are needed to be deployed for these communities to become effective COs in the Future Internet. For example, these communities will require access to services for the intelligent processing of heterogeneous data and capture of advancend situation awarness about the environment. This important enablement will really unlock the communities true potential for participating in localised monitoring of the environment in addition to their contribution in the creation of business entreprise. Among the eight Usage Areas(UA) projects of the FP7 FI-PPP programme, the ENVIROFI Integrated Project focuses on the specifications of the Future Internet enablers of the Environment UA. The specifications are developed under multiple environmental domains in context of users needs for the development of mash-up applications in the Future Internet. It will enable users access to real-time, on-demand fused information with advanced situation awareness about the environment at localised scales. The mash-up applications shall get access to rich spatio-temporal information from structured fusion services which aggregate COs information with existing environmental monitoring stations data, established by research organisations and private entreprise. These applications are being developed in ENVIROFI for the atmospheric, marine and biodiversity domains, together with a potential to be extended to other

  18. Framework for Real-Time All-Hazards Global Situational Awareness

    SciTech Connect

    Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

    2013-01-01

    Information systems play a pivotal role in emergency response by making consequence analysis models based on up-to-date data available to decision makers. While consequence analysis models have been used for years on local scales, their application on national and global scales has been constrained by lack of non-proprietary data. This chapter describes how this has changed using a framework for real-time all-hazards situational awareness called the Energy Awareness and Resiliency Standardized Services (EARSS) as an example. EARSS is a system of systems developed to collect non-proprietary data from diverse open content sources to develop a geodatabase of critical infrastructures all over the world. The EARSS system shows that it is feasible to provide global disaster alerts by producing valuable information such as texting messages about detected hazards, emailing reports about affected areas, estimating an expected number of impacted people and their demographic characteristics, identifying critical infrastructures that may be affected, and analyzing potential downstream effects. This information is provided in real-time to federal agencies and subscribers all over the world for decision making in humanitarian assistance and emergency response. The system also uses live streams of power outages, weather, and satellite surveillance data as events unfold. This, in turn, is combined with other public domain or open content information, such as media reports and postings on social networking websites, for complete coverage of the situation as events unfold. Working with up-to-date information from the EARSS system, emergency responders on the ground could pre-position their staff and resources, such as emergency generators and ice, where they are most needed.

  19. The Joint Milli-Arcsecond Pathfinder Survey (J-MAPS) Mission: Application for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Gaume, R.; Dorland, B.

    Rapid and accurate threat assessment and characterization are key elements in the quest for space superiority. These often depend on rapid orbit determination, accurate orbit propagation and object characterization. Threat scenarios involving new launches or vehicle maneuvers demand rapid and precise position metrics to determine and propagate new orbital elements. Existing and planned ground and space-based optical surveillance systems are optimized for the detection of Resident Space Objects (RSOs), which unfortunately, compromises their ability to determine position metrics at the highest possible accuracy levels. A Space Situational Awareness (SSA) architecture would potentially benefit from supplementing existing and planned detection assets with a dedicated high metric accuracy orbit determination asset or assets, with the potential for 24/7 taskability and near-real time capability. By optimizing an instrument to perform position measurement rather than detection, significant improvement may be realized in rapid orbit determination vs. current and envisioned systems, enabling rapid and accurate threat assessment and characterization. The United States Naval Observatory (USNO) is developing the space-based J-MAPS mission to support current and future star catalog and star tracker requirements. By its very nature, USNO's J-MAPS mission, a microsatellite designed to take very high precision measurements of star positions (astrometry), is ideally suited to make high metric accuracy measurements for brighter GEO RSOs. The J-MAPS mission will demonstrate novel and innovative measurement techniques and technologies, including new focal plane technologies such as CMOSHybrid active pixel sensors. The J-MAPS baseline also includes a novel filter-grating wheel, of interest in the area of non-resolved object characterization. We discuss the status of the J-MAPS mission, including the current mission baseline, and discuss Space Situational Awareness applications of the J

  20. Astrometric Support for Space Situational Awareness and Space Control: The U.S. Naval Observatory

    NASA Astrophysics Data System (ADS)

    White, J.

    The United States Naval Observatory (USNO), founded in 1830 as the progenitor of warfighting Position, Time and Navigation (PNT) operations, is the DoD agency mandated by the Joint Chiefs to establish, maintain, and coordinate Precise Time (such as for GPS) and Astronomical Reference Frames used by all components for navigation, precise positioning and orientation, space operations, and command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR). Specifically, the USNO-charged astrometric programs address fundamental needs gaps in several key aspects of Space Situational Awareness (SSA), Space Control (SC), and space-borne Target Location Error/CEP -reduction systems. As part of its responsibility, the USNO is the developer and synthesizer of all astronomical catalogs, surveys, and databases used by the DoD. USNO then produces the products needed to satisfy both broad and mission-specific needs gaps for the warfighter in the field, the air, at sea, or on the high frontier of Space. USNO DoD programs specifically applicable to the latter include space object tracking, extreme accuracy/rapid orbit determination, offensive/defensive counterspace (OCS/DCS), multi-waveband non-resolved object characterization, space sensor calibration, and astrometric reference frame and stellar catalog definition, maintenance, and improvement. Indeed, USNO's unique capability to produce milli-arcsecond guidance data is foundational to SSA/SC, and precision targeting and munitions. USNO capabilities will be discussed, and a vision presented of how advancements in astrometric programs will close need gaps, enable future capabilities in Space Situational Awareness, Space Control and spaceborne ISR.

  1. Intensive care unit nurses' information needs and recommendations for integrated displays to improve nurses' situation awareness

    PubMed Central

    Weir, Charlene; Haar, Maral; Staggers, Nancy; Agutter, Jim; Görges, Matthias; Westenskow, Dwayne

    2012-01-01

    Objective Fatal errors can occur in intensive care units (ICUs). Researchers claim that information integration at the bedside may improve nurses' situation awareness (SA) of patients and decrease errors. However, it is unclear which information should be integrated and in what form. Our research uses the theory of SA to analyze the type of tasks, and their associated information gaps. We aimed to provide recommendations for integrated, consolidated information displays to improve nurses' SA. Materials and Methods Systematic observations methods were used to follow 19 ICU nurses for 38 hours in 3 clinical practice settings. Storyboard methods and concept mapping helped to categorize the observed tasks, the associated information needs, and the information gaps of the most frequent tasks by SA level. Consensus and discussion of the research team was used to propose recommendations to improve information displays at the bedside based on information deficits. Results Nurses performed 46 different tasks at a rate of 23.4 tasks per hour. The information needed to perform the most common tasks was often inaccessible, difficult to see at a distance or located on multiple monitoring devices. Current devices at the ICU bedside do not adequately support a nurse's information-gathering activities. Medication management was the most frequent category of tasks. Discussion Information gaps were present at all levels of SA and across most of the tasks. Using a theoretical model to understand information gaps can aid in designing functional requirements. Conclusion Integrated information that enhances nurses' Situation Awareness may decrease errors and improve patient safety in the future. PMID:22437074

  2. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness

    PubMed Central

    Buchler, Norbou; Fitzhugh, Sean M.; Marusich, Laura R.; Ungvarsky, Diane M.; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  3. Mission Command in the Age of Network-Enabled Operations: Social Network Analysis of Information Sharing and Situation Awareness.

    PubMed

    Buchler, Norbou; Fitzhugh, Sean M; Marusich, Laura R; Ungvarsky, Diane M; Lebiere, Christian; Gonzalez, Cleotilde

    2016-01-01

    A common assumption in organizations is that information sharing improves situation awareness and ultimately organizational effectiveness. The sheer volume and rapid pace of information and communications received and readily accessible through computer networks, however, can overwhelm individuals, resulting in data overload from a combination of diverse data sources, multiple data formats, and large data volumes. The current conceptual framework of network enabled operations (NEO) posits that robust networking and information sharing act as a positive feedback loop resulting in greater situation awareness and mission effectiveness in military operations (Alberts and Garstka, 2004). We test this assumption in a large-scale, 2-week military training exercise. We conducted a social network analysis of email communications among the multi-echelon Mission Command staff (one Division and two sub-ordinate Brigades) and assessed the situational awareness of every individual. Results from our exponential random graph models challenge the aforementioned assumption, as increased email output was associated with lower individual situation awareness. It emerged that higher situation awareness was associated with a lower probability of out-ties, so that broadly sending many messages decreased the likelihood of attaining situation awareness. This challenges the hypothesis that increased information sharing improves situation awareness, at least for those doing the bulk of the sharing. In addition, we observed two trends that reflect a compartmentalizing of networked information sharing as email links were more commonly formed among members of the command staff with both similar functions and levels of situation awareness, than between two individuals with dissimilar functions and levels of situation awareness; both those findings can be interpreted to reflect effects of homophily. Our results have major implications that challenge the current conceptual framework of NEO. In

  4. A spatial disorientation predictor device to enhance pilot situational awareness regarding aircraft attitude

    NASA Technical Reports Server (NTRS)

    Chelette, T. L.; Repperger, Daniel W.; Albery, W. B.

    1991-01-01

    An effort was initiated at the Armstrong Aerospace Medical Research Laboratory (AAMRL) to investigate the improvement of the situational awareness of a pilot with respect to his aircraft's spatial orientation. The end product of this study is a device to alert a pilot to potentially disorienting situations. Much like a ground collision avoidance system (GCAS) is used in fighter aircraft to alert the pilot to 'pull up' when dangerous flight paths are predicted, this device warns the pilot to put a higher priority on attention to the orientation instrument. A Kalman filter was developed which estimates the pilot's perceived position and orientation. The input to the Kalman filter consists of two classes of data. The first class of data consists of noise parameters (indicating parameter uncertainty), conflict signals (e.g. vestibular and kinesthetic signal disagreement), and some nonlinear effects. The Kalman filter's perceived estimates are now the sum of both Class 1 data (good information) and Class 2 data (distorted information). When the estimated perceived position or orientation is significantly different from the actual position or orientation, the pilot is alerted.

  5. The Global Muon Detector Network -GMDN and the space situational awareness

    NASA Astrophysics Data System (ADS)

    Schuch, Nelson Jorge; Munakata, Kazuoki; Dal Lago, Alisson; Marcos Denardini, Clezio; Echer, Ezequiel; Demítrio Gonzalez Alarcon, Walter; da Silva, Marlos; Rigozo, Nivaor R.; Petry, Adriano; Kirsch Pinheiro, Damaris; Braga, Carlos Roberto; Vinicius Dias Silveira, Marcos; Ronan Coelho Stekel, Tardelli; Espindola Antunes, Cassio; Ramos Vieira, Lucas; Kemmerich, Níkolas; Kato, Chihiro; Fushishita, Akira; Fujii, Zenjirou; Bieber, John W.; Evenson, Paul; Kuwabara, Takao; Duldig, Marcus L.; Humble, John E.; Chilingarian, Ashot; Sabbah, Ismail; Jansen, Frank

    Space weather forecasting is a very important tool for the space situational awareness to the space objects, the space environment and related threats and risks for manned and non-manned spacecrafts. The global network of ground based multi-directional detectors (GMDN) can be considered as one example of an important emerging Space Situational Awareness program around the world, since its requirements needs global technical, scientific and logistic collab-oration between several countries in different continents. ICMEs accompanied by a strong shock often forms a high-energy galactic cosmic rays (GCRs) depleted region behind the shock known as a Forbush decrease. The ICME arrival also causes a systematic variation in the GCR streaming (i.e. the directional anisotropy of intensity). The magnitude of the streaming is small (about 1 % or less), but its variation is relevant. Some particles from this suppressed density region traveling with about the speed of light leak into the upstream region, much faster than the approaching shock, creating the possibility of being observed at the earth, by a global net-work of ground based multi-directional detectors (GMDN), as precursory loss-cone anisotropy. Loss-cones are typically visible 4-8 hours ahead of shock arrival for shocks associated with ma-jor geomagnetic storms. A multi-directional muon detector for detection of GCR was installed in 2001, through an international cooperation between Brazil, Japan and USA, and has been in operation since then at the Southern Space Observatory -SSO/CRS/INPE -MCT, (29.4° S, 53.8° W, 480m a.s.l), Sao Martinho da Serra, RS, in southern Brazil. The detector's capability and sensitivity were upgraded in 2005. The observations conducted by this detector are used for forecasting the arrival of the geomagnetic storm and their interplanetary coronal mass ejec-tion (ICME) drivers in the near-earth geospace. The detector measures high-energy GCRs by detecting secondary muons produced from the

  6. Concepts for an Enhanced CubeSat GEO Space Situational Awareness Architecture

    NASA Astrophysics Data System (ADS)

    Morris, K.; Rice, C.

    2014-09-01

    With space becoming more congested, competitive, and contested, new space situational awareness architectures are required to maintain the US advantage in space. This, along with government budget concerns, requires new and potentially radical approaches for performing Space Situational Awareness (SSA). Previous studies have shown that CubeSats can fill holes in the GEO SSA architecture and provide point of light observations of objects. The next logical step is to develop a CubeSat constellation that provides complete coverage of the GEO belt while minimizing the cost to field the architecture. CubeSats provide value to the GEO SSA mission by hosting optical systems and taking pictures along the GEO belt, however, CubeSats do have limitations when it comes to mission assurance. Because of this, mission orbits must be chosen such that failed CubeSats do not become pieces of debris. In addition, recent advances in CubeSat propulsion systems open up new orbits and constellations due to the increased thrust and Delta V. Analyzing the CubeSat capabilities along with launch rideshare options determined the most cost effective architecture to provide high accuracy tracks to all objects at GEO with minimal gaps between observations. Several mission orbits are combined to provide the access and coverage required. The few launches direct to GEO can accommodate CubeSats that can be place in a GEO +500 km orbit. The CubeSats would image the GEO belt as they drift with respect to GEO performing the track and custody missions. More launches occur to the GEO transfer orbit during the and CubeSats ridesharing on these launches reside in an elliptical orbit with the apogee at GEO and the CubeSat propulsion system can be used to raise perigee to maintain a reasonable mission life. CubeSats in this orbit can image the GEO belt near apogee from different angles than the +500 km orbits that contributes to higher accuracy tracks. Finally, ridesharing as hosted payloads on commercial

  7. Situation Awareness and Levels of Automation: Empirical Assessment of Levels of Automation in the Commercial Cockpit

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Schutte, Paul C. (Technical Monitor)

    2000-01-01

    This report has been prepared to closeout a NASA grant to Mississippi State University (MSU) for research into situation awareness (SA) and automation in the advanced commercial aircraft cockpit. The grant was divided into two obligations including $60,000 for the period from May 11, 2000 to December 25, 2000. The information presented in this report summarizes work completed through this obligation. It also details work to be completed with the balance of the current obligation and unobligated funds amounting to $50,043, which are to be granted to North Carolina State University for completion of the research project from July 31, 2000 to May 10, 2001. This research was to involve investigation of a broad spectrum of degrees of automation of complex systems on human-machine performance and SA. The work was to empirically assess the effect of theoretical levels of automation (LOAs) described in a taxonomy developed by Endsley & Kaber (1999) on naive and experienced subject performance and SA in simulated flight tasks. The study was to be conducted in the context of a realistic simulation of aircraft flight control. The objective of this work was to identify LOAs that effectively integrate humans and machines under normal operating conditions and failure modes. In general, the work was to provide insight into the design of automation in the commercial aircraft cockpit. Both laboratory and field investigations were to be conducted. At this point in time, a high-fidelity flight simulator of the McDonald Douglas (MD) 11 aircraft has been completed. The simulator integrates a reconfigurable flight simulator developed by the Georgia Institute of Technology and stand-alone simulations of MD-11 autoflight systems developed at MSU. Use of the simulator has been integrated into a study plan for the laboratory research and it is expected that the simulator will also be used in the field study with actual commercial pilots. In addition to the flight simulator, an electronic

  8. Programming Constructs for Exascale Computing in Support of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ranka, S.; Hayden, E.; Chapman, W.; Sahni, S.; Ritter, G.

    2013-09-01

    Increasing image and signal data burden associated with astronomical image processing in support of space situational awareness implies much-needed growth of computational throughput beyond petascale (1015 FLOP/s) to exascale regimes (1018 FLOP/s, 1018 bytes of memory, 1018 disks and Input/Output (I/O) channels, etc.) In addition to growth in applications data burden and diversity, the breadth and diversity of high performance computing architectures and their various organizations have confounded the development of a single, unifying, practicable model of parallel computation. Therefore, models for parallel Exa Scale processing have leveraged architectural and structural idiosyncrasies, yielding potential misapplications. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Parallel Computing with Exascale Mapping (PCEM) to facilitate efficient mapping of annotated application codes to parallel exascale processors. Our theory, algorithms, software, and experimental results support annotation-based parallelization of application codes for envisioned exascale architectures, based on Image Algebra (IA) [Rit01]. Because of the rigor, completeness, conciseness, and layered design of image algebra notation, application-to-architecture mapping is feasible and scalable for exascale architectures. In particular, parallel operations and programs can be categorized in terms of six types of parallel operations - each type is mapped to heterogeneous exascale processors via simple rules in the PCEM annotation language. In this paper, we overview the opportunities and challenges of exascale computing for image and signal computing in support of astronomical image processing in space situational awareness applications. We discuss software interfaces and several demonstration applications, with performance analysis and results in terms of execution time as well as storage, power, and energy consumption for bus

  9. Manyscale Computing for Sensor Processing in Support of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Chapman, W.; Hayden, E.; Sahni, S.; Ranka, S.

    2014-09-01

    Increasing image and signal data burden associated with sensor data processing in support of space situational awareness implies continuing computational throughput growth beyond the petascale regime. In addition to growing applications data burden and diversity, the breadth, diversity and scalability of high performance computing architectures and their various organizations challenge the development of a single, unifying, practicable model of parallel computation. Therefore, models for scalable parallel processing have exploited architectural and structural idiosyncrasies, yielding potential misapplications when legacy programs are ported among such architectures. In response to this challenge, we have developed a concise, efficient computational paradigm and software called Manyscale Computing to facilitate efficient mapping of annotated application codes to heterogeneous parallel architectures. Our theory, algorithms, software, and experimental results support partitioning and scheduling of application codes for envisioned parallel architectures, in terms of work atoms that are mapped (for example) to threads or thread blocks on computational hardware. Because of the rigor, completeness, conciseness, and layered design of our manyscale approach, application-to-architecture mapping is feasible and scalable for architectures at petascales, exascales, and above. Further, our methodology is simple, relying primarily on a small set of primitive mapping operations and support routines that are readily implemented on modern parallel processors such as graphics processing units (GPUs) and hybrid multi-processors (HMPs). In this paper, we overview the opportunities and challenges of manyscale computing for image and signal processing in support of space situational awareness applications. We discuss applications in terms of a layered hardware architecture (laboratory > supercomputer > rack > processor > component hierarchy). Demonstration applications include

  10. Observer Interface Analysis for Standardization to a Cloud Based Real-Time Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Eilers, J.

    2013-09-01

    The interface analysis from an observer of space objects makes a standard necessary. This standardized dataset serves as input for a cloud based service, which aimed for a near real-time Space Situational Awareness (SSA) system. The system contains all advantages of a cloud based solution, like redundancy, scalability and an easy way to distribute information. For the standard based on the interface analysis of the observer, the information can be separated in three parts. One part is the information about the observer e.g. a ground station. The next part is the information about the sensors that are used by the observer. And the last part is the data from the detected object. Backbone of the SSA System is the cloud based service which includes the consistency check for the observed objects, a database for the objects, the algorithms and analysis as well as the visualization of the results. This paper also provides an approximation of the needed computational power, data storage and a financial approach to deliver this service to a broad community. In this context cloud means, neither the user nor the observer has to think about the infrastructure of the calculation environment. The decision if the IT-infrastructure will be built by a conglomerate of different nations or rented on the marked should be based on an efficiency analysis. Also combinations are possible like starting on a rented cloud and then go to a private cloud owned by the government. One of the advantages of a cloud solution is the scalability. There are about 3000 satellites in space, 900 of them are active, and in total there are about ~17.000 detected space objects orbiting earth. But for the computation it is not a N(active) to N problem it is more N(active) to N(apo peri) quantity of N(all). Instead of 15.3 million possible collisions to calculate a computation of only approx. 2.3 million possible collisions must be done. In general, this Space Situational Awareness System can be used as a

  11. The Efficacy of Using Synthetic Vision Terrain-Textured Images to Improve Pilot Situation Awareness

    NASA Technical Reports Server (NTRS)

    Uenking, Michael D.; Hughes, Monica F.

    2002-01-01

    The General Aviation Element of the Aviation Safety Program's Synthetic Vision Systems (SVS) Project is developing technology to eliminate low visibility induced General Aviation (GA) accidents. SVS displays present computer generated 3-dimensional imagery of the surrounding terrain on the Primary Flight Display (PFD) to greatly enhance pilot's situation awareness (SA), reducing or eliminating Controlled Flight into Terrain, as well as Low-Visibility Loss of Control accidents. SVS-conducted research is facilitating development of display concepts that provide the pilot with an unobstructed view of the outside terrain, regardless of weather conditions and time of day. A critical component of SVS displays is the appropriate presentation of terrain to the pilot. An experimental study is being conducted at NASA Langley Research Center (LaRC) to explore and quantify the relationship between the realism of the terrain presentation and resulting enhancements of pilot SA and performance. Composed of complementary simulation and flight test efforts, Terrain Portrayal for Head-Down Displays (TP-HDD) experiments will help researchers evaluate critical terrain portrayal concepts. The experimental effort is to provide data to enable design trades that optimize SVS applications, as well as develop requirements and recommendations to facilitate the certification process. In this part of the experiment a fixed based flight simulator was equipped with various types of Head Down flight displays, ranging from conventional round dials (typical of most GA aircraft) to glass cockpit style PFD's. The variations of the PFD included an assortment of texturing and Digital Elevation Model (DEM) resolution combinations. A test matrix of 10 terrain display configurations (in addition to the baseline displays) were evaluated by 27 pilots of various backgrounds and experience levels. Qualitative (questionnaires) and quantitative (pilot performance and physiological) data were collected during

  12. Automatic, Rapid Replanning of Satellite Operations for Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Stottler, D.; Mahan, K.

    An important component of Space Situational Awareness (SSA) is knowledge of the status and tasking of blue forces (e.g. satellites and ground stations) and the rapid determination of the impacts of real or hypothetical changes and the ability to quickly replan based on those changes. For example, if an antenna goes down (either for benign reasons or from purposeful interference) determining which missions will be impacted is important. It is not simply the set of missions that were scheduled to utilize that antenna, because highly expert human schedulers will respond to the outage by intelligently replanning the real-time schedule. We have developed an automatic scheduling and deconfliction engine, called MIDAS (for Managed Intelligent Deconfliction And Scheduling) that interfaces to the current legacy system (ESD 2.7) which can perform this replanning function automatically. In addition to determining the impact of failed resources, MIDAS can also replan in response to a satellite under attack. In this situation, additional supports must be quickly scheduled and executed (while minimizing impacts to other missions). Because MIDAS is a fully automatic system, replacing a current human labor-intensive process, and provides very rapid turnaround (seconds) it can also be used by commanders to consider what-if questions and focus limited protection resources on the most critical resources. For example, the commander can determine the impact of a successful attack on one of two ground stations and place heavier emphasis on protecting the station whose loss would create the most severe impacts. The system is currently transitioning to operational use. The MIDAS system and its interface to the legacy ESD 2.7 system will be described along with the ConOps for different types of detailed operational scenarios.

  13. Scientist-Centered Workflow Abstractions via Generic Actors, Workflow Templates, and Context-Awareness for Groundwater Modeling and Analysis

    SciTech Connect

    Chin, George; Sivaramakrishnan, Chandrika; Critchlow, Terence J.; Schuchardt, Karen L.; Ngu, Anne Hee Hiong

    2011-07-04

    A drawback of existing scientific workflow systems is the lack of support to domain scientists in designing and executing their own scientific workflows. Many domain scientists avoid developing and using workflows because the basic objects of workflows are too low-level and high-level tools and mechanisms to aid in workflow construction and use are largely unavailable. In our research, we are prototyping higher-level abstractions and tools to better support scientists in their workflow activities. Specifically, we are developing generic actors that provide abstract interfaces to specific functionality, workflow templates that encapsulate workflow and data patterns that can be reused and adapted by scientists, and context-awareness mechanisms to gather contextual information from the workflow environment on behalf of the scientist. To evaluate these scientist-centered abstractions on real problems, we apply them to construct and execute scientific workflows in the specific domain area of groundwater modeling and analysis.

  14. Labile sleep promotes awareness of abstract knowledge in a serial reaction time task

    PubMed Central

    Kirov, Roumen; Kolev, Vasil; Verleger, Rolf; Yordanova, Juliana

    2015-01-01

    Sleep has been identified as a critical brain state enhancing the probability of gaining insight into covert task regularities. Both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep have been implicated with offline re-activation and reorganization of memories supporting explicit knowledge generation. According to two-stage models of sleep function, offline processing of information during sleep is sequential requiring multiple cycles of NREM and REM sleep stages. However, the role of overnight dynamic sleep macrostructure for insightfulness has not been studied so far. In the present study, we test the hypothesis that the frequency of interactions between NREM and REM sleep stages might be critical for awareness after sleep. For that aim, the rate of sleep stage transitions was evaluated in 53 participants who learned implicitly a serial reaction time task (SRTT) in which a determined sequence was inserted. The amount of explicit knowledge about the sequence was established by verbal recall after a night of sleep following SRTT learning. Polysomnography was recorded in this night and in a control night before and was analyzed to compare the rate of sleep-stage transitions between participants who did or did not gain awareness of task regularity after sleep. Indeed, individual ability of explicit knowledge generation was strongly associated with increased rate of transitions between NREM and REM sleep stages and between light sleep stages and slow wave sleep. However, the rate of NREM–REM transitions specifically predicted the amount of explicit knowledge after sleep in a trait-dependent way. These results demonstrate that enhanced lability of sleep goes along with individual ability of knowledge awareness. Observations suggest that facilitated dynamic interactions between sleep stages, particularly between NREM and REM sleep stages play a role for offline processing which promotes rule extraction and awareness. PMID:26441730

  15. Beyond traffic depiction: conformally integrating the conflict space to support Level 3 situation awareness

    NASA Astrophysics Data System (ADS)

    Tadema, Jochum; Theunissen, Erik; Kirk, Kevin M.

    2010-04-01

    The research described in this paper explores the addition of conformally integrated traffic probes into an egocentric Synthetic Vision (SV) Primary Flight Display (PFD). The underlying thought is that, although the traffic that is predicted to cause a future loss of separation may not lie within the field of view of the display, the location where the loss of separation is predicted to occur always will. Hence, rather than focusing on the depiction of traffic, which contributes to level 2 Situation Awareness (SA), the concept pursues spatially integrated depiction of the airspace where a loss of separation is predicted. This provides readily actionable conflict information, relieving pilots from the traffic position and conflict estimation task and contributing to level 3 SA. The paper describes the integration of the data from the traffic probe into an SV PFD. The advantages of the concept will be illustrated using several traffic conflict scenarios, including an overtaking scenario involving unmanned aircraft. Given that unmanned aircraft may be markedly slower than manned aircraft which operate within the same airspace, a spatially integrated depiction of airspace where a future loss of separation is predicted, can help to preserve safety in classes of airspace that accommodate both manned and unmanned aircraft. Additionally, examples are provided illustrating how traffic probes can support pilots in monitoring the conformance of traffic to the priority rules of 14 CFR 91.113.

  16. Enhancing pilot situation awareness by using an onboard taxi guidance system: an empirical study

    NASA Astrophysics Data System (ADS)

    Lorenz, Bernd; Biella, Markus; Jakobi, Joern

    2004-08-01

    This study supplements prior and concurrent field trials testing the operational benefit of an Advanced Surface Movement Guidance and Control System (A-SMGCS). A-SMGCS comprises a range of new technologies for both the flight deck and the air traffic control tower enabling more efficient and safe airport surface movement. These technologies are expected to significantly increase the throughput at presently highly congested major airports without compromising safety. A flight deck A-SMGCS module is the onboard guidance system TARMAC-AS. This module consists of a controller pilot data link (DL) communication and an electronic moving map (EMM), which also displays airport surface traffic information to the pilot crew. TARMAC-AS is evaluated in an investigation involving twenty commercial pilots who performed a series of approach, landing and taxiing simulation trials that were completed in a fixed-base cockpit simulator. Evaluation was based on subjective questionnaires, effectiveness of taxi operation, and visual scanning strategies derived from eye-point-of-gaze measurements. Results support the notion that EMM + DL improve awareness of the global airport surface situation, particularly under conditions of low visibility, enabling more efficient and timely surface movements and avoidance of conflicting traffic. A potential negative impact of increased head-down times was not substantiated.

  17. Evaluation of a Scalable Information Analytics System for Enhanced Situational Awareness in Mass Casualty Events

    PubMed Central

    Yang, Zhuorui; Ciottone, Gregory

    2016-01-01

    We investigate the utility of DIORAMA-II system which provides enhanced situational awareness within a disaster scene by using real-time visual analytics tools and a collaboration platform between the incident commander and the emergency responders. Our trials were conducted in different geographical areas (feature-rich and featureless regions) and in different lighting conditions (daytime and nighttime). DIORAMA-II obtained considerable time gain in efficiency compared to conventional paper based systems. DIORAMA-II time gain was reflected in reduction of both average triage time per patient (up to 34.3% average triage time reduction per patient) and average transport time per patient (up to 76.3% average transport time reduction per red patient and up to 66.3% average transport time reduction per yellow patient). In addition, DIORAMA-II ensured that no patients were left behind or transported in the incorrect order compared to the conventional method which resulted in patients being left behind and transported in the incorrect order. PMID:27433161

  18. The Effects of Solar Maximum on the Earth's Satellite Population and Space Situational Awareness

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2012-01-01

    The rapidly approaching maximum of Solar Cycle 24 will have wide-ranging effects not only on the number and distribution of resident space objects, but also on vital aspects of space situational awareness, including conjunction assessment processes. The best known consequence of high solar activity is an increase in the density of the thermosphere, which, in turn, increases drag on the vast majority of objects in low Earth orbit. The most prominent evidence of this is seen in a dramatic increase in space object reentries. Due to the massive amounts of new debris created by the fragmentations of Fengyun-1C, Cosmos 2251 and Iridium 33 during the recent period of Solar Minimum, this effect might reach epic levels. However, space surveillance systems are also affected, both directly and indirectly, historically leading to an increase in the number of lost satellites and in the routine accuracy of the calculation of their orbits. Thus, at a time when more objects are drifting through regions containing exceptionally high-value assets, such as the International Space Station and remote sensing satellites, their position uncertainties increase. In other words, as the possibility of damaging and catastrophic collisions increases, our ability to protect space systems is degraded. Potential countermeasures include adjustments to space surveillance techniques and the resetting of collision avoidance maneuver thresholds.

  19. LWIR hyperspectral change detection for target acquisition and situation awareness in urban areas

    NASA Astrophysics Data System (ADS)

    Dekker, Rob J.; Schwering, Piet B. W.; Benoist, Koen W.; Pignatti, Stefano; Santini, Federico; Friman, Ola

    2013-05-01

    This paper studies change detection of LWIR (Long Wave Infrared) hyperspectral imagery. Goal is to improve target acquisition and situation awareness in urban areas with respect to conventional techniques. Hyperspectral and conventional broadband high-spatial-resolution data were collected during the DUCAS trials in Zeebrugge, Belgium, in June 2011. LWIR data were acquired using the ITRES Thermal Airborne Spectrographic Imager TASI-600 that operates in the spectral range of 8.0-11.5 μm (32 band configuration). Broadband data were acquired using two aeroplanemounted FLIR SC7000 MWIR cameras. Acquisition of the images was around noon. To limit the number of false alarms due to atmospheric changes, the time interval between the images is less than 2 hours. Local co-registration adjustment was applied to compensate for misregistration errors in the order of a few pixels. The targets in the data that will be analysed in this paper are different kinds of vehicles. Change detection algorithms that were applied and evaluated are Euclidean distance, Mahalanobis distance, Chronochrome (CC), Covariance Equalisation (CE), and Hyperbolic Anomalous Change Detection (HACD). Based on Receiver Operating Characteristics (ROC) we conclude that LWIR hyperspectral has an advantage over MWIR broadband change detection. The best hyperspectral detector is HACD because it is most robust to noise. MWIR high spatial-resolution broadband results show that it helps to apply a false alarm reduction strategy based on spatial processing.

  20. Enhancing situational awareness by means of visualization and information integration of sensor networks

    NASA Astrophysics Data System (ADS)

    Timonen, Jussi; Vankka, Jouko

    2013-05-01

    This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.

  1. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  2. Operational System-Impact Products for the Space Situational Awareness Environmental Effects Fusion System (SEEFS)

    NASA Astrophysics Data System (ADS)

    Quigley, S.; Scro, K.

    2006-12-01

    The Space Vehicles Directorate of the Air Force Research Laboratory (AFRL/VSBX) and the Technology Applications Division of the Space and Missile Systems Center (SMC/WXT) have combined efforts under the Rapid Prototyping Center (RPC) to design, develop, test, implement, and validate numerical and graphical products for the Air Force Space Command (AFSPC) Space Situational Awareness Environmental Effects Fusion System (SEEFS). These products are generated to analyze, specify, and forecast the effects of the near-earth space environment on Department of Defense weapons, navigation, communications, and surveillance systems. Jointly developed projects that have been completed as prototypes and are undergoing development for real-time operations include a SEEFS architecture and database, five system-impact products, and a high-level decision aid product. This first round of SEEFS products includes Solar Radio Burst Effects (SoRBE) on radar and satellite communications, Radar Auroral Clutter (RAC), Scintillation Effects on radar and satellite communications (RadScint and SatScint), and Satellite Surface and Deep Charge/Discharge (Char/D). The SEEFS architecture and database enable modular use and execution of SEEFS products, and the high-level Decision Aid shows the combined effects of all SEEFS product output on a given asset and on multi-asset missions. This presentation provides a general overview of the SEEFS program, along with details of the first round of products expected to be operational for use in exercises and/or real-time operations in 2007-2008.

  3. Benefits of Applying Predictive Intelligence to the Space Situational Awareness (SSA) Mission

    NASA Astrophysics Data System (ADS)

    Lane, B.; Mann, B.; Millard, C.

    Recent events have heightened the interest in providing improved Space Situational Awareness (SSA) to the warfighter using novel techniques that are affordable and effective. The current Space Surveillance Network (SSN) detects, tracks, catalogs and identifies artificial objects orbiting earth and provides information on Resident Space Objects (RSO) as well as new foreign launch (NFL) satellites. The reactive nature of the SSN provides little to no warning on changes to the expected states of these RSOs or NFLs. This paper will detail the use of the historical data collected on RSOs to characterize what their steady state is, proactively help identify when changes or anomalies have occurred using a pattern-of-like activity based intelligence approach, and apply dynamic, adaptive mission planning to the observables that lead up to a NFL. Multiple hypotheses will be carried along with the intent or the changes to the steady state to assist the SSN in tasking the various sensors in the network to collect the relevant data needed to help prune the number of hypotheses by assigning likelihood to each of those activities. Depending on the hypothesis and thresholds set, these likelihoods will then be used in turn to alert the SSN operator with changes to the steady state, prioritize additional data collections, and provide a watch list of likely next activities.

  4. Augmented reality technology for day/night situational awareness for the dismounted Soldier

    NASA Astrophysics Data System (ADS)

    Gans, Eric; Roberts, David; Bennett, Matthew; Towles, Herman; Menozzi, Alberico; Cook, James; Sherrill, Todd

    2015-05-01

    This paper describes Applied Research Associates' (ARA) recent advances in Soldier augmented reality (AR) technology. Our AR technology, called ARC4, delivers heads-up situational awareness to the dismounted warfighter, enabling non-line-of-sight team coordination in distributed operations. ARC4 combines compact head tracking sensors with advanced pose estimation algorithms, network management software, and an intuitive AR visualization interface to overlay tactical iconic information accurately on the user's real-world view. The technology supports heads-up navigation, blue-force tracking, target handoff, image sharing, and tagging of features in the environment. It integrates seamlessly with established network protocols (e.g., Cursor-on-Target) and Command and Control software tools (e.g., Nett Warrior, Android Tactical Assault Kit) and interfaces with a wide range of daytime see-through displays and night vision goggles to deliver real-time actionable intelligence, day or night. We describe our pose estimation framework, which fuses inertial data, magnetometer data, GPS, DTED, and digital imagery to provide measurements of the operator's precise orientation. These measurements leverage mountainous terrain horizon geometry, known landmarks, and sun position, enabling ARC4 to achieve significant improvements in accuracy compared to conventional INS/GPS solutions of similar size, weight, and power. We detail current research and development efforts toward helmet-based and handheld AR systems for operational use cases and describe extensions to immersive training applications.

  5. Global situational awareness and early warning of high-consequence climate change.

    SciTech Connect

    Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick

    2009-08-01

    Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on a grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.

  6. RealityFlythrough: Enhancing Situational Awareness for Medical Response to Disasters Using Ubiquitous Video

    PubMed Central

    McCurdy, Neil J.; Griswold, William G; Lenert, Leslie A.

    2005-01-01

    The first moments at a disater scene are chaotic. The command center initially operates with little knowledge of hazards, geography and casualties, building up knowledge of the event slowly as information trickles in by voice radio channels. RealityFlythrough is a tele-presence system that stitches together live video feeds in real-time, using the principle of visual closure, to give command center personnel the illusion of being able to explore the scene interactively by moving smoothly between the video feeds. Using RealityFlythrough, medical, fire, law enforcement, hazardous materials, and engineering experts may be able to achieve situational awareness earlier, and better manage scarce resources. The RealityFlythrough system is composed of camera units with off-the-shelf GPS and orientation systems and a server/viewing station that offers access to images collected by the camera units in real time by position/orientation. In initial field testing using an experimental mesh 802.11 wireless network, two camera unit operators were able to create an interactive image of a simulated disaster scene in about five minutes. PMID:16779092

  7. Dual-Use system architecture for a space situational awareness system in Japan

    NASA Astrophysics Data System (ADS)

    Otani, Y.; Kohtake, N.; Ohkami, Y.

    The use of outer space plays a vital role in both defense and civil fields. Since the separation of space activities between civil and defense applications is extremely inefficient, the Dual-Use concept has been considered fundamental for promoting the effective use of space. To the best of the authors' knowledge, most previous studies on Dual-Use focused on the technological aspects, and very few on a system engineering approach to Dual-Use. This left some important issues untouched such as the operational aspects of a system of systems, which need to be understood in a more generic context. This paper presents the results of a conceptual study, system design and management analysis of Dual-Use system architecture. First, an outline of the Dual-Use concept will be described and a definition of Dual-Use given. The effectiveness of applying the Dual-Use system concept to Space Situational Awareness (SSA) for both defense and civil users as a system of systems will then be discussed and investigated with a stakeholders analysis, context diagram and design structure matrix method. It has demonstrated that there is a need for a Dual-Use SSA Data Center which works as a binder between defense and civil systems as well as a data policy for constructing a Dual-Use SSA system.

  8. Artillery/mortar round type classification to increase system situational awareness

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  9. Scene projection by non-linear transforms to a geo-referenced map for situational awareness

    NASA Astrophysics Data System (ADS)

    Krucki, Kevin C.; Asari, Vijay K.

    2015-03-01

    There are many transportation and surveillance cameras currently in use in major cities that are close to the ground and show scenes from a perspective point of view. It can be difficult to follow an object of interest across multiple cameras if many of these cameras are in the same area due to the different orientations of these cameras. This is especially true when compared to wide area aerial surveillance (WAAS). To correct this problem, this research provides a method to non-linearly transform current camera perspective views into real world coordinates that can be placed on a map. Using a perspective transformation, perspective views are transformed into approximate WAAS views and placed on a map. All images are then on the same plane, allowing a user to follow an object of interest across several camera views on a map. While these transformed images will not fit every feature of the map as WAAS images would, the most important aspects of a scene (i.e. roads, cars, people, sidewalks etc.) are accurate enough to give the user situational awareness. Our algorithm is proven to be successful when tested on cameras from the downtown area of Dayton, Ohio.

  10. The Effect of Objective Self Awareness on Compliance in a Reactance Situation.

    ERIC Educational Resources Information Center

    Swart, Christopher; And Others

    1978-01-01

    Objective self-awareness was varied to determine its effect on compliance and reactance. Result was that objective self-awareness increased compliance. Males and females were found to differ in response to a threat to their freedom. (Author)

  11. Using corporate governance to enhance 'long-term situation awareness' and assist in the avoidance of organisation-induced disasters.

    PubMed

    Siemieniuch, C E; Sinclair, M A

    2008-03-01

    This paper considers the issue of how corporate governance can and should deal with the long-term understanding of systems health-what we may call 'long-term situation awareness' (i.e. which evolves and is coherent over time) for organisational systems (and their component sub systems) in the engineering domain. Many characteristics affect long-term situation awareness-the rate of change to processes, pressures for greater efficiency from existing resources, changes in personnel, cultural changes and changes to the operational environment of the organisational systems. Many disasters (e.g. Chernobyl, Flixborough, Piper Alpha) have a causal path that indicates a loss of group situation awareness, over a long period of time. The problem of the gradual, slow drift over many years towards unsafe conduct of company operations is discussed and examples of possible consequences provided. A 'parable' from the world of manufacturing is used to exemplify the problem. The paper goes on to discuss some ways by which this problem could be addressed and longer-term system situational awareness increased; essentially by good corporate governance, knowledge management and ownership of processes. Links are made to the literature on these topics, and a route map to help organisations to gain the benefits is offered. PMID:17624296

  12. Measuring the Effectiveness of Visual Analytics and Data Fusion Techniques on Situation Awareness in Cyber-Security

    ERIC Educational Resources Information Center

    Giacobe, Nicklaus A.

    2013-01-01

    Cyber-security involves the monitoring a complex network of inter-related computers to prevent, identify and remediate from undesired actions. This work is performed in organizations by human analysts. These analysts monitor cyber-security sensors to develop and maintain situation awareness (SA) of both normal and abnormal activities that occur on…

  13. Lexical distributional cues, but not situational cues, are readily used to learn abstract locative verb-structure associations.

    PubMed

    Twomey, Katherine E; Chang, Franklin; Ambridge, Ben

    2016-08-01

    Children must learn the structural biases of locative verbs in order to avoid making overgeneralisation errors (e.g., (∗)I filled water into the glass). It is thought that they use linguistic and situational information to learn verb classes that encode structural biases. In addition to situational cues, we examined whether children and adults could use the lexical distribution of nouns in the post-verbal noun phrase of transitive utterances to assign novel verbs to locative classes. In Experiment 1, children and adults used lexical distributional cues to assign verb classes, but were unable to use situational cues appropriately. In Experiment 2, adults generalised distributionally-learned classes to novel verb arguments, demonstrating that distributional information can cue abstract verb classes. Taken together, these studies show that human language learners can use a lexical distributional mechanism that is similar to that used by computational linguistic systems that use large unlabelled corpora to learn verb meaning. PMID:27183399

  14. Situation Awareness Implications of Adaptive Automation of Air Traffic Controller Information Processing Functions

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; McClernon, Christopher K.; Perry, Carlene M.; Segall, Noa

    2004-01-01

    The goal of this research was to define a measure of situation awareness (SA) in an air traffic control (ATC) task and to assess the influence of adaptive automation (AA) of various information processing functions on controller perception, comprehension and projection. The measure was also to serve as a basis for defining and developing an approach to triggering dynamic control allocations, as part of AA, based on controller SA. To achieve these objectives, an enhanced version of an ATC simulation (Multitask (copyright)) was developed for use in two human factors experiments. The simulation captured the basic functions of Terminal Radar Approach Control (TRACON) and was capable of presenting to operators four different modes of control, including information acquisition, information analysis, decision making and action implementation automation, as well as a completely manual control mode. The SA measure that was developed as part of the research was based on the Situation Awareness Global Assessment Technique (SAGAT), previous goal-directed task analyses of enroute control and TRACON, and a separate cognitive task analysis on the ATC simulation. The results of the analysis on Multitask were used as a basis for formulating SA queries as part of the SAGAT-based approach to measuring controller SA, which was used in the experiments. A total of 16 subjects were recruited for both experiments. Half the subjects were used in Experiment #1, which focused on assessing the sensitivity and reliability of the SA measurement approach in the ATC simulation. Comparisons were made of manual versus automated control. The remaining subjects were used in the second experiment, which was intended to more completely describe the SA implications of AA applied to specific controller information processing functions, and to describe how the measure could ultimately serve as a trigger of dynamic function allocations in the application of AA to ATC. Comparisons were made of the

  15. Objectively Optimized Observation Direction System Providing Situational Awareness for a Sensor Web

    NASA Astrophysics Data System (ADS)

    Aulov, O.; Lary, D. J.

    2010-12-01

    There is great utility in having a flexible and automated objective observation direction system for the decadal survey missions and beyond. Such a system allows us to optimize the observations made by suite of sensors to address specific goals from long term monitoring to rapid response. We have developed such a prototype using a network of communicating software elements to control a heterogeneous network of sensor systems, which can have multiple modes and flexible viewing geometries. Our system makes sensor systems intelligent and situationally aware. Together they form a sensor web of multiple sensors working together and capable of automated target selection, i.e. the sensors “know” where they are, what they are able to observe, what targets and with what priorities they should observe. This system is implemented in three components. The first component is a Sensor Web simulator. The Sensor Web simulator describes the capabilities and locations of each sensor as a function of time, whether they are orbital, sub-orbital, or ground based. The simulator has been implemented using AGIs Satellite Tool Kit (STK). STK makes it easy to analyze and visualize optimal solutions for complex space scenarios, and perform complex analysis of land, sea, air, space assets, and shares results in one integrated solution. The second component is target scheduler that was implemented with STK Scheduler. STK Scheduler is powered by a scheduling engine that finds better solutions in a shorter amount of time than traditional heuristic algorithms. The global search algorithm within this engine is based on neural network technology that is capable of finding solutions to larger and more complex problems and maximizing the value of limited resources. The third component is a modeling and data assimilation system. It provides situational awareness by supplying the time evolution of uncertainty and information content metrics that are used to tell us what we need to observe and the

  16. A Community Format for Electro-Optical Space Situational Awareness (EOSSA) Data Products

    NASA Astrophysics Data System (ADS)

    Payne, T.; Mutschler, S.; Meiser, D.; Crespo, R.; Shine, N.

    2014-09-01

    In this paper, we present a flexible format for compiling radiometry/photometry data with pertinent information about the collections into a file for use by the Space Situational Awareness (SSA) community. With the increase in the number of Electro-Optical (EO) sensors collecting photometric, radiometric, and spectroscopic data on man-made Resident Space Objects (RSOs) for SSA purposes, the EO SSA community of interest and stakeholders in SSA require a file format protocol for reporting the extracted information used for SSA from these datasets. This EOSSA file format provides a foundation to enable data providers to format their processed data. The objective of this format is to handle a variety of photometric measurements from multiple sensors and provide fields for specific parameters containing crucial data about the object, the sensor, the collection, and the processing. The chosen formatting type for EOSSA is the Flexible Image Transport System (FITS). It is maintained by the International Astronomical Union and NASA/GSFC. FITS is the standard data format used in astronomy and has extensions and features that make it easy to transport and archive large scientific data sets. There are types of FITS files for multi-dimensional arrays, such as images, or hyperspectral image cubes, and headers and tables for data extracted from the images, and descriptive information about the data and sensor. The FITS binary table extension is the most efficient data structure to use for the purposes of SSA with respect to ease of programming, computational speed, and storage space. A hierarchical data format (HDF5) has many of these features; however, its biggest drawback to our purpose is that the files are large and require a lot of storage space. Secondly, no standardized HDF5 file structure has been developed and there is no high level application programming interface (API).

  17. A neuroergonomic quasi-experiment: Predictors of situation awareness and display usability while performing complex tasks

    NASA Astrophysics Data System (ADS)

    Harbour, Steven D.; Christensen, James C.

    2015-05-01

    Situation awareness (SA) is the ability and capacity to perceive information and act on it acceptably. Head Up Display (HUD) versus Head Down Display (HDD) manipulation induced variation in task difficulty. HUD and HDD cockpit displays or display designs promoted or impaired SA. The quantitative research presented in this paper examines basic neurocognitive factors in order to identify their specific contributions to the formation of SA, while studying display usability and the effects on SA. Visual attentiveness (Va), perceptiveness (Vp), and spatial working memory (Vswm) were assessed as predictors of SA under varying task difficulty. The study participants were 19 tactical airlift pilots, selected from the Ohio Air National Guard. Neurocognitive tests were administered to the participants prior to flight. In-flight SA was objectively and subjectively assessed for 24 flights. At the completion of this field experiment, the data were analyzed and the tests were statistically significant for the three predictor visual abilities Vp, Va, and Vswm as task difficulty was varied, F(3,11) = 8.125, p = .008. In addition, multiple regression analyses revealed that the visual abilities together predicted a majority of the variance in SA, R2 = 0.753, p = .008. As validated and verified by ECG and EEG data, the HUD yielded a full ability and capacity to anticipate and accommodate trends were as the HDD yielded a saturated ability to anticipate and accommodate trends. Post-hoc tests revealed a Cohen's f2 = 3.05 yielding statistical power to be 0.98. This work results in a significant contribution to the field by providing an improved understanding of SA and path to safer travel for society worldwide. PA 88ABW-2015-1282.

  18. Overview of Human-Centric Space Situational Awareness (SSA) Science and Technology (S&T)

    NASA Astrophysics Data System (ADS)

    Ianni, J.; Aleva, D.; Ellis, S.

    2012-09-01

    A number of organizations, within the government, industry, and academia, are researching ways to help humans understand and react to events in space. The problem is both helped and complicated by the fact that there are numerous data sources that need to be planned (i.e., tasked), collected, processed, analyzed, and disseminated. A large part of the research is in support of the Joint Space Operational Center (JSpOC), National Air and Space Intelligence Center (NASIC), and similar organizations. Much recent research has been specifically targeting the JSpOC Mission System (JMS) which has provided a unifying software architecture. This paper will first outline areas of science and technology (S&T) related to human-centric space situational awareness (SSA) and space command and control (C2) including: 1. Object visualization - especially data fused from disparate sources. Also satellite catalog visualizations that convey the physical relationships between space objects. 2. Data visualization - improve data trend analysis as in visual analytics and interactive visualization; e.g., satellite anomaly trends over time, space weather visualization, dynamic visualizations 3. Workflow support - human-computer interfaces that encapsulate multiple computer services (i.e., algorithms, programs, applications) into a 4. Command and control - e.g., tools that support course of action (COA) development and selection, tasking for satellites and sensors, etc. 5. Collaboration - improve individuals or teams ability to work with others; e.g., video teleconferencing, shared virtual spaces, file sharing, virtual white-boards, chat, and knowledge search. 6. Hardware/facilities - e.g., optimal layouts for operations centers, ergonomic workstations, immersive displays, interaction technologies, and mobile computing. Secondly we will provide a survey of organizations working these areas and suggest where more attention may be needed. Although no detailed master plan exists for human

  19. Flight deck crew coordination indices of workload and situation awareness in terminal operations

    NASA Astrophysics Data System (ADS)

    Ellis, Kyle Kent Edward

    Crew coordination in the context of aviation is a specifically choreographed set of tasks performed by each pilot, defined for each phase of flight. Based on the constructs of effective Crew Resource Management and SOPs for each phase of flight, a shared understanding of crew workload and task responsibility is considered representative of well-coordinated crews. Nominal behavior is therefore defined by SOPs and CRM theory, detectable through pilot eye-scan. This research investigates the relationship between the eye-scan exhibited by each pilot and the level of coordination between crewmembers. Crew coordination was evaluated based on each pilot's understanding of the other crewmember's workload. By contrasting each pilot's workload-understanding, crew coordination was measured as the summed absolute difference of each pilot's understanding of the other crewmember's reported workload, resulting in a crew coordination index. The crew coordination index rates crew coordination on a scale ranging across Excellent, Good, Fair and Poor. Eye-scan behavior metrics were found to reliably identify a reduction in crew coordination. Additionally, crew coordination was successfully characterized by eye-scan behavior data using machine learning classification methods. Identifying eye-scan behaviors on the flight deck indicative of reduced crew coordination can be used to inform training programs and design enhanced avionics that improve the overall coordination between the crewmembers and the flight deck interface. Additionally, characterization of crew coordination can be used to develop methods to increase shared situation awareness and crew coordination to reduce operational and flight technical errors. Ultimately, the ability to reduce operational and flight technical errors made by pilot crews improves the safety of aviation.

  20. Improving Situation Awareness to Reduce Unrecognized Clinical Deterioration and Serious Safety Events

    PubMed Central

    Muething, Stephen; Kotagal, Uma; Ashby, Marshall; Gallagher, Regan; Hall, Dawn; Goodfriend, Marty; White, Christine; Bracke, Tracey M.; DeCastro, Victoria; Geiser, Maria; Simon, Jodi; Tucker, Karen M.; Olivea, Jason; Conway, Patrick H.; Wheeler, Derek S.

    2013-01-01

    BACKGROUND AND OBJECTIVE: Failure to recognize and treat clinical deterioration remains a source of serious preventable harm for hospitalized patients. We designed a system to identify, mitigate, and escalate patient risk by using principles of high-reliability organizations. We hypothesized that our novel care system would decrease transfers determined to be unrecognized situation awareness failures events (UNSAFE). These were defined as any transfer from an acute care floor to an ICU where the patient received intubation, inotropes, or ≥3 fluid boluses in first hour after arrival or before transfer. METHODS: The setting for our observational time series study was a quaternary care children’s hospital. Before initiating tests of change, 2 investigators reviewed recent serious safety events (SSEs) and floor-to-ICU transfers. Collectively, 5 risk factors were associated with each event: family concerns, high-risk therapies, presence of an elevated early warning score, watcher/clinician gut feeling, and communication concerns. Using the model for improvement, an intervention was developed and tested to reliably and proactively identify patient risk and mitigate that risk through unit-based huddles. A 3-times daily inpatient huddle was added to ensure risks were escalated and addressed. Later, a “robust” and explicit plan for at-risk patients was developed and spread. RESULTS: The rate of UNSAFE transfers per 10 000 non-ICU inpatient days was significantly reduced from 4.4 to 2.4 over the study period. The days between inpatient SSEs also increased significantly. CONCLUSIONS: A reliable system to identify, mitigate, and escalate risk was associated with a near 50% reduction in UNSAFE transfers and SSEs. PMID:23230078

  1. BioSense: implementation of a National Early Event Detection and Situational Awareness System.

    PubMed

    Bradley, Colleen A; Rolka, H; Walker, D; Loonsk, J

    2005-08-26

    BioSense is a CDC initiative to support enhanced early detection, quantification, and localization of possible biologic terrorism attacks and other events of public health concern on a national level. The goals of the BioSense initiative are to advance early detection by providing the standards, infrastructure, and data acquisition for near real-time reporting, analytic evaluation and implementation, and early event detection support for state and local public health officials. BioSense collects and analyzes Department of Defense and Department of Veterans Affairs ambulatory clinical diagnoses and procedures and Laboratory Corporation of America laboratory-test orders. The application summarizes and presents analytical results and data visualizations by source, day, and syndrome for each ZIP code, state, and metropolitan area through maps, graphs, and tables. An initial proof of a concept evaluation project was conducted before the system was made available to state and local users in April 2004. User recruitment involved identifying and training BioSense administrators and users from state and local health departments. User support has been an essential component of the implementation and enhancement process. CDC initiated the BioIntelligence Center (BIC) in June 2004 to conduct internal monitoring of BioSense national data daily. BIC staff have supported state and local system monitoring, conducted data anomaly inquiries, and communicated with state and local public health officials. Substantial investments will be made in providing regional, state, and local data for early event detection and situational awareness, test beds for data and algorithm evaluation, detection algorithm development, and data management technologies, while maintaining the focus on state and local public health needs. PMID:16177687

  2. A New Undergraduate Course on the Physics of Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Jost, T.; Dearborn, M.; Chun, F.; McHarg, G.

    As documented in the National Defense Authorization Act for fiscal year 2010, space situational awareness (SSA) is a high priority for the DoD and intelligence community. A fundamental understanding of the technical issues involved with SSA requires knowledge in many different scientific areas. The mission of the United States Air Force Academy (USAFA) is to educate, train, and inspire men and women to become officers of character motivated to lead the United States Air Force in service to our Nation. The physics department is implementing the USAFA mission and the need for technically competent officers in SSA through a comprehensive SSA Initiative. As part of the Initiative, we are developing a course to provide junior or senior cadets with the scientific background necessary to understand the challenges associated with SSA missions and systems. This presentation introduces the planned course objectives and includes a discussion of topics to be covered. Examples of topics include, optically resolved imaging, radiometry and photometry, radar detection and tracking, orbital prediction, debris and collision avoidance, detection of proximity operations and modeling and simulation tools. Cadets will have hands-on opportunities to collect metrics of a designated object using Academy assets such as the 41 cm telescope. Cadets will convert telescope gimbal angles into an orbital data. Cadets will synthesize what they learned in the course by completing the semester with a final project where the collected data is merged with a notional scenario to present a mock decision briefing. This class will be open to cadets of any academic major, since the intent is to prepare officers with basic technical competence in SSA applications. This is critical since graduates of the Academy become commissioned officers in the military and serve in a large variety of leadership positions -- from the researcher to the warfighter. Since we are currently developing the course, the SSA

  3. Silicon Carbide Optics for Space Situational Awareness and Responsive Space Needs

    NASA Astrophysics Data System (ADS)

    Robichaud, J.; Green, J.; Catropa, D.; Rider, B.; Ullathorne, C.

    Over the past 10 years the application of Silicon Carbide (SiC) materials to space based imaging systems has expanded. The aerospace community has long recognized the technical, cost, and schedule benefits associated with the material, and adoption of the technology is facilitated as more successful flight systems are demonstrated. SiC provides a number of technical advantages, as a result of superior material properties. The material can also be manufactured using near-net-shape fabrication processes which provide significant cost and schedule advantages compared with competing material technologies. These technical and manufacturing advantages make SiC uniquely well suited to address the needs associated with Space Situational Awareness (SSA) and Responsive Space (RS) applications. The material has a low coefficient of thermal expansion, and a high thermal conductivity, allowing visible quality imaging in the presence of stressing, and changing, thermal loads. The material's specific stiffness is high, approximately 70% of Beryllium, allowing stiff, lightweight optical systems to be produced. Passively athermal systems have been produced, demonstrating the ability of the material to provide visible quality imaging, without the need for actively controlled focus adjust mechanisms. In addition, SiC structural elements do not outgas, and have no issues with moisture absorption, allowing rapid on-orbit data acquisition. From the manufacturing perspective the material offers dramatic schedule benefits, these come primarily from L-3 SSG's near-net-shape manufacturing process which allows complex, lightweighted optical and structural elements to be produced without the need for costly/time-consuming machining processes. These schedule advantages become more dramatic as the aperture of the system increases, and/or as the number of units increases. In this paper we provide an overview of the technical and manufacturing advantages associated with SiC, provide background

  4. Predictability of GNSS signal observations in support of Space Situational Awareness using passive radar

    NASA Astrophysics Data System (ADS)

    Mahmud, M. S.; Lambert, A.; Benson, C.

    2015-07-01

    GNSS signals have been proposed as emitters of opportunity to enhance Space Situational Awareness (SSA) by tracking small items of space debris using bistatic radar. Although the scattered GNSS signal levels from small items of space debris are incredibly low, the dynamic disturbances of the observed object are very small, and the phase of the scattered signals is well behaved. It is therefore plausible that coherent integration periods on the order of many minutes could be achieved. However, even with long integration periods, very large receiver arrays with extensive, but probably viable, processing are required to recover the scattered signal. Such large arrays will be expensive, and smaller more affordable arrays will collect insufficient signal power to detect the small objects (relative to wavelength) that are necessary to maintain the necessary phase coherency. The investments necessary to build a large receiver array are unlikely without substantial risk reduction. Pini and Akos have previously reported on use of very large radio telescopes to analyse the short-term modulation performance of GNSS satellite signals. In this work we report on tracking of GPS satellites with a radio-astronomy VLBI antenna system to assess the stability of the observed GPS signal over a time period indicative of that proposed for passive radar. We also confirm some of the processing techniques that may be used in both demonstrations and the final system. We conclude from the limited data set that the signal stability when observed by a high-gain tracking antenna and compared against a high quality, low phase-noise clock is excellent, as expected. We conclude by framing further works to reduce risk for a passive radar SSA capability using GNSS signals. http://www.ignss.org/Conferences/PastConferencePapers/2015ConferencePastPapers/2015PeerReviewedPapers/tabid/147/Default.aspx

  5. Variations in Party Line Information Requirements for Flight Crew Situation Awareness in the Datalink Environment

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1994-01-01

    Current Air Traffic Control communications use shared very high frequency (VHF) voice frequencies from which pilots can obtain 'Party Line' Information (PLI) by overhearing communications addressed to other aircraft. A prior study has shown pilots perceive this PLI to be important. There is concern that some critical PLI may be lost in the proposed datalink environment where communications will be discretely addressed. Different types of flight operations will be, equipped with datalink equipment at different times, generating a 'mixed environment' where some pilots may rely on PLI while others will receive their information by datalink. To research the importance, availability and accuracy of PLI and to query pilots on the information they feel is necessary, a survey was distributed to pilots. The pilots were selected from four flight operation groups to study the variations in PLI requirements in the mixed datalink environment. Pilots perceived PLI to be important overall. Specific information elements pertaining to traffic and weather information were identified as Critical. Most PLI elements followed a pattern of higher perceived importance during terminal area operations, final approach and landing. Pilots from the different flight operation groups identified some elements as particularly important. Pilots perceived PLI to be only moderately available and accurate overall. Several PLI elements received very low availability and accuracy ratings but are perceived as important. In a free response question designed to find the information requirements for global situation awareness, pilots frequently indicated a need for traffic and weather information. These elements were also frequently cited by them as information that could be presented by a datalink system. The results of this survey identify specific concerns to be addressed when implementing datalink communications.

  6. "Achieving Ensemble": Communication in Orthopaedic Surgical Teams and the Development of Situation Awareness--An Observational Study Using Live Videotaped Examples

    ERIC Educational Resources Information Center

    Bleakley, Alan; Allard, Jon; Hobbs, Adrian

    2013-01-01

    Focused dialogue, as good communication between practitioners, offers a condition of possibility for development of high levels of situation awareness in surgical teams. This has been termed "achieving ensemble". Situation awareness grasps what is happening in time and space with regard to one's own unfolding work in relation to that of…

  7. Relative Cost and Performance Comparison of GEO Space Situational Awareness Architectures

    NASA Astrophysics Data System (ADS)

    Morris, K.; Rice, C.; Little, E.

    2014-09-01

    With declining government budgets, new architecture approaches are being studied to determine the most cost effective GEO Space Situational Awareness architectures. Looking at four different architecture concepts utilizing CubeSats, Microsats, Hosted Payload Sensors, and larger satellites, highlights the benefits and regrets of each class of spacecraft that helps support upgrades to the current space surveillance network. CubeSats have been shown in previous studies to provide GEO SSA mission value while maintaining affordability. However, there are limitations such as mission assurance that will increase the costs over time. Microsats provide higher quality SSA with less restrictions, but the rideshare options to GEO become fewer. Hosted Payload sensors on future GEO spacecraft can provide affordable access to space but are constrained by the host orbit. Larger satellites can provide exquisite SSA information but are more expensive individually and require dedicated launches. To credibly compare costs, the analysis is based on launch, spacecraft, ground and operations, spacecraft replenishment based on expected mission life, and integration costs over the life of the architecture. Performance is based on observations of all GEO objects with evaluation on percentage of time with access to each object, and the revisit times to each object. The results show the CubeSat architecture can provide good performance for access and percentages with a low initial investment but require increased costs over time to cover the lower mission assurance. Hosted payloads suffer performance due to limited GEO locations but at an affordable cost. Microsats provide a balance between performance and cost but have lower revisit rates due to fewer spacecraft in orbit. The larger satellites provide high performance but require higher costs mostly due to the dedicated launches. All of these architectures have benefits and regrets that help to highlight where future investments are needed

  8. Sensor-scheduling simulation of disparate sensors for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Hobson, T.; Clarkson, I.

    2011-09-01

    The art and science of space situational awareness (SSA) has been practised and developed from the time of Sputnik. However, recent developments, such as the accelerating pace of satellite launch, the proliferation of launch capable agencies, both commercial and sovereign, and recent well-publicised collisions involving man-made space objects, has further magnified the importance of timely and accurate SSA. The United States Strategic Command (USSTRATCOM) operates the Space Surveillance Network (SSN), a global network of sensors tasked with maintaining SSA. The rapidly increasing number of resident space objects will require commensurate improvements in the SSN. Sensors are scarce resources that must be scheduled judiciously to obtain measurements of maximum utility. Improvements in sensor scheduling and fusion, can serve to reduce the number of additional sensors that may be required. Recently, Hill et al. [1] have proposed and developed a simulation environment named TASMAN (Tasking Autonomous Sensors in a Multiple Application Network) to enable testing of alternative scheduling strategies within a simulated multi-sensor, multi-target environment. TASMAN simulates a high-fidelity, hardware-in-the-loop system by running multiple machines with different roles in parallel. At present, TASMAN is limited to simulations involving electro-optic sensors. Its high fidelity is at once a feature and a limitation, since supercomputing is required to run simulations of appreciable scale. In this paper, we describe an alternative, modular and scalable SSA simulation system that can extend the work of Hill et al with reduced complexity, albeit also with reduced fidelity. The tool has been developed in MATLAB and therefore can be run on a very wide range of computing platforms. It can also make use of MATLAB’s parallel processing capabilities to obtain considerable speed-up. The speed and flexibility so obtained can be used to quickly test scheduling algorithms even with a

  9. Space Situational Awareness of Large Numbers of Payloads From a Single Deployment

    NASA Astrophysics Data System (ADS)

    Segerman, A.; Byers, J.; Emmert, J.; Nicholas, A.

    2014-09-01

    The nearly simultaneous deployment of a large number of payloads from a single vehicle presents a new challenge for space object catalog maintenance and space situational awareness (SSA). Following two cubesat deployments last November, it took five weeks to catalog the resulting 64 orbits. The upcoming Kicksat mission will present an even greater SSA challenge, with its deployment of 128 chip-sized picosats. Although all of these deployments are in short-lived orbits, future deployments will inevitably occur at higher altitudes, with a longer term threat of collision with active spacecraft. With such deployments, individual scientific payload operators require rapid precise knowledge of their satellites' locations. Following the first November launch, the cataloguing did not initially associate a payload with each orbit, leaving this to the satellite operators. For short duration missions, the time required to identify an experiment's specific orbit may easily be a large fraction of the spacecraft's lifetime. For a Kicksat-type deployment, present tracking cannot collect enough observations to catalog each small object. The current approach is to treat the chip cloud as a single catalog object. However, the cloud dissipates into multiple subclouds and, ultimately, tiny groups of untrackable chips. One response to this challenge may be to mandate installation of a transponder on each spacecraft. Directional transponder transmission detections could be used as angle observations for orbit cataloguing. Of course, such an approach would only be employable with cooperative spacecraft. In other cases, a probabilistic association approach may be useful, with the goal being to establish the probability of an element being at a given point in space. This would permit more reliable assessment of the probability of collision of active spacecraft with any cloud element. This paper surveys the cataloguing challenges presented by large scale deployments of small spacecraft

  10. An Experimental Study of the Effects of Automation on Pilot Situational Awareness in the Datalink ATC Environment

    NASA Technical Reports Server (NTRS)

    Hahn, Edward C.; Hansman, R. John, Jr.

    1992-01-01

    An experiment to study how automation, when used in conjunction with datalink for the delivery of air traffic control (ATC) clearance amendments, affects the situational awareness of aircrews was conducted. The study was focused on the relationship of situational awareness to automated Flight Management System (FMS) programming and the readback of ATC clearances. Situational awareness was tested by issuing nominally unacceptable ATC clearances and measuring whether the error was detected by the subject pilots. The experiment also varied the mode of clearance delivery: Verbal, Textual, and Graphical. The error detection performance and pilot preference results indicate that the automated programming of the FMS may be superior to manual programming. It is believed that automated FMS programming may relieve some of the cognitive load, allowing pilots to concentrate on the strategic implications of a clearance amendment. Also, readback appears to have value, but the small sample size precludes a definite conclusion. Furthermore, because textual and graphical modes of delivery offer different but complementary advantages for cognitive processing, a combination of these modes of delivery may be advantageous in a datalink presentation.

  11. Bird's Eye View - A 3-D Situational Awareness Tool for the Space Station

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam; Chamitoff, Gregory

    2002-01-01

    Even as space-qualified computer hardware lags well behind the latest home computers, the possibility of using high-fidelity interactive 3-D graphics for displaying important on board information has finally arrived, and is being used on board the International Space Station (ISS). With the quantity and complexity of space-flight telemetry, 3-D displays can greatly enhance the ability of users, both onboard and on the ground, to interpret data quickly and accurately. This is particularly true for data related to vehicle attitude, position, configuration, and relation to other objects on the ground or in-orbit Bird's Eye View (BEV) is a 3-D real-time application that provides a high degree of Situational Awareness for the crew. Its purpose is to instantly convey important motion-related parameters to the crew and mission controllers by presenting 3-D simulated camera views of the International Space Station (ISS) in its actual environment Driven by actual telemetry, and running on board, as well as on the ground, the user can visualize the Space Station relative to the Earth, Sun, stars, various reference frames, and selected targets, such as ground-sites or communication satellites. Since the actual ISS configuration (geometry) is also modeled accurately, everything from the alignment of the solar panels to the expected view from a selected window can be visualized accurately. A virtual representation of the Space Station in real time has many useful applications. By selecting different cameras, the crew or mission control can monitor the station's orientation in space, position over the Earth, transition from day to night, direction to the Sun, the view from a particular window, or the motion of the robotic arm. By viewing the vehicle attitude and solar panel orientations relative to the Sun, the power status of the ISS can be easily visualized and understood. Similarly, the thermal impacts of vehicle attitude can be analyzed and visually confirmed. Communication

  12. Situational awareness sensor management of space-based EO/IR and airborne GMTI radar for road targets tracking

    NASA Astrophysics Data System (ADS)

    El-Fallah, A.; Zatezalo, A.; Mahler, R.; Mehra, R. K.; Pham, K.

    2010-04-01

    Dynamic sensor management of heterogeneous and distributed sensors presents a daunting theoretical and practical challenge. We present a Situational Awareness Sensor Management (SA-SM) algorithm for the tracking of ground targets moving on a road map. It is based on the previously developed information-theoretic Posterior Expected Number of Targets of Interest (PENTI) objective function, and utilizes combined measurements form an airborne GMTI radar, and a space-based EO/IR sensor. The resulting filtering methods and techniques are tested and evaluated. Different scan rates for the GMTI radar and the EO/IR sensor are evaluated and compared.

  13. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  14. Prevention of runway incursions due to closed runways or unsuitable runway choices by enhanced crew situational awareness and alerting

    NASA Astrophysics Data System (ADS)

    Vernaleken, Christoph; Urvoy, Carole; Klingauf, Uwe

    2007-04-01

    Of all incidents on the aerodrome surface, Runway Incursions, i.e. the incorrect presence of an aircraft on a runway, are the by far most safety-critical, resulting in many fatalities if they lead to an accident. A lack of flight crew situational awareness is almost always a causal factor in these occurrences, and like any Runway Incursion, the special case of choosing a closed or unsuitable runway - including mistaking a taxiway for a runway - may have catastrophic consequences, as the Singapore Airlines Flight SQ006 accident at Taipei in 2000 and, most recently, Comair Flight 5191, tragically show. In other incidents, such as UPS Flight 896 at Denver in 2001 departing from a closed runway or China Airlines Flight 11 taking off from a taxiway at Anchorage in 2002, a disaster was only avoided by mere luck. This paper describes how the concept for an onboard Surface Movement Awareness and Alerting System (SMAAS) can be applied to this special case and might help to prevent flight crews from taking off or landing on closed runways, unsuitable runways or taxiways, and presents initial evaluation results. An airport moving map based on an ED-99A/DO- 272A compliant Aerodrome Mapping Database (AMDB) is used to visualize runway closures and other applicable airport restrictions, based on NOTAM and D-ATIS data, to provide the crew with enhanced situational awareness in terms of position and operational environment. If this is not sufficient to prevent a hazardous situation, e.g. in case the crew is distracted, a tailored alerting concept consisting of both visual and aural alerts consistent with existing warning systems catches the crew's attention. For runway closures and restrictions, particularly those of temporary nature, the key issue for both extended situational awareness and alerting is how to get the corresponding data to the aircraft's avionics. Therefore, this paper also develops the concept of a machine-readable electronic Pre-flight Information Bulletin (e

  15. Architecture Design for the Space Situational Awareness System in the Preparedness Plan for Space Hazards of Republic of Korea

    NASA Astrophysics Data System (ADS)

    Choi, E.; Cho, S.; Shin, S.; Park, J.; Kim, J.; Kim, D.

    The threat posed by asteroids and comets has become one of the important issues. Jinju meteorite discovered in March 2014 has expanded the interest of the people of the fall of the natural space objects. Furthermore, the growing quantity of space debris is a serious threat to satellites and other spacecraft, which risk being damaged or even destroyed. In May of 2014, Korea established the preparedness plan for space hazards according to the space development promotion act which is amended to take action with respect to hazards from space. This plan is largely composed of 3 items such as system, technology and infrastructure. System is included the establishment and management of national space hazards headquarters at risk situation. Korea Astronomy and Space Science Institute (KASI) was designated as a space environment monitoring agency under the ministry of science, ICT and future planning (MSIP). Technology is supposed to develop the space situational awareness system that can monitor and detect space objects. For infrastructure, research and development of core technology will be promoted for capabilities improvement of space hazards preparedness such as software tools, application and data systems. This paper presents the architectural design for building space situational awareness system. The trade-off study of space situational awareness system for the Korea situation was performed. The results have shown the proposed architectural design. The baseline architecture is composed of Integrated Analysis System and Space Objects Monitoring System. Integrated Analysis System collects the status data from Space Objects Monitoring System and analyzes the space risk information through a data processing. For Space Objects Monitoring System, the all-sky surveillance camera, array radar and meteoroid surveillance sensor networks were considered. This system focuses on not only the threat of a large artificial satellite and natural space objects such as asteroids that

  16. The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.

    2003-01-01

    In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.

  17. Using Airborne Remote Sensing to Increase Situational Awareness in Civil Protection and Humanitarian Relief - the Importance of User Involvement

    NASA Astrophysics Data System (ADS)

    Römer, H.; Kiefl, R.; Henkel, F.; Wenxi, C.; Nippold, R.; Kurz, F.; Kippnich, U.

    2016-06-01

    Enhancing situational awareness in real-time (RT) civil protection and emergency response scenarios requires the development of comprehensive monitoring concepts combining classical remote sensing disciplines with geospatial information science. In the VABENE++ project of the German Aerospace Center (DLR) monitoring tools are being developed by which innovative data acquisition approaches are combined with information extraction as well as the generation and dissemination of information products to a specific user. DLR's 3K and 4k camera system which allow for a RT acquisition and pre-processing of high resolution aerial imagery are applied in two application examples conducted with end users: a civil protection exercise with humanitarian relief organisations and a large open-air music festival in cooperation with a festival organising company. This study discusses how airborne remote sensing can significantly contribute to both, situational assessment and awareness, focussing on the downstream processes required for extracting information from imagery and for visualising and disseminating imagery in combination with other geospatial information. Valuable user feedback and impetus for further developments has been obtained from both applications, referring to innovations in thematic image analysis (supporting festival site management) and product dissemination (editable web services). Thus, this study emphasises the important role of user involvement in application-related research, i.e. by aligning it closer to user's requirements.

  18. Fusion of Multi-View and Multi-Scale Aerial Imagery for Real-Time Situation Awareness Applications

    NASA Astrophysics Data System (ADS)

    Zhuo, X.; Kurz, F.; Reinartz, P.

    2015-08-01

    Manned aircraft has long been used for capturing large-scale aerial images, yet the high costs and weather dependence restrict its availability in emergency situations. In recent years, MAV (Micro Aerial Vehicle) emerged as a novel modality for aerial image acquisition. Its maneuverability and flexibility enable a rapid awareness of the scene of interest. Since these two platforms deliver scene information from different scale and different view, it makes sense to fuse these two types of complimentary imagery to achieve a quick, accurate and detailed description of the scene, which is the main concern of real-time situation awareness. This paper proposes a method to fuse multi-view and multi-scale aerial imagery by establishing a common reference frame. In particular, common features among MAV images and geo-referenced airplane images can be extracted by a scale invariant feature detector like SIFT. From the tie point of geo-referenced images we derive the coordinate of corresponding ground points, which are then utilized as ground control points in global bundle adjustment of MAV images. In this way, the MAV block is aligned to the reference frame. Experiment results show that this method can achieve fully automatic geo-referencing of MAV images even if GPS/IMU acquisition has dropouts, and the orientation accuracy is improved compared to the GPS/IMU based georeferencing. The concept for a subsequent 3D classification method is also described in this paper.

  19. Distributed situation awareness in complex collaborative systems: A field study of bridge operations on platform supply vessels

    PubMed Central

    Sandhåland, Hilde; Oltedal, Helle A; Hystad, Sigurd W; Eid, Jarle

    2015-01-01

    This study provides empirical data about shipboard practices in bridge operations on board a selection of platform supply vessels (PSVs). Using the theoretical concept of distributed situation awareness, the study examines how situation awareness (SA)-related information is distributed and coordinated at the bridge. This study thus favours a systems approach to studying SA, viewing it not as a phenomenon that solely happens in each individual's mind but rather as something that happens between individuals and the tools that they use in a collaborative system. Thus, this study adds to our understanding of SA as a distributed phenomenon. Data were collected in four field studies that lasted between 8 and 14 days on PSVs that operate on the Norwegian continental shelf and UK continental shelf. The study revealed pronounced variations in shipboard practices regarding how the bridge team attended to operational planning, communication procedures, and distracting/interrupting factors during operations. These findings shed new light on how SA might decrease in bridge teams during platform supply operations. The findings from this study emphasize the need to assess and establish shipboard practices that support the bridge teams' SA needs in day-to-day operations. Practitioner points Provides insights into how shipboard practices that are relevant to planning, communication and the occurrence of distracting/interrupting factors are realized in bridge operations. Notes possible areas for improvement to enhance distributed SA in bridge operations. PMID:26028823

  20. Identification of Important "Party Line" Information Elements and the Implications for Situational Awareness in the Datalink Environment

    NASA Technical Reports Server (NTRS)

    Midkiff, Alan H.; Hansman, R. John, Jr.

    1992-01-01

    Air/ground digital datalink communications are an integral component of the FAA's Air Traffic Control (ATC) modernization strategy. With the introduction of datalink into the ATC system, there is concern over the potential loss of situational awareness by flight crews due to the reduction in the "party line" information available to the pilot. "Party line" information is gleaned by flight crews overhearing communications between ATC and other aircraft. In the datalink environment, party line information may not be available due to the use of discrete addressing. Information concerning the importance, availability, and accuracy of party line elements was explored through an opinion survey of active air carrier flight crews. The survey identified numerous important party line elements. These elements were scripted into a full-mission flight simulation. The flight simulation experiment examined the utilization of party line information by studying subject responses to the specific information elements. Some party line elements perceived as important were effectively utilized by flight crews in the simulated operational environment. However, other party line elements stimulated little or no increase in situational awareness. The ability to assimilate and use party line information appeared to be dependent on workload, time availability, and the tactical/strategic nature of the situations. In addition, the results of both the survey and the simulation indicated that the importance of party line information appeared to be greatest for operations near or on the airport. This indicates that caution must be exercised when implementing datalink communications in these high workload, tactical sectors. This document is based on the thesis of Alan H. Midkiff submitted in partial fulfillment of the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology.

  1. The importance of shared mental models and shared situation awareness for transforming robots from tools to teammates

    NASA Astrophysics Data System (ADS)

    Ososky, Scott; Schuster, David; Jentsch, Florian; Fiore, Stephen; Shumaker, Randall; Lebiere, Christian; Kurup, Unmesh; Oh, Jean; Stentz, Anthony

    2012-06-01

    Current ground robots are largely employed via tele-operation and provide their operators with useful tools to extend reach, improve sensing, and avoid dangers. To move from robots that are useful as tools to truly synergistic human-robot teaming, however, will require not only greater technical capabilities among robots, but also a better understanding of the ways in which the principles of teamwork can be applied from exclusively human teams to mixed teams of humans and robots. In this respect, a core characteristic that enables successful human teams to coordinate shared tasks is their ability to create, maintain, and act on a shared understanding of the world and the roles of the team and its members in it. The team performance literature clearly points towards two important cornerstones for shared understanding of team members: mental models and situation awareness. These constructs have been investigated as products of teams as well; amongst teams, they are shared mental models and shared situation awareness. Consequently, we are studying how these two constructs can be measured and instantiated in human-robot teams. In this paper, we report results from three related efforts that are investigating process and performance outcomes for human robot teams. Our investigations include: (a) how human mental models of tasks and teams change whether a teammate is human, a service animal, or an advanced automated system; (b) how computer modeling can lead to mental models being instantiated and used in robots; (c) how we can simulate the interactions between human and future robotic teammates on the basis of changes in shared mental models and situation assessment.

  2. Dynamic 3D visual analytic tools: a method for maintaining situational awareness during high tempo warfare or mass casualty operations

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2010-04-01

    Maintaining Situational Awareness (SA) is crucial to the success of high tempo operations, such as war fighting and mass casualty events (bioterrorism, natural disasters). Modern computer and software applications attempt to provide command and control manager's situational awareness via the collection, integration, interrogation and display of vast amounts of analytic data in real-time from a multitude of data sources and formats [1]. At what point does the data volume and displays begin to erode the hierarchical distributive intelligence, command and control structure of the operation taking place? In many cases, people tasked with making decisions, have insufficient experience in SA of high tempo operations and become overwhelmed easily as vast amounts of data begin to be displayed in real-time as an operation unfolds. In these situations, where data is plentiful and the relevance of the data changes rapidly, there is a chance for individuals to target fixate on those data sources they are most familiar. If these individuals fall into this type of pitfall, they will exclude other data that might be just as important to the success of the operation. To counter these issues, it is important that the computer and software applications provide a means for prompting its users to take notice of adverse conditions or trends that are critical to the operation. This paper will discuss a new method of displaying data called a Crisis ViewTM, that monitors critical variables that are dynamically changing and allows preset thresholds to be created to prompt the user when decisions need to be made and when adverse or positive trends are detected. The new method will be explained in basic terms, with examples of its attributes and how it can be implemented.

  3. Towards a conceptual model of motorcyclists' Risk Awareness: a comparative study of riding experience effect on hazard detection and situational criticality assessment.

    PubMed

    Bellet, Thierry; Banet, Aurélie

    2012-11-01

    This research investigates risk awareness abilities among different populations of motorcyclists. Risk awareness is defined here as an extension of the Situational Awareness theory applied to critical driving situations. This study is more particularly focused on two main cognitive abilities supporting risk awareness: hazard detection, corresponding to riders' skill to perceive critical event occurring in the road environment and to identify it as a threat, and situational criticality assessment, corresponding to a subjective assessment of the accident risk. From this theoretical framework, the aim is to compare motorcyclists' performances in risk awareness according to their experience in motorcycling. Four populations of motorcyclists are investigated: Professional (Policemen), Experienced riders, Novices, and Beginners. Method implemented is based of a set of 25 video sequences of driving situations presenting a risk of collision. Participants' task was firstly to stop the video film if they detect a hazard. Then, at the end of each sequence, they have also to assess the criticality of the driving situation as a whole, with a Likert scale (from 0 to 100% of criticality). Results obtained show that cognitive abilities in both (i) hazard detection and (ii) situational criticality assessment depend of the riding experience, and are learnt from two different timing. On one side, Professional and Experienced riders obtained better results than Novices and Beginners for hazard perception (i.e. shortest reaction time). In terms of situational criticality assessment, Beginners underestimate the situational risk and seem overconfident in their abilities to manage the situational risk, against Novices, Professional and Experienced riders, who have better competences in criticality assessment. From these empirical results, a conceptual model of motorcyclists' Risk Awareness is proposed. PMID:23036392

  4. Evaluation of hybrid fusion 2+ approach for providing air-to-air situational awareness and threat assessment

    NASA Astrophysics Data System (ADS)

    Lee, Kangjin David; Wiesenfeld, Eric; Colony, Mike

    2006-05-01

    Modern combat aircraft pilots increasingly rely on high-level fusion models (JDL Levels 2/3) to provide real-time engagement support in hostile situations. These models provide both Situational Awareness (SA) and Threat Assessment (TA) based on data and the relationships between the data. This information represents two distinct classes of uncertainty: vagueness and ambiguity. To address the needs associated with modeling both of these types of data uncertainty, an innovative hybrid approach was recently introduced, combining probability theory and possibility theory into a unified computational framework. The goal of this research is to qualitatively and quantitatively address the advantages and disadvantages of adopting this hybrid framework as well as identifying instances in which the combined model outperforms or is more appropriate than more classical inference approaches. To accomplish this task, domain specific models will be developed using different theoretical approaches and conventions, and then evaluated in comparison to situational ground truth to determine their accuracy and fidelity. Additionally, the performance tradeoff between accuracy and complexity will be examined in terms of computational cost to determine both the advantages and disadvantages of each approach.

  5. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier

  6. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  7. The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    NASA Technical Reports Server (NTRS)

    Krause, L. Habash; Minow, J. I.; Coffey, V. N.; Gilchrist, Brian E.; Hoegy, W. R.

    2014-01-01

    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for real-time monitoring. Space environment data collected in real-time (or near-real time) can be used operationally for both real-time alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for long-term "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for short-term "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wake-induced ion waves in both

  8. A System to Provide Real-Time Collaborative Situational Awareness by Web Enabling a Distributed Sensor Network

    NASA Technical Reports Server (NTRS)

    Panangadan, Anand; Monacos, Steve; Burleigh, Scott; Joswig, Joseph; James, Mark; Chow, Edward

    2012-01-01

    In this paper, we describe the architecture of both the PATS and SAP systems and how these two systems interoperate with each other forming a unified capability for deploying intelligence in hostile environments with the objective of providing actionable situational awareness of individuals. The SAP system works in concert with the UICDS information sharing middleware to provide data fusion from multiple sources. UICDS can then publish the sensor data using the OGC's Web Mapping Service, Web Feature Service, and Sensor Observation Service standards. The system described in the paper is able to integrate a spatially distributed sensor system, operating without the benefit of the Web infrastructure, with a remote monitoring and control system that is equipped to take advantage of SWE.

  9. An Overview of Recent Australian Commitments to Space Situational Awareness from a Systems Analysis Perspective

    NASA Astrophysics Data System (ADS)

    Newsam, G.; Picone, P.

    2013-09-01

    Over the last five years Australia has moved from a position of no national interest or commitment to SSA to articulation of a national policy that commits the country to developing SSA capabilities, investment approaching A$100 million dollars in SSA technology and systems, and a significant expansion of the SSA R&D base. As might be expected this has not been a totally smooth or pain-free process: this paper will review these developments and what lessons can be drawn from it to inform continued developments. In particular the paper will focus on a review of the installation and development of new surveillance of space sensors in Australia, and on the surveillance systems analysis done in support of these activities. The main finding is that for much of this time the analysis has lagged initiatives and choices rather than leading them: its primary role has been to educate or inform those faced with having to make decisions on externally defined issues or initiatives, as opposed to helping frame issues or initiatives de novo. The situation is changing, however: knowledge of SSA is accumulating within defence, government and the wider R&D community in Australia, and the commitments of organisations to SSA operations and to significantly expanded R&D programs presents the opportunity to use systems analysis to seed and shape, as opposed to just help play catch-up.

  10. A Framework for Achieving Situational Awareness during Crisis based on Twitter Analysis

    NASA Astrophysics Data System (ADS)

    Zielinski, Andrea; Tokarchuk, Laurissa; Middleton, Stuart; Chaves, Fernando

    2013-04-01

    Decision Support Systems for Natural Crisis Management increasingly employ Web 2.0 and 3.0 technologies for future collaborative decision making, including the use of social networks like Twitter. However, human sensor data is not readily accessible and interpretable, since the texts are unstructured, noisy and available in various languages. The present work focusses on the detection of crisis events in a multilingual setting as part of the FP7-funded EU project TRIDEC and is motivated by the goal to establish a Tsunami warning system for the Mediterranean. It is integrated into a dynamic spatial-temporal decision making component with a command and control unit's graphical user interface that presents all relevant information to the human operator to support critical decision-support. To this end, a tool for the interactive visualization of geospatial data is implemented: All tweets with an exact timestamp or geo-location are monitored on the map in real-time so that the operator on duty can get an overall picture of the situation. Apart from the human sensor data, the seismic sensor data will appear also on the same screen. Signs of abnormal activity from twitter usage in social networks as well as in sensor networks devices can then be used to trigger official warning alerts according to the CAP message standard. Whenever a certain threshold of relevant tweets in a HASC region (Hierarchical Administrative Subdivision Code) is exceeded, the twitter activity in this administrative region will be shown on a map. We believe that the following functionalities are crucial for monitoring crisis, making use of text mining and network analysis techniques: Focussed crawling, trustworthyness analysis geo-parsing, and multilingual tweet classification. In the first step, the Twitter Streaming API accesses the social data, using an adaptive keyword list (focussed crawling). Then, tweets are filtered and aggregated to form counts for a certain time-span (e.g., an interval of

  11. Accounting for human neurocognitive function in the design and evaluation of 360 degree situational awareness display systems

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott

    2011-06-01

    The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.

  12. Conscious Presence and Self Control as a measure of situational awareness in soldiers – A validation study

    PubMed Central

    2013-01-01

    Background The concept of `mindfulness´ was operationalized primarily for patients with chronic stressors, while it is rarely used in reference to soldiers. We intended to validate a modified instrument on the basis of the Freiburg Mindfulness Inventory (FMI) to measure soldiers’ situational awareness (“mindfulness”) in stressful situations/missions. The instrument we will explore in this paper is termed the Conscious Presence and Self Control (CPSC) scale. Methods The CPSC and further instruments, i.e., Perceived Stress Scale (PSS), stressful military experiences (PCL-M), life satisfaction (BMLSS), Positive Life Construction (ePLC), and self-perceived health affections (VAS), were administered to 281 German soldiers. The soldiers were mainly exposed to explosive ordnance, military police, medical service, and patients with posttraumatic stress disorders. Results The 10-item CPSC scale exhibited a one-factorial structure and showed a good internal consistence (Cronbach´s alpha = .86); there were neither ceiling nor bottom effects. The CPSC scores correlated moderately with Positive Life Construction and life satisfaction, and negatively with perceived stress and health affections. Regression analyses indicated that posttraumatic stress disorder symptoms (negative), and the development of effective strategies to deal with disturbing pictures and experiences (positive) were the best predictor of soldiers´ CPSC scores. Soldiers with health affections exhibiting impact upon their daily life had significantly lower CPSC scores than those without impairment (F=8.1; p < .0001). Conclusions As core conceptualizations of `mindfulness´ are not necessarily discussed in a military context, the FMI was adopted for military personnel populations, while its two factorial structure with the sub-constructs `acceptance´ and `presence´ was retained. The resulting 10-item CPSC scale had good internal consistence, sound associations with measures of health affections and

  13. Team situation awareness in nuclear power plant process control: A literature review, task analysis and future research

    SciTech Connect

    Ma, R.; Kaber, D. B.; Jones, J. M.; Starkey, R. L.

    2006-07-01

    Operator achievement and maintenance of situation awareness (SA) in nuclear power plant (NPP) process control has emerged as an important concept in defining effective relationships between humans and automation in this complex system. A literature review on factors influencing SA revealed several variables to be important to team SA, including the overall task and team goals, individual tasks, team member roles, and the team members themselves. Team SA can also be adversely affected by a range of factors, including stress, mental over- or under-loading, system design (including human-machine interface design), complexity, human error in perception, and automation. Our research focused on the analysis of 'shared' SA and team SA among an assumed three-person, main-control-room team. Shared SA requirements represent the knowledge that is held in common by NPP operators, and team SA represents the collective, unique knowledge of all operators. The paper describes an approach to goal-directed task analysis (GDTA) applied to NPP main control room operations. In general, the GDTA method reveals critical operator decision and information requirements. It identifies operator SA requirements relevant to performing complex systems control. The GDTA can reveal requirements at various levels of cognitive processing, including perception, comprehension and projection, in NPP process control. Based on the literature review and GDTA approach, a number of potential research issues are proposed with an aim toward understanding and facilitating team SA in NPP process control. (authors)

  14. Real-time notification and improved situational awareness in fire emergencies using geospatial-based publish/subscribe

    NASA Astrophysics Data System (ADS)

    Kassab, Ala'; Liang, Steve; Gao, Yang

    2010-12-01

    Emergency agencies seek to maintain situational awareness and effective decision making through continuous monitoring of, and real-time alerting about, sources of information regarding current incidents and developing fire hazards. The nature of this goal requires integrating different, potentially numerous, sources of dynamic geospatial information on the one side, and a large number of clients having heterogeneous and specific interests in data on the other side. In such scenarios, the traditional request/reply communication style may function inefficiently, as it is based on point-to-point, synchronous, and pulling mode interaction between consumer clients and information providers/services. In this work, we propose Geospatial-based Publish/ Subscribe, an interaction framework that serves as a middleware for real-time transacting of spatially related information of interest, termed geospatial events, in distributed systems. Expressive data models, including geospatial event and geospatial subscription, as well as an efficient matching approach for fast dissemination of geospatial events to interested clients, are introduced. The proposed interaction framework is realized through the development of a Real-Time Fire Emergency Response System (RFERS) prototype. The prototype is designed for transacting several topics of geospatial events that are crucial within the context of fire emergencies, including GPS locations of emergency assets, meteorological observations of wireless sensors, fire incidents reports, and temporal sequences of remote sensing images of active wildfires. The performance of the system prototype has been evaluated in order to demonstrate its efficiency.

  15. Development and testing of bio-inspired microelectromechanical pressure sensor arrays for increased situational awareness for marine vehicles

    NASA Astrophysics Data System (ADS)

    Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.

    2013-01-01

    The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.

  16. 'Achieving ensemble': communication in orthopaedic surgical teams and the development of situation awareness--an observational study using live videotaped examples.

    PubMed

    Bleakley, Alan; Allard, Jon; Hobbs, Adrian

    2013-03-01

    Focused dialogue, as good communication between practitioners, offers a condition of possibility for development of high levels of situation awareness in surgical teams. This has been termed "achieving ensemble". Situation awareness grasps what is happening in time and space with regard to one's own unfolding work in relation to that of colleagues, and is necessary to maintain patient safety throughout a surgical list. We refined a typology, initially developed for use in studying the dynamics of teams in aviation safety, of 10 kinds of communication within two broad areas: 'Reports', or authoritative acts of communication setting up a monological or authoritative climate; and 'Requests', or facilitative acts of communication setting up a dialogical or participatory climate. We systematically mapped how orthopaedic surgical teams use verbal communication through analysis of videotaped operations using the typology. We asked: 'do orthopaedic surgical teams set up the conditions of possibility for the emergence of situation awareness through effective communication?' We found that orthopaedic surgical teams tend to produce monological rather than dialogical climates. Dialogue increases with more complex cases, but in routine work, communication levels are depressed and one-way, influenced by surgeons working within a traditionally hierarchical and authoritative culture. We suggest that such a monological climate inhibits development of situation awareness and then compromises patient safety. The same teams, however, generate potentially rich educational climates through exchange of profession-specific knowledge and skills, and we suggest that where technical skill exchange is good, non-technical or interpersonal communication skill levels can follow. PMID:22314941

  17. A Conceptual Architecture for National Biosurveillance: Moving Beyond Situational Awareness to Enable Digital Detection of Emerging Threats

    DOE PAGESBeta

    Velsko, Stephan; Bates, Thomas

    2016-06-17

    Despite numerous calls for improvement, the U.S. biosurveillance enterprise remains a patchwork of uncoordinated systems that fail to take advantage of the rapid progress in information processing, communication, and analytics made in the past decade. By synthesizing components from the extensive biosurveillance literature, we propose a conceptual framework for a national biosurveillance architecture and provide suggestions for implementation. The framework differs from the current federal biosurveillance development pathway in that it is not focused on systems useful for “situational awareness,” but is instead focused on the long-term goal of having true warning capabilities. Therefore, a guiding design objective is themore » ability to digitally detect emerging threats that span jurisdictional boundaries, because attempting to solve the most challenging biosurveillance problem first provides the strongest foundation to meet simpler surveillance objectives. Core components of the vision are: (1) a whole-of-government approach to support currently disparate federal surveillance efforts that have a common data need, including those for food safety, vaccine and medical product safety, and infectious disease surveillance; (2) an information architecture that enables secure, national access to electronic health records, yet does not require that data be sent to a centralized location for surveillance analysis; (3) an inference architecture that leverages advances in ‘big data’ analytics and learning inference engines—a significant departure from the statistical process control paradigm that underpins nearly all current syndromic surveillance systems; and, (4) an organizational architecture with a governance model aimed at establishing national biosurveillance as a critical part of the U.S. national infrastructure. Although it will take many years to implement, and a national campaign of education and debate to acquire public buy-in for such a comprehensive

  18. A Conceptual Architecture for National Biosurveillance: Moving Beyond Situational Awareness to Enable Digital Detection of Emerging Threats.

    PubMed

    Velsko, Stephan; Bates, Thomas

    2016-01-01

    Despite numerous calls for improvement, the US biosurveillance enterprise remains a patchwork of uncoordinated systems that fail to take advantage of the rapid progress in information processing, communication, and analytics made in the past decade. By synthesizing components from the extensive biosurveillance literature, we propose a conceptual framework for a national biosurveillance architecture and provide suggestions for implementation. The framework differs from the current federal biosurveillance development pathway in that it is not focused on systems useful for "situational awareness" but is instead focused on the long-term goal of having true warning capabilities. Therefore, a guiding design objective is the ability to digitally detect emerging threats that span jurisdictional boundaries, because attempting to solve the most challenging biosurveillance problem first provides the strongest foundation to meet simpler surveillance objectives. Core components of the vision are: (1) a whole-of-government approach to support currently disparate federal surveillance efforts that have a common data need, including those for food safety, vaccine and medical product safety, and infectious disease surveillance; (2) an information architecture that enables secure national access to electronic health records, yet does not require that data be sent to a centralized location for surveillance analysis; (3) an inference architecture that leverages advances in "big data" analytics and learning inference engines-a significant departure from the statistical process control paradigm that underpins nearly all current syndromic surveillance systems; and (4) an organizational architecture with a governance model aimed at establishing national biosurveillance as a critical part of the US national infrastructure. Although it will take many years to implement, and a national campaign of education and debate to acquire public buy-in for such a comprehensive system, the potential

  19. The European Ionosonde Service: nowcasting and forecasting ionospheric conditions over Europe for the ESA Space Situational Awareness services

    NASA Astrophysics Data System (ADS)

    Belehaki, Anna; Tsagouri, Ioanna; Kutiev, Ivan; Marinov, Pencho; Zolesi, Bruno; Pietrella, Marco; Themelis, Kostas; Elias, Panagiotis; Tziotziou, Kostas

    2015-08-01

    The Earth's ionosphere is a magnetoionic medium imbedded in a background neutral atmosphere, exhibiting very interesting refractive properties, including anisotropy, dispersion, and dissipation. As such, it poses a challenge for several radio systems that make use of signal transmission through all or some portion of the medium. It is important therefore to develop prediction systems able to inform the operators of such systems about the current state of the ionosphere, about the expected effects of forthcoming space weather disturbances and about support long-term planning of operations and data post-processing projects for improving modelling and mitigation techniques. The European Space Agency (ESA) in the framework of the Space Situational Awareness (SSA) Programme has supported the development of the European Ionosonde Service (EIS) that releases a set of products to characterise the bottomside and topside ionosphere over Europe. The Service is based on a set of prediction models driven by data from ground-based ionosondes and supportive data from satellites and spacecraft. The service monitors the foF2 and the electron density profile up to the height of the Global Navigation Satellite System (GNSS) at European middle and high latitudes and provides estimates for forthcoming disturbances mainly triggered by geo-effective Coronal Mass Ejections (CMEs). The model's performance has been validated and based on these results, it was possible to issue together with the products, quality metrics characterizing the product's reliability. The EIS products meet the requirements of various SSA service domains, especially the transionospheric radio link and the spacecraft operations. Currently, the service is freely available to all interested users, and access is possible upon registration.

  20. Introducing RiskSOAP to communicate the distributed situation awareness of a system about safety issues: an application to a robotic system.

    PubMed

    Chatzimichailidou, Maria Mikela; Dokas, Ioannis M

    2016-03-01

    This paper introduces the RiskSOAP ('RiskSOAP' is the abbreviation for Risk SituatiOn Awareness Provision.) indicator to measure the capability of a complex socio-technical system to provide its agents with situation awareness (SA) about the presence of its threats and vulnerabilities and enables analysts to assess distributed SA. The RiskSOAP methodology adopts a comparative approach between two design versions of a system differing in the elements and characteristics that can enhance or cause the degradation of the awareness provision capability. The methodology uniquely combines three methods: (1) the STPA hazard analysis, (2) the EWaSAP early warning sign identification approach, and (3) a dissimilarity measure for calculating the distance between binary sets. In this paper, the RiskSOAP methodology was applied to a robotic system and the findings show that the indicator is an objective measure for the system's capability to provide its agents with SA about its threats and vulnerabilities. Practitioner Summary: This paper suggests a novel methodology for assessing distributed situation awareness (DSA) regarding safety issues. Given that systems consist of specifications and components possible to be mapped, the risk SA provision capability (RiskSOAP) methodology demonstrates the feasibility of measuring to what extent systems' elements contribute to the emergence of DSA. PMID:26230156

  1. Demonstration of a Novel Synchrophasor-based Situational Awareness System: Wide Area Power System Visualization, On-line Event Replay and Early Warning of Grid Problems

    SciTech Connect

    Rosso, A.

    2012-12-31

    Since the large North Eastern power system blackout on August 14, 2003, U.S. electric utilities have spent lot of effort on preventing power system cascading outages. Two of the main causes of the August 14, 2003 blackout were inadequate situational awareness and inadequate operator training In addition to the enhancements of the infrastructure of the interconnected power systems, more research and development of advanced power system applications are required for improving the wide-area security monitoring, operation and planning in order to prevent large- scale cascading outages of interconnected power systems. It is critically important for improving the wide-area situation awareness of the operators or operational engineers and regional reliability coordinators of large interconnected systems. With the installation of large number of phasor measurement units (PMU) and the related communication infrastructure, it will be possible to improve the operators’ situation awareness and to quickly identify the sequence of events during a large system disturbance for the post-event analysis using the real-time or historical synchrophasor data. The purpose of this project was to develop and demonstrate a novel synchrophasor-based comprehensive situational awareness system for control centers of power transmission systems. The developed system named WASA (Wide Area Situation Awareness) is intended to improve situational awareness at control centers of the power system operators and regional reliability coordinators. It consists of following main software modules: • Wide-area visualizations of real-time frequency, voltage, and phase angle measurements and their contour displays for security monitoring. • Online detection and location of a major event (location, time, size, and type, such as generator or line outage). • Near-real-time event replay (in seconds) after a major event occurs. • Early warning of potential wide-area stability problems. The system has been

  2. The Perfect Storm of Information: Combining Traditional and Non-Traditional Data Sources for Public Health Situational Awareness During Hurricane Response

    PubMed Central

    Bennett, Kelly J.; Olsen, Jennifer M.; Harris, Sara; Mekaru, Sumiko; Livinski, Alicia A.; Brownstein, John S.

    2013-01-01

    Background: Hurricane Isaac made landfall in southeastern Louisiana in late August 2012, resulting in extensive storm surge and inland flooding. As the lead federal agency responsible for medical and public health response and recovery coordination, the Department of Health and Human Services (HHS) must have situational awareness to prepare for and address state and local requests for assistance following hurricanes. Both traditional and non-traditional data have been used to improve situational awareness in fields like disease surveillance and seismology. This study investigated whether non-traditional data (i.e., tweets and news reports) fill a void in traditional data reporting during hurricane response, as well as whether non-traditional data improve the timeliness for reporting identified HHS Essential Elements of Information (EEI). Methods: HHS EEIs provided the information collection guidance, and when the information indicated there was a potential public health threat, an event was identified and categorized within the larger scope of overall Hurricane Issac situational awareness. Tweets, news reports, press releases, and federal situation reports during Hurricane Isaac response were analyzed for information about EEIs. Data that pertained to the same EEI were linked together and given a unique event identification number to enable more detailed analysis of source content. Reports of sixteen unique events were examined for types of data sources reporting on the event and timeliness of the reports. Results: Of these sixteen unique events identified, six were reported by only a single data source, four were reported by two data sources, four were reported by three data sources, and two were reported by four or more data sources. For five of the events where news tweets were one of multiple sources of information about an event, the tweet occurred prior to the news report, press release, local government\\emergency management tweet, and federal situation

  3. A comparison of the effects of fatigue on subjective and objective assessment of situation awareness in cycling.

    PubMed

    Knez, Wade L; Ham, Daniel J

    2006-01-01

    Maximal effort on a 30 km Time Trial (TT30) was examined to assess whether it would elicit changes in objective and subjective tests of the participants' perception of the environment and their ability to anticipate future occurrences (situation awareness; SA) and to determine the effect of post-exercise recovery on SA. Nine experienced (5.22 ± 2.77 years) road cyclists had their objective and subjective levels of SA assessed prior to and at the completion of two TT30. The participants' results were compared to measurements of maximal oxygen uptake (VO2max), peak power output (PPO), age and years of competitive cycle racing experience. Fatigue resulting from maximal effort on a TT30 produced significant changes in both the objective and subjective test of SA. Effect sizes of 0.93 and 0.99 indicated that the first and second TT30 were likely or almost certain to have a beneficial effect on the objective assessment of SA. However, the effect sizes of 0.97 and 0.95 relating to the subjective assessment of cognitive performance on the first and second TT30 showed that it was very likely the participants' had an increased difficulty in maintaining SA. A recovery period of up to three minutes post TT30 had no effect on SA. Changes in SA had no relationship with measurements of VO2max, peak power output (PPO), age and years of competitive cycle racing experience. The findings suggest that within a laboratory environment, participants consistently underestimate their ability to make accurate assessments of their cycling environment compared to objective measures of their SA. Key PointsExhaustive exercise from a TT30 produces significant changes in both subjective and objective SA.This study indicates that fatigued participants underestimate their ability to maintain SA.A time period of three minutes is not enough to observe a recovery effect on subjective or objective SA.Both the objective and subjective tests proved to be reliable assessments of SA. PMID:24198685

  4. 4.4 Development of a 30-Year Soil Moisture Climatology for Situational Awareness and Public Health Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Zavodsky, Bradley T.; White, Kristopher D.; Bell, Jesse E.

    2015-01-01

    This paper provided a brief background on the work being done at NASA SPoRT and the CDC to create a soil moisture climatology over the CONUS at high spatial resolution, and to provide a valuable source of soil moisture information to the CDC for monitoring conditions that could favor the development of Valley Fever. The soil moisture climatology has multi-faceted applications for both the NOAA/NWS situational awareness in the areas of drought and flooding, and for the Public Health community. SPoRT plans to increase its interaction with the drought monitoring and Public Health communities by enhancing this testbed soil moisture anomaly product. This soil moisture climatology run will also serve as a foundation for upgrading the real-time (currently southeastern CONUS) SPoRT-LIS to a full CONUS domain based on LIS version 7 and incorporating real-time GVF data from the Suomi-NPP Visible Infrared Imaging Radiometer Suite (Vargas et al. 2013) into LIS-Noah. The upgraded SPoRT-LIS run will serve as a testbed proof-of-concept of a higher-resolution NLDAS-2 modeling member. The climatology run will be extended to near real-time using the NLDAS-2 meteorological forcing from 2011 to present. The fixed 1981-2010 climatology shall provide the soil moisture "normals" for the production of real-time soil moisture anomalies. SPoRT also envisions a web-mapping type of service in which an end-user could put in a request for either an historical or real-time soil moisture anomaly graph for a specified county (as exemplified by Figure 2) and/or for local and regional maps of soil moisture proxy percentiles. Finally, SPoRT seeks to assimilate satellite soil moisture data from the current Soil Moisture Ocean Salinity (SMOS; Blankenship et al. 2014) and the recently-launched NASA Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010) missions, using the EnKF capability within LIS. The 9-km combined active radar and passive microwave retrieval product from SMAP (Das et al. 2011

  5. The JSpOC Mission System (JMS) Common Data Model: Foundation for Net-Centric Interoperability for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Hutchison, M.; Kolarik, K.; Waters, J.

    2012-09-01

    The space situational awareness (SSA) data we access and use through existing SSA systems is largely provided in formats which cannot be readily understood by other systems (SSA or otherwise) without translation. As a result, while the data is useful for some known set of users, for other users it is not discoverable (no way to know it is there), accessible (if you did know, there is no way to electronically obtain the data) or machine-understandable (even if you did have access, the data exists in a format which cannot be readily ingested by your existing systems). Much of this existing data is unstructured, stored in non-standard formats which feed legacy systems. Data terms are not always unique, and calculations performed using legacy functions plugged into a service-oriented backbone can produce inconsistent results. The promise of data which is interoperable across systems and applications depends on a common data model as an underlying foundation for sharing information on a machine-to-machine basis. M2M interoperability is fundamental to performance, reducing or eliminating time-consuming translation and accelerating delivery to end users for final expert human analysis in support of mission fulfillment. A data model is common when it can be used by multiple programs and projects within a domain (e.g., C2 SSA). Model construction begins with known requirements and includes the development of conceptual and logical representations of the data. The final piece of the model is an implementable physical representation (e.g., XML schema) which can be used by developers to build working software components and systems. The JMS Common Data Model v1.0 was derived over six years from the National SSA Mission Threads under the direction of AFSPC/A5CN. The subsequent model became the A5CN approved JMS Requirements Model. The resulting logical and physical models have been registered in the DoD Metadata Registry under the C2 SSA Namespace and will be made available

  6. The effects of social interactions with in-vehicle agents on a driver's anger level, driving performance, situation awareness, and perceived workload.

    PubMed

    Jeon, Myounghoon; Walker, Bruce N; Gable, Thomas M

    2015-09-01

    Research has suggested that interaction with an in-vehicle software agent can improve a driver's psychological state and increase road safety. The present study explored the possibility of using an in-vehicle software agent to mitigate effects of driver anger on driving behavior. After either anger or neutral mood induction, 60 undergraduates drove in a simulator with two types of agent intervention. Results showed that both speech-based agents not only enhance driver situation awareness and driving performance, but also reduce their anger level and perceived workload. Regression models show that a driver's anger influences driving performance measures, mediated by situation awareness. The practical implications include design guidelines for the design of social interaction with in-vehicle software agents. PMID:25959334

  7. Soil Moisture Data Assimilation in the NASA Land Information System for Local Modeling Applications and Improved Situational Awareness

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Blakenship, Clay B.; Zavodsky, Bradley T.

    2014-01-01

    As part of the NASA Soil Moisture Active Passive (SMAP) Early Adopter (EA) program, the NASA Shortterm Prediction Research and Transition (SPoRT) Center has implemented a data assimilation (DA) routine into the NASA Land Information System (LIS) for soil moisture retrievals from the European Space Agency's Soil Moisture Ocean Salinity (SMOS) satellite. The SMAP EA program promotes application-driven research to provide a fundamental understanding of how SMAP data products will be used to improve decision-making at operational agencies. SPoRT has partnered with select NOAA/NWS Weather Forecast Offices (WFOs) that use output from a real-time regional configuration of LIS, without soil moisture DA, to initialize local numerical weather prediction (NWP) models and enhance situational awareness. Improvements to local NWP with the current LIS have been demonstrated; however, a better representation of the land surface through assimilation of SMOS (and eventually SMAP) retrievals is expected to lead to further model improvement, particularly during warm-season months. SPoRT will collaborate with select WFOs to assess the impact of soil moisture DA on operational forecast situations. Assimilation of the legacy SMOS instrument data provides an opportunity to develop expertise in preparation for using SMAP data products shortly after the scheduled launch on 5 November 2014. SMOS contains a passive L-band radiometer that is used to retrieve surface soil moisture at 35-km resolution with an accuracy of 0.04 cu cm cm (exp -3). SMAP will feature a comparable passive L-band instrument in conjunction with a 3-km resolution active radar component of slightly degraded accuracy. A combined radar-radiometer product will offer unprecedented global coverage of soil moisture at high spatial resolution (9 km) for hydrometeorological applications, balancing the resolution and accuracy of the active and passive instruments, respectively. The LIS software framework manages land surface model

  8. Controlling Air Traffic (Simulated) in the Presence of Automation (CATS PAu) 1995: A Study of Measurement Techniques for Situation Awareness in Air Traffic Control

    NASA Technical Reports Server (NTRS)

    French, Jennifer R.

    1995-01-01

    As automated systems proliferate in aviation systems, human operators are taking on less and less of an active role in the jobs they once performed, often reducing what should be important jobs to tasks barely more complex than monitoring machines. When operators are forced into these roles, they risk slipping into hazardous states of awareness, which can lead to reduced skills, lack of vigilance, and the inability to react quickly and competently when there is a machine failure. Using Air Traffic Control (ATC) as a model, the present study developed tools for conducting tests focusing on levels of automation as they relate to situation awareness. Subjects participated in a two-and-a-half hour experiment that consisted of a training period followed by a simulation of air traffic control similar to the system presently used by the FAA, then an additional simulation employing automated assistance. Through an iterative design process utilizing numerous revisions and three experimental sessions, several measures for situational awareness in a simulated Air Traffic Control System were developed and are prepared for use in future experiments.

  9. Bibliotherapy Revisited: Issues in Classroom Management. Developing Teachers' Awareness and Techniques to Help Children Cope Effectively with Stressful Situations

    ERIC Educational Resources Information Center

    Jackson, Marilyn N. Malloy

    2006-01-01

    Are teachers aware of the stress in their classrooms? Do teachers plan for stress control? Educators need to understand why stress is a part of classroom life and how it affects the teacher-student relationship. Bibliotherapy can be an intervention in stress management through books. The use of appropriate reading material to help solve emotional…

  10. Situational adapting system supporting team situation awareness

    NASA Astrophysics Data System (ADS)

    Helldin, Tove; Erlandsson, Tina; Niklasson, Lars; Falkman, Göran

    2010-10-01

    Military fighter pilots have to make suitable decisions fast in an environment where continuously increasing flows of information from sensors, team members and databases are provided. Not only do the huge amounts of data aggravate the pilots' decision making process: time-pressure, presence of uncertain data and high workload are factors that can worsen the performance of pilot decision making. In this paper, initial ideas of how to support the pilots accomplishing their tasks are presented. Results from interviews with two fighter pilots are described as well as a discussion about how these results can guide the design of a military fighter pilot decision support system, with focus on team cooperation.

  11. Variation of Ground GPS Integrated Precipitable Water Vapor Estimates among GPS Processing Packages and Strategies in the Context of Forecaster Situational Awareness

    NASA Astrophysics Data System (ADS)

    Moore, A. W.; Haase, J. S.; Bock, Y.; Gutman, S. I.; Laber, J. L.; Small, I. J.; Dumas, J. L.; Holub, K.; Jackson, M. E.

    2015-12-01

    Integrated precipitable water vapor (PW) estimated from ground GPS has for many years been assimilated into operational weather models, and under a NASA AIST project, our collaboration of JPL, SIO, NOAA Weather Forecasting Offices in southern California, and NOAA's Earth System Research Laboratory demonstrated that GPS PW estimates enhance forecaster situational awareness during North American Monsoon events. However, during a rigorous investigation of operational near real-time processing, we discovered some interesting discrepancies between ESRL GAMIT 30-minute and JPL GIPSY 5-minute zenith delay and PW solutions. Exploring this more deeply, we observed that PW timeseries determined with various GPS software packages and mapping functions have variations that manifest themselves on seasonal timescales. We use radiosonde, water vapor radiometer (WVR), and weather model data to explore the underlying cause of the differences, with particular attention to processing artifacts that could lend themselves to misinterpretation in subjective forecasting.

  12. The effect of communications and traffic situation displays on pilots awareness of traffic in the terminal area

    NASA Technical Reports Server (NTRS)

    Melanson, D.; Curry, R. E.; Howell, J. D.; Connelly, M. E.

    1973-01-01

    The Air Traffic Control (ATC) system is evolving under a general plan specified by the Federal Aviation Administration. Among the developments being considered is the Discrete Address Beacon System (DABS). The use of this system, although relieving congestion on the communications frequencies, would eliminate information about other aircraft because the party line communications now in use would be lost. One alternative to restore this lost information is an Airborne Traffic Situation Display (TSD). Experienced airline and military pilots participated in a factorial design to evaluate two types of communication (discrete address, party line) and two types of displays (TSD, no TSD). A stop-action quiz was used to evaluate their knowledge of other aircrafts' position, altitude, speed, heading, rate of climb, identity, and landing sequence number. Significant differences between conditions were detected, primarily in the position variables. Workload, as measured by a spare capacity side-task, showed a main effect of displays and a significant interaction between displays and communications. The data are summarized by plotting each display/communication condition configuration in the plane defined by information and workload index. A limited number of blunders by other aircraft were included in the simulations with a significant, but not entirely satisfactory, improvement in blunder detection attributed to the TSD.

  13. The Effectiveness of U.S. Public Health Surveillance Systems for Situational Awareness during the 2009 H1N1 Pandemic: A Retrospective Analysis

    PubMed Central

    Stoto, Michael A.

    2012-01-01

    Background The 2009 H1N1 outbreak provides an opportunity to learn about the strengths and weaknesses of current U.S. public health surveillance systems and to identify implications for measuring public health emergency preparedness. Methodology/Principal Findings We adopted a “triangulation” approach in which multiple contemporary data sources, each with different expected biases, are compared to identify time patterns that are likely to reflect biases versus those that are more likely to be indicative of actual infection rates. This approach is grounded in the understanding that surveillance data are the result of a series of decisions made by patients, health care providers, and public health professionals about seeking and providing health care and about reporting cases to health authorities. Although limited by the lack of a gold standard, this analysis suggests that children and young adults are over-represented in many pH1N1 surveillance systems, especially in the spring wave. In addition, the nearly two-month delay between the Northeast and the South in the Fall peak in some surveillance data seems to at least partially reflect regional differences in concerns about pH1N1rather than real differences in pH1N1 infection rates. Conclusions/Significance Although the extent of the biases suggested by this analysis cannot be known precisely, the analysis identifies underlying problems with surveillance systems – in particular their dependence on patient and provider behavior, which is influenced by a changing information environment – that could limit situational awareness in future public health emergencies. To improve situational awareness in future health emergencies, population-based surveillance systems such as telephone surveys of representative population samples and seroprevalence surveys in well-defined population cohorts are needed. PMID:22927904

  14. California Earthquake Clearinghouse: Advocating for, and Advancing, Collaboration and Technology Interoperability, Between the Scientific and Emergency Response Communities, to Produce Actionable Intelligence for Situational Awareness, and Decision Support

    NASA Astrophysics Data System (ADS)

    Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.

    2015-12-01

    The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.

  15. From Dye Laser Factory to Portable Semiconductor Laser: Four Generations of Sodium Guide Star Lasers for Adaptive Optics in Astronomy and Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    d'Orgeville, C.; Fetzer, G.

    This presentation recalls the history of sodium guide star laser systems used in astronomy and space situational awareness adaptive optics, analysing the impact that sodium laser technology evolution has had on routine telescope operations. While it would not be practical to describe every single sodium guide star laser system developed to date, it is possible to characterize their evolution in broad technology terms. The first generation of sodium lasers used dye laser technology to create the first sodium laser guide stars in Hawaii, California, and Spain in the late 1980's and 1990's. These experimental systems were turned into the first laser guide star facilities to equip medium-to-large diameter adaptive optics telescopes, opening a new era of LGS AO-enabled diffraction-limited imaging from the ground. Although they produced exciting scientific results, these laser guide star facilities were large, power-hungry and messy. In the USA, a second-generation of sodium lasers was developed in the 2000's that used cleaner, yet still large and complex, solid-state laser technology. These are the systems in routine operation at the 8-10m class astronomical telescopes and 4m-class satellite imaging facilities today. Meanwhile in Europe, a third generation of sodium lasers was being developed using inherently compact and efficient fiber laser technology, and resulting in the only commercially available sodium guide star laser system to date. Fiber-based sodium lasers will be deployed at two astronomical telescopes and at least one space debris tracking station this year. Although highly promising, these systems remain significantly expensive and they have yet to demonstrate high performance in the field. We are proposing to develop a fourth generation of sodium lasers: based on semiconductor technology, these lasers could provide the final solution to the problem of sodium laser guide star adaptive optics for all astronomy and space situational awareness applications.

  16. Expansion of the Real-time Sport-land Information System for NOAA / National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.

  17. Human-robot interaction modeling and simulation of supervisory control and situational awareness during field experimentation with military manned and unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Johnson, Tony; Metcalfe, Jason; Brewster, Benjamin; Manteuffel, Christopher; Jaswa, Matthew; Tierney, Terrance

    2010-04-01

    The proliferation of intelligent systems in today's military demands increased focus on the optimization of human-robot interactions. Traditional studies in this domain involve large-scale field tests that require humans to operate semiautomated systems under varying conditions within military-relevant scenarios. However, provided that adequate constraints are employed, modeling and simulation can be a cost-effective alternative and supplement. The current presentation discusses a simulation effort that was executed in parallel with a field test with Soldiers operating military vehicles in an environment that represented key elements of the true operational context. In this study, "constructive" human operators were designed to represent average Soldiers executing supervisory control over an intelligent ground system. The constructive Soldiers were simulated performing the same tasks as those performed by real Soldiers during a directly analogous field test. Exercising the models in a high-fidelity virtual environment provided predictive results that represented actual performance in certain aspects, such as situational awareness, but diverged in others. These findings largely reflected the quality of modeling assumptions used to design behaviors and the quality of information available on which to articulate principles of operation. Ultimately, predictive analyses partially supported expectations, with deficiencies explicable via Soldier surveys, experimenter observations, and previously-identified knowledge gaps.

  18. Situation-aware GeoVisualization considering applied logic and extensibility: a new architecture and mechanism for intelligent GeoWeb

    NASA Astrophysics Data System (ADS)

    He, Xuelin; Gold, Christopher

    2010-11-01

    Recent years have witnessed the emerging Virtual Globe technology which has been increasingly exhibiting powerful features and capabilities. However, the current technical architecture for geovisualization is still the traditional data- viewer mode, i.e. KML-Geobrowser. Current KML is basically an encoding format for wrapping static snapshots of information frozen at discrete time points, and a geobrowser is virtually a data renderer for geovisualization. In the real world spatial-temporal objects and elements possess specific semantics, applied logic and operational rules, naturally or socially, which need to be considered and to be executed when corresponding data is integrated or visualized in a visual geocontext. However, currently there is no a way to express and execute this kind of applied logic and control rules within the current geobrowsing architecture. This paper proposes a novel architecture by originating a new mechanism, DKML, and implementing a DKML-supporting prototype geobrowser. Embedded programming script within KML files can express applied logic, control conditions, situation-aware analysis utilities and special functionality, to achieve intelligent, controllable and applied logic-conformant geovisualization, and to flexibly extend and customize the DKMLsupporting geobrowser. Benefiting from the mechanism developed in this research, geobrowsers can truly evolve into powerful multi-purpose GeoWeb platforms with promising potential and prospects.

  19. Expansion of the Real-Time SPoRT-Land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014.This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations.

  20. Issues of geologically-focused situational awareness in robotic planetary missions: Lessons from an analogue mission at Mistastin Lake impact structure, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Antonenko, I.; Osinski, G. R.; Battler, M.; Beauchamp, M.; Cupelli, L.; Chanou, A.; Francis, R.; Mader, M. M.; Marion, C.; McCullough, E.; Pickersgill, A. E.; Preston, L. J.; Shankar, B.; Unrau, T.; Veillette, D.

    2013-07-01

    Remote robotic data provides different information than that obtained from immersion in the field. This significantly affects the geological situational awareness experienced by members of a mission control science team. In order to optimize science return from planetary robotic missions, these limitations must be understood and their effects mitigated to fully leverage the field experience of scientists at mission control.Results from a 13-day analogue deployment at the Mistastin Lake impact structure in Labrador, Canada suggest that scale, relief, geological detail, and time are intertwined issues that impact the mission control science team's effectiveness in interpreting the geology of an area. These issues are evaluated and several mitigation options are suggested. Scale was found to be difficult to interpret without the reference of known objects, even when numerical scale data were available. For this reason, embedding intuitive scale-indicating features into image data is recommended. Since relief is not conveyed in 2D images, both 3D data and observations from multiple angles are required. Furthermore, the 3D data must be observed in animation or as anaglyphs, since without such assistance much of the relief information in 3D data is not communicated. Geological detail may also be missed due to the time required to collect, analyze, and request data.We also suggest that these issues can be addressed, in part, by an improved understanding of the operational time costs and benefits of scientific data collection. Robotic activities operate on inherently slow time-scales. This fact needs to be embraced and accommodated. Instead of focusing too quickly on the details of a target of interest, thereby potentially minimizing science return, time should be allocated at first to more broad data collection at that target, including preliminary surveys, multiple observations from various vantage points, and progressively smaller scale of focus. This operational model

  1. Expansion of the Real-time Sport-land Information System for NOAA/National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has been running a real-time version of the Land Information System (LIS) since summer 2010 (hereafter, SPoRTLIS). The real-time SPoRT-LIS runs the Noah land surface model (LSM) in an offline capacity apart from a numerical weather prediction model, using input atmospheric and precipitation analyses (i.e., "forcings") to drive the Noah LSM integration at 3-km resolution. Its objectives are to (1) produce local-scale information about the soil state for NOAA/National Weather Service (NWS) situational awareness applications such as drought monitoring and assessing flood potential, and (2) provide land surface initialization fields for local modeling initiatives. The current domain extent has been limited by the input atmospheric analyses that drive the Noah LSM integration within SPoRT-LIS, specifically the National Centers for Environmental Prediction (NCEP) Stage IV precipitation analyses. Due to the nature of the geographical edges of the Stage IV precipitation grid and its limitations in the western U.S., the SPoRT-LIS was originally confined to a domain fully nested within the Stage IV grid, over the southeastern half of the Conterminous United States (CONUS). In order to expand the real-time SPoRT-LIS to a full CONUS domain, alternative precipitation forcing datasets were explored in year-long, offline comparison runs of the Noah LSM. Based on results of these comparison simulations, we chose to implement the radar/gauge-based precipitation analyses from the National Severe Storms Laboratory as a replacement to the Stage IV product. The Multi-Radar Multi-Sensor (MRMS; formerly known as the National Mosaic and multi-sensor Quantitative precipitation estimate) product has full CONUS coverage at higher-resolution, thereby providing better coverage and greater detail than that of the Stage IV product. This paper will describe the expanded/upgraded SPoRT-LIS, present comparisons between the

  2. Teachers' Awareness and Usage of Non-Violent Strategies for the Maintenance of Discipline in Nigerian Secondary Schools: A Situational Analysis

    ERIC Educational Resources Information Center

    Uzoechina, Gladys Oby; Oguegbu, Adaeze; Akachukwu, Esther; Nwasor, Victor Chekume

    2015-01-01

    This study sought to determine teachers' level of awareness and usage of non-violent strategies/interventions for the maintenance of discipline in secondary schools in Anambra State, Nigeria. Corporal punishment has become an unwritten sine qua non for the maintenance of school discipline--often the first thought that comes to the minds of…

  3. Abstract Painting

    ERIC Educational Resources Information Center

    Henkes, Robert

    1978-01-01

    Abstract art provokes numerous interpretations, and as many misunderstandings. The adolescent reaction is no exception. The procedure described here can help the student to understand the abstract from at least one direction. (Author/RK)

  4. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding

    USGS Publications Warehouse

    Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael

    2016-01-01

    The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.

  5. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding

    NASA Astrophysics Data System (ADS)

    Lavers, David A.; Waliser, Duane E.; Ralph, F. Martin; Dettinger, Michael D.

    2016-03-01

    The western United States is vulnerable to socioeconomic disruption due to extreme winter precipitation and floods. Traditionally, forecasts of precipitation and river discharge provide the basis for preparations. Herein we show that earlier event awareness may be possible through use of horizontal water vapor transport (integrated vapor transport (IVT)) forecasts. Applying the potential predictability concept to the National Centers for Environmental Prediction global ensemble reforecasts, across 31 winters, IVT is found to be more predictable than precipitation. IVT ensemble forecasts with the smallest spreads (least forecast uncertainty) are associated with initiation states with anomalously high geopotential heights south of Alaska, a setup conducive for anticyclonic conditions and weak IVT into the western United States. IVT ensemble forecasts with the greatest spreads (most forecast uncertainty) have initiation states with anomalously low geopotential heights south of Alaska and correspond to atmospheric rivers. The greater IVT predictability could provide warnings of impending storminess with additional lead times for hydrometeorological applications.

  6. Situated University, Situated Writing

    ERIC Educational Resources Information Center

    Feldman, Ann M.

    2009-01-01

    This article argues that teaching as a situated, civic activity must be a core intellectual activity in the engaged metropolitan university. Situated writing provides the key pedagogy for the Chicago Civic Leadership Certificate Program at the University of Illinois at Chicago, an engaged public research university. The role of writing, or…

  7. The Concept of Situation in Information Science.

    ERIC Educational Resources Information Center

    Cool, Colleen

    2001-01-01

    Reviews the theoretical and empirical literature on the concept of situation in information science. Highlights include situation, context, and interaction with information; cognitive sociology and social interaction theory; situated action; the theory of situation awareness; person-in-situation model; and situation environments. (Contains 126…

  8. Send Me No Abstract.

    ERIC Educational Resources Information Center

    Levy, Steven

    1985-01-01

    Discusses Magazine Index's practice of assigning letter grades (sometimes inaccurate) to book, restaurant, and movie reviews, thus allowing patrons to get the point of the review from the index rather than the article itself, and argues that this situation is indicative of the larger problem of reliability of abstracts. (MBR)

  9. Anesthesia Awareness

    MedlinePlus

    ... and Anesthesia Smoking and Anesthesia Outpatient Surgery Anesthesia Awareness Very rarely – in only one or two out ... become aware or conscious. The condition – called anesthesia awareness – means the patient can recall the surroundings or ...

  10. Abstracting and indexing guide

    USGS Publications Warehouse

    U.S. Department of the Interior; Office of Water Resources Research

    1974-01-01

    These instructions have been prepared for those who abstract and index scientific and technical documents for the Water Resources Scientific Information Center (WRSIC). With the recent publication growth in all fields, information centers have undertaken the task of keeping the various scientific communities aware of current and past developments. An abstract with carefully selected index terms offers the user of WRSIC services a more rapid means for deciding whether a document is pertinent to his needs and professional interests, thus saving him the time necessary to scan the complete work. These means also provide WRSIC with a document representation or surrogate which is more easily stored and manipulated to produce various services. Authors are asked to accept the responsibility for preparing abstracts of their own papers to facilitate quick evaluation, announcement, and dissemination to the scientific community.

  11. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  12. Network Access Control List Situation Awareness

    ERIC Educational Resources Information Center

    Reifers, Andrew

    2010-01-01

    Network security is a large and complex problem being addressed by multiple communities. Nevertheless, current theories in networking security appear to overestimate network administrators' ability to understand network access control lists (NACLs), providing few context specific user analyses. Consequently, the current research generally seems to…

  13. ESA situational awareness of space weather

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano

    2016-07-01

    ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.

  14. Space Situational Awareness using Market Based Agents

    NASA Astrophysics Data System (ADS)

    Sullivan, C.; Pier, E.; Gregory, S.; Bush, M.

    2012-09-01

    Space surveillance for the DoD is not limited to the Space Surveillance Network (SSN). Other DoD-owned assets have some existing capabilities for tasking but have no systematic way to work collaboratively with the SSN. These are run by diverse organizations including the Services, other defense and intelligence agencies and national laboratories. Beyond these organizations, academic and commercial entities have systems that possess SSA capability. Most all of these assets have some level of connectivity, security, and potential autonomy. Exploiting them in a mutually beneficial structure could provide a more comprehensive, efficient and cost effective solution for SSA. The collection of all potential assets, providers and consumers of SSA data comprises a market which is functionally illiquid. The development of a dynamic marketplace for SSA data could enable would-be providers the opportunity to sell data to SSA consumers for monetary or incentive based compensation. A well-conceived market architecture could drive down SSA data costs through increased supply and improve efficiency through increased competition. Oceanit will investigate market and market agent architectures, protocols, standards, and incentives toward producing high-volume/low-cost SSA.

  15. INVENTORY ABSTRACTION

    SciTech Connect

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the

  16. Multisensory constraints on awareness

    PubMed Central

    Deroy, Ophelia; Chen, Yi-Chuan; Spence, Charles

    2014-01-01

    Given that multiple senses are often stimulated at the same time, perceptual awareness is most likely to take place in multisensory situations. However, theories of awareness are based on studies and models established for a single sense (mostly vision). Here, we consider the methodological and theoretical challenges raised by taking a multisensory perspective on perceptual awareness. First, we consider how well tasks designed to study unisensory awareness perform when used in multisensory settings, stressing that studies using binocular rivalry, bistable figure perception, continuous flash suppression, the attentional blink, repetition blindness and backward masking can demonstrate multisensory influences on unisensory awareness, but fall short of tackling multisensory awareness directly. Studies interested in the latter phenomenon rely on a method of subjective contrast and can, at best, delineate conditions under which individuals report experiencing a multisensory object or two unisensory objects. As there is not a perfect match between these conditions and those in which multisensory integration and binding occur, the link between awareness and binding advocated for visual information processing needs to be revised for multisensory cases. These challenges point at the need to question the very idea of multisensory awareness. PMID:24639579

  17. Meditation and Relaxation Awareness

    ERIC Educational Resources Information Center

    Napper-Owen, Gloria

    2006-01-01

    Children come to schools each day feeling many of the stressors that would normally be attributed to adult experiences. At an early age, children are confronted with situations that may make them anxious or begin to doubt their self-worth. Teachers can help children learn to manage their stress by helping them become more aware of negative…

  18. A Study of User's Acceptance on Situational Mashups in Situational Language Teaching

    ERIC Educational Resources Information Center

    Huang, Angus F. M.; Yang, Stephen J. H.; Liaw, Shu-Sheng

    2012-01-01

    Situational awareness and mashups are two key factors influencing the success of situational language teaching. However, traditional situational language teaching cannot smoothly conduct relevant learning activities in changing learning context. This study developed a situational mashups system for detecting users' context and proposed a research…

  19. Situational Consultation

    ERIC Educational Resources Information Center

    Rimehaug, Tormod; Helmersberg, Ingunn

    2010-01-01

    Situational Consultation (SC) is presented as a framework for flexible integration of several models and methodologies in consultation practice by choosing an approach adapted to the specific situation. In SC, models and their characteristic role positions are considered interchangeable tools with qualitative differences in strengths and…

  20. Fertility Awareness

    MedlinePlus

    ... planning, periodic abstinence, and the rhythm method. How Does It Work? If a couple doesn't have ... get pregnant should not have sex. How Well Does It Work? Fertility awareness is not a reliable ...

  1. Building Awareness.

    ERIC Educational Resources Information Center

    Meilach, Dona Z.

    2001-01-01

    Discusses the importance of developing students' building awareness by exploring logos, or buildings that symbolize a country, to learn about architecture and the cultures in different countries. Explores categories of buildings. Includes examples of logos from around the world. (CMK)

  2. Metaphor: Bridging embodiment to abstraction.

    PubMed

    Jamrozik, Anja; McQuire, Marguerite; Cardillo, Eileen R; Chatterjee, Anjan

    2016-08-01

    Embodied cognition accounts posit that concepts are grounded in our sensory and motor systems. An important challenge for these accounts is explaining how abstract concepts, which do not directly call upon sensory or motor information, can be informed by experience. We propose that metaphor is one important vehicle guiding the development and use of abstract concepts. Metaphors allow us to draw on concrete, familiar domains to acquire and reason about abstract concepts. Additionally, repeated metaphoric use drawing on particular aspects of concrete experience can result in the development of new abstract representations. These abstractions, which are derived from embodied experience but lack much of the sensorimotor information associated with it, can then be flexibly applied to understand new situations. PMID:27294425

  3. Language Awareness.

    ERIC Educational Resources Information Center

    Carter, Ronald

    2003-01-01

    Discusses the concept of language awareness and its use in language teaching, which refers to the development in learners of an enhanced consciousness of and sensitivity to the forms and functions of language. The approach has been developed in the contexts of both second and foreign language learning, as well as in mother tongue education.…

  4. Wildfire Awareness.

    ERIC Educational Resources Information Center

    Wallace, Glenda

    2002-01-01

    Provides information about the Firewise Program whose goal is to assist people to become more fire-aware and better prepared for the effects of wildfire on property. Discusses why there are so many wildfires and what can be done. Includes the Wildland Fire Risk and Hazard Severity Assessment Form. (KHR)

  5. Situating Motivation

    ERIC Educational Resources Information Center

    Nolen, Susan Bobbitt; Horn, Ilana Seidel; Ward, Christopher J.

    2015-01-01

    This article describes a situative approach to studying motivation to learn in social contexts. We begin by contrasting this perspective to more prevalent psychological approaches to the study of motivation, describing epistemological and methodological differences that have constrained conversation between theoretical groups. We elaborate on…

  6. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-01-01

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment. PMID:25300054

  7. Awareness Information with Speech and Sound

    NASA Astrophysics Data System (ADS)

    Kainulainen, Anssi; Turunen, Markku; Hakulinen, Jaakko

    In modern work environments, people have many tasks, collaborate with other people and use various equipment and services. Staying aware of other people, processes and situations in work environments is important. We naturally use our hearing to maintain this awareness; hearing other people talk let us know they are present, sounds of people walking, typing, etc. help us stay aware of overall situation almost without conscious effort. Such awareness can also be supported by technology; information can be presented with varying levels of subtlety ranging from loud warning signals to subtle cues, such as the sound of a hard drive indicating activity in a computer. Creating a computer system that supports our awareness of coworkers and overall situation in the workplace can increase our productivity and make the workplace a more social and enjoyable place.

  8. Piaget on Abstraction.

    ERIC Educational Resources Information Center

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  9. Phonemic Awareness: A Complex Developmental Process.

    ERIC Educational Resources Information Center

    Norris, Janet A.; Hoffman, Paul R.

    2002-01-01

    This article uses a developmental model of language (Situational- Discourse-Semantics or SDS), along with a constellation or neuro-network model, to describe the developmental emergence of phonemic awareness. Ten sources of phonemic awareness are profiled along with developmental continuum, providing an integrated view of this complex development.…

  10. Situating Programming Abstractions in a Constructionist Video Game

    ERIC Educational Resources Information Center

    Weintrop, David; Wilensky, Uri

    2014-01-01

    Research on the effectiveness of introductory programming environments often relies on post-test measures and attitudinal surveys to support its claims; but such instruments lack the ability to identify any explanatory mechanisms that can account for the results. This paper reports on a study designed to address this issue. Using Noss and Hoyles'…

  11. Universe Awareness

    NASA Astrophysics Data System (ADS)

    Sankatsing Nava, Tibisay; Russo, Pedro

    2015-08-01

    Universe Awareness (UNAWE) is an educational programme coordinated by Leiden University that uses the beauty and grandeur of the Universe to encourage young children, particularly those from an underprivileged background, to have an interest in science and technology and foster their sense of global citizenship from the earliest age.UNAWE's twofold vision uses our Universe to inspire and motivate very young children: the excitement of the Universe provides an exciting introduction to science and technology, while the vastness and beauty of the Universe helps broaden the mind and stimulate a sense of global citizenship and tolerance. UNAWE's goals are accomplished through four main activities: the coordination of a global network of more than 1000 astronomers, teachers and educators from more than 60 countries, development of educational resources, teacher training activities and evaluation of educational activities.Between 2011 and 2013, EU-UNAWE, the European branch of UNAWE, was funded by the European Commission to implement a project in 5 EU countries and South Africa. This project has been concluded successfully. Since then, the global project Universe Awareness has continued to grow with an expanding international network, new educational resources and teacher trainings and a planned International Workshop in collaboration with ESA in October 2015, among other activities.

  12. Current awareness

    PubMed

    Green; Feher; Catalan

    2000-07-01

    In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of diabetes/metabolism. Each bibliography is divided into 17 sections: 1 Books, Reviews & Symposia; 2 General; 3 Genetics; 4 Epidemiology; 5 Immunology; 6 Prediction; 7 Prevention; 8 Intervention: a&rpar General; b&rpar Pharmacology; 9 Pathology: a&rpar General; b&rpar Cardiovascular; c&rpar Neurological; d&rpar Renal; 10 Endocrinology & Metabolism; 11 Nutrition; 12 Animal Studies; 13 Techniques. Within each section, articles are listed in alphabetical order with respect to author (8 Weeks journals - Search completed at 19th Apr. 2000) PMID:10934459

  13. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1975

    1975-01-01

    Papers abstracted represent those submitted to the distribution center at the 83rd American Society for Engineering Education Convention. Abstracts are grouped under headings corresponding to the main topic of the paper. (Editor/CP)

  14. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  15. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: NOVEMBER 1976-OCTOBER 1977

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department, prepared for the Environmental Protection Agency Volume 4 of the Municipal Technology Bulletin, a current-awareness abstracting bulletin covering methods of municipal waste water treatment, pro...

  16. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: MAY-OCTOBER 1976

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department prepared for the Environmental Protection Agency, Volume 4 of a monthly current-awareness abstracting bulletin, Municipal Technology Bulletin, which dealt with methods of municipal waste water t...

  17. MUNICIPAL WATER POLLUTION CONTROL ABSTRACTS: APRIL 1975-MARCH 1976

    EPA Science Inventory

    The Franklin Institute Research Laboratories, Science Information Services Department prepared for the Environmental Protection Agency, Volume 3 of a monthly current-awareness abstracting bulletin, Municipal Technology Bulletin, which dealt with methods of municipal waste water t...

  18. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  19. Abstraction in mathematics.

    PubMed

    Ferrari, Pier Luigi

    2003-07-29

    Some current interpretations of abstraction in mathematical settings are examined from different perspectives, including history and learning. It is argued that abstraction is a complex concept and that it cannot be reduced to generalization or decontextualization only. In particular, the links between abstraction processes and the emergence of new objects are shown. The role that representations have in abstraction is discussed, taking into account both the historical and the educational perspectives. As languages play a major role in mathematics, some ideas from functional linguistics are applied to explain to what extent mathematical notations are to be considered abstract. Finally, abstraction is examined from the perspective of mathematics education, to show that the teaching ideas resulting from one-dimensional interpretations of abstraction have proved utterly unsuccessful. PMID:12903658

  20. Internship Abstract and Final Reflection

    NASA Technical Reports Server (NTRS)

    Sandor, Edward

    2016-01-01

    The primary objective for this internship is the evaluation of an embedded natural language processor (NLP) as a way to introduce voice control into future space suits. An embedded natural language processor would provide an astronaut hands-free control for making adjustments to the environment of the space suit and checking status of consumables procedures and navigation. Additionally, the use of an embedded NLP could potentially reduce crew fatigue, increase the crewmember's situational awareness during extravehicular activity (EVA) and improve the ability to focus on mission critical details. The use of an embedded NLP may be valuable for other human spaceflight applications desiring hands-free control as well. An embedded NLP is unique because it is a small device that performs language tasks, including speech recognition, which normally require powerful processors. The dedicated device could perform speech recognition locally with a smaller form-factor and lower power consumption than traditional methods.

  1. Efficacy of Indexing and Abstracting Services for the Dissemination of Agricultural Information Resources in the Institure for Agricultural Research Library, Ahmadu Bello University, Zaria

    NASA Astrophysics Data System (ADS)

    Gabriel, KASA, M.

    2012-10-01

    The efficacy of Indexing and Abstracting service for effective organization, storage and retrieval of information resources for agricultural research in Ahmadu Bello University, Zaria necessitated examining the situation in Agricultural Library, Institute for Agricultural Research, Samaru. The study examines the processes, awareness and problems militating against the effective exploitation of the indexing and abstracting services in the Agricultural library established in 1975. The study was conducted ex post facto, data collected span from 2006 ñ 2010. Total sample sizes of 752 patrons and 20,236 intellectually indexed and abstracted resources were involved in the study. Data collected were subjected to descriptive and inferential statistics. The result revealed that a total of 644 articles were indexed and abstracted, 35% of these was done in 2010. Results for awareness show 452 (60.11%) to be aware in 2008. A total 584 articles were indexed and abstracted from which 167 (28.59%) was retrieved in 2006. Patrons, 270 (35.90%) attributed the poor use of the service to assumption it is a referral unit. The hypothesis testing revealed that there is significant association between articles indexed and abstracted with information consulted by patrons (?2cal,100.31>?2tab,9.488) at 5% level of probability and df, 4. In conclusion, enormous documents on Nigerian agriculture are indexed and abstracted in the unit, implying that the service is desirous and consistent. The study recommends that the unit should explore the use of modern technology, employ a permanent subject specialist, train and retrain the unit staff as well as intensify it general orientation campaigns to focus on awareness and use of the indexing and abstracting services.

  2. Loving Those Abstracts

    ERIC Educational Resources Information Center

    Stevens, Lori

    2004-01-01

    The author describes a lesson she did on abstract art with her high school art classes. She passed out a required step-by-step outline of the project process. She asked each of them to look at abstract art. They were to list five or six abstract artists they thought were interesting, narrow their list down to the one most personally intriguing,…

  3. Community Development Abstracts.

    ERIC Educational Resources Information Center

    Agency for International Development (Dept. of State), Washington, DC.

    This volume of 1,108 abstracts summarizes the majority of important works on community development during the last ten years. Part I contains abstracts of periodical literature and is classified into 19 sections, including general history, communications, community and area studies, decision-making, leadership, migration and settlement, social…

  4. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  5. Has Abstractness Been Resolved?

    ERIC Educational Resources Information Center

    Al-Omoush, Ahmad

    1989-01-01

    A discussion focusing on the abstractness of analysis in phonology, debated since the 1960s, describes the issue, reviews the literature on the subject, cites specific natural language examples, and examines the extent to which the issue has been resolved. An underlying representation is said to be abstract if it is different from the derived one,…

  6. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  7. Knowledge-Based Abstracting.

    ERIC Educational Resources Information Center

    Black, William J.

    1990-01-01

    Discussion of automatic abstracting of technical papers focuses on a knowledge-based method that uses two sets of rules. Topics discussed include anaphora; text structure and discourse; abstracting techniques, including the keyword method and the indicator phrase method; and tools for text skimming. (27 references) (LRW)

  8. Leadership Abstracts, 1995.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1995-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, and teaching in community colleges. The 12 abstracts for Volume 8, 1995, are: (1) "Redesigning the System To Meet the Workforce Training Needs of the Nation," by Larry Warford; (2) "The College President, the Board, and the Board Chair: A…

  9. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  10. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  11. Journalism Abstracts. Vol. 15.

    ERIC Educational Resources Information Center

    Popovich, Mark N., Ed.

    This book, the fifteenth volume of an annual publication, contains 373 abstracts of 52 doctoral and 321 master's theses from 50 colleges and universities. The abstracts are arranged alphabetically by author, with the doctoral dissertations appearing first. These cover such topics as advertising, audience analysis, content analysis of news issues…

  12. Leadership Abstracts, 1996.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1996-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 9 for 1996 includes the following 12 abstracts: (1) "Tech-Prep + School-To-Work: Working Together To Foster Educational Reform," (Roderick F. Beaumont); (2)…

  13. Mathematical Abstraction through Scaffolding

    ERIC Educational Resources Information Center

    Ozmantar, Mehmet Fatih; Roper, Tom

    2004-01-01

    This paper examines the role of scaffolding in the process of abstraction. An activity-theoretic approach to abstraction in context is taken. This examination is carried out with reference to verbal protocols of two 17 year-old students working together on a task connected to sketching the graph of |f|x|)|. Examination of the data suggests that…

  14. Abstract coherent categories.

    PubMed

    Rehder, B; Ross, B H

    2001-09-01

    Many studies have demonstrated the importance of the knowledge that interrelates features in people's mental representation of categories and that makes our conception of categories coherent. This article focuses on abstract coherent categories, coherent categories that are also abstract because they are defined by relations independently of any features. Four experiments demonstrate that abstract coherent categories are learned more easily than control categories with identical features and statistical structure, and also that participants induced an abstract representation of the category by granting category membership to exemplars with completely novel features. The authors argue that the human conceptual system is heavily populated with abstract coherent concepts, including conceptions of social groups, societal institutions, legal, political, and military scenarios, and many superordinate categories, such as classes of natural kinds. PMID:11550753

  15. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  16. Hydrogen energy. A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Hydrogen Energy is a continuing bibliographic summary with abstracts of research and projections on the subject of hydrogen as a secondary fuel and as an energy carrier. This update to Hydrogen Energy cites additional references identified during the fourth quarter of 1978. It is the fourth in a 1978 quarterly series intended to provide current awareness to those interested in hydrogen energy. A series of cross indexes are included which track directly with those of the cumulative volume.

  17. Abstract Interpreters for Free

    NASA Astrophysics Data System (ADS)

    Might, Matthew

    In small-step abstract interpretations, the concrete and abstract semantics bear an uncanny resemblance. In this work, we present an analysis-design methodology that both explains and exploits that resemblance. Specifically, we present a two-step method to convert a small-step concrete semantics into a family of sound, computable abstract interpretations. The first step re-factors the concrete state-space to eliminate recursive structure; this refactoring of the state-space simultaneously determines a store-passing-style transformation on the underlying concrete semantics. The second step uses inference rules to generate an abstract state-space and a Galois connection simultaneously. The Galois connection allows the calculation of the "optimal" abstract interpretation. The two-step process is unambiguous, but nondeterministic: at each step, analysis designers face choices. Some of these choices ultimately influence properties such as flow-, field- and context-sensitivity. Thus, under the method, we can give the emergence of these properties a graph-theoretic characterization. To illustrate the method, we systematically abstract the continuation-passing style lambda calculus to arrive at two distinct families of analyses. The first is the well-known k-CFA family of analyses. The second consists of novel "environment-centric" abstract interpretations, none of which appear in the literature on static analysis of higher-order programs.

  18. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1997

    1997-01-01

    Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…

  19. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  20. 1971 Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1971

    1971-01-01

    Included are 112 abstracts listed under headings such as: acoustics, continuing engineering studies, educational research and methods, engineering design, libraries, liberal studies, and materials. Other areas include agricultural, electrical, mechanical, mineral, and ocean engineering. (TS)

  1. 2016 ACPA MEETING ABSTRACTS.

    PubMed

    2016-07-01

    The peer-reviewed abstracts presented at the 73rd Annual Meeting of the ACPA are published as submitted by the authors. For financial conflict of interest disclosure, please visit http://meeting.acpa-cpf.org/disclosures.html. PMID:27447885

  2. Abstracts of contributed papers

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  3. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, Richard

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. The agent needs to be able to fall back on an ability to construct plans at run time under time constraints. This thesis presents a method for planning at run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies. The method has been implemented, and experiments have been run to validate the overall approach and the theoretical model.

  4. Abstraction Planning in Real Time

    NASA Technical Reports Server (NTRS)

    Washington, R.

    1994-01-01

    When a planning agent works in a complex, real-world domain, it is unable to plan for and store all possible contingencies and problem situations ahead of time. This thesis presents a method for planning a run time that incrementally builds up plans at multiple levels of abstraction. The plans are continually updated by information from the world, allowing the planner to adjust its plan to a changing world during the planning process. All the information is represented over intervals of time, allowing the planner to reason about durations, deadlines, and delays within its plan. In addition to the method, the thesis presents a formal model of the planning process and uses the model to investigate planning strategies.

  5. Sensor and information fusion for improved hostile threat situational awareness

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.; Ludwig, William D.

    2011-06-01

    The U.S. Army Research Laboratory (ARL) has recently concluded a research experiment to study the benefits of multimodal sensor fusion for improved hostile-fire-defeat (HFD) in an urban setting. This joint effort was led by ARL in partnership with other R&D centers and private industry. The primary goals were to detect hostile fire events (small arms, mortars, rockets, IEDs) and hostile human activities by providing solutions before, during, and after the events to improve sensor networking technologies; to develop multimodal sensor data fusion; and to determine effective dissemination techniques for the resultant actionable intelligence. Technologies included ultraviolet, infrared, retroreflection, visible, glint, Laser Detection and Ranging (LADAR), radar, acoustic, seismic, E-field, magnetic, and narrowband emission technologies; all were found to provide useful performance. The experiment demonstrated that combing data and information from diverse sensor modalities can significantly improve the accuracy of threat detections and the effectiveness of the threat response. It also demonstrated that dispersing sensors over a wide range of platforms (fixed site, ground vehicles, unmanned ground and aerial vehicles, aerostat, Soldier-worn) added flexibility and agility in tracking hostile actions. In all, the experiment demonstrated that multimodal fusion will improve hostile event responses, strike force efficiency, and force protection effectiveness.

  6. Situational Awareness from a Low-Cost Camera System

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.; Ward, David; Lesage, John

    2010-01-01

    A method gathers scene information from a low-cost camera system. Existing surveillance systems using sufficient cameras for continuous coverage of a large field necessarily generate enormous amounts of raw data. Digitizing and channeling that data to a central computer and processing it in real time is difficult when using low-cost, commercially available components. A newly developed system is located on a combined power and data wire to form a string-of-lights camera system. Each camera is accessible through this network interface using standard TCP/IP networking protocols. The cameras more closely resemble cell-phone cameras than traditional security camera systems. Processing capabilities are built directly onto the camera backplane, which helps maintain a low cost. The low power requirements of each camera allow the creation of a single imaging system comprising over 100 cameras. Each camera has built-in processing capabilities to detect events and cooperatively share this information with neighboring cameras. The location of the event is reported to the host computer in Cartesian coordinates computed from data correlation across multiple cameras. In this way, events in the field of view can present low-bandwidth information to the host rather than high-bandwidth bitmap data constantly being generated by the cameras. This approach offers greater flexibility than conventional systems, without compromising performance through using many small, low-cost cameras with overlapping fields of view. This means significant increased viewing without ignoring surveillance areas, which can occur when pan, tilt, and zoom cameras look away. Additionally, due to the sharing of a single cable for power and data, the installation costs are lower. The technology is targeted toward 3D scene extraction and automatic target tracking for military and commercial applications. Security systems and environmental/ vehicular monitoring systems are also potential applications.

  7. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    NASA Astrophysics Data System (ADS)

    Picciano, P.; Reis, G.

    2011-09-01

    Making definitive attributions concerning satellite anomalies proves to be a challenging endeavor given the dynamic space environment, the threat of adversarial actions, and unanticipated system failures. Further, decision makers are usually contending with performance shaping factors such as time pressure and the knowledge that errors can be extremely costly. Significant consequences can emerge with erroneous conclusions, whether it’s failing to thwart an adversary’s attack against our space assets, or misconstruing an environment effect for a hostile action that drives a response. Although accurate and reliable measurements of the disturbances in the earth’s magnetic field and the flux of high energy protons and electrons have been available for decades, it remains challenging to translate these data into actionable information concerning the potential threat to on-orbit assets. Even though satellite operators actively monitor these hazards, until very recently there has been limited statistical relationship between the measured radiation environment and the likelihood of an anomaly to the on-orbit asset [5]. To address this need, the Air Force Research Laboratory (AFRL) is supporting work to make space environmental effects information more accessible and actionable for users in the operational community. The tool under development leverages O’Brien’s “hazard quotients” (which are derived from historical records of on-orbit anomalies) to relay the potential effect by presenting anomaly likelihood information related to surface charging, internal charging, single event effects, and the total accumulated particle dose.

  8. Entropy as a metric in critical infrastructure situational awareness

    NASA Astrophysics Data System (ADS)

    Klemetti, Markus; Puuska, Samir; Vankka, Jouko

    2016-05-01

    In this paper, we expand our previously proposed critical infrastructure (CI) model with time dependent stochastic elements. In the model, CI is presented as a directed graph where each vertex represents a discrete system and directed edges dependency relations between the systems. Each node is associated with a finite state machine (FSM) which represents the operational status of the system in question. In this paper we associate a probability distribution to each FSM, which accounts for the flow of time and previous confirmed sensor reading. As time passes, the uncertainty about the state of the system increases. By relying on statistical probabilities that have been previously observed or known, it is possible to make predictions about the current state of CI. We present a dependency graph modelling a subset of Finnish electric grid and mobile networks. CI components are modelled using FSM structure augmented by probabilistic elements for entropy-based calculations. The proposed model provides an estimate about the state of the critical infrastructure when only limited information is available, while taking into account the increasing uncertainty created by the passage of time.

  9. Spatial displays as a means to increase pilot situational awareness

    NASA Technical Reports Server (NTRS)

    Fadden, Delmar M.; Braune, Rolf; Wiedemann, John

    1989-01-01

    Experiences raise a number of concerns for future spatial-display developers. While the promise of spatial displays is great, the cost of their development will be correspondingly large. The knowledge and skills which must be coordinated to ensure successful results is unprecedent. From the viewpoint of the designer, basic knowledge of how human beings perceive and process complex displays appears fragmented and largely unquantified. Methodologies for display development require prototyping and testing with subject pilots for even small changes. Useful characterizations of the range of differences between individual users is nonexistent or at best poorly understood. The nature, significance, and frequency of interpretation errors associated with complex integrated displays is unexplored and undocumented territory. Graphic displays have intuitive appeal and can achieve face validity much more readily than earlier symbolic displays. The risk of misleading the pilot is correspondingly greater. Thus while some in the research community are developing the tools and techniques necessary for effective spatial-display development, potential users must be educated about the issues so that informed choices can be made. The scope of the task facing all is great. The task is challenging and the potential for meaningful contributions at all levels is high indeed.

  10. Situational Awareness for Strategic Leadership (part of CORE system)

    2009-10-02

    System allows for information to be collected, shared, and commented on by a large group of users. The interaction with the system is independent of time and location, so that input of information and conversations can occur more naturally as they currently do with email.

  11. Hazard alerting and situational awareness in advanced air transport cockpits

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Wanke, Craig; Kuchar, James; Mykityshyn, Mark; Hahn, Edward; Midkiff, Alan

    1993-01-01

    Advances in avionics and display technology have significantly changed the cockpit environment in current 'glass cockpit' aircraft. Recent developments in display technology, on-board processing, data storage, and datalinked communications are likely to further alter the environment in second and third generation 'glass cockpit' aircraft. The interaction of advanced cockpit technology with human cognitive performance has been a major area of activity within the MIT Aeronautical Systems Laboratory. This paper presents an overview of the MIT Advanced Cockpit Simulation Facility. Several recent research projects are briefly reviewed and the most important results are summarized.

  12. Intelligent Automation Approach for Improving Pilot Situational Awareness

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    2004-01-01

    Automation in the aviation domain has been increasing for the past two decades. Pilot reaction to automation varies from highly favorable to highly critical depending on both the pilot's background and how effectively the automation is implemented. We describe a user-centered approach for automation that considers the pilot's tasks and his needs related to accomplishing those tasks. Further, we augment rather than replace how the pilot currently fulfills his goals, relying on redundant displays that offer the pilot an opportunity to build trust in the automation. Our prototype system automates the interpretation of hydraulic system faults of the UH-60 helicopter. We describe the problem with the current system and our methodology for resolving it.

  13. Coordinated machine learning and decision support for situation awareness.

    SciTech Connect

    Draelos, Timothy John; Zhang, Peng-Chu.; Wunsch, Donald C.; Seiffertt, John; Conrad, Gregory N.; Brannon, Nathan Gregory

    2007-09-01

    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

  14. Cue Representation and Situational Awareness in Task Analysis

    ERIC Educational Resources Information Center

    Carl, Diana R.

    2009-01-01

    Task analysis in human performance technology is used to determine how human performance can be well supported with training, job aids, environmental changes, and other interventions. Early work by Miller (1953) and Gilbert (1969, 1974) addressed cue processing in task execution and recommended cue descriptions in task analysis. Modern task…

  15. Robotic situational awareness of actions in human teaming

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-06-01

    When robots can sense and interpret the activities of the people they are working with, they become more of a team member and less of just a piece of equipment. This has motivated work on recognizing human actions using existing robotic sensors like short-range ladar imagers. These produce three-dimensional point cloud movies which can be analyzed for structure and motion information. We skeletonize the human point cloud and apply a physics-based velocity correlation scheme to the resulting joint motions. The twenty actions are then recognized using a nearest-neighbors classifier that achieves good accuracy.

  16. Successful Design of Learning Solutions Being Situation Aware

    ERIC Educational Resources Information Center

    Niemelä, Pia; Isomöttönen, Ville; Lipponen, Lasse

    2016-01-01

    Education is increasingly enhanced by technology, and at the same time, the rapid pace of technology innovation and growing demand of consumers introduces challenges for providers of technological learning solutions. This paper investigates Finnish small and medium size companies who either develop or deliver technological solutions for education.…

  17. Making Risk Models Operational for Situational Awareness and Decision Support

    SciTech Connect

    Paulson, Patrick R.; Coles, Garill A.; Shoemaker, Steven V.

    2012-06-12

    Modernization of nuclear power operations control systems, in particular the move to digital control systems, creates an opportunity to modernize existing legacy infrastructure and extend plant life. We describe here decision support tools that allow the assessment of different facets of risk and support the optimization of available resources to reduce risk as plants are upgraded and maintained. This methodology could become an integrated part of the design review process and a part of the operations management systems. The methodology can be applied to the design of new reactors such as small nuclear reactors (SMR), and be helpful in assessing the risks of different configurations of the reactors. Our tool provides a low cost evaluation of alternative configurations and provides an expanded safety analysis by considering scenarios while early in the implementation cycle where cost impacts can be minimized. The effects of failures can be modeled and thoroughly vetted to understand their potential impact on risk. The process and tools presented here allow for an integrated assessment of risk by supporting traditional defense in depth approaches while taking into consideration the insertion of new digital instrument and control systems.

  18. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue. PMID:25416026

  19. Thyra Abstract Interface Package

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  20. Advanced Weather Awareness and Reporting Enhancements

    NASA Technical Reports Server (NTRS)

    Busquets, Anthony M. (Technical Monitor); Ruokangas, Corinne Clinton; Kelly, Wallace E., III

    2005-01-01

    AWARE (Aviation Weather Awareness and Reporting Enhancements) was a NASA Cooperative Research and Development program conducted jointly by Rockwell Scientific, Rockwell Collins, and NASA. The effort culminated in an enhanced weather briefing and reporting tool prototype designed to integrate graphical and text-based aviation weather data to provide clear situational awareness in the context of a specific pilot, flight and equipment profile. The initial implementation of AWARE was as a web-based preflight planning tool, specifically for general aviation pilots, who do not have access to support such as the dispatchers available for commercial airlines. Initial usability tests showed that for VFR (Visual Flight Rules) pilots, AWARE provided faster and more effective weather evaluation. In a subsequent formal usability test for IFR (Instrument Flight Rules) pilots, all users finished the AWARE tests faster than the parallel DUAT tests, and all subjects graded AWARE higher for effectiveness, efficiency, and usability. The decision analysis basis of AWARE differentiates it from other aviation safety programs, providing analysis of context-sensitive data in a personalized graphical format to aid pilots/dispatchers in their complex flight requirements.

  1. Southern Orthopaedic Association Abstract Publication Rate.

    PubMed

    Tait, Mark Adam; Petrus, Cara; Barnes, C Lowry

    2016-01-01

    The purpose of this study was to determine the publication rate of manuscripts presented at the Southern Orthopaedic Association's (SOA) annual meetings. An extensive literature search was performed using Google Scholar and PubMed search engines and all accepted abstracts (posters or podium presentations) presented at an SOA annual meeting from 2005 to 2011 were evaluated. A total of 568 abstracts were presented at SOA meetings between 2005 and 2011. Of these, 234 (41%) were published in the peer-reviewed literature. The publication rate was 66% in 2005 and 28% in 2010. The average time from presentation to peer-reviewed publication was 1.6 ± 0.24 years (range, 2 years in 2006 to 1 year in 2011). The SOA publication rate was comparable with other major orthopaedic conference publication rates, yet more than half of all abstracts remain unpublished. SOA attendees should be aware that approximately 40% of all accepted presentations will go unpublished. PMID:27518291

  2. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  3. The SIDdatagrabber (Abstract)

    NASA Astrophysics Data System (ADS)

    Silvis, G.

    2015-12-01

    (Abstract only) The Stanford/SARA SuperSid project offers an opportunity for adding data to the AAVSO SID Monitoring project. You can now build a SID antenna and monitoring setup for about $150. And with the SIDdatagrabber application you can easily re-purpose the data collected for the AAVSO.

  4. Making the Abstract Concrete

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2005-01-01

    President Ronald Reagan nominated a woman to serve on the United States Supreme Court. He did so through a single-page form letter, completed in part by hand and in part by typewriter, announcing Sandra Day O'Connor as his nominee. While the document serves as evidence of a historic event, it is also a tangible illustration of abstract concepts…

  5. Learning Abstracts, 2001.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.

    2001-01-01

    Volume 4 of the League for Innovation in the Community College's Learning Abstracts include the following: (1) "Touching Students in the Digital Age: The Move Toward Learner Relationship Management (LRM)," by Mark David Milliron, which offers an overview of an organizing concept to help community colleges navigate the intersection between digital…

  6. Leadership Abstracts, 2002.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.; Milliron, Mark David, Ed.

    2002-01-01

    This 2002 volume of Leadership Abstracts contains issue numbers 1-12. Articles include: (1) "Skills Certification and Workforce Development: Partnering with Industry and Ourselves," by Jeffrey A. Cantor; (2) "Starting Again: The Brookhaven Success College," by Alice W. Villadsen; (3) "From Digital Divide to Digital Democracy," by Gerardo E. de los…

  7. Leadership Abstracts, 1993.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1993-01-01

    This document includes 10 issues of Leadership Abstracts (volume 6, 1993), a newsletter published by the League for Innovation in the Community College (California). The featured articles are: (1) "Reinventing Government" by David T. Osborne; (2) "Community College Workforce Training Programs: Expanding the Mission to Meet Critical Needs" by…

  8. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  9. CIRF Abstracts, Volume 12.

    ERIC Educational Resources Information Center

    International Labour Office, Geneva (Switzerland).

    The aim of the CIRF abstracts is to convey information about vocational training ideas, programs, experience, and experiments described in periodicals, books, and other publications and relating to operative personnel, supervisors, and technical and training staff in all sectors of economic activity. Information is also given on major trends in…

  10. Leadership Abstracts, 1999.

    ERIC Educational Resources Information Center

    Leadership Abstracts, 1999

    1999-01-01

    This document contains five Leadership Abstracts publications published February-December 1999. The article, "Teaching the Teachers: Meeting the National Teacher Preparation Challenge," authored by George R. Boggs and Sadie Bragg, examines the community college role and makes recommendations and a call to action for teacher education. "Chaos…

  11. Double Trouble (Abstract)

    NASA Astrophysics Data System (ADS)

    Simonsen, M.

    2015-12-01

    (Abstract only) Variable stars with close companions can be difficult to accurately measure and characterize. The companions can create misidentifications, which in turn can affect the perceived magnitudes, amplitudes, periods, and colors of the variable stars. We will show examples of these Double Trouble stars and the impact their close companions have had on our understanding of some of these variable stars.

  12. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  13. Water reuse. [Lead abstract

    SciTech Connect

    Middlebrooks, E.J.

    1982-01-01

    Separate abstracts were prepared for the 31 chapters of this book which deals with all aspects of wastewater reuse. Design data, case histories, performance data, monitoring information, health information, social implications, legal and organizational structures, and background information needed to analyze the desirability of water reuse are presented. (KRM)

  14. Reasoning abstractly about resources

    NASA Technical Reports Server (NTRS)

    Clement, B.; Barrett, A.

    2001-01-01

    r describes a way to schedule high level activities before distributing them across multiple rovers in order to coordinate the resultant use of shared resources regardless of how each rover decides how to perform its activities. We present an algorithm for summarizing the metric resource requirements of an abstract activity based n the resource usages of its potential refinements.

  15. Humor, abstraction, and disbelief.

    PubMed

    Hoicka, Elena; Jutsum, Sarah; Gattis, Merideth

    2008-09-01

    We investigated humor as a context for learning about abstraction and disbelief. More specifically, we investigated how parents support humor understanding during book sharing with their toddlers. In Study 1, a corpus analysis revealed that in books aimed at 1-to 2-year-olds, humor is found more often than other forms of doing the wrong thing including mistakes, pretense, lying, false beliefs, and metaphors. In Study 2, 20 parents read a book containing humorous and non-humorous pages to their 19-to 26-month-olds. Parents used a significantly higher percentage of high abstraction extra-textual utterances (ETUs) when reading the humorous pages. In Study 3, 41 parents read either a humorous or non-humorous book to their 18-to 24-month-olds. Parents reading the humorous book made significantly more ETUs coded for a specific form of high abstraction: those encouraging disbelief of prior utterances. Sharing humorous books thus increases toddlers' exposure to high abstraction and belief-based language. PMID:21585438

  16. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  17. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  18. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  19. Learning Abstracts, 1999.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll.

    This document contains volume two of Learning Abstracts, a bimonthly newsletter from the League for Innovation in the Community College. Articles in these seven issues include: (1) "Get on the Fast Track to Learning: An Accelerated Associate Degree Option" (Gerardo E. de los Santos and Deborah J. Cruise); (2) "The Learning College: Both Learner…

  20. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  1. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  2. Context Aware Middleware Architectures: Survey and Challenges

    PubMed Central

    Li, Xin; Eckert, Martina; Martinez, José-Fernán; Rubio, Gregorio

    2015-01-01

    Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work. PMID:26307988

  3. Context Aware Middleware Architectures: Survey and Challenges.

    PubMed

    Li, Xin; Eckert, Martina; Martinez, José-Fernán; Rubio, Gregorio

    2015-01-01

    Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work. PMID:26307988

  4. Energy Awareness Resource Unit for Intermediate Grades.

    ERIC Educational Resources Information Center

    Myers, Richard S.; Myers, Harriet B.

    This instructional package suggests objectives, activities, and evaluation methods for use in an elementary school minicourse on energy. Objectives are to help students become aware of the present energy situation and to make more intelligent energy-related decisions in the future. Activities involve language arts, science, math, social studies,…

  5. Language Awareness Research: Where We Are Now

    ERIC Educational Resources Information Center

    Svalberg, Agneta M-L.

    2016-01-01

    This paper outlines the context in which Language Awareness (LA) research is currently situated and where it might be going. The starting point is Eric Hawkins's vision (40 years ago) of LA as a bridge between school subjects and, in wider society, between people of different backgrounds and languages. Although considerable progress has been made…

  6. Preparing for Emergency Situations

    NASA Astrophysics Data System (ADS)

    Asproth, Viveca; Amcoff Nyström, Christina

    2010-11-01

    Disaster relief can be seen as a dynamic multi actor process with actors both joining and leaving the relief work during the help and rescue phase after the disaster has occurred. Actors may be governmental agencies, non profit voluntary organisations or spontaneous helpers comprised of individual citizens or temporal groups of citizens. Hence, they will vary widely in agility, competence, resources, and endurance. To prepare for for disasters a net based Agora with simulation of emergency situations for mutual preparation, training, and organisational learning is suggested. Such an Agora will ensure future security by: -Rising awareness and preparedness of potential disaster responders by help of the components and resources in the netAgora environment; -Improving cooperation and coordination between responders; -Improving competence and performance of organisations involved in security issues; -Bridging cultural differences between responders from different organizations and different backgrounds. The developed models are intended to reflect intelligent anticipatory systems for human operator anticipation of future consequences. As a way to catch what should be included in this netbased Agora and to join the split pictures that is present, Team Syntegrity could be a helpful tool. The purpose of Team Syntegrity is to stimulate collaboration and incite cross fertilization and creativity. The difference between syntegration and other group work is that the participants are evenly and uniquely distributed and will collectively have the means, the knowledge, the experience, the perspectives, and the expertise, to deal with the topic. In this paper the possibilities with using Team Syntegrity in preparation for the development of a netbased Agora is discussed. We have identified that Team Syntegrity could be useful in the steps User Integration, Designing the netAgora environment, developing Test Scenarios, and assessment of netAgora environment.

  7. Critical Language Awareness and Learners in College Transitional English

    ERIC Educational Resources Information Center

    Sanchez, Deborah M.; Paulson, Eric J.

    2008-01-01

    Critical Language Awareness (CLA) is one literacy tool that students need in order to examine limit-situations or "what went wrong." Norman Fairclough defines CLA as an awareness of the ways in which ideas become naturalized or taken for granted as "truths" about the natural and social world and how these "truths" are tied up with language in use.…

  8. A Correlational Study of Nature Awareness and Science Achievement

    ERIC Educational Resources Information Center

    Chandler, Kelly; Swartzentruber, Monica

    2011-01-01

    As part of a pilot program, the researchers sought to develop an instrument that would effectively measure the nature awareness of students. With this information, the researchers correlated nature awareness scores and science averages. According to Salomon and Perkins' theory of transfer, experiences in one situation can influence experiences in…

  9. Historical development of abstracting.

    PubMed

    Skolnik, H

    1979-11-01

    The abstract, under a multitude of names, such as hypothesis, marginalia, abridgement, extract, digest, précis, resumé, and summary, has a long history, one which is concomitant with advancing scholarship. The progression of this history from the Sumerian civilization ca. 3600 B.C., through the Egyptian and Greek civilizations, the Hellenistic period, the Dark Ages, Middle Ages, Renaissance, and into the modern period is reviewed. PMID:399482

  10. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  11. From abstract to acclaim.

    PubMed

    Bucknall, T K

    1996-06-01

    Increasing specialisation in the health-care sector requires nurses to be proficient communicators both within their own profession and among other health-care disciplines. Although the work environment provides numerous opportunities for oral communication, traditionally we have been taught written communication. Like scientific writing, an oral presentation demands a sense of planning, audience awareness and attention to detail. Yet, because of the different medium, other important factors must also be considered. While a reader may select passages or reread a report, the audience must listen in a linear way. Your voice and body, aided by visual displays, will have a different effect on the listener than the printed pages have on the reader. Therefore, it is important to concentrate on both the content and the method of presentation if the audience is to be left feeling inspired. This article outlines the planning of a presentation, development of visual aids and delivery of a polished performance. PMID:8868815

  12. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  13. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  14. Abstraction in Expertise: A Study of Nurses' Conceptions of Concentration.

    ERIC Educational Resources Information Center

    Noss, Richard; Hoyles, Celia; Pozzi, Stefano

    2002-01-01

    Uses situated abstraction to understand nurses' conceptions of intensive quantity of drug concentration. Explores nurses' conceptions to undertake a pointed examination of the degree of situatedness of nurses' knowledge and reasoning. Demonstrates that nurses' conceptions were abstracted within their practice when they coordinated mathematical…

  15. Agoraphobia: A Situational Analysis.

    ERIC Educational Resources Information Center

    Sinnott, Austin; And Others

    1981-01-01

    Agoraphobia patients answered a questionnaire describing anxiety-producing situations. Home environment was associated with supportive company. Situations requiring patients to venture out alone were most anxiety-producing. The overriding importance of a significant other suggests treatment implications. (JAC)

  16. A LARI Experience (Abstract)

    NASA Astrophysics Data System (ADS)

    Cook, M.

    2015-12-01

    (Abstract only) In 2012, Lowell Observatory launched The Lowell Amateur Research Initiative (LARI) to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their astronomical research. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. A summary of the scientific and organizational aspects of this LARI project, including its goals and science motivation, the process for getting involved with the project, a description of the team members, their equipment and methods of collaboration, and an overview of the programme stars, preliminary findings, and lessons learned is presented.

  17. IEEE conference record -- Abstracts

    SciTech Connect

    Not Available

    1994-01-01

    This conference covers the following areas: computational plasma physics; vacuum electronic; basic phenomena in fully ionized plasmas; plasma, electron, and ion sources; environmental/energy issues in plasma science; space plasmas; plasma processing; ball lightning/spherical plasma configurations; plasma processing; fast wave devices; magnetic fusion; basic phenomena in partially ionized plasma; dense plasma focus; plasma diagnostics; basic phenomena in weakly ionized gases; fast opening switches; MHD; fast z-pinches and x-ray lasers; intense ion and electron beams; laser-produced plasmas; microwave plasma interactions; EM and ETH launchers; solid state plasmas and switches; intense beam microwaves; and plasmas for lighting. Separate abstracts were prepared for 416 papers in this conference.

  18. Quantized visual awareness

    PubMed Central

    Escobar, W. A.

    2013-01-01

    The proposed model holds that, at its most fundamental level, visual awareness is quantized. That is to say that visual awareness arises as individual bits of awareness through the action of neural circuits with hundreds to thousands of neurons in at least the human striate cortex. Circuits with specific topologies will reproducibly result in visual awareness that correspond to basic aspects of vision like color, motion, and depth. These quanta of awareness (qualia) are produced by the feedforward sweep that occurs through the geniculocortical pathway but are not integrated into a conscious experience until recurrent processing from centers like V4 or V5 select the appropriate qualia being produced in V1 to create a percept. The model proposed here has the potential to shift the focus of the search for visual awareness to the level of microcircuits and these likely exist across the kingdom Animalia. Thus establishing qualia as the fundamental nature of visual awareness will not only provide a deeper understanding of awareness, but also allow for a more quantitative understanding of the evolution of visual awareness throughout the animal kingdom. PMID:24319436

  19. Situational leadership and persons with disabilities.

    PubMed

    Cubero, Christopher G

    2007-01-01

    Does situational leadership style impact workers with disabilities? Situational leadership as a model and style of organizational management is defined. With a concentration on workers with disabilities, employer and employee perceptions of the workplace environment are analyzed as a contributing factor to the choice of leadership styles. Leadership style and its potential impact on workers with disabilities are included. Advantages of situational leadership style as an organizational model for managers that matches the intricate needs of workers with disabilities are argued. Methods for increasing awareness of the needs of persons with disabilities in the workplace and improving leadership models are discussed. Implications and potential outcomes for workers with disabilities based on the use of situational leadership by managers are discussed. PMID:18057575

  20. Dynamics of Situation Definition

    ERIC Educational Resources Information Center

    Park, Dongseop; Moro, Yuji

    2006-01-01

    Situation definition is the process and product of actors' interpretive activities toward a given situation. By reviewing a number of psychological studies conducted in experimental settings, we found that the studies have only explicated a part of the situation definition process and have neglected its dynamic aspects. We need to focus on the…

  1. Reducing Misanthropic Memory Through Self-Awareness: Reducing Bias.

    PubMed

    Davis, Mark D

    2015-01-01

    Two experiments investigated the influence of self-awareness on misanthropic recall. Misanthropic recall is the tendency to recall more negative behaviors dispositionally attributed and positive behaviors situationally attributed than negative behaviors situationally attributed and positive behaviors dispositionally attributed. It was hypothesized that when one is self-aware, more systematic information processing would occur, thereby reducing misanthropic memory and influencing attitudinal judgments. The first experiment used a mirror and the second experiment used a live video to induce self-awareness. Participants were asked to form an impression of a group. The results of both experiments replicated the previously found pattern of misanthropic memory for non-self-aware participants (Ybarra & Stephan, 1996), and revealed less misanthropic recall bias in self-aware participants. PMID:26442341

  2. Context Aware Systems, Methods and Trends in Smart Home Technology

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    Context aware applications respond and adapt to changes in the computing environment. It is the concept of leveraging information about the end user to improve the quality of the interaction. New technologies in context-enriched services will use location, presence, social attributes, and other environmental information to anticipate an end user's immediate needs, offering more-sophisticated, situation-aware and usable functions. Smart homes connect all the devices and appliances in your home so they can communicate with each other and with you. Context-awareness can be applied to Smart Home technology. In this paper, we discuss the context-aware tools for development of Smart Home Systems.

  3. Teaching for Abstraction: A Model

    ERIC Educational Resources Information Center

    White, Paul; Mitchelmore, Michael C.

    2010-01-01

    This article outlines a theoretical model for teaching elementary mathematical concepts that we have developed over the past 10 years. We begin with general ideas about the abstraction process and differentiate between "abstract-general" and "abstract-apart" concepts. A 4-phase model of teaching, called Teaching for Abstraction, is then proposed…

  4. A Context-Aware Ubiquitous Learning Environment for Conducting Complex Science Experiments

    ERIC Educational Resources Information Center

    Hwang, Gwo-Jen; Yang, Tzu-Chi; Tsai, Chin-Chung; Yang, Stephen J. H.

    2009-01-01

    Context-aware ubiquitous learning (u-learning) is an innovative approach that integrates wireless, mobile, and context-awareness technologies to detect the situation of learners in the real world and provide adaptive support or guidance accordingly. In this paper, a context-aware u-learning environment is developed for guiding inexperienced…

  5. 2005 Disability Awareness Night

    ERIC Educational Resources Information Center

    Exceptional Parent, 2005

    2005-01-01

    The mission of Disability Awareness Night is to expand awareness of the 54 million Americans with disabilities, by highlighting their extraordinary achievements and the perseverance and dedication of the families, caregivers, physicians, nurses, therapists and teachers involved in their care and development. The presentation of the EP Maxwell…

  6. Affective processing requires awareness.

    PubMed

    Lähteenmäki, Mikko; Hyönä, Jukka; Koivisto, Mika; Nummenmaa, Lauri

    2015-04-01

    Studies using backward masked emotional stimuli suggest that affective processing may occur outside visual awareness and imply primacy of affective over semantic processing, yet these experiments have not strictly controlled for the participants' awareness of the stimuli. Here we directly compared the primacy of affective versus semantic categorization of biologically relevant stimuli in 5 experiments (n = 178) using explicit (semantic and affective discrimination; Experiments 1-3) and implicit (semantic and affective priming; Experiments 4-5) measures. The same stimuli were used in semantic and affective tasks. Visual awareness was manipulated by varying exposure duration of the masked stimuli, and subjective level of stimulus awareness was measured after each trial using a 4-point perceptual awareness scale. When participants reported no awareness of the stimuli, semantic and affective categorization were at chance level and priming scores did not differ from zero. When participants were even partially aware of the stimuli, (a) both semantic and affective categorization could be performed above chance level with equal accuracy, (b) semantic categorization was faster than affective categorization, and (c) both semantic and affective priming were observed. Affective categorization speed was linearly dependent on semantic categorization speed, suggesting dependence of affective processing on semantic recognition. Manipulations of affective and semantic categorization tasks revealed a hierarchy of categorization operations beginning with basic-level semantic categorization and ending with superordinate level affective categorization. We conclude that both implicit and explicit affective and semantic categorization is dependent on visual awareness, and that affective recognition follows semantic categorization. PMID:25559654

  7. Nontraditional Career Awareness.

    ERIC Educational Resources Information Center

    Forbes Road East Area Vocational Technical School, Monroeville, PA.

    This packet contains materials for a three-day nontraditional career awareness unit which have been tested and evaluated by over 10,000 students and numerous counselors and other educators. Its purpose is to make students more aware of the full range of career opportunities open to male and female students. A cover page for each day lists…

  8. Library Awareness Survey.

    ERIC Educational Resources Information Center

    Rice, James

    1992-01-01

    Reports results of a survey of Iowa City residents regarding their awareness of public library services. Data are presented on use of the library for factual information, statistical/numerical information, learning, and information not available at home; awareness of in-person and telephone library reference services; and knowledge about…

  9. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  10. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  11. Abstraction of Drift Seepage

    SciTech Connect

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package corrosion or radionuclide transport.

  12. Situating emotional experience

    PubMed Central

    Wilson-Mendenhall, Christine D.; Barrett, Lisa Feldman; Barsalou, Lawrence W.

    2013-01-01

    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the “default mode” network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional

  13. Situating emotional experience.

    PubMed

    Wilson-Mendenhall, Christine D; Barrett, Lisa Feldman; Barsalou, Lawrence W

    2013-01-01

    Psychological construction approaches to emotion suggest that emotional experience is situated and dynamic. Fear, for example, is typically studied in a physical danger context (e.g., threatening snake), but in the real world, it often occurs in social contexts, especially those involving social evaluation (e.g., public speaking). Understanding situated emotional experience is critical because adaptive responding is guided by situational context (e.g., inferring the intention of another in a social evaluation situation vs. monitoring the environment in a physical danger situation). In an fMRI study, we assessed situated emotional experience using a newly developed paradigm in which participants vividly imagine different scenarios from a first-person perspective, in this case scenarios involving either social evaluation or physical danger. We hypothesized that distributed neural patterns would underlie immersion in social evaluation and physical danger situations, with shared activity patterns across both situations in multiple sensory modalities and in circuitry involved in integrating salient sensory information, and with unique activity patterns for each situation type in coordinated large-scale networks that reflect situated responding. More specifically, we predicted that networks underlying the social inference and mentalizing involved in responding to a social threat (in regions that make up the "default mode" network) would be reliably more active during social evaluation situations. In contrast, networks underlying the visuospatial attention and action planning involved in responding to a physical threat would be reliably more active during physical danger situations. The results supported these hypotheses. In line with emerging psychological construction approaches, the findings suggest that coordinated brain networks offer a systematic way to interpret the distributed patterns that underlie the diverse situational contexts characterizing emotional life

  14. Novice Situation Cards: The Scripted Situation.

    ERIC Educational Resources Information Center

    Longan, Nathan

    1995-01-01

    This article suggests that to better prepare students for the American Council on the Teaching of Foreign Languages (ACTFL) oral proficiency interview, it is up to instructors to see that these students are better prepared in oral, creative speech. Bridging exercises between dialogue memorization and personalized situations can be used to help…

  15. Phonological Awareness Is Child's Play!

    ERIC Educational Resources Information Center

    Yopp, Hallie Kay; Yopp, Helen

    2009-01-01

    Noticing and being able to manipulate the sounds of spoken language-phonological awareness-is highly related to later success in reading and spelling. The authors define and explain the levels of phonological awareness-syllable awareness, onset-rime awareness, phoneme awareness. They give teachers step-by-step instructions for implementing a…

  16. Advance Organizers: Concret Versus Abstract.

    ERIC Educational Resources Information Center

    Corkill, Alice J.; And Others

    1988-01-01

    Two experiments examined the relative effects of concrete and abstract advance organizers on students' memory for subsequent prose. Results of the experiments are discussed in terms of the memorability, familiarity, and visualizability of concrete and abstract verbal materials. (JD)

  17. Accepted scientific research works (abstracts).

    PubMed

    2014-01-01

    These are the 39 accepted abstracts for IAYT's Symposium on Yoga Research (SYR) September 24-24, 2014 at the Kripalu Center for Yoga & Health and published in the Final Program Guide and Abstracts. PMID:25645134

  18. Situational reaction and planning

    NASA Technical Reports Server (NTRS)

    Yen, John; Pfluger, Nathan

    1994-01-01

    One problem faced in designing an autonomous mobile robot system is that there are many parameters of the system to define and optimize. While these parameters can be obtained for any given situation determining what the parameters should be in all situations is difficult. The usual solution is to give the system general parameters that work in all situations, but this does not help the robot to perform its best in a dynamic environment. Our approach is to develop a higher level situation analysis module that adjusts the parameters by analyzing the goals and history of sensor readings. By allowing the robot to change the system parameters based on its judgement of the situation, the robot will be able to better adapt to a wider set of possible situations. We use fuzzy logic in our implementation to reduce the number of basic situations the controller has to recognize. For example, a situation may be 60 percent open and 40 percent corridor, causing the optimal parameters to be somewhere between the optimal settings for the two extreme situations.

  19. A Concrete Situation for Learning Decimals

    ERIC Educational Resources Information Center

    Pramudiani, Puri; Zulkardi; Hartono, Yusuf; van Amerom, Barbara

    2011-01-01

    Learning about decimals is an important part in mathematics. However at the same time, decimals are known as the abstract numbers for students. Mostly in Indonesia, decimal is taught only as another notation for fractions or percentages. There are no meaningful references for them such as the use of concrete situations. This study aimed at…

  20. Population Education. Awareness Activities.

    ERIC Educational Resources Information Center

    Brouse, Deborah E.

    1990-01-01

    Described are awareness activities that deal with human population growth, resources, and the environment. Activities include simulations, mathematical exercises, and discussions of the topic. Specific examples of what individuals can do to help are listed. (KR)

  1. Year 2000 awareness

    SciTech Connect

    Holmes, C.

    1997-11-01

    This report contains viewgraphs on the challenges business face with the year 2000 software problem. Estimates, roadmaps, virtual factory software, current awareness, and world wide web references are given.

  2. Child Care Aware

    MedlinePlus

    ... Connected With Enews Subscribe Child Care Aware® of America Overview Vision & Mission Audience Partners Child Care Providers ... Public Policy Agenda 2016-2017 Child Care in America: 2016 State Fact Sheets We Can Do Better – ...

  3. Updating Situation Models

    ERIC Educational Resources Information Center

    Zwaan, Rolf A.; Madden, Carol J.

    2004-01-01

    The authors examined how situation models are updated during text comprehension. If comprehenders keep track of the evolving situation, they should update their models such that the most current information, the here and now, is more available than outdated information. Contrary to this updating hypothesis, E. J. O'Brien, M. L. Rizzella, J. E.…

  4. Leprosy situation in Brazil.

    PubMed

    Tomimori-Yamashita, Jane

    2006-09-01

    We present the situation of leprosy in Brazil, reporting about epidemiology, clinical criteria for classification, multidrugtherapy and special situations, as co-infection. This material was presented in the 79th Annual Meeting of Japanese Hansen's Disease Association in May 2006, during a discussion about the Japanese Guidelines for leprosy treatment. PMID:17037380

  5. The Rhetorical Situation Revisited.

    ERIC Educational Resources Information Center

    Garret, Mary; Xiao, Xiaosui

    1993-01-01

    Reviews and redefines a concept known as the "rhetorical situation" through an examination of the political discourse of China during the 19th-century Opium Wars. Arrives at three alterations to the "rhetorical situation" concerning the role of the audience, the role of the culture's discourse tradition, and the interactive and organic nature of…

  6. Energy awareness luncheon and energy seminar

    SciTech Connect

    1980-07-23

    A separate abstract was prepared for each of the following: the luncheon address, energy-growth-freedom by Kenneth A. Randall; the keynote commentary, by F.S. Patton, program chairman; and four current-awareness papers on the future of oil and gas, coal, nuclear energy, and solar energy. In addition, in a section, Speaking of Energy, very brief statements by eight professional engineers on the energy challenge are included. Also, the NSPE position paper on energy policy is included.

  7. On the Relevance of Using Bayesian Belief Networks in Wireless Sensor Networks Situation Recognition

    PubMed Central

    Bagula, Antoine B.; Osunmakinde, Isaac; Zennaro, Marco

    2010-01-01

    Achieving situation recognition in ubiquitous sensor networks (USNs) is an important issue that has been poorly addressed by both the research and practitioner communities. This paper describes some steps taken to address this issue by effecting USN middleware intelligence using an emerging situation awareness (ESA) technology. We propose a situation recognition framework where temporal probabilistic reasoning is used to derive and emerge situation awareness in ubiquitous sensor networks. Using data collected from an outdoor environment monitoring in the city of Cape Town, we illustrate the use of the ESA technology in terms of sensor system operating conditions and environmental situation recognition. PMID:22163509

  8. Multimedia abstract generation of intensive care data: the automation of clinical processes through AI methodologies.

    PubMed

    Jordan, Desmond; Rose, Sydney E

    2010-04-01

    Medical errors from communication failures are enormous during the perioperative period of cardiac surgical patients. As caregivers change shifts or surgical patients change location within the hospital, key information is lost or misconstrued. After a baseline cognitive study of information need and caregiver workflow, we implemented an advanced clinical decision support tool of intelligent agents, medical logic modules, and text generators called the "Inference Engine" to summarize individual patient's raw medical data elements into procedural milestones, illness severity, and care therapies. The system generates two displays: 1) the continuum of care, multimedia abstract generation of intensive care data (MAGIC)-an expert system that would automatically generate a physician briefing of a cardiac patient's operative course in a multimodal format; and 2) the isolated point in time, "Inference Engine"-a system that provides a real-time, high-level, summarized depiction of a patient's clinical status. In our studies, system accuracy and efficacy was judged against clinician performance in the workplace. To test the automated physician briefing, "MAGIC," the patient's intraoperative course, was reviewed in the intensive care unit before patient arrival. It was then judged against the actual physician briefing and that given in a cohort of patients where the system was not used. To test the real-time representation of the patient's clinical status, system inferences were judged against clinician decisions. Changes in workflow and situational awareness were assessed by questionnaires and process evaluation. MAGIC provides 200% more information, twice the accuracy, and enhances situational awareness. This study demonstrates that the automation of clinical processes through AI methodologies yields positive results. PMID:20012610

  9. Awareness under general anesthesia.

    PubMed

    Sigalovsky, Natalie

    2003-10-01

    General anesthesia aims to eliminate patients' awareness of excruciating pain during surgery. Nevertheless, rare occurrences of patient awareness continue because the problem is not yet completely preventable. One study puts the incidence of awareness at 0.18% for patients receiving muscle relaxants and at 0.10% for patients not given relaxant drugs. Awareness experiences frighten patients and impact their implicit and explicit memories in ways that can leave a lifetime of residual emotional and psychological problems ranging from sleep disturbances, nightmares, and daytime anxiety that may subside with time to development of post-traumatic stress disorder. Most anesthetists monitor depth of anesthesia by assessing intraoperative hemodynamic responses to surgical stimuli--an approach questioned by some authors. Several depth-of-anesthesia monitors are available, but there is no ideal monitor that is 100% reliable. This review provides an overview of literature that reports findings associated with the monitoring and occurrence of intraoperative awareness. These studies indicate assessment methods that can be trusted when we provide general anesthesia and what measures can be taken to prevent recall by patients under general anesthesia. PMID:14625975

  10. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Denney, R.M.

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  11. Recursive Abstractions for Parameterized Systems

    NASA Astrophysics Data System (ADS)

    Jaffar, Joxan; Santosa, Andrew E.

    We consider a language of recursively defined formulas about arrays of variables, suitable for specifying safety properties of parameterized systems. We then present an abstract interpretation framework which translates a paramerized system as a symbolic transition system which propagates such formulas as abstractions of underlying concrete states. The main contribution is a proof method for implications between the formulas, which then provides for an implementation of this abstract interpreter.

  12. 2013 SYR Accepted Poster Abstracts.

    PubMed

    2013-01-01

    SYR 2013 Accepted Poster abstracts: 1. Benefits of Yoga as a Wellness Practice in a Veterans Affairs (VA) Health Care Setting: If You Build It, Will They Come? 2. Yoga-based Psychotherapy Group With Urban Youth Exposed to Trauma. 3. Embodied Health: The Effects of a Mind�Body Course for Medical Students. 4. Interoceptive Awareness and Vegetable Intake After a Yoga and Stress Management Intervention. 5. Yoga Reduces Performance Anxiety in Adolescent Musicians. 6. Designing and Implementing a Therapeutic Yoga Program for Older Women With Knee Osteoarthritis. 7. Yoga and Life Skills Eating Disorder Prevention Among 5th Grade Females: A Controlled Trial. 8. A Randomized, Controlled Trial Comparing the Impact of Yoga and Physical Education on the Emotional and Behavioral Functioning of Middle School Children. 9. Feasibility of a Multisite, Community based Randomized Study of Yoga and Wellness Education for Women With Breast Cancer Undergoing Chemotherapy. 10. A Delphi Study for the Development of Protocol Guidelines for Yoga Interventions in Mental Health. 11. Impact Investigation of Breathwalk Daily Practice: Canada�India Collaborative Study. 12. Yoga Improves Distress, Fatigue, and Insomnia in Older Veteran Cancer Survivors: Results of a Pilot Study. 13. Assessment of Kundalini Mantra and Meditation as an Adjunctive Treatment With Mental Health Consumers. 14. Kundalini Yoga Therapy Versus Cognitive Behavior Therapy for Generalized Anxiety Disorder and Co-Occurring Mood Disorder. 15. Baseline Differences in Women Versus Men Initiating Yoga Programs to Aid Smoking Cessation: Quitting in Balance Versus QuitStrong. 16. Pranayam Practice: Impact on Focus and Everyday Life of Work and Relationships. 17. Participation in a Tailored Yoga Program is Associated With Improved Physical Health in Persons With Arthritis. 18. Effects of Yoga on Blood Pressure: Systematic Review and Meta-analysis. 19. A Quasi-experimental Trial of a Yoga based Intervention to Reduce Stress and

  13. Adaptive awareness for personal and small group decision making.

    SciTech Connect

    Perano, Kenneth J.; Tucker, Steve; Pancerella, Carmen M.; Doser, Adele Beatrice; Berry, Nina M.; Kyker, Ronald D.

    2003-12-01

    Many situations call for the use of sensors monitoring physiological and environmental data. In order to use the large amounts of sensor data to affect decision making, we are coupling heterogeneous sensors with small, light-weight processors, other powerful computers, wireless communications, and embedded intelligent software. The result is an adaptive awareness and warning tool, which provides both situation awareness and personal awareness to individuals and teams. Central to this tool is a sensor-independent architecture, which combines both software agents and a reusable core software framework that manages the available hardware resources and provides services to the agents. Agents can recognize cues from the data, warn humans about situations, and act as decision-making aids. Within the agents, self-organizing maps (SOMs) are used to process physiological data in order to provide personal awareness. We have employed a novel clustering algorithm to train the SOM to discern individual body states and activities. This awareness tool has broad applicability to emergency teams, military squads, military medics, individual exercise and fitness monitoring, health monitoring for sick and elderly persons, and environmental monitoring in public places. This report discusses our hardware decisions, software framework, and a pilot awareness tool, which has been developed at Sandia National Laboratories.

  14. Links among emotional awareness, somatic awareness and autonomic homeostatic processing.

    PubMed

    Kanbara, Kenji; Fukunaga, Mikihiko

    2016-01-01

    Emotional awareness and somatic interoceptive awareness are essential processes for human psychosomatic health. A typical trait of lacking emotional awareness related to psychosomatic symptoms is alexithymia. In contrast, alexisomia refers to the trait of lacking somatic awareness. Links between emotional and somatic awareness and homeostatic processing are also significant for the psychosomatic health. The purpose of the present paper is to review the links among emotional awareness, somatic interoceptive awareness and autonomic homeostatic processing. On the basis of the collected evidence, the following arguments were presented(1): (1) The main subcortical neural substrates for these processes are limbic-related systems, which are also responsible for autonomic functions for optimization of homeostatic efficiency. (2) Considerable studies have shown that autonomic activity and/or reactivity to stress correlate with both emotional and interoceptive awareness. A hypothesis was advocated about the links between the two types of awareness and autonomic function: Autonomic dysfunction, especially high sympathetic tone at baseline and/or attenuated reactivity or variability to stress, appears to be involved in disturbance of emotional and interoceptive awareness. (3) Several studies suggest that a link or a cooperative relationship exists between emotional and somatic awareness, and that somatic awareness is the more fundamental of the two types of awareness. Emotional awareness, somatic awareness and autonomic homeostatic processing generally occur in parallel or concurrently. However, some complex features of pathologies include coexistence of reduced interoceptive awareness and somatosensory amplification. The autonomic homeostatic process is fundamentally involved in emotional and somatic awareness. Investigation of these types of awareness with both neuroimaging evaluations and estimation of peripheral autonomic function are required as next steps for exploration

  15. When Time Flies: How Abstract and Concrete Mental Construal Affect the Perception of Time

    ERIC Educational Resources Information Center

    Hansen, Jochim; Trope, Yaacov

    2013-01-01

    Time is experienced as passing more quickly the more changes happen in a situation. The present research tested the idea that time perception depends on the level of construal of the situation. Building on previous research showing that concrete rather than abstract mental construal causes people to perceive more variations in a given situation,…

  16. Abstracts

    NASA Astrophysics Data System (ADS)

    2012-09-01

    Measuring cosmological parameters with GRBs: status and perspectives New interpretation of the Amati relation The SED Machine - a dedicated transient spectrograph PTF10iue - evidence for an internal engine in a unique Type Ic SN Direct evidence for the collapsar model of long gamma-ray bursts On pair instability supernovae and gamma-ray bursts Pan-STARRS1 observations of ultraluminous SNe The influence of rotation on the critical neutrino luminosity in core-collapse supernovae General relativistic magnetospheres of slowly rotating and oscillating neutron stars Host galaxies of short GRBs GRB 100418A: a bridge between GRB-associated hypernovae and SNe Two super-luminous SNe at z ~ 1.5 from the SNLS Prospects for very-high-energy gamma-ray bursts with the Cherenkov Telescope Array The dynamics and radiation of relativistic flows from massive stars The search for light echoes from the supernova explosion of 1181 AD The proto-magnetar model for gamma-ray bursts Stellar black holes at the dawn of the universe MAXI J0158-744: the discovery of a supersoft X-ray transient Wide-band spectra of magnetar burst emission Dust formation and evolution in envelope-stripped core-collapse supernovae The host galaxies of dark gamma-ray bursts Keck observations of 150 GRB host galaxies Search for properties of GRBs at large redshift The early emission from SNe Spectral properties of SN shock breakout MAXI observation of GRBs and short X-ray transients A three-dimensional view of SN 1987A using light echo spectroscopy X-ray study of the southern extension of the SNR Puppis A All-sky survey of short X-ray transients by MAXI GSC Development of the CALET gamma-ray burst monitor (CGBM)

  17. Vague Language in Conference Abstracts

    ERIC Educational Resources Information Center

    Cutting, Joan

    2012-01-01

    This study examined abstracts for a British Association for Applied Linguistics conference and a Sociolinguistics Symposium, to define the genre of conference abstracts in terms of vague language, specifically universal general nouns (e.g. people) and research general nouns (e.g. results), and to discover if the language used reflected the level…

  18. Leadership Abstracts; Volume 4, 1991.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1991-01-01

    "Leadership Abstracts" is published bimonthly and distributed to the chief executive officer of every two-year college in the United States and Canada. This document consists of the 15 one-page abstracts published in 1991. Addressing a variety of topics of interest to the community college administrators, this volume includes: (1) "Delivering the…

  19. Food Science and Technology Abstracts.

    ERIC Educational Resources Information Center

    Cohen, Elinor; Federman, Joan

    1979-01-01

    Introduces the reader to the Food Science and Technology Abstracts, a data file that covers worldwide literature on human food commodities and aspects of food processing. Topics include scope, subject index, thesaurus, searching online, and abstracts; tables provide a comparison of ORBIT and DIALOG versions of the file. (JD)

  20. Innovation Abstracts, Volume XV, 1993.

    ERIC Educational Resources Information Center

    Roueche, Suanne D., Ed.

    1993-01-01

    This volume of 30 one- to two-page abstracts from 1993 highlights a variety of innovative approaches to teaching and learning in the community college. Topics covered in the abstracts include: (1) role-playing to encourage critical thinking; (2) team learning techniques to cultivate business skills; (3) librarian-instructor partnerships to create…

  1. Student Success with Abstract Art

    ERIC Educational Resources Information Center

    Hamidou, Kristine

    2009-01-01

    An abstract art project can be challenging or not, depending on the objectives the teacher sets up. In this article, the author describes an abstract papier-mache project that is a success for all students, and is a versatile project easily manipulated to suit the classroom of any art teacher.

  2. Abstraction in perceptual symbol systems.

    PubMed Central

    Barsalou, Lawrence W

    2003-01-01

    After reviewing six senses of abstraction, this article focuses on abstractions that take the form of summary representations. Three central properties of these abstractions are established: ( i ) type-token interpretation; (ii) structured representation; and (iii) dynamic realization. Traditional theories of representation handle interpretation and structure well but are not sufficiently dynamical. Conversely, connectionist theories are exquisitely dynamic but have problems with structure. Perceptual symbol systems offer an approach that implements all three properties naturally. Within this framework, a loose collection of property and relation simulators develops to represent abstractions. Type-token interpretation results from binding a property simulator to a region of a perceived or simulated category member. Structured representation results from binding a configuration of property and relation simulators to multiple regions in an integrated manner. Dynamic realization results from applying different subsets of property and relation simulators to category members on different occasions. From this standpoint, there are no permanent or complete abstractions of a category in memory. Instead, abstraction is the skill to construct temporary online interpretations of a category's members. Although an infinite number of abstractions are possible, attractors develop for habitual approaches to interpretation. This approach provides new ways of thinking about abstraction phenomena in categorization, inference, background knowledge and learning. PMID:12903648

  3. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect

    Broesius, J.Y.

    1991-03-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  4. [The abstract--why and how it should be written].

    PubMed

    Kourilová, M; Hulín, I

    1989-10-01

    The aim of the study is to provide stimuli for writing concise and coherent abstracts imaging the original article without loss of critical substance and clarity. The main functions of abstracts in providing quick information and reliable sources for indexing are emphasized. The purposes of the prospective reader have to be considered as they should determine the form and content of the abstract. The two main types, i.e. indicative and informative abstracts are assessed. The indicative abstract states what the full paper is about and is thus suitable only for review papers, essays, and nonexperimental studies. As its primary purpose is to help decide whether the full article should be read, it is practically useless when it accompanies a paper written in a different and not commonly accessible language (e.g. Slovak article, English abstract). The informative abstract has a high load of specified information. When concerning experimental work, it should state the aim, the material or subjects involved and methods used, the results obtained, and the conclusions drawn. The recently introduced structured abstract for clinical papers presents a comprehensive image of the full article in a format that makes explicit the elements of critical argument. A framework of useful steps for writing abstracts is provided by analyzing the three main phases of the abstracting process, i.e. 1. analytic reading, 2. extraction, organization and reduction of information, and 3. critical editing. The presented summary of hints for writing reader oriented abstracts and the list of actual examples of obfuscation should increase the awareness and commitment of authors in preparing good-quality abstracts. PMID:2819492

  5. Understanding existing exposure situations.

    PubMed

    Lecomte, J-F

    2016-06-01

    International Commission on Radiological Protection (ICRP) Publication 103 removed the distinction between practices and interventions, and introduced three types of exposure situation: existing, planned, and emergency. It also emphasised the optimisation principle in connection with individual dose restrictions for all controllable exposure situations. Existing exposure situations are those resulting from sources, natural or man-made, that already exist when a decision on control has to be taken. They have common features to be taken into account when implementing general recommendations, such as: the source may be difficult to control; all exposures cannot be anticipated; protective actions can only be implemented after characterisation of the exposure situation; time may be needed to reduce exposure below the reference level; levels of exposure are highly dependent on individual behaviour and present a wide spread of individual dose distribution; exposures at work may be adventitious and not considered as occupational exposure; there is generally no potential for accident; many stakeholders have to be involved; and many factors need to be considered. ICRP is currently developing a series of reports related to the practical implementation of Publication 103 to various existing exposure situations, including exposure from radon, exposure from cosmic radiation in aviation, exposure from processes using naturally occurring radioactive material, and exposure from contaminated sites due to past activities. PMID:26975365

  6. Safety Awareness & Communications Internship

    NASA Technical Reports Server (NTRS)

    Jefferson, Zanani

    2015-01-01

    The projects that I have worked on during my internships were updating the JSC Safety & Health Action Team JSAT Employee Guidebook, conducting a JSC mishap case study, preparing for JSC Today Close Call success stories, and assisting with event planning and awareness.

  7. Poetry and Linguistic Awareness.

    ERIC Educational Resources Information Center

    Blades, Stephen

    As part of an investigation of ways to increase the linguistic awareness and communication skills of community college students from a variety of linguistic and cultural backgrounds, a study was conducted to determine if poetry study would enhance the word comprehension sensitivity of bilingual and bidialectal students. The 38 students involved in…

  8. Career Awareness: Grade 5.

    ERIC Educational Resources Information Center

    Boise City Independent School District, ID.

    A broad educational background is necessary to meet ever changing occupational fields, and career education is an approach incorporating career information within regular school curriculum. For the elementary level, career awareness is the main thrust in this program to integrate students and community. The format for grade five, performance…

  9. Special Awareness Month.

    ERIC Educational Resources Information Center

    Granstrom, Jane; And Others

    1982-01-01

    The article reports on the organization and implementation of a "Special Needs Awareness Month" in Quincy, Massachusetts. Noted are the heavy involvement of parents in the multiagency planning committee, and the resulting citywide displays, publications, programs, and publicity on children with special needs. (DB)

  10. International Agri-Awareness.

    ERIC Educational Resources Information Center

    Indiana State Dept. of Education, Indianapolis.

    Technological progress in communication and transportation within the past 30 years has made many areas of the world accessible, as well as interdependent. Failure to understand the concept of interdependency greatly diminishes the potential of all nations and each citizen to appreciate this world community. This agricultural awareness program…

  11. Career Awareness: Grade 4.

    ERIC Educational Resources Information Center

    Boise City Independent School District, ID.

    A broad educational background is necessary to meet ever changing occupational fields, and career education is an approach incorporating career information within the regular school curriculum. For the elementary level, career awareness is the main thrust in this program to integrate students and community. The introduction contains the format for…

  12. Career Awareness: Grade 3.

    ERIC Educational Resources Information Center

    Boise City Independent School District, ID.

    A broad educational background is necessary to meet ever changing occupational fields, and Career Education is an approach incorporating career information within the regular school curriculum. For the elementary level, career awareness is the main thrust in this program to integrate students and community. The introduction contains the format for…

  13. Enhancing Ethical Awareness

    ERIC Educational Resources Information Center

    Montgomery, Diane; Walker, Mary

    2012-01-01

    As teachers continue professional development throughout their careers to better serve the educational needs of students who are gifted, it becomes apparent that one of the goals is to strive to increase self-awareness of ethical and moral professional decisions and actions. Often, this requires intentional reminders and deliberate work to…

  14. Environmental Awareness Sampler.

    ERIC Educational Resources Information Center

    Halnen, Andrew; And Others

    This sampler for teachers provides information for initiating and dealing with environmental studies in the classroom. Utilizing an interdisciplinary approach, behavioral objectives related to environmental awareness are listed for social studies, science, mathematics, language arts, health, physical education, recreation, music, and local…

  15. Elder Abuse Awareness Project.

    ERIC Educational Resources Information Center

    Morrow, Marilyn J.; Doyle, Kathleen

    The Elder Abuse Awareness Project was developed to determine the incidence of abuse and neglect of elderly people in several rural counties in central Illinois. A primary purpose of the study was to survey service providers as to their actual encounters with elder abuse and neglect. Each provider was asked about warning signs or cues that were…

  16. Cultural Awareness for Children.

    ERIC Educational Resources Information Center

    Allen, Judy; And Others

    This book documents a portion of The Learning Tree program, which develops cultural awareness. It provides activities, written from practical experience, that are designed to give children their first contact with the customs of other cultures. These activities are for teachers to share with preschool-, kindergarten-, and primary-school-age…

  17. Public Awareness Viewpoints.

    ERIC Educational Resources Information Center

    Richman, Gary, Ed.; Trohanis, Pascal, Ed.

    Designed for state Developmental Disabilities Planning Councils, the booklet presents seven papers dealing with public awareness of handicapped persons. M. Reilly describes the Connecticut Council's project to make contact with key groups of decision makers. The Vermont project is explained by T. Knox in terms of program goals and public relations…

  18. Career Awareness: Grade 6.

    ERIC Educational Resources Information Center

    Boise City Independent School District, ID.

    A broad educational background is necessary to meet ever changing occupational fields, and career education is an approach incorporating career information within the regular school curriculum. For the elementary level, career awareness is the main thrust in this program to integrate students and community. The format for grade six, performance…

  19. Amelie: A Recombinant Computing Framework for Ambient Awareness

    NASA Astrophysics Data System (ADS)

    Metaxas, Georgios; Markopoulos, Panos; Aarts, Emile

    This paper presents Amelie, a service oriented framework that supports the implementation of awareness systems. Amelie adopts the tenets of Recombinant computing to address an important non-functional requirement for Ambient Intelligence software, namely the heterogeneous combination of services and components. Amelie is founded upon FN-AAR an abstract model of Awareness Systems which enables the immediate expression and implementation of socially salient requirements, such as symmetry and social translucence. We discuss the framework and show how system behaviours can be specified using the Awareness Mark-up Language AML.

  20. NASA Patent Abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 21) Abstracts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Abstracts are cited for 87 patents and applications introduced into the NASA scientific and technical information system during the period of January 1982 through June 1982. Each entry consists of a citation, an abstract, and in mose cases, a key illustration selected from the patent or patent application.

  1. Situational theory of leadership.

    PubMed

    Waller, D J; Smith, S R; Warnock, J T

    1989-11-01

    The situational theory of leadership and the LEAD instruments for determining leadership style are explained, and the application of the situational leadership theory to the process of planning for and implementing organizational change is described. Early studies of leadership style identified two basic leadership styles: the task-oriented autocratic style and the relationship-oriented democratic style. Subsequent research found that most leaders exhibited one of four combinations of task and relationship behaviors. The situational leadership theory holds that the difference between the effectiveness and ineffectiveness of the four leadership styles is the appropriateness of the leader's behavior to the particular situation in which it is used. The task maturity of the individual or group being led must also be accounted for; follower readiness is defined in terms of the capacity to set high but attainable goals, willingness or ability to accept responsibility, and possession of the necessary education or experience for a specific task. A person's leadership style, range, and adaptability can be determined from the LEADSelf and LEADOther questionnaires. By applying the principles of the situational leadership theory and adapting their managerial styles to specific tasks and levels of follower maturity, the authors were successful in implementing 24-hour pharmacokinetic dosing services provided by staff pharmacists with little previous experience in clinical services. The situational leadership model enables a leader to identify a task, set goals, determine the task maturity of the individual or group, select an appropriate leadership style, and modify the style as change occurs. Pharmacy managers can use this model when implementing clinical pharmacy services. PMID:2589352

  2. The application of top-down abstraction learning using prediction as a supervisory signal to cyber security

    NASA Astrophysics Data System (ADS)

    Mugan, Jonathan; Khalili, Aram E.

    2014-05-01

    Current computer systems are dumb automatons, and their blind execution of instructions makes them open to attack. Their inability to reason means that they don't consider the larger, constantly changing context outside their immediate inputs. Their nearsightedness is particularly dangerous because, in our complex systems, it is difficult to prevent all exploitable situations. Additionally, the lack of autonomous oversight of our systems means they are unable to fight through attacks. Keeping adversaries completely out of systems may be an unreasonable expectation, and our systems need to adapt to attacks and other disruptions to achieve their objectives. What is needed is an autonomous controller within the computer system that can sense the state of the system and reason about that state. In this paper, we present Self-Awareness Through Predictive Abstraction Modeling (SATPAM). SATPAM uses prediction to learn abstractions that allow it to recognize the right events at the right level of detail. These abstractions allow SATPAM to break the world into small, relatively independent, pieces that allow employment of existing reasoning methods. SATPAM goes beyond classification-based machine learning and statistical anomaly detection to be able to reason about the system, and SATPAM's knowledge representation and reasoning is more like that of a human. For example, humans intuitively know that the color of a car is not relevant to any mechanical problem, and SATPAM provides a plausible method whereby a machine can acquire such reasoning patterns. In this paper, we present the initial experimental results using SATPAM.

  3. Abstract Rationality in Education: From Vygotsky to Brandom

    ERIC Educational Resources Information Center

    Derry, Jan

    2008-01-01

    Abstract rationality has increasingly been a target of attack in contemporary educational research and practice and in its place practical reason and situated thinking have become a focus of interest. The argument here is that something is lost in this. In illustrating how we might think about the issue, this paper makes a response to the charge…

  4. Supporting Family Awareness with the Whereabouts Clock

    NASA Astrophysics Data System (ADS)

    Sellen, Abigail; Taylor, Alex S.; Kaye, Joseph ‘Jofish'; Brown, Barry; Izadi, Shahram

    We report the results of a field trial of a situated awareness device for families called the “Whereabouts Clock”. The Clock displays the location of family members using cellphone data as one of four privacy-preserving, deliberately coarse-grained categories ( HOME, WORK, SCHOOL or ELSEWHERE). The results show that awareness of others through the Clock supports not only family communication and coordination but also more emotive aspects of family life such as reassurance, connectedness, identity and social touch. We discuss how the term “awareness” means many things in practice and highlight the importance of designing not just for family activities, but in order to support the emotional, social and even moral aspects of family life.

  5. Teaching Abstract Concepts by Metaphor.

    ERIC Educational Resources Information Center

    Sutherland, Judith A.

    2001-01-01

    Defines metaphor and its uses; explains the construction and application of metaphors in nursing education. Describes the transformation of the abstract psychiatric concept of therapeutic milieu into a visual metaphor. (SK)

  6. Deficiencies in structured medical abstracts.

    PubMed

    Froom, P; Froom, J

    1993-07-01

    This study was carried out to determine if the content of structured abstracts conforms with recommendations of the Ad Hoc Working Group for the critical appraisal of the medical literature as adopted by the Annals of Internal Medicine. The study design was a survey. All articles published in Annals of Internal Medicine in 1991, excluding editorials, case-reports, literature reviews, decision analysis, studies in medical education, descriptive studies of clinical and basic phenomena, and papers lacking a structured abstract, were studied. Of a total of 150 articles, 20 were excluded. The abstract and text of each article were assessed for the presence of the following items; patient selection criteria, statements concerning extrapolation of findings, need for further study, and whether or not the information should be used now. Number of refusers, drop outs and reason(s) for drop outs were assessed for intervention and prospective cohort studies only. Deficiencies of assessed items were noted in both abstracts and texts. For abstracts, patient selection criteria, numbers of refusers, number of drop outs and reason(s) for drop outs were reported in 44.6% (58/130), 3.1% (4/130), 16.9% (14/83) and 2.4% (2/83) respectively. These items were reported more frequently in the texts 87.7% (114/130), 9.2% (12/130), 60.2% (50/83) and 37.3% (31/83) respectively (p < 0.05). Statements concerning extrapolation of findings, need for further study and use of information now were also more frequent in texts than abstracts (p < 0.0001). A large number of structured abstracts published in the Annals of Internal Medicine in 1991, lack information recommended by the Ad Hoc Working Group. Our findings should not be extrapolated to other journals requiring structured abstracts. PMID:8326342

  7. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  8. Embarrassment: Situational Social Anxiety.

    ERIC Educational Resources Information Center

    Miller, Rowland S.

    Embarrassment occurs when the social identity or "face" that one is trying to maintain is abruptly discredited. Thus, embarrassment usually assumes the presence of an audience, real or imagined, and a public predicament which changes the situation. Most people try to avoid embarrassment if they can, and if they have been embarrassed they will go…

  9. Marathi Conversational Situations.

    ERIC Educational Resources Information Center

    Berntsen, Maxine; Nimbkar, Jai

    This volume is an elementary Marathi conversation text for adult learners of Marathi, both foreign and Indian. Designed to be used in conjunction with "Marathi Structural Patterns. Book One," the volume presents over 80 conversations that include material required in everyday situations. Each section contains basic and more difficult…

  10. Coordinated Computer-Supported Collaborative Learning: Awareness and Awareness Tools

    ERIC Educational Resources Information Center

    Janssen, Jeroen; Bodemer, Daniel

    2013-01-01

    Traditionally, research on awareness during online collaboration focused on topics such as the effects of spatial information about group members' activities on the collaborative process. When the concept of awareness was introduced to computer-supported collaborative learning, this focus shifted to cognitive group awareness (e.g., information…

  11. The Racialistic Incidents Inventory: Measuring Awareness of Racialism.

    ERIC Educational Resources Information Center

    Allen-Claiborne, Joyce G.; Taylor, Jerome

    The Racialistic Incidents Inventory (RII) was developed to measure individual awareness of eight types of racialistic incidents. Racialistic incidents were defined as situations in which behaviors or attitudes are directed toward a particular racial/ethnic group; these may reflect racist or nonracist attitudes. The typology of incidents was…

  12. Overall Accuracy of Children's Awareness of Peer Perceptions.

    ERIC Educational Resources Information Center

    MacDonald, Christine D.

    Recent research has noted the importance of being able to correctly interpret social situations in order to respond appropriately in social interactions. This study examined whether social perception--accurate awareness of peers' perceptions--is a global trait or a context-specific ability. Specifically, the study examined individual differences…

  13. Improving Speaking Accuracy through Awareness

    ERIC Educational Resources Information Center

    Dormer, Jan Edwards

    2013-01-01

    Increased English learner accuracy can be achieved by leading students through six stages of awareness. The first three awareness stages build up students' motivation to improve, and the second three provide learners with crucial input for change. The final result is "sustained language awareness," resulting in ongoing…

  14. Sketching Awareness: A Participatory Study to Elicit Designs for Supporting Ad Hoc Emergency Medical Teamwork

    PubMed Central

    Kusunoki, Diana; Sarcevic, Aleksandra; Zhang, Zhan; Yala, Maria

    2014-01-01

    Prior CSCW research on awareness in clinical settings has mostly focused on higher-level team coordination spanning across longer-term trajectories at the department and inter-department levels. In this paper, we offer a perspective on what awareness means within the context of an ad hoc, time- and safety-critical medical setting by looking at teams treating severely ill patients with urgent needs. We report findings from four participatory design workshops conducted with emergency medicine clinicians at two regional emergency departments. Workshops were developed to elicit design ideas for information displays that support awareness in emergency medical situations. Through analysis of discussions and clinicians’ sketches of information displays, we identified five features of teamwork that can be used as a foundation for supporting awareness from the perspective of clinicians. Based on these findings, we contribute rich descriptions of four facets of awareness that teams manage during emergency medical situations: team member awareness, elapsed time awareness, teamwork-oriented and patient-driven task awareness, and overall progress awareness. We then discuss these four awareness types in relation to awareness facets found in the CSCW literature. PMID:25870498

  15. Context aware adaptive security service model

    NASA Astrophysics Data System (ADS)

    Tunia, Marcin A.

    2015-09-01

    Present systems and devices are usually protected against different threats concerning digital data processing. The protection mechanisms consume resources, which are either highly limited or intensively utilized by many entities. The optimization of these resources usage is advantageous. The resources that are saved performing optimization may be utilized by other mechanisms or may be sufficient for longer time. It is usually assumed that protection has to provide specific quality and attack resistance. By interpreting context situation of business services - users and services themselves, it is possible to adapt security services parameters to countermeasure threats associated with current situation. This approach leads to optimization of used resources and maintains sufficient security level. This paper presents architecture of adaptive security service, which is context-aware and exploits quality of context data issue.

  16. In defense of abstract conceptual representations.

    PubMed

    Binder, Jeffrey R

    2016-08-01

    An extensive program of research in the past 2 decades has focused on the role of modal sensory, motor, and affective brain systems in storing and retrieving concept knowledge. This focus has led in some circles to an underestimation of the need for more abstract, supramodal conceptual representations in semantic cognition. Evidence for supramodal processing comes from neuroimaging work documenting a large, well-defined cortical network that responds to meaningful stimuli regardless of modal content. The nodes in this network correspond to high-level "convergence zones" that receive broadly crossmodal input and presumably process crossmodal conjunctions. It is proposed that highly conjunctive representations are needed for several critical functions, including capturing conceptual similarity structure, enabling thematic associative relationships independent of conceptual similarity, and providing efficient "chunking" of concept representations for a range of higher order tasks that require concepts to be configured as situations. These hypothesized functions account for a wide range of neuroimaging results showing modulation of the supramodal convergence zone network by associative strength, lexicality, familiarity, imageability, frequency, and semantic compositionality. The evidence supports a hierarchical model of knowledge representation in which modal systems provide a mechanism for concept acquisition and serve to ground individual concepts in external reality, whereas broadly conjunctive, supramodal representations play an equally important role in concept association and situation knowledge. PMID:27294428

  17. Modelling Metamorphism by Abstract Interpretation

    NASA Astrophysics Data System (ADS)

    Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.

    Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.

  18. Mechanical Engineering Department technical abstracts

    SciTech Connect

    Not Available

    1984-07-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division.

  19. Meeting Abstracts - Annual Meeting 2016.

    PubMed

    2016-04-01

    The AMCP Abstracts program provides a forum through which authors can share their insights and outcomes of advanced managed care practice through publication in AMCP's Journal of Managed Care & Specialty Pharmacy (JMCP). Most of the reviewed and unreviewed abstracts are presented as posters so that interested AMCP meeting attendees can review findings and query authors. The Student/Resident/ Fellow poster presentation (unreviewed) is Wednesday, April 20, 2016, and the Professional poster presentation (reviewed) is Thursday, April 21. The Professional posters will also be displayed on Friday, April 22. The reviewed abstracts are published in the JMCP Meeting Abstracts supplement. The AMCP Managed Care & Specialty Pharmacy Annual Meeting 2016 in San Francisco, California, is expected to attract more than 3,500 managed care pharmacists and other health care professionals who manage and evaluate drug therapies, develop and manage networks, and work with medical managers and information specialists to improve the care of all individuals enrolled in managed care programs. Abstracts were submitted in the following categories: Research Report: describe completed original research on managed care pharmacy services or health care interventions. Examples include (but are not limited to) observational studies using administrative claims, reports of the impact of unique benefit design strategies, and analyses of the effects of innovative administrative or clinical programs. Economic Model: describe models that predict the effect of various benefit design or clinical decisions on a population. For example, an economic model could be used to predict the budget impact of a new pharmaceutical product on a health care system. Solving Problems in Managed Care: describe the specific steps taken to introduce a needed change, develop and implement a new system or program, plan and organize an administrative function, or solve other types of problems in managed care settings. These

  20. Abstract communication for coordinated planning

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Durfee, Edmund H.

    2003-01-01

    work offers evidence that distributed planning agents can greatly reduce communication costs by reasoning at abstract levels. While it is intuitive that improved search can reduce communication in such cases, there are other decisions about how to communicate plan information that greatly affect communication costs. This paper identifies cases independent of search where communicating at multiple levels of abstraction can exponentially decrease costs and where it can exponentially add costs. We conclude with a process for determining appropriate levels of communication based on characteristics of the domain.