Science.gov

Sample records for abstract trace gas

  1. Trace Gas Analyzer (TGA) program

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The design, fabrication, and test of a breadboard trace gas analyzer (TGA) is documented. The TGA is a gas chromatograph/mass spectrometer system. The gas chromatograph subsystem employs a recirculating hydrogen carrier gas. The recirculation feature minimizes the requirement for transport and storage of large volumes of carrier gas during a mission. The silver-palladium hydrogen separator which permits the removal of the carrier gas and its reuse also decreases vacuum requirements for the mass spectrometer since the mass spectrometer vacuum system need handle only the very low sample pressure, not sample plus carrier. System performance was evaluated with a representative group of compounds.

  2. Space Shuttle Trace Gas Analyzer

    NASA Technical Reports Server (NTRS)

    Dencker, W.

    1975-01-01

    A Trace Gas Analyzer (TGA) with the ability to detect the presence of toxic contaminants in the Space Shuttle atmosphere within the subparts-per-million range is under development. The design is a modification of the miniaturized Gas Chromatograph-Mass Spectrometer (GCMS) developed for the Viking Mars Lander. An ambient air sample is injected onto the GC column from a constant volume sample loop and separated into individual compounds for identification by the MS. The GC-MS interface consists of an effluent divider and a silver-paladium separator, an electrochemical cell which removes more than 99.99% of the hydrogen carrier gas. The hydrogen is reclaimed and repressurized without affecting the separator efficiency, a feature which enables a considerable weight reduction in the carrier gas supply system.

  3. Internal Versus External DSLs for Trace Analysis: Extended Abstract

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Havelund, Klaus

    2011-01-01

    This tutorial explores the design and implementation issues arising in the development of domain-specific languages for trace analysis. It introduces the audience to the general concepts underlying such special-purpose languages building upon the authors' own experiences in developing both external domain specific languages and systems, such as EAGLE, HAWK, RULER and LOGSCOPE, and the more recent internal domain-specific language and system TRACECONTRACT within the SCALA language.

  4. Trace gas concentrator FY 1995 summary report

    SciTech Connect

    Andriulli, J.B.; Szady, A.J. Jr.

    1996-05-01

    This report summarizes the accomplishments of the Trace Gas Concentrator Technology Demonstration Project during FY 1995 and through February 1996. The purpose of the activity was to demonstrate proof of principle of a system that concentrates airborne substances (e.g., chemical agents, explosives, narcotics and their precursors, and pollutants) to aid in their detection. A comprehensive computer model (initiated in FY 1994) was developed for the theoretical prediction of the fluid dynamics and mass concentration of the trace gas concentrator. The gas test stand has been installed and checked out. An automated computer data acquisition system has been installed and connected to the concentrator test stand. The data acquisition system is needed to record gas and mechanical operations.

  5. Gas chromatographic analysis of trace gas impurities in tungsten hexafluoride.

    PubMed

    Laurens, J B; de Coning, J P; Swinley, J M

    2001-03-09

    Highly reactive fluorinated gaseous matrices require special equipment and techniques for the gas chromatographic analysis of trace impurities in these gases. The impurities that were analysed at the low-microg/l levels included oxygen, nitrogen, carbon dioxide, carbon monoxide, sulfur hexafluoride and hydrogen. This paper describes the use of a system utilising backflush column switching to protect the columns and detectors in the analysis of trace gas impurities in tungsten hexafluoride. Two separate channels were used for the analysis of H2, O2, N2, CO, CO2 and SF6 impurities with pulsed discharge helium ionisation detection.

  6. The Reanalysis for Stratospheric Trace Gas Studies

    NASA Technical Reports Server (NTRS)

    Pawson, Steven

    2003-01-01

    The "Reanalysis for Stratospheric Trace Gas Studies" (ReSTS) project intends to provide a state-of-the-art meteorological dataset for use in chemistry-transport models (CTMs). The initial focus is on the period from May 1991 until April 1995, which encompasses the initial few years of observations from NASA's Upper Atmosphere Research Satellite (UARS) as well as the abrupt increase and slow decay of volcanic aerosol loading from Mount Pinatubo. The reanalysis is being performed using NASA's operational "GEOS-4" data assimilation system. The results presented in this paper will begin with an overview of the meteorology of the ReSTS period, validating the ReSTS data against independent analyses, followed by an evaluation of the system statistics (the "Observation minus Forecast" for different input data types). Some sensitivities to the assumptions made in the assimilation process will be presented, including aspects of the forecast model and the statistical model used in the observation-forecast merging. Aspects of trace-gas transport will be discussed, focussing on the on-line water vapor distribution (which is a quasi-inert trace gas in the stratosphere), off-line transport studies of ozone and selected long-lived species, as well as assimilated ozone. The results will be discussed in the context of transport studies and our ability to use reanalyzed datasets to examine long-term variations in the meteorology and composition of the middle atmosphere.

  7. Ocean acidification and marine trace gas emissions.

    PubMed

    Hopkins, Frances E; Turner, Suzanne M; Nightingale, Philip D; Steinke, Michael; Bakker, Dorothee; Liss, Peter S

    2010-01-12

    The oceanic uptake of man-made CO(2) emissions is resulting in a measureable decrease in the pH of the surface oceans, a process which is predicted to have severe consequences for marine biological and biogeochemical processes [Caldeira K, Wickett ME (2003) Nature 425:365; The Royal Society (2005) Policy Document 12/05 (Royal Society, London)]. Here, we describe results showing how a doubling of current atmospheric CO(2) affects the production of a suite of atmospherically important marine trace gases. Two CO(2) treatments were used during a mesocosm CO(2) perturbation experiment in a Norwegian fjord (present day: approximately 380 ppmv and year 2100: approximately 750 ppmv), and phytoplankton blooms were stimulated by the addition of nutrients. Seawater trace gas concentrations were monitored over the growth and decline of the blooms, revealing that concentrations of methyl iodide and dimethylsulfide were significantly reduced under high CO(2.) Additionally, large reductions in concentrations of other iodocarbons were observed. The response of bromocarbons to high CO(2) was less clear cut. Further research is now required to understand how ocean acidification might impact on global marine trace gas fluxes and how these impacts might feed through to changes in the earth's future climate and atmospheric chemistry.

  8. A photoacoustic spectrometer for trace gas detection

    NASA Astrophysics Data System (ADS)

    Telles, E. M.; Bezerra, E.; Scalabrin, A.

    2005-06-01

    A high-resolution external laser photoacoustic spectrometer has been developed for trace gas detection with absorption transitions in coincidence with CO2 laser emission lines (9,2-10,9 μm: 920-1086 cm-1). The CO2 laser operates in 90 CW lines with power of up to 15 W. A PC-controlled step motor can tune the laser lines. The resonance frequency of first longitudinal mode of the photoacoustic cell is at 1600 Hz. The cell Q-factor and cell constant are measured close to 50 and 28 mVcmW-1, respectively. The spectrometer has been tested in preliminary studies to analyze the absorption transitions of ozone (O_3). The ethylene (C_2H_4) from papaya fruit is also investigated using N2 as carrier gas at a constant flow rate.

  9. Theoretical models for trace gas preconcentrators

    NASA Astrophysics Data System (ADS)

    Kim, Jihyun

    2013-11-01

    Muntz et al., in 2004 and 2011, had attempted to describe theoretical models about the shape of a main flow channel and the concentration ratio of trace gas for a Continuous Flow-Through Trace Gas Preconcentrator by concepts of net flux and mass flow rate respectively. The possibilities were suggested to obtain theoretical models for the preconcentrator even through they were not satisfied with experimental results, because the theoretical models were only considered for free molecular flow. In this study, new theoretical models based on net flux and mass flow rate have been applied for each regime; free molecular flow, transition flow, and hydrodynamic flow. There are comprehensive numerical models to describe entire regimes with the new theoretical models induced by mass flow rate, but the new theoretical models induced by net flux can be only obtained for the hydrodynamic flow. The numerical predictions were compared with existing experimental results of the prototype of the preconcentrator. The numerical predictions of hydrodynamic and transition flows by mass flow rate were close to the experimental results, but other cases were different to the experimental data. Nevertheless, the theoretical models can provide the possibility to develop the theory of preconcentrator.

  10. Trace gas emissions from burning Florida wetlands

    SciTech Connect

    Cofer, W.R. III; Levine, J.S.; LeBel, P.J. ); Winstead, E.L. ); Koller, A.M. Jr.; Hinkle, C.R. )

    1990-02-20

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO{sub 2}) normalized emission ratios ({Delta}X/{Delta}CO{sub 2}; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H{sub 2}),methane (CH{sub 4}), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N{sub 2}O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncas roemerianus. Some interspersed scrub oak (Querus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. The authors believe that the consistently low emissions ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  11. Trace gas emissions from burning Florida wetlands

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Levine, Joel S.; Winstead, Edward L.; Lebel, Peter J.; Koller, Albert M.; Hinkle, C. Ross

    1990-02-01

    Measurements of biomass burn-produced trace gases are presented that were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide (CO2) normalized emission ratios (ΔX/ΔCO2; V/V; where X is trace gas) for carbon monoxide (CO), hydrogen (H2), methane (CH4), total nonmethane hydrocarbons (TNMHC), and nitrous oxide (N2O) were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak (Quercus spp) and saw palmetto (Screnoa repens) were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. We believe that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes (both small-size fuels) burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly diminished.

  12. Tracing landfill gas migration using chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Archbold, M.; Elliot, T. E.; Redeker, K.; Boshoff, G.

    2003-04-01

    Typical landfill gas (LFG) compositions include a wide range of trace-level Volatile Organic Compounds (VOCs). The most mobile VOCs are chlorofluorocarbons (CFCs), and their presence around landfills may reflect the initial flushing out of VOCs during the early aerobic stage when landfills are most active reaching high temperatures, driving off VOCs, and injecting LFG into the surrounding environment. CFCs are aerobically stable and therefore, may prove a useful means of characterising the environmental impact of landfill gas in the unsaturated zone around landfills. Moreover, as a possible pathfinder environmental tracer of LFG impacts in the environment, any subsequent changes in the CFCs concentrations after injection potentially reflect natural attenuation (NA) processes, which can also affect other VOCs. Thus tracing the CFCs around a landfill may provide an analogue indicator/proxy for other VOCs transport and fate. To assess the feasibility of using chlorofluorocarbons (CFC-11, CFC-12, CFC-113) as proxy tracers, it is imperative to characterise the effects of possible NA processes on both CFC abundances and their overall systematics. In this research, anaerobic biodegradation microcosm studies, which mimic the unsaturated zone of a LFG plume, are conducted using methanogenic soil samples. Results are discussed in terms of the potential effects on CFCs signatures due to anaerobic biodegradation in the unsaturated zone and will also explore ways of characterising NA processes by identifying the effects of diffusion on transport processes, and degradation products of CFCs. The discussion will also include how stable carbon isotopic signatures may be used to enhance our assessments of biodegradation of CFCs in the unsaturated zone around landfills.

  13. Infrared laser spectroscopic trace gas sensing

    NASA Astrophysics Data System (ADS)

    Sigrist, Markus

    2016-04-01

    -lived species like nitrous acid (HONO) with a QCL-based QEPAS system where the small gas sampling volume and hence short gas residence time are of particular importance [3]. A true analysis of gas mixtures has been performed with a widely tunable DFG system in a medical application that could also be adapted to atmospheric species [4]. It is demonstrated that a laser-based narrowband system with broad tunability combined with an appropriate detection scheme is feasible for the chemical analysis of multi-component gas mixtures even with an a priori unknown composition. Most recent examples will further confirm the great potential of infrared laser-based devices for trace species sensing. References 1. D. Marinov and M.W. Sigrist: "Monitoring of road-traffic emission with mobile photoacoustic system", Photochem. and Photobiol. Sciences 2, 774-778 (2003) 2. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: "Broadly tunable mid-infrared VECSEL for multiple components hydrocarbons gas sensing", Appl. Phys. B 117, 935-939 (2014) 3. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: "Short-lived species detection of nitrous acid by external-cavity quantum cascade laser based quartz-enhanced photoacoustic absorption spectroscopy", Appl. Phys. Lett. 106, 101109 (2015) 4. M. Gianella and M.W. Sigrist: "Chemical Analysis of Surgical Smoke by Infrared Laser Spectroscopy", Appl. Phys. B 109, 485-496 (2012)

  14. Abstracts

    ERIC Educational Resources Information Center

    American Biology Teacher, 1977

    1977-01-01

    Included are over 50 abstracts of papers being presented at the 1977 National Association of Biology Teachers Convention. Included in each abstract are the title, author, and summary of the paper. Topics include photographic techniques environmental studies, and biological instruction. (MA)

  15. Trace Gas Transport Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Sun, J.; Burns, S. P.; Delany, A. C.; Oncley, S. P.; Turnipseed, A. A.; Stephens, B. B.; Monson, R. K.; Anderson, D. E.

    2005-12-01

    Carbon dioxide transport at the Niwot Ridge AmeriFlux site was investigated in both gravity and streamline coordinates during a pilot experiment. We found that the nighttime drainage flow and the daytime upslope flow played important roles in the trace gas budget, such as CO2 and water vapor, at this about 6% sloped forest site. Most of time, the canopy flow was decoupled from the air above; the air within the canopy was dominated by drainage and upslope flows while the air above was dominated by prevailing westerlies. At night the flow was stably stratified everywhere but less stable within than above the canopy; while during the day, the air was mostly stable within the canopy layer, especially near the bottom of the canopy, and the layer above was unstable. Protected by the overlying canopy, the drainage flow was responsible for transporting CO2 at night while the stable layer above the canopy prevented upward CO2 transport. In the early morning, the upslope flow transported the nighttime accumulation of moist and CO2-enhanced air up the slope. The reduction of the CO2 concentration in the early morning was associated with photosynthesis, upslope flow, and flux venting. The daytime stable boundary layer within the canopy prevented CO2 venting and provided favorable conditions for CO2 uptake, where the CO2 concentration was relatively high from both local and remote respiration, and both direct and diffused solar radiation were available for photosynthesis. Therefore, both the CO2 respiration at night and the CO2 uptake during the day are underestimated if the horizontal transport of CO2 is not monitored; and the two components may not cancel out.

  16. Trace Gas Exchange of Biofuel Crops

    NASA Astrophysics Data System (ADS)

    Graus, M.; Warneke, C.; Williams, E. J.; Lerner, B. M.; Gilman, J. B.; Li, R.; Eller, A. S.; Gray, C.; Fierer, N.; Fall, R.; Harley, P. C.; Roberts, J. M.; Yuan, B.; Qian, Y.; Westra, P.; Fryrear, C.; Collins, M.; Whitman, K.; De Gouw, J. A.

    2011-12-01

    In 2010 leaf level gas exchange and VOC fluxes from switchgrass and corn grown at the CSU horticultural farm in Ft Collins (CO) were measured using a PTR-MS coupled to a modified Li6400 cuvette system. Both species are C4 plants with corn currently being the dominant biofuel crop in the USA whilst switchgrass being a promising candidate for cellulosic fuel ethanol production. Amongst the strongest VOC emissions from both plants were methanol, acetic acid, acetaldehyde, acetone and toluene. The switchgrass VOC emissions compare reasonably well with the only published data measured from potted plants in a whole plant enclosure (Eller et al. 2011). VOC emission studies on corn are almost as scarce as those of switchgrass. Considering the acreage of corn grown in the USA every year, VOC flux measurements of this plant species are largely under-represented in the literature. The emission rates that do exist in the literature do not compare well with the numbers found in this study (e.g. Das et al. 2003; 35μg methanol per hour per gram biomass). To investigate the biosphere atmosphere exchange of corn fields in more detail the field campaign BioCORN 2011 was initiated. In summer 2011 an eddy covariance system was set up in a corn field at ARDEC (CSU, Ft Collins, CO) to investigate the energy flux and the trace gas exchange of the US' dominant biofuel crop. Besides energy flux, evapotranspiration and CO2 flux a comprehensive suite of volatile organic compounds and inorganic species (O3, NO, NO2, CO) are measured for virtual disjunct eddy covariance (vDEC) analysis and true eddy covariance (EC) fluxes, respectively. VOCs are monitored by PTR-MS and, for the first time, fluxes of formic acid are measured utilizing NI-CIMS data for vDEC analysis. Besides the EC approach leaf level flux measurements and soil flux measurements are performed using a GC-MS system (TACOH) coupled to a modified Li6400 system and to soil chambers, respectively. Ethanol and methanol are amongst the

  17. Trace hydrazines in aqueous solutions accurately determined by gas chromatography

    NASA Technical Reports Server (NTRS)

    Welz, E. A., Jr.

    1967-01-01

    Trace amounts of hydrazines in aqueous solutions can be determined by using polythyleneimine /PEI/ in conjunction with the gas chromatographic column. The PEI specifically retains water without altering the separability or elution order of the hydrazine and associated constituents.

  18. Performance analysis of the continuous trace gas preconcentrator

    NASA Astrophysics Data System (ADS)

    Muntz, E. P.; Han, Y.-L.

    2011-03-01

    In gas molecule detection systems, certain trace gas components can go undetected. This is due to ultralow yet dangerous concentrations combined with limitations of the detection methods. To remedy this problem, a preconcentrator can be included in a system to increase the trace gas concentrations, before the gas samples enter the detection unit. The widely used adsorption/desorption preconcentrators enable detection by interrupting the sampled gas flow for significant periods, in order to accumulate detectable periodic concentrations of trace gas molecules. The recently patented continuous trace gas preconcentrator (CTGP) provides a unique approach for enhancing the trace gas concentration, without stopping the flow. In this study, a performance model is developed for the CTGP, by application of the Poiseuille flow coefficients for long tubes. Based on the Cercignani-Lampis scattering kernel, Sharipov calculated the Poiseuille flow coefficients for various geometries and numerous operating Knudsen numbers. The concentrations of sampled molecules were analyzed in this study using Sharipov's flow coefficients. The results presented here reinforce the potential benefits of the CTGP.

  19. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  20. Amplified trace gas removal in the troposphere.

    PubMed

    Hofzumahaus, Andreas; Rohrer, Franz; Lu, Keding; Bohn, Birger; Brauers, Theo; Chang, Chih-Chung; Fuchs, Hendrik; Holland, Frank; Kita, Kazuyuki; Kondo, Yutaka; Li, Xin; Lou, Shengrong; Shao, Min; Zeng, Limin; Wahner, Andreas; Zhang, Yuanhang

    2009-06-26

    The degradation of trace gases and pollutants in the troposphere is dominated by their reaction with hydroxyl radicals (OH). The importance of OH rests on its high reactivity, its ubiquitous photochemical production in the sunlit atmosphere, and most importantly on its regeneration in the oxidation chain of the trace gases. In the current understanding, the recycling of OH proceeds through HO2 reacting with NO, thereby forming ozone. A recent field campaign in the Pearl River Delta, China, quantified tropospheric OH and HO2 concentrations and turnover rates by direct measurements. We report that concentrations of OH were three to five times greater than expected, and we propose the existence of a pathway for the regeneration of OH independent of NO, which amplifies the degradation of pollutants without producing ozone.

  1. An Approach to Evaluate Scientist Support in Abstract Workflows and Provenance Traces

    SciTech Connect

    Salayandia, Leonardo; Gates, Ann Q.; Pinheiro da Silva, Paulo

    2012-11-02

    Abstract workflows are useful to bridge the gap between scientists and technologists towards using computer systems to carry out scientific processes. Provenance traces provide evidence required to validate results and support their reuse. Assuming both technologies are based on formal semantics, a knowledge-based system that consistently merges both technologies is useful for scientists that produce data to document their data collecting and transformation processes; it is also useful for scientists that reuse data to assess scientific processes and resulting datasets produced by others. While evaluation of each technology is necessary for a given application, this work discusses their combined evaluation. The claim is that both technologies should complement each other and align consistently to a scientist’s perspective in order to be effective for science. Evaluation criteria are proposed based on lessons learned and exemplified for discussion.

  2. Ray tracing in nuclear-pumped flowing gas lasers

    SciTech Connect

    Mat'ev, V Yu

    2003-06-30

    The ray tracing in the resonators of a nuclear-pumped flowing gas lasers is considered. The refractive index profile of the medium in a direction perpendicular to the optical axis in such lasers can be considered parabolic, but the steepness of the parabola is quite nonuniform along the ray trace, and the resonator stability condition (the absolute value of the ray matrix trace for a single trip of the ray in the resonator is smaller than two) is not sufficient to confine the ray within the resonator after a large number of trips. (lasers)

  3. Compilation of Stratospheric Trace Gas Spectral Parameters

    DTIC Science & Technology

    1976-02-15

    Migeotte and L. Neven , "Investigations of Atmospheric CO at the Jungfau.ioch." J. Opt. Soc. Amer. 43_, 1119-1U- (1953). 8. W. S. Benedict, "Theoretical...Rotation Bands. IV. Optical Collision Diameters for Foreign Gas Broadening of CO and DCR Bands." Proc. Roy. Soc. A272, 453-466 (1962). 29. J. B. Davies and

  4. Cloud draft structure and trace gas transport

    NASA Technical Reports Server (NTRS)

    Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.

    1990-01-01

    During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.

  5. Continuous Preconcentrator for Trace Gas Analysis (Preprint)

    DTIC Science & Technology

    2009-05-21

    117, 8531-8539 (2002). lxix Sokhan, V. P., Nicholson, D., Quirke, N., “Transport properties of nitrogen in single walled carbon nanotubes.”, J...Phys. Chem. B, 110, 1971-1975 (2006). lxxi Iijima, S., “Helical microtubules of graphitic carbon ”, Nature, 354, 56-58 (1991). lxxii Harris, P.J.F...ix and electronic noses,x,xi,xii,xiii,xiv have been significantly advanced. However, miniaturized gas sensors/detectors typically have limited

  6. Project AIRSTREAM: Trace gas final report

    SciTech Connect

    Leifer, R

    1992-12-01

    The results of 10 years of sampling for trace gases in the upper troposphere and lower stratosphere are presented. These samples were collected under the auspices of the Atomic Energy Commission (AEC), the Energy Research and Development Administration (ERDA) and the Department of Energy (DOE). Almost 1000 whole air samples were collected during the years 1973 to 1983 under Project AIRSTREAM. Project AIRSTREAM was part of the Environmental Measurements Laboratory's (EML, at that time called the Health and Safety Laboratory/HASL) research effort to investigate the impact of the injection of radionuclides and stable compounds into the stratosphere. One or more of the following compounds were analyzed: CCl[sub 3]F, CCl[sub 2]F[sub 2], CCl[sub 4], N[sub 2]O, SF[sub 6], CO[sub 2], CH[sub 4], CH[sub 3]CCl[sub 3], and COS. Details of the Project's quality assurance program are discussed. Also included in the report are two-dimensional plots of the concentration of CCl[sub 3]F and a complete tabulation of the data.

  7. Trace gas emissions from burning Florida wetlands

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Lebel, Peter J.; Winstead, Edward L.; Koller, Albert M., Jr.; Hinkle, C. Ross

    1990-01-01

    Measurements of biomass burn-produced trace gases were obtained using a helicopter at low altitudes above burning Florida wetlands on November 9, 1987, and from both helicopter and light-aircraft samplings on November 7, 1988. Carbon dioxide normalized emission ratios for carbon monoxide, hydrogen, methane, total nonmethane hydrocarbons, and nitrous oxide were obtained over burning graminoid wetlands consisting primarily of Spartina bakeri and Juncus roemerianus. Some interspersed scrub oak and saw palmetto were also burned. No significant differences were observed in the emission ratios determined for these gases from samples collected over flaming, mixed, and smoldering phases of combustion during the 1987 fire. Combustion-categorized differences in emission ratios were small for the 1988 fire. Combustion efficiency was relatively good (low emission ratios for reduced gases) for both fires. It is believed that the consistently low emission ratios were a unique result of graminoid wetlands fires, in which the grasses and rushes burned rapidly down to standing water and were quickly extinguished. Consequently, the efficiency of the combustion was good and the amount and duration of smoldering combustion was greatly deminished.

  8. Determining trace gas flux from container-grown woody ornamentals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, anthropogenic climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions (CO2, CH4, and N2O) are widely believed to be the driving force behind global warming. Agriculture is a large contri...

  9. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  10. Sampling and analysis of natural gas trace constituents

    SciTech Connect

    Attari, A.; Chao, S.

    1993-09-01

    Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury in some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.

  11. The role of trace gas flux networks in biogeosciences

    SciTech Connect

    Baldocch, Dennis; Reichstein, Markus; Papale, D.; Koteen, Laurie; Vargas, Rodrigo; Agarwal, D. A.; Cook, Robert B.

    2012-01-01

    Vast networks of meteorological sensors ring the globe, providing continuous measurements of an array of atmospheric state variables such as temperature, humidity, rainfall, and the concentration of carbon dioxide [New etal., 1999; Tans etal., 1996]. These measurements provide input to weather and climate models and are key to detecting trends in climate, greenhouse gases, and air pollution. Yet to understand how and why these atmospheric state variables vary in time and space, biogeoscientists need to know where, when, and at what rates important gases are flowing between the land and the atmosphere. Tracking trace gas fluxes provides information on plant or microbial metabolism and climate-ecosystem interactions. The existence of trace gas flux networks is a relatively new phenomenon, dating back to research in 1984. The first gas flux measurement networks were regional in scope and were designed to track pollutant gases such as sulfur dioxide, ozone, nitric acid, and nitrogen dioxide. Atmospheric observations and model simulations were used to infer the depositional rates of these hazardous chemicals [Fowler etal., 2009; Meyers etal., 1991]. In the late 1990s, two additional trace gas flux measurement networks emerged. One, the United States Trace Gas Network (TRAGNET), was a short-lived effort that measured trace gas emissions from the soil and plants with chambers distributed throughout the country [Ojima etal., 2000]. The other, FLUXNET, was an international endeavor that brought many regional networks together to measure the fluxes of carbon dioxide, water vapor, and sensible heat exchange with the eddy covariance technique [Baldocchi etal., 2001]. FLUXNET, which remains active today, currently includes more than 400 tower sites, dispersed across most of the world's climatic zones and biomes, with sites in North and South America, Europe, Asia, Africa, and Australia. More recently, several specialized networks have emerged, including networks dedicated to

  12. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  13. Dual-wavelength quantum cascade laser for trace gas spectroscopy

    SciTech Connect

    Jágerská, J.; Tuzson, B.; Mangold, M.; Emmenegger, L.; Jouy, P.; Hugi, A.; Beck, M.; Faist, J.; Looser, H.

    2014-10-20

    We demonstrate a sequentially operating dual-wavelength quantum cascade laser with electrically separated laser sections, emitting single-mode at 5.25 and 6.25 μm. Based on a single waveguide ridge, this laser represents a considerable asset to optical sensing and trace gas spectroscopy, as it allows probing multiple gas species with spectrally distant absorption features using conventional optical setups without any beam combining optics. The laser capability was demonstrated in simultaneous NO and NO{sub 2} detection, reaching sub-ppb detection limits and selectivity comparable to conventional high-end spectroscopic systems.

  14. Trace gas emissions from biomass burning in tropical Australian savannas

    SciTech Connect

    Hurst, D.F.; Griffith, D.W.T.; Cook, G.D.

    1994-08-20

    The trace gas emissions of biomass burning was measured during the 1991 and 1992 dry seasons (April through October) at the Kapalga Research Station in Kakadu National Park, Northern Territory, Australia. Over 100 smoke samples from savannah fires were collected, from the ground and from aircraft flying at 50 to 700 meters above the fires. The samples were analyzed for carbon dioxide, carbon monoxide, nitrous oxides, and other carbon and nitrogen compounds using gas phase Fourier transform infrared (FTIR) spectroscopy, matrix isolation FTIR spectroscopy, and chemiluminescence techniques. This paper describes the results of the gas analyses and discusses the potential impacts of these gases on regional atmospheric chemistry.49 refs., 4 figs., 7 tabs.

  15. Noble Gas Tracing of Fluid Transport in Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Gardner, W. P.; Kuhlman, K. L.; Robinson, D. G.; Bauer, S. J.

    2014-12-01

    We investigate fluid transport mechanisms in a shale reservoir using natural noble gas tracers. Noble gas tracing is promising due to sensitivity of transport to: pore structure and sizes; phase partitioning between groundwater and liquid and gaseous hydrocarbons; and deformation from hydraulic fracturing and creation of surface area. A time-series of over thirty wellhead fluid samples were collected from two hydraulically-fractured wells with different oil-to-gas ratios, along with production data (i.e., flowrate and pressure). Tracer and production data sets can be combined to infer production flow regimes, to estimate reservoir transport parameters, and to improve forecasts of production decline. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Trace Gas Retrievals from the GeoTASO Aircraft Instrument

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Cole, J.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Soo, D.; Loughner, C.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Pickering, K. E.; Zoogman, P.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a passive remote sensing instrument capable of making 2-D measurements of trace gases and aerosols from aircraft. The instrument measures backscattered UV and visible radiation, allowing the retrieval of trace gas amounts below the aircraft at horizontal resolutions on the order of 250 m x 250 m. GeoTASO was originally developed under NASA's Instrument Incubator Program as a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey mission, and is now also part of risk reduction for the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) and Geostationary Environment Monitoring Spectrometer (GEMS) geostationary satellite missions. We present spatially resolved observations of ozone, nitrogen dioxide, formaldehyde and sulfur dioxide over urban areas and power plants from flights during the DISCOVER-AQ field campaigns in Texas and Colorado, as well as comparisons with observations made by ground-based Pandora spectrometers, in situ monitoring instruments and other aircraft instruments deployed during these campaigns. These measurements at various times of day are providing a very useful data set for testing and improving TEMPO and GEMS retrieval algorithms, as well as demonstrating prototype validation strategies.

  17. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  18. The Reanalysis for Stratospheric Trace-gas Studies

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Li, Shuhua

    2002-01-01

    In order to re-examine trace gas transport in the middle atmosphere for the period May 1991 until April 1995, a "reanalysis" is being performed using an up-to-date version of the DAO's "GEOS" assimilation system. The Reanalysis for Stratospheric Trace-gas Studies (ReSTS) is intended to provide state-of-the-art estimates of the atmosphere during a period when the Upper Atmospheric Research Satellite provided a high density of trace-gas observations, and when the aerosol loading from the eruption of Mount Pinatubo contaminated the lower stratosphere, at the same time performing a natural tracer transport experiment. This study will present the first results from ReSTS, focussing on the improvements over the meteorological analyses produced by the then-operational GEOS-1 data assimilation system; emphasis will be placed on the improved representations of physical processes between GEOS-1 and the current GEOS-4 systems, highlighting the transport properties of the datasets. Alongside the production of a comprehensive atmospheric dataset, important components of ReSTS include performing sensitivity studies to the formulation of the assimilation system (including the representation of physical processes in the GCM, such as feedbacks between ozone/aerosols and meteorology) and to the inclusion of additional data types (including limb-sounding temperature data alongside the TOVS observations). Impacts of some of these factors on the analyzed meteorology and transport will be discussed. Of particular interest are attempts to determine the relative importance of various steps in the assimilation process to the quality of the final analyses.

  19. The NOMAD Spectrometer Suite on ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Thomas, I. R.; Vandaele, A. C.; Daerden, F.; Drummond, R.; Neefs, E.; Patel, M. R.; López-Moreno, J.-J.; Rodriguez Gomez, J.; Bellucci, G.; NOMAD Team

    2014-07-01

    NOMAD, due to launch in 2016 onboard ExoMars Trace Gas Orbiter, consists of one ultraviolet/visible and two infrared spectrometers. Through solar occultation, limb and nadir observations, it will measure a wide range of trace atmospheric gases.

  20. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor (abstract)

    NASA Astrophysics Data System (ADS)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-01

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  1. Miniature Trace Gas Detector Based on Microfabricated Optical Resonators

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Yu, Nan; Thompson, Robert J.; Strekalov, Dmitry V.

    2013-01-01

    While a variety of techniques exist to monitor trace gases, methods relying on absorption of laser light are the most commonly used in terrestrial applications. Cavity-enhanced absorption techniques typically use high-reflectivity mirrors to form a resonant cavity, inside of which a sample gas can be analyzed. The effective absorption length is augmented by the cavity's high quality factor, or Q, because the light reflects many times between the mirrors. The sensitivity of such mirror-based sensors scales with size, generally making them somewhat bulky in volume. Also, specialized coatings for the high-reflectivity mirrors have limited bandwidth (typically just a few nanometers), and the delicate mirror surfaces can easily be degraded by dust or chemical films. As a highly sensitive and compact alternative, JPL is developing a novel trace gas sensor based on a monolithic optical resonator structure that has been modified such that a gas sample can be directly injected into the cavity. This device concept combines ultra-high Q optical whispering gallery mode resonators (WGMR) with microfabrication technology used in the semiconductor industry. For direct access to the optical mode inside a resonator, material can be precisely milled from its perimeter, creating an open gap within the WGMR. Within this open notch, the full optical mode of the resonator can be accessed. While this modification may limit the obtainable Q, calculations show that the reduction is not significant enough to outweigh its utility for trace gas detection. The notch can be milled from the high- Q crystalline WGMR with a focused ion beam (FIB) instrument with resolution much finer than an optical wavelength, thereby minimizing scattering losses and preserving the optical quality. Initial experimental demonstrations have shown that these opened cavities still support high-Q whispering gallery modes. This technology could provide ultrasensitive detection of a variety of molecular species in an

  2. Airborne Trace Gas Mapping During the GOSAT-COMEX Experiment

    NASA Astrophysics Data System (ADS)

    Tratt, D. M.; Leifer, I.; Buckland, K. N.; Johnson, P. D.; Van Damme, M.; Pierre-Francois, C.; Clarisse, L.

    2015-12-01

    The GOSAT-COMEX-IASI (Greenhouse gases Observing SATellite - CO2 and Methane EXperiment - Infrared Atmospheric Sounding Interferometer) experiment acquired data on 24-27 April 2015 with two aircraft, a mobile ground-based sampling suite, and the GOSAT and IASI platforms. Collections comprised the Kern Front and Kern River oil fields north of Bakersfield, Calif. and the Chino stockyard complex in the eastern Los Angeles Basin. The nested-grid experiment examined the convergence of multiple approaches to total trace gas flux estimation from the experimental area on multiple length-scales, which entailed the integrated analysis of ground-based, airborne, and space-based measurements. Airborne remote sensing was employed to map the spatial distribution of discrete emission sites - crucial information to understanding their relative aggregate contribution to the overall flux estimation. This contribution discusses the methodology in the context of the airborne GHG source mapping component of the GOSAT-COMEX experiment and its application to satellite validation.

  3. Reproducibility of measurements of trace gas concentrations in expired air.

    PubMed

    Strocchi, A; Ellis, C; Levitt, M D

    1991-07-01

    Measurement of the pulmonary excretion of trace gases has been used as a simple means of assessing metabolic reactions. End alveolar trace gas concentration, rather than excretory rate, is usually measured. However, the reproducibility of this measurement has received little attention. In 17 healthy subjects, duplicate collections of alveolar air were obtained within 1 minute of each other using a commercially available alveolar air sampler. The concentrations of hydrogen, methane, carbon monoxide, and carbon dioxide were measured. When the subject received no instruction on how to expire into the device, a difference of 28% +/- 19% (1SD) was found between duplicate determinations of hydrogen. Instructing the subjects to avoid hyperventilation or to inspire maximally and exhale immediately resulted in only minor reduction in variability. However, a maximal inspiration held for 15 seconds before exhalation reduced the difference to a mean of 9.6% +/- 8.0%, less than half that observed with the other expiratory techniques. Percentage difference of methane measurements with the four different expiratory techniques yielded results comparable to those obtained for hydrogen. In contrast, percentage differences for carbon monoxide measurements were similar for all expiratory techniques. When normalized to a PCO2 of 5%, the variability of hydrogen measurements with the breath-holding technique was reduced to 6.8% +/- 4.7%, a value significantly lower than that obtained with the other expiratory methods. This study suggests that attention to the expiratory technique could improve the accuracy of tests using breath hydrogen measurements.

  4. Development of a Miniaturized Hollow-Waveguide Gas Correlation Radiometer for Trace Gas Measurements in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, E. M.; Blalock, G. W.; Marx, C. T.; Heaps, W. S.

    2012-01-01

    We present preliminary results in the development of a miniaturized gas correlation radiometer (GCR) for column trace gas measurements in the Martian atmosphere. The GCR is designed as an orbiting instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface.

  5. Trace gas transport out of the Indian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Tomsche, Laura; Pozzer, Andrea; Zimmermann, Peter; Parchatka, Uwe; Fischer, Horst

    2016-04-01

    The trace gas transport out of the Indian summer monsoon was investigated during the aircraft campaign OMO (Oxidation Mechanism Observations) with the German research aircraft HALO (High Altitude and Long Range Research Aircraft) in July/August 2015. HALO was based at Paphos/Cyprus and also on Gan/Maledives. Flights took place over the Mediterranean Sea, the Arabian Peninsula and the Arabian Sea. In this work the focus is on the distribution of carbon monoxide (CO) and methane (CH4) in the upper troposphere. They were measured with the laser absorption spectrometer TRISTAR on board of HALO. During the Indian summer monsoon strong convection takes place over India and the Bay of Bengal. In this area the population is high accompanied by many emission sources e.g. wetlands and cultivation of rice. Consequently the boundary layer is polluted containing high concentrations of trace gases like methane and carbon monoxide. Due to vertical transport these polluted air masses are lifted to the upper troposphere. Here they circulate with the so called Asian monsoon anticyclone. In the upper troposphere polluted air masses lead to a change in the chemical composition thus influence the chemical processes. Furthermore the anticyclone spreads the polluted air masses over a larger area. Thus the outflow of the anticyclone in the upper troposphere leads to higher concentrations of trace gases over the Arabian Sea, the Arabian Peninsula and also over the eastern part of North Africa and the eastern part of the Mediterranean Sea. During OMO higher concentrations of methane and carbon monoxide were detected at altitudes between 11km and 15km. The highest measured concentrations of carbon monoxide and methane were observed over Oman. The CO concentration in the outflow of the monsoon exceeds background levels by 10-15ppb. However the enhancement in the concentration is not obviously connected to the monsoon due to the natural variability in the troposphere. The enhancement in the

  6. A survey of trace contaminants in natural gas liquids

    SciTech Connect

    Wharry, S.M.; Sung, N.J.

    1995-11-01

    A survey of selected contaminants in natural gas liquids (NGL) has been completed for the purpose of determining whether more stringent NGL specifications should be considered by the industry. The survey involved the analysis of over 45 samples from seven independent processors. The trace contaminants that were analyzed include olefins, oxygenated compounds, fluoride, mercury, and arsenic. Not unsurprisingly, the highest levels of olefins were found in the corresponding hydrocarbon streams, (i.e., propylene in the propane streams). The highest levels of oxygenated compounds were found in the propane and raw make streams. The highest fluoride levels were found in the gasoline samples. And finally, for the most part, the mercury and arsenic levels were to close to the detection limits for these samples ({approximately}10 ppb for mercury and {approximately}50 ppb for arsenic) to be able to accurately determine if these contaminants were present in any of the samples. A more exhaustive study would be needed to analyze for these components below these levels. For the olefins, a gas chromatography procedure was used to determine the levels of pentenes and lighter olefins. For the oxygenated compounds, a water extraction method with a gas chromatography follow up was used. This method measures the levels of all water soluble oxygenated compounds, such as the butanols and lighter alcohols as well as acetone. The fluoride analysis involved the determination of the total fluoride per a modified UOP Method 619-83, the Wickbold method. The mercury and arsenic analyses were obtained by first passing the vapor portion of the samples through appropriate trapping media and then desorbing the traps directly into an inductively coupled plasma-mass spectrometer.

  7. Trace gas absorption spectroscopy using laser difference-frequency spectrometer for environmental application

    NASA Technical Reports Server (NTRS)

    Chen, W.; Cazier, F.; Boucher, D.; Tittel, F. K.; Davies, P. B.

    2001-01-01

    A widely tunable infrared spectrometer based on difference frequency generation (DFG) has been developed for organic trace gas detection by laser absorption spectroscopy. On-line measurements of concentration of various hydrocarbons, such as acetylene, benzene, and ethylene, were investigated using high-resolution DFG trace gas spectroscopy for highly sensitive detection.

  8. Trace gas emissions from nursery crop production using different fertilizer methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  9. Effects of fertilizer placement on trace gas emissions from nursery container production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  10. Effects of fertilizer placement on trace gas emissions from container-grown plant production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  11. Developing Tools to Assess European Trace Gas Trends

    NASA Astrophysics Data System (ADS)

    Wilson, Rebecca; Fleming, Zoe; Henne, Stephan; Monks, Paul

    2010-05-01

    The GEOmon (Global Earth Observation and MONitoring) project has produced a harmonised data set of trace gases from thirty ground-based measurement stations belonging to a number of regional, national and European air quality networks (e.g. EMEP, GAW). A variety of tools have been developed in R to evaluate European trace gas trends as a method to assess data quality and the effectiveness of European emission legislation. Long-term O3, NO2 and CO have been characterised at all sites using lowess regression. Additionally, O3 was deseasonalised and linear trends were fitted to and quantified for monthly means, 5th and 95th percentiles (to illustrate changes in mean, background and peak concentrations respectively). Twenty-four of these sites have data between 1996-2005 (Incl). Analysis of these sites for the time period provides an easily comparable characterisation of continental-scale O3 trends. However, few sites have statistically significant trends during this limited analysis period. The RETRO monthly NOx emissions fluxes at the GEOmon harmonised data sites were plotted from 1985-2000. The introduction of catalytic converters in Europe in 1985 and subsequent EU legislation in 1993 (requiring catalytic converters in all new petrol cars sold), corresponds to a decrease in NOx emissions throughout 1990's for the majority of sites. It is noted that the rate of reduction in NOx emissions decreases from the mid-1990's to 2000 for fifteen locations. This may account for the less pronounced, and reduced statistical significance of, O3 trends during the 1996-2005 period. Although the spatial distribution of European O3 trends 1996-2005 is inconclusive for the present GEOmon harmonised dataset, the expansion to more European sites may lead to a more detailed characterisation.

  12. Hollow Waveguide Gas Sensor for Mid-Infrared Trace Gas Analysis

    SciTech Connect

    Kim, S; Young, C; Chan, J; Carter, C; Mizaikoff, B

    2007-07-12

    A hollow waveguide mid-infrared gas sensor operating from 1000 cm{sup -1} to 4000 cm{sup -1} has been developed, optimized, and its performance characterized by combining a FT-IR spectrometer with Ag/Ag-halide hollow core optical fibers. The hollow core waveguide simultaneously serves as a light guide and miniature gas cell. CH{sub 4} was used as test analyte during exponential dilution experiments for accurate determination of the achievable limit of detection (LOD). It is shown that the optimized integration of an optical gas sensor module with FT-IR spectroscopy provides trace sensitivity at the few hundreds of parts-per-billion concentration range (ppb, v/v) for CH{sub 4}.

  13. A Lagrangian View of Stratospheric Trace Gas Distributions

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.; Sparling, L.; Dessler, A.; Jackman, C. H.; Fleming, E. L.

    1998-01-01

    As a result of photochemistry, some relationship between the stratospheric age-of-air and the amount of tracer contained within an air sample is expected. The existence of such a relationship allows inferences about transport history to be made from observations of chemical tracers. This paper lays down the conceptual foundations for the relationship between age and tracer amount, developed within a Lagrangian framework. In general, the photochemical loss depends not only on the age of the parcel but also on its path. We show that under the "average path approximation" that the path variations are less important than parcel age. The average path approximation then allows us to develop a formal relationship between the age spectrum and the tracer spectrum. Using the relation between the tracer and age spectra, tracer-tracer correlations can be interpreted as resulting from mixing which connects parts of the single path photochemistry curve, which is formed purely from the action of photochemistry on an irreducible parcel. This geometric interpretation of mixing gives rise to constraints on trace gas correlations, and explains why some observations are do not fall on rapid mixing curves. This effect is seen in the ATMOS observations.

  14. Particulate matter and trace-gas changes at Beltsville, MD, and influences on cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Doughty, David

    This dissertation seeks to further our understanding of how rainfall processes are affected by the 3 complex interactions among trace gases, aerosols, and clouds in semi-urban areas. (Abstract shortened by ProQuest.).

  15. Miniaturized Hollow-Waveguide Gas Correlation Radiometer (GCR) for Trace Gas Detection in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, E. M.; Melroy, H. R.

    2012-01-01

    Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Here, we present a miniaturized and simplified version of this instrument capable of mapping multiple trace gases and identifying active regions on the Mars surface. Reduction of the size and mass of the GCR instrument has been achieved by implementing a lightweight, 1 mm inner diameter hollow-core optical fiber (hollow waveguide) for the gas correlation cell. Based on a comparison with an Earth orbiting CO2 gas correlation instrument, replacement of the 10 meter mUltipass cell with hollow waveguide of equivalent pathlength reduces the cell mass from approx 150 kg to approx 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately I meter in diameter by 0.05 m in height (mass and volume reductions of >99%). This modular instrument technique can be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance.

  16. Digital Architecture for a Trace Gas Sensor Platform

    NASA Technical Reports Server (NTRS)

    Gonzales, Paula; Casias, Miguel; Vakhtin, Andrei; Pilgrim, Jeffrey

    2012-01-01

    A digital architecture has been implemented for a trace gas sensor platform, as a companion to standard analog control electronics, which accommodates optical absorption whose fractional absorbance equivalent would result in excess error if assumed to be linear. In cases where the absorption (1-transmission) is not equivalent to the fractional absorbance within a few percent error, it is necessary to accommodate the actual measured absorption while reporting the measured concentration of a target analyte with reasonable accuracy. This requires incorporation of programmable intelligence into the sensor platform so that flexible interpretation of the acquired data may be accomplished. Several different digital component architectures were tested and implemented. Commercial off-the-shelf digital electronics including data acquisition cards (DAQs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs), and microcontrollers have been used to achieve the desired outcome. The most completely integrated architecture achieved during the project used the CPLD along with a microcontroller. The CPLD provides the initial digital demodulation of the raw sensor signal, and then communicates over a parallel communications interface with a microcontroller. The microcontroller analyzes the digital signal from the CPLD, and applies a non-linear correction obtained through extensive data analysis at the various relevant EVA operating pressures. The microcontroller then presents the quantitatively accurate carbon dioxide partial pressure regardless of optical density. This technique could extend the linear dynamic range of typical absorption spectrometers, particularly those whose low end noise equivalent absorbance is below one-part-in-100,000. In the EVA application, it allows introduction of a path-length-enhancing architecture whose optical interference effects are well understood and quantified without sacrificing the dynamic range that allows

  17. Open Path Trace Gas Laser Sensors for UAV Deployment

    NASA Astrophysics Data System (ADS)

    Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.

    2015-12-01

    Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from

  18. Detection of atmospheric trace gas species by DOAS gas-analyzer

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2014-11-01

    A differential optical absorption spectroscopy (DOAS) gas-analyzer was successfully tested. A high pressure 150-W Xe arc lamp was employed as a light source This system consisted of a coaxial telescope, a spectrometer, an analyzer and retroreflector. In order to record the spectra, a monochrometer with a grating and photodiode array was adopted. Gas analyzer spectral data bank includes more than 30 moleculas absorbed in UV spectral region. The measured absorption spectra were evaluated by using a least-squares fit to determine the average mixing ratio of each species in the atmosphere. A number of air pollutants concentrations: SO2, NO2, O3, etc were trace measured. Minimally detected concentration on pathlength 400 m is the unit of ppb at the time of accumulation of 2 min. The results of the field test measurements of pollutants in Tomsk are presented.

  19. Comparing two micrometeorological techniques for estimating trace gas emissions from distributed sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring trace gas emission from distributed sources such as treatment lagoons, treatment wetlands, land spread of manure, and feedlots requires micrometeorological methods. In this study, we tested the accuracy of two relatively new micrometeorological techniques, vertical radial plume mapping (VR...

  20. Soil physiochemical controls on trace gas emissions for a North Dakota mollisol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of trace gas emissions and an increased understanding of soil controls on emissions during freeze-thaw cycles are essential to refine climate change models. Six similar, intact soil cores were collected to a depth of 80 cm from an undisturbed prairie in central North Dakota. Trace g...

  1. Trace gas detection and monitoring with the Digital Array Gas-correlation Radiometer (DAGR)

    NASA Astrophysics Data System (ADS)

    Gordley, Larry L.; Hervig, Mark E.; Fish, Chad; McHugh, Martin J.

    2011-05-01

    We present the first results from a Digital Array Gas-correlation Radiometer (DAGR) prototype sensor, and discuss applications in remote sensing of trace gases. The sensor concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR), but overcomes the limitations in solar backscatter applications. The DAGR sensor design can be scaled to the size of a digital camera and is ideal for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Ground-based portable DAGR sensors can monitor carbon sequestration sites or industrial facilities. Aircraft or UAV deployment can quickly survey large areas and are particularly well suited for gas leak detection or carbon monitoring. From space-based platforms, Doppler modulation can be exploited to produce an extremely fine spectral resolution with effective resolving power exceeding 100,000. Such space-based DAGR observations could provide near-global sensing of climatically important species such as such as CO2, CO, CH4, O3 and N2O. Planetary science applications include detection and mapping of biomarkers in the Martian atmosphere.

  2. TRACE GAS CONCENTRATIONS IN SMALL STREAMS OF THE GEORGIA PIEDMONT

    EPA Science Inventory

    Seventeen headwater watersheds within the SFBR watershed ranging from 0.5 to 3.4 km2 were selected. We have been monitoring concentrations of the trace gases nitrous oxide, methane, and carbon dioxide, and other parameters (T, conductivity, dissolved oxygen, pH, nutrients, flow r...

  3. Gas dilution system using critical flow Venturi nozzles for generating primary trace-moisture standards in multiple gas species

    NASA Astrophysics Data System (ADS)

    Amano, Minami; Abe, Hisashi

    2017-02-01

    Gas dilution systems are commonly used to generate calibration gas mixtures for secondary gas standards. However, if a gas dilution system is used to generate gas mixtures for primary trace-moisture standards in multiple gas species, difficulty arises; flow control with relative stability of better than 0.009% is required although the relative uncertainty of the best gas flow meter to date is around 0.3%. In this study, we developed a novel gas dilution system using critical flow Venturi nozzles to address this problem. The developed dilution system can measure and control the flow rates of gases in the range of approximately 0.05 l min-1 to 7 l min-1 (when converted to those measured at 101 325 Pa and 273.15 K) with relative stability of better than 0.007%. Using the dilution system, we developed a magnetic suspension balance/diffusion-tube humidity generator capable of generating trace moisture in N2 in the range of approximately 10 nmol mol-1 to 5 µmol mol-1 in amount fraction. The accuracy of the generated trace-moisture standard was verified by measurement with cavity ring-down spectroscopy.

  4. Digital array gas radiometer (DAGR): a sensitive and reliable trace gas detection concept

    NASA Astrophysics Data System (ADS)

    Gordley, Larry L.; McHugh, Martin J.; Marshall, B. T.; Thompson, Earl

    2009-05-01

    The Digital Array Gas Radiometer (DAGR) concept is based on traditional and reliable Gas Filter Correlation Radiometry (GFCR) for remote trace gas detection and monitoring. GFCR sensors have been successful in many infrared remote sensing applications. Historically however, solar backscatter measurements have not been as successful because instrument designs have been susceptible to natural variations in surface albedo, which induce clutter and degrade the sensitivity. DAGR overcomes this limitation with several key innovations. First, a pupil imaging system scrambles the received light, removing nearly all spatial clutter and permitting a small calibration source to be easily inserted. Then, by using focal plane arrays rather than single detectors to collect the light, dramatic advances in dynamic range can be achieved. Finally, when used with the calibration source, data processing approaches can further mitigate detector non-uniformity effects. DAGR sensors can be made as small as digital cameras and are well suited for downlooking detection of gases in the boundary layer, where solar backscatter measurements are needed to overcome the lack of thermal contrast in the IR. Easily integrated into a satellite platform, a space-based DAGR would provide near-global sensing of climatically important species such as such as CO, CH4, and N2O. Aircraft and UAV measurements with a DAGR could be used to monitor agricultural and industrial emissions. Ground-based or portable DAGRs could augment early warning systems for chemical weapons or toxic materials. Finally, planetary science applications include detection and mapping of biomarkers such as CH4 in the Martian atmosphere.

  5. Stratospheric trace gas sampling with chemical absorption filters

    NASA Technical Reports Server (NTRS)

    Bonelli, J. E.; Lazrus, A. L.; Gandrud, B. W.

    1978-01-01

    Recent interest in stratospheric chemistry, sparked in part by the suggested roles of atomic chlorine (Cl) and nitrogen oxides (NOx) in the catalytic destruction of ozone (O3), has made sampling and measurement of trace constituents above the tropopause highly desirable. An ongoing research program in the In Situ Studies Project at the National Center for Atmospheric Research carries out aircraft and balloon-borne stratospheric chemical sampling at regular intervals by using chemically impregnated filters to collect particles and reactive gases.

  6. Cavity Ring-Down Spectroscopy for Trace Gas Analysis

    NASA Astrophysics Data System (ADS)

    Czy Zewski, A.; Ernst, K.; Karasinski, G.; Lange, H.; Rairoux, P.; Skubiszak, W.; Stacewicz, T.

    2002-08-01

    Cavity Ring-Down Spectroscopy (CRDS) is a novel technique of measurement of the absorption coefficient based on determination of the Q-factor of an optical resonator which contains the investigated absorber. We present a modified CRDS method (so called CRD-Spectrography) in which the signal is simultaneously analysed within a broad spectral range. This technique was used for monitoring of trace gases (nitrogen oxides) in the atmosphere. Another modification of CRDS technique allows to determine the transient absorption coefficient. This method was applied for studies of kinetics of CH radical produced by pulsed electric discharge in methane.

  7. Ozone and Trace Gas Trends in the UK and Links to Changing Air Mass Pathways

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; Reeves, C.; Bohnenstengel, S.

    2014-12-01

    Trace gas measurements from UK measurement sites on the North Sea coast and in central London reveal a complicated relationship between NO2, CO, hydrocarbons and ozone. Due to the location of the sites, they receive air masses from the UK, Europe, the North sea, Scandinavia and the Arctic and Atlantic Seas and any seasonality is hard to discern. The transport pathway of air masses that can change on an hourly timescale clearly influences the trace gas levels. Investigations into how the transport pathways have changed over the years, using the NAME dispersion model try to elucidate whether it is the 'where' (transport pathway) or the 'what' (trace gas emissions) that is leading to the ozone trends recorded over the past few years.

  8. Development of trace gas detection instrumentation. [using the heterodyne principle

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Breadboard hardware was constructed to demonstrate detection of a gaseous species by the heterodyne principle. The characteristics of the component parts were investigated and preliminary measurements were made to establish the sensitivity and selectivity of the method for gas analysis of CO, CO2, and N2O. A prototype heterodyne gas analyzer was designed, built, and brought into operational condition. Performance parameters of the prototype analyzer were investigated and its sensitivity to CO2 measured. Further development was undertaken for both the optical bench and the electronic processor components. A three-gas prototype analyzer, capable of measuring the gases CO, CO2, and CH4 was also constructed and tested. Detailed descriptions of the work and results are presented.

  9. Methodology Used for Gas Analysis and Control of Trace Chemical Contaminants at a Hyperbaric Facility. 1. Gas Sampling

    DTIC Science & Technology

    1988-12-01

    specifications, or other date is not to be regarded by implication or otherwise, as in any manner licens - ing the holder or any 6ther person or corporation...cylinder. There are many types and brands of regulators on the market, but not all are suitable for trace or high purity gas analysis work. An

  10. Trace gas flux from container production of woody landscape plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agriculture industry is a large source of greenhouse gas (GHG) emissions which are widely believed to be causing increased global temperatures. Reduction of these emissions has been heavily researched, with most of the work focusing on row crop and animal production sectors. Little attention has...

  11. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  12. Long term aerosol and trace gas measurements in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  13. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  14. Reaction of trace mercury in natural gas with dilute polysulfide solutions in a packed column

    SciTech Connect

    Not Available

    1991-12-01

    This paper reports that the natural gas produced around the world can contain traces of mercury which have to be removed. It is difficult to purify gas to desired mercury levels using conventional techniques. By scrubbing with dilute polysulfide solution, the residual mercury in the gas can be removed from about 0.1 to below 0.01 ppb, a reduction of 90%. In this system, the gas is passed through a packed tower wetted with a solution containing 3 ppm of polysulfide salt. Stainless steel packings are effective for this application. In addition to promoting gas-liquid contact, the stainless steel packings adsorb and concentrate polysulfides which react with Hg in the gas to form insoluble HgS, and thus remove Hg from the gas.

  15. Investigation of trace gas to aerosol relationships over biomass burning areas using daily satellite observations

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Penning de Vries, Marloes; Zörner, Jan; Beirle, Steffen

    2014-05-01

    The quantification and characterization of aerosols from space is a great challenge. Especially in the presence of clouds and over land surfaces, it is often difficult to distinguish the signals of aerosol scattering from scattering by cloud particles or surface reflection. Instead of deriving aerosol properties directly, satellite observations of tropospheric trace gases, emitted by the same emission sources as the aerosols, can be used to derive additional information on the aerosols. Such observations have two potential advantages: First, from the composition of trace gases, information on the aerosol type can be derived. Second, such observations are possible in the presence of clouds (although usually with reduced sensitivity if the trace gases are located below the cloud). In this feasibility study we investigate the relationship between satellite observations of trace gases (CO, NO2, HCHO, CHOCHO) and AOD (measured from satellite or ground). We also include in our comparison satellite observations of the so called UV aerosol index (UVAI), which is an indicator of the aerosol absorption. Like the trace gas observations, also the UVAI can be retrieved in the presence of clouds. We investigate aerosol-trace gas relationships over biomass burning regions. Depending on their optical properties and altitude distribution such aerosols can have a strong impact on the atmospheric energy budget through direct and indirect effects. We perform correlation analyses for selected AERONET stations and also for larger biomass burning areas by also taking into account satellite observations of fire counts.

  16. The ESA/NASA ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Witasse, O.; Allen, M.

    2011-10-01

    The European Space Agency (ESA), in close cooperation with NASA, has established the ExoMars Programme to investigate the Martian environment and habitability, and to demonstrate new technologies paving the way for a future sample return mission. Within this programme, the first proposed mission consists of an ESA spacecraft that will carry an Entry, Descent and Landing Demonstrator. It will be launched in January 2016 with a NASA supplied Atlas V rocket. The scientific goals of the mission are to study Martian atmospheric trace gases, with a focus on chemical species that could reflect the existence of extant active processes (geological or biological). More specifically, the mission will detect the chemical compounds, characterise their spatial and temporal variability and localise their sources on the surface. Five instruments (see table) will be accommodated on the orbiter to achieve these objectives. Following an aerobraking phase, the scientific mission is expected to begin in spring 2017 for a period of at least one Martian year. The presentation will focus primarily on the description of the mission, responsibilities between ESA and NASA, payload, timelines and milestones.

  17. A mobile remote sensing laboratory for water vapor, trace gas, aerosol, and wind speed measurements

    SciTech Connect

    Slaughter, D.; White, W.; Tulloch, W.; DeSlover, D.

    1993-03-19

    The Lawrence Livermore National Laboratory has developed a mobile field laboratory for remote measurement of atmospheric processes and observables that are important in global climate change, dispersal of hazardous materials, and atmospheric pollution. Specific observables of interest are water vapor, trace gases, aerosol size and density, wind, and temperature. The goal is to study atmospheric processes continuously for extended periods in remote field locations. This laboratory has just reached field ready status with sensors for aerosol and trace gas measurement based on established techniques. A development program is underway to enhance the sensor suite with several new techniques and instruments that are expected to significantly extend the state of the art in remote trace gas analysis. The new sensors will be incorporated into the lab during the next two years.

  18. Validity of using backward Lagrangian Stochastic technique in measuring trace gas emission from treatment lagoon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluates the accuracy of measuring trace gas emission from treatment lagoons using backward Lagrangian stochastic (bLs) technique. The bLs technique was originally developed for relatively homogeneous terrains without any obstacles causing significant windflow disturbance. The errors ass...

  19. Determining trace gas efflux from container production of woody nursery crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, climate change and its effects on the global environment has garnered significant attention from the scientific community. Increased trace gas emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) are widely believed to be the driving force behind global warming. ...

  20. Trace gas fluxes from a northern mixed-grass prairie interseeded with alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The role of legumes in improving soil fertility, forage quantity and quality is well established, however what is less clear is the extent that the nitrogen fixed by legumes may drive increased trace gas emissions. A chronosequence study in native prairie that had been interseed with the legume alfa...

  1. Determination of Trace Elements in Nickel Base Gas Turbine Parts by Atomic Absorption Spectrophotometry.

    DTIC Science & Technology

    elements such as silver (Ag), bismuth (Bi), cadmium (Cd), and lead (Pb) in nickel base alloys such as IN100, B1900 and 713C , without interference from...the constituent elements. Failed and nonfailed gas turbine parts made of the above alloys were tested to ascertain whether trace amounts of these

  2. Noble Gas Signatures in Athabasca Glacier - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Hall, C. M.; Castro, M. C.; Aciego, S.; Arendt, C. A.

    2015-12-01

    We present a noble gas study in glacial meltwater (GMW) from the Athabasca Glacier (AG) in the Columbia Icefield, Canada. It constrains the relative contributions of GMW sources, water residence times, and spatial locations where the GMW originates in the alpine glacier. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) which allows for estimation of the altitude at which GMW originated. In addition, crustal He accumulates in water over time, allowing for estimation of water residence times. Water samples were collected in the morning on selected dates in May and July 2011 at two locations about 200 m apart near the terminus area at altitudes between 2000 m and 2100 m. Eight samples were collected in six different days. Results show that the major source of subglacial meltwater is ASW rather than old, compressed glacial ice, which has a distinct noble gas signature not seen in our samples. Given that, GMW samples from the AG do deviate to a certain extent from the ASW values corresponding to measured water temperature and altitude at collection points. Two patterns are observed in the concentrations of the AG samples. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, first observed in high-altitude springs in the Galápagos Islands (Warrier et al., 2012). The second one displays a mass-dependent pattern, first observed in Michigan rainwater (Warrier et al., 2013). A preliminary Xe analysis indicates equilibration altitudes between 2500 m and 3400 m, values compatible with local topography. Samples present He excess of 4% to 91%, and suggest an average residence time of ~400 yrs. References:Warrier, R. B., Castro, M. C., and Hall, C. M. (2012), Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes, Water Resour. Res., 48, W03508, doi:10.1029/2011WR010954. Warrier, R. B., Castro

  3. Noble Gas Signatures in Greenland - Tracing Glacial Meltwater Sources

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Castro, M. C.; Hall, C. M.; Aciego, S.; Stevenson, E. I.; Arendt, C. A.

    2014-12-01

    This study is meant to explore the information noble gases can provide in glacial environments with respect to glacial meltwater sources, relative source contributions, water residence times, and spatial location where this glacial meltwater originates in the ice sheet. Ultimately, we seek to improve our understanding on the dynamics of these massive ice sheets, critical for the major role they play on climate change. This is possible due to the conservative nature of noble gases and temperature dependency of their concentrations in water in equilibrium with the atmosphere (ASW) allowing for calculation of noble gas temperatures (NGTs) and, under certain assumptions, estimation of the altitude at which glacial meltwater originated. In addition, crustally produced isotopes such as He accumulate in water over time, allowing for estimation of water residence times. Glacial meltwater samples were collected and analyzed for noble gas concentrations and isotopic ratios at five different locations in southern Greenland, between sea level and 1221 m. All samples are enriched in He with respect to ASW and are depleted in all other noble gases. Two patterns are apparent. The first one presents a relative Ar enrichment with respect to Ne, Kr, and Xe, a pattern first observed in high-altitude springs in the Galápagos Islands. The second one displays a mass-dependent pattern, a pattern first observed in Michigan rainwater samples. Most samples point to equilibration temperatures at ~0°C and altitudes between 1000 m and 2000 m, values which are consistent with both temperatures and elevations in Greenland. He concentrations vary between 1.1 and 7 times that of ASW and suggest glacial meltwater ages between ~170 and 1150 yrs, a result which is consistent with a preliminary tritium analysis. He isotopes point to surface (precipitation as snow and rainfall) contributions for most samples between ~60% and 90% with a ~10% - 40% crustal contribution from groundwater.

  4. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  5. Trace Gas Retrievals from the GeoTASO Aircraft Instrument During the DISCOVER-AQ Campaigns

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Liu, C.; Gonzalez Abad, G.; Chance, K.; Delker, T.; Good, W. S.; Murcray, F.; Ruppert, L.; Kaptchen, P. F.; Loughner, C.; Follette-Cook, M. B.; Pickering, K. E.

    2014-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a recently-developed passive remote sensing instrument capable of making 2-D measurements of trace gases from aircraft. GeoTASO was developed under NASA's Instrument Incubator program and is a test-bed instrument for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) decadal survey and the upcoming Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite missions. The instrument collects spectra of backscattered UV-visible radiation for the detection of tropospheric trace gases such as NO2, ozone, formaldehyde and SO2. GeoTASO flew on the NASA HU-25C Falcon aircraft during the 2013 (Texas) and 2014 (Colorado) DISCOVER-AQ field campaigns, making satellite-analog measurements of trace gases at a spatial resolution of approximately 500x500 m over urban areas, power plants and other industrial sources of pollution. We present the GeoTASO retrieval algorithms, trace gas measurement results, and validation comparisons with ground-based observations and other aircraft instruments during these campaigns.

  6. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  7. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-11-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 250 citations and includes a subject term index and title list.)

  8. Development of monitoring and control technology based on trace gas monitoring. Final report

    SciTech Connect

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  9. A novel aircraft-based tandem mass spectrometer for atmospheric ion and trace gas measurements

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Reiner, Th.; Arnold, F.

    1993-05-01

    The general design and operation of a novel aircraft-based triple-quadrupole mass spectrometer (TQMS) developed for the improved detection and collisional analysis of atmospheric ions and trace gases are described. The instrument is also suitable for laboratory collision-induced dissociation measurements, studies of ion-molecule reactions, and analytical applications. Highly sensitive and selective trace gas detection by chemical ionization mass spectrometry is also possible using a novel ion injection technique. Result of aircraft-based measurements made with the TQMS are summarized.

  10. Experimental investigation and analysis of continuous flow through trace gas preconcentrator

    NASA Astrophysics Data System (ADS)

    Kim, Jihyun

    2013-11-01

    It was proposed by Muntz et al. in 2004 to study a micro/mesoscale continuous flow through trace gas preconcentrator, which could avoid the time fidelity problem. The preconcentrator for rarefied trace gas analysis, which is one part of a gas detector or analyzer, has been built and consists of a main flow channel, pumping chambers, and separation membranes that are located upper and lower surface of the main flow channel. The preconcentration is not from stop, adsorption, and release, but is caused by the gradually decreasing cross section of the main flow channel until release through the detection unit such as gas chromatography, mass spectrometry, or optical diagnostics. This has the possibility of achieving concentration increase of various gases in a carrier gas by using relatively simple micro/macroscale mass diffusion separation stages, and is suitable for improving the time accuracy of analytical systems. A series of experiments were conducted in an attempt to validate the available numerical data, such as the concentration and gas flow speed of the newly continuous preconcentration technology. This study involved experimental investigations to obtain a base-line comparison of the existing numerical predictions provided by the prototype preconcentrator.

  11. [A line-by-line trace gas absorption model and its application in NDIR gas detection technology].

    PubMed

    Fang, Jing; Liu, Wen-qing; Zhang, Tian-shu

    2008-06-01

    An accurate line-by-line integral trace gas absorption model is presented in the present article. It is for mid-infrared band and can be used in the study on and application to detecting trace gas (or pollution gas). First of all, two algorithms of trace gas radioactive properties, line-by-line integral method and band model method, were introduced. The merits and demerits of each were compared. Several recent developed line-by-line integral calculation models were also introduced. Secondly, the basic principle of line-by-line integral trace gas absorption calculation model was described in detail. The absorption coefficient is a function of temperature, frequency (wave number), pressure, gas volume mixing ratio and constants associated with all contributing line transitions. The average monochromatic absorption coefficient at a given frequency of a given gas species can be written as the product of the number density of the molecular species to which the spectral line belongs, the line intensity and a line shape factor. Efficient calculation of the line shape factor may be required for different atmospheric conditions. In the lower atmosphere, the shape of spectral lines is dominated by pressure broadening and can be represented most simply by the Lorentz line shape factor. At high altitudes, the shape of spectral lines is governed by Doppler broadening At intermediate altitudes, they can be modeled using the Voigt line shape factor, a convolution of the Lorentz and Doppler line shape factors. Finally, in the section of experiment, the results calculated by model were compared with that measured by Fourier transform infrared spectrometer. As an instance, the model was applied to the detectors design of NDIR (non-dispersive infrared) technology and the relationship between signal intensity of detectors and concentration of CO2/CO was simulated by model. Available concentration range of detector was given by calculating the results of the model. It is based on

  12. Quantitative detection of trace explosive vapors by programmed temperature desorption gas chromatography-electron capture detector.

    PubMed

    Field, Christopher R; Lubrano, Adam; Woytowitz, Morgan; Giordano, Braden C; Rose-Pehrsson, Susan L

    2014-07-25

    The direct liquid deposition of solution standards onto sorbent-filled thermal desorption tubes is used for the quantitative analysis of trace explosive vapor samples. The direct liquid deposition method yields a higher fidelity between the analysis of vapor samples and the analysis of solution standards than using separate injection methods for vapors and solutions, i.e., samples collected on vapor collection tubes and standards prepared in solution vials. Additionally, the method can account for instrumentation losses, which makes it ideal for minimizing variability and quantitative trace chemical detection. Gas chromatography with an electron capture detector is an instrumentation configuration sensitive to nitro-energetics, such as TNT and RDX, due to their relatively high electron affinity. However, vapor quantitation of these compounds is difficult without viable vapor standards. Thus, we eliminate the requirement for vapor standards by combining the sensitivity of the instrumentation with a direct liquid deposition protocol to analyze trace explosive vapor samples.

  13. GT1_vgeers_1: Tracing Remnant Gas in Planet Forming Debris Disk Systems

    NASA Astrophysics Data System (ADS)

    Geers, V.

    2010-03-01

    Recent studies of gas emission lines with Spitzer and sub-millimeter telescopes have shown that 10-100 Myr old stars with debris disks have too little gas left to form Jupiter like gas giant planets. Whether enough gas remains in these systems to form ice giant planets is still unanswered. The [OI] emission line at 63 micron is one of the most sensitive tracers of gas mass in the ice-giant region of 10-50 AU in disks, and Herschel PACS is therefore uniquely suited to trace the remnant gas in planet-forming disks. We propose to obtain PACS line spectroscopy of [OI] (63 micron) for two nearby young stars, HR 8799 and HD 15115, which are two systems with detected giant planets or signs of planet formation, while still harbouring prominent debris disks that could be in the process of forming ice giants such as Neptune and Uranus. The proposed observations will probe down to gas masses of 0.01 Earth masses, and allow us to constrain prospects for ice giant formation, measure gas-to-dust ratios in evolved disks to compare with planet formation / disk evolution models, and put constraints on whether the dust dynamics in these systems is driven by the remnant gas or by the radiation. Note: this proposal is submitted under the Swiss part of the HIFI Guaranteed Time program; HIFI PI: Frank Helmich, HIFI Swiss Lead CoI: Arnold Benz.

  14. Natural gas: Marine transportation. (Latest citations from Oceanic Abstracts). Published Search

    SciTech Connect

    1997-01-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Natural gas: Marine transportation. (Latest citations from Oceanic abstracts). Published Search

    SciTech Connect

    1996-02-01

    The bibliography contains citations concerning the design, construction, and operation of ships for the transport of liquified natural gas. Topics include safety devices, materials handling equipment for loading and unloading liquified natural gas, new hull and vessel designs, gas turbine propulsion systems, cargo tank designs and requirements, and liguid load dynamics. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  16. The Science Operations Concept for the ExoMars 2016 Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Frew, D.

    2014-04-01

    The ExoMars 2016 Science Operations Centre (SOC) based at the European Space Astronomy Centre is responsible for coordinating the science planning activities for the Trace Gas Orbiter. Science planning will involve all members of the ExoMars 2016 science ground segment (SGS), namely the SOC at ESAC, the Russian SOC at IKI, the orbiter instrument teams and the science management of the 2016 mission represented by the science working team (SWT) that is chaired by the project scientist. The science operations concept for the mission builds on the legacy inherited from previous ESA planetary missions, in particular from Mars Express for the core plan validation aspects and from the Smart-1 lunar mission for the opportunity analysis and longterm planning approach. Further concept drivers have been derived from the ExoMars 2016 mission profile in the areas of orbit predictability, instrument design and the usage of TGO as a relay for surface assets including the ExoMars 2018 rover. This paper will give an over view of the entire uplink planning process as it is conducted over 3 distinct planning cycles. The Long Term Plan (LTP) establishes the baseline science plan and demonstrates the operational feasibility of meeting the mission science goals formulated by the science working team (SWT) at science management level. The LTP has a planning horizon of 6 months. Each month of the baseline science plan is refined with the instrument teams within the Medium Term Plan (MTP) to converge on a frozen attitude request and resource envelopes for all of the observations in the plan. During the Short Term Planning cycle the SOC will iterate with the teams to finalise the commanding for all of the observations in the plan for the coming week. The description of the uplink planning process will focus on two key areas that are common to all of the planning cycles mentioned above: • Science Plan Abstraction: Interacting with the science plan at the appropriate level of abstraction to

  17. Chirped Laser Dispersion Spectroscopy for Remote Open-Path Trace-Gas Sensing

    PubMed Central

    Nikodem, Michal; Wysocki, Gerard

    2012-01-01

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented. PMID:23443389

  18. Trace gas detection in hyperspectral imagery using the wavelet packet subspace

    NASA Astrophysics Data System (ADS)

    Salvador, Mark A. Z.

    This dissertation describes research into a new remote sensing method to detect trace gases in hyperspectral and ultra-spectral data. This new method is based on the wavelet packet transform. It attempts to improve both the computational tractability and the detection of trace gases in airborne and spaceborne spectral imagery. Atmospheric trace gas research supports various Earth science disciplines to include climatology, vulcanology, pollution monitoring, natural disasters, and intelligence and military applications. Hyperspectral and ultra-spectral data significantly increases the data glut of existing Earth science data sets. Spaceborne spectral data in particular significantly increases spectral resolution while performing daily global collections of the earth. Application of the wavelet packet transform to the spectral space of hyperspectral and ultra-spectral imagery data potentially improves remote sensing detection algorithms. It also facilities the parallelization of these methods for high performance computing. This research seeks two science goals, (1) developing a new spectral imagery detection algorithm, and (2) facilitating the parallelization of trace gas detection in spectral imagery data.

  19. Satellite-derived Signatures of Trace Gases from US. Oil and Gas Operations

    NASA Astrophysics Data System (ADS)

    Kollonige, D. E.; Thompson, A. M.

    2013-12-01

    Since 2005, there has been an increase in shale gas production, which is expected to continue through 2035, leading to heightened environmental concerns regarding increased emissions of the greenhouse gas methane (CH4) and degradation of local air quality. Emissions of CH4 and VOCs may occur at any stage of exploration and production via venting, flashing, flaring, or fugitive/non-permitted emissions. The industrial equipment used to install and maintain a well is a potential emission source of CH4, VOCs, nitrogen oxides, and other gases. Emissions from these individual point sources can accumulate and represent a substantial area source of trace gases to the atmosphere. We have begun to characterize the trace gas signatures associated with oil and natural gas (O&NG) operations in the U.S. using satellite observations over two key regions: the Marcellus and Bakkan Shale Deposits. Current satellite products, including CH4 from the Tropospheric Emission Spectrometer (TES) and nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI) on Aura, are compared to aircraft and ground measurements. Preliminary analysis during June 2012 shows the potential for TES in the mid-troposphere to detect and track increases in CH4 due to a gas well leak in the Marcellus Shale Region. Trace gas trends from satellite observations are analyzed in the vicinity of O&NG sites. The TES CH4 representative tropospheric volume mixing ratio (RTVMR) product, particularly used for emission detection, displays evidence of increasing methane over PA from 2006 through 2012. This analysis begins to provide improved constraints on O&NG emissions and supply a template for future geo-missions, such as TEMPO, for continued observations of air quality.

  20. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  1. Study on the determination of trace methyl mercury in seawater by gas chromatography

    NASA Astrophysics Data System (ADS)

    Wang, Zhongzhu; Cui, Xianzhou

    1990-03-01

    Sample seawater containing trace methyl mercury was acidified and adsorbed on hydrosulfo-cotton, washed with hydrochloric acid, extracted by benzene and dried, and then determined by a gas chromatograph with electron capture detector. This method, which can detect a minimum concentration of 0.1×10-10%, can be used to monitor the 10-10% content of methyl mercury in seawater.

  2. Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda

    NASA Astrophysics Data System (ADS)

    Gharahi Ghehi, N.; Werner, C.; Cizungu Ntaboba, L.; Mbonigaba Muhinda, J. J.; Van Ranst, E.; Butterbach-Bahl, K.; Kiese, R.; Boeckx, P.

    2012-04-01

    Globally, tropical forest soils represent the second largest source of N2O and NO. However, there is still considerable uncertainty on the spatial variability and soil properties controlling N trace gas emission. Therefore, we carried out an incubation experiment with soils from 31 locations in the Nyungwe tropical mountain forest in southwestern Rwanda. All soils were incubated at three different moisture levels (50, 70 and 90 % water filled pore space (WFPS)) at 17 °C. Nitrous oxide emission varied between 4.5 and 400 μg N m-2 h-1, while NO emission varied from 6.6 to 265 μg N m-2 h-1. Mean N2O emission at different moisture levels was 46.5 ± 11.1 (50 %WFPS), 71.7 ± 11.5 (70 %WFPS) and 98.8 ± 16.4 (90 %WFPS) μg N m-2 h-1, while mean NO emission was 69.3 ± 9.3 (50 %WFPS), 47.1 ± 5.8 (70 %WFPS) and 36.1 ± 4.2 (90 %WFPS) μg N m-2 h-1. The latter suggests that climate (i.e. dry vs. wet season) controls N2O and NO emissions. Positive correlations with soil carbon and nitrogen indicate a biological control over N2O and NO production. But interestingly N2O and NO emissions also showed a positive correlation with free iron and a negative correlation with soil pH (only N2O). The latter suggest that chemo-denitrification might, at least for N2O, be an important production pathway. In conclusion improved understanding and process based modeling of N trace gas emission from tropical forests will benefit from spatially explicit trace gas emission estimates linked to basic soil property data and differentiating between biological and chemical pathways for N trace gas formation.

  3. Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries.

    PubMed

    Gondal, M A; Dastageer, A; Shwehdi, M H

    2004-01-09

    A photoacoustic (PA) spectrometer with high selectivity and sensitivity has been developed for trace gas analysis and for the detection of gas leak at part per trillion by volume (pptV) level. This PA system comprises of a resonant photoacoustic cell, a pulsed line tunable CO(2) laser as an excitation source and a sensitive electret microphone as a photoacoustic detector with an option to trigger the safety alarm system for early warning of gas leaks. In this work, three resonant PA cells with various geometries have been developed at our laboratory for the detection of photoacoustic signal using pulsed laser system and their comparative performance have been studied. As a special application of this PA system, the detection of sulfur hexa fluoride (SF(6)) gas using these three cells has been carried out for optimizing the sensitivity. Besides this, our PA system can very well be applied for pollution monitoring and detection of hazardous gases in a noisy environment.

  4. Direct analysis of ultra-trace semiconductor gas by inductively coupled plasma mass spectrometry coupled with gas to particle conversion-gas exchange technique.

    PubMed

    Ohata, Masaki; Sakurai, Hiromu; Nishiguchi, Kohei; Utani, Keisuke; Günther, Detlef

    2015-09-03

    An inductively coupled plasma mass spectrometry (ICPMS) coupled with gas to particle conversion-gas exchange technique was applied to the direct analysis of ultra-trace semiconductor gas in ambient air. The ultra-trace semiconductor gases such as arsine (AsH3) and phosphine (PH3) were converted to particles by reaction with ozone (O3) and ammonia (NH3) gases within a gas to particle conversion device (GPD). The converted particles were directly introduced and measured by ICPMS through a gas exchange device (GED), which could penetrate the particles as well as exchange to Ar from either non-reacted gases such as an air or remaining gases of O3 and NH3. The particle size distribution of converted particles was measured by scanning mobility particle sizer (SMPS) and the results supported the elucidation of particle agglomeration between the particle converted from semiconductor gas and the particle of ammonium nitrate (NH4NO3) which was produced as major particle in GPD. Stable time-resolved signals from AsH3 and PH3 in air were obtained by GPD-GED-ICPMS with continuous gas introduction; however, the slightly larger fluctuation, which could be due to the ionization fluctuation of particles in ICP, was observed compared to that of metal carbonyl gas in Ar introduced directly into ICPMS. The linear regression lines were obtained and the limits of detection (LODs) of 1.5 pL L(-1) and 2.4 nL L(-1) for AsH3 and PH3, respectively, were estimated. Since these LODs revealed sufficiently lower values than the measurement concentrations required from semiconductor industry such as 0.5 nL L(-1) and 30 nL L(-1) for AsH3 and PH3, respectively, the GPD-GED-ICPMS could be useful for direct and high sensitive analysis of ultra-trace semiconductor gas in air.

  5. Hierarchical framework for coupling a biogeochemical trace gas model to a general circulation model

    SciTech Connect

    Miller, N.L.; Foster, I.T.

    1994-04-01

    A scheme is described for the computation of terrestrial biogeochemical trace gas fluxes in the context of a general circulation model. This hierarchical system flux scheme (HSFS) incorporates five major components: (1) a general circulation model (GCM), which provides a medium-resolution (i.e., 1{degrees} by 1{degrees}) simulation of the atmospheric circulation; (2) a procedure for identifying regions of defined homogeneity of surface type within GCM grid cells; (3) a set of surface process models, to be run within each homogeneous region, which include a biophysical model, the Biosphere Atmospheric Transfer Scheme (BATS), and a biogeochemical model (BGCM); (4) an interpolation/integration system that transfers information between the GCM and surface process models with finer resolution; and (5) an interactive data array based on a geographic information system (GIS), which provides land characteristic information via the interpolator. The goals of this detailed investigation are to compute the local and global sensitivities of trace gas fluxes to GCM and BATS variables, the effects of trace gas fluxes on global climate, and the effects of global climate on specific biomes.

  6. Trace-gas sensing using the compliance voltage of an external cavity quantum cascade laser

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.

    2013-06-04

    Quantum cascade lasers (QCLs) are increasingly being used to detect, identify, and measure levels of trace gases in the air. External cavity QCLs (ECQCLs) provide a broadly-tunable infrared source to measure absorption spectra of chemicals and provide high detection sensitivity and identification confidence. Applications include detecting chemical warfare agents and toxic industrial chemicals, monitoring building air quality, measuring greenhouse gases for atmospheric research, monitoring and controlling industrial processes, analyzing chemicals in exhaled breath for medical diagnostics, and many more. Compact, portable trace gas sensors enable in-field operation in a wide range of platforms, including handheld units for use by first responders, fixed installations for monitoring air quality, and lightweight sensors for deployment in unmanned aerial vehicles (UAVs). We present experimental demonstration of a new chemical sensing technique based on intracavity absorption in an external cavity quantum cascade laser (ECQCL). This new technique eliminates the need for an infrared photodetector and gas cell by detecting the intracavity absorption spectrum in the compliance voltage of the laser device itself. To demonstrate and characterize the technique, we measure infrared absorption spectra of chemicals including water vapor and Freon-134a. Sub-ppm detection limits in one second are achieved, with the potential for increased sensitivity after further optimization. The technique enables development of handheld, high-sensitivity, and high-accuracy trace gas sensors for in-field use.

  7. Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest

    NASA Technical Reports Server (NTRS)

    Ussler, William, III; Chanton, Jeffrey P.; Kelley, Cheryl A.; Martens, Christopher S.

    1994-01-01

    A set of continuous, high-resolution atmospheric radon (Rn-222) concentration time series and radon soil flux measurements were acquired during the summer of 1990 at a micrometeorological tower site 13 km northwest of Schefferville, Quebec, Canada. The tower was located in a dry upland, open-canopy lichen-spruce woodland. For the period July 23 to August 1, 1990, the mean radon soil flux was 41.1 +/- 4.8 Bq m(exp -2)/h. Radon surface flux from the two end-member forest floor cover types (lichen mat and bare soil) were 38.8 +/- 5.1 and 61.8 +/- 15.6 Bq m(exp -2)/h, respectively. Average total forest canopy resistances computed using a simple 'flux box' model for radon exchange between the forest canopy and the overlying atmosphere range from 0.47 +/- 0.24 s cm(exp -1) to 2.65 +/- 1.61 cm(exp -1) for daytime hours (0900-1700 LT) and from 3.44 +/- 0.91 s cm(exp -1) to 10.55 +/- 7.16 s cm(exp -1) for nighttime hours (2000-0600) for the period July 23 to August 6, 1990. Continuous radon profiling of canopy atmospheres is a suitable approach for determining rates of biosphere/atmosphere trace gas exchange for remote field sites where daily equipment maintenance is not possible. where daily equipment maintenance is not possible.

  8. Quantifying trace gas uptake to tropospheric aerosol: recent advances and remaining challenges.

    PubMed

    Abbatt, J P D; Lee, A K Y; Thornton, J A

    2012-10-07

    The interactions of trace gases with tropospheric aerosol can have significant effects on both gas phase and aerosol composition. In turn, this may affect the atmospheric oxidizing capacity, aerosol hygroscopicity and optical properties, and the lifetimes of trace aerosol species. Through the detailed description of specific reaction systems, this review article illustrates how detailed experimental studies of gas-particle interactions lead to both a comprehensive understanding of the underlying physical chemistry as well as accurate parameterizations for atmospheric modeling. The reaction systems studied illustrate the complexity in the field: (i) N(2)O(5) uptake, presented as a benchmark multiphase system, can lead to both NO(x) loss and halogen activation, (ii) loss of HO(2) on aqueous particles is surprisingly poorly studied given its potential importance for HO(x) loss, (iii) uptake of HNO(3) by marine aerosol and heterogeneous oxidation of organic-bearing particles are examples of how gas-particle interactions can lead to substantial alteration of aerosol composition, and (iv) the uptake of glyoxal to ammonium sulfate aerosol leads to highly complex particle-phase chemistry. In addition, for the first time, this article presents the challenges that must be addressed in the design and interpretation of atmospheric gas-to-particle uptake experiments.

  9. The radiolysis of simple gas mixtures—III. the production of ``trace organics''

    NASA Astrophysics Data System (ADS)

    Dyer, Alan; Moores, Graham E.

    Carbon dioxide based gas mixtures, similar to those used as coolants in the Advanced Gas-cooled Nuclear Reactors, have been radiolyzed at the comparatively low dose rate of 3 Gy s -1 using γ-radiation from a 60Co source. The concentrations of certain C 4 and C 5 alkanes, ethanal and propanone, produced by radiolysis, have been determined under different conditions of temperature, pressure, gas composition, and surface area. Observations showed that these compounds were produced in concentrations of the order of 1/1000 of the methane concentration and that the production of these "trace organics" varied in a complex way with the experimental parameters. Mechanisms for the production of these organics have been proposed. Some unidentified products of radiolysis were observed and suggestions are made as to their nature.

  10. Improvement and validation of trace gas retrieval from ACAM aircraft observation

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; Gonzalez Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-12-01

    The ACAM (Airborne Compact Atmospheric Mapper) instrument, flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns, was designed to provide remote sensing observations of tropospheric and boundary layer pollutants and help understand some of the most important pollutants that directly affect the health of the population. In this study, slant column densities (SCD) of trace gases (O3, NO2, HCHO) are retrieved from ACAM measurements during the Baltimore-Washington D.C. 2011 campaign by the Basic Optical Absorption Spectroscopy (BOAS) trace gas fitting algorithm using a nonlinear least-squares (NLLS) inversion technique, and then are converted to vertical column densities (VCDs) using the Air Mass Factors (AMF) calculated with the VLIDORT (Vector Linearized Discrete Ordinate Radiative Transfer) model and CMAQ (Community Multi-scale Air Quality) model simulations of trace gas profiles. For surface treatment in the AMF, we use high-resolution MODIS climatological BRDF product (Bidirectional Reflectance Distribution Function) at 470 nm for NO2, and use high-resolution surface albedo derived by combining MODIS and OMI albedo databases for HCHO and O3. We validate ACAM results with coincident ground-based PANDORA, aircraft (P3B) spiral and satellite (OMI) measurements and find out generally good agreement especially for NO2 and O3

  11. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    NASA Astrophysics Data System (ADS)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  12. Obliquity-Controlled Water Vapor/Trace Gas Feedback in the Martian Greenhouse Cycle

    NASA Astrophysics Data System (ADS)

    Mischna, M. A.; Baker, V. R.; Milliken, R.; Richardson, M. I.; Lee, C.

    2013-12-01

    We have explored possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace gas emissions, using the Mars Weather Research and Forecasting (MarsWRF) general circulation model. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. The levels of warming obtained in our simulations do not reach the values seen in Johnson et al., (2008, JGR, 113, E08005), nor are they widespread for extended periods. Rather, warming above 273 K is found in more localized environments and for geologically brief periods of time. Such periodic episodes are controlled by two factors. First is the obliquity of the planet, which plays a significant role is ';activating' extant surface water ice reservoirs, allowing levels of atmospheric water vapor to rise when obliquity is high, and fall precipitously when the obliquity is low. During these low-obliquity periods, the atmosphere is all but incapable of supporting warm surface temperatures except for brief episodes localized wholly in the tropics; thus, there is a natural regulator in the obliquity cycle for maintaining periodic warming. Second is the presence of a secondary trace gas 'trigger', like volcanically released SO2, in the atmosphere. In the absence of such a trace gas, water vapor alone appears incapable of raising temperatures above the melting point; however, by temporarily raising the baseline global temperatures (in the absence of warming by water vapor) by 10-15 K, as with SO2, the trigger gas keeps atmospheric temperatures sufficiently warm, especially during nighttime, to maintain levels of water vapor in the atmosphere that provide the needed warming. Furthermore, we find that global warming can be achieved more

  13. Rocket- and aircraft-borne trace gas measurements in the winter polar stratosphere

    NASA Technical Reports Server (NTRS)

    Arnold, F.; Moehler, O.; Pfeilsticker, K.; Ziereis, H.

    1988-01-01

    In January and February 1987 stratospheric rocket- and aircraft-borne trace gas measurements were done in the North Polar region using ACIMS (Active Chemical Ionization Mass Spectrometry) and PACIMS (PAssive Chemical Ionization Mass Spectrometry) instruments. The rocket was launched at ESRANGE (European Sounding Rocket Launching Range) (68 N, 21 E, Northern Sweden) and the twin-jet research aircraft operated by the DFVLR (Deutsche Forschungs- und Versuchs-anstalt fuer Luft- und Raumfahrt), and equipped with a mass spectrometer laboratory was stationed at Kiruna airport. Various stratospheric trace gases were measured including nitric acid, sulfuric acid, non-methane hydrocarbons (acetone, hydrogen cyanide, acetonitrile, methanol etc.), and ambient cluster ions. The experimental data is presented and possible implications for polar stratospheric ozone discussed.

  14. Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.

    1995-11-01

    A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.

  15. Seasonal Trace Gas Dynamics on Minerotrophic Fen Peatlands in NE-Germany

    NASA Astrophysics Data System (ADS)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Minke, Merten; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges of several fen peatland use areas between soil and atmosphere at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements and show significant differences in their annual trace gas balances depending on the genesis of the observed sites and the seasonal dynamics. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the identification of main flux driving parameters. That is that a reduced intensity in land use as a supposed mitigating treatment did not show the expected effect, though a normal meadow treatment surprisingly resulted in the lowest balances in both years. For implementing a

  16. Modelling Trace Gas Gluxes From Soils Along Slope Transects in Eastern Canadian Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Peng, C.; Chen, X.; Ullah, S.; Moore, T.; Li, C.

    2009-05-01

    Trace gases exchange between forest soils and atmosphere is important for Green House Gases (GHG) budget at both national and global scales. However, this part has not been included in the Canadian national GHG inventory yet. Although several sites have flux measurements, accurate larger scale fluxes are difficult to estimate due to the nature of spatial and temporal variability for gas generation and consumption processes. This study aims to simulate trace gas fluxes (mainly CH4 and N2O) at different landscape scales, using the process-based Forest-DNDC model. As the first part of the work, model has been parameterized and validated against flux measurements along slope transects at two deciduous forest stands at Mt. St. Hilaire (MSH) and Morgan Arboretum (MA), near Montreal, Quebec. The preliminary results suggest that both N2O and CH4 fluxes have two peaks during a year corresponding to snow melting and summer rain, respectively. The upland, riparian zone and wetland area at the two sites are sources of N gases dominated by N2O and N2. Both upland area and riparian zone act as a CH4 sink, while wetland a net source of CH4. Forest successional stage, tree species composition and the decomposition status of forest floor are possible controls on N gaseous flux at site level. The validation results proved that Forest-DNDC is able to capture trace gas exchange in different forest soils. The modeled patterns and magnitudes of fluxes were basically in agreement with observations for all studied plots. Further works for parameter optimization with inversion techniques are expected to improve the model performance before extrapolating the model to larger scale.

  17. Process modeling of controls on nitrogen trace gas emissions from soils worldwide

    NASA Astrophysics Data System (ADS)

    Potter, Christopher S.; Matson, Pamela A.; Vitousek, Peter M.; Davidson, Eric A.

    1996-01-01

    We report on an ecosystem modeling approach that integrates global satellite, climate, vegetation, and soil data sets to (1) examine conceptual controls on nitrogen trace gas (NO, N2O, and N2) emissions from soils and (2) identify weaknesses in our bases of knowledge and data for these fluxes. Nitrous and nitric oxide emissions from well-drained soils were estimated by using an expanded version of the Carnegie-Ames-Stanford (CASA) Biosphere model, a coupled ecosystem production and soil carbon-nitrogen model on a 1° global grid. We estimate monthly production of NO, N2O, and N2 based on predicted rates of gross N mineralization, together with an index of transient water-filled pore space in soils. Analyses of model performance along selected climate gradients support the hypothesis that low temperature restricts predicted N mineralization and trace gas emission rates in moist northern temperate and boreal forest ecosystems, whereas in tropical zones, seasonal patterns in N mineralization result in emission peaks for N2O that coincide with wetting and high soil moisture content. The model predicts the annual N2O:NO flux ratio at a mean value of 1.2 in wet tropical forests, decreasing to around 0.6 in the seasonally dry savannas. Global emission estimates at the soil surface are 6.1 Tg N and 9.7 Tg N yr-1 for N2O and NO, respectively. Tropical dry forests and savannas are identified by using this formulation as important source areas for nitrogen trace gas emissions. Because humans continue to alter these ecosystems extensively for agricultural uses, our results suggest that more study is needed in seasonally dry ecosystems of the tropics in order to understand the global impacts of land use change on soil sources for N2O and NO.

  18. A real-time, nonintrusive trace gas detector based on laser photothermal deflection

    NASA Astrophysics Data System (ADS)

    de Vries, H. S. M.; Dam, N.; van Lieshout, M. R.; Sikkens, C.; Harren, F. J. M.; Reuss, J.

    1995-09-01

    We present the layout and technical details of a trace gas monitor based on photothermal deflection. The operating principle of this instrument, i.e., the deflection of a (weak) probe laser beam by the thermal refractive index gradient induced by trace gas absorption of an intense pump laser beam, allows nonintrusive measurements with good space and time resolution. An intra-cavity CO2 laser is used as the pump beam and a red HeNe laser as the probe. The latter runs perpendicular to the pump beam to optimize spatial resolution. To increase sensitivity, the probe laser is incorporated in a multipass setup. The instrument is demonstrated by the localization of ethylene emission sites on a cherry tomato and by monitoring ammonia production due to nitrogen fixation by cyanobacteria. Both C2H4 and NH3 can be detected at the 1-3 ppb level, at a spatial resolution of 2 mm (along the pump laser)×0.6 mm (perpendicular to it), and a response time of 0.1 s (without background correction) or 15 s (including background correction). Sensitivity can be increased at the expense of spatial resolution, and vice versa. In principle, this instrument is applicable to all those gases possessing a characteristic (``fingerprint'') spectrum in the CO2 laser range. The great advantage of the photothermal deflection technique with respect to other trace gas detection schemes lies in the nonintrusive character of the measurements. There is no need to enclose the sample in a vessel or to suck large volumes of air into the detector; measurements can be performed in open air and in real time. This should prove especially useful where sticky (polar) gases, like H2O, NH3, CH3OH, etc., are to be detected quantitatively. Main applications include air quality monitoring, especially concerning dry deposition rate measurements using the eddy correlation technique, and the study of volatile metabolite emission of biological samples.

  19. Miniaturized Gas Correlation Radiometer for the Detection of Trace Gases in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Melroy, Hilary R.; Wilson, Emily L.; Georgieva, Elena

    2012-01-01

    We present a miniaturized and simplified version of a gas correlation radiometer (GCR) capable of simultaneously mapping multiple trace gases and identifying active regions on the Mars surface. Gas correlation radiometry (GCR) has been shown to be a sensitive and versatile method for detecting trace gases in Earth's atmosphere. Reduction of the size and mass of the GCR was achieved by implementing compact, light-weight 1 mm inner diameter hollow-core optical fibers (hollow waveguides) as the gas correlation cells. In a comparison with an Earth orbiting CO2 GCR instrument, exchanging the 10 m multipass cells with hollow waveguide gas correlation cells of equivalent path length reduces the mass from approximately 150 kg to approximately 0.5 kg, and reduces the volume from 1.9 m x 1.3 m x 0.86 m to a small bundle of fiber coils approximately 1 meter in diameter by 0.05 m in height (mass and volume reductions of greater than 99%). A unique feature of this instrument is its stackable module design, with a single module for each trace gas. Each of the modules is self-contained, and fundamentally identical; differing by the bandpass filter wavelength range and gas mixtures inside the hollow-waveguide absorption cells. The current configuration contains four stacked modules for simultaneous measurements of methane (CH4), formaldehyde (H2CO), water vapor (H2O), and deuterated water vapor (HDO) but could easily be expanded to include measurements of additional species of interest including nitrous oxide (N2O), hydrogen sulfide (H2S), methanol (CH3OH), and sulfur dioxide (SO2), as well as carbon dioxide (CO2) for a simultaneous measure of mass balance. Preliminary results indicate that a 1 ppb detection limit is possible for both formaldehyde and methane with one second of averaging. Using non-optimized components, we have demonstrated an instrument sensitivity equivalent to approximately 30 ppb for formaldehyde, and approximately 500 ppb for methane. We expect custom

  20. Derivatization in gas chromatographic determination of phenol and aniline traces in aqueous media

    NASA Astrophysics Data System (ADS)

    Gruzdev, I. V.; Zenkevich, I. G.; Kondratenok, B. M.

    2015-06-01

    Substituted anilines and phenols are the most common hydrophilic organic environmental toxicants. The principles of gas chromatographic determination of trace amounts of these compounds in aqueous media at concentrations <=0.1 μg litre-1 based on synthesis of their derivatives (derivatization) directly in the aqueous phase are considered. Conversion of relatively hydrophilic analytes into more hydrophobic derivatives makes it possible to achieve such low detection limits and optimize the protocols of extractive preconcentration and selective chromatographic detection. Among the known reactions, this condition is best met by electrophilic halogenation of compounds at the aromatic moiety. The bibliography includes 177 references.

  1. Intracavity phase-matched coherent anti-Stokes Raman spectroscopy for trace gas detection.

    PubMed

    Zaitsu, Shin-ichi; Imasaka, Totaro

    2014-01-01

    We present a novel, cavity-enhanced spectroscopic technique based on a phase-matched Raman process to detect trace quantities of gas. The essence of this technique is the careful control of cavity dispersion to satisfy the phase-matching condition of coherent anti-Stokes Raman scattering (CARS) enhanced in a high-finesse optical cavity. A 6000-fold improvement of the CARS signal is observed under optimized conditions, indicating that this is a promising tool to quantify Raman-active molecules with an extremely low detection limit.

  2. The NOMAD Spectrometer Suite on ExoMars Trace Gas Orbiter: Calibration Results

    NASA Astrophysics Data System (ADS)

    Thomas, I. R.; Vandaele, A. C.; López-Moreno, J. J.; Patel, M. R.; Bellucci, G.; Drummond, R.; Neefs, E.; Rodriguez-Gómez, J.; Depiesse, C.; Mahieux, A.; Robert, S.; Daerden, F.

    2015-10-01

    NOMAD (Nadir and Occultation for MArs Discoveryis a suite of three high- resolution spectrometers on-board the ExoMars Trace Gas Orbiter. Observing in the ranges 200- 650nm and 2.2-4.3μm, the instrument will be able to detect and map a wide variety of Martian gases in unprecedented detail. The instrument was calibrated during March and April 2015; this presentation will describe the results of the tests performed and the expected performance when the instrument begins observing the planet in late 2017.

  3. Microsecond fiber laser pumped, single-frequency optical parametric oscillator for trace gas detection.

    PubMed

    Barria, Jessica Barrientos; Roux, Sophie; Dherbecourt, Jean-Baptiste; Raybaut, Myriam; Melkonian, Jean-Michel; Godard, Antoine; Lefebvre, Michel

    2013-07-01

    We report on the first microsecond doubly resonant optical parametric oscillator (OPO). It is based on a nested cavity OPO architecture allowing single longitudinal mode operation and low oscillation threshold (few microjoule). The combination with a master oscillator-power amplifier fiber pump laser provides a versatile optical source widely tunable in the 3.3-3.5 μm range with an adjustable pulse repetition rate (from 40 to 100 kHz), high duty cycle (~10(-2)) and mean power (up to 25 mW in the idler beam). The potential for trace gas sensing applications is demonstrated through photoacoustic detection of atmospheric methane.

  4. Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere.

    PubMed

    Podolske, J; Loewenstein, M

    1993-09-20

    This paper describes the airborne tunable laser absorption spectrometer, a tunable diode laser instrument designed for in situ trace-gas measurement in the lower stratosphere from an ER-2 high-altitude research aircraft. Laser-wavelength modulation and second-harmonic detection are employed to achieve the required constituent detection sensitivity. The airborne tunable laser absorption spectrometer was used in two polar ozone campaigns, the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition, and measured nitrous oxide with a response time of Is and an accuracy ≤ 10%.

  5. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD) with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS), UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2) and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument) on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent) and absorption (UV Aerosol Index), then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate) model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal) is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in comparison

  6. Spatial variations of nitrogen trace gas emissions from tropical mountain forests in Nyungwe, Rwanda

    NASA Astrophysics Data System (ADS)

    Gharahi Ghehi, N.; Werner, C.; Cizungu Ntaboba, L.; Mbonigaba Muhinda, J. J.; van Ranst, E.; Butterbach-Bahl, K.; Kiese, R.; Boeckx, P.

    2011-12-01

    Globally, tropical forest soils represent the second largest source of N2O and NO. However, there is still considerable uncertainty on the spatial variability and soil properties controlling N trace gas emission. To investigate how soil properties affect N2O and NO emission, we carried out an incubation experiment with soils from 31 locations in the Nyungwe tropical mountain forest in southwestern Rwanda. All soils were incubated at three different moisture levels (50, 70 and 90% water filled pore space (WFPS)) at 17 °C. Nitrous oxide emission varied between 4.5 and 400 μg N m-2 h-1, while NO emission varied from 6.6 to 265 μg N m-2 h-1. Mean N2O emission at different moisture levels was 46.5 ± 11.1 (50% WFPS), 71.7 ± 11.5 (70% WFPS) and 98.8 ± 16.4 (90% WFPS) μg N m-2 h-1, while mean NO emission was 69.3 ± 9.3 (50% WFPS), 47.1 ± 5.8 (70% WFPS) and 36.1 ± 4.2 (90% WFPS) μg N m-2 h-1. The latter suggests that climate (i.e. dry vs. wet season) controls N2O and NO emissions. Positive correlations with soil carbon and nitrogen indicate a biological control over N2O and NO production. But interestingly N2O and NO emissions also showed a negative correlation (only N2O) with soil pH and a positive correlation with free iron. The latter suggest that chemo-denitrification might, at least for N2O, be an important production pathway. In conclusion improved understanding and process based modeling of N trace gas emission from tropical forests will not only benefit from better spatial explicit trace gas emission and basic soil property monitoring, but also by differentiating between biological and chemical pathways for N trace gas formation.

  7. Trace Gas Emissions Data from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, and models and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. Collections under the broad heading of Trace Gas Emissions are organized as Fossil-Fuel CO2 Emissions, Land-Use CO2 Emissions, Soil CO2 Emissions, and Methane.

  8. A continuous film-recirculable drop gas-liquid equilibration device. Measurement of trace gaseous ammonia

    PubMed

    Genfa; Dasgupta

    2000-07-15

    A miniature gas-liquid equilibrator or a gas collector, intended as a low-volume interface between a soluble gaseous sample and a liquid phase analyzer or between a liquid phase sample and a detector designed for use with gas samples, is described. This paper addresses the application of the device for the measurement of trace atmospheric ammonia. Gas collection occurs solely by diffusive sampling such that aerosol particles are not collected. The device essentially consists of a tube surrounded externally by a jacket. Gas flows through the jacket and contacts a liquid film flowing on the surface of the tube. The flowing film forms a drop at the tube terminus and is aspirated off through the inner bore of the tube. The collected analyte can be (a) directly sent to an analysis system or (b) preconcentrated on a suitable stationary phase; the preconcentrator effluent can be recycled, if desired. With a fluorometric flow injection analysis system harnessed to measure ammonia with such a collector, the limit of detection (LOD, S/N = 3) for a sample drawn for 18 min at 200 mL/min was 4.5 parts per trillion by volume, with the linear range extending up to 30 parts per billion.

  9. Gas trace detection with cavity enhanced absorption spectroscopy: a review of its process in the field

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Luo, Zhifu; Tan, Zhongqi; Long, Xingwu

    2016-11-01

    Cavity-enhanced absorption spectroscopy (CEAS) is a technology in which the intracavity absorption is deduced from the intensity of light transmitted by the high finesse optical cavity. Then the samples' parameters, such as their species, concentration and absorption cross section, would be detection. It was first proposed and demonstrated by Engeln R. [1] and O'Keefe[2] in 1998. This technology has extraordinary detection sensitivity, high resolution and good practicability, so it is used in many fields , such as clinical medicine, gas detection and basic physics research. In this paper, we focus on the use of gas trace detection, including the advance of CEAS over the past twenty years, the newest research progresses, and the prediction of this technology's development direction in the future.

  10. Rn-222 tracing and stable isotope measurements of biogenic gas fluxes from methane saturated sediments

    NASA Technical Reports Server (NTRS)

    Martens, Christopher S.; Green, C. D.; Blair, Neal; Chanton, J. P.

    1985-01-01

    Transport of reduced biogenic gases from anoxic sediments and soils to the atmosphere can be quantitatively studied through measurement of radon-222/radium-226 disequilibrium. In previous work, seasonal variations in biogenic gas transport mechanisms, net fluxes and overall composition were documented. Now presented are direct field measurements of radon-222 activity in gases exiting organic rich sediments which show their usefulness for tracing of the stripping of dissolved biogenic gases from within the sediment column and transport via bubble ebullition. Methane is depleted in deuterium during the summer as compared with winter months and is in general lighter than in most marine sediments signaling the probable importance of acetate as an important precursor molecule. The significant seasonal isotopic variations observed illustrate the importance of understanding mechanisms and rates of biogenic gas production in order to interpret observed tropospheric isotopic data.

  11. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  12. Recent progress in laser-based trace gas instruments: performance and noise analysis

    NASA Astrophysics Data System (ADS)

    McManus, J. B.; Zahniser, M. S.; Nelson, D. D.; Shorter, J. H.; Herndon, S. C.; Jervis, D.; Agnese, M.; McGovern, R.; Yacovitch, T. I.; Roscioli, J. R.

    2015-04-01

    We review our recent results in development of high-precision laser spectroscopic instrumentation using mid-infrared quantum cascade lasers, interband cascade lasers and antimonide diode lasers. These instruments are primarily for high-precision and high-sensitivity measurements of atmospheric trace gases, as required for atmospheric research. The instruments are based on direct absorption spectroscopy with rapid sweeps, integration and precision fitting, under the control of high-capability software. By operating in the mid-infrared with long absorption path lengths at reduced pressure, we achieve excellent sensitivity. Some instruments have demonstrated a fractional precision of 10-4 for atmospheric trace gases at ambient concentration, allowing real-time isotopologue measurements of CO2, CO, CH4, N2O and H2O. Trace gas detection in ambient air at the low part-per-trillion levels is feasible. We also describe signal processing methods to identify and reduce measurement noise. Analysis of spectral information is largely based on loading spectra into arrays and then applying block operations such as filters, Fourier analysis, multivariate fitting and principal component analysis. We present mathematical expressions for averaged spectra in arrays and note different ways frequency aliasing can occur. We present an extended example of analysis of instrument noise and find an electronic signal mixing with an interference fringe.

  13. SEASONAL CHANGES IN TITAN'S POLAR TRACE GAS ABUNDANCE OBSERVED BY CASSINI

    SciTech Connect

    Teanby, N. A.; Irwin, P. G. J.; De Kok, R.; Nixon, C. A.

    2010-11-20

    We use a six-year data set (2004-2010) of mid-infrared spectra measured by Cassini's Composite InfraRed Spectrometer to search for seasonal variations in Titan's atmospheric temperature and composition. During most of Cassini's mission Titan's northern hemisphere has been in winter, with an intense stratospheric polar vortex highly enriched in trace gases, and a single south-to-north circulation cell. Following northern spring equinox in mid-2009, dramatic changes in atmospheric temperature and composition were expected, but until now the temporal coverage of polar latitudes has been too sparse to discern trends. Here, we show that during equinox and post-equinox periods, abundances of trace gases at both poles have begun to increase. We propose that increases in north polar trace gases are due to a seasonal reduction in gas depletion by horizontal mixing across the vortex boundary. A simultaneous south polar abundance increase suggests that Titan is now entering, or is about to enter, a transitional circulation regime with two branches, rather than the single branch circulation pattern previously observed.

  14. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  15. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  16. Measurements of trace gas species and aerosols at three Siberian stations

    NASA Astrophysics Data System (ADS)

    Arshinov, Mikhail Yu.; Belan, Boris D.; Davydov, Denis K.; Kozlov, Artem V.; Ivlev, Georgii A.; Pestunov, Dmitrii A.; Tolmachev, Gennadii N.; Fofonov, Alexander V.

    2014-05-01

    Siberia is of great importance to understand the climate change due to it covers about 10% of Earth's land surface and it has the largest area to be studied under the Pan-Eurasian Experiment (PEEX). In the overview done by Kulmala et al. (2011) authors arrived at a conclusion that continuous and comprehensive measurements of GHGs and aerosols over Siberia are still lacking. Understanding the importance of this problem, in recent years the Institute of Atmospheric Optics SB RAS established several monitoring stations for continuous measurements of aerosol and trace gas species to fill up this gap. In this paper we present some results of continuous measurements of trace gas species and aerosols carried out at three stations located in West Siberia. The first one is a so-called TOR-station located in the scientific campus of Tomsk (56° 28'41"N, 85° 03'15"E), the second one is the Base Experimental Complex (BEC, 56° 28'49"N, 85° 06'08"E) - in the eastern suburbs of Tomsk, and the third one is Fonovaya Observatory (56° 25'07"N, 84° 04'27"E) - in a rural area 60 km west of Tomsk. All equipment of the stations is fully automated and can be monitored via Internet. Gas analyzers are hourly calibrated against standard gas mixtures, micro-flux gas sources, or gas generators, depending on the instrument type and the gas to be detected. Aerosol measurements carried out continuously from March 2010 enabled a frequency and seasonal dependency of the new particle formation (NPF) events to be revealed. NPF events in Siberia are more often observed during spring (from March to May) and early autumn (secondary frequency peak in September). On average, NPF evens took place on 23-28 % of all days. This work was funded by Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14

  17. Nanofiber-net-binary structured membranes for highly sensitive detection of trace HCl gas

    NASA Astrophysics Data System (ADS)

    Wang, Xianfeng; Wang, Jialin; Si, Yang; Ding, Bin; Yu, Jianyong; Sun, Gang; Luo, Wenjing; Zheng, Gang

    2012-11-01

    This work describes the detection of trace hydrogen chloride (HCl) gas through analyses of the resonance frequency signal from quartz crystal microbalance (QCM) sensors coated with polyaniline (PANI) functionalized polyamide 6 (PA 6) (PANI-PA 6) nanofiber-net-binary (NNB) structured membranes. The PA 6 NNB substrate comprising nanofibers and spider-web-like nano-nets fabricated by a versatile electro-spinning/netting (ESN) process offered an ideal interface for the uniform PANI functionalization and enhanced sensing performance. Benefiting from the large specific surface area, high porosity, and strong adhesive force to the QCM electrode of the PANI-PA 6 NNB membranes, the developed HCl-selective sensors exhibited a rapid response, good reproducibility and stability, and low detection limit (7 ppb) at room temperature. Additionally, the PANI-PA 6 NNB sensing membranes presented visible color changes upon cycled exposure to HCl and ammonia, suggesting their potential application in the development of colorimetric sensors. The PANI-PA 6 NNB coated QCM sensors are considered to be a promising candidate for trace HCl gas detection in practical applications.

  18. Analysis of trace impurities in neon by a customized gas chromatography.

    PubMed

    Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon

    2016-09-09

    Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne.

  19. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  20. The Impact of ENSO on Trace Gas Composition in the Upper Troposphere to Lower Stratosphere

    NASA Astrophysics Data System (ADS)

    Oman, Luke; Douglass, Anne; Ziemke, Jerald; Waugh, Darryn

    2016-04-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of interannual variability in the tropical troposphere and its effects extend well into the stratosphere. Its impact on atmospheric dynamics and chemistry cause important changes to trace gas constituent distributions. A comprehensive suite of satellite observations, reanalyses, and chemistry climate model simulations are illuminating our understanding of processes like ENSO. Analyses of more than a decade of observations from NASA's Aura and Aqua satellites, combined with simulations from the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) and other Chemistry Climate Modeling Initiative (CCMI) models, and the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) reanalysis have provided key insights into the response of atmospheric composition to ENSO. While we will primarily focus on ozone and water vapor responses in the upper troposphere to lower stratosphere, the effects of ENSO ripple through many important trace gas species throughout the atmosphere. The very large 2015-2016 El Nino event provides an opportunity to closely examine these impacts with unprecedented observational breadth. An improved quantification of natural climate variations, like those from ENSO, is needed to detect and quantify anthropogenic climate changes.

  1. Trace Gas Emissions from Extensive Aquaculture Systems in the Red River Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Beman, J.; Seto, K. C.

    2002-12-01

    The Red River Delta of Vietnam is an area undergoing rapid land use change. Aquaculture development is among the most significant of these transformations, with important economic, social and environmental effects. We explored the potential for managed mangrove' and `converted paddy' aquaculture systems in the Delta to produce and/or consume greenhouse gasses. We measured dissolved concentrations of the radiatively-important trace gasses methane (CH4) and nitrous oxide (N2O), as well as associated parameters. All ponds were super-saturated with CH4, with concentrations ranging from 132-1203 nM, (mean 561 nM) in managed mangrove, and 28-521 nM (mean 110 nM) in converted paddy. Surprisingly, none of the ponds was measurably supersaturated with N2O. Methane fluxes were calculated for all ponds using five well-accepted models of gas flux based on wind speed. Mean flux values ranged from 1.04 to 17.09 mg CH4 m-2 d-1 for managed mangrove, falling somewhere between fluxes reported for natural systems and those receiving sewage inputs. Further measurements should be made in more intensive systems to better understand the potential for trace gas production-particularly N2O-in aquaculture systems.

  2. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  3. Variations in soil N cycling and trace gas emissions in wet tropical forests.

    PubMed

    Holtgrieve, Gordon W; Jewett, Peter K; Matson, Pamela A

    2006-01-01

    We used a previously described precipitation gradient in a tropical montane ecosystem of Hawai'i to evaluate how changes in mean annual precipitation (MAP) affect the processes resulting in the loss of N via trace gases. We evaluated three Hawaiian forests ranging from 2200 to 4050 mm year-1 MAP with constant temperature, parent material, ecosystem age, and vegetation. In situ fluxes of N2O and NO, soil inorganic nitrogen pools (NH4+ and NO3-), net nitrification, and net mineralization were quantified four times over 2 years. In addition, we performed 15N-labeling experiments to partition sources of N2O between nitrification and denitrification, along with assays of nitrification potential and denitrification enzyme activity (DEA). Mean NO and N2O emissions were highest at the mesic end of the gradient (8.7+/-4.6 and 1.1+/-0.3 ng N cm-2 h-1, respectively) and total oxidized N emitted decreased with increased MAP. At the wettest site, mean trace gas fluxes were at or below detection limit (trace gas flux from soil through soil redox conditions and the supply of electron donors and acceptors.

  4. Methodology for trace analysis of 17 pyrethroids and chlorpyrifos in foodstuff by gas chromatography-tandem mass spectrometry.

    PubMed

    Dallegrave, Alexsandro; Pizzolato, Tânia Mara; Barreto, Fabiano; Eljarrat, Ethel; Barceló, Damià

    2016-11-01

    This study aimed to develop an efficient, sensitive, and reliable analytical method for trace analysis of 17 different pyrethroids and chlorpyrifos in the fatty content of animal products, including beef, chicken, eggs, fish, and milk. The method developed is based on an ultrasound extraction using lyophilized samples, a solid phase extraction cleanup with basic alumina and C18 cartridges in tandem, and analysis by gas chromatography coupled to tandem mass spectrometry in negative chemical ionization mode. Recovery values were in the range of 27-128 % with relative standard deviation always below 25 %, and chiral analysis of recovery data showed predominance of isomers of cis form over trans. Limits of detection (LODs) ranged from 0.002 to 6.43 ng g(-1) lipid weight (lw), and limits of quantification (LOQs) ranged between 0.006 and 21.4 ng g(-1) lw. The developed methodology was used for the analysis of 25 samples of fatty foods. All samples were positive for at least one of the pesticides, chlorpyrifos, bifenthrin, cyhalothrin, permethrin, cypermethrin, or deltamethrin, with mass fraction levels ranging from 0.03 to 270 ng g(-1) lw. Graphical Abstract ᅟ.

  5. Gas-Grain Simulation Facility: Fundamental studies of particle formation and interactions. Volume 2: Abstracts, candidate experiments and feasibility study

    NASA Technical Reports Server (NTRS)

    Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)

    1989-01-01

    An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.

  6. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  7. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  8. Airborne Trace Gas and Aerosol Measurements in Several Shale Gas Basins during the SONGNEX (Shale Oil and Natural Gas Nexus) Campaign 2015

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Trainer, M.; De Gouw, J. A.

    2015-12-01

    Oil and natural gas from tight sand and shale formations has increased strongly over the last decade. This increased production has been associated with emissions of methane, non-methane hydrocarbons and other trace gases to the atmosphere, which are concerns for air quality, climate and air toxics. The NOAA Shale Oil and Natural Gas Nexus (SONGNEX) aircraft campaign took place in 2015, when the NOAA WP-3 aircraft conducted 20 research flights between March 19 and April 27, 2015 in the following shale gas regions: Denver-Julesberg, Uintah, Upper Green River, San Juan, Bakken, Barnett, Eagle Ford, Haynesville, Woodford, and Permian. The NOAA P3 was equipped with an extensive set of gas phase measurements, including instruments for methane, ethane, CO, CO2, a new H3O+CIMS, canister and cartridge samples for VOCs, HCHO, glyoxal, HNO3, NH3, NOx, NOy, PANs, ozone, and SO2. Aerosol number and size distributions were also measured. This presentation will focus on an overview of all the measurements onboard the NOAA WP-3 aircraft and discuss the differences between the shale gas regions. Due to a drop in oil prices, drilling for oil decreased in the months prior to the mission, but nevertheless the production of oil and natural gas were near the all-time high. Many of the shale gas basins investigated during SONGNEX have quite different characteristics. For example, the Permian Basin is a well-established field, whereas the Eagle Ford and the Bakken saw an almost exponential increase in production over the last few years. The basins differ by the relative amounts of natural gas versus oil that is being produced. Previous work had shown a large variability in methane emissions relative to the production (leak rate) between different basins. By including more and qualitatively different basins during SONGNEX, the study has provided an extensive data set to address how emissions depend on raw gas composition, extraction techniques and regulation. The influence of these

  9. Large and small UAS for trace gas measurements in climate change studies

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; D'Amore, P.; Dutton, G. S.; Nance, J. D.; Hall, B. D.; Gao, R. S.

    2014-12-01

    NOAA and CIRES scientists have used Unmanned Aircraft Systems (UAS) for the measurement of trace gases involved in climate change since 2005, including both high altitude-long endurance (HALE UAS: NASA Altair & Global Hawk) and 1-m wingspan, small UAS (sUAS: SkyWisp, Aero). These gases include nitrous oxide (N2O), sulfur hexafluoride (SF6), methane (CH4), ozone (O3), carbon monoxide (CO), hydrogen (H2), and water vapor (H2O). In particular, atmospheric N2O is the third strongest greenhouse gas (326 parts-per-billion, ppb) and is the largest increasing stratospheric ozone depleting gas in terms of future emissions (~4 Tg N2O-N yr-1), primarily from fertilizer use. Atmospheric SF6, another potent greenhouse gas, is present globally at 8.2 parts-per-trillion (ppt) and growing at a rate of 0.25 ppt yr-1, and is used primarily in electrical power distribution. It is an excellent indicator of transport timescales (e.g., mean age) in the troposphere and stratosphere, because of its source distribution (~95% emitted in NH), long atmospheric lifetime (~600-3200 yr), and large relative atmospheric growth rate (~3%). We have developed atmospheric instrumentation for HALE platforms using a two-channel gas chromatograph with an ozone photometer and a water vapor tunable diode laser spectrometer. We are currently investigating a sUAS glider (SkyWisp) for balloon-assisted high altitude flights (30 km) and propeller driven sUAS (Aero) as a test bed for a new autopilot (Pixhawk, 3DRobotics). Our motivation for utilizing this autopilot is a low cost, open source autopilot alternative that can be used to return AirCore samples from high altitude balloons for quick laboratory analysis. The goal is a monitoring program to understand transport changes as a result of climate change during different seasons at many locations from a balloon-borne package (Moore et al., BAMS, pp. 147-155, Jan. 2014). The glider version of our open source autopilot system is also being considered for a

  10. Land use change effects on trace gas fluxes in the forest margins of Central Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Veldkamp, Edzo; Purbopuspito, Joko; Corre, Marife D.; Brumme, Rainer; Murdiyarso, Daniel

    2008-06-01

    Land use changes and land use intensification are considered important processes contributing to the increasing concentrations of the greenhouse gases nitrous oxide (N2O) and methane (CH4) and of nitric oxide (NO), a precursor of ozone. Studies on the effects of land use changes and land use intensification on soil trace gas emissions were mostly conducted in Latin America and only very few in Asia. Here we present results from Central Sulawesi where profound changes in land use and cultivation practices take place: traditional agricultural practices like shifting cultivation and slash-and-burn agriculture are replaced by permanent cultivation systems and introduction of income-generating cash crops like cacao. Our results showed that N2O emissions were higher from cacao agroforestry (35 ± 10 μg N m-2 h-1) than maize (9 ± 2 μg N m-2 h-1), whereas intermediate rates were observed from secondary forests (25 ± 11 μg N m-2 h-1). NO emissions did not differ among land use systems, ranging from 12 ± 2 μg N m-2 h-1 for cacao agroforestry and secondary forest to 18 ± 2 μg N m-2 h-1 for maize. CH4 uptake was higher for maize (-30 ± 4 μg C m-2 h-1) than cacao agroforestry (-18 ± 2 μg C m-2 h-1) and intermediate rates were measured from secondary forests (-25 ± 4 μg C m-2 h-1). Combining these data with results from other studies in this area, we present chronosequence effects of land use change on trace gas emissions from natural forest, through maize cultivation, to cacao agroforestry (with or without fertilizer). Compared to the original forests, this typical land use change in the study area clearly led to higher N2O emissions and lower CH4 uptake with age of cacao agroforestry systems. We conclude that this common land use sequence in the area combined with the increasing use of fertilizer will strongly increase soil trace gas emissions. We suggest that the future hot spot regions of high N2O (and to a lesser extend NO) emissions in the tropics are those

  11. The effect of temperature and moisture on trace gas emissions from deciduous and coniferous leaf litter

    NASA Astrophysics Data System (ADS)

    Gritsch, Christine; Egger, Florian; Zehetner, Franz; Zechmeister-Boltenstern, Sophie

    2016-05-01

    The forest litter layer lies at the boundary between soil and atmosphere and is a major factor in biogeochemical cycles. While there are several studies on how the litter layer controls soil trace gas emissions, litter emissions itself are less well understood, and it is still unclear how important gases respond to changing temperature and moisture. In order to assess leaf litter gas exchange, we conducted laboratory incubation experiments in which the full set of climate relevant gases, i.e., carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and nitric oxide (NO) coming from deciduous and coniferous leaf litter were measured at five temperatures and seven moisture contents. In addition, we compared litter and soil from different origin in terms of temperature/moisture responses of gas fluxes and investigated possible interactions between the two climate factors. Deciduous litter emitted more CO2 (up to 335 mg CO2-C kg-1 h-1) than coniferous litter, whereas coniferous litter released maximum amounts of NO (207 µg NO-N kg-1 h-1). N2O was only emitted from litter under very moist and warm conditions (>70% wet weight, >10°C). CH4 emissions were close to zero. Temperature sensitivities of litter emissions were generally lower than for soil emissions. Nevertheless, wet and warm conditions always enhanced litter emissions, suggesting a strong feedback effect of the litter layer to predicted future climate change.

  12. Springtime Arctic Trace Gas Measurements and Comparisons With the Atmospheric Chemistry Experiment on SCISAT

    NASA Astrophysics Data System (ADS)

    Lindenmaier, R.; Batchelor, R.; Strong, K.; Walker, K.; Manney, G.; Daffer, W.

    2009-05-01

    The process of rapid stratospheric ozone loss in the polar regions begins during the polar winter, when dynamical and chemical conditions lead to the formation of reactive chlorine and bromine radicals. Arctic ozone loss varies significantly from year to year because of changing dynamical conditions. Therefore, long-term data sets of Arctic chemical composition measurements are needed to better understand the process of ozone loss, the links between ozone depletion and climate change, and the future evolution of ozone. Solar absorption spectra have been recorded at Eureka, Nunavut in the sunlit part of each year since July 2006, when a Bruker 125HR high-resolution Fourier transform infrared spectrometer was installed at the Polar Environment Atmospheric Research Laboratory (PEARL). Applying the optimal estimation technique, total columns and some vertical profile information are retrieved for a suite of trace gases that are involved in stratospheric ozone depletion. Total columns of O3, HCl, ClONO2, HNO3, and HF will be presented, with a focus on three Canadian Arctic ACE Validation spring campaigns that took place in 2007, 2008, and 2009. Very different dynamical situations were observed over Eureka during these three spring periods: the impact of these conditions on the trace gas measurements will be shown. SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sounding of the Earth's atmosphere and was launched on August 12, 2003. Its primary instrument is a high spectral resolution Fourier Transform Spectrometer (FTS) measuring sequences of atmospheric absorption spectra in solar occultation. From these spectra the vertical distribution of trace gases can be determined. Results of the Bruker 125HR comparisons with the ACE-FTS, made with the purpose of validating the satellite measurements, will be also shown.

  13. Trace gas and particle emissions from fires in large diameter and belowground biomass fuels

    NASA Astrophysics Data System (ADS)

    Bertschi, Isaac; Yokelson, Robert J.; Ward, Darold E.; Babbitt, Ron E.; Susott, Ronald A.; Goode, Jon G.; Hao, Wei Min

    2003-07-01

    We adopt a working definition of residual smoldering combustion (RSC) as biomass combustion that produces emissions that are not lofted by strong fire-induced convection. RSC emissions can be produced for up to several weeks after the passage of a flame front and they are mostly unaffected by flames. Fuels prone to RSC include downed logs, duff, and organic soils. Limited observations in the tropics and the boreal forest suggest that RSC is a globally significant source of emissions to the troposphere. This source was previously uncharacterized. We measured the first emission factors (EF) for RSC in a series of laboratory fires and in a wooded savanna in Zambia, Africa. We report EFRSC for both particles with diameter <2.5 μm (PM2.5) and the major trace gases as measured by open-path Fourier transform infrared (OP-FTIR) spectroscopy. The major trace gases include carbon dioxide, carbon monoxide, methane, ethane, ethene, acetylene, propene, formaldehyde, methanol, acetic acid, formic acid, glycolaldehyde, phenol, furan, ammonia, and hydrogen cyanide. We show that a model used to predict trace gas EF for fires in a wide variety of aboveground fine fuels fails to predict EF for RSC. For many compounds, our EF for RSC-prone fuels from the boreal forest and wooded savanna are very different from the EF for the same compounds measured in fire convection columns above these ecosystems. We couple our newly measured EFRSC with estimates of fuel consumption by RSC to refine emission estimates for fires in the boreal forest and wooded savanna. We find some large changes in estimates of biomass fire emissions with the inclusion of RSC. For instance, the wooded savanna methane EF increases by a factor of 2.5 even when RSC accounts for only 10% of fuel consumption. This shows that many more measurements of fuel consumption and EF for RSC are needed to improve estimates of biomass burning emissions.

  14. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; López-Moreno, J. J.; Patel, M. R.; Bellucci, G.; Daerden, F.; Drummond, R.; Neefs, E.; Rodriguez Gomez, J.

    2011-10-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite has been selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The nadir mode will provide detailed trace gas mapping. (see also Daerden et al., same session)

  15. Land-Use Change, Soil Process and Trace Gas Fluxes in the Brazilian Amazon Basin

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Steudler, Paul A.

    1997-01-01

    We measured changes in key soil processes and the fluxes of CO2, CH4 and N2O associated with the conversion of tropical rainforest to pasture in Rondonia, a state in the southwest Amazon that has experienced rapid deforestation, primarily for cattle ranching, since the late 1970s. These measurements provide a comprehensive quantitative picture of the nature of surface soil element stocks, C and nutrient dynamics, and trace gas fluxes between soils and the atmosphere during the entire sequence of land-use change from the initial cutting and burning of native forest, through planting and establishment of pasture grass and ending with very old continuously-pastured land. All of our work is done in cooperation with Brazilian scientists at the Centro de Energia Nuclear na Agricultura (CENA) through an extant official bi-lateral agreement between the Marine Biological Laboratory and the University of Sao Paulo, CENA's parent institution.

  16. Mobile spectroscopic system for trace gas detection using a tunable mid-IR laser.

    PubMed

    Vaicikauskas, V; Kaucikas, M; Svedas, V; Kuprionis, Z

    2007-02-01

    We describe a mobile spectroscopic system for trace gas analysis based on the open path differential absorption spectrometer and the photoacoustic spectrometer. The first method allows long distance measurements (up to a few kilometers) while the second one provides local in situ detection of pollutants. The open path system is based on the nanosecond (f = 10 Hz, tau = 5 ns) lamp pumped Nd:YAG laser and a tunable two cascade optical parametric generator operating in the 5-12 microm spectral region. This source was mounted into the lidar setup based on the coaxial transmitter/receiver. The photoacoustic system was constructed using the same laser as well as a nonresonant photoacoustic cell.

  17. Trace gas variability within the Asian monsoon anticyclone on intraseasonal and interannual timescales

    NASA Astrophysics Data System (ADS)

    Nützel, Matthias; Dameris, Martin; Fierli, Federico; Stiller, Gabriele; Garny, Hella; Jöckel, Patrick

    2016-04-01

    The Asian monsoon and the associated monsoon anticyclone have the potential of substantially influencing the composition of the UTLS (upper troposphere/lower stratosphere) and hence global climate. Here we study the variability of the Asian summer monsoon anticyclone in the UTLS on intraseasonal and interannual timescales using results from long term simulations performed with the CCM EMAC (ECHAM5/MESSy Atmospheric Chemistry). In particular, we focus on specified dynamics simulations (Newtonian relaxation to ERA-Interim data) covering the period 1980-2013, which have been performed within the ESCiMo (Earth System Chemistry integrated Modelling) project (Jöckel et al., GMDD, 2015). Our main focus lies on variability of the anticyclone's strength (in terms of potential vorticity, geopotential and circulation) and variability in trace gas signatures (O3, H2O) within the anticyclone. To support our findings, we also include observations from satellites (MIPAS, MLS). Our work is linked to the EU StratoClim campaign in 2016.

  18. Quartz enhanced photoacoustic spectroscopy based trace gas sensors using different quartz tuning forks.

    PubMed

    Ma, Yufei; Yu, Guang; Zhang, Jingbo; Yu, Xin; Sun, Rui; Tittel, Frank K

    2015-03-27

    A sensitive trace gas sensor platform based on quartz-enhanced photoacoustic spectroscopy (QEPAS) is reported. A 1.395 μm continuous wave (CW), distributed feedback pigtailed diode laser was used as the excitation source and H2O was selected as the target analyte. Two kinds of quartz tuning forks (QTFs) with a resonant frequency (f0) of 30.72 kHz and 38 kHz were employed for the first time as an acoustic wave transducer, respectively for QEPAS instead of a standard QTF with a f0 of 32.768 kHz. The QEPAS sensor performance using the three different QTFs was experimentally investigated and theoretically analyzed. A minimum detection limit of 5.9 ppmv and 4.3 ppmv was achieved for f0 of 32.768 kHz and 30.72 kHz, respectively.

  19. Mid-Infrared Trace Gas Sensor Technology Based on Intracavity Quartz-Enhanced Photoacoustic Spectroscopy

    PubMed Central

    Wojtas, Jacek; Gluszek, Aleksander; Hudzikowski, Arkadiusz; Tittel, Frank K.

    2017-01-01

    The application of compact inexpensive trace gas sensor technology to a mid-infrared nitric oxide (NO) detectoion using intracavity quartz-enhanced photoacoustic spectroscopy (I-QEPAS) is reported. A minimum detection limit of 4.8 ppbv within a 30 ms integration time was demonstrated by using a room-temperature, continuous-wave, distributed-feedback quantum cascade laser (QCL) emitting at 5.263 µm (1900.08 cm−1) and a new compact design of a high-finesse bow-tie optical cavity with an integrated resonant quartz tuning fork (QTF). The optimum configuration of the bow-tie cavity was simulated using custom software. Measurements were performed with a wavelength modulation scheme (WM) using a 2f detection procedure. PMID:28273836

  20. Development of MWCNTs/alumina composite-based sensor for trace level ammonia gas sensing

    NASA Astrophysics Data System (ADS)

    Sharma, Sakshi; Hussain, Shahir; Sengupta, K.; Islam, S. S.

    2013-06-01

    Multi-walled carbon nanotube (MWCNT)/alumina (Al2O3) composite thin film-based low cost, rigid and highly efficient sensors were developed for trace level ammonia (NH3) gas sensing applications. Composite films were prepared by dispersing MWCNTs in varying concentration in alumina solution following the sol-gel process. The sensor response as a function MWCNT concentrations were measured and compared. The notable characteristics of these sensors are fast response time (10 minutes), and excellent reproducibility with detection level up to 6 ppm. Although poor NH3 desorption causes a high recovery time, fast and complete recovery was acquired using appropriate thermal treatment protocol. The sensitivity was found to be proportional to NH3 concentrations in the range 6-25 ppm and then gradually saturated at higher concentrations. However, a decrease in the sensor response was observed with increase in concentrations of MWCNTs.

  1. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  2. The NOMAD Spectrometer Suite on ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Carine Vandaele, Ann; Lopez-Moreno, Jose-Juan; Patel, Manish R.; Bellucci, Giancarlo; Neefs, Eddy; Thomas, Ian R.; Drummond, Rachel; Rodriguez-Gomez, Julio; Daerden, Frank

    2016-04-01

    NOMAD (Nadir and Occultation for MArs Discovery) is a suite of three high-resolution spectrometers on-board the ExoMars Trace Gas Orbiter. The instrument will be able to detect and map a wide variety of Martian gases in unprecedented detail. NOMAD's three spectrometers cover the UV-visible (UVIS channel - 200-650nm) and infrared ranges (SO and LNO channels - 2.2-4.3μm), operating in solar occultation, limb and nadir-viewing modes, generating a huge dataset of Martian atmospheric observations during the mission across a wide spectral range. NOMAD has the resolving power to identify many trace gases that exhibit absorption features within the spectral range of the three channels. The order-of-magnitude increase in spectral resolution over previous instruments will enable spatial and temporal mapping of several isotopologues of methane and water, providing important measurements of the Martian D/H and methane isotope ratios globally. Sensitivity studies have shown that, using expected SNR values, NOMAD should have the ability to measure methane concentrations <25 parts per trillion (ppt) in solar occultation mode, and 11 parts per billion in nadir mode. Occultation detections as low at 10 ppt could be made if spectra are averaged sufficiently. Using SO and LNO in combination with UVIS, aerosol properties such as optical depth, composition and size distribution can also be derived. NOMAD will also continue to monitor the major seasonal cycles on Mars, extending existing datasets made by successive space missions in the past decade.

  3. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics

    PubMed Central

    Bringel, Françoise; Couée, Ivan

    2015-01-01

    The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent –omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses. PMID:26052316

  4. Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming.

    PubMed

    Jackson, Richard E; Reddy, K J

    2007-09-01

    Coal bed natural gas (CBNG) produced water is usually disposed into nearby constructed disposal ponds. Geochemistry of produced water, particularly trace elements interacting with a semiarid environment, is not clearly understood. The objective of this study was to collect produced water samples at outfalls and corresponding disposal ponds and monitor pH, iron (Fe), aluminum (Al), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), zinc (Zn), arsenic (As), boron (B), selenium (Se), molybdenum (Mo), cadmium (Cd), and barium (Ba). Outfalls and corresponding disposal ponds were sampled from five different watersheds including Cheyenne River (CHR), Belle Fourche River (BFR), Little Powder River (LPR), Powder River (PR), and Tongue River (TR) within the Powder River Basin (PRB), Wyoming from 2003 to 2005. Paired t tests were conducted between CBNG outfalls and corresponding disposal ponds for each watershed. Results suggest that produced water from CBNG outfalls is chemically different from the produced water from corresponding disposal ponds. Most trace metal concentrations in the produced water increased from outfall to disposal pond except for Ba. In disposal ponds, Ba, As, and B concentrations increased from 2003 to 2005. Geochemical modeling predicted precipitation and dissolution reactions as controlling processes for Al, Cu, and Ba concentrations in CBNG produced water. Adsorption and desorption reactions appear to control As, Mo, and B concentrations in CBNG water in disposal ponds. Overall, results of this study will be important to determine beneficial uses (e.g., irrigation, livestock/wildlife water, and aquatic life) for CBNG produced water in the PRB, Wyoming.

  5. Effects of obliquity and water vapor/trace gas greenhouses in the early martian climate

    NASA Astrophysics Data System (ADS)

    Mischna, Michael A.; Baker, Victor; Milliken, Ralph; Richardson, Mark; Lee, Christopher

    2013-03-01

    We explore possible mechanisms for the generation of warm, wet climates on early Mars as a result of greenhouse warming by both water vapor and periodic volcanic trace emissions. The presence of both water vapor (a strong greenhouse gas) and other trace greenhouse gases (such as SO2) in a predominantly CO2 atmosphere may act, under certain conditions, to elevate surface temperatures above the freezing point of liquid water, at least episodically. Variations in obliquity are explored to investigate whether these periodic variations in insolation at Mars can broaden the regions or seasons where warm temperatures can exist. We use the Mars Weather Research and Forecasting general circulation model to perform several simulations of the conditions of the early martian atmosphere containing these gases and find global temperatures to be cooler than the elevated levels suggested by at least one recent study by Johnson et al. (2008). While achieving temperatures above 273 K globally remains challenging, the additional warming by greenhouse gases under certain obliquity states can permit for widespread seasonally warm conditions, which can help to explain the presence of fluvial surface features (e.g., valley networks) and hydrous minerals of post-Noachian age, a period when alternate methods do not convincingly explain the sustainability of liquid water. Furthermore, we find that global warming can be achieved with the presence of a darker surface globally, which is consistent with both widespread exposure of unweathered basaltic bedrock or the presence of a large surface ocean or sea.

  6. Airborne In-Situ Trace Gas Measurements of Multiple Wildfires in California (2013-2014)

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Yates, E. L.; Tanaka, T.; Roby, M.; Gore, W.; Clements, C. B.; Lareau, N.; Ambrosia, V. G.; Quayle, B.; Schroeder, W.

    2014-12-01

    Biomass burning emissions are an important source of a wide range of trace gases and particles that can impact local, regional and global air quality, climate forcing, biogeochemical cycles and human health. In the western US, wildfires dominate over prescribed fires, contributing to atmospheric trace gas budgets and regional and local air pollution. Limited sampling of emissions from wildfires means western US emission estimates rely largely on data from prescribed fires, which may not be a suitable proxy for wildfire emissions. We report here in-situ measurements of carbon dioxide, methane, ozone and water vapor from the plumes of a variety of wildfires sampled in California in the fire seasons of 2013 and 2014. Included in the analysis are the Rim Fire (August - October 2013, near Yosemite National Park), the Morgan Fire (September 2013, near Clayton, CA), and the El Portal Fire (July - August 2014, in Yosemite National Park), among others. When possible, fires were sampled on multiple days. Emission ratios and estimated emission factors will be presented and discussed in the context of fuel composition, plume structure, and fire phase. Correlations of plume chemical composition to MODIS/VIIRS Fire Radiative Power (FRP) and other remote sensing information will be explored. Furthermore, the role of plumes in delivery of enhanced ozone concentrations to downwind municipalities will be discussed.

  7. Nitrogen trace gas fluxes from a semiarid subtropical savanna under woody legume encroachment

    NASA Astrophysics Data System (ADS)

    Soper, Fiona M.; Boutton, Thomas W.; Groffman, Peter M.; Sparks, Jed P.

    2016-05-01

    Savanna ecosystems are a major source of nitrogen (N) trace gases that influence air quality and climate. These systems are experiencing widespread encroachment by woody plants, frequently associated with large increases in soil N, with no consensus on implications for trace gas emissions. We investigated the impact of encroachment by N-fixing tree Prosopis glandulosa on total reactive N gas flux (Nt = NO + N2O + NOy + NH3) from south Texas savanna soils over 2 years. Contrary to expectations, upland Prosopis groves did not have greater Nt fluxes than adjacent unencroached grasslands. However, abiotic conditions (temperature, rainfall, and topography) were strong drivers. Emissions from moist, low-lying Prosopis playas were up to 3 times higher than from Prosopis uplands. Though NO dominated emissions, NH3 and NOy (non-NO oxidized N) comprised 12-16% of the total summer N flux (up to 7.9 µg N m-2 h-1). Flux responses to soil wetting were temperature dependent for NO, NH3, and NOy: a 15 mm rainfall event increased flux 3-fold to 22-fold after 24 h in summer but had no effect in winter. Repeated soil wetting reduced N flux responses, indicating substrate depletion as a likely control. Rapid (<1 min) increases in NO emissions following wetting of dry soils suggested that abiotic chemodenitrification contributes to pulse emissions. We conclude that temperature and wetting dynamics, rather than encroachment, are primary drivers of N flux from these upland savannas, with implications for future emission patterns under altered precipitation regimes.

  8. Evaluation of a new JMA aircraft flask sampling system and laboratory trace gas analysis system

    NASA Astrophysics Data System (ADS)

    Tsuboi, K.; Matsueda, H.; Sawa, Y.; Niwa, Y.; Nakamura, M.; Kuboike, D.; Saito, K.; Ohmori, H.; Iwatsubo, S.; Nishi, H.; Hanamiya, Y.; Tsuji, K.; Baba, Y.

    2013-05-01

    We established and evaluated a flask air sampling system on a cargo C-130H aircraft, as well as a trace gas measurement system for the flask samples, as part of a new operational monitoring program of the Japan Meteorological Agency (JMA). Air samples were collected during each flight, between Kanagawa Prefecture (near Tokyo) and Minamitorishima (an island located nearly 2000 km southeast of Tokyo), from the air-conditioning system on the aircraft. Prior to the operational employment of the sampling system, a quality assurance test of the sampled air was made by specially coordinated flights at a low altitude of 1000 ft over Minamitorishima and comparing the flask values with those obtained at the surface. Based on our storage tests, the flask samples remained nearly stable until analyses. The trace gas measurement system has, in addition to the nondispersive infrared (NDIR) and vacuum ultraviolet resonance fluorescence (VURF) analyzers, two laser-based analyzers using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) and off-axis integrated cavity output spectroscopy (ICOS). Laboratory tests of the laser-based analyzers for measuring flask samples indicated relatively high reproducibility with overall precisions of less than ±0.06 ppm for CO2, ±0.68 ppb for CH4, ±0.36 ppb for CO, and ±0.03 ppb for N2O. Flask air sample measurements, conducted concurrently on different analyzers were compared. These comparisons showed a negligible bias in the averaged measurements between the laser-based measurement techniques and the other methods currently in use. We also estimated that there are no significant isotope effects for CH4, CO and N2O using standard gases with industrial isotopic compositions to calibrate the laser-based analyzers, but CO2 was found to possess isotope effects larger than its analytical precision.

  9. Tracing the Cosmological Evolution of Stars and Cold Gas with CMB Spectral Surveys

    NASA Astrophysics Data System (ADS)

    Switzer, Eric R.

    2017-04-01

    A full account of galaxy evolution in the context of ΛCDM cosmology requires measurements of the average star-formation rate (SFR) and cold gas abundance across cosmic time. Emission from the CO ladder traces cold gas, and [C ii] fine structure emission at 158 μ {{m}} traces the SFR. Intensity mapping surveys the cumulative surface brightness of emitting lines as a function of redshift, rather than individual galaxies. CMB spectral distortion instruments are sensitive to both the mean and anisotropy of the intensity of redshifted CO and [C ii] emission. Large-scale anisotropy is proportional to the product of the mean surface brightness and the line luminosity-weighted bias. The bias provides a connection between galaxy evolution and its cosmological context, and is a unique asset of intensity mapping. Cross-correlation with galaxy redshift surveys allows unambiguous measurements of redshifted line brightness despite residual continuum contamination and interlopers. Measurement of line brightness through cross-correlation also evades cosmic variance and suggests new observation strategies. Galactic foreground emission is ≈ {10}3 times larger than the expected signals, and this places stringent requirements on instrument calibration and stability. Under a range of assumptions, a linear combination of bands cleans continuum contamination sufficiently that residuals produce a modest penalty over the instrumental noise. For PIXIE, the 2σ sensitivity to CO and [C ii] emission scales from ≈ 5× {10}-2 {kJy} {{sr}}-1 at low redshift to ≈ 2 {kJy} {{sr}}-1 by reionization.

  10. The influence of daily meteorology on boreal fire emissions and regional trace gas variability

    NASA Astrophysics Data System (ADS)

    Wiggins, E. B.; Veraverbeke, S.; Henderson, J. M.; Karion, A.; Miller, J. B.; Lindaas, J.; Commane, R.; Sweeney, C.; Luus, K. A.; Tosca, M. G.; Dinardo, S. J.; Wofsy, S.; Miller, C. E.; Randerson, J. T.

    2016-11-01

    Relationships between boreal wildfire emissions and day-to-day variations in meteorological variables are complex and have important implications for the sensitivity of high-latitude ecosystems to climate change. We examined the influence of environmental conditions on boreal fire emissions and fire contributions to regional trace gas variability in interior Alaska during the summer of 2013 using two types of analysis. First, we quantified the degree to which meteorological and fire weather indices explained regional variability in fire activity using four different products, including active fires, fire radiative power, burned area, and carbon emissions. Second, we combined daily emissions from the Alaskan Fire Emissions Database (AKFED) with the coupled Polar Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport model to estimate fire contributions to trace gas concentration measurements at the Carbon in Arctic Reservoirs Vulnerability Experiment-NOAA Global Monitoring Division (CRV) tower in interior Alaska. Tower observations during two high fire periods were used to estimate CO and CH4 emission factors. We found that vapor pressure deficit and temperature had a level of performance similar to more complex fire weather indices. Emission factors derived from CRV tower measurements were 134 ± 25 g CO per kg of combusted biomass and 7.74 ± 1.06 g CH4 per kg of combusted biomass. Predicted daily CO mole fractions from AKFED emissions were moderately correlated with CRV observations (r = 0.68) and had a high bias. The modeling system developed here allows for attribution of emission factors to individual fires and has the potential to improve our understanding of regional CO, CH4, and CO2 budgets.

  11. Quantitative analysis of trace bulk oxygen in silicon wafers using an inert gas fusion method.

    PubMed

    Uchihara, Hiroshi; Ikeda, Masahiko; Nakahara, Taketoshi

    2003-11-01

    This paper describes a method for removing oxide film from the surface of silicon wafers using an inert gas fusion impulse furnace and precise determination of bulk oxygen within the wafer. A silicon wafer was cut to about 0.35 g (6 x 13 x 2 mm) and dropped into a graphite crucible. The sample was then heated for 40 s at 1300 degrees C. The wafer's oxide film was reduced by carbon and removed as carbon monoxide. The treated silicon sample was taken out of the graphite crucible and maintained again with the holder of the oxygen analyzer. The graphite crucible was then heated to 2100 degrees C. The treated silicon sample was dropped into the heated graphite crucible and the trace bulk oxygen in the wafer was measured using the inert gas fusion infrared absorption method. The relative standard deviations of the oxygen in silicon wafer samples with the removed surface oxide film were determined to be 0.8% for 9.8 x 10(17) atoms/cm3, and 2.7% for 13.0 x 10(17) atoms/cm3.

  12. Compact multilaser TDLAS for trace gas flux measurements based on a micrometeorological technique

    NASA Astrophysics Data System (ADS)

    Kormann, Robert; Fischer, Horst; Wienhold, Frank G.

    1999-10-01

    A novel Tunable Diode Laser Absorption Spectrometer has been developed for trace gas flux measurements based on micrometeorological techniques. Up to 2 different species can be measured simultaneously with high temporal resolution (< 1 sec) using individual lead-salt diode lasers. The instruments response time is ultimately determined by the gas exchange time through the compact multi-reflection cell (Aerodyne Model AMAC-36 Astigmatic Herriott Cell, 0.3 l volume, total path 36 m). The lasers are operated in a time multiplexed mode using a novel modulation scheme, which combines laser operation in a pulsed-current mode with a combination of rapid scanning and two-tone frequency modulation. The latter has the potential to improve the signal-to-noise ratio of phase-sensitive detection when compared to standard lock-in techniques because of the reduction of instrument noise at higher detection frequencies. The stability and the detection limit of the instrument will be characterized. It has been used to measure CH4 and N2O fluxes via the eddy covariance technique from rice paddies and tropical ecosystems during two recent field campaigns.

  13. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  14. ANALYSIS OF TRACE-LEVEL ORGANIC COMBUSTION PROCESS EMISSIONS USING NOVEL MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY PROCEDURES

    EPA Science Inventory

    The paper discusses the analysis of trace-level organic combustion process emissions using novel multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures. It outlines the application of the technique through the analyses of various incinerator effluent and produ...

  15. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  16. A True Eddy Accumulation - Eddy Covariance hybrid for measurements of turbulent trace gas fluxes

    NASA Astrophysics Data System (ADS)

    Siebicke, Lukas

    2016-04-01

    sampling system closely reproduced dynamics of simulated TEA-TM fluxes. In conclusion this study introduces a new approach to trace gas flux measurements using transient-mode true eddy accumulation. First TEA-TM CO2 fluxes compared favorably with side-by-side EC fluxes, in agreement with our previous experiments comparing discrete TEA to EC. True eddy accumulation has thus potential for measuring turbulent fluxes of a range of atmospheric tracers using slow response analyzers.

  17. Trace Gas Measurements on Mars and Earth Using Optical Parametric Generation

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Haris, Riris; Li, Steve; Sun, Xiaoli; Abshire, James Brice

    2010-01-01

    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. We have developed an active sensing instrument for the remote measurement of trace gases in planetary atmospheres (including Earth). The technique uses widely tunable, seeded optical parametric generation (OPG) to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planets. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but recent observations indicate that methane levels may be on the rise. Increasing methane concentrations may trigger a positive feedback loop and a subsequent runaway greenhouse effect, where increasing temperatures result in increasing methane levels. The NRC Decadal Survey recognized the importance of global observations of greenhouse gases and called for simultaneous CH4, CO, and CO2 measurements but also underlined the technological limitations for these observations. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can identify and localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. It can identify the dynamics of methane generation over time and latitude and identify future lander mission sites

  18. Variability of trace gas concentrations over Asian region: satellite observations vs model

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Richter, Andreas; Srivastava, Shuchita; Lal, Shyam

    2012-07-01

    Nitrogen dioxide (NO_2) and Carbon Monoxide (CO) play a key role in the chemistry of the tropospheric ozone and are emitted mainly by anthropogenic processes. These emissions have been increasing over Asia over the past few years due to rapid economic growth and yet there are very few systematic ground based observations of these species over this region. We have analysed ten years of data from space borne instruments: Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and Measurements of Pollution in the Troposphere (MOPITT), which have been measuring the tropospheric abundance of these trace gases. We have examined trends over the period 1996-2008 in NO_2 and CO over a few Indian regions where high economic growth in the present decade is likely to see increased emissions for these species. However, even the highest growth rate of these species seen in the present study, is less when compared with similar polluted regions of China, where a much more rapid increase has been observed. In order to understand the trends and variability in atmospheric trace gas concentrations, one must take into account changes in emissions and transport. Only by assessing the relevance of each of these factors will it be possible to predict future changes with reasonable confidence. To this effect we have used a global chemical transport model, MOZART, to simulate concentrations of NO_2 and CO using the POET (European) and REAS (Asian) emission inventories. These are compared with satellite measurements to study seasonal variations and the discrepancies are discussed. The combined uncertainties of the emission inventory and retrieval of the satellite data could be contributing factors to the discrepancies. It may be thus worthwhile to develop emission inventories for India at a higher resolution to include local level activity data.

  19. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Drummond, Rachel; Robert, Severine; Vandaele, Ann-Carine; Willame, Yannick; Lopez-Moreno, Jose Juan; Patel, Manish; Belluci, Giancarlo; Daerden, Frank; Neefs, Eddy; Rodriguez-Gomez, Julio

    2013-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite was selected as part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 µm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities. Since last year's abstract, much progress has been made on the instrument design and prototypes have been tested, especially concerning the very challenging thermal needs of the instrument. This paper will concentrate on the developments in the last year that prove NOMAD will be a very powerful, sensitive instrument.

  20. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia.

    PubMed

    Knoblauch, Christian; Beer, Christian; Sosnin, Alexander; Wagner, Dirk; Pfeiffer, Eva-Maria

    2013-04-01

    trace gas fluxes from thawing permafrost landscapes.

  1. Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds

    NASA Astrophysics Data System (ADS)

    Tang, M. J.; Cox, R. A.; Kalberer, M.

    2014-09-01

    Diffusion of gas molecules to the surface is the first step for all gas-surface reactions. Gas phase diffusion can influence and sometimes even limit the overall rates of these reactions; however, there is no database of the gas phase diffusion coefficients of atmospheric reactive trace gases. Here we compile and evaluate, for the first time, the diffusivities (pressure-independent diffusion coefficients) of atmospheric inorganic reactive trace gases reported in the literature. The measured diffusivities are then compared with estimated values using a semi-empirical method developed by Fuller et al. (1966). The diffusivities estimated using Fuller's method are typically found to be in good agreement with the measured values within ±30%, and therefore Fuller's method can be used to estimate the diffusivities of trace gases for which experimental data are not available. The two experimental methods used in the atmospheric chemistry community to measure the gas phase diffusion coefficients are also discussed. A different version of this compilation/evaluation, which will be updated when new data become available, is uploaded online (https://sites.google.com/site/mingjintang/home/diffusion).

  2. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  3. Trace gas responses in a climate change experiment in northern peatlands

    SciTech Connect

    Bridgham, S.D.; Pastor, J.; Updegraff, K.

    1995-09-01

    We established 54 mesocosms of 2.2 m{sup 2} and approximately 0.6 m depth with intact vegetation communities, with half originating from a poor-intermediate fen and half from a bog in northern Minnesota. The mesocosms were subjected to a series of water-table (0,-10,-20 cm) and heating treatments, with the heating treatments from overhead infrared lamps (full on, half on, ambient). Heating began in late summer 1994, and gas flux measurements were taken until the onset of winter. The first year results indicate peatland type and water-table treatment had highly significant effects on CH{sub 4} emissions, while the effect of heating treatment was weaker (P=0.07). Overall CH{sub 4} fluxes were higher in bog than in fen mesocosms. Despite the significant treatment effects, a multiple regression with water-table depth and soil temperature as the independent variables only predicted 14% and 34% of the variation in CH{sub 4} flux in the bog and fen mesocosms, respectively. CO{sub 2} emissions (net ecosystem respiration) were significantly affected by peatland type (higher in bogs) and heat treatment, but not but by water-table treatment. Soil temperature predicted 34% and 48% of the CO{sub 2} flux in the bog and fen mesocosms, respectively. These preliminary results indicate that climate change will have a significant impact on trace gas emissions in northern peatlands, but that much of the variability in emission cannot be explained by environmental correlates, even under carefully controlled conditions.

  4. Parameterization retrieval of trace gas volume mixing ratios from Airborne MAX-DOAS

    NASA Astrophysics Data System (ADS)

    Dix, Barbara; Koenig, Theodore K.; Volkamer, Rainer

    2016-11-01

    We present a parameterization retrieval of volume mixing ratios (VMRs) from differential slant column density (dSCD) measurements by Airborne Multi-AXis Differential Optical Absorption Spectroscopy (AMAX-DOAS). The method makes use of the fact that horizontally recorded limb spectra (elevation angle 0°) are strongly sensitive to the atmospheric layer at instrument altitude. These limb spectra are analyzed using reference spectra that largely cancel out column contributions from above and below the instrument, so that the resulting limb dSCDs, i.e., the column integrated concentration with respect to a reference spectrum, are almost exclusively sensitive to the atmospheric layers around instrument altitude. The conversion of limb dSCDs into VMRs is then realized by calculating box air mass factors (Box-AMFs) for a Rayleigh atmosphere and applying a scaling factor constrained by O4 dSCDs to account for aerosol extinction. An iterative VMR retrieval scheme corrects for trace gas profile shape effects. Benefits of this method are (1) a fast conversion that only requires the computation of Box-AMFs in a Rayleigh atmosphere; (2) neither local aerosol extinction nor the slant column density in the DOAS reference (SCDref) needs to be known; and (3) VMRs can be retrieved for every measurement point along a flight track, thus increasing statistics and adding flexibility to capture concentration gradients. Sensitivity studies are performed for bromine monoxide (BrO), iodine monoxide (IO) and nitrogen dioxide (NO2), using (1) simulated dSCD data for different trace gas and aerosol profiles and (2) field measurements from the Tropical Ocean tRoposphere Exchange of Reactive halogen species and Oxygenated VOC (TORERO) field experiment. For simulated data in a Rayleigh atmosphere, the agreement between the VMR from the parameterization method (VMRpara) and the true VMR (VMRtrue) is excellent for all trace gases. Offsets, slopes and R2 values for the linear fit of VMRpara over

  5. Identification and assessment of trace contaminants associated with oil and gas pipelines abandoned in place

    SciTech Connect

    Thorne, W.E.R.; Basso, A.C.; Dhol, S.K.

    1996-12-31

    As more Alberta oil and gas fields become depleted, attention is being given to development of economically and environmentally sound abandonment procedures. The objective of this study was to identify and assess residual internal and external contaminants associated with abandoned pipelines, particularly those to be abandoned in place. Circumstances which might increase the risk of contaminant release, and other issues relating to residual pipeline contaminants, were also identified. It was found that there are thousands of different substances which could potentially be associated with abandoned pipelines. A wide range in the potential quantities of residual contaminants was also found. Of the issues identified, the effectiveness of pipeline pigging and cleaning procedures prior to abandonment was the most critical determinant of the potential quantities of residual contaminants. However, a number of trace contaminants, such as PCBs (Polychlorinated Biphenyls) and NORMs (Naturally Occurring Radioactive Materials) may remain after thorough cleaning. A brief review of the legislation and regulations from a number of jurisdictions shows that pipeline abandonment has only recently become an issue of concern. Regulations specific to abandonment are lacking, and more general regulations and guidelines are being applied on a contaminant-specific basis, or in terms of waste disposal requirements.

  6. Science objectives of the NOMAD spectrometer on ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Vandaele, A. C.; Lopez-Moreno, J. J.; Drummond, R.; Patel, M. R.; Bellucci, G.

    2011-10-01

    The "Nadir and Occultation for MArs Discovery" (NOMAD) instrument on ESA and NASA's ExoMars Trace Gas Orbiter (EMTGO) will conduct a spectroscopic survey of the Martian atmosphere in the infrared (IR) and UV/visible spectral regions, both in solar occultation and nadir looking modes (see: Vandaele, A.C., same session). In the IR wavelength domain, the spectral resolution (~0.15 cm-1) surpasses those of previous surveys of Mars by more than an order of magnitude, this channel's heritage derives from the SOIR instrument with proven success on ESA's Venus Express mission [1]. An additional light-weight channel UVIS extends the survey to UV and visible wavelengths with a 1-2 nm resolution. NOMAD will search for active geology, volcanism and life by looking for the atmospheric markers of these processes on Mars, confining the source regions, and providing crucial information on the nature of the processes involved. NOMAD will also extend the survey of major climatology cycles of Mars.

  7. An analysis of the Antarctic Halogen Occultation Experiment trace gas observations

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Luo, Mingzhao; Rosenfield, Joan E.

    1995-01-01

    Analysis of the version 16 Halogen Occultation Experiment (HALOE) CH4 data shows that this long-lived trace gas is well correlated with potential vorticity (PV) computed from National Meteorological Center balanced winds. Analyzing late September and October 1992 data, we show that very low CH4 values are confined to the interior of a vortex edge defined by the maximum gradient in PV. The CH4 and HF time tendency is used to estimate the descent rate in the Antarctic vortex. After removing a component of the trend correlated with the HALOE sampling pattern, we compute the lower stratosphere vertical descent rates and net heaing rates in the spring Antarctic vortex. Our computations of the spring Antarctic vortex heating rates give -0.5 to -0.1 K/day. Over the winter season, the overall lower stratospheric descent rate averages about 1.8-1.5 km/month. These computations are in line with radiative transfer estimates of the heating and descent rate. The HALOE data thus appear to be consistent with the picture of an isolated lower stratospheric Antarctic vortex.

  8. Fine Resolution Neutron Detector for ExoMars Trace Gas Orbiter. Instrument and science goals.

    NASA Astrophysics Data System (ADS)

    Malakhov, Alexey; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Mokrousov, Maxim; Vostrukhin, Andrey; Golovin, Dmitry; Semkova, Jordanka; Dachev, Tsvetan; Malchev, Stefan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Koleva, Rositza; Mitrofanov, Igor; F

    Fine Resolution Neutron Detector (FREND) will measure neutrons of different energy ranges, charged particles and radiation environment onboard ExoMars 2016 Trace Gas Orbiter spacecraft. The instrument contains a set of (3) He detectors for epithermal neutrons and a scintillation crystal for high-energy neutrons and charged particles measurements. Dosimeter module will perform dose and particle flux monitoring. The instrument also contains a collimation module that narrows 3He counters’ and scintillator’s field of view to a narrow spot on the surface of Mars of about 40 km. FREND will be the first experiment to perform high resolution hydrogen mapping of the Martian surface. Current hydrogen maps obtained by HEND instrument onboard Mars Odyssey provide only 300km spatial resolution. Improved data from FREND will be very valuable for further exploration missions in terms of landing sites selection, as well as enable us to better understand Martian geology, seasonal CO _{2} cycles and planet’s history. Radiation environment data from dosimeter module on Martian orbit will provide improved knowledge for future human exploration as well as perform solar particle events monitoring.

  9. Numerical Analysis of a Multi-Physics Model for Trace Gas Sensors

    NASA Astrophysics Data System (ADS)

    Brennan, Brian

    Trace gas sensors are currently used in many applications from leak detection to national security and may some day help with disease diagnosis. These sensors are modelled by a coupled system of complex elliptic partial differential equations for pressure and temperature. Solutions are approximated using the finite element method which we will show admits a continuous and coercive variational problem with optimal H1 and L2 error estimates. Numerically, the finite element discretization yields a skew-Hermitian dominant matrix for which classical algebraic preconditioners quickly degrade. We develop a block preconditioner that requires scalar Helmholtz solutions to apply but gives a very low outer iteration count. To handle this, we explore three preconditoners for the resulting linear system. First we analyze the classical block Jacobi and block Gauss-Seidel preconditions before presenting a custom, physics based preconditioner. We also present analysis showing eigenvalues of the custom preconditioned system are mesh-dependent but with a small coefficient. Numerical experiments confirm our theoretical discussion.

  10. Method for analysis of polar volatile trace components in aqueous samples by gas chromatography.

    PubMed

    Pettersson, Johan; Roeraade, Johan

    2005-05-15

    A new method has been developed for direct analysis of volatile polar trace compounds in aqueous samples by gas chromatography. Water samples are injected onto a short packed precolumn containing anhydrous lithium chloride. A capillary column is coupled in series with the prefractionation column for final separation of the analytes. The enrichment principle of the salt precolumn is reverse to the principles employed in conventional methods such as SPE or SPME in which a sorbent or adsorbent is utilized to trap or concentrate the analytes. Such methods are not efficient for highly polar compounds. In the LiCl precolumn concept, the water matrix is strongly retained on the hygroscopic salt, whereas polar as well as nonpolar volatile organic compounds show very low retention and are eluted ahead of the water. After transfer of the analytes to the capillary column, the retained bulk water is removed by backflushing the precolumn at elevated temperature. For direct injections of 120 microL of aqueous samples, the combined time for injection and preseparation is only 3.5 min. With this procedure, direct repetitive automated analyses of highly volatile polar compounds such as methanol or tetrahydrofuran can be performed, and a limit of quantification in the low parts-per-billion region utilizing a flame ionization detector is demonstrated.

  11. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons.

  12. Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; González Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2015-02-01

    The Airborne Compact Atmospheric Mapper (ACAM), an ultraviolet/visible/near-infrared spectrometer, has been flown on board the NASA UC-12 aircraft during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaigns to provide remote sensing observations of tropospheric and boundary-layer pollutants from its radiance measurements. To assure the trace-gas retrieval from ACAM measurements we perform detailed characterization and verification of ACAM slit functions. The wavelengths and slit functions of ACAM measurements are characterized for the air-quality channel (~304-500 nm) through cross-correlation with a high-resolution solar irradiance reference spectrum after necessarily accounting for atmospheric gas absorption and the ring effect in the calibration process. The derived slit functions, assuming a hybrid combination of asymmetric Gaussian and top-hat slit functions, agree very well with the laboratory-measured slit functions. Comparisons of trace-gas retrievals between using derived and measured slit functions demonstrate that the cross-correlation technique can be reliably used to characterize slit functions for trace-gas retrievals.

  13. NOMAD, a spectrometer suite for nadir and solar occultation observations on the ExoMars Trace Gas Orbiter E NOMAD, a spectrometer suite for nadir and solar occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C. R.; Rodriguez-Gomez, J.

    2013-09-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite was selected as part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations.

  14. Atmospheric Trace Gas Abundances and Stable Isotope Ratios via IR-LIF

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    2004-01-01

    studies form the necessary precursors to the development of compact, lightweight stable isotope/trace gas sensors for future planetary missions.

  15. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Ball, Stephen M.; Shillings, Alexander J. L.; Jones, Roderic L.

    2008-12-01

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO2 (versus a laser broadband cavity ringdown spectrometer) and for H2O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+δ absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO3 as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1σ detection limit of 0.25 pptv for a 10 s

  16. The analysis of tire rubber traces collected after braking incidents using Pyrolysis-GasChromatography/Mass Spectrometry.

    PubMed

    Sarkissian, Garry

    2007-09-01

    Automobile tire marks can routinely be found at the scenes of crime, particularly hit-and-run accidents and are left on road surfaces because of sudden braking or the wheels spinning. The tire marks are left due to the friction between the tire rubber and the solid road surface, and do not always demonstrate the tire tread pattern. However, the tire mark will contain traces of the tire. In this study, Pyrolysis Gas Chromatography/Mass Spectrometry was used to analyze 12 tires from different manufacturer's and their traces collected after braking incidents. Tire marks were left on a conglomerate road surface with sudden braking. The samples were pyrolysed without removal of contaminant in a micro-furnace type pyrolyser. Quantitative and qualitative analysis were performed on all the samples. All 12 samples were distinguished from each other. Each of the tire traces were identified as coming from there original source.

  17. An assessment of the climatological representativeness of IAGOS-CARIBIC trace gas measurements using EMAC model simulations

    NASA Astrophysics Data System (ADS)

    Eckstein, Johannes; Ruhnke, Roland; Zahn, Andreas; Neumaier, Marco; Kirner, Ole; Braesicke, Peter

    2017-02-01

    Measurement data from the long-term passenger aircraft project IAGOS-CARIBIC are often used to derive climatologies of trace gases in the upper troposphere and lower stratosphere (UTLS). We investigate to what extent such climatologies are representative of the true state of the atmosphere. Climatologies are considered relative to the tropopause in mid-latitudes (35 to 75° N) for trace gases with different atmospheric lifetimes. Using the chemistry-climate model EMAC, we sample the modeled trace gases along CARIBIC flight tracks. Representativeness is then assessed by comparing the CARIBIC sampled model data to the full climatological model state. Three statistical methods are applied for the investigation of representativeness: the Kolmogorov-Smirnov test and two scores based on the variability and relative differences. Two requirements for any score describing representativeness are essential: representativeness is expected to increase (i) with the number of samples and (ii) with decreasing variability of the species considered. Based on these two requirements, we investigate the suitability of the different statistical measures for investigating representativeness. The Kolmogorov-Smirnov test is very strict and does not identify any trace-gas climatology as representative - not even of long-lived trace gases. In contrast, the two scores based on either variability or relative differences show the expected behavior and thus appear applicable for investigating representativeness. For the final analysis of climatological representativeness, we use the relative difference score and calculate a representativeness uncertainty for each trace gas in percent. In order to justify the transfer of conclusions about representativeness of individual trace gases from the model to measurements, we compare the trace gas variability between model and measurements. We find that the model reaches 50-100 % of the measurement variability. The tendency of the model to underestimate

  18. Estimation of trace gas fluxes with objectively determined basis functions using reversible-jump Markov chain Monte Carlo

    NASA Astrophysics Data System (ADS)

    Lunt, Mark F.; Rigby, Matt; Ganesan, Anita L.; Manning, Alistair J.

    2016-09-01

    Atmospheric trace gas inversions often attempt to attribute fluxes to a high-dimensional grid using observations. To make this problem computationally feasible, and to reduce the degree of under-determination, some form of dimension reduction is usually performed. Here, we present an objective method for reducing the spatial dimension of the parameter space in atmospheric trace gas inversions. In addition to solving for a set of unknowns that govern emissions of a trace gas, we set out a framework that considers the number of unknowns to itself be an unknown. We rely on the well-established reversible-jump Markov chain Monte Carlo algorithm to use the data to determine the dimension of the parameter space. This framework provides a single-step process that solves for both the resolution of the inversion grid, as well as the magnitude of fluxes from this grid. Therefore, the uncertainty that surrounds the choice of aggregation is accounted for in the posterior parameter distribution. The posterior distribution of this transdimensional Markov chain provides a naturally smoothed solution, formed from an ensemble of coarser partitions of the spatial domain. We describe the form of the reversible-jump algorithm and how it may be applied to trace gas inversions. We build the system into a hierarchical Bayesian framework in which other unknown factors, such as the magnitude of the model uncertainty, can also be explored. A pseudo-data example is used to show the usefulness of this approach when compared to a subjectively chosen partitioning of a spatial domain. An inversion using real data is also shown to illustrate the scales at which the data allow for methane emissions over north-west Europe to be resolved.

  19. Radiative transfer modelling for the NOMAD-UVIS instrument on the ExoMars Trace Gas Orbiter mission

    NASA Astrophysics Data System (ADS)

    Dawson, D. G.; Patel, M. R.; Lewis, S. R.; Mason, J. P.; Irwin, P. G. J.

    2013-09-01

    The NOMAD (Nadir and Occultation for MArs Discovery) instrument is a 3-channel (2 IR, 1 UV/Vis) spectrometer due to fly on the 2016 ExoMars Trace Gas Orbiter mission. A radiative transfer model for Mars has been developed providing synthetic spectra to simulate observations of the UVIS channel in both solar occultation and nadir viewing geometries. This will allow for the characterization and mitigation of the influence of dust on retrievals of ozone abundance.

  20. The influence of synoptic-scale climate variability on boreal forest fire emissions and trace gas variability in Alaska

    NASA Astrophysics Data System (ADS)

    Wiggins, E. B.; Veraverbeke, S.; Henderson, J.; Karion, A.; Lindaas, J.; Miller, J. B.; Commane, R.; Wofsy, S. C.; Miller, C. E.; Randerson, J. T.; Sweeney, C.

    2015-12-01

    We examined climate controls on fire emissions and trace gas variability using three distinct conceptual models of fire emissions that draw upon different types of remote sensing information. The three approaches were derived from satellite-derived observations of active fires, satellite-derived estimates of fire radiative power, and daily emissions estimates from the Alaska Fire Emissions Database model (AKFED). In our analysis, we assessed the relative importance of different climate variables and fire weather indices in explaining the temporal variability of satellite-detected fire thermal anomalies and emissions within the state of Alaska during the summer of 2013. We evaluated the performance of each emissions model using trace gas observations from the CARVE (CRV) tower in Fox, Alaska. In our approach we used an inverse atmospheric transport model, the coupled Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model, to link the fire emissions with the trace gas observations. MISR plume observations were used to inform the injection height distribution in WRF-STILT and CRV-derived estimates of CO/CO2 emission ratios were used to convert modeled carbon emissions into trace gas fluxes. Local climate variables had varying levels of influence on fire dynamics in interior Alaska, with vapor pressure deficit explaining more variability than temperature or relative humidity alone. Combined use of the emissions products and WRF-STILT allowed us identify fire contributions to the CRV time series on a daily basis, and to isolate contributions from individual fires that had different temporal dynamics and interactions with atmospheric transport. Both hourly and daily observed CO mole fractions were highly correlated with the emissions models convolved with WRF-STILT (r2 values up to 0.63), providing some confidence in the ability of satellite-constrained models to capture daily and synoptic patterns in fire emissions.

  1. Carbon trace gas fluxes along a successional gradient in the Hudson Bay lowland

    NASA Astrophysics Data System (ADS)

    Klinger, Lee F.; Zimmerman, Patrick R.; Greenberg, James P.; Heidt, Leroy E.; Guenther, Alex B.

    1994-01-01

    Patterns and controls of carbon trace gas emissions from wetlands may vary depending upon the spatial and temporal scale being examined. The factors affecting these emissions are thought to be hierarchically related according to their respective scales of importance. A hierarchical model of processes controlling methane emissions from wetlands is presented and examined here. During the 1990 Northern Wetlands Study (NOWES) methane (CH4), carbon dioxide (CO2), and non-methane hydrocarbon (NMHC) fluxes were measured in static chambers along a 100 km transect in the Hudson Bay lowland (HBL). Environmental variables, vegetation abundance, and ecosystem age and structure were also quantified at each sampling site. The findings indicate that CH4 emissions from peatlands (e.g., bogs and fens) and other wetlands (e.g., salt marshes) in the region were low, and were nil or negative (i.e., CH4 uptake) in forests and bog forests dominated by aspen and black spruce. Site to site variations in mean CH4 flux appeared to be most closely related to mean water table and sedge productivity, both of which are intercorrelated. Seasonal changes in CH4 flux tend to follow soil temperature fluctuations. Instantaneous CO2 and CH4 daytime fluxes exhibit a negative correlation, suggesting that photosynthetic assimilation of carbon may be related to CH4 emissions, although the processes of CO2 and CH4 production are occurring at somewhat different temporal scales. No diurnal variations in CH4 flux could be detected. While soil water pH trends are not fully explored, there is some indication that high CH4 fluxes are concentrated around pH 4 and pH 7. Soil temperature closely follows the seasonal progression of CH4 flux. Estimated CH4 seasonal flux (1.5-3.9 g CH4 m-2 season-1) and estimated aboveground net primary productivity (NPP) (90-400 g dry weight m-2 season-1) show systematic changes along a successional sequence which are consistent with patterns predicted from successional theory

  2. Interacting biochemical and diffusive controls on trace gas sources in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Manzoni, S.; Bellin, A.; Porporato, A. M.

    2011-12-01

    Microbes react to environmental conditions on different timescales. When conditions improve (e.g., rewetting, substrate amendment), the residing population exits the dormant state, becomes active and starts synthesizing extra-cellular enzymes. If substrate availability, and hence energy, is sufficient, microbes may start to reproduce and increase the size of their population. These dynamics make it complicated to interpret measured relationships between microbial activity (e.g., respiration, denitrification, N mineralization) and environmental conditions. In particular, the relationship between bacterial activity and soil moisture, which is derived by incubating soil samples at constant soil moisture levels, seems to vary under dynamic hydrological conditions. This may be related to both soil physical properties and the resilience of bacteria to adapt to rapid changes in soil moisture. We present a process-based model that includes both the above effects and test the hypothesis that the ratio of the time scale of biological versus physical factors determines the shape describing the relationship between microbial activity and soil moisture. In particular, we focus on the role of oxygen dynamics, which regulate the prevalence of aerobic versus anaerobic conditions and thus the prevalence of nitrification versus denitrification. We identify and compare the time scale of the biological oxygen consumption with the time scale of physical diffusion. Starting from well-aerated conditions, as bacteria consume O2 in solution, more oxygen dissolves from the atmosphere - depending on gas-filled porosity. If water dynamics or tillage limits re-aeration, this can affect the equilibrium between the aqueous and the gaseous phase and thus alter the time scale of the reactions. This balance between consumption and re-aeration by diffusion ultimately controls the water quality as well the production of trace gases.

  3. Tracing coalbed natural gas-coproduced water using stable isotopes of carbon

    SciTech Connect

    Sharma, S.; Frost, C.D.

    2008-03-15

    Recovery of hydrocarbons commonly is associated with coproduction of water. This water may be put to beneficial use or may be reinjected into subsurface aquifers. In either case, it would be helpful to establish a fingerprint for that coproduced water so that it may be tracked following discharge on the surface or reintroduction to geologic reservoirs. This study explores the potential of using {delta}{sup 13}C of dissolved inorganic carbon (DIC) of coalbed natural gas (CBNG) - coproduced water as a fingerprint of its origin and to trace its fate once it is disposed on the surface. Our initial results for water samples coproduced with CBNG from the Powder River Basin show that this water has strongly positive {delta}{sup 13}C(DIC) (12 parts per thousand to 22 parts per thousand) that is readily distinguished from the negative {delta}{sup 13}C of most surface and ground water (-8 parts per thousand to -11 parts per thousand). Furthermore, the DIC concentrations in coproduced water samples are also high (more than 100 mg C/L) compared to the 20 to 50 mg C/L in ambient surface and ground water of the region. The distinctively high {delta}{sup 13}C and DIC concentrations allow us to identify surface and ground water that have incorporated CBNG-coproduced water. Accordingly, we suggest that the {delta}{sup 13}C(DIC) and DIC concentrations of water can be used for long-term monitoring of infiltration of CBNG-coproduced water into ground water and streams. Our results also show that the {delta} {sup 13}C (DIC) of CBNG-coproduced water from two different coal zones are distinct leading to the possibility of using {delta}{sup 13}C(DIC) to distinguish water produced from different coal zones.

  4. Field-scale gas tracing experiment in unsaturated fractured media: from deep injection to surface monitoring

    NASA Astrophysics Data System (ADS)

    Guillon, S.; Pili, E.; Sabroux, J.; Sestier-Carlin, R.; Adler, P. M.

    2011-12-01

    For CO2 sequestration as for other applications, it is important to understand transfer mechanisms of gases in unsaturated fractured rocks from experiment and to develop modeling capabilities. We carried out a field-scale tracing experiment using SF6 with the aim to serve for a forthcoming experiment using CO2. The experimental site was well characterized (mineralogy and fracturation). Transport parameters were estimated from the field, especially permeability and dilution factor. We also evaluated methods to monitor tracer breakthrough at the surface. At the Roselend Natural Laboratory (French Alps), a tunnel provides access to the heart of unsaturated fractured crystalline rocks, at 55 m depth below ground surface. This underground research facility allows studying gas exchange between a 60 m3 chamber isolated at the dead-end of the tunnel and the surface. At the topographic surface, ten 10 meter-long vertical boreholes and one 60 meter-long subhorizontal borehole were used to monitor tracer breakthrough. Stereological analysis of fractures in the tunnel previously led to permeability estimation. Similar analysis of drilled cores (density and orientation of fractures) gave additional permeability estimates in the subsurface. Gas permeability was also determined from pneumatic injection tests in both the injection chamber and subsurface boreholes. Steady-state and transient experiments were analyzed by modeling in real geometry. Long-term continuous pressure monitoring in the isolated chamber and the packed-off boreholes were also used for permeability estimation. We found equivalent air permeability of the order of 10-12 m2 which compares well with previous estimations. Following baseline determination, SF6 was injected at 1000 ppmV in the isolated chamber that was then pressurized to 150 mbar above atmospheric pressure during 2 hours. During all the experiment SF6 concentration was continuously monitored inside the isolated chamber and in front of the isolation

  5. Multi-species trace gas analysis with dual-wavelength quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Jágerská, Jana; Tuzson, Béla; Looser, Herbert; Jouy, Pierre; Hugi, Andreas; Mangold, Markus; Soltic, Patrik; Faist, Jérôme; Emmenegger, Lukas

    2015-04-01

    ). [2] J. Jágerská, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, and J. Faist, 'Dual-wavelength quantum cascade laser for trace gas spectroscopy,' Applied Physics Letters 105, 161109-161109-4 (2014).

  6. The Effect of Experimentally Induced Root Mortality on Trace Gas Exchange

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Keller, M.; Robertson, J. R.; Dias, J. D.; Silva, H.; Crill, P. M.; McGroddy, M.; Silver, W. L.

    2002-12-01

    Soil-atmosphere exchange of carbon dioxide (CO2), nitric oxide (NO), nitrous oxide (N2O) and methane (CH4) was measured following a root exclusion experiment in the Tapajos National Forest near Santarem, Para, Brazil. The sampling period (June 4 - August 14, 2000) coincided with the beginning of the dry season. The experiment was set up as a randomized complete block design with 5 pairs of 2.5 x 2.5 m plots in both sand and clay soils. Trenches were dug around one plot in each pair for screen installation. Trace gas fluxes were measured weekly for ten weeks following the trenching. Duplicate flux measurements were made for each of the trenched and non-trenched plots. Enclosures made of 0.25 m diameter PVC pipe were placed on a base imbedded in the soil. Dynamic measurements using a portable backpack system equipped with an NO2 chemiluminescent detector for NO and an infrared gas analyzer for CO2 were completed in the field. CH4 and N2O fluxes were measured through a static enclosure method. Syringe samples of the enclosure headspace were analyzed by GC-FID (CH4) and ECD (N2O) the following day. Daily average fluxes ranged between -0.01 and 60.3 ng-N cm-2 hr-1 for N2O. NO fluxes ranged between 0.58 and 8.74 ng-N cm-2 hr-1. CH4 fluxes varied between net consumption and production from -1.73 to 0.912 mg m-2 d-1. Soil respiration ranged from 1.34 to 5.12 umoles CO2 m-2 s-1. Significant differences were seen between trenched and non-trenched plots in both clay and sand soils for N2O emissions only. Hourly field standardization of the NO2 chemiluminescent analyzer resulted in lower variability than the traditional method of standardization which is completed at the beginning and end of the measurement day. Frequent field standardization of the analyzer is necessary to reduce measurement error due to intra-day variability.

  7. Method for detection of trace metal and metalloid contaminants in coal-generated fuel gas using gas chromatography/ion trap mass spectrometry.

    PubMed

    Rupp, Erik C; Granite, Evan J; Stanko, Dennis C

    2010-07-15

    There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH(3)), phosphine (PH(3)), and hydrogen selenide (H(2)Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed.

  8. Method for Detection of Trace Metal and Metalloid Contaminants in Coal-Generated Fuel Gas Using Gas Chromatography/Ion Trap Mass Spectrometry

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-07-15

    There exists an increasing need to develop a reliable method to detect trace contaminants in fuel gas derived from coal gasification. While Hg is subject to current and future regulations, As, Se, and P emissions may eventually be regulated. Sorbents are the most promising technology for the removal of contaminants from coal-derived fuel gas, and it will be important to develop a rapid analytical detection method to ensure complete removal and determine the ideal time for sorbent replacement/regeneration in order to reduce costs. This technical note explores the use of a commercial gas chromatography/ion trap mass spectrometry system for the detection of four gaseous trace contaminants in a simulated fuel gas. Quantitative, repeatable detection with limits at ppbv to ppmv levels were obtained for arsine (AsH3), phosphine (PH3), and hydrogen selenide (H2Se), while qualitative detection was observed for mercury. Decreased accuracy and response caused by the primary components of fuel gas were observed.

  9. Selected Translated Abstracts of Chinese-Language Climate Change Publications

    SciTech Connect

    Cushman, R.M.; Burtis, M.D.

    1999-05-01

    This report contains English-translated abstracts of important Chinese-language literature concerning global climate change for the years 1995-1998. This body of literature includes the topics of adaptation, ancient climate change, climate variation, the East Asia monsoon, historical climate change, impacts, modeling, and radiation and trace-gas emissions. In addition to the biological citations and abstracts translated into English, this report presents the original citations and abstracts in Chinese. Author and title indexes are included to assist the reader in locating abstracts of particular interest.

  10. Non-reactive and reactive trace gas fluxes: Simultaneous measurements with ground based and vertically integrating methods

    NASA Astrophysics Data System (ADS)

    Mayer, J.-C.; Rummel, U.; Andreae, M. O.; Foken, T.; Meixner, F. X.

    2009-04-01

    The footprint area, i.e. the source region of a flux measured at a certain location, increases with increasing height above ground of the flux measurements. For non-reactive trace gases and horizontally homogeneous terrain (particularly with respect to deposition and emission processes), an increase in height should not alter the actual measured flux (constant flux layer assumption). For reactive trace gases, with chemical life times of about 30 s - 300 s, chemical production and loss processes within the measuring layer lead to vertical flux divergence. The magnitude of the flux divergence can be determined directly by comparing fluxes of reactive trace gases being affected by chemistry with fluxes of the same species being not altered by chemistry. In August 2006, the field experiment LIBRETTO (LIndenBerg REacTive Trace gas prOfiles) was carried out in cooperation with the German Meteorological Service (DWD) at the field site of the Richard Aßmann Observatory in Lindenberg. At a 99 m mast, profiles of air temperature, relative humidity, wind speed and direction were measured. The mast is equipped with an elevator, where sensors for trace gases (CO2, H2O, O3), air temperature and relative humidity have been installed. During the experiment, the elevator system was run continuously, providing scanned profiles of trace gas concentrations from 2 m to 99 m a.g.l. of the atmospheric boundary layer (ABL) approx. every 10 minutes. Between 0.15 m and 2.0 m, concentration differences of the trace gases CO2, H2O, O3, NO and NO2 were measured. Applying the modified Bowen ration (MBR) method to the measured concentration differences and directly measured sensible heat flux (eddy covariance data from DWD) yields surface fluxes of the trace gases. Integral fluxes of CO2, O3 and sensible heat were computed simultaneously by applying the nocturnal boundary layer budget method to the scanned elevator profiles. A direct comparison showed little deviations between the two methods

  11. The Colour and Stereo Surface Imaging System for ESA's Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Thomas, Nicolas; Cremonese, Gabriele

    2016-04-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is an 11 μrad/px imaging system ready to launch on the European Space Agency's (ESA) ExoMars Trace Gas Orbiter (TGO) on 14 March 2016 from Baikonur. CaSSIS is based around an 880 mm focal length carbon-fibre reinforced polymer (CFRP) telescope with a 135 mm primary mirror and a 2k x 2k CMOS hybrid detector with 10 micron pixel pitch providing 4.6 m/px imaging from the nominal 400 km circular orbit. The telescope is a slightly modified three mirror anastigmat optical configuration with no central obscuration. The instrument is designed to operate in "push-frame" mode where 2048 x 256 images are acquired at a repetition rate which matches the ground-track velocity (~3 km/s) allowing sufficient overlap for co-registration thereby building image strips along the surface. A filter strip assembly (FSA) is mounted directly above the detector providing images in 4 wavelength bands. Two of these (480.5nm and 676.5nm prior to convolution with the rest of the instrument) correspond closely to bands used by the HiRISE instrument on the Mars Reconnaissance Orbiter [4]. Two other filters split the NIR wavelengths with centres at 838 nm and close to 985 nm. Analyses show that the filters provide good differentiation between expected surface minerals, particularly Fe-bearing phases (Tornabene et al. LPSC, 2016). CaSSIS is designed to produce stereo from images acquired ~30 s apart by using a rotation drive. The telescope points 10 degrees off-nadir. The drive aligns the telescope with the ground-track direction so that the telescope is pointing forward. After image acquisition, the telescope is rapidly rotated by 180 degrees to point in the opposite direction and the second image of the stereo pair is acquired. CaSSIS will extend the monitoring of past missions to future years allowing the tracking of longer-term changes. It will also provide contemporaneous imaging of regions that may produce unique signatures detected by

  12. Orthopyroxene as a recorder of primitive achondrite petrogenesis: Major-, minor-, and trace-element systematics of orthopyroxene in Lodran. [Abstract only

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Spilde, M. N.; Fowler, G. W.; Shearer, C. K.

    1994-01-01

    Considerable attention has been paid recently to the primitive achondrites because they may form a link between chondrites and more differentiated achondrite meteorites. A recent paper by Miyamoto and Takeda addresses the thermal history of lodranites Yamato 74357 and MAC 88177 as inferred from chemical zoning of pyroxene and olivine determined by electron microprobe analyses. Their results suggested that interstitial melt was present and then extracted. We have taken the analysis of Lodran-type meteorites one step further by incorporating the techniques of Electromagnetic Pulse/Wavelength Dispersive Spectroscopy (EMP/WDS) compositional imaging and scanning ion mass spectroscopy (SIMS) analysis. Orthopyroxene in Lodran is strongly zoned in CaO, Al2O3, TiO2, and Cr2O3 within the last 10-30 microns from the grain boundaries. The rims are reversely zoned in Mg-Fe, exhibiting Mg enrichment, and compositions change from a fairly uniform Wo3En94 within the grains to Wo1En96 at the rims. CaO drops from 1.6 to 0.6 wt% and Al2O3, TiO2, and Cr2O3 exhibit similar depletions. MnO is fairly uniform throughout the grains at around 0.5 wt%. Olivine is also reversely zoned with respect to not only grain boundaries but also to fractures within the grains, giving many olivine grains a complex, patchy zoning pattern. Some of the core-rim trace-element systematics for orthopyroxene are illustrated. Because of the rather narrow zoned rims in Lodran orthopyroxene and the low trace-element abundances, it is difficult to clearly resolve the trace-element systematics. Nevertheless it is evident that the cores are enriched in the incompatible trace elements Ce, Nd, Dy, Er, Yb, Y, and Zr relative to the rims.

  13. Analysis of Trace Gas Mixtures Using an External Cavity Quantum Cascade Laser Sensor

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Brumfield, Brian E.; Kriesel, Jason M.

    2015-07-01

    We measure and analyze mixtures of trace gases at ppb-ppm levels using an external cavity quantum cascade laser sensor with a 1-second response time. Accurate spectral fits are obtained in the presence of overlapping spectra.

  14. Environmental factors influencing trace house gas production in permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  15. Study of Atmospheric Trace Gas Amounts at the Stara Zagora Ground-Based Station

    NASA Astrophysics Data System (ADS)

    Werner, R.; Valev, D.; Kostadinov, I.; Atanassov, At.; Giovanelli, G.; Petritoli, A.; Bortoli, D.; Ravegnani, F.

    2006-03-01

    Since the end of August 1999 twilight daily measurements of scattered zenith sky radiation have been carried out at Stara Zagora for determination of trace gas amounts, deploying GASCOD instrument. It was developed at the Institute of Atmospheric Science and Climate, Bologna. Reference spectra are obtained at midday. The instrument, appearing a UV-VIS spectrometer, registers the zenith sky spectra automatically and 410 nm to 460 nm spectral interval is used to retrieve NO2 and O3 slant column amounts (SCA) by application of the DOAS methodology. The spectral analysis uses minimum least squares fitting of the cross sections at the expected absorbers to a logarithm of the twilight spectrum and a reference spectrum. The accumulated time series show the well-known typical seasonal variations, caused by the solar insulation. The residual time series of the removed semi-annual seasonal cycles from the measured original series show many different variations, with short periods up to inter-annual variations. Single spikes of SCA are detected and we consider them a result of over-passing weather fronts and/or lightning. Variations of SCA with time scale up to about 10 days are the consequence of weather cyclones. Some short-term variations of NO2 and O3 SCA are a result of intensive stratospheric-tropospheric exchange. Other residual time series periods are caused by Rossby waves, by over-passing of the polar vortex filaments. The inter-annual variations can be affected by QBO and NAO. Applying wavelet analysis of the obtained NO2 slant column amount data series, and the total O3 amount obtained by the GOME instrument, during the 23-rd solar cycle maximum, time intervals are found with periods of 27 days on the time scale. The applied cross-correlation analysis demonstrates a phase lag of some days of the NO2 and O3 response to the 27-days solar cycle. The calculated vertical column amounts of NO2 are used for validation of the satellite measurements, e.g. SCIAMACHY NO2

  16. Influence of understory greenness on trace gas and energy exchange in forested ecosystems

    NASA Astrophysics Data System (ADS)

    Swetish, J.; Papuga, S. A.; Litvak, M. E.; Barron-Gafford, G. A.; Mitra, B.

    2012-12-01

    Forested ecosystems are important sources and sinks of carbon, water, and energy - affecting land surface - atmosphere interactions at multiple scales. Understanding how forested ecosystems will respond to climate change is critical for quantifying how they will feedback with the climate system. Addressing this need is challenging in forested ecosystems because of their complex structure and composition, both vertically and horizontally. Here we highlight the different functioning of the main overstory canopy and the more seasonal understory. Both the overstory and the understory contribute differently to the exchange of carbon, water and energy with the atmosphere. Both eddy covariance measurements and remotely sensed products can provide ecosystem-scale estimates of trace gas and energy flux, but the contribution of the understory to these estimates remains relatively unexplored. In this study, we aim to address the contribution of the understory to ecosystem-scale carbon uptake. Specifically, we ask the following questions: (1) how big is the contribution of the understory to ecosystem carbon uptake?; (2) at what times of year is the understory contribution important?; (3) does the eddy covariance carbon uptake signal (NEE-) reflect the greening up dynamics of the understory?; (4) is the greening up dynamics of the understory captured in our remotely-sensed products?; and (5) can remotely-sensed vegetation products such as MODIS-derived NDVI and EVI accurately reflect ecosystem-scale carbon uptake dynamics? To address these questions, we use three years of eddy covariance data from two similar subalpine mixed-conifer ecosystems within the Jemez River Basin - Santa Catalina Mountain Critical Zone Observatory (JRB-SCM CZO). The mixed-conifer site at the JRB is at roughly 3000 m and has substantial understory, while the mixed-conifer ecosystem of the SCM is at roughly 2500 m has very minimal understory. Within the footprint of the eddy covariance towers at both

  17. Fine Resolution Epithermal Neutron Detector (FREND) onboard ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Malakhov, Alexey; Mitrofanov, Igor; Sanin, Anton; Litvak, Maxim; Kozyrev, Alexander; Tretiyakov, Vladislav; Mokrousov, Maxim; Vostrukhin, Andrey; Golovin, Dmitry; Fedosov, Fedor; Nikiforov, Sergey; Konovalov, Alexey; Tomilina, Tatiana; Bobrovnitsky, Yury; Grebennikov, Alexander; Bakhtin, Boris; Loktionova, Mariya

    2013-04-01

    ExoMars is a joint investigation of Mars carried out by Roscosmos and ESA that has 2 launches foreseen, in 2016 and 2018. Planned for launch in 2016, its first element, the Trace Gas Orbiter (TGO) will spend at least one Martian year orbiting the planet. Fine Resolution Neutron Detector (FREND) instrument was proposed by Roscosmos and will be measuring thermal, epithermal and high energy neutrons with energy ranges up to 10 MeV, which variations are an excellent signature of H bearing elements presence in the regolith at up to 1 meter depth. Neutron mapping of Mars is being performed by HEND instrument since 2002 as part of the Mars Odyssey instrument suite. The important step in Martian exploration from FREND will be its high spatial resolution: FREND contains a collimator structure that narrows the instrument's field of view to a 40 km diameter spot at 400 km altitude. The collimation technology was previously confirmed by LEND, an instrument onboard NASA's Lunar Reconnaissance Orbiter (LRO) mission. FREND collimator is a structure with 2 layers, external polyethylene moderating neutrons and internal layer of 10B absorbing them. The instrument uses as much of LEND heritage (detection systems, electronics etc.) as possible. Like LEND, FREND will have a set of 3He proportional counters covering the thermal and epithermal neutrons range, plus the stilbene scintillator to cover the high energy neutrons range. FREND's dosimeter module is another important part of the system, providing charged particles measurements of dose and flux with time resolution of up to 1 minute and energy spectra covering the 100 keV to 80 MeV range. This will provide additional information for radiation environment on the orbit around Mars. When built, FREND will be the first collimated neutron detector to orbit Mars and will improve existing neutron maps by up to 10 times in the linear spatial resolution. This potentially will clarify our knowledge of water/hydrogen rich features and other

  18. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

    NASA Astrophysics Data System (ADS)

    Charlton, Christy; Temelkuran, Burak; Dellemann, Gregor; Mizaikoff, Boris

    2005-05-01

    An integrated midinfrared sensing system for trace level (ppb) gas analysis combining a quantum cascade laser with an emission frequency of 10.3μm with a frequency matched photonic band-gap hollow core waveguide has been developed, demonstrating the sensing application of photonic band-gap fibers. The photonic band-gap fiber simultaneously acts as a wavelength selective waveguide and miniaturized gas cell. The laser emission wavelength corresponds to the vibrational C-H stretch band of ethyl chloride gas. This sensing system enabled the detection of ethyl chloride at concentration levels of 30ppb (v/v) with a response time of 8s probing a sample volume of only 1.5mL in a transmission absorption measurement within the photonic band-gap hollow core waveguide, which corresponds to a sensitivity improvement by three orders of magnitude compared to previously reported results obtained with conventional hollow waveguides.

  19. Measurements of methane emissions from landfills using mobile plume method with trace gas and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Mønster, J.; Kjeldsen, P.; Scheutz, C.

    2012-04-01

    Methane is emitted to the atmosphere from both anthropogenic and natural sources. One of the major anthropogenic sources is methane produced by bacteria in anaerobic environments such as rice pads and landfills. Land filling has for many years been the preferred waste disposal method, resulting in a large methane production with a large contribution to the global increase in atmospheric green house gas concentration. Several steps have been taken to reduce the emission of methane from landfills. In order to validate the effect of these steps, a measurement method is needed to quantify methane emissions with a large spatial variation. One method is to use a highly sensitive and fast analytical method, capable of measuring the atmospheric concentration methane downwind from emission areas. Combined with down-wind measurements of a trace gas, emitted at a controlled mass flow rate, the methane emission can be calculated. This method is called the mobile plume method, as the whole plume is measured by doing several transects. In the current study a methane/acetylene analyzer with cavity ring-down spectroscopy detection (Picarro, G2203) was used to estimate methane from a number of Danish landfills. We measured at both active and closed landfills and investigated the difference in methane emission. At landfills where the emissions could have more than one origin, the source strength of the different emission areas was determined by accurate trace gas positioning and choosing appropriate wind speed and measurement distance. To choose these factors, we addressed the uncertainties and limitations of the method with respect to the configuration of the trace gas bottles and the distance between the emission area and the measurement points. Composting of organic material in large piles was done at several of the investigated landfills and where possible, the methane emission from this partly anaerobic digestion was measured as a separate emission.

  20. Design and Signature Analysis of Remote Trace-Gas Identification Methodology Based on Infrared-Terahertz Double-Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanner, Elizabeth A.; Phillips, Dane J.; Persons, Christopher M.; De Lucia, Frank C.; Everitt, Henry O.

    2014-11-01

    The practicality of a newly proposed infrared-terahertz (IR-THz) double-resonance (DR) spectroscopic technique for remote trace-gas identification is explored. The strength of the DR signatures depends on known molecular parameters from which a combination of pump-probe transitions may be identified to recognize a specific analyte. Atmospheric pressure broadening of the IR and THz trace-gas spectra relaxes the stringent pump coincidence requirement, allowing many DR signatures to be excited, some of which occur in the favorable atmospheric transmission windows below 500 GHz. By designing the DR spectrometer and performing a detailed signal analysis, the pump-probe power requirements for detecting trace amounts of methyl fluoride, methyl chloride, or methyl bromide may be estimated for distances up to 1 km. The strength of the DR signature increases linearly with pump intensity but only as the square root of the probe power because the received signal is in the Townes noise limit. The concept of a specificity matrix is introduced and used to quantify the recognition specificity and calculate the probability of false positive detection of an interferent.

  1. Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Bahlmann, E.; Weinberg, I.; Lavrič, J. V.; Eckhard, T.; Michaelis, W.; Santos, R.; Seifert, R.

    2014-07-01

    Coastal zones are important source regions for a variety of trace gases including halocarbons and sulphur-bearing species. While salt-marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for high time resolved measurements. The trace gases measured in this study included carbon dioxide (CO2), methane (CH4) and a variety of hydrocarbons, halocarbons and sulphur-bearing compounds. The high time resolved CO2 and CH4 flux measurements revealed a complex dynamic mediated by tide and light. In contrast to most previous studies our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occured with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.

  2. Russian contribution to ExoMars Trace Gas Orbiter: Atmospheric Chemistry Suite (ACS)

    NASA Astrophysics Data System (ADS)

    Shakun, Alexey; Korablev, Oleg; Trokhimovskiy, Alexander; Grigoriev, Alexey; Anufreychik, Konstantin; Fedorova, Anna; Ignatiev, Nikolay; Ivanov, Yuriy; Moshkin, Boris; Kalinnikov, Yuriy; Montmessin, Franck

    2016-04-01

    Atmospheric Chemistry Suite (ACS) is a part of science payload of Trace Gas Orbiter (TGO), ExoMars mission. This project developed by European Space Agency (ESA) in collaboration with Russian Space Agency (Roscosmos). Russian contribution to ExoMars TGO is the Proton rocket and two science instruments ACS (three infrared spectrometers) and FREND (neutron detector). ACS consists of three infrared spectrometers (ACS/NIR, ACS/MIR and ACS/TIRVIM) capable to take spectral measurements from near to thermal infrared range simultaneously or separately. Spectrometric channels of ACS share common mechanical, electrical, and thermal interfaces. Electronic box (ACS/BE) provides to spectrometric channels power and data transfer interfaces. SpaceWire link is used for science data transfer and MIL-1553 link - for commanding and housekeeping data transfer. The NIR channel is an echelle spectrometer with acousto-optic tunable filter (AOTF) for the selection of diffraction orders. ACS NIR is capable to perform nadir and occultation observations. NIR covers the spectral range of 0.7-1.7 μm with resolving power of ~25000. NIR will perform unique for TGO instruments nightglow science (searching for O2, OH, NO nightglow emissions on Mars). From the 1.38 μm band NIR will do water vapour mapping in nadir and H2O vertical profiling in solar occultations. High resolution NIR measurements of 1.27 μm O2(a1Δg) dayglow will supply indirect ozone observations on the dayside on nadir. In solar occultation mode, the O2 vertical profiles will be measured from the surface (in case of low dust activity) to the 40 km altitude based on 0.76 μm absorption band. Together with MIR channel in solar occultation NIR will support the measurements of CO2 density profiles (based on 1.43 μm band) and aerosols characterization from 0.7 to 4 μm. The wide spectral range will allow not just determine aerosol particle sizes and density at different altitudes, but also distinguish between dust and ice particles

  3. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOEpatents

    Wamsley, Paula R.; Weimer, Carl S.; Nelson, Loren D.; O'Brien, Martin J.

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  4. Trace gas retrievals from Airborne Compact Atmospheric Mapper (ACAM) observations during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, X.; Kowalewski, M. G.; Janz, S. J.; Bhartia, P. K.; Chance, K.; Krotkov, N. A.; Pickering, K. E.; Crawford, J. H.

    2011-12-01

    The DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) mission has just finished its first flight campaign in the Baltimore-Washington D.C. area in July 2011. The ACAM, flown on board the NASA UC-12 aircraft, includes two spectrographs covering the spectral region 304-900 nm and a high-definition video camera, and is expected to provide column measurements of several important air quality trace gases and aerosols for the DISCOVER-AQ mission. The quick look results for NO2 have been shown to very useful in capturing the strong spatiotemporal variability of NO2. Preliminary fitting of UV/Visible spectra has shown that ACAM measurements have adequate signal to noise ratio to measure the trace gases O2, NO2, HCHO, and maybe SO2 and CHOCHO, at individual pixel resolution, although a great deal of effort is needed to improve the instrument calibration and derive proper reference spectrum for retrieving absolute trace gas column densities. In this study, we present analysis of ACAM instrument calibration including slit function, wavelength registration, and radiometric calibration for both nadir-viewing and zenith-sky measurements. Based on this analysis, an irradiance reference spectrum at ACAM resolution will be derived from a high-resolution reference spectrum with additional correction to account for instrument calibration. Using the derived reference spectrum and/or the measured zenith sky measurements, we will perform non-linear least squares fitting to investigate the retrievals of slant column densities of these trace gases from ACAM measurements, and also use an optimal estimation based algorithm including full radiative transfer calculations to derive the vertical column densities of these trace gases. The initial results will be compared with available in-situ and ground-based measurements taken during the DISCOVER-AQ campaign.

  5. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    SciTech Connect

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  6. The High-resolution Stereo Color Imager (HiSCI) on ExoMars Trace Gas Orbiter (TGO)

    NASA Astrophysics Data System (ADS)

    McEwen, A. S.; Thomas, N.; Bridges, J.; Byrne, S.; Cremonese, G.; Delamere, W.; Hansen, C.; Hauber, E.; Ivanov, A.; Kestay, L.; Kirk, R.; Mangold, N.; Markiewicz, W.; Massironi, M.; Mattson, S.; Okubo, C.; Wray, J.

    2011-10-01

    HiSCI has been chosen for the payload of the ExoMars Trace Gas Orbiter (TGO), a joint ESA/NASA mission scheduled to arrive at Mars in 2016 [1]. There are 3 major HiSCI partners: (1) the telescope assembly will be built in Switzerland overseen by the University of Bern; (2) the overall design, electronics, and integration will be by Ball Aerospace in Colorado; and (3) operations will be joint with MRO's High Resolution Imaging Science Experiment (HiRISE) [2] at the University of Arizona. HiSCI will acquire the best-ever colour and stereo images over significant areas of Mars.

  7. Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics.

    PubMed

    Duxbury, Geoffrey; Langford, Nigel; McCulloch, Michael T; Wright, Stephen

    2005-11-01

    The Quantum cascade (QC) laser is an entirely new type of semiconductor device in which the laser wavelength depends on the band-gap engineering. It can be made to operate over a much larger range than lead salt lasers, covering significant parts of both the infrared and submillimetre regions, and with higher output power. In this tutorial review we survey some of the applications of these new lasers, which range from trace gas detection for atmospheric or medical purposes to sub-Doppler and time dependent non-linear spectroscopy.

  8. Coupled-Circulation-Chemistry Studies with the Finite-Volume CCM: Trace Gas Transport in the Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Lin, Shian-Jiann; Rood, Richard B.; Nebuda, Sharon; Nielsen, J. Eric; Douglass, Anne R.

    2000-01-01

    A joint project between the Data Assimilation Office at NASA GSFC and NCAR involves linking the physical packages from the Community Climate Model (CCM) with the flux-form semi-Lagrangian dynamical core developed by Lin and Rood in the DAO. A further development of this model includes the implementation of a chemical package developed by Douglass and colleagues in the Atmospheric Chemistry and Dynamics Branch at NASA GSFC. Results from this coupled dynamics-radiation-chemistry model will be presented, focussing on trace gas transport in the tropopause region.

  9. Deep ALMA imaging of the merger NGC 1614. Is CO tracing a massive inflow of non-starforming gas?

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Gallagher, J. S.; Beswick, R. J.; Xu, C. K.; Evans, A.

    2016-10-01

    Aims: Observations of the molecular gas over scales of ~0.5 to several kpc provide crucial information on how molecular gas moves through galaxies, especially in mergers and interacting systems, where it ultimately reaches the galaxy center, accumulates, and feeds nuclear activity. Studying the processes involved in the gas transport is one of the important steps forward to understand galaxy evolution. Methods: 12CO, 13CO, and C18O 1-0 high-sensitivity ALMA observations (~4'' × 2'') were used to assess the properties of the large-scale molecular gas reservoir and its connection to the circumnuclear molecular ring in the merger NGC 1614. Specifically, the role of excitation and abundances were studied in this context. We also observed the molecular gas high-density tracers CN and CS. Results: The spatial distributions of the detected 12CO 1-0 and 13CO 1-0 emission show significant differences. 12CO traces the large-scale molecular gas reservoir, which is associated with a dust lane that harbors infalling gas, and extends into the southern tidal tails. 13CO emission is for the first time detected in the large-scale dust lane. In contrast to 12CO, its line emission peaks between the dust lane and the circumnuclear molecular ring. A 12CO-to-13CO 1-0 intensity ratio map shows high values in the ring region (~30) that are typical for the centers of luminous galaxy mergers and even more extreme values in the dust lane (>45). Surprisingly, we do not detect C18O emission in NGC 1614, but we do observe gas emitting the high-density tracers CN and CS. Conclusions: We find that the 12CO-to-13CO 1-0 line ratio in NGC 1614 changes from >45 in the 2 kpc dust lane to ~30 in the starburst nucleus. This drop in ratio with decreasing radius is consistent with the molecular gas in the dust lane being kept in a diffuse, unbound state while it is being funneled toward the nucleus. This also explains why there are no (or very faint) signs of star formation in the dust lane, despite its

  10. Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Bahlmann, E.; Weinberg, I.; Lavrič, J. V.; Eckhardt, T.; Michaelis, W.; Santos, R.; Seifert, R.

    2015-03-01

    Coastal zones are important source regions for a variety of trace gases, including halocarbons and sulfur-bearing species. While salt marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for highly time-resolved measurements. The fluxes of CO2, methane (CH4) and a range of volatile organic compounds (VOCs) showed a complex dynamic mediated by tide and light. In contrast to most previous studies, our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.

  11. Performance Evaluation of a New, Tunable-Diode Laser Trace-Gas Analyzer for Isotope Ratios of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Sargent, S.

    2015-12-01

    Newly available interband cascade lasers (ICLs) have enabled the development of a family of tunable-diode laser trace-gas analyzers that do not require liquid nitrogen to cool the laser. The lasers are available in the 3000 to 6000 nm range, providing access to the strong mid-infrared absorption lines for important gases such as methane, nitrous oxide, and carbon dioxide. These ICLs are fabricated with distributed feedback to improve their stability and spectroscopic quality. A recently released trace-gas analyzer for carbon dioxide isotopes (TGA200A, Campbell Scientific, Inc.) was evaluated for short- and long-term precision using Allan variance. Accuracy and linearity of CO2 mole fraction was assessed with a set of seven NOAA standard reference gases ranging from 298.35 to 971.48 ppm. Dilution of high-concentration CO2 with CO2-free air demonstrated the linearity of isotope ratio measurements beyond 1000 ppm CO2. Two analyzer variants were tested: one for CO2, δ13C and δ18O; and the other for CO2 and δ13C at enhanced precision.

  12. Seasonal variation of trace gas compounds and PM2.5 observed at an urban supersite in Beijing

    NASA Astrophysics Data System (ADS)

    Wu, Yusheng; Hu, Min; Zeng, Limin; Dong, Huabin; Li, Xin; Lu, Keding; Lu, Sihua; Yang, Yudong; Zhang, Yuanhang

    2016-04-01

    The air pollution in Beijing has been a growing concern in the last ten years. We have performed measurements on trace gas compounds (CO, NOx, NOy, O3, SO2), PM2.5, and meteorological parameters at Beijing urban Atmospheric Environmental Observation Station in the campus of Peking University for more than ten years. The measurement results provide us an opportunity to track the air quality change in downtown Beijing. Here, we present observations during year between 2011 and 2015. The annual averaged concentration of CO, NOx, NOy, O3, SO2, and PM2.5 is 1.2 ± 0.1 ppm, 49.9 ± 5.9 ppb, 54.6 ± 4.7 ppb, 26.1 ± 3.8 ppb, 10.6 ± 2.9 ppb, and 53.4 ± 9.8 μg ṡm-3, respectively. A clear seasonal variation is identified for all the measured trace gas compounds and PM2.5, CO, NOx, NOy, SO2, and PM2.5 show their maximum in winter and minimum in summer. Whilst O3 shows an inverse pattern. This result indicates that the air pollution in Beijing is characterized by haze in winter but by photochemical smog in summer. The effects of meteorological conditions and emissions on the occurrence of pollution episode are discussed in details based on the long-term observation data set.

  13. Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Warneke, C.; Scheeren, H. A.; van der Veen, C.; Bolder, M.; Scheele, M. P.; Williams, J.; Wong, S.; Lange, L.; Fischer, H.; Lelieveld, J.

    2001-11-01

    During the intensive field phase of the Indian Ocean Experiment (INDOEX), measurements of the atmospheric chemical and aerosol composition over the Indian Ocean were performed from a Cessna Citation aircraft. Measurements were performed during February and March 1999 over the northern Indian Ocean from 70°E to 80°E, and from 8°N to 8°S in the 0-13 km altitude range. An overview of the trace gas measurements is presented. In the lowest 3 km the highest levels of pollution were found during February 1999, mostly originating from northeastern India and southeastern Asia. Lower levels of pollution were detected in March 1999, when the sampled air mostly originated from the Arabian Sea region. The mixing ratios of a number of trace compounds, indicative of biomass burning, were well correlated. The pollutant emission factors inferred from the measurements are consistent with literature values for fire plumes, confirming that the residential use of biofuels in Asia is a major source of gaseous pollutants to the atmosphere over the Indian Ocean, in accord with emission databases. The removal of reactive trace gases was studied over an extended area without interfering local emissions, and is shown to be governed by photochemical processes rather than by mixing and deposition. At intermediate altitudes of 3-8 km the mixing ratios of all trace gases other than ozone were generally lower, and the measurements suggest that the photochemical processing of these air masses is much more extensive than in the 0-3 km range. In the 8-13 km altitude range some evidence is obtained for the importance of convective cloud systems in the transport of gaseous pollutants to the upper troposphere.

  14. An Ultra-Trace Analysis Technique for SF6 Using Gas Chromatography with Negative Ion Chemical Ionization Mass Spectrometry.

    PubMed

    Jong, Edmund C; Macek, Paul V; Perera, Inoka E; Luxbacher, Kray D; McNair, Harold M

    2015-07-01

    Sulfur hexafluoride (SF6) is widely used as a tracer gas because of its detectability at low concentrations. This attribute of SF6 allows the quantification of both small-scale flows, such as leakage, and large-scale flows, such as atmospheric currents. SF6's high detection sensitivity also facilitates greater usage efficiency and lower operating cost for tracer deployments by reducing quantity requirements. The detectability of SF6 is produced by its high molecular electronegativity. This property provides a high potential for negative ion formation through electron capture thus naturally translating to selective detection using negative ion chemical ionization mass spectrometry (NCI-MS). This paper investigates the potential of using gas chromatography (GC) with NCI-MS for the detection of SF6. The experimental parameters for an ultra-trace SF6 detection method utilizing minimal customizations of the analytical instrument are detailed. A method for the detection of parts per trillion (ppt) level concentrations of SF6 for the purpose of underground ventilation tracer gas analysis was successfully developed in this study. The method utilized a Shimadzu gas chromatography with negative ion chemical ionization mass spectrometry system equipped with an Agilent J&W HP-porous layer open tubular column coated with an alumina oxide (Al2O3) S column. The method detection limit (MDL) analysis as defined by the Environmental Protection Agency of the tracer data showed the method MDL to be 5.2 ppt.

  15. Chemical studies of H chondrites. I - Mobile trace elements and gas retention ages

    NASA Technical Reports Server (NTRS)

    Lingner, David W.; Huston, Ted J.; Hutson, Melinda; Lipschutz, Michael E.

    1987-01-01

    Trends for 16 trace elements (Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, K, Rb, Sb, Se, Te, Tl, and Zn), chosen to span a broad geochemical and thermal response range, in 44 H4-6 chondrites, differ widely from those in L4-6 chondrites. In particular, H chondrites classified as heavily shocked petrologically do not necessarily exhibit Ar-40 loss and vice versa. The clear-cut causal relationship between siderophile and mobile element loss with increasing late shock seen in L chondrites is not generally evident in the H group. H chondrite parent material experienced an early high temperature genetic episode that mobilized a substantial proportion of these trace elements so that later thermal episodes resulted in more subtle, collateral fractionations. Mildly shocked L chondrites escaped this early high temperature event, indicating that the two most numerous meteorite groups differ fundamentally in genetic history.

  16. Satellite monitoring of trace gas and aerosol emissions during wildfires in Russia

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.

    2016-12-01

    Peculiarities of the formation of carbon gas and fine aerosol emissions into the atmosphere during wildfires are analyzed. A prompt satellite monitoring system and technique for the assessment of burnt areas and volumes of CO2, CO, and PM2.5 emissions from wildfires are described. The results of satellite monitoring of the Russian Federation and some Russian regions for different months over 2010-2014 are given; burnt areas and volumes of carbon gas and aerosol emissions throughout the entire territory are assessed. The peculiarities of seasonal frequencies of wildfires and volumes of hazardous gas and fine aerosol emissions in the regions under study are identified.

  17. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    PubMed

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low

  18. Soil trace gas emissions (CH4 and N2O) offset the CO2 uptake in poplar short rotation coppice

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Zona, Donatella; Gelfand, Iya; Gielen, Bert; camino serrano, Marta; Ceulemans, Reinhart

    2015-04-01

    The need for renewable energy sources will lead to a considerable expansion in the planting of dedicated fast-growing biomass crops across Europe. Among them poplar (Populus spp) is the most widely planted as short rotation coppice (SRC) and an increase in the surface area of large-scale SRC poplar plantations might thus be expected. In this study we report the greenhouse gas fluxes (GHG) of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) measured using the eddy covariance technique in a SRC plantation for bioenergy production during the period 2010-2013. The plantation was established in April 2010 on 18.4 ha of former agricultural land with a density of 8000 plants ha-1; the above-ground biomass was harvested on February 2012 and 2014.The whole GHG balance of the four years of the study was 1.90 (± 1.37) Mg CO2eq ha-1; this indicated that soil trace gas emissions offset the CO2 uptake by the plantation. CH4 and N2O almost equally contributed to offset the CO2 uptake of -5.28 (±0.67) Mg CO2eq ha-1 with an overall emission of 3.56 (± 0.35) Mg CO2eq ha-1 of N2O and of 3.53 (± 0.85) Mg CO2eq ha-1 of CH4. N2O emissions mostly occurred during a single peak a few months after the site was converted into SRC and represented 44% of the entire N2O loss during the entire study. Accurately capturing these emission events proved to be critical for correct estimates of the GHG balance. The self-organizing map (SOM) technique graphically showed the relationship between the CO2 fluxes and the principal environmental variables but failed to explain the variability of the soil trace gas emissions. The nitrogen content in the soil and the water table depth were the two drivers that best explained the variability in N2O and CH4 respectively. This study underlines the importance of the "non-CO2 GHG" on the overall balance as well as the impact of the harvest on the CO2 uptake rate. Further long-term investigations of soil trace gas emissions should also monitor the N

  19. Basin scale natural gas source, migration and trapping traced by noble gases and major elements: the Pakistan Indus basin

    NASA Astrophysics Data System (ADS)

    Battani, Anne; Sarda, Philippe; Prinzhofer, Alain

    2000-08-01

    He, Ne and Ar concentrations, He and Ar isotopic ratios, carbon isotopic ratios and chemical compositions of hydrocarbon gases were measured in natural gas samples from gas-producing wells in the Indus basin, Pakistan, where no oil has ever been found. 3He/ 4He ratios are in the range 0.01-0.06 Ra (Ra is the atmospheric value of 1.38×10 -6) indicating the absence of mantle-derived helium despite the Trias extension. 40Ar/ 36Ar ratios range from 296 to 800, consistent with variable additions of radiogenic argon to atmospheric, groundwater-derived argon. Rare gas concentrations show large variations, from 6×10 -5 to 1×10 -3 mol/mol for 4He and from 3×10 -7 to 3×10 -5 mol/mol for 36Ar. In general, 36Ar concentrations are high compared to literature data for natural gas. CO 2 and N 2 concentrations are variable, ranging up to 70 and 20%, respectively. Mantle-derived He is not observed, therefore CO 2 and N 2 are not mantle-derived either. Hydrocarbon gas maturity is high, but accumulation efficiency is small, suggesting that early-produced hydrocarbons, including oil, were lost as well as mantle helium. This is consistent with the generally late, Pliocene, trap formation, and explains the high N 2 concentrations, since N 2 is the final species generated at the end of organic matter maturation. Based on δ 13C data, CO 2 originates from carbonate decomposition. Very elevated 20Ne/ 36Ar ratios are found, reaching a maximum of 1.3 (compared to 0.1-0.2 for air-saturated water and 0.5 for air), and these high values are related to the lowest rare gas concentrations. We suggest that this highly fractionated signature is the trace of the past presence of oil in the basin and appeared in groundwater. We propose a model where oil-water contact is followed by gas-water contact, both with Rayleigh distillation for rare gas abundance ratios, thereby generating the fractionated 20Ne/ 36Ar signature in groundwater first and transferring it to gas later. Assuming the gas

  20. The missing link: Tracing molecular gas in the outer filament of Centaurus A

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Oosterloo, Tom; Oonk, J. B. Raymond; Santoro, Francesco; Tadhunter, Clive

    2016-08-01

    We report the detection, using observations of the CO(2-1) line performed with the Atacama Pathfinder EXperiment (APEX), of molecular gas in the region of the outer filament of Centaurus A, a complex region known to show various signatures of an interaction between the radio jet, an H i cloud, and ionised gas filaments. We detect CO(2-1) at all observed locations, which were selected to represent regions with very different physical conditions. The H2 masses of the detections range between 0.2 × 106 and 1.1 × 106M⊙, for conservative choices of the CO to H2 conversion factor. Surprisingly, the stronger detections are not coincident with the H i cloud, but instead are in the region of the ionised filaments. We also find variations in the widths of the CO(2-1) lines throughout the region, with broader lines in the region of the ionised gas, i.e. where the jet-cloud interaction is strongest, and with narrow profiles in the H i cloud. This may indicate that the molecular gas in the region of the ionised gas has the momentum of the jet-cloud interaction encoded in it, in the same way as the ionised gas does. These molecular clouds may therefore be the result of very efficient cooling of the down-stream gas photo- or shock-ionised by the interaction. On the other hand, the molecular clouds with narrower profiles, which are closer to or inside the H i cloud, could be pre-existing cold H2 cores which manage to survive the effects of the passing jet.

  1. Four-laser airborne infrared spectrometer for atmospheric trace gas measurements.

    PubMed

    Roths, J; Zenker, T; Parchatka, U; Wienhold, F G; Harris, G W

    1996-12-20

    We describe the four-laser airborne infrared (FLAIR) instrument, a tunable diode laser absorption spectrometer designed for simultaneous high-sensitivity in situ measurements of four atmospheric trace gases in the troposphere. The FLAIR spectrometer was employed during the large-scale airborne research campaign on tropospheric ozone (TROPOZ II) in 1991 and was used to measure CO, H(2) O(2), HCHO, and NO(2) in the free troposphere where detection limits below 100 parts in 10(12) by volume were achieved.

  2. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local

  3. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  4. Aerosol, Cloud and Trace Gas Observations Derived from Airborne Hyperspectral Radiance and Direct Beam Measurements in Recent Field Campaigns

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Flynn, C. J.; Shinozuka, Y.; Kacenelenbogen, M.; Segal-Rosenheimer, M.; LeBlanc, S.; Russell, P. B.; Livingston, J. M.; Schmid, B.; Dunagan, S. E.; Johnson, R. R.

    2014-01-01

    The AERONET (AErosol RObotic NETwork) ground-based suite of sunphotometers provides measurements of spectral aerosol optical depth (AOD), precipitable water and spectral sky radiance, which can be inverted to retrieve aerosol microphysical properties that are critical to assessments of aerosol-climate interactions. Because of data quality criteria and sampling constraints, there are significant limitations to the temporal and spatial coverage of AERONET data and their representativeness for global aerosol conditions. The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument, jointly developed by NASA Ames and PNNL with NASA Goddard collaboration, combines airborne sun tracking and AERONET-like sky scanning with spectroscopic detection. Being an airborne instrument, 4STAR has the potential to fill gaps in the AERONET data set. Dunagan et al. [2013] present results establishing the performance of the instrument, along with calibration, engineering flight test, and preliminary scientific field data. The 4STAR instrument operated successfully in the SEAC4RS [Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys] experiment in Aug./Sep. 2013 aboard the NASA DC-8 and in the DoE [Department of Energy]-sponsored TCAP [Two Column Aerosol Project, July 2012 & Feb. 2013] experiment aboard the DoE G-1 aircraft (Shinozuka et al., 2013), and acquired a wealth of data in support of mission objectives on all SEAC4RS and TCAP research flights. 4STAR provided direct beam measurements of hyperspectral AOD, columnar trace gas retrievals (H2O, O3, NO2; Segal-Rosenheimer et al., 2014), and the first ever airborne hyperspectral sky radiance scans, which can be inverted to yield the same products as AERONET ground-based observations. In addition, 4STAR measured zenith radiances underneath cloud decks for retrievals of cloud optical depth and effective diameter. In this presentation, we provide an overview of the new

  5. Experimental and numerical test of the micrometeorological mass difference technique for the measurement of trace gas emissions from small plots.

    PubMed

    Magliulo, Vincenzo; Alterio, Giovanni; Peressotti, Alessandro

    2004-05-01

    Micrometeorological methods for measuring fluxes of gases between the land surface and the atmosphere are non-invasive: in fact, they do not interfere with natural processes of gas exchange. The Micrometeorological Mass Difference (MMD) approach can be used for many environmental monitoring purposes, such as to measure methane and carbon dioxide emission from landfills, methane production by grazing animals, trace gas emission from waste products and from agricultural soils, photosynthesis, and transpiration of plant canopies. The purpose of this study is to adapt the MMD technique, originally developed in Australia, to monitor CO2 and trace gases exchange rate at the plot level. Comparison of different treatments in replicated experiments requires plots of few rather than tens of meters. The tests reported here were performed on a square area (4 m x 4 m) in the meteorological field of the experimental farm of CNR-ISAFOM located in Vitulazio, province of Caserta, Italy (40 degrees 07' N, 14 degrees 50' E, 25 m above sea level) and consisted of the release of pure CO2 at different rates (1.7, 1.3, 0.6 L min(-1)) from a single source on the ground in the center of the experimental area and the consequent measurement of the environmental variables (wind speed and direction, CO2 concentration) at different times at four heights (up to 1.2 m) in order to compute the mass balance according to MMD technique. Measured flow rates well accounted for the mass of CO2 released. A flow underestimation occurred when wind speed dropped below 1.5 m s(-1), in accord with the previous findings obtained in Australia: this happened because anemometers can stall at low speeds, and their measurements are unreliable and because of significant loss of mass from the top of the apparatus. The experimental results were compared with outputs of Computational Fluid Dynamic (CFD) simulations. The commercial CFD package Fluent was used to evaluate performances and sources of errors. According to

  6. Studies of Trace Gas Chemical Cycles Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    2003-01-01

    We report progress in the first year, and summarize proposed work for the second year of the three-year dynamical-chemical modeling project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (b) utilization of inverse methods to determine these source/sink strengths using either MATCH (Model for Atmospheric Transport and Chemistry) which is based on analyzed observed wind fields or back-trajectories computed from these wind fields, (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important goals include determination of regional source strengths of methane, nitrous oxide, methyl bromide, and other climatically and chemically important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal protocol and its follow-on agreements and hydrohalocarbons now used as alternatives to the restricted halocarbons.

  7. Interpretation of Trace Gas Data Using Inverse Methods and Global Chemical Transport Models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1997-01-01

    This is a theoretical research project aimed at: (1) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for long lived gases important in ozone depletion and climate forcing, (2) utilization of inverse methods to determine these source/sink strengths which use the NCAR/Boulder CCM2-T42 3-D model and a global 3-D Model for Atmospheric Transport and Chemistry (MATCH) which is based on analyzed observed wind fields (developed in collaboration by MIT and NCAR/Boulder), (3) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple titrating gases, and, (4) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3-D models. Important goals include determination of regional source strengths of methane, nitrous oxide, and other climatically and chemically important biogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements and hydrohalocarbons used as alternatives to the restricted halocarbons.

  8. Trace gas and particle emissions from open biomass burning in Mexico

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Urbanski, S. P.; Atlas, E. L.; Adachi, K.; Buseck, P. R.; Wiedinmyer, C.; Akagi, S. K.; Toohey, D. W.; Wold, C. E.

    2011-03-01

    We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry season they were at least 1.7 times larger for NOx, NH3, H2, and most non-methane organic compounds. Our measurements suggest that urban deposition and high windspeed may also be associated with significantly elevated NOx EF. When considering all fires sampled, the percentage of particles containing soot increased from 15 to 60% as the modified combustion efficiency increased from 0.88 to 0.98. We estimate that about 175 Tg of fuel was consumed by open burning of biomass and garbage and as biofuel (mainly wood cooking fires) in Mexico in 2006. Combining the fuel consumption estimates with our EF measurements suggests that the above combustion sources account for a large fraction of the reactive trace gases and more than 90% of the total primary, fine carbonaceous particles emitted by all combustion sources in Mexico.

  9. Trace gas and particle emissions from open biomass burning in Mexico

    NASA Astrophysics Data System (ADS)

    Yokelson, R. J.; Burling, I. R.; Urbanski, S. P.; Atlas, E. L.; Adachi, K.; Buseck, P. R.; Wiedinmyer, C.; Akagi, S. K.; Toohey, D. W.; Wold, C. E.

    2011-07-01

    We report airborne measurements of emission factors (EF) for trace gases and PM2.5 made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry season they were at least 1.7 times larger for NOx, NH3, H2, and most non-methane organic compounds. Our measurements suggest that urban deposition and high windspeed may also be associated with significantly elevated NOx EF. When considering all fires sampled, the percentage of particles containing soot increased from 15 to 60 % as the modified combustion efficiency increased from 0.88 to 0.98. We estimate that about 175 Tg of fuel was consumed by open burning of biomass and garbage and as biofuel (mainly wood cooking fires) in Mexico in 2006. Combining the fuel consumption estimates with our EF measurements suggests that the above combustion sources account for a large fraction of the reactive trace gases and more than 90 % of the total primary, fine carbonaceous particles emitted by all combustion sources in Mexico.

  10. Manure and inorganic N affect trace gas emissions under semi-arid irrigated corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dairy manure is often applied to cropped soils as a substitute for inorganic N fertilizers, but the impacts of manure on soil greenhouse gas (GHG) fluxes, yields and soil N are uncertain in the semi-arid western U.S. Soil carbon dioxide (CO2-C), methane (CH4-C), and nitrous oxide (N2O-N) emissions ...

  11. A passive DOAS instrument for trace gas measurements on medium sized UAS: Instrumental design and first measurements.

    NASA Astrophysics Data System (ADS)

    Horbanski, Martin; Pöhler, Denis; Mahr, Tobias; Wagner, Thomas; Keleshis, Christos; Ioannou, Stelios; Lange, Manfred A.; Lelieveld, Jos; Platt, Ulrich

    2013-04-01

    Unmanned Aerial Systems (UAS) are a new powerful tool for observations in the atmospheric boundary layer. Recent developments in measuring technology allow the construction of compact and sensitive active and passive DOAS instruments which can fit the space and weight constraints on UAS. This opens new possibilities for trace gas measurements in the lower troposphere, especially in areas which are not accessible to manned aviation e.g. volcanic plumes or which should be monitored regularly (e.g. industrial emissions of a stack). We present a new developed passive DOAS instrument for the APAESO Platform of the Cyprus Institute, a medium size UAS. It is equipped with two telescopes for observations in downward (nadir) and horizontal (limb) viewing direction, respectively. Thus it allows determining height profiles and the horizontal distribution of trace gases. This is accomplished by analyzing the radiation collected by the telescopes with compact spectrometers, which cover the UV-blue spectral range allowing to measure a broad variety of atmospheric trace gases (e.g. NO2, SO2, BrO, IO, H2O ...) as well as aerosol properties via O4 absorption. Additionally, the nadir direction is equipped with a VIS-NIR spectrometer. It is used to measure reflection spectra of different types of vegetation. These will serve as references for satellite measurements to create global maps. First measurements on the APAESO platform were performed in October 2012 on Cyprus in a rural area south of Nicosia. The instrument is shown to work reliably and was able to detect NO2, H2O and O4 at atmospheric column densities. The instrumental design and first measurements will be presented and discussed.

  12. Tracing neutral FeI gas evaporating from exocomets in the beta Pictoris disk

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Montgomery, Sharon Lynn; DeMark, Richard; Price, Joshua

    2016-01-01

    Absorption variability due to the evaporating gas from comet-like bodies on their grazing approach towards a parent star has now been observed in over a dozen A-type stellar systems. Ground based observations of the resultant replenished gas have routinely been performed using high resolution spectroscopy of the CaII-K (3933Å) and NaI (5890Å) circumstellar absorption lines, especially towards the well-known exoplanet bearing Beta Pictoris stellar system. Here we present a preliminary study of the neutral FeI (3860Å) circumstellar absorption line observed towards Beta Pictoris using data in the ESO Data Archive obtained over the 2003 to 2014 timeframe. This spectral line samples neutral gas with an ionization potential < 7.9eV and from a sample of 15 observations we show 5 examples in which high velocity absorption features (Vhelio > +35 km s-1) have, for the first time, been simultaneously detected in both the FeI and CaII line profiles. Such absorption features can be associated with liberated exocomet gas which seems to be preferentially observed at circumstellar disk velocities of +35 to +45 km s-1. Additional absorption features with velocities > 100 km s-1 in the FeI line profile have also been observed on two occasions. Our data supports the recent findings of Kiefer et al (2014) in which at least two families of exocomets exist with distinctly different circumstellar gas disk velocities, both residing within~ 1 AU from the central star.

  13. Development, Application, and Transition of Aerosol and Trace Gas Products Derived from Next-Generation Satellite Observations to Operations

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Naeger, Aaron; Zavodsky, Bradley; McGrath, Kevin; LaFontaine, Frank

    2016-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center has a history of successfully transitioning unique observations and research capabilities to the operational weather community to improve short-term forecasts. SPoRTstrives to bridge the gap between research and operations by maintaining interactive partnerships with end users to develop products that match specific forecast challenges, provide training, and assess the products in the operational environment. This presentation focuses on recent product development, application, and transition of aerosol and trace gas products to operations for specific forecasting applications. Recent activities relating to the SPoRT ozone products, aerosol optical depth composite product, sulfur dioxide, and aerosol index products are discussed.

  14. Seasonal variations in Titan's stratosphere observed with Cassini/CIRS: temperature, trace molecular gas and aerosol mixing ratio profiles

    NASA Astrophysics Data System (ADS)

    Vinatier, S.; Bézard, B.; Lebonnois, S.; Teanby, N. A.; Rannou, P.; Anderson, C. M.; Achterberg, R. K.

    2013-12-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes. The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired between 2009 and 2013 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ...) and aerosol abundances.

  15. Clouds and wet removal as causes of variability in the trace-gas composition of the marine troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Cicerone, R. J.

    1982-01-01

    A modeling study of the effects of clouds and wet removal on the chemistry of the remote marine troposphere is described. Using a time-dependent model with parameterized vertical transport to calculate trace-gas concentrations, it is found that large variations in key species (e.g., HNO3, H2CO, and H2O2) result from simulations of sporadic rainfall, changes in cloud cover, and external inputs such as surface NO sources. Depending on the frequency and intensity of an event, the effects of these perturbations may persist for several days, thereby invalidating assumptions of photochemical equilibrium in the interpretation of measurements. Long-term integrations with fixed boundary conditions and regularly occurring cloud and rain episodes demonstrate a strong sensitivity of the mean concentration of longer-lived soluble gases to precipitation frequency but also confirm the validity of using properly chosen parameterizations of wet removal in steady state calculations.

  16. Clouds and wet removal as causes of variability in the trace-gas composition of the marine troposphere

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Cicerone, R. J.

    1982-10-01

    A modeling study of the effects of clouds and wet removal on the chemistry of the remote marine troposphere is described. Using a time-dependent model with parameterized vertical transport to calculate trace-gas concentrations, it is found that large variations in key species (e.g., HNO3, H2CO, and H2O2) result from simulations of sporadic rainfall, changes in cloud cover, and external inputs such as surface NO sources. Depending on the frequency and intensity of an event, the effects of these perturbations may persist for several days, thereby invalidating assumptions of photochemical equilibrium in the interpretation of measurements. Long-term integrations with fixed boundary conditions and regularly occurring cloud and rain episodes demonstrate a strong sensitivity of the mean concentration of longer-lived soluble gases to precipitation frequency but also confirm the validity of using properly chosen parameterizations of wet removal in steady state calculations.

  17. SALOMON: A New, Light Balloonborne UV visible spectrometer for Nighttime Observations of Stratospheric Trace-Gas Species

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Chartier, Michel; Robert, Claude; Chalumeau, Gilles; Berthet, Gwenaël; Pirre, Michel; Pommereau, Jean-Pierre; Goutail, Florence

    2000-01-01

    A new, light balloonborne UV visible spectrometer, called SALOMON, is designed to perform nighttime measurements of stratospheric trace-gas species by using the Moon as a light source. The first flight, performed on 31 October 1998 at mid-latitude with a float altitude of 26.7 km, allowed the performance of the pointing system to be checked and vertical profiles of ozone, NO 2 , NO 3 , and possibly OBrO to be obtained. First the instrument and then the performance of the pointing system and the detector are described. Finally the vertical profiles are compared with other profiles obtained at the same location five years before with the heavier balloonborne spectrometer AMON, which uses a star as the light source.

  18. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  19. A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 μm

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Newcomb, Robert W.; Wang, Yiding

    2013-12-01

    Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration. This instrument takes advantage of recent technology in thermoelectrically cooled pulsed Fabry-Perot (FP) quantum cascaded (QC) laser driving in a pulse mode operating at 7.5 μm to monitor a well-isolated spectral line near the ν4 fundamental band of CH4. A high-quality liquid nitrogen cooled mercury cadmium telluride mid-infrared detector with time discriminating electronics is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 × 10-3 under experimental condition of 200 ppm measured ambient CH4. The instrument operates continuously, and integrated software for laser control using direct absorption provides quantitative trace gas measurements without calibration. One may substitute a QC laser operating at a different wavelength to measure other gases. The instrument can be applied to field measurements of gases of environmental concern.

  20. Trace Gas Transport in the Arctic Vortex Inferred from ATMOS ATLAS-2 Observations During April 1993

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C, P,; Salawitch, R. J.; Stiller, G. P.; Zander, R.

    1996-01-01

    Measurements of the long-lived tracers CH4, N2O, and HF from the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument during the Atmospheric Laboratory for Science and Applications-2 (ATLAS-2) Space Shuttle mission in April 1993 are used to infer average winter descent rates ranging from 0.8 km/month at 20 km to 3.2 km/month at 40 km in the Arctic polar vortex during the 1992-93 winter. Descent rates in the mid-stratosphere are similar to those deduced for the Antarctic vortex using ATMOS/ATLAS-3 measurements in November 1994, but the shorter time period of descent in the Arctic leads to smaller total distances of descent. Strong horizontal gradients observed along the vortex edge indicate that the Arctic vortex remains a significant barrier to transport at least until mid-April in the lower to middle stratosphere.

  1. Trace Gas Measurements made from Aircraft over North America and China

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.; Marufu, L. T.; Hains, J.; Taubman, B.; Stehr, J.; Li, Z.; Li, C.; Doddridge, B. G.

    2005-12-01

    Trace gases O3, CO, SO2, and aerosol optical properties were measured from a small research aircraft for ten summers over the Mid Atlantic region of the United States. The resultant profiles from the surface to about 3000 m altitude have been analyzed to show the role of long-range transport, boundary layer dynamics, convection, and emissions on concentrations and trends. Large, coal-fired power plants in the Ohio River Valley dominate O3 and SO2 concentrations under anti-cyclonic flow, but the contribution from these electricity generating units appears to have decreased over the past three years and pollutant concentrations have fallen, even when interannual variations in meteorology are removed. The same small aircraft package was flown over NE China last spring, and results are contrasted with those from North America.

  2. An Isotopic, Dissolved Gas, and Trace Organic Investigation of Nitrate Sources in Urbanized Groundwater Basins

    NASA Astrophysics Data System (ADS)

    Singleton, M. J.; Moran, J. E.; Esser, B. K.; Leif, R. N.; Beller, H. R.

    2006-12-01

    We combine the detection of trace organic compounds including pesticides, pharmaceuticals, and personal care products with 3H/3He apparent ages and isotopic compositions of nitrogen and oxygen in nitrate in order to distinguish between potential nitrate sources. Septic system-derived nitrate is formed by nitrification, and often cannot be differentiated from agricultural or background sources based on nitrate N and O isotopic compositions alone. Samples that lie within the overlapping fields of natural nitrate and septic discharge can sometimes be differentiated by the presence of trace organic compounds specific to septic discharge. Some target compounds are much more likely to come from septic system discharge than from agricultural irrigation return flow (caffeine; surfactants or surfactant breakdown products like LAS and alkylphenol carboxylic acids; carbamazepine and other pharmaceuticals and estrogenic compounds), whereas others are more likely to be present in irrigation return (herbicides and their breakdown products). Groundwater age dating using the 3H/3He method provides constraints on the nitrate inputs to groundwater. The occurrence of young 3H/3He apparent ages with high nitrate concentrations is indicative of a modern, nearby flux of nitrate. This relation is used to distinguish between modern sources of nitrate and legacy sources at formerly agricultural sites. Results are presented from a basin-wide study in Chico, CA and a study of instrumented septic system sites in Livermore, CA. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  3. Operation of a cw rf driven ion source with hydrogen and deuterium gas (abstract){sup a}

    SciTech Connect

    Melnychuk, S.T.; Debiak, T.W.; Sredniawski, J.J.

    1996-03-01

    We will describe the operation of a cw rf driven multicusp ion source designed for extraction of high current hydrogen and deuterium beams. The source is driven at 2 MHz by a 2.5 turn induction antenna immersed in the plasma. Bare stainless-steel and porcelain-coated Cu antennas have been used. The plasma load is matched to the rf generator by a variable tap {ital N}:1 transformer isolated to 46 kV, and an LC network on the secondary. With H{sub 2} gas the source can be operated at pressures between 5 and 60 mT with power reflection coefficients {lt}0.01. The extracted ion current density with a porcelain-coated antenna is approximately given by 35 mA/cm{sup 2}/kW with an 80 G dipole filter field for input powers from 3.5 to 6.6 kW. The current density remained constant for operation with a 6 and an 8 mm aperture. The source has been operated for 260 h at 3.6 kW with a single-porcelain-coated antenna. Mass spectrometer measurements of the extracted beam at this power show a species mix for H{sup +}:H{sup +}{sub 2}:H{sup +}{sub 3}:OH{sup +} of 0.49: 0.04: 0.42: 0.04. The calculated beam divergence using the IGUN code is compared with the measured divergence from an electrostatic sweep emittance scanner designed for high-power cw beam diagnostics. Phase space measurements at 40 kV and 23 mA beam current result in a normalized rms emittance of 0.09 {pi}mmmrad. {copyright} {ital 1996 American Institute of Physics.}

  4. Stratospheric Trace Gas Composition Studies Utilizing in situ Cryogenic, Whole-Air Sampling Methods.

    DTIC Science & Technology

    1981-03-10

    Standard gas mixtures 30 - . 4 ’ ~ -- -- -. - were acquired, stored in aluminum cylinders with an aluminum oxide surface, enhanced by an anodizing...prepared using the same purchased standards. The two sets of plots provide close agreement. Then, a permeation tube system of the type used with the...for N 20 and 4 percent for CFCi The CF2C 2 permeation system was more erratic, but with recent data agreeing with the titration system results to

  5. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  6. Laboratory Investigation of Trace Gas Emissions from Biomass Burning on DoD Bases

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W.; Roberts, J. M.; Veres, P. R.; Warneke, C.; Johnson, T. J.

    2009-12-01

    Vegetation representing fuels commonly managed with prescribed fires was collected from five DoD bases and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. Seventy-seven fires were conducted and the smoke composition data will improve DoD land managers’ ability to assess the impact of prescribed fires on local air quality. A key instrument used in the measurement of the gas phase species in smoke was an open-path FTIR (OP-FTIR) spectrometer, built and operated by the Universities of Montana and Wollongong. The OP-FTIR has to date detected and quantified 20 gas phase species - CO2, CO, H2O, N2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, propylene and furan. The spectra were analyzed using a non-linear least squares fitting routine that included reference spectra recently acquired at the Pacific Northwest National Laboratories. Preliminary results from the OP-FTIR analysis are reported here. Of particular interest, gas-phase nitrous acid (HONO) was detected simultaneously by the OP-FTIR and negative-ion proton-transfer chemical ionization spectrometer (NI-PT-CIMS), with preliminary fire-integrated molar emission ratios (relative to NOx) ranging from approximately 0.03 to 0.20, depending on the vegetation type. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere. There existed little previous data documenting HONO emissions from either wild or prescribed fires. The non-methane organic emissions were dominated by oxygenated species, which can be further oxidized and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl were also detected in the smoke, with the amounts varying depending on location and vegetation type.

  7. Gas analyzer for continuous monitoring of trace level methanethiol by microchannel collection and fluorescence detection.

    PubMed

    Toda, Kei; Kuwahara, Haruka; Kajiwara, Hidetaka; Hirota, Kazutoshi; Ohira, Shin-Ichi

    2014-09-02

    The highly odorous compound methanethiol, CH3SH, is commonly produced in biodegradation of biomass and industrial processes, and is classed as 2000 times more odorous than NH3. However, there is no simple analytical method for detecting low parts-per-billion in volume ratio (ppbv) levels of CH3SH. In this study, a micro gas analysis system (μGAS) was developed for continuous or near real time measurement of CH3SH at ppbv levels. In addition to a commercial fluorescence detector, a miniature high sensitivity fluorescence detector was developed using a novel micro-photomultiplier tube device. CH3SH was collected by absorption into an alkaline solution in a honeycomb-patterned microchannel scrubber and then mixed with the fluorescent reagent, 4-(N,N-dimethylaminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (DBD-F). Gaseous CH3SH was measured without serious interference from other sulfur compounds or amines. The limits of detection were 0.2ppbv with the commercial detector and 0.3ppbv with the miniature detector. CH3SH produced from a pulping process was monitored with the μGAS system and the data agreed well with those obtained by collection with a silica gel tube followed by thermal desorption-gas chromatography-mass spectrometry. The portable system with the miniature fluorescence detector was used to monitor CH3SH levels in near-real time in a stockyard and it was shown that the major odor component, CH3SH, presented and its concentration varied dynamically with time.

  8. Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983

  9. Spatial contrasts of seasonal and intraflock broiler litter trace gas emissions, physical and chemical properties.

    PubMed

    Miles, D M; Brooks, J P; Sistani, K

    2011-01-01

    Comprehensive mitigation strategies for gaseous emissions from broiler operations requires knowledge of the litters' physical and chemical properties, gas evolution, bird effects, as well as broiler house management and structure. This research estimated broiler litter surface fluxes for ammonia (NH3), nitrous oxide (N2O), and carbon dioxide (CO2). Ancillary measurements of litter temperature, litter total N, ammonium (NH4+), total C content, moisture, and pH were also made. Grid sampling was imposed over the floor area of two commercial broiler houses at the beginning (Day 1), middle (Day 23), and end (Day 43) of a winter and subsequent summer flock housed on reused pine shavings litter. The grid was composed of 36 points, three locations across the width, and 12 locations down the length of the houses. To observe feeder and waterer (F/W) influences on the parameters, eight additional sample locations were added in a crisscross pattern among these automated supply lines. Color variograms illustrate the nature of parameter changes within each flock and between seasons. Overall trends for the NH3, N2O, and CO2 gas fluxes indicate an increase in magnitude with bird age during a flock for both summer and winter, but flux estimates were reduced in areas where compacted litter (i.e., caked litter or cake) formed at the end of the flocks (at F/W locations and in the fan area). End of flock gas fluxes were estimated at 1040 mg NH3 m(-2) h(-1), 20 mg N2O m(-2) h(-1), and 24,200 mg CO2 m(-2) h(-1) in winter; and 843 mg NH3 m(-2) h(-1), 18 mg N2O m(-2) h(-1)), and 27,200 mg CO2 m(-2) h(-1) in summer. The results of intensive sample efforts during winter and summer flocks, reported visually using contour plots, offer a resource to the poultry industry and researchers for creating new management strategies for improving production and controlling gas evolution. Particularly, efforts could focus on designing housing systems that minimize extremes in litter compaction. The

  10. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by f

  11. Tracing the neutral gas environments of young radio AGN with ASKAP

    NASA Astrophysics Data System (ADS)

    Allison, J. R.; Sadler, E. M.; Moss, V. A.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B. T.; McConnell, D.; Sault, R. J.; Whiting, M. T.

    2016-02-01

    At present neutral atomic hydrogen (H I) gas in galaxies at redshifts above {z ˜ 0.3} (the extent of 21 cm emission surveys in individual galaxies) and below {z ˜ 1.7} (where the Lyman-\\alpha line is not observable with ground-based telescopes) has remained largely unexplored. The advent of precursor telescopes to the Square Kilometre Array will allow us to conduct the first systematic radio-selected 21 cm absorption surveys for H I over these redshifts. While H I absorption is a tracer of the reservoir of cold neutral gas in galaxies available for star formation, it can also be used to reveal the extreme kinematics associated with jet-driven neutral outflows in radio-loud active galactic nuclei. Using the six-antenna Boolardy Engineering Test Array of the Australian Square Kilometre Array Pathfinder, we have demonstrated that in a single frequency tuning we can detect H I absorption over a broad range of redshifts between z = 0.4 and 1.0. As part of our early science and commissioning program, we are now carrying out a search for absorption towards a sample of the brightest GPS and CSS sources in the southern sky. These intrinsically compact sources present us with an opportunity to study the circumnuclear region of recently re-started radio galaxies, in some cases showing direct evidence of mechanical feedback through jet-driven outflows. With the sensitivity of the full ASKAP array we will be able to study the kinematics of atomic gas in a few thousand radio galaxies, testing models of radio jet feedback well beyond the nearby Universe.

  12. Trace gas column retrieval from IR nadir spectra - a model study for SCIAMACHY

    NASA Astrophysics Data System (ADS)

    de Beek, R.; Buchwitz, M.; Rozanov, V. V.; Burrows, J. P.

    2004-01-01

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) is part of the European satellite ENVISAT launched at 1st March 2002. It is a follow-on instrument of the Global Ozone Monitoring Experiment (GOME) flying on ERS-2 and, compared to GOME, has extended capabilities. Using measurements of the direct extra-terrestrial solar spectrum and sun-light reflected and scattered by the earth atmosphere or surface SCIAMACHY detects atmospheric absorption of several trace species absorbing in spectral regions from the ultraviolet to the near infrared (240-2380 nm). Vertical columns of H 2O, N 2O, CO, and CH 4 can be retrieved using SCIAMACHY Channel 8 near-infrared nadir measurements. In this study, selected atmospheric and instrument specific errors relevant for the retrieval are analysed. Spectral windows of Channel 8 are considered, which are currently used for the operational near-real-time processing. For this purpose, spectral error patterns have been simulated as well as sun-normalised model radiances for nadir scanning mode, the latter using the radiative transfer model SCIATRAN. Focus are the polarisation sensitivity and dark signals of the instrument. Further on, accuracy estimates for a number of different atmospheric scenarios are presented.

  13. Trace Gas Column Retrieval From IR Nadir Spectra - A Model Study For SCIAMACHY

    NASA Astrophysics Data System (ADS)

    de Beek, R.; Buchwitz, M.; Rozanov, V.; Burrows, J.

    The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) is based on the European satellite ENVISAT launched at 1st March 2002. It is a follow-on instrument of the Global Ozone Monitoring Experiment (GOME), which has reduced capabilities and has already been flying on ERS-2. Using measurements of the direct extraterrestrial solar spectrum and sun-light reflected and scattered by the earth atmosphere or surface SCIAMACHY detects atmospheric absorption of several trace species absorbing in spectral regions from the ultraviolet to the near infrared (240 nm - 2380 nm). Focus of this study is the analysis of errors of the retrieval of H2O, N2O, CO, CO2, and CH4 using sun-normalised model radiances in spectral regions of SCIAMACHY channel 7 (1940-2040 nm) and 8 (2260-2380 nm), simulated for nadir scanning mode using the radiative transfer model SCIATRAN. Dedicated atmospheric and instrument specific error sources have been investigated. Accuracy and precision estimates for a number of different atmospheric scenarios will be presented.

  14. DOAS on Board: Trace Gas Measurements on CARIBIC Flights With Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dix, B.; Brenninkmeijer, C.; Friess, U.; Wagner, T.; Platt, U.

    2006-12-01

    Within the framework of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container), a new DOAS instrument has been built. It measures UV-visible scattered sun light from three different viewing directions to detect various trace gases. With this multi-axis technique the separation of boundary layer, free tropospheric and stratospheric columns of BrO, HCHO, NO2, O3, and O4 is possible. Thus for example anthropogenic and natural sources of NO2 , such as industry and (natural) forest fires can be studied. Besides the measurement of stratospheric O3 and BrO columns, the CARIBIC DOAS can also detect elevated levels of BrO in the free troposphere, which would impact on tropospheric ozone. The oxygen dimer O4 has a known vertical profile, therefore it can be used to determine light paths through the atmosphere and to investigate the influence of clouds and aerosols on the radiative transfer. This DOAS system is the only remote sensing instrument in the CARIBIC container, which comprises 21 instruments of 11 European institutions. It was successfully put into operation on a new long-range Airbus (A340-600) of Deutsche Lufthansa in December 2004. Since May 2005 monthly flights with fully automated measurements are performed. We will present selected results from several flights and show the potential of this unique DOAS data set.

  15. The potential impact on atmospheric ozone and temperature of increasing trace gas concentrations

    NASA Technical Reports Server (NTRS)

    Brasseur, G.; Derudder, A.

    1987-01-01

    The response of the atmosphere to emissions of chlorofluorocarbons (CFCs) and other chlorocarbons, and to increasing concentrations of other radiatively active trace gases such as CO2, CH4, and N2O is calculated by a coupled chemical-radiative transport one-dimensional model. It is shown that significant reductions in the ozone concentration and in the temperature are expected in the upper stratosphere as a result of increasing concentrations of active chlorine produced by photodecomposition of the CFCs. The ozone content is expected to increase in the troposphere, as a consequence of increasing concentrations of methane and nitrogen oxides. Due to enhanced greenhouse effects, the Earth's surface should warm up by several degrees. The amplitude and even the sign of future changes in the ozone column are difficult to predict as they are strongly scenario-dependent. An early detection system to prevent noticeable ozone changes as a result of increasing concentrations of source gases should thus be based on a continuous monitoring of the ozone amount in the upper stratosphere rather than on measurements of the ozone column only. Measurements of NOx, Clx, and HOx are also required for unambiguous trend detection and interpretation.

  16. Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    SciTech Connect

    Schlosser, Courtney Adam; Walter-Anthony, Katey; Zhuang, Qianlai; Melillo, Jerry

    2013-04-26

    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming.

  17. Recent improvements in atmospheric trace gas monitoring using mid-infrared tunable diode lasers

    NASA Astrophysics Data System (ADS)

    Nelson, David D., Jr.; Zahniser, Mark S.; McManus, J. Barry; Shorter, Joanne H.; Wormhoudt, Joda C.; Kolb, Charles E.

    1996-10-01

    This paper discusses recent advances in our techniques for monitoring atmospheric trace gases using lead salt liquid nitrogen cooled diode lasers. Our approach employs an optical system with all reflective optics. Our closed path systems rely on a proprietary astigmatic multipass cell to achieve long optical path lengths in a low volume sampling cell. We have also developed open path systems which we have used for remote sensing of automobile and aircraft engine exhaust. Our data acquisition method uses rapid frequency sweeping followed by nonlinear least squares analysis of the retrieved spectrum. Recent advances include an emphasis on multi-laser multi-species detection systems, such as simultaneously monitoring the nitric oxide, carbon monoxide and carbon dioxide concentrations in automobile exhaust. Other advances are focused on achieving improved detection sensitivity. In support of this goal, we have demonstrated astigmatic multipass cells with very long optical paths, we have improved the nonlinear least squares spectral fitting routines allowing them to fit complex multi-peak spectra and we have introduced photolytic modulation as a method to discriminate spectra of photolytically active species from background absorption and optical interference fringes. These techniques are being applied to the monitoring of a wide variety of atmospheric molecules including CH4, CO, CO2, N2O, NO, NO2, HONO, HNO3, O3 and HOCl.

  18. Miniature triaxial metastable ionization detector for gas chromatographic trace analysis of extraterrestrial volatiles

    NASA Technical Reports Server (NTRS)

    Woeller, F. H.; Kojiro, D. R.; Carle, G. C.

    1984-01-01

    The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.

  19. Frequency Modulated Spectroscopy (FMS) - A Novel Method for Standoff Trace Gas Detection

    NASA Astrophysics Data System (ADS)

    Fessenden, J. E.; Clegg, S. M.; Nowak-Lovato, K.; Martinez, R.; Dobeck, L. M.; Spangler, L.

    2015-12-01

    Geologic storage of carbon rich gases captured from the emissions of fossil fuel combustion is a promising option to mitigate against greenhouse warming scenarios. Monitoring surface gas seepage is a strategy to create a successful geologic storage facility. At Los Alamos National Laboratory, new laser systems have been engineered which can measure concentration and isotope ratios of CO2, CH4, and H2S in real time and up to 1 km distances. These systems can work in closed and open path (LIght Detection And Ranging or LIDAR) settings where we use Frequency Modulated Spectroscopy (FMS) to measure the harmonics of the primary absorption peak for CO2, CH4, and H2S absorptions. This provides between 100-1000 times sensitivity to allow for small concentrations or low abundance isotopes to be observed at distance. We tested these systems at various locations around Los Alamos National Laboratory and at the ZERT Controlled Release site in Bozeman Montana. Results show pollution signatures, ecologically productive fluxes, and carbon storage signatures depending upon location monitored. We will present these results and share unique features of this novel system. Remote detection of concentration and isotope profiles of greenhouse and toxic gases can provide a new method for stand-off detection and mapping of gas in the environment. For geologic storage scenarios, this will allow for larger areas to be interrogated for subsurface CO2 leak detection and can accelerate the Monitoring Verification and Accounting (MVA) mission goals for the Carbon Sequestration and Storage (CCS) communities.

  20. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography

    SciTech Connect

    Goodwin, L.R.; Francom, D.; Urso, A.; Dieken, F.P.

    1988-02-01

    The accuracy of the methylene blue colorimetric procedure for the determination of sulfide in environmental waters and waste waters is influenced by turbidity interferences even after application of recommended pretreatment techniques. The direct analysis of sulfide by ion chromatography (IC), without sample pretreatment, is complicated by field preservation of samples with zinc ion (or equivalent). A continuous-flow procedure has been developed that converts the acid-extractable sulfide to H/sub 2/S, which is separated from the sample matrix by a gas dialysis membrane and then trapped in a dilute sodium hydroxide solution. A 200-..mu..L portion of this solution is injected into the ion chromatograph for analysis with an electrochemical detector. Detection limits as low as 1.9 ng/mL have been obtained. Good agreement was found between the gas dialysis/IC and methylene blue methods for nonturbid standards. The addition of ascorbic acid as an antioxidant is required to obtain adequate recoveries from spiked tap and well waters.

  1. Research Abstracts.

    ERIC Educational Resources Information Center

    Plotnick, Eric

    2001-01-01

    Presents research abstracts from the ERIC Clearinghouse on Information and Technology. Topics include: classroom communication apprehension and distance education; outcomes of a distance-delivered science course; the NASA/Kennedy Space Center Virtual Science Mentor program; survey of traditional and distance learning higher education members;…

  2. Research Abstracts.

    ERIC Educational Resources Information Center

    Plotnik, Eric

    2001-01-01

    Presents six research abstracts from the ERIC (Educational Resources Information Center) database. Topics include: effectiveness of distance versus traditional on-campus education; improved attribution recall from diversification of environmental context during computer-based instruction; qualitative analysis of situated Web-based learning;…

  3. Abstract Constructions.

    ERIC Educational Resources Information Center

    Pietropola, Anne

    1998-01-01

    Describes a lesson designed to culminate a year of eighth-grade art classes in which students explore elements of design and space by creating 3-D abstract constructions. Outlines the process of using foam board and markers to create various shapes and optical effects. (DSK)

  4. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    EPA Science Inventory

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  5. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  6. MODELING THE EFFECTS OF CLIMATE AND LAND USE CHANGE ON CARBON AND TRACE GAS BUDGETS OVER THE AMAZON REGION USING NASA SATELLITE PRODUCTS

    EPA Science Inventory

    As part of the LBA-ECO Phase III synthesis efforts for remote sensing and predictive modeling of Amazon carbon, water, and trace gas fluxes, we are evaluating results from the regional ecosystem model called NASA-CASA (Carnegie-Ames Stanford Approach). The NASA-CASA model has bee...

  7. An automated multidimensional preparative gas chromatographic system for isolation and enrichment of trace amounts of xenon from ambient air.

    PubMed

    Larson, Tuula; Östman, Conny; Colmsjö, Anders

    2011-04-01

    The monitoring of radioactive xenon isotopes is one of the principal methods for the detection of nuclear explosions in order to identify clandestine nuclear testing. In this work, a miniaturized, multiple-oven, six-column, preparative gas chromatograph was constructed in order to isolate trace quantities of radioactive xenon isotopes from ambient air, utilizing nitrogen as the carrier gas. The multidimensional chromatograph comprised preparative stainless steel columns packed with molecular sieves, activated carbon, and synthetic carbon adsorbents (e.g., Anasorb®-747 and Carbosphere®). A combination of purification techniques--ambient adsorption, thermal desorption, back-flushing, thermal focusing, and heart cutting--was selectively optimized to produce a well-defined xenon peak that facilitated reproducible heart cutting and accurate quantification. The chromatographic purification of a sample requires approximately 4 h and provides complete separation of xenon from potentially interfering components (such as water vapor, methane, carbon dioxide, and radon) with recovery and accuracy close to 100%. The preparative enrichment process isolates and concentrates a highly purified xenon gas fraction that is suitable for subsequent ultra-low-level γ-, ß/γ-spectroscopic or high-resolution mass spectrometric measurement (e.g., to monitor the gaseous fission products of nuclear explosions at remote locations). The Xenon Processing Unit is a free-standing, relatively lightweight, and transportable system that can be interfaced to a variety of sampling and detection systems. It has a relatively inexpensive, rugged, and compact modular (19-inch rack) design that provides easy access to all parts for maintenance and has a low power requirement.

  8. Evaluating the Information from Minor Trace Gas Measurements by the Tropospheric Emission Spectrometer (TES)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Zhu, L.; Pinder, R. W.; Bash, J. O.; Walker, J. T.; Millet, D. B.; Wells, K. C.; Jeong, G.; Luo, M.; Chaliyakunnel, S.

    2012-12-01

    The high spectral resolution and good SNR provided by the TES instrument allow for the detection and retrieval of numerous trace species. Advanced optimal estimation algorithms have been developed to retrieve three of these, ammonia, methanol and formic acid, from TES radiances. Ammonia is currently a standard TES operational product, while methanol and formic acid will be standard products in the next TES software update (V006). Given the highly reactive nature of ammonia, with its concurrent high spatial and temporal variability, the large uncertainty in global emissions of methanol, and the large biases between measured and modeled formic acid, the air quality community has a pressing need for global information on these species; there is great interest in using these new satellite derived products, but there is often no clear idea on the information they provide. Here we will provide a short summary of the characteristics of the retrieved products, then present results from comparisons with in situ measurements. We will discuss the distinct characteristics of point and satellite measurements and illustrate how information from the latter is related to the former. We will compare global TES ammonia and methanol measurements with outcome from the GEOS-CHEM model. These comparisons have led us to examine a potential sampling bias driven by TES insensitivity in regions with low concentrations (less than 1 ppbv) or with low thermal contrast or thick clouds. We will present results from the application of inverse methods using TES ammonia and methanol to constrain model emissions, an area of research that has showcased the value provided by satellite data. Finally, we will demonstrate the potential of a sensor with TES characteristics on a geostationary platform to provide high quality data sufficient to evaluate models of the ammonia bi-directional exchange at the surface.

  9. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    NASA Astrophysics Data System (ADS)

    Wang, P.; Stammes, P.; van der A, R.; Pinardi, G.; van Roozendael, M.

    2008-11-01

    The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD) retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1) are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04), in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about -2.12×1014molec cm-2.

  10. PCF-Based Cavity Enhanced Spectroscopic Sensors for Simultaneous Multicomponent Trace Gas Analysis

    PubMed Central

    Nakaema, Walter M.; Hao, Zuo-Qiang; Rohwetter, Philipp; Wöste, Ludger; Stelmaszczyk, Kamil

    2011-01-01

    A multiwavelength, multicomponent CRDS gas sensor operating on the basis of a compact photonic crystal fibre supercontinuum light source has been constructed. It features a simple design encompassing one radiation source, one cavity and one detection unit (a spectrograph with a fitted ICCD camera) that are common for all wavelengths. Multicomponent detection capability of the device is demonstrated by simultaneous measurements of the absorption spectra of molecular oxygen (spin-forbidden b-X branch) and water vapor (polyads 4v, 4v + δ) in ambient atmospheric air. Issues related to multimodal cavity excitation, as well as to obtaining the best signal-to-noise ratio are discussed together with methods for their practical resolution based on operating the cavity in a “quasi continuum” mode and setting long camera gate widths, respectively. A comprehensive review of multiwavelength CRDS techniques is also given. PMID:22319372

  11. Tunable photonic cavities for in-situ spectroscopic trace gas detection

    DOEpatents

    Bond, Tiziana; Cole, Garrett; Goddard, Lynford

    2012-11-13

    Compact tunable optical cavities are provided for in-situ NIR spectroscopy. MEMS-tunable VCSEL platforms represents a solid foundation for a new class of compact, sensitive and fiber compatible sensors for fieldable, real-time, multiplexed gas detection systems. Detection limits for gases with NIR cross-sections such as O.sub.2, CH.sub.4, CO.sub.x and NO.sub.x have been predicted to approximately span from 10.sup.ths to 10s of parts per million. Exemplary oxygen detection design and a process for 760 nm continuously tunable VCSELS is provided. This technology enables in-situ self-calibrating platforms with adaptive monitoring by exploiting Photonic FPGAs.

  12. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris.

    PubMed

    Crombie, Andrew T; Murrell, J Colin

    2014-06-05

    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur.

  13. The effect of mustard gas on salivary trace metals (Zn, Mn, Cu, Mg, Mo, Sr, Cd, Ca, Pb, Rb).

    PubMed

    Zamani Pozveh, Elham; Seif, Ahmad; Ghalayani, Parichehr; Maleki, Abbas; Mottaghi, Ahmad

    2015-01-01

    We have determined and compared trace metals concentration in saliva taken from chemical warfare injures who were under the exposure of mustard gas and healthy subjects by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) for the first time. The influence of preliminary operations on the accuracy of ICP-OES analysis, blood contamination, the number of restored teeth in the mouth, salivary flow rate, and daily variations in trace metals concentration in saliva were also considered. Unstimulated saliva was collected at 10:00-11:00 a.m. from 45 subjects in three equal groups. The first group was composed of 15 healthy subjects (group 1); the second group consisted of 15 subjects who, upon chemical warfare injuries, did not use Salbutamol spray, which they would have normally used on a regular basis (group 2); and the third group contained the same number of patients as the second group, but they had taken their regular medicine (Salbutamol spray; group 3). Our results showed that the concentration of Cu in saliva was significantly increased in the chemical warfare injures compared to healthy subjects, as follows: healthy subjects 15.3± 5.45 (p.p.b.), patients (group 2) 45.77±13.65, and patients (Salbutamol spray; group 3) 29 ±8.51 (P <0.02). In contrast, zinc was significantly decreased in the patients, as follows: healthy subjects 37 ± 9.03 (p.p.b.), patients (group 2) 12.2 ± 3.56, and patients (Salbutamol spray; group 3) 20.6 ±10.01 (P < 0.01). It is important to note that direct dilution of saliva samples with ultrapure nitric acid showed the optimum ICP-OES outputs.

  14. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    PubMed Central

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-01-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis. PMID:26883080

  15. Trace analysis of multi-class pesticide residues in Chinese medicinal health wines using gas chromatography with electron capture detection

    NASA Astrophysics Data System (ADS)

    Kong, Wei-Jun; Liu, Qiu-Tao; Kong, Dan-Dan; Liu, Qian-Zhen; Ma, Xin-Ping; Yang, Mei-Hua

    2016-02-01

    A method is described for multi-residue, high-throughput determination of trace levels of 22 organochlorine pesticides (OCPs) and 5 pyrethroid pesticides (PYPs) in Chinese medicinal (CM) health wines using a QuEChERS (quick, easy, cheap, effective, rugged, and safe) based extraction method and gas chromatography-electron capture detection (GC-ECD). Several parameters were optimized to improve preparation and separation time while still maintaining high sensitivity. Validation tests of spiked samples showed good linearities for 27 pesticides (R = 0.9909–0.9996) over wide concentration ranges. Limits of detection (LODs) and quantification (LOQs) were measured at ng/L levels, 0.06–2 ng/L and 0.2–6 ng/L for OCPs and 0.02–3 ng/L and 0.06–7 ng/L for PYPs, respectively. Inter- and intra-day precision tests showed variations of 0.65–9.89% for OCPs and 0.98–13.99% for PYPs, respectively. Average recoveries were in the range of 47.74–120.31%, with relative standard deviations below 20%. The developed method was then applied to analyze 80 CM wine samples. Beta-BHC (Benzene hexachloride) was the most frequently detected pesticide at concentration levels of 5.67–31.55 mg/L, followed by delta-BHC, trans-chlordane, gamma-BHC, and alpha-BHC. The validated method is simple and economical, with adequate sensitivity for trace levels of multi-class pesticides. It could be adopted by laboratories for this and other types of complex matrices analysis.

  16. Identification of tropospheric emissions sources from satellite observations: Synergistic use of HCHO, NO2, and SO2 trace gas measurements

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Beirle, S.; Khokhar, F.; Platt, U.

    2005-12-01

    We present case studies for combined HCHO, NO2, and SO2 satellite observations, derived from GOME measurements. Launched on the ERS-2 satellite in April 1995, GOME has already performed continuous operations over 8 years providing global observations of the different trace gases. In this way, satellite observations provide unique opportunities for the identifications of trace gas sources. The satellite HCHO observations provide information concerning the localization of biomass burning (intense source of HCHO). The principal biomass burning areas can be observed in the Amazon basin region and in central Africa Weaker HCHO sources (south east of the United States, northern part of the Amazon basin, and over the African tropical forest), not correlated with biomass burning, could be due to biogenic isoprene emissions. The HCHO data can be compared with NO2 and SO2 results to identify more precisely the tropospheric sources (biomass burning events, human activities, additional sources like volcanic emissions). Biomass burning are important tropospheric sources for both HCHO and NO2. Nevertheless HCHO reflects more precisely the biomass burning as it appears in all biomass burning events. NO2 correlate with HCHO over Africa (grassland fires) but not over Indonesia (forest fires). In south America, an augmentation of the NO2 concentrations can be observed with the fire shift from the forest to grassland vegetation. So there seems to be a dependence between the NO2 emissions during biomass burning and the vegetation type. Other high HCHO, SO2, and NO2 emissions can be correlated with climatic events like the El Nino in 1997, which induced dry conditions in Indonesia causing many forest fires.

  17. Seasonal variation of reactive trace gas profiles in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Wolff, Stefan; Tsokankunku, Anywhere; Pöhlker, Christopher; Saturno, Jorge; Walter, David; Ditas, Florian; Könemann, Tobias; Ganzeveld, Laurens; de Abreu Sá, Leonardo Deane; Yañez-Serrano, Ana Maria; Ocimar Manzi, Antonio; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2016-04-01

    In 2011, an 80 m high walk up tower for atmospheric research was erected at the ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) in the remote Amazonian rainforest. The nearly pristine environment allows biosphere-atmosphere studies within an ecosystem far away from large anthropogenic emission sources. Since April 2012 vertical mixing ratio profiles of H2O, CO2 and O3 were measured at 8 different heights between 0.05 m and 79.3 m. During five intensive campaigns (Oct-Dec 2012, Oct-Nov 2013, Mar 2014, Aug-Sep 2014, Oct-Dec 2015) nitric oxide (NO) and nitrogen dioxide (NO2) were also measured. Ozone values exhibit a clear seasonal cycle with lower values in the wet season (Jan-Apr) and higher values the drier seasons (Aug-Nov). The last months of 2015 were strongly influenced by a strong El Niño signal in the Pacific region, leading to much drier conditions and enhanced biomass burning in the Amazon also resulting in an extended period of higher O3 mixing ratios. Back trajectories were used to identify the influence of biomass burning on the formation of O3 at the ATTO site. The burning events were additionally confirmed by aerosol and VOC measurements. By correlating these different measurements we could identify clear seasonal differences regarding sources and sinks of aerosols and trace gases, whereas different regimes of O3 production and destruction within and above the canopy could be detected. NO peaks above canopy in the morning were related to export of below-canopy air that was enriched in NOx and CO2 and depleted in O3. Additional to the detailed concentration measurements, there have also been, O3 flux measurements during this campaign allowing a more detailed analysis of the O3 exchange between atmosphere and the canopy as well as the role of various mechanisms involved in atmosphere-biosphere exchange at the ATTO site.

  18. The ExoMars Trace Gas Orbiter NOMAD Spectrometer Suite for Nadir and Solar Occultation Observations of Mars' Atmosphere

    NASA Astrophysics Data System (ADS)

    Thomas, Ian; Carine Vandaele, Ann; López-Moreno, José Juan; Patel, Manish; Bellucci, Giancarlo; Drummond, Rachel; Neefs, Eduard; Depiesse, Cedric; Daerden, Frank; Rodriguez-Gómez, Julio; Neary, Lori; Robert, Séverine; Willame, Yannick; Mahieux, Arnaud

    2015-04-01

    NOMAD (Nadir and Occultation for MArs Discovery) is one of four instruments on board the ExoMars Trace Gas Orbiter, scheduled for launch in January 2016 and to begin nominal science mission around Mars in late 2017. It consists of a suite of three high-resolution spectrometers - Solar Occultation (SO), LNO (Limb Nadir and Occultation) and UVIS (Ultraviolet-Visible) - which will generate a huge dataset of Martian atmospheric observations during the mission, across a wide spectral range. Specifically, the SO spectrometer channel will perform occultation measurements, operating between 2.2-4.3μm at a resolution of 0.15cm-1, with 180-1000m vertical spatial resolution and an SNR of 1500-3000. LNO will perform limb scanning, nadir and occultation measurements, operating between 2.2-3.8μm at a resolution of 0.3cm-1. In nadir, global coverage will extend between ±74O latitude with an IFOV of 0.5x17km on the surface. This channel can also make occultation measurements should the SO channel fail. UVIS will make limb, nadir and occultation measurements between 200-650nm, at a resolution of 1nm. It will have 300-1000m vertical resolution during occultation and 5x60km ground resolution during 15s nadir observations. An order-of-magnitude increase in spectral resolution over previous instruments will allow NOMAD to map previously unresolvable gas species, such as important trace gases and isotopes. CO, CO2, H2O, C2H2, C2H4, C2H6, H2CO, CH4, SO2, H2S, HCl, O3 and several isotopologues of methane and water will be detectable, providing crucial measurements of the Martian D/H and methane isotope ratios. It will also be possible to map the sources and sinks of these gases, such as regions of surface volcanism/outgassing and atmospheric production, over the course of an entire Martian year, to further constrain atmospheric dynamics and climatology. NOMAD will also continue to monitor the Martian water, carbon, ozone and dust cycles, extending existing datasets made by successive

  19. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    PubMed

    Cheng, Chin-Min; Chang, Yung-Nan; Sistani, Karamat R; Wang, Yen-Wen; Lu, Wen-Chieh; Lin, Chia-Wei; Dong, Jing-Hong; Hu, Chih-Chung; Pan, Wei-Ping

    2012-02-01

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements (i.e., As, B, and Se), i.e., emission to ambient air, uptake by surface vegetation, and/or rainfall infiltration, after flue gas desulfurization (FGD) material is applied to soil. Three FGD materials collected from two power plants were used. Our results show Hg released into the air and uptake in grass from all FGD material-treated soils were all higher (P < 0.1) than the amounts observed from untreated soil. Hg in the soil amended with the FGD material collected from a natural oxidation wet scrubber (i.e., SNO) was more readily released to air compared to the other two FGD materials collected from the synthetic gypsum dewatering vacuum belt (i.e., AFO-gypsum) and the waste water treatment plant (i.e., AFO-CPS) of a forced oxidation FGD system. No Hg was detected in the leachates collected during the only 3-hour, 1-inch rainfall event that occurred throughout the 4-week testing period. For every kilogram of FGD material applied to soil, AFO-CPS released the highest amount of Hg, B, and Se, followed by SNO, and AFO gypsum. Based on the same energy production rate, the land application of SNO FGD material from Plant S released higher amounts of Hg and B into ambient air and/or grass than the amounts released when AFO-gypsum from Plant A was used. Using FGD material with lower concentration levels of Hg and other elements of concern does not necessary post a lower environmental risk. In addition, this study demonstrates that considering only the amounts of trace elements uptake in surface vegetation may under estimate the overall release of the trace elements from FGD material-amended soils. It also shows, under the same soil amendment conditions, the mobility of trace elements varies when FGD materials produced from different processes are used.

  20. Development of new method of δ(13)C measurement for trace hydrocarbons in natural gas using solid phase micro-extraction coupled to gas chromatography isotope ratio mass spectrometry.

    PubMed

    Li, Zhongping; Wang, Xibin; Li, Liwu; Zhang, Mingjie; Tao, Mingxin; Xing, Lantian; Cao, Chunhui; Xia, Yanqing

    2014-11-01

    Compound specific isotope analysis (CSIA) of normal-level hydrocarbons (C1-C4) in natural gas is often successfully used in natural gas origin identification and classification, but little progress so far has been made for trace level hydrocarbons (C5-C14) in natural gas. In this study, we developed a method for rapid analysis of carbon isotopic ratios for trace hydrocarbons in natural gas samples. This method can be described as a combined approach characterized by solid phase micro-extraction (SPME) technique coupled to gas chromatography isotope ratio mass spectrometry (GC/IRMS). In this study, the CAR-PDMS fiber was chosen as the SPME adsorptive material after comparative experiments with other four fibers, and the parameters, including equilibration time, extraction temperature and desorption time, for efficient extraction of trace hydrocarbons were systematically optimized. The results showed the carbon isotopic fractionation was not observed as a function of equilibration time and extraction temperature. And the δ(13)C signatures determined by SPME-GC/IRMS were in good agreement with the known δ(13)C values of C5-C14 measured by GC-IRMS, and the accuracy is generally within ±0.5‰. Five natural gas samples were analyzed using this method, and the δ(13)C values for C5-C14 components were obtained with satisfied repeatability. The SPME-GC/IRMS approach fitted with CAR-PDMS fiber is well suited for the preconcentration of trace hydrocarbons and provides so far the most reliable carbon isotopic analysis for trace compounds in natural gas.

  1. TRACING MOLECULAR GAS MASS IN EXTREME EXTRAGALACTIC ENVIRONMENTS: AN OBSERVATIONAL STUDY

    SciTech Connect

    Zhu Ming; Xilouris, Emmanuel M.; Kuno, Nario; Lisenfeld, Ute E-mail: padeli@astro.uni-bonn.d E-mail: kuno@nro.nao.ac.j

    2009-12-01

    We present a new observational study of the {sup 12}CO(1-0) line emission as an H{sub 2} gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H{sub 2}, H I, and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC 3310, and the quiescent spiral NGC 157. Our study maintains a robust statistical notion of the so-called X = N(H{sub 2})/I {sub CO} factor (i.e., a large ensemble of clouds is involved) while exploring its dependence on the very different average ISM conditions prevailing within these two systems. These are constrained by fully sampled {sup 12}CO(3-2) and {sup 12}CO(1-0) observations, at a matched beam resolution of half-power beam width approx15'', obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea (Hawaii) and the 45 m telescope of the Nobeyama Radio Observatory in Japan, combined with sensitive 850 mum and 450 mum dust emission and H I interferometric images which allow a complete view of all the neutral ISM components. Complementary {sup 12}CO(2-1) observations were obtained with the JCMT toward the center of the two galaxies. We found an X factor varying by a factor of 5 within the spiral galaxy NGC 157 and about two times lower than the Galactic value in NGC 3310. In addition, the dust emission spectrum in NGC 3310 shows a pronounced submillimeter 'excess'. We tried to fit this excess by a cold dust component but very low temperatures were required (T {sub C} approx 5-11 K) with a correspondingly low gas-to-dust mass ratio of approx5-43. We furthermore show that it is not possible to maintain the large quantities of dust required at these low temperatures in this starburst galaxy. Instead, we conclude that the dust properties need to be different from Galactic dust in order to fit the submillimeter

  2. The Cosmic Evolution of the Metallicity Distribution of Ionized Gas Traced by Lyman Limit Systems

    NASA Astrophysics Data System (ADS)

    Lehner, Nicolas; O'Meara, John M.; Howk, J. Christopher; Prochaska, J. Xavier; Fumagalli, Michele

    2016-12-01

    We present the first results from our KODIAQ Z survey aimed at determining the metallicity distribution and physical properties of the z≳ 2 partial and full Lyman limit systems (pLLSs and LLSs; 16.2≤slant {log}{N}{{H}{{I}}}\\lt 19), which are probed of the interface regions between the intergalactic medium (IGM) and galaxies. We study 31 H i-selected pLLSs and LLSs at 2.3\\lt z\\lt 3.3 observed with Keck/HIRES in absorption against background QSOs. We compare the column densities of metal ions to H i and use photoionization models to assess the metallicity. The metallicity distribution of the pLLSs/LLSs at 2.3\\lt z\\lt 3.3 is consistent with a unimodal distribution peaking at [{{X}}/{{H}}]≃ -2. The metallicity distribution of these absorbers therefore evolves markedly with z since at z≲ 1 it is bimodal with peaks at [{{X}}/{{H}}]≃ -1.8 and -0.3. There is a substantial fraction (25%-41%) of pLLSs/LLSs with metallicities well below those of damped Lyα absorbers (DLAs) at any studied z from z≲ 1 to z˜ 2-4, implying reservoirs of metal-poor, cool, dense gas in the IGM/galaxy interface at all z. However, the gas probed by pLLSs and LLSs is rarely pristine, with a fraction of 3%-18% for pLLSs/LLSs with [{{X}}/{{H}}]≤slant -3. We find C/α enhancement in several pLLSs and LLSs in the metallicity range -2≲ [{{X}}/{{H}}]≲ -0.5, where C/α is 2-5 times larger than observed in Galactic metal-poor stars or high-redshift DLAs at similar metallicities. This is likely caused by preferential ejection of carbon from metal-poor galaxies into their surroundings.

  3. A simple inexpensive gas phase chemiluminescence analyzer for measuring trace levels of arsenic in drinking water.

    PubMed

    Sengupta, Mrinal K; Hossain, Zafreen A; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2010-01-01

    An inexpensive sensitive gas-phase chemiluminescence (GPCL) based analyzer for arsenic is described; this device utilizes manual fluid dispensing operations to reduce size, weight and cost. The analyzer in its present form has a limit of detection (LOD, S/N = 3) of 1.0 microg/L total inorganic As (peak heightbased, 3 mL sample). The system was used to measure low level arsenic in tap water samples from Texas and New Mexico and compared with results obtained by inductively coupled plasma-mass spectrometry (ICP-MS) as well as those from an automated GPCL analyzer. Good correlations were observed. Higher levels of As (50-500 microg/L, As(III), As(V) and mixtures thereof) were spiked into local tap water; the recoveries ranged from 95 +/- 2% to 101 +/- 1%. A single instrument weighs less than 3 kg, consumes <25 W in power, can be incorporated in a briefcase and constructed for <$US $1000. It is easily usable in the field.

  4. Trace detection of dissolved hydrogen gas in oil using a palladium nanowire array.

    PubMed

    Yang, Fan; Jung, Dongoh; Penner, Reginald M

    2011-12-15

    The electrical resistance, R, of an array of 30 palladium nanowires is used to detect the concentration of dissolved hydrogen gas (H(2)) in transformer oil over the temperature range from 21 to 70 °C. The palladium nanowire array (PdNWA), consisting of Pd nanowires ∼100 nm (width), ∼20 nm (height), and 100 μm (length), was prepared using the lithographically patterned nanowire electrodeposition (LPNE) method. The R of the PdNWA increased by up to 8% upon exposure to dissolved H(2) at concentrations above 1.0 ppm and up to 2940 ppm at 21 °C. The measured limit-of-detection for dissolved H(2) was 1.0 ppm at 21 °C and 1.6 ppm at 70 °C. The increase in resistance induced by exposure to H(2) was linear with [H(2)](oil)(1/2) across this concentration range. A PdNWA sensor operating in flowing transformer oil has functioned continuously for 150 days.

  5. Comparing Meteorite and Spacecraft Noble Gas Measurements to Trace Processes in the Martian Crust and Atmosphere

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.

    2014-12-01

    Our knowledge of the noble gas abundances and isotopic compositions in the Martian crust and atmosphere come from two sources, measurements of meteorites from Mars and in situ measurements by spacecraft. Measurements by the Viking landers had large uncertainties, but were precise enough to tie the meteorites to Mars. Hence most of the questions we have are currently defined by meteorite measurements. Curiosity's SAM has confirmed that the Ar isotopic composition of the atmosphere is highly fractionated, presumably representing atmospheric loss that can now be modeled with more confidence. What turns out to be a more difficult trait to explain is the fact that the ratio of Kr/Xe in nakhlites, chassignites and ALH84001 is distinct from the atmospheric ratio, as defined by measurements from shergottites. This discrepancy has been suggested to be a result of atmosphere/groundwater/rock interaction, polar clathrate formation, or perhaps local temperature conditions. More detailed atmospheric measurements, along with targeted simulation experiments, will be needed to make full use of this anomaly.

  6. A wide field-of-view imaging DOAS instrument for two-dimensional trace gas mapping from aircraft

    NASA Astrophysics Data System (ADS)

    Schönhardt, A.; Altube, P.; Gerilowski, K.; Krautwurst, S.; Hartmann, J.; Meier, A. C.; Richter, A.; Burrows, J. P.

    2015-12-01

    The Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP) has been developed for the purpose of trace gas measurements and pollution mapping. The instrument has been characterized and successfully operated from aircraft. Nitrogen dioxide (NO2) columns were retrieved from the AirMAP observations. A major benefit of the push-broom imaging instrument is the spatially continuous, gap-free measurement sequence independent of flight altitude, a valuable characteristic for mapping purposes. This is made possible by the use of a charge coupled device (CCD) frame-transfer detector. A broad field of view across track of around 48° is achieved with wide-angle entrance optics. This leads to a swath width of about the same size as the flight altitude. The use of fibre coupled light intake optics with sorted light fibres allows flexible instrument positioning within the aircraft and retains the very good imaging capabilities. The measurements yield ground spatial resolutions below 100 m depending on flight altitude. The number of viewing directions is chosen from a maximum of 35 individual viewing directions (lines of sight, LOS) represented by 35 individual fibres. The selection is adapted to each situation by averaging according to signal-to-noise or spatial resolution requirements. Observations at 30 m spatial resolution are obtained when flying at 1000 m altitude and making use of all 35 viewing directions. This makes the instrument a suitable tool for mapping trace gas point sources and small-scale variability. The position and aircraft attitude are taken into account for accurate spatial mapping using the Attitude and Heading Reference System of the aircraft. A first demonstration mission using AirMAP was undertaken in June 2011. AirMAP was operated on the AWI Polar-5 aircraft in the framework of the AIRMETH-2011 campaign. During a flight above a medium-sized coal-fired power plant in north

  7. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  8. Trace Gas Measurements Along the Trans-Siberian Railroad: the TROICA Expeditions, 1995 - 2001

    NASA Astrophysics Data System (ADS)

    Oberlander, E.; Brenninkmeijer, C.; Crutzen, P.; Hofmann, R.; Holzinger, R.; Scharffe, D.; Belikov, I.; Elansky, N.; Golitsyn, G.; Hurst, D.; Romashkin, P.; Elkins, J.

    2001-12-01

    Observations of CH4, CO, CO2, O3, NOx, NMHC, 222Rn and standard meteorological parameters have been made along the Trans-Siberian railroad (48.5-58.5oN; 37.7-135.0oE ), Russia. Over the period 1995 - 2001 seven expeditions during different seasons were carried out, and boundary layer air data covering almost 113 000 km were obtained without significant contamination from the train. A secondary CH4 maximum occurs in the annual cycle in summer: highly elevated levels of CH4 were observed in late June - August over the West Siberian lowlands which generally decreased towards East Siberia, except for the far eastern region, where frequent biomass burning events were registered. The isotopic signatures of sampled CH4 point to the wetlands as the dominant source of methane emissions, with some indications of natural gas release. Diurnal variations of 222Rn, CO2 and CH4 due to both micrometeorological conditions and varying soil and vegetation types, were used to estimate ecosystem fluxes of CO2 and CH4. Whilst background CO levels over the west Siberian wetlands were close to background values at mid-to-high northern latitudes, high CO concentrations, exceeding 1000 nmol/mol, were registered east of Chita, as a consequence of forest and other vegetation fires, which significantly affect the chemical composition of the air over Russia. O3 also showed increases in East Siberia and the far eastern region: high night-time O3 values during spring and summer coincided with CO concentration increases. Back-trajectory analyses suggest that boreal forest fires in far eastern Siberia had a significant impact on the observed CO and O3 mixing ratios. >http://www.mpch-mainz.mpg.de/~dunker/Troica/index.htm

  9. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2013-08-01

    For the investigation of megacity emission development and impact outside the source region mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross section measurements for the investigation of plume structure and quasi-Lagrangian measurements radially away from the city center to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  10. Application of mobile aerosol and trace gas measurements for the investigation of megacity air pollution emissions: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Crippa, M.; Prévôt, A. S. H.; Meleux, F.; Baltensperger, U.; Beekmann, M.; Borrmann, S.

    2014-01-01

    For the investigation of megacity emission development and the impact outside the source region, mobile aerosol and trace gas measurements were carried out in the Paris metropolitan area between 1 July and 31 July 2009 (summer conditions) and 15 January and 15 February 2010 (winter conditions) in the framework of the European Union FP7 MEGAPOLI project. Two mobile laboratories, MoLa and MOSQUITA, were deployed, and here an overview of these measurements and an investigation of the applicability of such measurements for the analysis of megacity emissions are presented. Both laboratories measured physical and chemical properties of fine and ultrafine aerosol particles as well as gas phase constituents of relevance for urban pollution scenarios. The applied measurement strategies include cross-section measurements for the investigation of plume structure and quasi-Lagrangian measurements axially along the flow of the city's pollution plume to study plume aging processes. Results of intercomparison measurements between the two mobile laboratories represent the adopted data quality assurance procedures. Most of the compared measurement devices show sufficient agreement for combined data analysis. For the removal of data contaminated by local pollution emissions a video tape analysis method was applied. Analysis tools like positive matrix factorization and peak integration by key analysis applied to high-resolution time-of-flight aerosol mass spectrometer data are used for in-depth data analysis of the organic particulate matter. Several examples, including a combination of MoLa and MOSQUITA measurements on a cross section through the Paris emission plume, are provided to demonstrate how such mobile measurements can be used to investigate the emissions of a megacity. A critical discussion of advantages and limitations of mobile measurements for the investigation of megacity emissions completes this work.

  11. Trace level determination of trichloroethylene from liver, lung and kidney tissues by gas chromatography - magnetic sector mass spectrometry

    SciTech Connect

    Stacy D. Brown; S. Muralidhara; James V. Bruckner, Michael G. Bartlett

    2002-07-30

    Trichloroethylene (TCE) is a common industrial chemical that has been heavily used as a metal degreaser and a solvent for the past 100 years. As a result of the extensive use and production of this compound, it has become prevalent in the environment, appearing at over 50% of the hazardous waste sites on the US EPA's National Priorities List (NPL). TCE exposure has been linked to neurological dysfunction as well as to several types of cancer in animals. This paper describes the development and validation of a gas chromatography-mass spectrometry (GC-MS) method for the quantitation of trace levels of TCE in its target tissues (i.e. liver, kidney and lungs). The limit of quantitation (5 ng/ml) is substantially lower than currently published methods for the analysis of TCE in tissues. The % RSD and % Error for the assay falls within the acceptable range (<15% for middle and high QC points and <20% for low QC points), and the recovery is high from all tissues (>79%).

  12. Near-infrared echelle-AOTF spectrometer ACS-NIR for the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Trokhimovskiy, Alexander; Korablev, Oleg; Kalinnikov, Yurii K.; Fedorova, Anna; Stepanov, Alexander V.; Titov, Andrei Y.; Dziuban, Ilia; Patrakeev, Andrei; Montmessin, Franck

    2015-09-01

    The near-Infrared echelle-AOTF spectrometer is one channel of the Atmospheric Chemistry Suite (ACS) package dedicated for the studies of the Martian atmosphere on board ExoMars Trace Gas Orbiter planned for launch in 2016. The near-infrared (NIR) channel of ACS is a versatile spectrometer for the spectral range of 0.7-1.6 μm with a resolving power of <20,000. The NIR channel is intended to measure the atmospheric water vapor, aerosols, airglows, in nadir, in solar occultation, and on the limb. The science goals of NIR are basically the same as for SPICAM IR channel presently in flight on board Mars Express ESA orbiter, but it offers significantly better spectral resolution. The instrument employs the principle of an echelle spectrometer with an acoustooptical tunable filter (AOTF) as a preselector. The same principle was employed in SOIR, operated on Venus Express ESA mission in 2006-2014, and in RUSALKA, operated onboard ISS in 2009-2012. The NIR channel of ACS consists of entry optics, the AOTF, a Littrow echelle spectrometer, and an electrically cooled InGaAs detector array. It is a complete block with power and data interfaces, and the overall mass of 3.2 kg. The protoflight model of NIR is completed, calibrated, integrated within the ACS suite, and is undergoing tests at the spacecraft.

  13. Seasonal Variations in Titan's Stratosphere Observed with Cassini/CIRS: Temperature, Trace Molecular Gas and Aerosol Mixing Ratio Profiles

    NASA Technical Reports Server (NTRS)

    Vinatier, S.; Bezard, B.; Anderson, C. M.; Coustenis, A.; Teanby, N.

    2012-01-01

    Titan's northern spring equinox occurred in August 2009. General Circulation Models (e.g. Lebonnois et al., 2012) predict strong modifications of the global circulation in this period, with formation of two circulation cells instead of the pole-to-pole cell that occurred during northern winter. This winter single cell, which had its descending branch at the north pole, was at the origin of the enrichment of molecular abundances and high stratopause temperatures observed by Cassini/CIRS at high northern latitudes (e.g. Achterberg et al., 2011, Coustenis et al., 2010, Teanby et al., 2008, Vinatier et al., 2010). The predicted dynamical seasonal variations after the equinox have strong impact on the spatial distributions of trace gas, temperature and aerosol abundances. We will present here an analysis of CIRS limb-geometry datasets acquired in 2010 and 2011 that we used to monitor the seasonal evolution of the vertical profiles of temperature, molecular (C2H2, C2H6, HCN, ..) and aerosol abundances.

  14. Trace gas constraints on vertical transport in models: a case study of Indonesian biomass burning emissions in 2006

    NASA Astrophysics Data System (ADS)

    Field, R. D.; Luo, M.; Worden, J.; Kim, D.; Del Genio, A. D.; Voulgarakis, A.

    2014-12-01

    We investigate the use of joint Aura TES and MLS CO retrievals in constraining vertical transport in the NASA GISS ModelE2 composition-climate model. We examine September to November 2006 over the tropics. El Nino-induced dry conditions over western Indonesia led to extensive biomass burning and persistent CO greater than 200 ppb in the upper troposphere. This was one of the highest CO episodes over the MLS period since 2004. We show how improvements in the vertical resolution of trace gas retrievals can help to distinguish between errors in parameterized vertical transport and biases in bottom-up emissions estimates. We simulate the episode using the NASA GISS ModelE2 coupled composition-climate model with different subgrid physics for small ensembles of experiments with perturbed initial conditions. The starting point is the CMIP5 version of the model, in which there was a pronounced vertical CO dipole over the Maritime Continent, but with a CO peak 100 ppb higher than Aura CO in the upper troposphere. With modified cumulus and boundary layer parameterizations, but the same prescribed biomass burning emissions estimates, the upper tropospheric CO bias is significantly reduced. Concurrently, precipitation over the emissions source region is reduced relative to observational estimates, leading to better consistency with the dry conditions under which the burning occurred. We discuss the effects of the physics changes on the roles of convective frequency and depth in reducing the bias.

  15. Impact of the Asian monsoon on the extratropical lower stratosphere: trace gas observations during TACTS over Europe 2012

    NASA Astrophysics Data System (ADS)

    Müller, Stefan; Hoor, Peter; Bozem, Heiko; Gute, Ellen; Vogel, Bärbel; Zahn, Andreas; Bönisch, Harald; Keber, Timo; Krämer, Martina; Rolf, Christian; Riese, Martin; Schlager, Hans; Engel, Andreas

    2016-08-01

    The transport of air masses originating from the Asian monsoon anticyclone into the extratropical upper troposphere and lower stratosphere (Ex-UTLS) above potential temperatures Θ = 380 K was identified during the HALO aircraft mission TACTS in August and September 2012. In situ measurements of CO, O3 and N2O during TACTS flight 2 on 30 August 2012 show the irreversible mixing of aged stratospheric air masses with younger (recently transported from the troposphere) ones within the Ex-UTLS. Backward trajectories calculated with the trajectory module of CLaMS indicate that these tropospherically affected air masses originate from the Asian monsoon anticyclone. These air masses are subsequently transported above potential temperatures Θ = 380 K from the monsoon circulation region into the Ex-UTLS, where they subsequently mix with stratospheric air masses. The overall trace gas distribution measured during TACTS shows that this transport pathway had affected the chemical composition of the Ex-UTLS during boreal summer and autumn 2012. This leads to an intensification of the tropospheric influence on the extratropical lower stratosphere with PV > 8 pvu within 3 weeks during the TACTS mission. During the same time period a weakening of the tropospheric influence on the lowermost stratosphere (LMS) is determined. The study shows that the transport of air masses originating from the Asian summer monsoon region within the lower stratosphere affects the change in the chemical composition of the Ex-UTLS over Europe and thus contributes to the flushing of the LMS during summer 2012.

  16. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace-gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-01-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the surface 50 m has the greatest direct impacts on human health as well as ecosystem processes, hence data at this level is necessary for addressing carbon cycle and public health related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We identify fugitive urban CH4 emissions and assess the magnitude of CH4 emissions from known point sources. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  17. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    NASA Astrophysics Data System (ADS)

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; Lai, C.-T.; Ehleringer, J. R.

    2015-08-01

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous, on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.

  18. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Gouhier, Mathieu; Haddadi, Baptiste; Moune, Séverine

    2016-03-01

    The 2014 Bárðarbunga rifting event in Iceland resulted in a 6-month long eruption at Holuhraun. This eruption was characterized by high lava discharge rate and significant gas emission. The SO2 flux for the first 3 months was measured with satellite sensors and the petrologic method. High-resolution time series of the satellite data give 1200 kg/s that concurs with 1050 kg/s obtained from melt inclusion minus degassed lava sulfur contents scaled to the mass of magma produced. A high-purity gas sample, with elevated S/Cl due to limited chlorine degassing, reveals a similar degassing pattern of trace metals as observed at Kīlauea (Hawai'i) and Erta Ale (Ethiopia). This suggests a common degassing mechanism at mantle plume-related volcanoes. The trace metal fluxes, calculated from trace element to sulfur ratios in the gas sample and scaled to the sulfur dioxide flux, are 1-2 orders of magnitude stronger at Holuhraun than Kīlauea and Erta Ale. In contrast, volcanoes at convergent margins (Etna and Stromboli, Italy) have 1-2 orders of magnitude higher trace element fluxes, most likely caused by abundant chlorine degassing. This emphasizes the importance of metal degassing as chlorine species. Short-lived disequilibria between radon daughters, 210Pb-210Bi-210Po measured in the gas, suggest degassing of a continuously replenished magma batch beneath the eruption site. Earlier and deep degassing phase of carbon dioxide and polonium is inferred from low (210Po/210Pb) in the gas, consistent with magma transfer rate of 0.75 m/s.

  19. Submicron aerosol and trace gas composition near Manaus as observed during GoAmazon2014/5

    NASA Astrophysics Data System (ADS)

    Ferreira De Brito, J.; Wurm, F.; Liu, Y.; de Sá, S. S.; Carbone, S.; Rizzo, L. V.; Cirino, G. G.; Barbosa, H. M.; Souza, R. A. F. D.; Martin, S. T.; Artaxo, P.

    2014-12-01

    The Amazon Basin, during the wet season, has one of the lowest aerosol concentrations worldwide, with air masses covering thousands of kilometers of pristine forest with negligible human impact. The atmosphere in such regions is strongly coupled with the biosphere through primary biological aerosols, biogenic salts and secondary aerosols from oxidation of biogenic VOCs. The natural environment is strongly modified nearby urbanized areas, in particular Manaus, a city of nearly two million people. The urban pollution plume has high concentrations of oxides of nitrogen and sulfur, carbon monoxide, particle concentrations, and soot, among other pollutants, strongly contrasting with the clean air masses reaching the city. Such unique location provides the ideal laboratory to study the isolated urban emission, as well the pristine environment by perturbing it in a relatively known fashion. The GoAmazon experiment was designed with these questions in mind, combining remote sensing, in situand airborne measurements. This manuscript describes the measurements currently taking place at the T2 site, near Manaus, frequently impacted by relatively fresh emissions from the city. This presentation focuses on aerosol properties and trace gas composition at the T2 site. PM1 mass concentration from March up to July 2014 has been observed to be dominated by organics (1.51 μg m-3), followed by BC (0.83 μg m-3), SO4 (0.17 μg m-3), NO3 (0.08 μg m-3) and NH4 (0.06 μg m-3). Mean aerosol number concentration was 3600 cm-3, with a mean geometric diameter of 70 nm. As for the trace gases, initial estimates of isoprene average ambient concentration is 0.95 ppb, whereas MVK+MACR has been estimated to be 0.76 ppb. Average mixing ratios of toluene, benzene and C8 aromatics were 0.31 ppb, 0.16 ppb and 0.15 ppb, respectively, correlating relatively well with markers of anthropogenic activities, such as BC. Such measurements will carry on throughout GoAmazon 2014/5, providing a unique dataset

  20. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry.

    PubMed

    Kozole, Joseph; Levine, Lauren A; Tomlinson-Phillips, Jill; Stairs, Jason R

    2015-08-01

    The gas phase ion chemistry for an ion mobility spectrometer (IMS) based explosive detector has been elucidated using tandem mass spectrometry. The IMS system, which is operated with hexachloroethane and isobutyramide reagent gases and an ion shutter type gating scheme, is connected to the atmospheric pressure interface of a triple quadrupole mass spectrometer (MS/MS). Product ion masses, daughter ion masses, and reduced mobility values for a collection of nitro, nitrate, and peroxide explosives measured with the IMS/MS/MS instrument are reported. The mass and mobility data together with targeted isotopic labeling experiments and information about sample composition and reaction environment are leveraged to propose molecular formulas, structures, and ionization pathways for the various product ions. The major product ions are identified as [DNT-H](-) for DNT, [TNT-H](-) for TNT, [RDX+Cl](-) and [RDX+NO2](-) for RDX, [HMX+Cl](-) and [HMX+NO2](-) for HMX, [NO3](-) for EGDN, [NG+Cl](-) and [NG+NO3](-) for NG, [PETN+Cl](-) and [PETN+NO3](-) for PETN, [HNO3+NO3](-) for NH4NO3, [NO2](-) for DMNB, [HMTD-NC3H6O3+H+Cl](-) and [HMTD+H-CH2O-H2O2](+) for HMTD, and [(CH3)3CO2](+) for TATP. In general, the product ions identified for the IMS system studied here are consistent with the product ions reported previously for an ion trap mobility spectrometer (ITMS) based explosive trace detector, which is operated with dichloromethane and ammonia reagent gases and an ion trap type gating scheme. Differences between the explosive trace detectors include the [NG+Cl](-) and [PETN+Cl](-) product ions being major ions in the IMS system compared to minor ions in the ITMS system as well as the major product ion for TATP being [(CH3)3CO2](+) for the IMS system and [(CH3)2CNH2](+) for the ITMS system.

  1. Evidence for in-situ metabolic activity in ice sheets based on anomalous trace gas records from the Vostok and other ice cores

    NASA Astrophysics Data System (ADS)

    Sowers, T.

    2003-04-01

    Measurements of trace gas species in ice cores are the primary means for reconstructing the composition of the atmosphere. The longest such record comes from the Vostok core taken from the central portion of the East Antarctic ice sheet [Petit et al., 1999]. In general, the trace gas records from Vostok are utilized as the reference signal when correlating trace gas measurements from other ice cores. The underlying assumption implicit in such endeavors is that the bubbles recovered from the ice cores record the composition of the atmosphere at the time the bubbles were formed. Another implicit assumption is that the composition of the bubbles has not been compromised by the extremely long storage periods within the ice sheet. While there is ample evidence that certain trace gas records (e.g. CO2 and CH4) have probably not been compromised, anomalous nitrous oxide (N2O) measurements from the penultimate glacial termination at Vostok are consistent with in-situ (N2O) production [Sowers, 2001]. In general, trace gas measurements from high altitude tropical/temperate glaciers are higher than expected based on contemporaneous measurements from polar cores. Measurements spanning the last 25kyr from the Sajama ice core from central Bolivia (18oS, 69oW, 6542masl), for example, were 1X-5X higher than contemporaneous values recorded in polar ice cores [Campen et al., 2003]. While other physical factors (like temperature/melting) may contribute to the elevated trace gas levels at these sites, the most likely explanation involves the accumulation of in-situ metabolic trace gas byproducts. Stable isotope measurements provide independent information for assessing the origin of the elevated trace gas levels in select samples. For the penultimate glacial termination at Vostok, the anomalous (N2O) values carry high δ15Nbulk and low δ18Obulk values that would be predicted if the added (N2O) was associated with in-situ nitrification. At Sajama, low δ13CH4 values observed during

  2. Simultaneous Photoacoustic and Photopyroelectric Detection of Trace Gas Emissions from Some Plant Parts and Their Related Essential Oils in a Combined Detection Cell

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Abu-Teir, M. M.; Al-Jamal, A. J.; Eideh, H.

    The aim of this work was to establish the feasibility of the combined photoacoustic (PA) and photopyroelectric (PPE) detection of the vapours emitted from essential oils and their corresponding uncrushed leaves or flowers. Gas traces of jasmine (Jessamine (Jasminum)), mint (Mentha arvensis L.) and Damask rose (Rosa damascena Miller) and their essential oils were tested using a combined cell fitted with both a photopyroelectric film (PVDF) and a microphone in conjunction with a pulsed wideband infrared source (PWBS) source. Infrared PA and PPE absorbances were obtained simultaneously at room temperatures with excellent reproducibility and high signal-to-noise ratios. Significant similarities found between the PA and PPE spectra of the trace gas emissions of plant parts, i.e., flowers or leaves and their related essential oils show the good correlation of their emissions and that both effects are initiated by the same absorbing molecules.

  3. Aircraft observations of aerosol and trace gas concentrations in the tropical troposphere up to 12 km during the INCA campaign

    NASA Astrophysics Data System (ADS)

    Minikin, A.; Baehr, J.; Krejci, R.; Schlager, H.; van Velthoven, P.; Seifert, M.; Ström, J.; Petzold, A.; Schumann, U.

    2003-04-01

    During the EU funded project INCA (Interhemispheric differences in cirrus properties from anthropogenic emissions) the DLR Falcon 20, a German research aircraft with a maximum ceiling of 13~km, carried out measurements of aerosol and trace gas concentrations during transfer from Europe to South America and back in order to obtain meridional cross sections between 50^o~N and 50^o~S. At tropical latitudes the southbound transfer flights were directed along the west coast of South America, whereas the northbound transfer flights passed over Brazil and the central Atlantic Ocean. We report on observational data of number concentrations of Aitken and accumulation mode particles, the fractionation between volatile and non-volatile particles, as well as mixing ratios of carbon monoxide, reactive nitrogen species and ozone. In the tropics aerosol number concentrations above 9~km altitude increase by one order of magnitude, if compared to the sub-tropics and mid-latitudes, most pronounced for refractory particles. These elevated aerosol concentrations occur where 3-dimensional back trajectories originate from the central South American continent (Amazon basin) and have undergone systematic uplifting. The very high fraction of refractory particles, up to 50--60~% of total condensation nuclei, may indicate a strong contribution of continental ground sources. The INCA measurements confirm earlier TROPOZ II observations of an extended upper tropospheric layer of enhanced CO and NO over tropical South America during the wet season. Vertical distributions show a striking increase of CO mixing ratios above 6~km. Corresponding increases of NO and NOy and decreases of ozone were also found. During INCA an anticyclonic flow over tropical South America was persistent in the upper troposphere. This upper-level anticyclone is associated with intense convective activity over the Amazon basin and redistributes the convectively lifted air masses over a large area in the tropical middle

  4. NOMAD, a spectrometer suite for Nadir and Solar Occultation observations on the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Vandaele, A. C.; López-Moreno, J.-J.; Patel, M. R.; Bellucci, G.; Daerden, F.; Drummond, R.; Neefs, E.; Robert, S.; Rodriguez Gomez, J.

    2012-04-01

    NOMAD, the "Nadir and Occultation for MArs Discovery" spectrometer suite has been selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars' atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD's observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of doing nadir, but also solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. We will present the instrument and its capabilities in term of detection of a broad suite of species, its possibilities to improve our knowledge on vertical structure of the atmosphere as well as its mapping possibilities.

  5. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-05-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January/February 2010 within the EU FP7 MEGAPOLI project. The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g. particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+8.8 ng m-3) in summer and of 130% (+18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the second process seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris emission plume. For in-depth analysis of transformation processes occurring in the advected plume, simultaneous measurements at a suburban measurement site and a stationary

  6. Megacity emission plume characteristics in summer and winter investigated by mobile aerosol and trace gas measurements: the Paris metropolitan area

    NASA Astrophysics Data System (ADS)

    von der Weiden-Reinmüller, S.-L.; Drewnick, F.; Zhang, Q. J.; Freutel, F.; Beekmann, M.; Borrmann, S.

    2014-12-01

    For the investigation of megacity emission plume characteristics mobile aerosol and trace gas measurements were carried out in the greater Paris region in July 2009 and January-February 2010 within the EU FP7 MEGAPOLI project (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation). The deployed instruments measured physical and chemical properties of sub-micron aerosol particles, gas phase constituents of relevance for urban air pollution studies and meteorological parameters. The emission plume was identified based on fresh pollutant (e.g., particle-bound polycyclic aromatic hydrocarbons, black carbon, CO2 and NOx) concentration changes in combination with wind direction data. The classification into megacity influenced and background air masses allowed a characterization of the emission plume during summer and winter environmental conditions. On average, a clear increase of fresh pollutant concentrations in plume compared to background air masses was found for both seasons. For example, an average increase of 190% (+ 8.8 ng m-3) in summer and of 130% (+ 18.1 ng m-3) in winter was found for particle-bound polycyclic aromatic hydrocarbons in plume air masses. The aerosol particle size distribution in plume air masses was influenced by nucleation and growth due to coagulation and condensation in summer, while in winter only the latter process (i.e., particle growth) seemed to be initiated by urban pollution. The observed distribution of fresh pollutants in the emission plume - its cross sectional Gaussian-like profile and the exponential decrease of pollutant concentrations with increasing distance to the megacity - are in agreement with model results. Differences between model and measurements were found for plume center location, plume width and axial plume extent. In general, dilution was identified as the dominant process determining the axial variations within the Paris

  7. Intracavity CO laser photoacoustic trace gas detection: cyclic CH 4 , H 2 O and CO 2 emission by cockroaches and scarab beetles

    NASA Astrophysics Data System (ADS)

    Bijnen, F. G. C.; Harren, F. J. M.; Hackstein, J. H. P.; Reuss, J.

    1996-09-01

    A liquid-nitrogen-cooled CO laser and an intracavity resonant photoacoustic cell are employed to monitor trace gases. The setup was designed to monitor trace gas emissions of biological samples on line. The arrangement offers the possibility to measure gases at the 10 9 by volume (ppbv) level (e.g., CH 4 , H 2 O) and to detect rapid changes in trace gas emission. A detection limit of 1 ppbv for CH 4 in N 2 equivalent to a minimal detectable absorption of 3 10 9 cm 1 can be achieved. Because of the kinetic cooling effect we lowered the detection limit for CH 4 in air is decreased to 10 ppbv. We used the instrument in a first application to measure the CH 4 and H 2 O emission of individual cockroaches and scarab beetles. These emissions could be correlated with CO 2 emissions that were recorded simultaneously with an infrared gas analyzer. Characteristic breathing patterns of the insects could be observed; unexpectedly methane was also found to be released.

  8. Quantitative analysis of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow using headspace heart-cutting multidimensional gas chromatography with mass spectrometry.

    PubMed

    Ji, Xiaorong; Zhang, Jing; Guo, Yinlong

    2016-06-01

    This study describes a method for the quantification of trace-level benzene, toluene, ethylbenzene, and xylene in cellulose acetate tow by heart-cutting multidimensional gas chromatography with mass spectrometry in selected ion monitoring mode. As the major volatile component in cellulose acetate tow samples, acetone would be overloaded when attempting to perform a high-resolution separation to analyze trace benzene, toluene, ethylbenzene, and xylene. With heart-cutting technology, a larger volume injection was achieved and acetone was easily cut off by employing a capillary column with inner diameter of 0.32 mm in the primary gas chromatography. Only benzene, toluene, ethylbenzene, and xylene were directed to the secondary column to result in an effective separation. The matrix interference was minimized and the peak shapes were greatly improved. Finally, quantitative analysis of benzene, toluene, ethylbenzene, and xylene was performed using an isotopically labeled internal standard. The headspace multidimensional gas chromatography mass spectrometry system was proved to be a powerful tool for analyzing trace volatile organic compounds in complex samples.

  9. Trace Gas Monitoring

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space technology is contributing to air pollution control primarily through improved detectors and analysis methods. Miniaturized mass spectrometer is under development to monitor vinyl chloride and other hydrocarbon contaminants in an airborne laboratory. Miniaturized mass spectrometer can be used to protect personnel in naval and medical operations as well as aboard aircraft.

  10. Fabry-Pérot-based thin film structure used as IR-emitter of an NDIR gas sensor: ray tracing simulations and measurements

    NASA Astrophysics Data System (ADS)

    Mayrwöger, Johann; Mitterer, Christian; Reichl, Wolfgang; Krutzler, Christian; Jakoby, Bernhard

    2011-06-01

    Non-dispersive infrared (NDIR) gas sensors make use of the specific infrared absorption of particular gas molecules in order to measure their distinctive gas concentration. The main parts of such a NDIR gas sensor are: an IR-emitter, a chamber containing the sample-gas, and an IR-detector with a filter for the characteristic absorption wavelength. The effectiveness of the IR-source for the total system is characterized by its temperature and the emissivity (i.e., the difference to blackbody radiation) of the device surface. Due to the fact that conventional metal surfaces provide a rather low emissivity, their emitting temperature must be set very high to generate sufficient IR-radiation for this kind of sensors. We developed an IR-source consisting of a stack of thin films with a much higher emissivity. Its main part is a combination of two mirrors and a dielectric layer which represent a Fabry-Perot structure. The obtained emission of the Fabry-Perot structure and the consequences for the performance of the whole NDIR gas sensor system were simulated with the enhanced transmittance matrix approach and a 3D ray tracing model. As an example, CO2 was considered as sample gas where the major characteristic absorption occur around 4.26 μm. The theoretical results are validated by comparing them to experiments obtained with prototype devices.

  11. A comparison of minor trace gas retrievals from the Tropospheric Emission Spectrometer (TES) and the Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Astrophysics Data System (ADS)

    Cady-Pereira, K. E.; Shephard, M. W.; Henze, D. K.; Millet, D. B.; Gombos, D.; Van Damme, M.; Clarisse, L.; Coheur, P. F.; Pommier, M.; Clerbaux, C.

    2014-12-01

    The advent of hyperspectral infrared instruments orbiting the Earth has allowed for detecting and measuring numerous trace gas species that play important roles in atmospheric chemistry and impact air quality, but for which there is a dearth of information on their distribution and temporal variability. Here we will present global and regional comparisons of measurements from the NASA TES and the European MetOp IASI instruments of three of these gases: ammonia (NH3), formic acid (HCOOH) and methanol (CH3OH). Ammonia is highly reactive and thus very variable in space and time, while the sources and sinks of methanol and formic acid are poorly quantified: thus space-based measurements have the potential of significantly increasing our knowledge of the emissions and distributions of these gases. IASI and TES have many similarities but some significant differences. TES has significantly higher spectral resolution (0.06 cm-1), and its equator crossing times are ~1:30 am and 1:30 pm, local time, while IASI has lower resolution (0.5 cm-1) and an earlier equator crossing time (9:30 am and 9:30 pm), which leads to lower thermal contrast; however IASI provides much greater temporal and spatial coverage due to its cross-track scanning. Added to the instrumental differences are the differences in retrieval algorithms. The IASI team uses simple but efficient methods to estimate total column amounts of the species above, while the TES team performs full optimal estimation retrievals. We will compare IASI and TES total column measurements averaged on a 2.5x2.5 degree global grid for each month in 2009, and we will examine the seasonal cycle in some regions of interest, such as South America, eastern China, and the Midwest and the Central Valley in the US. In regions where both datasets are in agreement this analysis will provide confidence that the results are robust and reliable. In regions where there is disagreement we will look for the causes of the discrepancies, which will

  12. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial

  13. Effects of Particles on Trace-Gas Measurement Using Open-Path Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mchale, L.; Shadman, S.; Yalin, A.

    2015-12-01

    Open-path Cavity Ring-down Spectroscopy offers many potential advantages over traditional closed-path configurations for the measurement of atmospheric trace gasses. Removal of the vacuum pump and flow system may enable more compact instruments suitable for remote and mobile deployments as well as real time measurement of 'sticky' gases. However, open path operation introduces new challenges including exposure of high reflectivity mirrors to ambient air and aerosols, the need to measure wider (pressure broadened) spectral peaks and possible signal interferences due to optical extinction by aerosol particles in the cavity laser beam. The present submission focuses on the effects of aerosol particles on open-path CRDS using a near-infrared (1742 nm) methane gas measurement system as a test bed. A simple purge enclosure system was developed to prevent aerosol deposition on the cavity high-reflectors. The purge uses ambient air pulled in with a micro-pump through a hepa filter and maintained mirror reflectivity R>0.99996 over 100 hours of use in the presence of high aerosol loading. Optical extinction due to ambient aerosols can change the cavity loss and influence the recorded ring-down times. We observed relatively large fluctuations due to supermicron particles and a near-constant baseline shift due to smaller submicron particles. The fluctuations correspond to absorption on the order of 10-8-10-7 cm-1, comparable to the amplitude of the targeted methane absorption features, causing significant interference. Simple software filter approaches were developed to counter these fluctuations without a priori knowledge of the ambient aerosols. The filters exploit the statistical distribution of signals as well as the expected absorption lineshape. Using these filters, noise-equivalent sensitivities within a factor of ~3 of closed-path systems were obtained (4x10-10cm-1Hz-1/2). Outdoor open-path measurements were validated with side-by-side measurements with a commercial

  14. Design and application of a mobile ground-based observatory for continuous measurements of atmospheric trace gas and criteria pollutant species

    DOE PAGES

    Bush, S. E.; Hopkins, F. M.; Randerson, J. T.; ...

    2015-08-26

    Ground-based measurements of atmospheric trace gas species and criteria pollutants are essential for understanding emissions dynamics across space and time. Gas composition in the lower 50 m of the atmosphere has the greatest direct impacts on human health as well as ecosystem processes; hence data at this level are necessary for addressing carbon-cycle- and public-health-related questions. However, such surface data are generally associated with stationary measurement towers, where spatial representation is limited due to the high cost of establishing and maintaining an extensive network of measurement stations. We describe here a compact mobile laboratory equipped to provide high-precision, high-frequency, continuous,more » on-road synchronous measurements of CO2, CO, CH4, H2O, NOx, O3, aerosol, meteorological, and geospatial position data. The mobile laboratory has been deployed across the western USA. In addition to describing the vehicle and its capacity, we present data that illustrate the use of the laboratory as a powerful tool for investigating the spatial structure of urban trace gas emissions and criteria pollutants at spatial scales ranging from single streets to whole ecosystem and regional scales. We assess the magnitude of known point sources of CH4 and also identify fugitive urban CH4 emissions. We illustrate how such a mobile laboratory can be used to better understand emissions dynamics and quantify emissions ratios associated with trace gas emissions from wildfire incidents. Lastly, we discuss additional mobile laboratory applications in health and urban metabolism.« less

  15. Implementation of Cloud Retrievals for Tropospheric Emission Spectrometer (TES) Atmospheric Retrievals: Part 1. Description and Characterization of Errors on Trace Gas Retrievals

    NASA Technical Reports Server (NTRS)

    Kulawik, Susan S.; Worden, John; Eldering, Annmarie; Bowman, Kevin; Gunson, Michael; Osterman, Gregory B.; Zhang, Lin; Clough, Shepard A.; Shephard, Mark W.; Beer, Reinhard

    2006-01-01

    We develop an approach to estimate and characterize trace gas retrievals in the presence of clouds in high spectral measurements of upwelling radiance in the infrared spectral region (650-2260/cm). The radiance contribution of clouds is parameterized in terms of a set of frequency-dependent nonscattering optical depths and a cloud height. These cloud parameters are retrieved jointly with surface temperature, emissivity, atmospheric temperature, and trace gases such as ozone from spectral data. We demonstrate the application of this approach using data from the Tropospheric Emission Spectrometer (TES) and test data simulated with a scattering radiative transfer model. We show the value of this approach in that it results in accurate estimates of errors for trace gas retrievals, and the retrieved values improve over the initial guess for a wide range of cloud conditions. Comparisons are made between TES retrievals of ozone, temperature, and water to model fields from the Global Modeling and Assimilation Office (GMAO), temperature retrievals from the Atmospheric Infrared Sounder (AIRS), tropospheric ozone columns from the Goddard Earth Observing System (GEOS) GEOS-Chem, and ozone retrievals from the Total Ozone Mapping Spectrometer (TOMS). In each of these cases, this cloud retrieval approach does not introduce observable biases into TES retrievals.

  16. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics.

    PubMed

    Kolb, Charles E; Herndon, Scott C; McManus, J Barry; Shorter, Joanne H; Zahniser, Mark S; Nelson, David D; Jayne, John T; Canagaratna, Manjula R; Worsnop, Douglas R

    2004-11-01

    Recent technological advances have allowed the development of robust, relatively compact, low power, rapid response (approximately 1 s) instruments with sufficient sensitivity and specificity to quantify many trace gases and aerosol particle components in the ambient atmosphere. Suites of such instruments can be deployed on mobile platforms to study atmospheric processes, map concentration distributions of atmospheric pollutants, and determine the composition and intensities of emission sources. A mobile laboratory containing innovative tunable infrared laser differential absorption spectroscopy (TILDAS) instruments to measure selected trace gas concentrations at sub parts-per-billion levels and an aerosol mass spectrometer (AMS) to measure size resolved distributions of the nonrefractory chemical components of fine airborne particles as well as selected commercial fast response instruments and position/velocity sensors is described. Examples of the range of measurement strategies that can be undertaken using this mobile laboratory are discussed, and samples of measurement data are presented.

  17. Online monitoring of trace chlorinated benzenes in flue gas of municipal solid waste incinerator by windowless VUV lamp single photon ionization TOFMS coupled with automatic enrichment system.

    PubMed

    Liu, Wei; Jiang, Jichun; Hou, Keyong; Wang, Weiguo; Qi, Yachen; Wang, Yan; Xie, Yuanyuan; Hua, Lei; Li, Haiyang

    2016-12-01

    Chlorinated benzenes are typical precursors and indicators for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) emissions from waste incinerators. Online and real-time monitoring of chlorobenzenes is a challenge due to their low concentration and complex nature of the flue gas. In this work, a continuous online monitoring system was built for detection of trace chlorinated benzenes based on a time-of-flight mass spectrometer (TOFMS). A single photon ionization (SPI) source based on a radiofrequency-excited windowless vacuum ultraviolet (VUV) lamp was developed for the first time to eliminate the signal attenuation resulting from the contamination of magnesium fluoride windows and to avoid the fragment ions. An automatic enrichment system including three parallel Tenax TA adsorption tubes was designed and coupled to the TOFMS to achieve the required ultrahigh sensitivity. The limits of quantitation at 7.65, 5.37 and 6.77pptv were obtained for monochlorobenzene (MCBz), dichlorobenzene (DCBz) and trichlorobenzene (TrCBz), respectively, within a 29-min analytical period. Moreover, this apparatus was applied to continuously online monitor the actual flue gas from a waste incinerator for three months. During this period, the concentrations of MCBz, DCBz and TrCBz detected in the flue gas were in the range of 100-1200, 50-800 and 50-300pptv, respectively. The relative standard deviation (RSD) of the sensitivity for the windowless VUV lamp ion source was 9.71% evaluated by the internal standard benzene over the 3-months flue gas monitoring. These results demonstrated the capability of this method in long-term analysis of the trace chlorinated benzenes in the flue gas.

  18. Measurement of trace gas emissions of spruce by different measuring techniques including PTR-MS at the BEWA field campaign 2002

    NASA Astrophysics Data System (ADS)

    Cojocariu, C.; Graus, M.; Grabmer, W.; Hansel, A.; Kreuzwieser, J.; Rennenberg, H.; Wisthaler, A.

    2003-04-01

    The capability of proton transfer reaction mass spectrometry (PTR-MS) for on-line measurements of volatile organic compounds (VOCs) such as isoprene, acetaldehyde, acetone, methyl vinyl ketone and metacrolein was used to measure VOC fluxes from spruce during BEWA field campaign 2002. The BEWA measuring tower is located in the Bavarian "Fichtelgebirge", which has an alpine-like climate and is situated at 776m a.s.l. at 50°09' N and 11°52' E. A dynamic cuvette system was used for the measurement of trace gas emissions. The cuvettes consisted of chemically inert teflon; one cuvette was kept empty as a reference; the plant cuvette contained a spruce twig of ca. 8 cm length at a height of about 13 m from the ground. The PTR-MS system continuously analysed all selected VOCs in the air from the plant cuvette over a 3 minute cycle, with measurement of the empty cuvette occurring every hour. Both cuvettes were flushed with ambient air at flow rates of 2-4 l/min. Emission rates were calculated taking into account the concentration differences between reference and plant cuvette, the air flow through the cuvettes and the leaf area of the twigs. In addition to PTR-MS, carbonyl concentrations were determined by DNPH-coated silica gel cartridges and subsequent HPLC-analysis. The duration of one measurement cycle was - depending on weather conditions - up to 36 hours without interruption. Simultaneously with trace gas exchange, the rates of photosynthesis and transpiration, stomatal conductance as well as meteorological parameters (PPFD, temperature, relative humidity) were determined. In order to identify factors controlling trace gas emissions from spruce, correlation analysis of emission data with meteorological and physiological parameters were performed. A comparison of the results obtained by cartridges and PTR-MS technique is given.

  19. Investigation Of Trace Gas To Aerosol Relationships Over BioMass Burning Areas Using Daily Satellite Observations

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas; Penning de Vries, Marloes; Beirle, Steffen; Zorner, Jan

    2013-12-01

    We investigate the spatial and temporal relationships between satellite observations of selected trace gases (CO, NO2, HCHO, CHOCHO), the UV aerosol index (UVAI) and the aerosol optical depth (AOD) measured either by satellite or from ground. In contrast to previous studies we use daily observations, since only from daily observations information on individual biomass burning events can be obtained. Unlike the AOD, satellite observations of trace gases and UVAI are possible in the presence of clouds. This might be important for the study of aerosol-cloud-interactions.

  20. Scientific calibration and analysis of calibration data for the CaSSIS instrument of the ExoMars Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Roloff, V.; Gambicorti, L.; Pommerol, A.; Thomas, N.

    2015-10-01

    The Colour and Stereo Surface Imaging System (CaSSIS) is a camera, the development of which is led by the University of Bern (CH), with hardware contributions from the University of Padova (I) and the Space Research Center of Warsaw (Pl). It will take high resolution stereo images in 4 colours of the Martian surface, from on board the ExoMars Trace Gas Orbiter. Our calibration facility stands ready to perform the required measurements. We are currently testing the procedures on a dummy system and we will report on calibration results of the CaSSIS instrument.

  1. SINBAD electronic models of the interface and control system for the NOMAD spectrometer on board of ESA ExoMars Trace Gas Orbiter mission

    NASA Astrophysics Data System (ADS)

    Jerónimo Zafra, José M.; Sanz Mesa, Rosario; Gómez López, Juan M.; Rodríguez Gómez, Julio F.; Aparicio del Moral, Beatriz; Morales Muñoz, Rafael; Candini, Gian Paolo; Pastor Morales, M. Carmen; Robles Muñoz, Nicolás.; López-Moreno, José Juan; Vandaele, Ann Carine; Neefs, Eddy; Drummond, Rachel; Delanoye, Sofie; Berkenbosch, Sophie; Clairquin, Roland; Ristic, Bojan; Maes, Jeroen; Bonnewijn, Sabrina; Patel, Manish R.; Leese, Mark

    2016-07-01

    NOMAD is a spectrometer suite: UV-visible-IR spectral ranges. NOMAD is part of the payload of ESA ExoMars Trace Gas Orbiter Mission. SINBAD boards are in charge of the communication and management of the power and control between the spacecraft and the instrument channels. SINBAD development took four years, while the entire development and test required five years, a very short time to develop an instrument devoted to a space mission. The hardware of SINBAD is shown in the attached poster: developed boards, prototype boards and final models. The models were delivered to the ESA in order to testing and integration with the spacecraft.

  2. Tracing natural gas transport into shallow groundwater using dissolved nitrogen and alkane chemistry in Parker County, Texas

    NASA Astrophysics Data System (ADS)

    Larson, T.; Nicot, J. P.; Mickler, P. J.; Darvari, R.

    2015-12-01

    Dissolved methane in shallow groundwater drives public concern about the safety of hydraulic fracturing. We report dissolved alkane and nitrogen gas concentrations and their stable isotope values (δ13C and δ15N, respectively) from 208 water wells in Parker county, Texas. These data are used to differentiate 'stray' natural gas and low temperature microbial methane, and (2) estimate the ratio of stray gas to groundwater. The ratio of (gas-phase) stray natural gas to groundwater is estimated by correlating dissolved methane and nitrogen concentrations and dissolved nitrogen δ15N values. Our hypothesis is groundwater exposed to high volumes of stray natural gas have high dissolved methane concentrations and low dissolved nitrogen concentrations and δ15N values. Alternatively, groundwater exposed to low volumes of stray gas-phase natural gas have elevated dissolved methane, but the concentration of dissolved nitrogen and its d15N value is atmospheric. A cluster of samples in Parker county have high concentrations of dissolved methane (>10mg/L) with d13Cmethane and alkane ratios (C1/C2+C3) typical of natural gas from the Barnett Shale and the Strawn Formation. Coupling dissolved nitrogen concentrations and δ15N values with these results, we suggest that few of the wells in this cluster preserve large gas to water ratios. Many samples with high dissolved methane concentrations have atmospheric dissolved nitrogen concentrations and δ15N values, providing evidence against high flux natural gas transport into shallow groundwater. These results demonstrate that dissolved nitrogen chemistry, in addition to dissolved alkane and noble gas measurements, may be useful to discern sources of dissolved methane and estimate ratios of stray natural gas-water ratios.

  3. Impact of Using a High Surface Area Solid Phase Micro Extraction Device and Fast Gas Chromatography Heating Rates in the Sampling and Analysis of Trace Level Chemical Warfare Agents and CWA-Like Compounds

    DTIC Science & Technology

    2009-09-21

    MICROEXTRACTION DEVICE AND FAST GAS CHROMATOGRAPHY HEATING RATES IN THE SAMPLING AND ANALYSIS OF TRACE LEVEL CHEMICAL WARFARE AGENTS AND CWA-LIKE...v “IMPACT OF USING A HIGH SURFACE AREA SOLID PHASE MICROEXTRACTION DEVICE AND FAST GAS CHROMATOGRAPHY HEATING RATES IN THE SAMPLING AND...10 CHAPTER 3. APPLICATION OF A HIGH SURFACE AREA SOLID PHASE MICROEXTRACTION AIR SAMPLING DEVICE FOR

  4. [Preparation technique of S2OF10 gas standard sample and determination method of the trace S2OF10 in SF6].

    PubMed

    Wang, L; Wang, J

    1999-09-01

    In this paper a series of methods and techniques for the S2OF10 standard sample preparation and quantitative determination are presented. They are, the preparation of S2OF10 by preparative chromatography with adsorption/thermal desorption, the standard sample of S2OF10 gas prepared by exponential dilution and the gas chromatography/flame photometric detector(GC/FPD) determination of trace S2OF10 from an SF6 sample with quantitative calibration factor. Especially, the S2OF10 gas from a used SF6 sample was directly separated and concentrated through a U-adsorbent-tube packed with 300 mg of Porasil A in a cold trap (-63 degrees C) with liquid-nitrogen and chloroform. Then it was purified by preparative-GC and to be injected into a preparative system of standard gas sample. In the meantime, the S2OF10 gas obtained was confirmed by the methods of GC/FPD, infrared spectrophotometer(IR) and gas chromatography/mass spectrometer(GC/MS) separately. The sub-ppm(by volume) level of the S2OF10 and SF6 mixture samples were prepared by use of the exponential dilution system. The GC/FPD experimental results showed that the detection linear range of S2OF10 gas concentration was 0.80 x 10(-6)-2.60 x 10(-4) (volume fraction) and the quantitative calibration factor of the S2OF10 was 0.197 based on SF6. The determination errors of quantitative calibration factor were 1.8%-20% and S2OF10 recovery of the adsorption/thermal desorption was 98.2% (n = 9) and its relative standard deviation was 6.2%. In addition, the results also showed that it is a simple and rapid method with good linearity and reproducibility.

  5. Improved atmospheric trace gas measurements with an aircraft-based tandem mass spectrometer: Ion identification by mass-selected fragmentation studies

    NASA Astrophysics Data System (ADS)

    Reiner, Thomas; MöHler, Ottmar; Arnold, Frank

    1998-12-01

    We have built and employed an aircraft-borne triple quadrupole mass spectrometer (TQMS) for fragmentation studies of mass-selected ions in the upper troposphere and lower stratosphere. The fragmentation studies included both ambient and artificially produced ions relevant for the measurement of atmospheric trace gases by ion molecule reaction mass spectrometry (IMRMS) and led to an unambiguous identification of the chemical composition of important ions used for IMRMS measurements. Among these are the product ions of ion molecule reactions of CO3-(H2O)n and H3O+(H2O)n ions with HNO3, SO2, acetone, HCN, and methyl cyanide. These reactions have been studied in the laboratory, and ions having the same masses as the expected product ions have been previously observed in atmospheric IMRMS spectra. The present fragmentation studies are the first to actually identify the chemical composition of these ions during aircraft measurements in the upper troposphere and lower stratosphere and demonstrate that these ions can reliably be used for atmospheric trace gas measurements. Furthermore, the fragmentation studies gave indications for the existence and the possible identification of previously unknown ions. Among these the tentative identification of CO3-H2O2 offers the possibility for sensitive measurements of H2O2 by IMRMS. The fragmentation studies were accompanied by IMRMS measurements of atmospheric trace gases using the TQMS. Altitude profiles of HNO3, SO2, and lower limits for H2O2 are shown.

  6. Round-robin evaluation of a solid-phase microextraction-gas chromatographic method for reliable determination of trace level ethylene oxide in sterilized medical devices.

    PubMed

    Harper, Thomas; Cushinotto, Lisa; Blaszko, Nancy; Arinaga, Julie; Davis, Frank; Cummins, Calvin; DiCicco, Michael

    2008-02-01

    Medical devices that are sterilized with ethylene oxide (EtO) retain small quantities of EtO residuals, which may cause negative systemic and local irritating effects, and must be accurately quantified to ensure non-toxicity. The goal of this round-robin study is to investigate the capability of a novel solid-phase microextraction-gas chromatographic (SPME-GC) method for trace-level EtO residuals analysis: three independent laboratories conducted a guided experiment using this SPME-GC method, in assessing method performance, ruggedness and the feasibility of SPME fibers. These were satisfactory across the independent laboratories, at the 0.05-5.00 ppm EtO range. This method was then successfully applied to analyze EtO residuals in several sterilized/aerated medical devices of various polymeric composition, reliably detecting and quantifying the trace levels of EtO residuals present ( approximately 0.05 ppm EtO). SPME is a feasible alternative for quantifying trace-level EtO residuals in sterilized medical devices, thereby lowering the limit of quantification (LOQ) by as much as two to three orders of magnitude over the current GC methodology of direct liquid injection.

  7. Aliphatic and polycyclic aromatic hydrocarbons and trace elements as indicators of contamination status near oil and gas platforms in the Sergipe-Alagoas Basin (Southwest Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Lourenço, Rafael A.; Araujo Júnior, Marcus A. G.; Meireles Júnior, Ruy O.; Macena, Leandro F.; de A. Lima, Eleine Francioni; Carneiro, Maria Eulalia R.

    2013-12-01

    Oil and gas platforms from Sergipe-Alagoas Basin located in the northeastern region of Brazil do not discharge produced water. However, those platforms can be a potential source of contaminants to the marine environment due to their producing activities. In this study, sediment samples were collected in the vicinity of two offshore oil and gas platforms located in Sergipe-Alagoas Basin (PCM-9 and PGA-1) to evaluate the source and levels of hydrocarbons and trace elements (As, Fe, Al, Ti, Cu, Cd, Zn, Pb, Ni, Mn, Ba, V, Cr and Hg). Also, the potential impact of those platforms on the sediment quality was investigated. Polycyclic aromatic hydrocarbons diagnostic ratios observed in the sediment samples indicated hydrocarbons from pyrogenic source, specifically from biomass combustion. Trace elements As, Cd and Ba recorded concentrations higher than Threshold Effect Levels (TEL) in the sediment nearby the platforms. Also, there was evidence of some samples enriched by barium. Although As, Cd and Ba concentrations were higher than TEL, they most likely corresponded to background levels. The obtained results indicated that activities of the PCM-9 and PGA-1 platforms may not be affecting the quality of nearby sediment.

  8. Trace Gas Emissions and Soil C and N Transformations Following Moisture Pulses in Sagebrush: Effects of Invasive and Native Companion Plant Species

    NASA Astrophysics Data System (ADS)

    Norton, U.; Morgan, J. A.; Mosier, A. R.; Derner, J. D.

    2004-12-01

    Simulating water pulses is an important tool for understanding biogeochemical processes in semi arid environments. Global change triggered shifts in plant species composition exert significant control over belowground C and N transformations. They also affect the ecosystem resiliency and its ability to withstand exotic weed invasion. We monitored effects of water additions on trace gas emissions and soil C and N in sagebrush soils, both canopy and shrub interspace, on sites dominated by either native bunchgrass, western wheatgrass, or an exotic annual, cheatgrass. Our results indicate that long-term cheatgrass establishment affects not only soil under its own thatch, but also soil under shrubs within cheatgrass stand. Overall, soil total N and total organic C on cheatgrass sites were lower than these of western wheatgrass. Trace gas measurements of non-wetted soils showed greater N2O and smaller CH4 fluxes compared to western wheatgrass sites. Upon water pulse, cheatgrass soils demonstrated greater CO2 production rates, relative to pre-wet conditions, greater N2O flux per unit soil total N, and more rapid soil microbial biomass C and dissolved organic C response compared to western wheatgrass. Possible mechanisms include faster turnover of microbial biomass and greater nitrification potential of cheatgrass soils.

  9. Laboratory scale studies of Pd/y-Al2O3 sorbents for the removal of trace contaminents from coal-derived fuel gas at elevated temperatures

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2010-12-31

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150-540 C) to hot (>540 C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/{gamma}-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/{gamma}-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  10. Trace gas emissions from combustion of peat, crop residue, biofuels, grasses, and other fuels: configuration and FTIR component of the fourth Fire Lab at Missoula Experiment (FLAME-4)

    NASA Astrophysics Data System (ADS)

    Stockwell, C. E.; Yokelson, R. J.; Kreidenweis, S. M.; Robinson, A. L.; DeMott, P. J.; Sullivan, R. C.; Reardon, J.; Ryan, K. C.; Griffith, D. W. T.; Stevens, L.

    2014-04-01

    During the fourth Fire Lab at Missoula Experiment (FLAME-4, October-November~2012) a~large variety of regionally and globally significant biomass fuels was burned at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particle emissions were characterized by an extensive suite of instrumentation that measured aerosol chemistry, size distribution, optical properties, and cloud-nucleating properties. The trace gas measurements included high resolution mass spectrometry, one- and two-dimensional gas chromatography, and open-path Fourier transform infrared (OP-FTIR) spectroscopy. This paper summarizes the overall experimental design for FLAME-4 including the fuel properties, the nature of the burn simulations, the instrumentation employed, and then focuses on the OP-FTIR results. The OP-FTIR was used to measure the initial emissions of 20 trace gases: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, glycolaldehyde, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. These species include most of the major trace gases emitted by biomass burning and for several of these compounds it is the first time their emissions are reported for important fuel types. The main fuel types included: African grasses, Asian rice straw, cooking fires (open (3-stone), rocket, and gasifier stoves), Indonesian and extratropical peat, temperate and boreal coniferous canopy fuels, US crop residue, shredded tires, and trash. Comparisons of the OP-FTIR emission factors (EF) and emission ratios (ER) to field measurements of biomass burning verify that the large body of FLAME-4 results can be used to enhance the understanding of global biomass burning and its representation in atmospheric chemistry models.

  11. Effects of Elevated CO2 on Soil Trace Gas (CH4, N2O and NO) Fluxes in a Scrub Oak Ecosystem at Kennedy Space Center, FL, USA

    NASA Astrophysics Data System (ADS)

    Hartley, A. E.; Bracho, R. G.; Stover, D.

    2008-05-01

    Rising atmospheric CO2 concentrations increase the plant demand for soil nutrients, which in turn can impose a nitrogen limitation on unmanaged ecosystems. The microbial responses to CO2 enrichment are complex and difficult to predict. Some studies suggest that CO2 enrichment increases microbial mineralization of nitrogen, making nitrogen more available through a carbon priming effect. Alternatively, microbes may contribute to nitrogen limitation through accelerated soil nitrogen losses. In this study, we examined the effects of CO2 enrichment on trace gases that are released or taken up during soil microbial reactions: nitrification, denitrification and methane consumption. Ambient and approximately twice-ambient CO2 treatments were applied to a coastal scrub oak community at Kennedy Space Center, FL, via open-top chambers since May 1996. The CO2 treatments ended in July 2007 before an aboveground harvest took place inside the chambers. Nitrous oxide (N2O), nitric oxide (NO) and methane (CH4) fluxes were measured in the field from 2006-2008. Soil N2O losses from the study site were low (< 1 ng N2O-N cm-2 h-1) with no CO2 treatment effect. Soil NO losses were similarly low (< 1 ng N2O-N cm-2 h-1), but fluxes were consistently lower in elevated CO2 than in ambient CO2. NO production was higher for 3 months post-harvest in ambient CO2. Methane consumption was lower in elevated vs. ambient CO2 in 2006, although this trend was not significant. Over a decade of CO2 enrichment has reduced soil nitrogen availability, which could explain the low overall rates of nitrogen trace gas emission. Reduced soil carbon stores in elevated CO2 measured at this site could also explain the lower nitrification rates, measured as NO efflux. Trace gas emissions in this sandy, nutrient-poor scrub oak forest are comparable to published rates in desert ecosystems.

  12. The role of water treatment abstraction in the flux and greenhouse gas emissions from organic carbon and nitrogen within UK rivers

    NASA Astrophysics Data System (ADS)

    Finlay, N. C.; Johnson, K.; Worrall, F.

    2016-10-01

    The fate of organic matter through watersheds has been shown to be an important component of the global carbon cycle and processes in rivers can rapidly transfer carbon from the terrestrial biosphere to the atmosphere. However, the role of water abstraction in diverting organic matter from freshwater has not been considered. This study used two methods to estimate the amount of organic carbon removed by water treatment processes, first, by estimating the amount of carbon that has to be removed given the abstracted volumes and the freshwater composition; and, second, estimated from reports of the production and composition of water treatment residuals from water companies. For the UK, the median total organic carbon removed by water abstraction was 46 ktonnes C/yr, this equates to a median per capita value of 0.76 kg C/ca/yr. The median total organic nitrogen removed was 4.0 ktonnes N/yr, equivalent to 0.07 kg N/ca/yr. The removal of TOC by water abstraction represents 1.5% of the total removal rate across UK watersheds. The release of greenhouse gases from UK rivers is now estimated to be between 12,754 and 32,332 ktonnes CO2eq/yr equivalent to between 55 and 127 tonnes CO2eq/km2/yr with fluvial organic matter between 8800 and 15,116 ktonnes CO2eq/yr in the proportion 6:86:8 N2O:CO2:CH4. The emissions factor for 1 tonne of organic carbon entering the UK fluvial network has a median value of 2.95 tonnes CO2eq/yr with a 5th to 95th percentile range of 2.55 to 3.59 tonnes CO2eq/yr. Globally, a per capita values for countries with municipal treated water supply would be 0.8 to 0.86 kg C/ca/yr.

  13. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    NASA Astrophysics Data System (ADS)

    Nagel, Holger; Weickhardt, Christian; Boesl, Ulrich; Frey, Rüdiger

    1995-04-01

    The analysis of mixtures of technical gases still comprises a lot of problems: the large number of components with very different and often rapidly varying concentrations makes great demands on analytical methods. By use of conventional analytical methods, signals of trace substances may interfere with signals of main components, whereas small signals representing low concentrations are covered by signals of main substances. The resonant-enhanced multiphoton ionization (REMPI) makes use of excited intermediate states of molecules. As these states are characteristic of each substance, one or more components of interest can be ionized with high efficiency without interference of other molecules by using a special laser-wavelength. The combination of the above mentioned ionization method with a reflectron time-of-flight mass spectrometer permits a very fast and sensitive detection of preselected trace substances. As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances.

  14. Monitoring complex trace-gas mixtures by long-path laser absorption spectrometry. [in long duration manned mission closed environments

    NASA Technical Reports Server (NTRS)

    Green, B. D.; Steinfeld, J. I.

    1976-01-01

    Laser-based spectrophotometric methods, which have been proposed for the detection of trace concentrations of gaseous contaminants, include Raman and passive radiometry. The paper discusses a simple long-path laser absorption method which is capable of resolving complex mixtures of closely related trace contaminants at ppm levels. A number of species were selected which are most likely to accumulate in closed environments, such as submarines or long-duration manned space flights. Absorption coefficients at CO2 laser wavelengths were measured, accurate to + 3 per cent or better, for each of these species. This data base was then used to determine the presence and concentration of the contaminants in prepared mixtures of 12 to 15 gases. Computer programs have been developed which will permit a real-time analysis of the monitored atmosphere. Minimum detectable concentrations for individual species are generally in the ppm range, and are not seriously degraded by interferences even in complex mixtures. Estimates of the dynamic range of this monitoring technique for various system configurations and comparison with other methods of analysis are discussed

  15. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  16. TRACKING THE EMISSION OF CARBON DIOXIDE BY NATION, SECTOR, AND FUEL TYPE: A TRACE GAS ACCOUNTING SYSTEM (TGAS)

    EPA Science Inventory

    The paper describes a new way to estimate an efficient econometric model of global emissions of carbon dioxide (CO2) by nation, sector, and fuel type. Equations for fuel intensity are estimated for coal, oil, natural gas, electricity, and heat for six sectors: agricultural, indus...

  17. Retrieval of vertical trace gas profiles from ground-based infrared absorption spectra inside and outside the Antarctic vortex using SFIT2

    NASA Astrophysics Data System (ADS)

    Wood, S. W.; Jones, N. B.; Rinsland, C. P.; Goldman, A.; Connor, B. J.; Stephen, T. M.; Lawrence, B. N.; Murcray, F. J.

    2001-05-01

    SFIT2 has been developed by NIWA, NASA Langley and the University of Denver for the retrieval of vertical trace-gas profiles from high-resolution ground-based infrared absorption spectra measured with Fourier transform spectrometers. Such measurements are made at a number of sites around the world as part of the Network for the Detection of Stratospheric Change (NDSC). The vertical profile information in the measurement is due to the pressure broadening of atmospheric absorption lines in the spectra. The retrieval method is optimal estimation, which uses information from the measurement and supplied a priori information to construct an optimal solution based on the assumed uncertainties of these two information sources. We have used SFIT2 to analyse high spectral resolution (0.0035 cm-1) infrared solar absorption spectra recorded at Arrival Heights in Antarctica (78o S), from shortly after sunrise (day 240) to the end of the year in 1999. The motion of the Antarctic vortex, and the chemical processes within it, cause large changes in the vertical profiles of most of the trace gases measured over the site. We have made use of analyses of scaled potential vorticity (sPV) from UKMO data to classify measurements as inside or outside the vortex. This information has been incorporated into the selection of a priori profile information for the analyses of a number of trace gases that are chemically active or act as tracers, including O3, HNO3, N2O, CH4, HCl and ClONO2. The retrieved mixing ratios of these gases in the lower stratosphere show that the station sampled primarily vortex air during the spring period while the vortex existed, but had brief periods outside the vortex near day 290 and again close to vortex breakdown. Comparison with independent measurements, such as the sPV calculations, satellite temperature measurements and correlative TOMS total ozone measurements, are consistent with these retrievals.

  18. The Art of Abstracting.

    ERIC Educational Resources Information Center

    Cremmins, Edward T.

    A three-stage analytical reading method for the composition of informative and indicative abstracts by authors and abstractors is presented in this monograph, along with background information on the abstracting process and a discussion of professional considerations in abstracting. An introduction to abstracts and abstracting precedes general…

  19. Particulate and trace gas emissions from prescribed burns in southeastern U.S. fuel types: Summary of a 5-year project

    SciTech Connect

    Weise, David; Johnson, Timothy J.; Reardon, James

    2015-03-04

    Management of smoke from prescribed fires requires knowledge of fuel quantity and the amount and composition of the smoke produced by the fire to minimize adverse impacts on human health. A five-year study produced new emissions information for more than 100 trace gases and particulate matter in smoke for fuel types found in the southern United States of America using state-of-the-art instrumentation in both laboratory and field experiments. Emission factors for flaming, smoldering, and residual smoldering were developed. Agreement between laboratory and field-derived emission factors was generally good in most cases. Reference spectra of over 50 wildland fire gas-phase smoke components were added to a publicly-available database to support identification via infrared spectroscopy. Fuel loading for the field experiments was similar to previously measured fuels. This article summarizes the results of a five-year study to better understand the composition of smoke during all phases of burning for such forests.

  20. Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers.

    PubMed

    Mattiello, Mario; Niklès, Marc; Schilt, Stéphane; Thévenaz, Luc; Salhi, Abdelmajid; Barat, David; Vicet, Aurore; Rouillard, Yves; Werner, Ralph; Koeth, Johannes

    2006-04-01

    A new and compact photoacoustic sensor for trace gas detection in the 2-2.5 microm atmospheric window is reported. Both the development of antimonide-based DFB lasers with singlemode emission in this spectral range and a novel design of photoacoustic cell adapted to the characteristics of these lasers are discussed. The laser fabrication was made in two steps. The structure was firstly grown by molecular beam epitaxy then a metallic DFB grating was processed. The photoacoustic cell is based on a Helmholtz resonator that was designed in order to fully benefit from the highly divergent emission of the antimonide laser. An optimized modulation scheme based on wavelength modulation of the laser source combined with second harmonic detection has been implemented for efficient suppression of wall noise. Using a 2211 nm laser, sub-ppm detection limit has been demonstrated for ammonia.

  1. Mid-infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4

    NASA Technical Reports Server (NTRS)

    Chen, W.; Mouret, G.; Boucher, D.; Tittel, F. K.

    2001-01-01

    A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4-4.5 micrometers region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal. DFG power levels of 10 microW were generated at approximately 4 micrometers in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of 12 cm-1 and a temperature tuning rate of 1.02 cm-1/degree C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described.

  2. Determination of benzene at trace levels in air by a novel method based on solid-phase microextraction gas chromatography/mass spectrometry.

    PubMed

    Saba, A; Cuzzola, A; Raffaelli, A; Pucci, S; Salvadori, P

    2001-01-01

    A new method for the determination of benzene at trace levels in air is presented. The method consists of the collection of air samples on adsorbent cartridges with simultaneous adsorption of pre-established amounts of D6-labeled internal standard. Desorption from the cartridge is performed by solid-phase microextraction (SPME) with analysis by gas chromatography/mass spectrometry (GC/MS) using an ion trap mass spectrometer. The influence of several parameters (type of SPME fiber, temperature, time, for example) was investigated, and good linearity in the range 10-400 ng of C6D6, with a coefficient of variance (CV) around 3-5%, was obtained. The method was tested by sampling air in a town center in Italy, and a benzene concentration of approximately 50 microg/m(3) was determined. The maximum limit recommended by the European Community is 10 microg/m(3).

  3. A selected ion flow tube study of the reactions of NO + and O + 2 ions with some organic molecules: The potential for trace gas analysis of air

    NASA Astrophysics Data System (ADS)

    Španěl, Patrik; Smith, David

    1996-02-01

    A study has been carried out using our selected ion flow tube apparatus of the reactions of NO+ and O+2 ions in their vibronic ground states with ten organic species: the hydrocarbons, benzene, toluene, isoprene, cyclopropane, and n-pentane; the oxygen-containing organics, methanol, ethanol, acetaldehyde, acetone, and diethyl ether. The major objectives of this work are, on the one hand, to fully understand the processes involved in these reactions and, on the other hand, to explore the potential of NO+ and O+2 as chemical ionization agents for the analysis of trace gases in air and on human breath. Amongst the NO+ reactions, charge transfer, hydride-ion transfer, and termolecular association occur, and the measured rate coefficients, k, for the reactions vary from immeasurably small to the maximum value, collisional rate coefficient, kc. The O+2 reactions are all fast, in each case the k being equal to or an appreciable fraction of kc, and charge transfer producing the parent organic ion or dissociative charge transfer resulting in two or three fragments of the parent ion are the reaction processes that occur. We conclude from these studies, and from previous studies, that NO+ ions and O+2 ions can be used to great effect as chemical ionization agents for trace gas analysis, especially in combination with H3O+ ions which we now routinely use for this purpose.

  4. Simultaneous determination of nine trace organophosphorous pesticide residues in fruit samples using molecularly imprinted matrix solid-phase dispersion followed by gas chromatography.

    PubMed

    Wang, Xilong; Qiao, Xuguang; Ma, Yue; Zhao, Tao; Xu, Zhixiang

    2013-04-24

    How to determine trace multipesticide residues in fruits is an important problem. This paper reports a molecularly imprinted polymer (MIP) that was prepared using 4-(dimethoxyphosphorothioylamino)butanoic acid as the template, acrylamide as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The novel imprinted polymer was characterized by static and kinetic adsorption experiments, and it exhibited good recognition ability and fast adsorption-desorption dynamicd toward trichlorfon, malathion, acephate, methamidophos, omethoate, dimethoate, phosphamidon, monocrotophos, and methyl parathion. Using this imprinted polymer as sorbent, matrix solid-phase dispersion coupled to gas chromatography for simultaneous determination of nine trace organophosphorus pesticide residues was first presented. Under the optimized conditions, the LOD (S/N = 3) of this method for the nine organophosphorus was 0.3-1.6 μg kg(-1); the RSD for three replicate extractions ranged from 1.2 to 4.8%. The apple and pear samples spiked with nine organophosphate pesticides at levels of 20 and 100 μg kg(-1) were determined according to this method with good recoveries ranging from 81 to 105%. Moreover, this developed method was successfully applied to the quantitative detection of the nine organophosphorus pesticide residues in orange samples.

  5. Trace gas detection from fermentation processes in apples; an intercomparison study between proton-transfer-reaction mass spectrometry and laser photoacoustics

    NASA Astrophysics Data System (ADS)

    Boamfa, E. I.; Steeghs, M. M. L.; Cristescu, S. M.; Harren, F. J. M.

    2004-12-01

    A custom-built proton-transfer-reaction mass spectrometry (PTR-MS) instrument was used to monitor the emission of various compounds (aldehydes, alcohols, acids, acetates and C-6 compounds) related to fermentation, aroma and flavour, released by four apple cultivars (Elstar, Jonaglod, Granny Smith and Pink Lady) under short anaerobic (24 h) and post-anaerobic conditions. The novel feature of our instrument is the new design of the collisional dissociation chamber, which separates the high pressure in the drift tube (2 mbar) from the high vacuum pressure in the detection region (10-6 mbar). The geometry of this chamber was changed and a second turbo pump was added to reduce the influence of collisional loss of ions, background signals and cluster ions, which facilitates the interpretation of the mass spectra and increases the signal intensity at the mass of the original protonated compound. With this system, detection limits of similar magnitude to the ones reported in literature are reached. An intercomparison study between PTR-MS and a CO laser-based photoacoustic trace gas detector is presented. The alcoholic fermentation products (acetaldehyde and ethanol) from young rice plants were simultaneously monitored by both methods. A very good agreement was observed for acetaldehyde production. The photoacoustic detector showed about two times lower ethanol concentration as compared to PTR-MS, caused by memory effects due to sticking of compounds to the walls of the nylon tube used to transport the trace gases to the detector.

  6. Simple field-based automated dispersive liquid-liquid microextraction of trace level phthalate esters in natural waters with gas chromatography and mass spectrometric analysis.

    PubMed

    Leng, Geng; Chen, Wenjin; Wang, Yong

    2016-09-01

    A small, simple, and field-based automated dispersive liquid-liquid microextraction method followed by gas chromatography mass spectrometric analysis was developed for trace level phthalate esters analysis in natural waters. With a single syringe pump that is coupled with a multiposition valve, the whole extraction procedure including cleaning, sampling, mixing of extractant and disperser solvents, extraction, phase separation, and analytes collection was carried out in a totally automated way with a sample throughput of 21 h(-1) . Key factors, such as type and ratio of the extractant and disperser solvent, aspiration flow rate, extraction time, and matrix effect, were thoroughly investigated. Under the optimum conditions, linearity was found in the range from 0.03 to 60 μg/L. Limits of detection ranged from 0.0015 to 0.003 μg/L. Enrichment factors were in a range of 106-141. Reproducibility and recoveries were assessed by testing a series of three natural water samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real surface waters. The developed system is inexpensive, light (2.6 kg), simple to use, applicable in the field, with high sample throughput, and sensitive enough for trace level phthalate esters analysis in natural waters.

  7. International Symposium on Gas Kinetics (11th) Held in Assisi (Perugia), Italy on 2-7 September 1990. Book of Abstracts

    DTIC Science & Technology

    1990-09-07

    conditions.7 The present work on liquid sulfuric acid solutions will be presented and the atmospheric implications of the results will be discussed...in bond forming and breaking. Transition states have been identified for the reaction mechanism occurring via the formic acid intermediate, CO + (n+l...as traditional, themes in Gas Phase Kinetics. Highlighted topics include: A) Atmospheric Chemistry; B) Theory of Reactive, Inelastic, and

  8. Chemical Properties, Decomposition, and Methane Production of Tertiary Relict Plant Litters: Implications for Atmospheric Trace Gas Production in the Early Tertiary

    NASA Astrophysics Data System (ADS)

    Yavitt, J. B.; Bartella, T. M.; Williams, C. J.

    2006-12-01

    Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the

  9. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 High Altitude LOng Range (HALO) research aircraft during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra that are spectrally sampled every 0.625 cm-1. A total of 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line of sight. Simultaneous in situ observations by the Basic Halo Measurement and Sensor System (BAHAMAS), the Fast In-situ Stratospheric Hygrometer (FISH), an ozone detector named Fairo, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in situ trace gas data, and discrepancies can to a large extent be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  10. Level 2 processing for the imaging Fourier transform spectrometer GLORIA: derivation and validation of temperature and trace gas volume mixing ratios from calibrated dynamics mode spectra

    NASA Astrophysics Data System (ADS)

    Ungermann, J.; Blank, J.; Dick, M.; Ebersoldt, A.; Friedl-Vallon, F.; Giez, A.; Guggenmoser, T.; Höpfner, M.; Jurkat, T.; Kaufmann, M.; Kaufmann, S.; Kleinert, A.; Krämer, M.; Latzko, T.; Oelhaf, H.; Olchewski, F.; Preusse, P.; Rolf, C.; Schillings, J.; Suminska-Ebersoldt, O.; Tan, V.; Thomas, N.; Voigt, C.; Zahn, A.; Zöger, M.; Riese, M.

    2014-12-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the Transport And Composition in the upper Troposphere/lowermost Stratosphere (TACTS) and Earth System Model Validation (ESMVAL) campaigns in summer 2012. This paper describes the retrieval of temperature and trace gas (H2O, O3, HNO3) volume mixing ratios from GLORIA dynamics mode spectra. 26 integrated spectral windows are employed in a joint fit to retrieve seven targets using consecutively a fast and an accurate tabulated radiative transfer model. Typical diagnostic quantities are provided including effects of uncertainties in the calibration and horizontal resolution along the line-of-sight. Simultaneous in-situ observations by the BAsic HALO Measurement And Sensor System (BAHAMAS), the Fast In-Situ Stratospheric Hygrometer (FISH), FAIRO, and the Atmospheric chemical Ionization Mass Spectrometer (AIMS) allow a validation of retrieved values for three flights in the upper troposphere/lowermost stratosphere region spanning polar and sub-tropical latitudes. A high correlation is achieved between the remote sensing and the in-situ trace gas data, and discrepancies can to a large fraction be attributed to differences in the probed air masses caused by different sampling characteristics of the instruments. This 1-D processing of GLORIA dynamics mode spectra provides the basis for future tomographic inversions from circular and linear flight paths to better understand selected dynamical processes of the upper troposphere and lowermost stratosphere.

  11. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, C. R.; Liu, X.; Leitch, J. W.; Chance, K.; González Abad, G.; Liu, C.; Zoogman, P.; Cole, J.; Delker, T.; Good, W.; Murcray, F.; Ruppert, L.; Soo, D.; Follette-Cook, M. B.; Janz, S. J.; Kowalewski, M. G.; Loughner, C. P.; Pickering, K. E.; Herman, J. R.; Beaver, M. R.; Long, R. W.; Szykman, J. J.; Judd, L. M.; Kelley, P.; Luke, W. T.; Ren, X.; Al-Saadi, J. A.

    2015-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a testbed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas in September 2013. Measurements of backscattered solar radiation between 420-465 nm collected on four days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 molecules cm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.91 for the most polluted day). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.84, slope = 0.94). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  12. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    NASA Astrophysics Data System (ADS)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; González Abad, Gonzalo; Liu, Cheng; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; Murcray, Frank; Ruppert, Lyle; Soo, Daniel; Follette-Cook, Melanie B.; Janz, Scott J.; Kowalewski, Matthew G.; Loughner, Christopher P.; Pickering, Kenneth E.; Herman, Jay R.; Beaver, Melinda R.; Long, Russell W.; Szykman, James J.; Judd, Laura M.; Kelley, Paul; Luke, Winston T.; Ren, Xinrong; Al-Saadi, Jassim A.

    2016-06-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m × 250 m spatial resolution with a fitting precision of 2.2 × 1015 moleculescm-2. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  13. A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections

    NASA Astrophysics Data System (ADS)

    Sargent, S.; Somers, J. M.

    2015-12-01

    Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.

  14. Quantification of trace O-containing compounds in GTL process samples via Fischer-Tropsch reaction by comprehensive two-dimensional gas chromatography/mass spectrometry.

    PubMed

    Fernandes, Daniella R; Pereira, Vinícius B; Stelzer, Karen T; Gomes, Alexandre O; Neto, Francisco R Aquino; Azevedo, Débora A

    2015-11-01

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was successfully applied to eight real Brazilian Fischer-Tropsch (FT) product samples for the quantitative analysis of O-containing compounds. It not only allowed identifying and quantifying simultaneously a large number of O-containing compounds but also resolved many co-eluting components, such as carboxylic acids, which co-elute in one-dimensional gas chromatography. The homologous series of alcohols and carboxylic acids as trimethylsilyl derivatives were detected and identified at trace levels. The absolute quantification of each compound was accomplished with reliability using analytical curves. Linear alcohols (from C5 to C19), branched alcohols (C6-C13) and carboxylic acids (C4 to C12) were obtained in the range of 1.58 mg g(-1) to 14.75 mg g(-1), 0.51 mg g(-1) to 1.12 mg g(-1) and 0.21 mg g(-1) to 1.63 mg g(-1) of FT product samples, respectively. GC×GC-TOFMS provided a linear range (from 0.3 ng µL(-1) to 10 ng µL(-1)), good precision (<8%), and excellent accuracy (recovery range of 77% to 118%) for quantification of individual O-containing compounds in FT product samples. The results can benefit the development of gas-to-liquid technologies from natural gas and guide the choice of an FT conversion process that generates clean products with higher added value.

  15. Characterization and measurement of natural gas trace constituents. Volume 1. Arsenic. Final report, June 1989-October 1993

    SciTech Connect

    Chao, S.S.; Attari, A.

    1995-01-01

    The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent with XRF and an IGT developed sorbent with GFAA for total arsenic measurement.

  16. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the Southeastern and Southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-07-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61±12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  17. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    NASA Astrophysics Data System (ADS)

    Burling, I. R.; Yokelson, R. J.; Griffith, D. W. T.; Johnson, T. J.; Veres, P.; Roberts, J. M.; Warneke, C.; Urbanski, S. P.; Reardon, J.; Weise, D. R.; Hao, W. M.; de Gouw, J.

    2010-11-01

    Vegetation commonly managed by prescribed burning was collected from five southeastern and southwestern US military bases and burned under controlled conditions at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The smoke emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP-FTIR) spectrometer for measurement of gas-phase species. The OP-FTIR detected and quantified 19 gas-phase species in these fires: CO2, CO, CH4, C2H2, C2H4, C3H6, HCHO, HCOOH, CH3OH, CH3COOH, furan, H2O, NO, NO2, HONO, NH3, HCN, HCl, and SO2. Emission factors for these species are presented for each vegetation type burned. Gas-phase nitrous acid (HONO), an important OH precursor, was detected in the smoke from all fires. The HONO emission factors ranged from 0.15 to 0.60 g kg-1 and were higher for the southeastern fuels. The fire-integrated molar emission ratios of HONO (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values also observed for the southeastern fuels. The majority of non-methane organic compound (NMOC) emissions detected by OP-FTIR were oxygenated volatile organic compounds (OVOCs) with the total identified OVOC emissions constituting 61 ± 12% of the total measured NMOC on a molar basis. These OVOC may undergo photolysis or further oxidation contributing to ozone formation. Elevated amounts of gas-phase HCl and SO2 were also detected during flaming combustion, with the amounts varying greatly depending on location and vegetation type. The fuels with the highest HCl emission factors were all located in the coastal regions, although HCl was also observed from fuels farther inland. Emission factors for HCl were generally higher for the southwestern fuels, particularly those found in the chaparral biome in the coastal regions of California.

  18. The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field

    NASA Astrophysics Data System (ADS)

    Breuninger, C.; Oswald, R.; Kesselmeier, J.; Meixner, F. X.

    2012-05-01

    We describe a dynamic chamber system to determine reactive trace gas exchange fluxes between plants and the atmosphere under laboratory and, with small modifications, also under field conditions. The system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. The chambers are made of transparent and chemically inert wall material and do not disturb plant physiology. For NO2 detection we used a highly NO2 specific blue light converter coupled to chemiluminescence detection of the photolysis product, NO. Exchange flux densities derived from dynamic chamber measurements are based on very small concentration differences of NO2 (NO, O3) between inlet and outlet of the chamber. High accuracy and precision measurements are therefore required, and high instrument sensitivity (limit of detection) and the statistical significance of concentration differences are important for the determination of corresponding exchange flux densities, compensation point concentrations, and deposition velocities. The determination of NO2 concentrations at sub-ppb levels (<1 ppb) requires a highly sensitive NO/NO2 analyzer with a lower detection limit (3σ-definition) of 0.3 ppb or better. Deposition velocities and compensation point concentrations were determined by bi-variate weighted linear least-squares fitting regression analysis of the trace gas concentrations, measured at the inlet and outlet of the chamber. Performances of the dynamic chamber system and data analysis are demonstrated by studies of Picea abies L. (Norway Spruce) under field and laboratory conditions. Our laboratory data show that the quality selection criterion based on the use of only significant NO2 concentration differences has a considerable impact on the resulting compensation point concentrations yielding values closer to zero. The results of field experiments demonstrate the need to consider photo-chemical reactions of NO, NO2, and O

  19. The effect of IGFC warm gas cleanup system conditions on the gas–solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes

    SciTech Connect

    Trembly, J.P.; Gemmen, R.S.; Bayless, D.J.

    2007-01-01

    The U.S. Department of Energy is currently working on coupling coal gasification and high temperature fuel cell to produce electrical power in a highly efficient manner while being emissions free. Many investigations have already investigated the effects of major coal syngas species such as CO and H2S. However coal contains many trace species and the effect of these species on solid oxide fuel cell anode is not presently known.Warm gas cleanup systems are planned to be used with these advanced power generation systems for the removal of major constituents such as H2S and HCl but the operational parameters of such systems is not well defined at this point in time. This paper focuses on the effect of anticipated warm gas cleanup conditions has on trace specie partitioning between the vapor and condensed phase and the effects the trace vapor species have on the SOFC anode. Results show that Be, Cr, K, Na, V, and Z trace species will form condensed phases and should not effect SOFC anode performance since it is anticipated that the warm gas cleanup systems will have a high removal efficiency of particulate matter. Also the results show that Sb, As, Cd, Hg, Pb, P, and Se trace species form vapor phases and the Sb, As, and P vapor phase species show the ability to form secondary Ni phases in the SOFC anode.

  20. Tracing groundwater input into Lake Vanda, Wright Valley, Antarctica using major ions, stable isotopes and noble gas

    NASA Astrophysics Data System (ADS)

    Dowling, C. B.; Poreda, R. J.; Snyder, G. T.

    2008-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, is the largest ice-free region on Antarctica. Lake Vanda, located in central Wright Valley, is the deepest lake among the MDV lakes. It has a relatively fresh water layer above 50 m with a hypersaline calcium-chloride brine below (50-72 m). The Onyx River is the only stream input into Lake Vanda. It flows westward from the coastal Lower Wright Glacier and discharges into Lake Vanda. Suggested by the published literature and this study, there has been and may still be groundwater input into Lake Vanda. Stable isotopes, major ions, and noble gas data from this study coupled with previously published data indicate that the bottom waters of Lake Vanda have had significant contributions from a deep groundwater system. The dissolved gas of the bottom waters of Lake Vanda display solubility concentrations rather than the Ar-enriched dissolved gas seen in the Taylor Valley lakes (such as Lake Bonney). The isotopic data indicate that the bottom calcium-chloride-brine of Lake Vanda has undergone very little evaporation. The calcium-chloride chemistry of the groundwater that discharges into Lake Vanda most likely results from the chemical weathering and dissolution of cryogenic evaporites (antarcticite and gypsum) within the glacial sediments of Wright Valley. The high calcium concentrations of the brine have caused gypsum to precipitate on the lake bottom. Our work also supports previous physical and chemical observations suggesting that the upper portion actively circulates and the hypersaline bottom layer does not. The helium and calcium chloride values are concentrated at the bottom, with a very narrow transition layer between it and the above fresh water. If the freshwater layer did not actively circulate, then diffusion over time would have caused the helium and calcium chloride to slowly permeate upwards through the water column.

  1. Miniature Gas Chromatograph (GC): Penning Ionization Electron Spectroscopy (PIES) Instrument for the Trace Analyses of Extraterrestrial Environments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Sheverev, Valery A.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    In situ exploration of the solar system to identify its early chemistry as preserved in icy bodies and to look for compelling evidence of astrobiology will require new technology for chemical analysis. Chemical measurements in space flight environments highlight the need for a high level of positive identification of chemical compounds, since re-measurement by alternative techniques for confirmation will not be feasible. It also may not be possible to anticipate all chemical species that are observed, and important species may be present only at trace levels where they can be masked by complex chemical backgrounds. Up to now, the only techniques providing independent sample identification of GC separated components across a wide range of chemical species have been Mass Spectrometry (MS) and Ion Mobility Spectrometry (IMS). We describe here the development of a versatile and robust miniature GC detector based on Penning Ionization Electron Spectroscopy (PIES), for use with miniature GC systems being developed for planetary missions. PIES identifies the sample molecule through spectra related to its ionization potential. The combination of miniature GC technology with the primary identification capabilities of PIES provides an analytical approach ideal for planetary analyses.

  2. Stationary phase selection and comprehensive two-dimensional gas chromatographic analysis of trace biodiesel in petroleum-based fuel.

    PubMed

    Seeley, John V; Bates, Carly T; McCurry, James D; Seeley, Stacy K

    2012-02-24

    The GC×GC solvation parameter model has been used to identify effective stationary phases for the separation of fatty acid methyl esters (FAMEs) from petroleum hydrocarbons. This simple mathematical model was used to screen the 1225 different combinations of 50 stationary phases. The most promising pairs combined a poly(methyltrifluoropropylsiloxane) stationary phase with a poly(dimethyldiphenylsiloxane) stationary phase. The theoretical results were experimentally tested by equipping a GC×GC instrument with a DB-210 primary stationary phase and an HP-50+ secondary stationary phase. This instrument was used to analyze trace levels of FAMEs in kerosene. The FAMEs were fully separated from the petroleum hydrocarbons on the secondary dimension of the 2-D chromatogram. The resulting GC×GC method was shown to be capable of accurately quantifying FAME levels as low as 2 ppm (w/w). These results demonstrate the utility of the solvation parameter model for identifying optimal stationary phases for high resolution GC×GC separations. Furthermore, this work presents an effective method for determining the level of biodiesel contamination in aviation fuel and other petroleum-based fuels.

  3. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the southeastern and southwestern United States

    SciTech Connect

    Burling, Ian; Yokelson, Robert J.; Griffith, David WT; Johnson, Timothy J.; Veres, Patrick; Roberts, J.; Warneke, Carsten; Urbanski, Shawn; Reardon, James; Weise, David; Hao, WeiMin; Gouw, Joost de

    2010-11-25

    Fuels commonly managed by prescribed burning were collected from five Department of Defense (DoD) bases in the southeast and southwest U.S. and burned under controlled conditions at the USFS Firelab in Missoula, MT. The smoke emissions were measured with a large suite of state-of-the-art instrumentation. A key instrument used in the measurement of the gas-phase species in smoke was an open-path Fourier transform infrared (OP FTIR) spectrometer. The OP FTIR detected and quantified 19 gas-phase species in these fires - CO2, CO, H2O, NO2, NO, HONO, NH3, HCl, SO2, CH4, CH3OH, HCHO, HCOOH, C2H2, C2H4, CH3COOH, HCN, C3H6 and C4H4O. Of particular interest, gas-phase nitrous acid (HONO) was detected in the smoke from all fires. The HONO emission factor ranged from 0.15 to 0.60 g kg 1 and was higher for the southeast fuels. Similarly, the fire-integrated molar emission ratios (relative to NOx) ranged from approximately 0.03 to 0.20, with higher values observed for the southeast fuels. HONO is an important precursor in the production of OH, the primary oxidizing species in the atmosphere but there exists little previous data documenting HONO emissions from either wild or prescribed fires. The detected non-methane organic compound (NMOC) emissions were dominated by oxygenated volatile organic compounds (OVOCs) with total identified molar OVOC emissions ranging from 39 to 79% of the total identified molar non-methane organic compounds (NMOC). Emitted NMOC can undergo further oxidation and photolysis in the case of OVOC and thus involved in secondary aerosol formation. Elevated amounts of gas-phase HCl and SO2 were also detected in the smoke, with the amounts varying depending on location and vegetation type. Emission factors for HCl were typically much higher for the southwest fuels, particularly those found in the chaparral biome in the coastal regions of California.

  4. Detection of trace levels of triclopyr using capillary gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry.

    PubMed

    Begley, P; Foulger, B E

    1988-04-01

    Triclopyr, after esterification, is shown to be a suitable candidate for detection by gas chromatography-electron-capture negative-ion chemical ionization mass spectrometry forming a characteristic carboxylate anion which offers a high detection sensitivity. A detection limit of 70 fg reaching the ionizer is indicated. Low backgrounds and an absence of chemical interferences are shown for vegetation extracts, using a simple method of extraction and derivatisation. A similar behaviour is demonstrated for 2,4-D and 2,4,5-T.

  5. Noble Gas Tracing of Subsurface CO2 Origin and the Role of Groundwater as a CO2 Sink

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Ballentine, C. J.; Schoell, M.; Stevens, S. H.

    2003-12-01

    The source, generation, migration and accumulation of CO2 gas associated either alone or with hydrocarbons are unclear and therefore hard to predict. So far, noble gases provide one of the best tools to resolve this question, because they are conservative within the subsurface system. The atmosphere-derived noble gases dissolved in groundwater do not react with the rock system, while noble gases produced in the rock phase by radioactive decay or input from magmatic source are isotopically distinct and can be resolved from the dissolved air-derived noble gases. 10 samples were taken from a CO2-rich natural gas reservoir in Jackson Dome, Mississippi, USA to investigate its origin and extent of interaction with the groundwater system. The area lies within the Mississippi Interior Salt Basin. It is bounded on the north by the Pickens-Gilbertown fault system, the updip limit of the Jurassic Louann Salt unit, and on the south by basement highs of the Wiggins, South Mississippi, and Lasalle uplifts. We present compositional, stable isotope and noble gas results of Jackson Dome samples. Gas composition is 98.75-99.38% CO2, with small amounts of methane and nitrogen. CO2 content increases linearly with the decrease of CH4. d13C(CO2) in all samples ranges between -3.55 and -2.57 per mil, increasing with the increase of the CO2 content. Atmosphere-derived He contributions are negligible in all cases. 3He/4He ratios are between 4.27 and 5.01Ra, indicating a strong mantle signature. Crustal 4He in these samples therefore accounts for between 7.0% and 20.8%, the remainder being magmatic in origin. 40Ar/36Ar ratios are all above air ratio, ranging between 4071 and 6420. Air corrected 40Ar* vary between 92.7 and 95.4%, to give 4He/40Ar* ratios of between 1.26 and 2.52. This range is comparable with values estimated for the upper mantle. CO2/3He values are between 1.09E+9 and 4.62E+9, and also fall in the mantle range, indicating that the CO2 gas in Jackson Dome is also

  6. An overview of the flight campaign for the GAUGE project: airborne greenhouse gas (and other complementary trace gas) measurements around and over the UK between April 2014 and May 2015

    NASA Astrophysics Data System (ADS)

    Allen, Grant; Pitt, Joseph; Le Breton, Michael; Percival, Carl; Bannan, Thomas; O'Doherty, Simon; Manning, Alistair; Rigby, Matt; Gannesan, Anita; Mead, Mohammed; Bauguitte, Stephane; Lee, James; Wenger, Angelina; Palmer, Paul

    2016-04-01

    This work highlights data measured during flights by the UK Facility for Airborne Atmospheric Measurement (FAAM) as part of the Greenhouse gAs UK and Global Emissions (GAUGE) campaign. A total of 17 flights (85 flight-hours) have been conducted so far around the UK mainland and Ireland to sample precision in situ CH4, CO2, N2O (and other trace gas) concentrations and meteorological parameters at altitudes up to 9500m throughout the period April 2014 to May 2015. Airborne remote sensing retrievals of greenhouse gas total columns have also been calculated using the Manchester Airborne Retrieval Scheme for the UK Met Office ARIES high resolution FTIR instrument. This airborne dataset represents a mapped climatology and a series of case studies from which to assess top-down bulk-net-flux snapshots for regions of the UK, and provides for evaluation of inverse modelling approaches that challenge bottom-up inventories, satellite remote sensing measurements, and assessment of model transport uncertainty. In this paper, we shall describe the instrumentation on the FAAM aircraft and provide a diary of GAUGE FAAM flights (and data highlights) to date; and discuss selected flights of interest to studies such as those above with a focus of net mass flux evaluation.

  7. Comparison of measured reactive trace gas profiles with a multi-layer canopy chemical exchange model in an Amazonian rainforest

    NASA Astrophysics Data System (ADS)

    Wolff, Stefan; Ganzeveld, Laurens; Tsokankunku, Anywhere; Pöhlker, Christopher; de Abreu Sá, Leonardo Deane; Ocimar Manzi, Antonio; Souza, Rodrigo; Trebs, Ivonne; Sörgel, Matthias

    2016-04-01

    In 2011, an 80 m high walk up tower for atmospheric research was erected at the ATTO (Amazon Tall Tower Observatory) site (02°08'38.8''S, 58°59'59.5''W) in the remote Amazonian rainforest. The nearly pristine environment allows biosphere-atmosphere studies within an ecosystem far away from large anthropogenic emission sources. Since April 2012 vertical mixing ratio profiles of H2O, CO2 and O3 were measured at 8 different heights between 0.05 m and 79.3 m. During five intensive campaigns (Oct-Dec 2012, Oct-Nov 2013, Mar 2014, Aug-Sep 2014, Oct-Dec 2015) nitric oxide (NO) and nitrogen dioxide (NO2) were also measured. We applied the Multi-layer Canopy Chemical Exchange Model - MLC-CHEM to support the analysis of the observed profiles of NOx and O3. This includes inferring bi-directional surface-atmosphere exchange fluxes as well as the role of the canopy interactions between the emissions, dry deposition, chemistry and turbulent transport of trace gases. During our investigation of diurnal and seasonal differences between model and measurements, we conducted a set of sensitivity studies to analyse the effects of changes in NOx-soil emissions, in-canopy turbulence and resistances for O3 and NO2 uptake on wet surfaces. These analyses suggest some modification in the representation of some of the poorly constrained canopy processes resulting in a significantly better comparison between the simulated and measured exchange fluxes and concentrations.

  8. Pyrolysis-capillary gas chromatography-mass spectrometry for the determination of polyvinyl chloride traces in solid environmental samples.

    PubMed

    Tienpont, B; David, F; Vanwalleghem, F; Sandra, P

    2001-03-16

    A novel method based on pyrolysis-capillary gas chromatography-mass spectrometry (CGC-MS) was developed for the quantitative analysis of polyvinylchloride (PVC) in solid environmental samples like sludge and dust. The samples are extracted and the extract is fractionated by solid-phase extraction (SPE). Possibly interfering biological and frequently occuring synthetic polymers are removed by this clean-up. The final extract is analyzed by pyrolysis-CGC-MS. Selective detection of PVC is performed by using specific markers in the pyrogram. Quantitation is done on naphthalene. Good linearity was obtained in a range from 0.5 to 100 microg applied to the pyrolyser. The limit of quantitation (LOQ) in sludge and dust samples is 10 mg/kg dry mass. A correlation between PVC and phthalates was made for sewage sludge samples.

  9. Potential for Measurement of Trace Volatile Organic Compounds in Closed Environments Using Gas Chromatograph/Differential Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Cheng, Patti

    2007-01-01

    For nearly 3.5 years, the Volatile Organic Analyzer (VOA) has routinely analyzed the International Space Station (ISS) atmosphere for a target list of approximately 20 volatile organic compounds (VOCs). Additionally, an early prototype of the VOA collected data aboard submarines in two separate trials. Comparison of the data collected on ISS and submarines showed a surprising similarity in the atmospheres of the two environments. Furthermore, in both cases it was demonstrated that the VOA data can detect hardware issues unrelated to crew health. Finally, it was also clear in both operations that the VOA s size and resource consumption were major disadvantages that would restrict its use in the future. The VOA showed the value of measuring VOCs in closed environments, but it had to be shrunk if it was to be considered for future operations in these environments that are characterized by cramped spaces and limited resources. The Sionex Microanalyzer is a fraction of the VOA s size and this instrument seems capable of maintaining or improving upon the analytical performance of the VOA. The two design improvements that led to a smaller, less complex instrument are the Microanalyzer s use of recirculated air as the gas chromatograph s carrier gas and a micromachined detector. Although the VOA s ion mobility spectrometer and the Microanalyzer s differential mobility spectrometer (DMS) are related detector technologies, the DMS was more amenable to micromachining. This paper will present data from the initial assessment of the Microanalyzer. The instrument was challenged with mixtures that simulated the VOCs typically detected in closed-environment atmospheres.

  10. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  11. Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography

    NASA Astrophysics Data System (ADS)

    Götze, Jens; Plötze, Michael; Graupner, Torsten; Hallbauer, Dieter Klaus; Bray, Colin J.

    2004-09-01

    Pegmatite quartz from different occurrences in Norway and Namibia was investigated by a combination of ICP-MS, Electron Spin Resonance (ESR), Capillary Ion Analysis (CIA) and Gas Chromatography (GC) to quantify trace elements in very low concentrations and to determine their position in the quartz structure. The studied quartz samples show similar geochemical characteristics with low contents of most trace elements. Remarkable are the elevated concentrations of Al (36-636 ppm), Ti (1.6-25.2 ppm), Ge (1.0-7.1 ppm), Na (5.2 to >50 ppm), K (1.6 to >100 ppm) and Li (2.1-165.6 ppm). These elements are preferentially incorporated into the quartz lattice on substitutional (Al, Ti, Ge) and interstitial (Li, Na, K) positions. Li + was found to be the main charge compensating ion for Al, Ge and Ti, whereas some ppm of Na and K may also be hosted by fluid inclusions. Ti may be incorporated as substitutional ion for Si or bound on mineral microinclusions (rutile). The results of the ESR measurements show that there may be a redistribution of alkali ions during irradiation. The diamagnetic [AlO 4/M +] 0 center transforms into the paramagnetic [AlO 4] 0 center, whilst the compensating ions diffuse away and may be captured by the diamagnetic precursor centers of [GeO 4] 0 and [TiO 4] 0 to form paramagnetic centers ([TiO 4/Li +] 0, [GeO 4/Li +] 0). In general, fluid inclusions in pegmatite quartz can be classified as H 2O-CO 2-NaCl type inclusions with water as the predominant volatile. Among the main elements hosted by fluid inclusions in quartz are Na, K, NH 4, Ca, Mg and the anionic complexes Cl -, NO 3-, HCO 3- and SO 42-. Gas analysis of trapped fluids shows volatile components in the following order of abundance: H 2O > CO 2 > N 2(+) ≥ CH 4 > COS > C 2 and C 3 hydrocarbons. Additionally, traces of Co, Ni, Zn, Pb, and Cu were detected by CIA in fluid inclusions of some samples. There are indications that the REE and Rb are also bound in fluid inclusions, however, the

  12. Trace Gas Measurements in Nascent, Aged and Cloud-processed Smoke from Africa Savanna Fires by Airborne Fourier Transform Infrared Spectroscopy (AFTIR)

    NASA Technical Reports Server (NTRS)

    Yokelson, Robert J.; Bertschi, Isaac T.; Christian, Ted J.; Hobbs, Peter V.; Ward, Darold E.; Hao, Wei Min

    2003-01-01

    We measured stable and reactive trace gases with an airborne Fourier transform infrared spectrometer (AFTIR) on the University of Washington Convair-580 research aircraft in August/September 2000 during the SAFARI 2000 dry season campaign in Southern Africa. The measurements included vertical profiles of C02, CO, H20, and CH4 up to 5.5 km on six occasions above instrumented ground sites and below the TERRA satellite and ER-2 high-flying research aircraft. We also measured the trace gas emissions from 10 African savanna fires. Five of these fires featured extensive ground-based fuel characterization, and two were in the humid savanna ecosystem that accounts for most African biomass burning. The major constituents we detected in nascent CH3OOH, HCHO, CH30H, HCN, NH3, HCOOH, and C2H2. These are the first quantitative measurements of the initial emissions of oxygenated volatile organic compounds (OVOC), NH3, and HCN from African savanna fires. On average, we measured 5.3 g/kg of OVOC and 3.6 g/kg of hydrocarbons (including CH4) in the initial emissions from the fires. Thus, the OVOC will have profound, largely unexplored effects on tropical tropospheric chemistry. The HCN emission factor was only weakly dependent on fire type; the average value (0.53 g/kg) is about 20 times that of a previous recommendation. HCN may be useful as a tracer for savanna fires. Delta O3/Delta CO and Delta CH3COO/Delta CO increased to as much as 9% in <1 h of photochemical processing downwind of fires. Direct measurements showed that cloud processing of smoke greatly reduced CH30H, NH3, CH3COOH, SO2, and NO2 levels, but significantly increased HCHO and NO.

  13. Purge-assisted headspace solid-phase microextraction combined with gas chromatography/mass spectrometry for the determination of trace nitrated polycyclic aromatic hydrocarbons in aqueous samples.

    PubMed

    Hung, Cheng-Han; Ho, Hsin-Pin; Lin, Mei-Tzu; Chen, Chung-Yu; Shu, Youn-Yuen; Lee, Maw-Rong

    2012-11-23

    This study describes a new procedure, namely, purge-assisted headspace solid phase microextraction combined with gas chromatography/negative ion chemical ionization mass spectrometry (PA/HS-SPME-GC/NICI-MS), which is used to determine seven nitrated polycyclic aromatic hydrocarbons (NPAHs) in aqueous samples. High extraction efficiency was obtained with PA/HS-SPME with polydimethylsiloxane (PDMS) fiber coating. A programmable temperature vaporizing (PTV) inlet was used in the desorption process. Selected ion monitoring (SIM) was used for quantitative and qualitative purposes. The linear range of detection of the proposed method was 5-5000 pg/mL with coefficients of determination between 0.995 and 0.999. Limits of detection (LODs) for seven NPAHs were 0.01-0.06 pg/mL. The relative standard deviation was below 12.7% at a concentration of 50 pg/mL. Compared with headspace-solid phase microextraction (HS-SPME), the purge procedure enhanced the extraction efficiency for high boiling point analytes, such as 7-nitrobenz[a]anthracene (7-NBA) and 6-nitrochrysene (6-NC). The proposed method provides a sensitive method for NPAH analysis at the pg/mL level. The application of the proposed method for the determination of trace NPAHs in real samples was investigated by analyzing aqueous samples from rivers. The concentrations of NPAHs detected from the samples ranged from 5.2 to 7.5 pg/mL. This method was applied successfully in the analysis of trace NPAHs in river samples.

  14. Gas-phase SN2 and bromine abstraction reactions of chloride ion with bromomethane: reaction cross sections and energy disposal into products.

    PubMed

    Angel, Laurence A; Ervin, Kent M

    2003-01-29

    Reaction cross sections and product velocity distributions are presented for the bimolecular gas-phase nucleophilic substitution (S(N)2) reaction Cl(-) + CH(3)Br --> CH(3)Cl + Br(-) as a function of collision energy, 0.06-24 eV. The exothermic S(N)2 reaction is inefficient compared with phase space theory (PST) and ion-dipole capture models. At the lowest energies, the S(N)2 reaction exhibits the largest cross sections and symmetrical forward/backward scattering of the CH(3)Cl + Br(-) products. The velocity distributions of the CH(3)Cl + Br(-) products are in agreement with an isotropic PST distribution, consistent with a complex-mediated reaction and a statistical internal energy distribution of the products. Above 0.2 eV, the velocity distributions become nonisotropic and nonstatistical, exhibiting CH(3)Cl forward scattering between 0.2 and 0.6 eV. A rebound mechanism with backward scattering above 0.6 eV is accompanied by a new rising feature in the CH(3)Cl + Br(-) cross sections. The competitive endothermic reaction Cl(-) + CH(3)Br --> CH(3) + ClBr(-) rises from its thermochemical threshold at 1.9 +/- 0.4 eV, showing nearly symmetrically scattered products just above threshold and strong backward scattering above 3 eV associated with a second feature in the cross section.

  15. Evolution of particle properties and trace gas concentrations at the top of the Mexico City boundary layer

    NASA Astrophysics Data System (ADS)

    Raga, G.; Baumgardner, D.; Grutter, M.; Santos, B. T.; Moya, C. O.; Allan, J.

    2006-12-01

    The Altzomoni ridge is located in the Cortez Pass, in a national park, between the volcanoes of Iztaccihuatl and Popocatepetl, at an altitude of 4010 m, and 60 km to the SE of the center of Mexico City. This region is isolated from local emissions from combustion yet there is a daily incursion of pollution from either the Mexico City basin, when winds are from the west or from the Puebla valley when winds are from the east. This was the motivation for setting up instruments at this site to measure the concentrations of trace gases and the physical, chemical and optical properties of aerosol particles. A 12 m tower was also erected to measure fluxes of momentum, heat, condensation nuclei (CN) and CO2. Measurements were begun during the last week of November, 2005 and continued until early June, 2006. The concentrations of CN, CO2 and CO clearly indicate that the site is in the free troposphere at night and early morning, but the regional boundary layer grows to altitudes above the site every day. Hence, this site is ideal for making observations of atmospheric chemistry at the interface between rural and urban regions. The preliminary analyses have shown that the "free tropospheric" values of CN, particle bound polycyclic aromatic hydrocarbons (PPAH) and black carbon (BC) rarely decrease below 1000 cm-3, 4 ng m-3, 100 ng m-3, respectively, suggesting the presence of a residual layer of contaminants. Nighttime CO and O3 are usually above 0.1 and 0.05 ppm. The CO concentration at the measurement site is a tenth of the Mexico City value and reached its maximum approximately six hours after the maximum in the city center. The maximum O3 in Mexico City and Altzomoni are frequently the same concentration but with no repeatable pattern in the phase differences. The highly linear relationship between BC and CO reflects the removal and dilution processes, i.e. the average ratio between BC and CO in Mexico City is 1000:1 whereas it is 3000:1 in Altzomoni. This relationship

  16. Evolution of trace gas concentrations and the chemical properties of particles at the top of the Mexico City boundary layer.

    NASA Astrophysics Data System (ADS)

    Ochoa, C.; Baumgardner, D.; Grutter, M.

    2007-05-01

    The Altzomoni ridge is located in the Cortez Pass, in a national park, between the volcanoes of Iztaccíhuatl and Popocatépetl, at an altitude of 4010 m, and 60 km to the SE of the center of Mexico City. This region is isolated from local emissions from combustion yet there is a daily incursion of pollution from either the Mexico City basin, when winds are from the west or from the Puebla valley when winds are from the east. This was the motivation for setting up instruments at this site to measure the concentrations of trace gases and the physical, chemical and optical properties of aerosol particles. Measurements were begun during the last week of November, 2005 and continued until early June, 2006. The concentrations of CN, CO2 and CO clearly indicate that the site is in the free troposphere at night and early morning, but the regional boundary layer grows to altitudes above the site every day. Hence, this site is ideal for making observations of atmospheric chemistry at the interface between rural and urban regions. The preliminary analyses have shown that the "free tropospheric" values of CN, particle bound polycyclic aromatic hydrocarbons (PPAH) and black carbon (BC) rarely decrease below 1000 cm-3, 4 ng m-3, 100 ng m-3, respectively, suggesting the presence of a residual layer of contaminants. Nighttime CO and O3 are usually above 0.1 and 0.05 ppm. The CO concentration at the measurement site is a tenth of the Mexico City value and reached its maximum approximately six hours after the maximum in the city center. The maximum O3 in Mexico City and Altzomoni are frequently the same concentration but with no repeatable pattern in the phase differences. The highly linear relationship between BC and CO reflects the removal and dilution processes, i.e. the average ratio between BC and CO in Mexico City is 1000:1 whereas it is 3000:1 in Altzomoni. This relationship also depends on the origin of the boundary layer air, i.e. whether it comes from the east or west

  17. An airborne infrared laser spectrometer for in-situ trace gas measurements: application to tropical convection case studies

    NASA Astrophysics Data System (ADS)

    Catoire, V.; Krysztofiak, G.; Robert, C.; Chartier, M.; Jacquet, P.; Guimbaud, C.; Hamer, P. D.; Marécal, V.

    2015-09-01

    A three-channel laser absorption spectrometer called SPIRIT (SPectromètre InfraRouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere and lower stratosphere. More than three different species can be measured simultaneously with high time resolution (each 1.6 s) using three individual CW-DFB-QCLs (Continuous Wave Distributed FeedBack Quantum Cascade Lasers) coupled to a single Robert multipass optical cell. The lasers are operated in a time-multiplexed mode. Absorption of the mid-infrared radiations occur in the cell (2.8 L with effective path lengths of 134 to 151 m) at reduced pressure, with detection achieved using a HgCdTe detector cooled by Stirling cycle. The performances of the instrument are described, in particular precisions of 1, 1 and 3 %, and volume mixing ratio (vmr) sensitivities of 0.4, 6 and 2.4 ppbv are determined at 1.6 s for CO, CH4 and N2O, respectively (at 1σ confidence level). Estimated accuracies without calibration are about 6 %. Dynamic measuring ranges of about four decades are established. The first deployment of SPIRIT was realized aboard the Falcon-20 research aircraft operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt) within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) European project in November-December 2011 over Malaysia. The convective outflows from two large convective systems near Borneo Island (6.0° N-115.5° E and 5.5° N-118.5° E) were sampled above 11 km in altitude on 19 November and 9 December, respectively. Correlated enhancements in CO and CH4 vmr were detected when the aircraft crossed the outflow anvil of both systems. These enhancements were interpreted as the fingerprint of transport from the boundary layer up through the convective system and then horizontal advection in the outflow. Using these observations, the fraction of boundary layer air contained in fresh convective outflow was calculated to range

  18. Using the NAME Lagrangian Particle Dispersion model, and aircraft measurements to assess the accuracy of trace gas emission inventories from the U.K.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D. A.; Harrison, M.; Ploson, D.; Oram, D.; Reeves, C.

    2007-12-01

    A top-down approach using a combination of aircraft data and atmospheric dispersion modelling has been used to estimate emissions for 24 halogenated trace gases from the United Kingdom. This has been done using data collected during AMPEP/FLUXEX, a U.K based measurement campaign which took place between April and September 2005. The primary objective relating to this work was to make direct airborne measurements of concentration enhancements within the boundary layer arising from anthropogenic pollution events, and then to use mass balance methods to determine an emission flux. This was done by analysing Whole Air Samples (WAS) collected in the boundary layer upwind and downwind of the UK at frequent intervals around the coast using the technique of gas chromatography mass spectrometry (GCMS). Emissions were then calculated using a simple box-model approach and also using NAME (Numerical Atmospheric-dispersion Modelling Environment) which is a Lagrangian particle model using 3 hourly 3D meteorology fields from the Met Office Unified Model. By using such an approach it is also possible to identify the most likely main source regions in the UK for the compounds measured. Among the trace gases studied are many which through their effects on stratospheric ozone, and their large radiative forcing have a direct impact on global climate such as CFC's 11, 12, 113 and 114, HCFC's 21, 22, 141b and 142b, HFC's 134a and 152a, methyl chloroform, methyl bromide and carbon tetrachloride. Also the emissions of some short lived gases with have direct effects on human health, such as tetrachloroethene, and trichloroethene, have been derived. The UK emissions estimates calculated from this experimental and modelling work are compared with bottom-up and other top-down emission inventories for the UK and Europe. It was found that the estimates from this study were often higher than those in bottom-up emission inventories derived from industry. In addition for a number of trace gases

  19. Trace gas emissions from a chronosequence of bark beetle-infested lodgepole pine (Pinus contorta) forest stands

    NASA Astrophysics Data System (ADS)

    Norton, U.; Pendall, E.; Ewers, B. E.; Borkhuu, B.

    2011-12-01

    Severe outbreak of mountain pine beetle (MPB) and associated blue stain fungi have killed millions of hectares of coniferous forests in Western North America. This unprecedented disturbance has critically impacted ecosystem biogeochemistry and net carbon (C) and nitrogen (N) fluxes. However, the effects on greenhouse gas (GHG) emissions and drivers of biogeochemical processes that trigger GHG emissions following MPB infestations are not well understood. Such information can help assess regional-level changes in ecosystem C and N budgets and large-scale disturbance impacts on gas exchange between the atmosphere and terrestrial ecosystem. The overall objective of this research was to assess the immediate responses of GHG fluxes and soil C and N mineralization rates along a chronosequence of recently infested (1-yr, 3-yr and 4-yr ago) and uninfested (150-yr, 20-yr and 15-yr old) lodgepole pine stands in Medicine Bow National Forest in southeastern Wyoming. We hypothesize that MPB-induced tree mortality significantly changes stand-level hydrology, soil organic matter quality and chemistry of aboveground and belowground plant inputs. Consequently, these modifications influence nitrous oxide (N2O) emissions and methane (CH4) assimilation. Biweekly GHG measurements using static chambers were carried out during three consecutive snow-free growing seasons. Our results suggest that a stand infested within a year already shows a 20% increase in spring N2O production and a small decline in summer CH4 assimilation when compared to uninfested stands. Stands infested three and four years prior to our measurements produce over three times more N2O and assimilate three to five times less CH4 when compared to uninfested stands. In addition, a notable increase in soil moisture content and soil mineral N concentrations following early onset of the MPB infestation was also observed. An overall increase in N2O production and decline in CH4 assimilation following MPB infestation may

  20. The Tracing of VOC Composition of Acacia Honey During Ripening Stages by Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Vyviurska, Olga; Chlebo, Róbert; Pysarevska, Solomiya; Špánik, Ivan

    2016-10-01

    In this study, VOC profiles of acacia flowers and honey samples at different processing stages and related comb wax samples were studied using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. It was found that some monoterpene compounds like α-pinene, myrcene, cis-β-ocimene, and 4-terpineol were common for acacia flower and all acacia honey samples, and the presence of verbenone and ocimene was first established in acacia honey. The most enriched VOC profile was obtained for raw honey before cell capping, where the final composition of lactones was achieved. On the contrary, number of alcohols, esters, and variety of terpenes, as well as their concentration in the honey samples decrease through ripening processes. Strained honey was characterized by the absence of camphor, α-bisabolol, and 3-carene, while isophorone and hexanoic acid were identified only in this type of honey. The composition of final VOC profile of honey was also influenced by the age of comb wax. The additional aromatic and lactone compounds, e.g., phenol, 1-phenylethanol, δ-hexalactone, and γ-heptalactone were observed for honey maturated in old dark comb wax.

  1. Multi-Component Profiling of Trace Volatiles in Blood by Gas Chromatography/Mass Spectrometry with Dynamic Headspace Extraction

    PubMed Central

    Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-01-01

    A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905

  2. Multi-Component Profiling of Trace Volatiles in Blood by Gas Chromatography/Mass Spectrometry with Dynamic Headspace Extraction.

    PubMed

    Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi

    2015-01-01

    A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.

  3. A gas chromatographic/mass spectrometric method for tracing the microbial conversion of glucose into amino sugars in soil.

    PubMed

    He, Hongbo; Xie, Hongtu; Zhang, Xudong; Wang, Yanhong; Wu, Yeye

    2005-01-01

    Amino sugars in soils are heterogeneous and have been used as microbial residue biomarkers to investigate the microbial contribution to soil organic matter. However, it is not clear what the available carbon source is and how glucose is utilized for the synthesis of soil amino sugars. This paper presents a new gas chromatography/mass spectrometry (GC/MS) approach for the identification of 13C incorporation into three amino sugars, D-glucosamine, D-galactosamine, and muramic acid, in soil incubated with U-13C-glucose. Method evaluation showed that the chemical ionization (CI) mode was suitable for all these amino sugars, but that electron impact (EI) mode was applicable only to glucosamine and galactosamine. The 13C conversion rate was estimated based on the abundance ratio of the ions corresponding to the masses of the ions F+n and F (where n is the skeleton carbon number in the fragment ions F of the amino sugars) and calculated as atom percentage excess. The reproducibility of the method was excellent and clearly adequate for the present purpose. In addition, the new approach is highly accurate as tested with mixtures of U-13C-glucose and natural glucose.

  4. Closed-loop 15N measurement of N2O and its isotopomers for real-time greenhouse gas tracing

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna; Mayr, Leopold; Heiling, Maria; Zaman, Mohammad; Resch, Christian; Weltin, Georg; Gruber, Roman; Dercon, Gerd

    2016-04-01

    Quantifying sources of nitrous oxide is essential to improve understanding of the global N cycle and to develop climate-smart agriculture, as N2O has a global warming potential 300 times higher than CO2. The isotopic signature and the intramolecular distribution (site preference) of 15N are powerful tools to trace N2O, but the application of these methods is limited as conventional methods cannot provide continuous and in situ data. Here we present a method for closed-loop, real time monitoring of the N2O flux, the isotopic signature and the intramolecular distribution of 15N by using off-axis integrated cavity output spectroscopy (ICOS, Los Gatos Research). The developed method was applied to a fertilizer inhibitor experiment, in which N2O emissions were measured on undisturbed soil cores for three weeks. The treatments consisted of enriched urea-N (100 kg urea-N/ha), the same fertilizer combined with the nitrification inhibitor nitrapyrin (375 g/100 kg urea), and control cores. Monitoring the isotopic signature makes it possible to distinguish emissions from soil and fertilizer. Characterization of site preference could additionally provide a tool to identify different microbial processes leading to N2O emissions. Furthermore, the closed-loop approach enables direct measurement on site and does not require removal of CO2 and H2O. Results showed that 75% of total N2O emissions (total=11 346 μg N2O-N/m2) in the fertilized cores originated from fertilizer, while only 55% of total emissions (total=2 450 μg N2ON/m2) stemmed from fertilizer for the cores treated with nitrapyrin. In the controls, N2O derived from soil was only 40% of the size of the corresponding pool from the fertilized cores, pointing towards a priming effect on the microbial community from the fertilizer and demonstrating the bias that could be introduced by relying on non-treated cores to estimate soil emission rates, rather than using the isotopic signature. The site preference increased linearly

  5. Cryogenic foam insulation: Abstracted publications

    NASA Technical Reports Server (NTRS)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  6. Tracing cool molecular gas and star formation on ˜100 pc scales within a z ˜ 2.3 galaxy

    NASA Astrophysics Data System (ADS)

    Thomson, A. P.; Ivison, R. J.; Owen, Frazer N.; Danielson, A. L. R.; Swinbank, A. M.; Smail, Ian

    2015-04-01

    We present new, high-angular resolution interferometric observations with the Karl G. Jansky Very Large Array of 12CO J = 1-0 line emission and 4-8 GHz continuum emission in the strongly lensed, z = 2.3 submillimetre galaxy, SMM J21352-0102. Using these data, we identify and probe the conditions in ˜100 pc clumps within this galaxy, which we consider to be potential giant molecular cloud complexes, containing up to half of the total molecular gas in this system. In combination with far-infrared and submillimetre data, we investigate the far-infrared/radio correlation, measuring qIR = 2.39 ± 0.17 across SMM J21352. We search for variations in the properties of the interstellar medium (ISM) throughout the galaxy by measuring the spatially resolved qIR and radio spectral index, αradio, finding ranges qIR =[2.1, 2.6] and αradio = [-1.5, -0.7]. We argue that these ranges in αradio and qIR may reflect variations in the age of the ISM material. Using multi-J 12CO data, we quantitatively test a recent theoretical model relating the star formation rate surface density to the excitation of 12CO, finding good agreement between the model and the data. Lastly, we study the Schmidt-Kennicutt relation, both integrated across the system and within the individual clumps. We find small offsets between SMM J21352 and its clumps relative to other star-forming galaxy populations on the Schmidt-Kennicutt plot - such offsets have previously been interpreted as evidence for a bi-modal star formation law, but we argue that they can be equally well explained as arising due to a combination of observational uncertainties and systematic biases in the choice of model used to interpret the data.

  7. Ultra-trace level analysis of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate by gas chromatography with multi-mode inlet, and flame ionization detection.

    PubMed

    Luong, J; Shellie, R A; Cortes, H; Gras, R; Hayward, T

    2012-03-16

    Steam condensate water treatment is a vital and integral part of the overall cooling water treatment process. Steam condensate often contains varying levels of carbon dioxide and oxygen which acts as an oxidizer. Carbon dioxide forms corrosive carbonic acid when dissolved in condensed steam. To neutralize the harmful effect of the carbonic acid, volatile amine compounds such as morpholine, cyclohexylamine, and diethylaminoethanol are often employed as part of a strategy to control corrosion in the water treatment process. Due to the high stability of these compounds in a water matrix, the indirect addition of such chemicals into the process via steam condensate often results in their presence throughout the process and even into the final product. It is therefore important to understand the impact of these chemicals and their fate within a chemical plant. The ability to analyze such compounds by gas chromatography has historically been difficult due to the lack of chromatographic system inertness at the trace level concentrations especially in an aqueous matrix. Here a highly sensitive, practical, and reliable gas chromatographic approach is described for the determination of morpholine, cyclohexylamine, and diethylaminoethanol in steam condensate at the part-per-billion (ppb) levels. The approach does not require any sample enrichment or derivatization. The technique employs a multi-mode inlet operating in pulsed splitless mode with programmed inlet temperature for sample introduction, an inert base-deactivated capillary column for solute separation and flame ionization detection. Chromatographic performance was further enhanced by the incorporation of 2-propanol as a co-solvent. Detection limits for morpholine, cyclohexylamine, diethylaminoethanol were established to be 100 ppb (v/v), with relative standard deviations (RSD) of less than 6% at the 95% confidence level (n=20) and a percent recovery of 96% or higher for the solutes of interest over a range of 0

  8. Analysis of trace contamination of phthalate esters in ultrapure water using a modified solid-phase extraction procedure and automated thermal desorption-gas chromatography/mass spectrometry.

    PubMed

    Liu, Hsu-Chuan; Den, Walter; Chan, Shu-Fei; Kin, Kuan Tzu

    2008-04-25

    The present study was aimed to develop a procedure modified from the conventional solid-phase extraction (SPE) method for the analysis of trace concentration of phthalate esters in industrial ultrapure water (UPW). The proposed procedure allows UPW sample to be drawn through a sampling tube containing hydrophobic sorbent (Tenax TA) to concentrate the aqueous phthalate esters. The solid trap was then demoisturized by two-stage gas drying before subjecting to thermal desorption and analysis by gas chromatography-mass spectrometry. This process removes the solvent extraction procedure necessary for the conventional SPE method, and permits automation of the analytical procedure for high-volume analyses. Several important parameters, including desorption temperature and duration, packing quantity and demoisturizing procedure, were optimized in this study based on the analytical sensitivity for a standard mixture containing five different phthalate esters. The method detection limits for the five phthalate esters were between 36 ng l(-1) and 95 ng l(-1) and recovery rates between 15% and 101%. Dioctyl phthalate (DOP) was not recovered adequately because the compound was both poorly adsorbed and desorbed on and off Tenax TA sorbents. Furthermore, analyses of material leaching from poly(vinyl chloride) (PVC) tubes as well as the actual water samples showed that di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) were the common contaminants detected from PVC contaminated UPW and the actual UPW, as well as in tap water. The reduction of DEHP in the production processes of actual UPW was clearly observed, however a DEHP concentration of 0.20 microg l(-1) at the point of use was still being quantified, suggesting that the contamination of phthalate esters could present a barrier to the future cleanliness requirement of UPW. The work demonstrated that the proposed modified SPE procedure provided an effective method for rapid analysis and contamination

  9. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2004-01-01

    What is involved in consolidating a new mathematical abstraction? This paper examines the work of one student who was working on a task designed to consolidate two recently constructed absolute function abstractions. The study adopts an activity theoretic model of abstraction in context. Selected protocol data are presented. The initial state of…

  10. Abstraction and Consolidation

    ERIC Educational Resources Information Center

    Monaghan, John; Ozmantar, Mehmet Fatih

    2006-01-01

    The framework for this paper is a recently developed theory of abstraction in context. The paper reports on data collected from one student working on tasks concerned with absolute value functions. It examines the relationship between mathematical constructions and abstractions. It argues that an abstraction is a consolidated construction that can…

  11. The dynamic chamber method: trace gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the laboratory and in the field

    NASA Astrophysics Data System (ADS)

    Breuninger, C.; Oswald, R.; Kesselmeier, J.; Meixner, F. X.

    2011-08-01

    We describe a dynamic chamber system to determine reactive trace gas exchange fluxes between plants and the atmosphere under laboratory and, with small modifications, also under field conditions. The system allows measurements of the flux density of the reactive NO-NO2-O3 triad and additionally of the non-reactive trace gases CO2 and H2O. The chambers are made of transparent and chemically inert wall material and do not disturb plant physiology. For NO2 detection we used a highly NO2 specific blue light converter coupled to chemiluminescence detection on the photolysis product, NO. Exchange flux densities derived from dynamic chamber measurements are based on very small concentration differences of NO2 (NO, O3) between inlet and outlet of the chamber. High accuracy and precision measurements are therefore required, and high instrument sensitivity (limit of detection) and the statistical significance of concentration differences are important for the determination of corresponding exchange flux densities, compensation point concentrations, and deposition velocities. The determination of NO2 concentrations at sub-ppb levels (<1 ppb) requires a highly sensitive NO/NO2 analyzer with a lower detection limit (3σ-definition) of 0.3 ppb or better. Deposition velocities and compensation point concentrations were determined by bi-variate weighted linear least-squares fitting regression analysis of the trace gas concentrations, measured at the inlet and outlet of the chamber. Performances of the dynamic chamber system and data analysis are demonstrated by studies of Picea abies L. (Norway Spruce) under field and laboratory conditions. Our laboratory data clearly show that highly significant compensation point concentrations can only be detected if the NO2 concentration differences were statistically significant and the data were rigorously controlled for this criterion. The results of field experiments demonstrate the need to consider photo-chemical reactions of NO, NO2, and

  12. Ultra-trace determination of Persistent Organic Pollutants in Arctic ice using stir bar sorptive extraction and gas chromatography coupled to mass spectrometry.

    PubMed

    Lacorte, S; Quintana, J; Tauler, R; Ventura, F; Tovar-Sánchez, A; Duarte, C M

    2009-12-04

    This study presents the optimization and application of an analytical method based on the use of stir bar sorptive extraction (SBSE) gas chromatography coupled to mass spectrometry (GC-MS) for the ultra-trace analysis of POPs (Persistent Organic Pollutants) in Arctic ice. In a first step, the mass-spectrometry conditions were optimized to quantify 48 compounds (polycyclic aromatic hydrocarbons, brominated diphenyl ethers, chlorinated biphenyls, and organochlorinated pesticides) at the low pg/L level. In a second step, the performance of this analytical method was evaluated to determine POPs in Arctic cores collected during an oceanographic campaign. Using a calibration range from 1 to 1800 pg/L and by adjusting acquisition parameters, limits of detection at the 0.1-99 and 102-891 pg/L for organohalogenated compounds and polycyclic aromatic hydrocarbons, respectively, were obtained by extracting 200 mL of unfiltered ice water. alpha-hexachlorocyclohexane, DDTs, chlorinated biphenyl congeners 28, 101 and 118 and brominated diphenyl ethers congeners 47 and 99 were detected in ice cores at levels between 0.5 to 258 pg/L. We emphasise the advantages and disadvantages of in situ SBSE in comparison with traditional extraction techniques used to analyze POPs in ice.

  13. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  14. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Fischer, Marten; Scholz-Böttcher, Barbara M

    2017-04-09

    The content of microplastics (MP) in the environment is constantly growing. Since the environmental relevance, particularly bioavailability, rises with decreasing particle size, the knowledge of the MP proportion in habitats and organisms is of gaining importance. The reliable recognition of MP particles is limited and underlies substantial uncertainties. Therefor spectroscopically methods are necessary to ensure the plastic nature of isolated particles, determine the polymer type and obtain particle count related quantitative data. In this study Curie-Point pyrolysis-gas chromatography-mass spectrometry combined with thermochemolysis is shown to be an excellent analytical tool to simultaneously identify and optionally quantify MP in environmental samples on a polymer specific mass related trace level. The method is independent of any optical preselection or particle appearance. For this purpose polymer characteristic pyrolysis products and their indicative fragment ions were used to analyze eight common types of plastics. Further aspects of calibration, recoveries, and potential matrix effects are discussed. The method is exemplarily applied on selected fish samples after an enzymatic-chemically pretreatment. This new approach with mass-related results is complementary to established FT-IR and Raman methods providing particle counts of individual polymer particles.

  15. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  16. Abstraction and Problem Reformulation

    NASA Technical Reports Server (NTRS)

    Giunchiglia, Fausto

    1992-01-01

    In work done jointly with Toby Walsh, the author has provided a sound theoretical foundation to the process of reasoning with abstraction (GW90c, GWS9, GW9Ob, GW90a). The notion of abstraction formalized in this work can be informally described as: (property 1), the process of mapping a representation of a problem, called (following historical convention (Sac74)) the 'ground' representation, onto a new representation, called the 'abstract' representation, which, (property 2) helps deal with the problem in the original search space by preserving certain desirable properties and (property 3) is simpler to handle as it is constructed from the ground representation by "throwing away details". One desirable property preserved by an abstraction is provability; often there is a relationship between provability in the ground representation and provability in the abstract representation. Another can be deduction or, possibly inconsistency. By 'throwing away details' we usually mean that the problem is described in a language with a smaller search space (for instance a propositional language or a language without variables) in which formulae of the abstract representation are obtained from the formulae of the ground representation by the use of some terminating rewriting technique. Often we require that the use of abstraction results in more efficient .reasoning. However, it might simply increase the number of facts asserted (eg. by allowing, in practice, the exploration of deeper search spaces or by implementing some form of learning). Among all abstractions, three very important classes have been identified. They relate the set of facts provable in the ground space to those provable in the abstract space. We call: TI abstractions all those abstractions where the abstractions of all the provable facts of the ground space are provable in the abstract space; TD abstractions all those abstractions wllere the 'unabstractions' of all the provable facts of the abstract space are

  17. Abstraction in mathematics.

    PubMed Central

    Ferrari, Pier Luigi

    2003-01-01

    Some current interpretations of abstraction in mathematical settings are examined from different perspectives, including history and learning. It is argued that abstraction is a complex concept and that it cannot be reduced to generalization or decontextualization only. In particular, the links between abstraction processes and the emergence of new objects are shown. The role that representations have in abstraction is discussed, taking into account both the historical and the educational perspectives. As languages play a major role in mathematics, some ideas from functional linguistics are applied to explain to what extent mathematical notations are to be considered abstract. Finally, abstraction is examined from the perspective of mathematics education, to show that the teaching ideas resulting from one-dimensional interpretations of abstraction have proved utterly unsuccessful. PMID:12903658

  18. Aerosol particle and trace gas emissions from earthworks, road construction, and asphalt paving in Germany: Emission factors and influence on local air quality

    NASA Astrophysics Data System (ADS)

    Faber, Peter; Drewnick, Frank; Borrmann, Stephan

    2015-12-01

    Aerosol emissions from construction sites have a strong impact on local air quality. The chemical and physical characteristics of particles and trace gases emitted by earthworks (excavation and loading of soil as well as traffic on unpaved roads) and road works (asphalt sawing, smashing, soil compacting, asphalt paving) have therefore been addressed in this study by using a mobile set-up of numerous modern online aerosol and trace gas instruments including a high-resolution aerosol mass spectrometer. Fuel-based emission factors for several variables have been determined, showing that earthwork activities and compacting by use of a plate compactor revealed the highest median emission factors for PM10 (up to 54 g l-1). Construction activities were assigned to contribute about 17% (36 000 t a-1) to total PM10 emissions and 3% (13 500 t a-1) to total traffic-related NOx emissions in Germany. In particular, calculated PM10 emissions by earthworks are about 15 800 t a-1 corresponding to 44% of total PM10 emissions by construction activities in Germany. Mechanical processes such as asphalt sawing (PM1/PM10 = 18 ± 31%), soil compacting by a plate compactor (PM1/PM10 = 5 ± 6%) and earthworks (PM1/PM10 = 2 ± 5%) emit predominantly coarse mineral dust particles. Contrary to that, particle emissions by thermal construction processes (asphalt paving: PM1/PM10 = 62 ± 14%) and by the internal combustion engines of heavy machinery (e.g. road roller PM1/PM10 = 94 ± 9%) are mostly in the submicron range. These particles were mainly composed of organics containing non-polar saturated and unsaturated hydrocarbons (e.g. asphalting: O:C < 0.01, H:C = 2.01). Besides construction activities, mineral dust is also emitted over cleared land by wind-driven resuspension depending on wind speed. PM10 emissions by construction activities often result in local concentrations > 100 μg m-3 and can easily breach the European limit level of PM10. This study also shows that particulate mineral

  19. Abstract and keywords.

    PubMed

    Peh, W C G; Ng, K H

    2008-09-01

    The abstract of a scientific paper represents a concise, accurate and factual mini-version of the paper contents. Abstract format may vary according to the individual journal. For original articles, a structured abstract usually consists of the following headings: aims (or objectives), materials and methods, results and conclusion. A few keywords that capture the main topics of the paper help indexing in the medical literature.

  20. Optimization of a novel headspace-solid-phase microextraction-gas chromatographic method by means of a Doehlert uniform shell design for the analysis of trace level ethylene oxide residuals in sterilized medical devices.

    PubMed

    DiCicco, Michael P; Lang, Bridget; Harper, Thomas I

    2009-06-01

    Medical devices sterilized by ethylene oxide (EtO) retain trace quantities of EtO residuals, which may irritate patients' tissue. Reliably quantifying trace level EtO residuals in small medical devices requires an extremely sensitive analytical method. In this research, a Doehlert uniform shell design was utilized in obtaining a response surface to optimize a novel headspace-solid-phase microextraction-gas chromatographic (HS-SPME-GC) method developed for analyzing trace levels of EtO residuals in sterilized medical devices, by evaluating sterilized, polymer-coated, drug-eluting cardiovascular stents. The effects of four independent experimental variables (HS-SPME desorption time, extraction temperature, GC inlet temperature and extraction time) on GC peak area response of EtO were investigated simultaneously and the most influential experimental variables determined were extraction temperature and GC inlet temperature, with the fitted model showing no evidence of lack-of-fit. The optimized HS-SPME-GC method demonstrated overall good linearity/linear range, accuracy, repeatability, reproducibility, absolute recovery and high sensitivity. This novel method was successfully applied to analysis of trace levels of EtO residuals in sterilized/aerated cardiovascular stents of various lengths and internal diameter, where, upon heating, trace EtO residuals fully volatilized into HS for extraction, thereby nullifying matrix effects. As an alternative, this novel HS-SPME-GC method can offer higher sensitivity compared with conventional headspace analyzer-based sampling.

  1. Characterization of a low-pressure chlorine plasma column sustained by propagating surface waves using phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy

    SciTech Connect

    Mattei, S.; Boudreault, O.; Stafford, L.; Khare, R.; Donnelly, V. M.

    2011-06-01

    Phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy were used to measure the line-integrated electron density, n{sub e}, and electron temperature, T{sub e}, in a high-density chlorine plasma sustained in a quartz discharge tube (inner diameter = 6 mm) by an electromagnetic surface wave at 2.45 GHz. For pressures in the 0.1-1 Torr range, n{sub e} decreased nearly linearly along the tube's z-axis down to the critical density for surface wave propagation, where the plasma decayed abruptly. At lower pressures (< 50 mTorr), however, the plasma extended well beyond this critical point, after which n{sub e} decreased quasiexponentially toward the end of the plasma column. The length of this expansion region increased with decreasing pressure, going from {approx}8 cm at 5 mTorr to {approx}1 cm at 50 mTorr. T{sub e} was nearly independent of the axial position in the main plasma region and strongly decreased in the expansion region at lower pressures. The Cl{sub 2} percent dissociation, {tau}{sub D}, obtained from the calibrated Cl{sub 2} (306 nm)-to-Xe (828 nm) emission ratio, displayed behavior similar to that of n{sub e} and T{sub e}. For example, at 5 mTorr, {tau}{sub D} was close to 100% near the wave launcher and {approx}70% at 0.5 cm from the end of the plasma column.

  2. The Amazon Tall Tower Observatory (ATTO) in the remote Amazon Basin: overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Acevedo, O. C.; Araùjo, A.; Artaxo, P.; Barbosa, C. G. G.; Barbosa, H. M. J.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B. B. L.; da Silva, N. F.; Dias, N. L.; Dias-Júnior, C. Q.; Ditas, F.; Ditz, R.; Godoi, A. F. L.; Godoi, R. H. M.; Heimann, M.; Hoffmann, T.; Kesselmeier, J.; Könemann, T.; Krüger, M. L.; Lavric, J. V.; Manzi, A. O.; Moran-Zuloaga, D.; Nölscher, A. C.; Santos Nogueira, D.; Piedade, M. T. F.; Pöhlker, C.; Pöschl, U.; Rizzo, L. V.; Ro, C.-U.; Ruckteschler, N.; Sá, L. D. A.; Sá, M. D. O.; Sales, C. B.; Santos, R. M. N. D.; Saturno, J.; Schöngart, J.; Sörgel, M.; de Souza, C. M.; de Souza, R. A. F.; Su, H.; Targhetta, N.; Tóta, J.; Trebs, I.; Trumbore, S.; van Eijck, A.; Walter, D.; Wang, Z.; Weber, B.; Williams, J.; Winderlich, J.; Wittmann, F.; Wolff, S.; Yáñez-Serrano, A. M.

    2015-04-01

    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It already has been changed significantly by human activities, and more pervasive change is expected to occur in the next decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at 5 to 8 different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are made above the canopy as well as in the canopy space. They include light scattering and absorption, aerosol fluorescence, number and volume size distributions, chemical composition, cloud

  3. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    SciTech Connect

    Chiou, E.W.; Larsen, J.C. ); McCormick, M.P.; McMaster, L.R.; Chu, W.P. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30[degrees]N and 50[degrees]S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30[degrees]N and 50[degrees]S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere. 32 refs., 14 figs., 2 tabs.

  4. Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) Upgrade to Full Sun-Sky-Cloud-Trace Gas Spectrometry Capability for Airborne Science

    NASA Astrophysics Data System (ADS)

    Dunagan, S. E.; Flynn, C. J.; Johnson, R. R.; Kacenelenbogen, M. S.; Knobelspiesse, K. D.; LeBlanc, S. E.; Livingston, J. M.; Redemann, J.; Russell, P. B.; Schmid, B.; Segal-Rosenhaimer, M.; Shinozuka, Y.

    2014-12-01

    The Spectrometers for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument has been developed at NASA Ames in collaboration with Pacific Northwest National Laboratory (PNNL) and NASA Goddard, supported substantially since 2009 by NASA's Radiation Science Program and Earth Science Technology Office. It combines grating spectrometers with fiber optic links to a tracking, scanning head to enable sun tracking, sky scanning, and zenith viewing. 4STAR builds on the long and productive heritage of the NASA Ames Airborne Tracking Sunphotometers (AATS-6 and -14), which have yielded more than 100 peer-reviewed publications and extensive archived data sets in many NASA Airborne Science campaigns from 1986 to the present. The baseline 4STAR instrument has provided extensive data supporting the TCAP (Two Column Aerosol Project, July 2012 & Feb. 2013), SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys, 2013), and ARISE (Arctic Radiation - IceBridge Sea and Ice Experiment, 2014), field campaigns.This poster presents plans and progress for an upgrade to the 4STAR instrument to achieve full science capability, including (1) direct-beam sun tracking measurements to derive aerosol optical depth spectra, (2) sky radiance measurements to retrieve aerosol absorption and type (via complex refractive index and mode-resolved size distribution), (3) cloud properties via zenith radiance, and (4) trace gas spectrometry. Technical progress in context with the governing physics is reported on several upgrades directed at improved light collection and usage, particularly as related to spectrally and radiometrically stable propagation through the collection light path. In addition, improvements to field calibration and verification, and flight operability and reliability are addressed.

  5. Intercomparison of stratospheric water vapor observed by satellite experiments: Stratospheric Aerosol and Gas Experiment II versus Limb Infrared Monitor of the Stratosphere and Atmospheric Trace Molecule Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chiou, E. W.; McCormick, M. P.; McMaster, L. R.; Chu, W. P.; Larsen, J. C.; Rind, D.; Oltmans, S.

    1993-03-01

    This paper presents a comparison of the stratospheric water vapor measurements made by the satellite-borne sensors the Stratospheric Aerosol and Gas Experiment II (SAGE II), the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS), and the Spacelab 3 Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment. LIMS obtained data for 7 months between November 1978 and May 1979; ATMOS was carried on Shuttle and observed eight profiles from April 30 to May 6, 1985 at approximately 30°N and 50°S; and, SAGE II continues to make measurements since its launch in October 1984. For both 30°N and 50°S in May, the comparisons between SAGE II and ATMOS show agreement within the estimated combined uncertainty of the two experiments. Several important features identified by LIMS observations have been confirmed by SAGE II: a well-developed hygropause in the lower stratosphere at low- to mid-latitudes, a poleward latitudinal gradient, increasing water vapor mixing ratios with altitude in the tropics, and the transport of dry lower stratospheric water vapor upward and southward in May, and upward and northward in November. A detailed comparative study also indicates that the two previously suggested corrections for LIMS, a correction in tropical lower stratosphere due to a positive temperature bias and the correction above 28 km based on improved emissivities will bring LIMS measurements much closer to those of SAGE II. The only significant difference occurs at high southern latitudes in May below 18 km, where LIMS measurements are 2-3 ppmv greater. It should be noted that LIMS observations are from 16 to 50 km, ATMOS from 14 to 86 km, and SAGE II from mid-troposphere to 40 km. With multiyear coverage, SAGE II observations should be useful for studying tropospheric-stratospheric exchange, for stratospheric transport, and for preparing water vapor climatologies for the stratosphere and the upper troposphere.

  6. Online coupling of bead injection lab-on-valve analysis to gas chromatography: application to the determination of trace levels of polychlorinated biphenyls in solid waste leachates.

    PubMed

    Quintana, José Benito; Boonjob, Warunya; Miró, Manuel; Cerdà, Víctor

    2009-06-15

    Online sorptive preconcentration exploiting renewable solid surfaces, so-called bead injection (BI), in the miniaturized lab-on-valve (LOV) platform is for the first time hyphenated to gas chromatography (GC) for automated determination of trace level concentrations of organic environmental pollutants. Microfluidic handling of solutions and suspensions in LOV is accomplished by programmable flow with a multisyringe flow injection (MSFI) setup. The method involves the incorporation of minute amounts (3 mg) of reversed-phase copolymeric beads with hydroxylated surface (Bond Elut Plexa) into the channels of a poly(ether imide) LOV microconduit, thus serving as a transient microcolumn packed reactor for preconcentration of organic species. The analyte-loaded beads are afterward eluted with 80 microL of ethyl acetate into a rotary injection valve and subsequently introduced via an air stream into the programmable-temperature vaporizer (PTV) injector of the GC. The used beads are then backflushed and delivered to waste. The GC separation and determination is synchronized with the preconcentration steps of the ensuing sample. The potentials of the devised BI-LOV-GC assembly with electron capture detector for downscaling and automation of sample processing were demonstrated in the determination of polychlorinated biphenyls in raw landfill leachates and a leachate containing the Aroclor 1260 congener mixture. By sampling 12 mL of leachates to which 50 vol % methanol was added to minimize sorption onto the components of the flow network, the automated analytical method features relative recovery percentages >81%, limits of quantification within the range of 0.5-6.1 ng L(-1), relative standard deviations better than 9% at the 50 ng L(-1) level, and 25-fold decrease in cost of solid-phase extraction (SPE) consumables as compared with online robotic systems or dedicated setups.

  7. Technical Abstracts, 1988

    SciTech Connect

    Kotowski, M.

    1989-05-01

    This document is a compilation of the abstracts from unclassified documents published by Mechanical Engineering at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1988. Many abstracts summarize work completed and published in report form. These are UCRL-90,000 and 100,000 series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides brief descriptions of those documents assigned to the MISC (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. The abstracts cover the broad range of technologies within Mechanical Engineering and are grouped by the principal author's division. An eighth category is devoted to abstracts presented at the CUBE symposium sponsored jointly by LLNL, Los Alamos National Laboratory, and Sandia Laboratories. Within these areas, abstracts are listed numerically. An author index and title index are provided at the back of the book for cross referencing. The publications listed may be obtained by contacting LLNL's TID library or the National Technical Information Service, US Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161. Further information may be obtained by contacting the author directly or the persons listed in the introduction of each subject area.

  8. Paper Abstract Animals

    ERIC Educational Resources Information Center

    Sutley, Jane

    2010-01-01

    Abstraction is, in effect, a simplification and reduction of shapes with an absence of detail designed to comprise the essence of the more naturalistic images being depicted. Without even intending to, young children consistently create interesting, and sometimes beautiful, abstract compositions. A child's creations, moreover, will always seem to…

  9. Leadership Abstracts, Volume 10.

    ERIC Educational Resources Information Center

    Milliron, Mark D., Ed.

    1997-01-01

    The abstracts in this series provide brief discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 10 for 1997 contains the following 12 abstracts: (1) "On Community College Renewal" (Nathan L. Hodges and Mark D. Milliron); (2) "The Community College Niche in a…

  10. Is It Really Abstract?

    ERIC Educational Resources Information Center

    Kernan, Christine

    2011-01-01

    For this author, one of the most enjoyable aspects of teaching elementary art is the willingness of students to embrace the different styles of art introduced to them. In this article, she describes a project that allows upper-elementary students to learn about abstract art and the lives of some of the master abstract artists, implement the idea…

  11. Designing for Mathematical Abstraction

    ERIC Educational Resources Information Center

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  12. Leadership Abstracts, 1996.

    ERIC Educational Resources Information Center

    Johnson, Larry, Ed.

    1996-01-01

    The abstracts in this series provide two-page discussions of issues related to leadership, administration, professional development, technology, and education in community colleges. Volume 9 for 1996 includes the following 12 abstracts: (1) "Tech-Prep + School-To-Work: Working Together To Foster Educational Reform," (Roderick F. Beaumont); (2)…

  13. Organizational Communication Abstracts--1975.

    ERIC Educational Resources Information Center

    Falcione, Raymond L.; And Others

    This document includes nearly 700 brief abstracts of works published in 1975 that are relevant to the field of organizational communication. The introduction presents a rationale for the project, a review of research methods developed by the authors for the preparation of abstracts, a statement of limitations as to the completeness of the coverage…

  14. Abstract Datatypes in PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  15. Impacts of an African Green Revolution on Greenhouse Gases and Pollution Precursors: Nonlinear Trace N Gas Emission Responses to Incremental Increases in Fertilizer Inputs in a Western Kenyan Maize Field

    NASA Astrophysics Data System (ADS)

    Hickman, J. E.; Palm, C.

    2011-12-01

    Over the last several decades, agricultural soils in many parts of sub-Saharan Africa have become depleted of nitrogen (N) and other nutrients, creating challenges to achieving food security in many countries. At only 7 kg N ha-1 yr-1, average fertilizer application rates in the region are an order of magnitude lower than typical rates in the United States, and well below optimal levels. Increased use of nutrient inputs is a centerpiece of most African Green Revolution strategies, making it important to quantify the impacts of this change in practices as farmers begin moving towards 50-80 kg N ha-1 yr-1. Increased N inputs are invariably accompanied by losses of trace N gases to the atmosphere, including the greenhouse gas nitrous oxide (N2O), and nitric oxide (NO), a precursor to tropospheric ozone pollution. Several investigations of greenhouse gas emissions and one investigation of NO emissions from sub-Saharan agricultural systems have been conducted over the last 20 years, but they are few in number and were not designed to identify potentially important thresholds in the response of trace gas emissions to fertilization rate. Here we examine the response function of NO and N2O emissions to 6 different levels of inorganic fertilizer additions in a maize field in Yala, Kenya during the 2011 long rainy season. We used a randomized complete block design incorporating inorganic fertilizer treatments of 0, 50, 75, 100, 150, and 200 kg N ha-1 in 4 blocks. After each of 2 fertilizer applications, we measured trace gas fluxes daily, and conducted weekly measurements until trace gas emissions subsided to control levels. We fit the data to linear and exponential models relating N gas emissions to N input levels, and conducted a model comparison using AIC. Preliminary analysis suggests that NO emissions do respond in a non-linear fashion over the course of 67 days, as has been found in several commercial agroecosystems for N2O. Although N2O emissions responded linearly

  16. Automatic Abstraction in Planning

    NASA Technical Reports Server (NTRS)

    Christensen, J.

    1991-01-01

    Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.

  17. Searching Sociological Abstracts.

    ERIC Educational Resources Information Center

    Kerbel, Sandra Sandor

    1981-01-01

    Describes the scope, content, and retrieval characteristics of Sociological Abstracts, an online database of literature in the social sciences. Sample searches are displayed, and the strengths and weaknesses of the database are summarized. (FM)

  18. Conference Abstracts: AEDS '82.

    ERIC Educational Resources Information Center

    Journal of Computers in Mathematics and Science Teaching, 1982

    1982-01-01

    Abstracts from nine selected papers presented at the 1982 Association for Educational Data Systems (AEDS) conference are provided. Copies of conference proceedings may be obtained for fifteen dollars from the Association. (MP)

  19. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1997

    1997-01-01

    Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…

  20. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  1. Abstracts of contributed papers

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  2. The Alaskan Fire Emissions Database (AKFED): analysis of environmental controls on daily fire emissions and comparison with atmospheric trace gas measurements

    NASA Astrophysics Data System (ADS)

    Veraverbeke, S.; Rogers, B. M.; Wiggins, E. B.; Randerson, J. T.

    2014-12-01

    impacts on atmospheric trace gas composition and in characterizing environmental controls on fire growth. Emission estimates of the 2013 fire season were input into an aerosol transport model and modeled CO2 concentrations were compared with measurements from NASA's CARVE mission during fire-affected days.

  3. Efficacy of head space solid-phase microextraction coupled to gas chromatography-mass spectrometry method for determination of the trace extracellular hydrocarbons of cyanobacteria.

    PubMed

    Guan, Wenna; Zhu, Tao; Wang, Yuejie; Zhang, Zhongyi; Jin, Zhao; Wang, Cong; Bai, Fali

    2016-09-01

    Hydrocarbons are widespread in cyanobacteria, and the biochemical synthetic pathways were recently identified. Intracellular fatty alka(e)nes of cyanobacteria have been detected by liquid-liquid extraction (LLE) coupled to gas chromatography-mass spectrometry (GC/MS). However, whether fatty alka(e)nes can be released to cyanobacterial culture media remains to be clarified. This work develops a sensitive method for analyzing the trace level of extracellular hydrocarbons in cyanobacterial culture media by head space solid-phase microextraction (HS-SPME) coupled to GC/MS. Headspace (HS) extraction mode using polydimethylsiloxane fiber to extract for 30min at 50°C was employed as the optimal extraction conditions. Five cyanobacterial fatty alka(e)nes analogs including pentadecene (C15:1), pentadecane (C15:0), heptadecene (C17:1), heptadecane (C17:0), nonadecane (C19:0) were analyzed, and the data obtained from HS-SPME-GC/MS method were quantified using internal standard peak area comparisons. Limits of detection (LOD), limits of quantitation (LOQ), linear dynamic range, precisions (RSD) and recovery for the analysis of extracellular fatty alka(e)nes of cyanobacteria by HS-SPME-GC/MS were evaluated. The LODs limits of detection (S/N = 3) varied from 10 to 21 ng L-1. The correlation coefficients (r) of the calibration curves ranged from 0.9873 to 0.9977 with a linearity from 0.1 to 50 μg L-1. The RSD values were ranging from 7.8 to 14.0% and from 4.0 to 8.8% at 1.0 μg L-1 and 10.0 μg L-1 standard solutions, respectively. Comparative analysis of extracellular fatty alka(e)nes in the culture media of model cyanobacteria Synechocystis sp. PCC 6803 demonstrated that sensitivity of HS-SPME-GC/MS method was significantly higher than LLE method. Finally, we found that heptadecane can be released into the culture media of Synechocystis sp. PCC 6803 at the later growth period.

  4. Metacognition and abstract reasoning.

    PubMed

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue.

  5. Leadership Abstracts, 2001.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.

    2001-01-01

    This is volume 14 of Leadership Abstracts, a newsletter published by the League for Innovation (California). Issue 1 of February 2001, "Developmental Education: A Policy Primer," discusses developmental programs in the community college. According to the article, community college trustees and presidents would serve their constituents well by…

  6. Abstract Film and Beyond.

    ERIC Educational Resources Information Center

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  7. Leadership Abstracts, 1993.

    ERIC Educational Resources Information Center

    Doucette, Don, Ed.

    1993-01-01

    This document includes 10 issues of Leadership Abstracts (volume 6, 1993), a newsletter published by the League for Innovation in the Community College (California). The featured articles are: (1) "Reinventing Government" by David T. Osborne; (2) "Community College Workforce Training Programs: Expanding the Mission to Meet Critical Needs" by…

  8. Leadership Abstracts, 1999.

    ERIC Educational Resources Information Center

    Leadership Abstracts, 1999

    1999-01-01

    This document contains five Leadership Abstracts publications published February-December 1999. The article, "Teaching the Teachers: Meeting the National Teacher Preparation Challenge," authored by George R. Boggs and Sadie Bragg, examines the community college role and makes recommendations and a call to action for teacher education.…

  9. Computers in Abstract Algebra

    ERIC Educational Resources Information Center

    Nwabueze, Kenneth K.

    2004-01-01

    The current emphasis on flexible modes of mathematics delivery involving new information and communication technology (ICT) at the university level is perhaps a reaction to the recent change in the objectives of education. Abstract algebra seems to be one area of mathematics virtually crying out for computer instructional support because of the…

  10. 2002 NASPSA Conference Abstracts.

    ERIC Educational Resources Information Center

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  11. Reasoning abstractly about resources

    NASA Technical Reports Server (NTRS)

    Clement, B.; Barrett, A.

    2001-01-01

    r describes a way to schedule high level activities before distributing them across multiple rovers in order to coordinate the resultant use of shared resources regardless of how each rover decides how to perform its activities. We present an algorithm for summarizing the metric resource requirements of an abstract activity based n the resource usages of its potential refinements.

  12. Conference Abstracts: AEDS '84.

    ERIC Educational Resources Information Center

    Baird, William E.

    1985-01-01

    The Association of Educational Data Systems (AEDS) conference included 102 presentations. Abstracts of seven of these presentations are provided. Topic areas considered include LOGO, teaching probability through a computer game, writing effective computer assisted instructional materials, computer literacy, research on instructional…

  13. Leadership Abstracts, 2002.

    ERIC Educational Resources Information Center

    Wilson, Cynthia, Ed.; Milliron, Mark David, Ed.

    2002-01-01

    This 2002 volume of Leadership Abstracts contains issue numbers 1-12. Articles include: (1) "Skills Certification and Workforce Development: Partnering with Industry and Ourselves," by Jeffrey A. Cantor; (2) "Starting Again: The Brookhaven Success College," by Alice W. Villadsen; (3) "From Digital Divide to Digital Democracy," by Gerardo E. de los…

  14. Abstraction and art.

    PubMed Central

    Gortais, Bernard

    2003-01-01

    In a given social context, artistic creation comprises a set of processes, which relate to the activity of the artist and the activity of the spectator. Through these processes we see and understand that the world is vaster than it is said to be. Artistic processes are mediated experiences that open up the world. A successful work of art expresses a reality beyond actual reality: it suggests an unknown world using the means and the signs of the known world. Artistic practices incorporate the means of creation developed by science and technology and change forms as they change. Artists and the public follow different processes of abstraction at different levels, in the definition of the means of creation, of representation and of perception of a work of art. This paper examines how the processes of abstraction are used within the framework of the visual arts and abstract painting, which appeared during a period of growing importance for the processes of abstraction in science and technology, at the beginning of the twentieth century. The development of digital platforms and new man-machine interfaces allow multimedia creations. This is performed under the constraint of phases of multidisciplinary conceptualization using generic representation languages, which tend to abolish traditional frontiers between the arts: visual arts, drama, dance and music. PMID:12903659

  15. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  16. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1994

    1994-01-01

    Includes abstracts of 18 special interest group (SIG) sessions. Highlights include natural language processing, information science and terminology science, classification, knowledge-intensive information systems, information value and ownership issues, economics and theories of information science, information retrieval interfaces, fuzzy thinking…

  17. RESEARCH ABSTRACTS, VOLUME VI.

    ERIC Educational Resources Information Center

    COLETTE, SISTER M.

    THIS SIXTH VOLUME OF RESEARCH ABSTRACTS PRESENTS REPORTS OF 35 RESEARCH STUDIES COMPLETED BY CANDIDATES FOR THE MASTER'S DEGREE AT THE CARDINAL STRITCH COLLEGE IN 1964. TWENTY-NINE STUDIES ARE CONCERNED WITH READING, AND SIX ARE CONCERNED WITH THE EDUCATION OF THE MENTALLY HANDICAPPED. OF THE READING STUDIES, FIVE PERTAIN TO THE JUNIOR HIGH LEVEL…

  18. Learning Abstracts, 1999.

    ERIC Educational Resources Information Center

    League for Innovation in the Community Coll.

    This document contains volume two of Learning Abstracts, a bimonthly newsletter from the League for Innovation in the Community College. Articles in these seven issues include: (1) "Get on the Fast Track to Learning: An Accelerated Associate Degree Option" (Gerardo E. de los Santos and Deborah J. Cruise); (2) "The Learning College:…

  19. Annual Conference Abstracts

    ERIC Educational Resources Information Center

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  20. Making the Abstract Concrete

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2005-01-01

    President Ronald Reagan nominated a woman to serve on the United States Supreme Court. He did so through a single-page form letter, completed in part by hand and in part by typewriter, announcing Sandra Day O'Connor as his nominee. While the document serves as evidence of a historic event, it is also a tangible illustration of abstract concepts…

  1. Abstracts of SIG Sessions.

    ERIC Educational Resources Information Center

    Proceedings of the ASIS Annual Meeting, 1995

    1995-01-01

    Presents abstracts of 15 special interest group (SIG) sessions. Topics include navigation and information utilization in the Internet, natural language processing, automatic indexing, image indexing, classification, users' models of database searching, online public access catalogs, education for information professions, information services,…

  2. Seismic Consequence Abstraction

    SciTech Connect

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  3. Abstraction through Game Play

    ERIC Educational Resources Information Center

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  4. EBS Radionuclide Transport Abstraction

    SciTech Connect

    R. Schreiner

    2001-06-27

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M&O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  5. Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: the impact of Kola air pollution to new particle formation and potential CCN

    NASA Astrophysics Data System (ADS)

    Kyrö, Ella-Maria; Väänänen, Riikka; Kerminen, Veli-Matti; Virkkula, Aki; Asmi, Ari; Nieminen, Tuomo; Dal Maso, Miikka; Petäjä, Tuukka; Keronen, Petri; Aalto, Pasi; Riipinen, Ilona; Lehtipalo, Katrianne; Hari, Pertti; Kulmala, Markku

    2014-05-01

    Sulphur and primary emissions have been decreasing largely all over Europe, resulting in improved air quality and decreased direct radiation forcing by aerosols. The smelter industry in Kola Peninsula is one of largest sources of anthropogenic SO2 within the Arctic domain and since late 1990s the sulphur emissions have been decreasing rapidly (Paatero et al., 2008; Prank et al., 2010). New particle formation (NPF) is tightly linked with the oxidizing product of SO2, namely sulphuric acid (H2SO4), since it is known to be the key component in atmospheric nucleation (Sipilä et al., 2010). Thus, decreasing sulphur pollution may lead to less NPF. However, low values of condensation sink (CS), which is determined by the amount of pre-existing particles, favours NPF. We used 14 years (1998-2011) of aerosol number size distribution and trace gas data from SMEAR I station in Eastern Lapland, Finland, to investigate these relationships between SO2, NPF and CS. The station is a clean background station with occasional sulphur pollution episodes when the air masses arrive over Kola Peninsula. We found that while SO2 decreased by 11.3 % / year, the number of clear NPF event days was also decreasing by 9.9 % / year. At the same time, CS was decreasing also (-8.0 % / year) leading to formation of more particles per single NPF event (J3 increased by 29.7 % / year in 2006-2011) but the low vapour concentrations of H2SO4 (proxy decreased by 6.2 % / year) did not allow them to grow into climatically relevant sizes. Over the time, concentrations of potential CCN (cloud condensing nuclei) were also decreasing with more moderate pace, -4.0 % / year. The events started on average earlier after sunrise when the SO2 concentration during the start of the event was higher and NPF occurred more frequently in air masses which were travelling over Kola. Despite the total decrease in sulphur pollution originating from Kola there is currently no evidence of cleaning of the emissions, rather the

  6. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NASA Astrophysics Data System (ADS)

    Webb, Alison L.; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E.; Malin, Gill; Bach, Lennart T.; Schulz, Kai; Crawfurd, Kate; Brussaard, Corina P. D.; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S.

    2016-08-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After

  7. Finding Feasible Abstract Counter-Examples

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Dwyer, Matthew B.; Visser, Willem; Clancy, Daniel (Technical Monitor)

    2002-01-01

    A strength of model checking is its ability to automate the detection of subtle system errors and produce traces that exhibit those errors. Given the high computational cost of model checking most researchers advocate the use of aggressive property-preserving abstractions. Unfortunately, the more aggressively a system is abstracted the more infeasible behavior it will have. Thus, while abstraction enables efficient model checking it also threatens the usefulness of model checking as a defect detection tool, since it may be difficult to determine whether a counter-example is feasible and hence worth developer time to analyze. We have explored several strategies for addressing this problem by extending an explicit-state model checker, Java PathFinder (JPF), to search for and analyze counter-examples in the presence of abstractions. We demonstrate that these techniques effectively preserve the defect detection ability of model checking in the presence of aggressive abstraction by applying them to check properties of several abstracted multi-threaded Java programs. These new capabilities are not specific to JPF and can be easily adapted to other model checking frameworks; we describe how this was done for the Bandera toolset.

  8. PULSED SPLITLESS AND LARGE-VOLUME INJECTION IN CAPILLARY GAS CHROMATOGRAPHY MASS SPECTROMETRY FOR THE DETERMINATION OF ULTRA-TRACE LEVEL PESTICIDE RESIDUES

    EPA Science Inventory

    The possible presence of ultra-trace levels (sub- parts per trillion) of pesticides in pristine aquatic environments (e.g., alpine lakes) would raise questions regarding potential effects on biota. One hypothesis is that agricultural pesticides that are heavily applied in the San...

  9. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  10. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  11. Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas

    EPA Science Inventory

    Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...

  12. Generalized Abstract Symbolic Summaries

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Dwyer, Matthew B.

    2009-01-01

    Current techniques for validating and verifying program changes often consider the entire program, even for small changes, leading to enormous V&V costs over a program s lifetime. This is due, in large part, to the use of syntactic program techniques which are necessarily imprecise. Building on recent advances in symbolic execution of heap manipulating programs, in this paper, we develop techniques for performing abstract semantic differencing of program behaviors that offer the potential for improved precision.

  13. Abstraction Augmented Markov Models.

    PubMed

    Caragea, Cornelia; Silvescu, Adrian; Caragea, Doina; Honavar, Vasant

    2010-12-13

    High accuracy sequence classification often requires the use of higher order Markov models (MMs). However, the number of MM parameters increases exponentially with the range of direct dependencies between sequence elements, thereby increasing the risk of overfitting when the data set is limited in size. We present abstraction augmented Markov models (AAMMs) that effectively reduce the number of numeric parameters of k(th) order MMs by successively grouping strings of length k (i.e., k-grams) into abstraction hierarchies. We evaluate AAMMs on three protein subcellular localization prediction tasks. The results of our experiments show that abstraction makes it possible to construct predictive models that use significantly smaller number of features (by one to three orders of magnitude) as compared to MMs. AAMMs are competitive with and, in some cases, significantly outperform MMs. Moreover, the results show that AAMMs often perform significantly better than variable order Markov models, such as decomposed context tree weighting, prediction by partial match, and probabilistic suffix trees.

  14. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  15. Some problems associated with trace contaminant removal systems for spacecabins

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1985-01-01

    Potential problems associated with acid gas sorbents, activated charcoal beds and the catalytic oxidizer proposed for spacecabin trace contaminant control are discussed. The need for further research on atmospheric trace contaminant control methods is noted.

  16. Laboratory scale studies of Pd/{gamma}-Al{sub 2}O{sub 3} sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures

    SciTech Connect

    Rupp, Erik C.; Granite, Evan J.; Stanko, Dennis C.

    2013-01-01

    The Integrated Gasification Combined Cycle (IGCC) is a promising technology for the use of coal in a clean and efficient manner. In order to maintain the overall efficiency of the IGCC process, it is necessary to clean the fuel gas of contaminants (sulfur, trace compounds) at warm (150–540 °C) to hot (>540 °C) temperatures. Current technologies for trace contaminant (such as mercury) removal, primarily activated carbon based sorbents, begin to lose effectiveness above 100 °C, creating the need to develop sorbents effective at elevated temperatures. As trace elements are of particular environmental concern, previous work by this group has focused on the development of a Pd/γ-Al{sub 2}O{sub 3} sorbent for Hg removal. This paper extends the research to Se (as hydrogen selenide, H{sub 2}Se), As (as arsine, AsH{sub 3}), and P (as phosphine, PH{sub 3}) which thermodynamic studies indicate are present as gaseous species under gasification conditions. Experiments performed under ambient conditions in He on 20 wt.% Pd/γ-Al{sub 2}O{sub 3} indicate the sorbent can remove the target contaminants. Further work is performed using a 5 wt.% Pd/γ-Al{sub 2}O{sub 3} sorbent in a simulated fuel gas (H{sub 2}, CO, CO{sub 2}, N{sub 2} and H{sub 2}S) in both single and multiple contaminant atmospheres to gauge sorbent performance characteristics. The impact of H{sub 2}O, Hg and temperature on sorbent performance is explored.

  17. Research Abstracts of 1980.

    DTIC Science & Technology

    1980-12-01

    ABSTRACTS OF 1980. 9 - DTIC ELECTEf ii S AN3O 1981j _NAVAL DISTRIBUTION SMT:MIT DENTAL RESEARCH Approved for PUbDiC T INSTITE iii~2 YA3 It81 Naval...Medical Research apd Development Command 30 £ Bethesda, Maryland ( *- i - NTIS - GRA&I DTIC TAB - Urrannouneed NAVAL DENTAL RESEARCH INSTITUTE...r1 w American Assoctat/ion for Dental Research, 58th Annual Session, Los Angeles, California, March 20-23, 1980. 1. AV6ERSON*, D. N., LANGELAND, K

  18. Research Abstracts of 1979.

    DTIC Science & Technology

    1979-12-01

    7 AD-AO82 309 NAVAL DENTAL RESEARCH INST GREAT LAKES IL F/6 6/9 RESCH ABTAT79 991 UNCLASSIFIED NORI-PR-79-11 NL ’NDRI-PR 79-11 December 1979...RESEARCH ABSTRACTS OF 1979 OTICSELZCreD MAR 2?718 S A NAVAL DENTAL RESEARCH INSTITUTE Naval Medical Research and Development Command Bethesda, Maryland...8G 3 23 O4ൌ p.,. ... ....-- - I -- - ’.... .I l l ---,, .. . = ., , ." .;’.- I 1 IV NAVAL DENTAL RESEARCH INSTITUTE NAVAL BASE, BLDG. I-H GREAT LAKES

  19. An improved back-flush-to-vent gas chromatographic method for determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia.

    PubMed

    Trubyanov, Maxim M; Mochalov, Georgy M; Vorotyntsev, Ilya V; Vorotyntsev, Andrey V; Suvorov, Sergey S; Smirnov, Konstantin Y; Vorotyntsev, Vladimir M

    2016-05-20

    A novel method for rapid, quantitative determination of trace permanent gases and carbon dioxide in ultra-high purity ammonia by dual-channel two-dimensional GC-PDHID is presented. An improved matrix back-flush-to-vent approach combining back-flush column switching technique with auxiliary NaHSO4 ammonia trap is described. The NaHSO4 trap prevents traces of ammonia from entering the analytical column and is shown not to affect the impurity content of the sample. The approach allows shortening the analysis time and increasing the amount of measurements without extensive maintenance of the GC-system. The performance of the configuration has been evaluated utilizing ammonia- and helium-based calibration standards. The method has been applied for the analysis of 99.9999+% ammonia purified by high-pressure distillation at the production site.

  20. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  1. EBS Radionuclide Transport Abstraction

    SciTech Connect

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  2. Data reduction analysis and application technique development for atmospheric trace gas constituents derived from remote sensors on satellite or airborne platforms

    NASA Technical Reports Server (NTRS)

    Casas, J. C.; Campbell, S. A.

    1981-01-01

    The applicability of the gas filter correlation radiometer (GFCR) to the measurement of tropospheric carbon monoxide gas was investigated. An assessment of the GFRC measurement system to a regional measurement program was conducted through extensive aircraft flight-testing of several versions of the GFRC. Investigative work in the following areas is described: flight test planning and coordination, acquisition of verifying CO measurements, determination and acquisition of supporting meteorological data requirements, and development of supporting computational software.

  3. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan.

    PubMed

    Walia, Vivek; Yang, Tsanyao Frank; Hong, Wei-Li; Lin, Shih-Jung; Fu, Ching-Chou; Wen, Kuo-Liang; Chen, Cheng-Hong

    2009-10-01

    The present study is proposed to investigate geochemical variations of soil-gas composition in the vicinity of the geologic fault zone of Hsincheng in the Hsinchu area of Taiwan. Soil-gas surveys have been conducted across the Hsincheng fault, to look for the degassing pattern of this fault system. During the surveys, soil-gas samples were collected along traverses crossing the observed structures. The collected soil-gas samples were analysed for He, Rn, CO(2), CH(4), Ar, O(2) and N(2). The data analysis clearly reveals anomalous values along the fault. Before selecting a monitoring site, the occurrence of deeper gas emanation was investigated by the soil-gas surveys and followed by continuous monitoring of some selected sites with respect to tectonic activity to check the sensitivity of the sites. A site was selected for long term monitoring on the basis of coexistence of high concentration of helium, radon and carrier gases and sensitivity towards the tectonic activity in the region. A continuous monitoring station was established at Hsinchu National Industrial Science Park (HNISP) in October 2005. Preliminary results of the monitoring station have shown possible precursory signals for some earthquake events.

  4. Writing a successful research abstract.

    PubMed

    Bliss, Donna Z

    2012-01-01

    Writing and submitting a research abstract provides timely dissemination of the findings of a study and offers peer input for the subsequent development of a quality manuscript. Acceptance of abstracts is competitive. Understanding the expected content of an abstract, the abstract review process and tips for skillful writing will improve the chance of acceptance.

  5. Determination of the Trace-Gas Concentrations at the Altitudes of the Lower and Middle Mesosphere from the Time Series of Ozone Concentration

    NASA Astrophysics Data System (ADS)

    Nechaev, A. A.; Ermakova, T. S.; Kulikov, M. Yu.

    2016-12-01

    We present a statistical (Bayesian) approach to retrieving the concentrations of the most important mesospheric trace gases at altitudes of 50-75 km using the photochemical model based on the time series of ozone concentration, which are measured during the daylight hours in one day with the help of the ground-based passive microwave devices. Using the model noisy time series of ozone concentration with allowance for the realistic accuracy of its measurements in the mesosphere, which is ensured by the available ozonometers, the accuracy of retrieving the non-measurable mesospheric characteristics is studied as a function of the altitude and the time-series length.

  6. Program and abstracts

    SciTech Connect

    Not Available

    1994-10-01

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States, Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components . of the oil (N, alkali metals), the formation of NO{sub x}, in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  7. On the Assessment and Uncertainty of Atmospheric Trace Gas Burden Measurements with High Resolution Infrared Solar Occultation Spectra from Space by the ATMOS Experiment

    NASA Technical Reports Server (NTRS)

    Abrams, M. C.; Chang, A. Y.; Gunson, M. R.; Abbas, M. M.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.; Stiller, G. P.; Zander, R.

    1996-01-01

    The Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument is a high resolution Fourier transform spectrometer that measures atmospheric composition from low Earth orbit with infrared solar occultation sounding in the limb geometry. Following an initial flight in 1985, ATMOS participated in the Atmospheric Laboratory for Applications and Science (ATLAS) 1, 2, and 3 Space Shuttle missions in 1992, 1993, and 1994 yielding a total of 440 occultation measurements over a nine year period. The suite of more than thirty atmospheric trace gases profiled includes CO2, O3, N2O, CH4, H2O, NO, NO2, HNO3, HCl, HF, ClONO2, CCl3F, CCl2F2, CHF2Cl, and N2O5. The analysis method has been revised throughout the mission years culminating in the 'version 2' data set. The spectroscopic error analysis is described in the context of supporting the precision estimates reported with the profiles; in addition, systematic uncertainties assessed from the quality of the spectroscopic database are described and tabulated for comparisons with other experiments.

  8. Automated Supernova Discovery (Abstract)

    NASA Astrophysics Data System (ADS)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bri