Reflections on Active Networking
2005-01-01
Reflections on Active Networking Jonathan M. Smith CIS Department, University of Pennsylvania jms@cis.upenn.edu Abstract Interactions among...called “ Active Networking” came into being. It demonstrates the deep roots Active Networking has in the programming languages, networking and operating...broader research agenda, and the specific goals pursued in the SwitchWare project. I close by speculating on possible futures for Active Networking
National Comprehensive Cancer Network
... Session - Call for Abstracts NCCN Academy for Excellence & Leadership in Oncology™ NCCN 2018 Nursing Program: Advancing Oncology ... Congress: Hematologic Malignancies™ NCCN Global Academy for Excellence & Leadership in Oncology™ NCCN Corporate Council Next Meeting, March ...
Deriving an Abstraction Network to Support Quality Assurance in OCRe
Ochs, Christopher; Agrawal, Ankur; Perl, Yehoshua; Halper, Michael; Tu, Samson W.; Carini, Simona; Sim, Ida; Noy, Natasha; Musen, Mark; Geller, James
2012-01-01
An abstraction network is an auxiliary network of nodes and links that provides a compact, high-level view of an ontology. Such a view lends support to ontology orientation, comprehension, and quality-assurance efforts. A methodology is presented for deriving a kind of abstraction network, called a partial-area taxonomy, for the Ontology of Clinical Research (OCRe). OCRe was selected as a representative of ontologies implemented using the Web Ontology Language (OWL) based on shared domains. The derivation of the partial-area taxonomy for the Entity hierarchy of OCRe is described. Utilizing the visualization of the content and structure of the hierarchy provided by the taxonomy, the Entity hierarchy is audited, and several errors and inconsistencies in OCRe’s modeling of its domain are exposed. After appropriate corrections are made to OCRe, a new partial-area taxonomy is derived. The generalizability of the paradigm of the derivation methodology to various families of biomedical ontologies is discussed. PMID:23304341
Auditing SNOMED Relationships Using a Converse Abstraction Network
Wei, Duo; Halper, Michael; Elhanan, Gai; Chen, Yan; Perl, Yehoshua; Geller, James; Spackman, Kent A.
2009-01-01
In SNOMED CT, a given kind of attribute relationship is defined between two hierarchies, a source and a target. Certain hierarchies (or subhierarchies) serve only as targets, with no outgoing relationships of their own. However, converse relationships—those pointing in a direction opposite to the defined relationships—while not explicitly represented in SNOMED’s inferred view, can be utilized in forming an alternative view of a source. In particular, they can help shed light on a source hierarchy’s overall relationship structure. Toward this end, an abstraction network, called the converse abstraction network (CAN), derived automatically from a given SNOMED hierarchy is presented. An auditing methodology based on the CAN is formulated. The methodology is applied to SNOMED’s Device subhierarchy and the related device relationships of the Procedure hierarchy. The results indicate that the CAN is useful in finding opportunities for refining and improving SNOMED. PMID:20351941
A Computer-Aided Abstracting Tool Kit.
ERIC Educational Resources Information Center
Craven, Timothy C.
1993-01-01
Reports on the development of a prototype computerized abstractor's assistant called TEXNET, a text network management system. Features of the system discussed include semantic dependency links; displays of text structure; basic text editing; extracting; weighting methods; and listings of frequent words. (Contains 25 references.) (LRW)
Types for Correct Concurrent API Usage
2010-12-01
unique, full Here g is the state guarantee and A is the current abstract state of the object referenced by r. The ⊗ symbol is called the “ tensor ...to discover resources on a heterogeneous network. Votebox is an open-source implementation of software for voting machines. The Blocking queuemethod
Comparison of Point Matching Techniques for Road Network Matching
NASA Astrophysics Data System (ADS)
Hackeloeer, A.; Klasing, K.; Krisp, J. M.; Meng, L.
2013-05-01
Map conflation investigates the unique identification of geographical entities across different maps depicting the same geographic region. It involves a matching process which aims to find commonalities between geographic features. A specific subdomain of conflation called Road Network Matching establishes correspondences between road networks of different maps on multiple layers of abstraction, ranging from elementary point locations to high-level structures such as road segments or even subgraphs derived from the induced graph of a road network. The process of identifying points located on different maps by means of geometrical, topological and semantical information is called point matching. This paper provides an overview of various techniques for point matching, which is a fundamental requirement for subsequent matching steps focusing on complex high-level entities in geospatial networks. Common point matching approaches as well as certain combinations of these are described, classified and evaluated. Furthermore, a novel similarity metric called the Exact Angular Index is introduced, which considers both topological and geometrical aspects. The results offer a basis for further research on a bottom-up matching process for complex map features, which must rely upon findings derived from suitable point matching algorithms. In the context of Road Network Matching, reliable point matches provide an immediate starting point for finding matches between line segments describing the geometry and topology of road networks, which may in turn be used for performing a structural high-level matching on the network level.
A tribal abstraction network for SNOMED CT target hierarchies without attribute relationships.
Ochs, Christopher; Geller, James; Perl, Yehoshua; Chen, Yan; Agrawal, Ankur; Case, James T; Hripcsak, George
2015-05-01
Large and complex terminologies, such as Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT), are prone to errors and inconsistencies. Abstraction networks are compact summarizations of the content and structure of a terminology. Abstraction networks have been shown to support terminology quality assurance. In this paper, we introduce an abstraction network derivation methodology which can be applied to SNOMED CT target hierarchies whose classes are defined using only hierarchical relationships (ie, without attribute relationships) and similar description-logic-based terminologies. We introduce the tribal abstraction network (TAN), based on the notion of a tribe-a subhierarchy rooted at a child of a hierarchy root, assuming only the existence of concepts with multiple parents. The TAN summarizes a hierarchy that does not have attribute relationships using sets of concepts, called tribal units that belong to exactly the same multiple tribes. Tribal units are further divided into refined tribal units which contain closely related concepts. A quality assurance methodology that utilizes TAN summarizations is introduced. A TAN is derived for the Observable entity hierarchy of SNOMED CT, summarizing its content. A TAN-based quality assurance review of the concepts of the hierarchy is performed, and erroneous concepts are shown to appear more frequently in large refined tribal units than in small refined tribal units. Furthermore, more erroneous concepts appear in large refined tribal units of more tribes than of fewer tribes. In this paper we introduce the TAN for summarizing SNOMED CT target hierarchies. A TAN was derived for the Observable entity hierarchy of SNOMED CT. A quality assurance methodology utilizing the TAN was introduced and demonstrated. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2007-10-16
ABSTRACT c. THIS PAGE ABSTRACT OF Francis Otuonye P U UU24 19b. TELEPHONE NUMBER (Include area code ) 24 931-372-3374 Standard Form 298 (Rev. 8/98...modulation pulse wavefom--sotware defined or cognitive. From a information-theoretical viewpoint, the two parts as a whole form so-called "pre- coding ". I...The time domain system Fig. 2.3(b) is based on digital sampling oscilloscope (DSO), Textronix TDS 7000E3. The time domain sounder has the capability
Abstraction of complex concepts with a refined partial-area taxonomy of SNOMED
Wang, Yue; Halper, Michael; Wei, Duo; Perl, Yehoshua; Geller, James
2012-01-01
An algorithmically-derived abstraction network, called the partial-area taxonomy, for a SNOMED hierarchy has led to the identification of concepts considered complex. The designation “complex” is arrived at automatically on the basis of structural analyses of overlap among the constituent concept groups of the partial-area taxonomy. Such complex concepts, called overlapping concepts, constitute a tangled portion of a hierarchy and can be obstacles to users trying to gain an understanding of the hierarchy’s content. A new methodology for partitioning the entire collection of overlapping concepts into singly-rooted groups, that are more manageable to work with and comprehend, is presented. Different kinds of overlapping concepts with varying degrees of complexity are identified. This leads to an abstract model of the overlapping concepts called the disjoint partial-area taxonomy, which serves as a vehicle for enhanced, high-level display. The methodology is demonstrated with an application to SNOMED’s Specimen hierarchy. Overall, the resulting disjoint partial-area taxonomy offers a refined view of the hierarchy’s structural organization and conceptual content that can aid users, such as maintenance personnel, working with SNOMED. The utility of the disjoint partial-area taxonomy as the basis for a SNOMED auditing regimen is presented in a companion paper. PMID:21878396
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
Carrault, G; Cordier, M-O; Quiniou, R; Wang, F
2003-07-01
This paper proposes a novel approach to cardiac arrhythmia recognition from electrocardiograms (ECGs). ECGs record the electrical activity of the heart and are used to diagnose many heart disorders. The numerical ECG is first temporally abstracted into series of time-stamped events. Temporal abstraction makes use of artificial neural networks to extract interesting waves and their features from the input signals. A temporal reasoner called a chronicle recogniser processes such series in order to discover temporal patterns called chronicles which can be related to cardiac arrhythmias. Generally, it is difficult to elicit an accurate set of chronicles from a doctor. Thus, we propose to learn automatically from symbolic ECG examples the chronicles discriminating the arrhythmias belonging to some specific subset. Since temporal relationships are of major importance, inductive logic programming (ILP) is the tool of choice as it enables first-order relational learning. The approach has been evaluated on real ECGs taken from the MIT-BIH database. The performance of the different modules as well as the efficiency of the whole system is presented. The results are rather good and demonstrate that integrating numerical techniques for low level perception and symbolic techniques for high level classification is very valuable.
A simplified computational memory model from information processing.
Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang
2016-11-23
This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.
Abstraction networks for terminologies: Supporting management of "big knowledge".
Halper, Michael; Gu, Huanying; Perl, Yehoshua; Ochs, Christopher
2015-05-01
Terminologies and terminological systems have assumed important roles in many medical information processing environments, giving rise to the "big knowledge" challenge when terminological content comprises tens of thousands to millions of concepts arranged in a tangled web of relationships. Use and maintenance of knowledge structures on that scale can be daunting. The notion of abstraction network is presented as a means of facilitating the usability, comprehensibility, visualization, and quality assurance of terminologies. An abstraction network overlays a terminology's underlying network structure at a higher level of abstraction. In particular, it provides a more compact view of the terminology's content, avoiding the display of minutiae. General abstraction network characteristics are discussed. Moreover, the notion of meta-abstraction network, existing at an even higher level of abstraction than a typical abstraction network, is described for cases where even the abstraction network itself represents a case of "big knowledge." Various features in the design of abstraction networks are demonstrated in a methodological survey of some existing abstraction networks previously developed and deployed for a variety of terminologies. The applicability of the general abstraction-network framework is shown through use-cases of various terminologies, including the Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT), the Medical Entities Dictionary (MED), and the Unified Medical Language System (UMLS). Important characteristics of the surveyed abstraction networks are provided, e.g., the magnitude of the respective size reduction referred to as the abstraction ratio. Specific benefits of these alternative terminology-network views, particularly their use in terminology quality assurance, are discussed. Examples of meta-abstraction networks are presented. The "big knowledge" challenge constitutes the use and maintenance of terminological structures that comprise tens of thousands to millions of concepts and their attendant complexity. The notion of abstraction network has been introduced as a tool in helping to overcome this challenge, thus enhancing the usefulness of terminologies. Abstraction networks have been shown to be applicable to a variety of existing biomedical terminologies, and these alternative structural views hold promise for future expanded use with additional terminologies. Copyright © 2015 Elsevier B.V. All rights reserved.
Real-Time Visualization of Network Behaviors for Situational Awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Bohn, Shawn J.; Love, Douglas V.
Plentiful, complex, and dynamic data make understanding the state of an enterprise network difficult. Although visualization can help analysts understand baseline behaviors in network traffic and identify off-normal events, visual analysis systems often do not scale well to operational data volumes (in the hundreds of millions to billions of transactions per day) nor to analysis of emergent trends in real-time data. We present a system that combines multiple, complementary visualization techniques coupled with in-stream analytics, behavioral modeling of network actors, and a high-throughput processing platform called MeDICi. This system provides situational understanding of real-time network activity to help analysts takemore » proactive response steps. We have developed these techniques using requirements gathered from the government users for which the tools are being developed. By linking multiple visualization tools to a streaming analytic pipeline, and designing each tool to support a particular kind of analysis (from high-level awareness to detailed investigation), analysts can understand the behavior of a network across multiple levels of abstraction.« less
NASA Astrophysics Data System (ADS)
Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.
2015-12-01
Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web-based apps in other languages for remote functionality. Partner CH2M is developing a commercial user-interface for Hydra Platform however custom interfaces and visualization tools can be built. Hydra Platform is available on GitHub while Apps will be shared on a central repository.
Towards a Framework for Evolvable Network Design
NASA Astrophysics Data System (ADS)
Hassan, Hoda; Eltarras, Ramy; Eltoweissy, Mohamed
The layered Internet architecture that had long guided network design and protocol engineering was an “interconnection architecture” defining a framework for interconnecting networks rather than a model for generic network structuring and engineering. We claim that the approach of abstracting the network in terms of an internetwork hinders the thorough understanding of the network salient characteristics and emergent behavior resulting in impeding design evolution required to address extreme scale, heterogeneity, and complexity. This paper reports on our work in progress that aims to: 1) Investigate the problem space in terms of the factors and decisions that influenced the design and development of computer networks; 2) Sketch the core principles for designing complex computer networks; and 3) Propose a model and related framework for building evolvable, adaptable and self organizing networks We will adopt a bottom up strategy primarily focusing on the building unit of the network model, which we call the “network cell”. The model is inspired by natural complex systems. A network cell is intrinsically capable of specialization, adaptation and evolution. Subsequently, we propose CellNet; a framework for evolvable network design. We outline scenarios for using the CellNet framework to enhance legacy Internet protocol stack.
Network-Induced Classification Kernels for Gene Expression Profile Analysis
Dror, Gideon; Shamir, Ron
2012-01-01
Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242
A simplified computational memory model from information processing
Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang
2016-01-01
This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847
A link prediction method for heterogeneous networks based on BP neural network
NASA Astrophysics Data System (ADS)
Li, Ji-chao; Zhao, Dan-ling; Ge, Bing-Feng; Yang, Ke-Wei; Chen, Ying-Wu
2018-04-01
Most real-world systems, composed of different types of objects connected via many interconnections, can be abstracted as various complex heterogeneous networks. Link prediction for heterogeneous networks is of great significance for mining missing links and reconfiguring networks according to observed information, with considerable applications in, for example, friend and location recommendations and disease-gene candidate detection. In this paper, we put forward a novel integrated framework, called MPBP (Meta-Path feature-based BP neural network model), to predict multiple types of links for heterogeneous networks. More specifically, the concept of meta-path is introduced, followed by the extraction of meta-path features for heterogeneous networks. Next, based on the extracted meta-path features, a supervised link prediction model is built with a three-layer BP neural network. Then, the solution algorithm of the proposed link prediction model is put forward to obtain predicted results by iteratively training the network. Last, numerical experiments on the dataset of examples of a gene-disease network and a combat network are conducted to verify the effectiveness and feasibility of the proposed MPBP. It shows that the MPBP with very good performance is superior to the baseline methods.
Development concepts of a Smart Cyber Operating Theater (SCOT) using ORiN technology.
Okamoto, Jun; Masamune, Ken; Iseki, Hiroshi; Muragaki, Yoshihiro
2018-02-23
Currently, networking has not progressed in the treatment room. Almost every medical device in the treatment room operates as a stand-alone device. In this project, we aim to develop a networked operating room called "Smart Cyber Operating Theater (SCOT)". Medical devices are connected using Open Resource interface for the Network (ORiN) technology. In this paper, we describe the concept of the SCOT project. SCOT is integrated using the communication interface ORiN, which was originally developed for industry. One feature of ORiN is that the system can be constructed flexibly. ORiN creates abstracts of the same type of devices and increases the robustness of the system for device exchange. By using ORiN technology, we are developing new applications, such as decision-making navigation or a precision guided treatment system.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
Prakash, Peralam Yegneswaran; Irinyi, Laszlo; Halliday, Catriona; Chen, Sharon; Robert, Vincent
2017-01-01
ABSTRACT The increase in public online databases dedicated to fungal identification is noteworthy. This can be attributed to improved access to molecular approaches to characterize fungi, as well as to delineate species within specific fungal groups in the last 2 decades, leading to an ever-increasing complexity of taxonomic assortments and nomenclatural reassignments. Thus, well-curated fungal databases with substantial accurate sequence data play a pivotal role for further research and diagnostics in the field of mycology. This minireview aims to provide an overview of currently available online databases for the taxonomy and identification of human and animal-pathogenic fungi and calls for the establishment of a cloud-based dynamic data network platform. PMID:28179406
Neural Networks for the Classification of Building Use from Street-View Imagery
NASA Astrophysics Data System (ADS)
Laupheimer, D.; Tutzauer, P.; Haala, N.; Spicker, M.
2018-05-01
Within this paper we propose an end-to-end approach for classifying terrestrial images of building facades into five different utility classes (commercial, hybrid, residential, specialUse, underConstruction) by using Convolutional Neural Networks (CNNs). For our examples we use images provided by Google Street View. These images are automatically linked to a coarse city model, including the outlines of the buildings as well as their respective use classes. By these means an extensive dataset is available for training and evaluation of our Deep Learning pipeline. The paper describes the implemented end-to-end approach for classifying street-level images of building facades and discusses our experiments with various CNNs. In addition to the classification results, so-called Class Activation Maps (CAMs) are evaluated. These maps give further insights into decisive facade parts that are learned as features during the training process. Furthermore, they can be used for the generation of abstract presentations which facilitate the comprehension of semantic image content. The abstract representations are a result of the stippling method, an importance-based image rendering.
A comparative analysis of the statistical properties of large mobile phone calling networks.
Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N
2014-05-30
Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.
Detecting trends in academic research from a citation network using network representation learning
Mori, Junichiro; Ochi, Masanao; Sakata, Ichiro
2018-01-01
Several network features and information retrieval methods have been proposed to elucidate the structure of citation networks and to detect important nodes. However, it is difficult to retrieve information related to trends in an academic field and to detect cutting-edge areas from the citation network. In this paper, we propose a novel framework that detects the trend as the growth direction of a citation network using network representation learning(NRL). We presume that the linear growth of citation network in latent space obtained by NRL is the result of the iterative edge additional process of a citation network. On APS datasets and papers of some domains of the Web of Science, we confirm the existence of trends by observing that an academic field grows in a specific direction linearly in latent space. Next, we calculate each node’s degree of trend-following as an indicator called the intrinsic publication year (IPY). As a result, there is a correlation between the indicator and the number of future citations. Furthermore, a word frequently used in the abstracts of cutting-edge papers (high-IPY paper) is likely to be used often in future publications. These results confirm the validity of the detected trend for predicting citation network growth. PMID:29782521
New Abstraction Networks and a New Visualization Tool in Support of Auditing the SNOMED CT Content
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT. PMID:23304293
New abstraction networks and a new visualization tool in support of auditing the SNOMED CT content.
Geller, James; Ochs, Christopher; Perl, Yehoshua; Xu, Junchuan
2012-01-01
Medical terminologies are large and complex. Frequently, errors are hidden in this complexity. Our objective is to find such errors, which can be aided by deriving abstraction networks from a large terminology. Abstraction networks preserve important features but eliminate many minor details, which are often not useful for identifying errors. Providing visualizations for such abstraction networks aids auditors by allowing them to quickly focus on elements of interest within a terminology. Previously we introduced area taxonomies and partial area taxonomies for SNOMED CT. In this paper, two advanced, novel kinds of abstraction networks, the relationship-constrained partial area subtaxonomy and the root-constrained partial area subtaxonomy are defined and their benefits are demonstrated. We also describe BLUSNO, an innovative software tool for quickly generating and visualizing these SNOMED CT abstraction networks. BLUSNO is a dynamic, interactive system that provides quick access to well organized information about SNOMED CT.
Information Flow in Interaction Networks II: Channels, Path Lengths, and Potentials
Stojmirović, Aleksandar
2012-01-01
Abstract In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework. PMID:22409812
Evidence That Calls-Based and Mobility Networks Are Isomorphic
Coscia, Michele; Hausmann, Ricardo
2015-01-01
Social relations involve both face-to-face interaction as well as telecommunications. We can observe the geography of phone calls and of the mobility of cell phones in space. These two phenomena can be described as networks of connections between different points in space. We use a dataset that includes billions of phone calls made in Colombia during a six-month period. We draw the two networks and find that the call-based network resembles a higher order aggregation of the mobility network and that both are isomorphic except for a higher spatial decay coefficient of the mobility network relative to the call-based network: when we discount distance effects on the call connections with the same decay observed for mobility connections, the two networks are virtually indistinguishable. PMID:26713730
Complexity measures to track the evolution of a SNOMED hierarchy.
Wei, Duo; Wang, Yue; Perl, Yehoshua; Xu, Junchuan; Halper, Michael; Spackman, Kent A; Spackman, Kent
2008-11-06
SNOMED CT is an extensive terminology with an attendant amount of complexity. Two measures are proposed for quantifying that complexity. Both are based on abstraction networks, called the area taxonomy and the partial-area taxonomy, that provide, for example, distributions of the relationships within a SNOMED hierarchy. The complexity measures are employed specifically to track the complexity of versions of the Specimen hierarchy of SNOMED before and after it is put through an auditing process. The pre-audit and post-audit versions are compared. The results show that the auditing process indeed leads to a simplification of the terminology's structure.
The Social Context Network Model in Psychiatric and Neurological Diseases.
Baez, Sandra; García, Adolfo M; Ibanez, Agustín
2017-01-01
The role of contextual modulations has been extensively studied in basic sensory and cognitive processes. However, little is known about their impact on social cognition, let alone their disruption in disorders compromising such a domain. In this chapter, we flesh out the social context network model (SCNM), a neuroscientific proposal devised to address the issue. In SCNM terms, social context effects rely on a fronto-temporo-insular network in charge of (a) updating context cues to make predictions, (b) consolidating context-target associative learning, and (c) coordinating internal and external milieus. First, we characterize various social cognition domains as context-dependent phenomena. Then, we review behavioral and neural evidence of social context impairments in behavioral variant frontotemporal dementia (bvFTD) and autism spectrum disorder (ASD), highlighting their relation with key SCNM hubs. Next, we show that other psychiatric and neurological conditions involve context-processing impairments following damage to the brain regions included in the model. Finally, we call for an ecological approach to social cognition assessment, moving beyond widespread abstract and decontextualized methods.
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A.
2016-01-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving “live partial-area taxonomies” is demonstrated. PMID:27345947
Ochs, Christopher; Geller, James; Perl, Yehoshua; Musen, Mark A
2016-08-01
Software tools play a critical role in the development and maintenance of biomedical ontologies. One important task that is difficult without software tools is ontology quality assurance. In previous work, we have introduced different kinds of abstraction networks to provide a theoretical foundation for ontology quality assurance tools. Abstraction networks summarize the structure and content of ontologies. One kind of abstraction network that we have used repeatedly to support ontology quality assurance is the partial-area taxonomy. It summarizes structurally and semantically similar concepts within an ontology. However, the use of partial-area taxonomies was ad hoc and not generalizable. In this paper, we describe the Ontology Abstraction Framework (OAF), a unified framework and software system for deriving, visualizing, and exploring partial-area taxonomy abstraction networks. The OAF includes support for various ontology representations (e.g., OWL and SNOMED CT's relational format). A Protégé plugin for deriving "live partial-area taxonomies" is demonstrated. Copyright © 2016 Elsevier Inc. All rights reserved.
Quality assurance of the gene ontology using abstraction networks.
Ochs, Christopher; Perl, Yehoshua; Halper, Michael; Geller, James; Lomax, Jane
2016-06-01
The gene ontology (GO) is used extensively in the field of genomics. Like other large and complex ontologies, quality assurance (QA) efforts for GO's content can be laborious and time consuming. Abstraction networks (AbNs) are summarization networks that reveal and highlight high-level structural and hierarchical aggregation patterns in an ontology. They have been shown to successfully support QA work in the context of various ontologies. Two kinds of AbNs, called the area taxonomy and the partial-area taxonomy, are developed for GO hierarchies and derived specifically for the biological process (BP) hierarchy. Within this framework, several QA heuristics, based on the identification of groups of anomalous terms which exhibit certain taxonomy-defined characteristics, are introduced. Such groups are expected to have higher error rates when compared to other terms. Thus, by focusing QA efforts on anomalous terms one would expect to find relatively more erroneous content. By automatically identifying these potential problem areas within an ontology, time and effort will be saved during manual reviews of GO's content. BP is used as a testbed, with samples of three kinds of anomalous BP terms chosen for a taxonomy-based QA review. Additional heuristics for QA are demonstrated. From the results of this QA effort, it is observed that different kinds of inconsistencies in the modeling of GO can be exposed with the use of the proposed heuristics. For comparison, the results of QA work on a sample of terms chosen from GO's general population are presented.
Quorum-Sensing Signal-Response Systems in Gram-Negative Bacteria
Papenfort, Kai; Bassler, Bonnie
2016-01-01
Abstract / Preface Bacteria use quorum sensing to orchestrate gene expression programmes that underlie collective behaviours. Quorum sensing relies on the production, release, detection and group-level response to extracellular signalling molecules, which are called autoinducers. Recent work has discovered new autoinducers in Gram-negative bacteria, shown how these molecules are recognized by cognate receptors, revealed new regulatory components that are embedded in canonical signalling circuits and identified novel regulatory network designs. In this Review we examine how, together, these features of quorum sensing signal–response systems combine to control collective behaviours in Gram-negative bacteria and we discuss the implications for host–microbial associations and antibacterial therapy. PMID:27510864
Mitigating Handoff Call Dropping in Wireless Cellular Networks: A Call Admission Control Technique
NASA Astrophysics Data System (ADS)
Ekpenyong, Moses Effiong; Udoh, Victoria Idia; Bassey, Udoma James
2016-06-01
Handoff management has been an important but challenging issue in the field of wireless communication. It seeks to maintain seamless connectivity of mobile users changing their points of attachment from one base station to another. This paper derives a call admission control model and establishes an optimal step-size coefficient (k) that regulates the admission probability of handoff calls. An operational CDMA network carrier was investigated through the analysis of empirical data collected over a period of 1 month, to verify the performance of the network. Our findings revealed that approximately 23 % of calls in the existing system were lost, while 40 % of the calls (on the average) were successfully admitted. A simulation of the proposed model was then carried out under ideal network conditions to study the relationship between the various network parameters and validate our claim. Simulation results showed that increasing the step-size coefficient degrades the network performance. Even at optimum step-size (k), the network could still be compromised in the presence of severe network crises, but our model was able to recover from these problems and still functions normally.
Harvesting Ego-Network Data from Facebook: Using the CEMAP Facebook Profile in ORA
2009-02-02
Keywords: Facebook , CEMAP, social network , ORA, dynamic network analysis Abstract...The Facebook social networking site (www.facebook.com) has become a popular phenomenon over the past five years. By its nature, Facebook has...tableset. The Facebook tableset is the CEMAP abstraction of the various levels of technology to harvest the social network data, via the Facebook developer
CALL FOR ABSTRACTS - PIT LAKES 2004
This call for abstracts is for the 11/16-18/2004 Pit Lakes 2004 meeting held in Reno, NV. This conference will provide a forum for the exchange of scientific information on current domestic and international pit lake approaches, including pit lakes from arid and wet regions throu...
Utilizing a structural meta-ontology for family-based quality assurance of the BioPortal ontologies.
Ochs, Christopher; He, Zhe; Zheng, Ling; Geller, James; Perl, Yehoshua; Hripcsak, George; Musen, Mark A
2016-06-01
An Abstraction Network is a compact summary of an ontology's structure and content. In previous research, we showed that Abstraction Networks support quality assurance (QA) of biomedical ontologies. The development of an Abstraction Network and its associated QA methodologies, however, is a labor-intensive process that previously was applicable only to one ontology at a time. To improve the efficiency of the Abstraction-Network-based QA methodology, we introduced a QA framework that uses uniform Abstraction Network derivation techniques and QA methodologies that are applicable to whole families of structurally similar ontologies. For the family-based framework to be successful, it is necessary to develop a method for classifying ontologies into structurally similar families. We now describe a structural meta-ontology that classifies ontologies according to certain structural features that are commonly used in the modeling of ontologies (e.g., object properties) and that are important for Abstraction Network derivation. Each class of the structural meta-ontology represents a family of ontologies with identical structural features, indicating which types of Abstraction Networks and QA methodologies are potentially applicable to all of the ontologies in the family. We derive a collection of 81 families, corresponding to classes of the structural meta-ontology, that enable a flexible, streamlined family-based QA methodology, offering multiple choices for classifying an ontology. The structure of 373 ontologies from the NCBO BioPortal is analyzed and each ontology is classified into multiple families modeled by the structural meta-ontology. Copyright © 2016 Elsevier Inc. All rights reserved.
FUSE: a profit maximization approach for functional summarization of biological networks.
Seah, Boon-Siew; Bhowmick, Sourav S; Dewey, C Forbes; Yu, Hanry
2012-03-21
The availability of large-scale curated protein interaction datasets has given rise to the opportunity to investigate higher level organization and modularity within the protein interaction network (PPI) using graph theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while satisfying the level of detail constraint. We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-art graph clustering methods with GO term enrichment by constructing the biological process landscape of the PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the network and identify many different processes and complexes that regulate it. Finally, we study the higher-order connectivity of the human PPI. By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering methods with GO term enrichment.
Minimum spanning tree analysis of the human connectome
Sommer, Iris E.; Bohlken, Marc M.; Tewarie, Prejaas; Draaisma, Laurijn; Zalesky, Andrew; Di Biase, Maria; Brown, Jesse A.; Douw, Linda; Otte, Willem M.; Mandl, René C.W.; Stam, Cornelis J.
2018-01-01
Abstract One of the challenges of brain network analysis is to directly compare network organization between subjects, irrespective of the number or strength of connections. In this study, we used minimum spanning tree (MST; a unique, acyclic subnetwork with a fixed number of connections) analysis to characterize the human brain network to create an empirical reference network. Such a reference network could be used as a null model of connections that form the backbone structure of the human brain. We analyzed the MST in three diffusion‐weighted imaging datasets of healthy adults. The MST of the group mean connectivity matrix was used as the empirical null‐model. The MST of individual subjects matched this reference MST for a mean 58%–88% of connections, depending on the analysis pipeline. Hub nodes in the MST matched with previously reported locations of hub regions, including the so‐called rich club nodes (a subset of high‐degree, highly interconnected nodes). Although most brain network studies have focused primarily on cortical connections, cortical–subcortical connections were consistently present in the MST across subjects. Brain network efficiency was higher when these connections were included in the analysis, suggesting that these tracts may be utilized as the major neural communication routes. Finally, we confirmed that MST characteristics index the effects of brain aging. We conclude that the MST provides an elegant and straightforward approach to analyze structural brain networks, and to test network topological features of individual subjects in comparison to empirical null models. PMID:29468769
CALL FOR ABSTRACTS FOR WORKSHOP ON MINING IMPACTED NATIVE AMERICAN LANDS 2003
This is a Call for Abstracts for a workshop 9/9-11/2003 in Reno, NV, to unite Tribal members and representatives, and other government officials to examine technical and policy issues related to historic, current, and future mining impacts on Native American Lands.
Infection dynamics on spatial small-world network models
NASA Astrophysics Data System (ADS)
Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario
2017-11-01
The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.
Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes
2013-01-01
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained. PMID:23385405
Rodríguez-Molina, Jesús; Martínez, José-Fernán; Castillejo, Pedro; López, Lourdes
2013-01-31
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.
ERIC Educational Resources Information Center
Cook, Katherine M.
1928-01-01
This bulletin contains abstracts of the addresses delivered at a conference called by the United States Commissioner of Education to consider problems concerned with the professional preparation of teachers for rural schools. They were prepared from copies of the addresses or abstracts of them furnished by the speakers who prepared or delivered…
NASA Astrophysics Data System (ADS)
Chowdhury, Prasun; Saha Misra, Iti
2014-10-01
Nowadays, due to increased demand for using the Broadband Wireless Access (BWA) networks in a satisfactory manner a promised Quality of Service (QoS) is required to manage the seamless transmission of the heterogeneous handoff calls. To this end, this paper proposes an improved Call Admission Control (CAC) mechanism with prioritized handoff queuing scheme that aims to reduce dropping probability of handoff calls. Handoff calls are queued when no bandwidth is available even after the allowable bandwidth degradation of the ongoing calls and get admitted into the network when an ongoing call is terminated with a higher priority than the newly originated call. An analytical Markov model for the proposed CAC mechanism is developed to analyze various performance parameters. Analytical results show that our proposed CAC with handoff queuing scheme prioritizes the handoff calls effectively and reduces dropping probability of the system by 78.57% for real-time traffic without degrading the number of failed new call attempts. This results in the increased bandwidth utilization of the network.
Online social network response to studies on antidepressant use in pregnancy.
Vigod, Simone N; Bagheri, Ebrahim; Zarrinkalam, Fattane; Brown, Hilary K; Mamdani, Muhammad; Ray, Joel G
2018-03-01
About 8% of U.S women are prescribed antidepressant medications around the time of pregnancy. Decisions about medication use in pregnancy can be swayed by the opinion of family, friends and online media, sometimes beyond the advice offered by healthcare providers. Exploration of the online social network response to research on antidepressant use in pregnancy could provide insight about how to optimize decision-making in this complex area. For all 17 research articles published on the safety of antidepressant use in pregnancy in 2012, we sought to explore online social network activity regarding antidepressant use in pregnancy, via Twitter, in the 48h after a study was published, compared to the social network activity in the same period 1week prior to each article's publication. Online social network activity about antidepressants in pregnancy quickly doubled upon study publication. The increased activity was driven by studies demonstrating harm associated with antidepressants, lower-quality studies, and studies where abstracts presented relative versus absolute risks. These findings support a call for leadership from medical journals to consider how to best incentivize and support a balanced and clear translation of knowledge around antidepressant safety in pregnancy to their readership and the public. Copyright © 2018 Elsevier Inc. All rights reserved.
Patten, Christi A.; Boyle, Raymond; Tinkelman, David; Brockman, Tabetha A.; Lukowski, Amy; Decker, Paul A.; D’Silva, Joanne; Lichtenstein, Edward; Zhu, Shu-Hong
2017-01-01
Abstract Evidence-based treatments (e.g. quitlines) are greatly underutilized by smokers limiting their public health impact. A three-session phone intervention for nonsmoking family members and friends (i.e. support persons) was successful for increasing smoker quitline enrollment. To enhance the intervention’s potential translatability, in this study, we delivered treatment for the non-smoker within ongoing quitline services and compared the efficacy of the three-call intervention to a streamlined version (one call). A total of 704 adult non-smokers (85% female, 95% White) wanting to help a smoker quit and recruited statewide in Minnesota participated in this randomized controlled trial with parallel groups. Non-smokers received mailed written materials and were randomly assigned to a control condition (no additional treatment, n = 235), or to a one- (n = 233) or three-call (n = 236) intervention delivered by quitline coaches. The main outcome was smoker quitline enrollment through 7-month follow-up. Smoker quitline enrollment was similar for those linked to non-smokers in the one- and three-call interventions (14.6% [34/233] and 14.8% [35/236]), and higher than for smokers linked to control participants (6.4% [15/235]), P = 0.006. Just one quitline coaching call delivered to non-smokers increased treatment enrollment among smokers. The reach of quitlines could be enhanced by targeting the social support network of smokers. PMID:28854569
47 CFR 51.5 - Terms and definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... The Communications Act of 1934, as amended. Advanced intelligent network. Advanced intelligent network is a telecommunications network architecture in which call processing, call routing, and network... carrier's network. Advanced services. The term “advanced services” is defined as high speed, switched...
Boros, L G; Lepow, C; Ruland, F; Starbuck, V; Jones, S; Flancbaum, L; Townsend, M C
1992-07-01
A powerful method of processing MEDLINE and CINAHL source data uploaded to the IBM 3090 mainframe computer through an IBM/PC is described. Data are first downloaded from the CD-ROM's PC devices to floppy disks. These disks then are uploaded to the mainframe computer through an IBM/PC equipped with WordPerfect text editor and computer network connection (SONNGATE). Before downloading, keywords specifying the information to be accessed are typed at the FIND prompt of the CD-ROM station. The resulting abstracts are downloaded into a file called DOWNLOAD.DOC. The floppy disks containing the information are simply carried to an IBM/PC which has a terminal emulation (TELNET) connection to the university-wide computer network (SONNET) at the Ohio State University Academic Computing Services (OSU ACS). The WordPerfect (5.1) processes and saves the text into DOS format. Using the File Transfer Protocol (FTP, 130,000 bytes/s) of SONNET, the entire text containing the information obtained through the MEDLINE and CINAHL search is transferred to the remote mainframe computer for further processing. At this point, abstracts in the specified area are ready for immediate access and multiple retrieval by any PC having network switch or dial-in connection after the USER ID, PASSWORD and ACCOUNT NUMBER are specified by the user. The system provides the user an on-line, very powerful and quick method of searching for words specifying: diseases, agents, experimental methods, animals, authors, and journals in the research area downloaded. The user can also copy the TItles, AUthors and SOurce with optional parts of abstracts into papers under edition. This arrangement serves the special demands of a research laboratory by handling MEDLINE and CINAHL source data resulting after a search is performed with keywords specified for ongoing projects. Since the Ohio State University has a centrally founded mainframe system, the data upload, storage and mainframe operations are free.
This publication is a preliminary announcement and call-for-abstracts for the 5/2001 Workshop on the Fate, Transport, and Transformation of Mercury in Aquatic and Terrestrial Environments. This workshop will 1) describe the current state of knowledge, gaps, and areas of consensus...
Data Imputation in Epistatic MAPs by Network-Guided Matrix Completion
Žitnik, Marinka; Zupan, Blaž
2015-01-01
Abstract Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle interactions with greater precision. However, due to the limits of biotechnology, E-MAP studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing measurements can be recovered by computational techniques for data imputation, in this way completing the interaction profiles and enabling downstream analysis algorithms that could otherwise be sensitive to missing data values. We introduce a new interaction data imputation method called network-guided matrix completion (NG-MC). The core part of NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge presented as a collection of gene networks. NG-MC assumes that interactions are transitive, such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it propagates latent interaction profiles through each of the networks and updates gene network weights toward improved prediction. In a study with four different E-MAP data assays and considered protein–protein interaction and gene ontology similarity networks, NG-MC significantly surpassed existing alternative techniques. Inclusion of information from gene networks also allowed NG-MC to predict interactions for genes that were not included in original E-MAP assays, a task that could not be considered by current imputation approaches. PMID:25658751
OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators
NASA Astrophysics Data System (ADS)
Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno
2005-06-01
The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.
Spatial-temporal modeling of malware propagation in networks.
Chen, Zesheng; Ji, Chuanyi
2005-09-01
Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.
Individual brain structure and modelling predict seizure propagation
Proix, Timothée; Bartolomei, Fabrice; Guye, Maxime; Jirsa, Viktor K.
2017-01-01
Abstract See Lytton (doi:10.1093/awx018) for a scientific commentary on this article. Neural network oscillations are a fundamental mechanism for cognition, perception and consciousness. Consequently, perturbations of network activity play an important role in the pathophysiology of brain disorders. When structural information from non-invasive brain imaging is merged with mathematical modelling, then generative brain network models constitute personalized in silico platforms for the exploration of causal mechanisms of brain function and clinical hypothesis testing. We here demonstrate with the example of drug-resistant epilepsy that patient-specific virtual brain models derived from diffusion magnetic resonance imaging have sufficient predictive power to improve diagnosis and surgery outcome. In partial epilepsy, seizures originate in a local network, the so-called epileptogenic zone, before recruiting other close or distant brain regions. We create personalized large-scale brain networks for 15 patients and simulate the individual seizure propagation patterns. Model validation is performed against the presurgical stereotactic electroencephalography data and the standard-of-care clinical evaluation. We demonstrate that the individual brain models account for the patient seizure propagation patterns, explain the variability in postsurgical success, but do not reliably augment with the use of patient-specific connectivity. Our results show that connectome-based brain network models have the capacity to explain changes in the organization of brain activity as observed in some brain disorders, thus opening up avenues towards discovery of novel clinical interventions. PMID:28364550
Coussaert, E J; Cantraine, F R
1996-11-01
We designed a virtual device for a local area network observing, operating and connecting devices to a personal computer. To keep the widest field of application, we proceeded by using abstraction and specification rules of software engineering in the design and implementation of the hardware and software for the Infusion Monitor. We specially built a box of hardware to interface multiple medical instruments with different communication protocols to a PC via a single serial port. We called that box the Universal Device Communication Controller (UDCC). The use of the virtual device driver is illustrated by the Infusion Monitor implemented for the anaesthesia and intensive care workstation.
2014-02-28
distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This anthology of cyber analogies will resonate with readers whose duties call for them...THIS PAGE INTENTIONALLY LEFT BLANK v ABSTRACT This anthology of cyber analogies will resonate with readers...fresh insights. THE CASE FOR ANALOGIES All of us on the cyber analogies team hope that this anthol- ogy will resonate with readers whose duties call
Neural network submodel as an abstraction tool: relating network performance to combat outcome
NASA Astrophysics Data System (ADS)
Jablunovsky, Greg; Dorman, Clark; Yaworsky, Paul S.
2000-06-01
Simulation of Command and Control (C2) networks has historically emphasized individual system performance with little architectural context or credible linkage to `bottom- line' measures of combat outcomes. Renewed interest in modeling C2 effects and relationships stems from emerging network intensive operational concepts. This demands improved methods to span the analytical hierarchy between C2 system performance models and theater-level models. Neural network technology offers a modeling approach that can abstract the essential behavior of higher resolution C2 models within a campaign simulation. The proposed methodology uses off-line learning of the relationships between network state and campaign-impacting performance of a complex C2 architecture and then approximation of that performance as a time-varying parameter in an aggregated simulation. Ultimately, this abstraction tool offers an increased fidelity of C2 system simulation that captures dynamic network dependencies within a campaign context.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
2010-01-01
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark
2010-05-18
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.
Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network.
Wilcock, William S D
2012-10-01
Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls. An automated method has been developed to identify arrival times based on instantaneous frequency and amplitude and to locate calls using a grid search even in the presence of a few bad arrival times. When only one whale is calling near the network, tracks can generally be obtained up to distances of ~15 km from the network. When the calls from multiple whales overlap, user supervision is required to identify tracks. The absolute and relative amplitudes of arrivals and their three-component particle motions provide additional constraints on call location but are not useful for extending the distance to which calls can be located. The double-difference method inverts for changes in relative call locations using differences in residuals for pairs of nearby calls recorded on a common station. The method significantly reduces the unsystematic component of the location error, especially when inconsistencies in arrival time observations are minimized by cross-correlation.
Structural Measures to Track the Evolution of SNOMED CT Hierarchies
Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan
2015-01-01
The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasari, Venkat; Sadlier, Ronald J; Geerhart, Mr. Billy
Well-defined and stable quantum networks are essential to realize functional quantum applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. We develop new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
Method and system for conserving power in a telecommunications network during emergency situations
Conrad, Stephen H [Algodones, NM; O'Reilly, Gerard P [Manalapan, NJ
2011-10-11
Disclosed is a method and apparatus for conserving power in a telecommunications network during emergency situations. A permissible number list of emergency and/or priority numbers is stored in the telecommunications network. In the event of an emergency or power failure, input digits of a call to the telecommunications network are compared to the permissible number list. The call is processed in the telecommunications network and routed to its destination if the input digits match an entry in the permissible number list. The call is dropped without any further processing if the input digits do not match an entry in the permissible number list. Thus, power can be conserved in emergency situations by only allowing emergency and/or priority calls.
Auditing complex concepts of SNOMED using a refined hierarchical abstraction network.
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A; Case, James T; Hripcsak, George
2012-02-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. "Complex" concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher's exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. Copyright © 2011 Elsevier Inc. All rights reserved.
Auditing Complex Concepts of SNOMED using a Refined Hierarchical Abstraction Network
Wang, Yue; Halper, Michael; Wei, Duo; Gu, Huanying; Perl, Yehoshua; Xu, Junchuan; Elhanan, Gai; Chen, Yan; Spackman, Kent A.; Case, James T.; Hripcsak, George
2012-01-01
Auditors of a large terminology, such as SNOMED CT, face a daunting challenge. To aid them in their efforts, it is essential to devise techniques that can automatically identify concepts warranting special attention. “Complex” concepts, which by their very nature are more difficult to model, fall neatly into this category. A special kind of grouping, called a partial-area, is utilized in the characterization of complex concepts. In particular, the complex concepts that are the focus of this work are those appearing in intersections of multiple partial-areas and are thus referred to as overlapping concepts. In a companion paper, an automatic methodology for identifying and partitioning the entire collection of overlapping concepts into disjoint, singly-rooted groups, that are more manageable to work with and comprehend, has been presented. The partitioning methodology formed the foundation for the development of an abstraction network for the overlapping concepts called a disjoint partial-area taxonomy. This new disjoint partial-area taxonomy offers a collection of semantically uniform partial-areas and is exploited herein as the basis for a novel auditing methodology. The review of the overlapping concepts is done in a top-down order within semantically uniform groups. These groups are themselves reviewed in a top-down order, which proceeds from the less complex to the more complex overlapping concepts. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. Hypotheses regarding error ratios for overlapping concepts and between different kinds of overlapping concepts are formulated. Two phases of auditing the Specimen hierarchy for two releases of SNOMED are reported on. With the use of the double bootstrap and Fisher’s exact test (two-tailed), the auditing of concepts and especially roots of overlapping partial-areas is shown to yield a statistically significant higher proportion of errors. PMID:21907827
2015-03-01
unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art
Boosting compound-protein interaction prediction by deep learning.
Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng
2016-11-01
The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.
Entropy of dynamical social networks
NASA Astrophysics Data System (ADS)
Zhao, Kun; Karsai, Marton; Bianconi, Ginestra
2012-02-01
Dynamical social networks are evolving rapidly and are highly adaptive. Characterizing the information encoded in social networks is essential to gain insight into the structure, evolution, adaptability and dynamics. Recently entropy measures have been used to quantify the information in email correspondence, static networks and mobility patterns. Nevertheless, we still lack methods to quantify the information encoded in time-varying dynamical social networks. In this talk we present a model to quantify the entropy of dynamical social networks and use this model to analyze the data of phone-call communication. We show evidence that the entropy of the phone-call interaction network changes according to circadian rhythms. Moreover we show that social networks are extremely adaptive and are modified by the use of technologies such as mobile phone communication. Indeed the statistics of duration of phone-call is described by a Weibull distribution and is significantly different from the distribution of duration of face-to-face interactions in a conference. Finally we investigate how much the entropy of dynamical social networks changes in realistic models of phone-call or face-to face interactions characterizing in this way different type human social behavior.
An approach to efficient mobility management in intelligent networks
NASA Technical Reports Server (NTRS)
Murthy, K. M. S.
1995-01-01
Providing personal communication systems supporting full mobility require intelligent networks for tracking mobile users and facilitating outgoing and incoming calls over different physical and network environments. In realizing the intelligent network functionalities, databases play a major role. Currently proposed network architectures envision using the SS7-based signaling network for linking these DB's and also for interconnecting DB's with switches. If the network has to support ubiquitous, seamless mobile services, then it has to support additionally mobile application parts, viz., mobile origination calls, mobile destination calls, mobile location updates and inter-switch handovers. These functions will generate significant amount of data and require them to be transferred between databases (HLR, VLR) and switches (MSC's) very efficiently. In the future, the users (fixed or mobile) may use and communicate with sophisticated CPE's (e.g. multimedia, multipoint and multisession calls) which may require complex signaling functions. This will generate volumness service handling data and require efficient transfer of these message between databases and switches. Consequently, the network providers would be able to add new services and capabilities to their networks incrementally, quickly and cost-effectively.
Brain network response underlying decisions about abstract reinforcers.
Mills-Finnerty, Colleen; Hanson, Catherine; Hanson, Stephen Jose
2014-12-01
Decision making studies typically use tasks that involve concrete action-outcome contingencies, in which subjects do something and get something. No studies have addressed decision making involving abstract reinforcers, where there are no action-outcome contingencies and choices are entirely hypothetical. The present study examines these kinds of choices, as well as whether the same biases that exist for concrete reinforcer decisions, specifically framing effects, also apply during abstract reinforcer decisions. We use both General Linear Model as well as Bayes network connectivity analysis using the Independent Multi-sample Greedy Equivalence Search (IMaGES) algorithm to examine network response underlying choices for abstract reinforcers under positive and negative framing. We find for the first time that abstract reinforcer decisions activate the same network of brain regions as concrete reinforcer decisions, including the striatum, insula, anterior cingulate, and VMPFC, results that are further supported via comparison to a meta-analysis of decision making studies. Positive and negative framing activated different parts of this network, with stronger activation in VMPFC during negative framing and in DLPFC during positive, suggesting different decision making pathways depending on frame. These results were further clarified using connectivity analysis, which revealed stronger connections between anterior cingulate, insula, and accumbens during negative framing compared to positive. Taken together, these results suggest that not only do abstract reinforcer decisions rely on the same brain substrates as concrete reinforcers, but that the response underlying framing effects on abstract reinforcers also resemble those for concrete reinforcers, specifically increased limbic system connectivity during negative frames. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dasari, Venkat R.; Sadlier, Ronald J.; Geerhart, Billy E.; Snow, Nikolai A.; Williams, Brian P.; Humble, Travis S.
2017-05-01
Well-defined and stable quantum networks are essential to realize functional quantum communication applications. Quantum networks are complex and must use both quantum and classical channels to support quantum applications like QKD, teleportation, and superdense coding. In particular, the no-cloning theorem prevents the reliable copying of quantum signals such that the quantum and classical channels must be highly coordinated using robust and extensible methods. In this paper, we describe new network abstractions and interfaces for building programmable quantum networks. Our approach leverages new OpenFlow data structures and table type patterns to build programmable quantum networks and to support quantum applications.
Novel interpretation of the mean structure of feroxyhyte
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sestu, Matteo, E-mail: msestu@unica.it; Carta, Daniela; Casula, Maria F.
2015-05-15
The structure of the iron oxyhydroxide called feroxyhyte (δ-FeOOH), which shows an elusive X-ray powder diffraction pattern, has been represented so far using models describing a mean structure based on the crystalline network of the iron(III) oxide hematite (α-Fe{sub 2}O{sub 3}). In this paper, a novel description of the mean structure of feroxyhyte is presented, which is based on the structure of the thermodynamically stable iron oxyhydroxide goethite. Starting from different local arrangements present in the goethite network, a mean structural model is determined which shows an X-ray powder diffraction pattern almost coincident with previous studies. This outcome enables tomore » integrate the structure of feroxyhyte among those of other well characterized iron oxyhydroxides. - Graphical abstract: The structure of the iron oxy-hydroxide feroxyhyte can be described by local arrangements present in the goethite network. - Highlights: • The structure of feroxyhyte (δ-FeOOH) proposed in literature is discussed. • The structure of goethite (α-FeOOH) is analyzed. • A structural relationship between feroxyhyte and goethite is found. • New interpretation of the mean structure of δ-FeOOH is given.« less
Voice over internet protocol with prepaid calling card solutions
NASA Astrophysics Data System (ADS)
Gunadi, Tri
2001-07-01
The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.
Design of real-time voice over internet protocol system under bandwidth network
NASA Astrophysics Data System (ADS)
Zhang, Li; Gong, Lina
2017-04-01
With the increasing bandwidth of the network and network convergence accelerating, VoIP means of communication across the network is becoming increasingly popular phenomenon. The real-time identification and analysis for VOIP flow over backbone network become the urgent needs and research hotspot of network operations management. Based on this, the paper proposes a VoIP business management system over backbone network. The system first filters VoIP data stream over backbone network and further resolves the call signaling information and media voice. The system can also be able to design appropriate rules to complete real-time reduction and presentation of specific categories of calls. Experimental results show that the system can parse and process real-time backbone of the VoIP call, and the results are presented accurately in the management interface, VoIP-based network traffic management and maintenance provide the necessary technical support.
Ruan, W; Bürkle, T; Dudeck, J
2000-01-01
In this paper we present a data dictionary server for the automated navigation of information sources. The underlying knowledge is represented within a medical data dictionary. The mapping between medical terms and information sources is based on a semantic network. The key aspect of implementing the dictionary server is how to represent the semantic network in a way that is easier to navigate and to operate, i.e. how to abstract the semantic network and to represent it in memory for various operations. This paper describes an object-oriented design based on Java that represents the semantic network in terms of a group of objects. A node and its relationships to its neighbors are encapsulated in one object. Based on such a representation model, several operations have been implemented. They comprise the extraction of parts of the semantic network which can be reached from a given node as well as finding all paths between a start node and a predefined destination node. This solution is independent of any given layout of the semantic structure. Therefore the module, called Giessen Data Dictionary Server can act independent of a specific clinical information system. The dictionary server will be used to present clinical information, e.g. treatment guidelines or drug information sources to the clinician in an appropriate working context. The server is invoked from clinical documentation applications which contain an infobutton. Automated navigation will guide the user to all the information relevant to her/his topic, which is currently available inside our closed clinical network.
Detailed temporal structure of communication networks in groups of songbirds.
Stowell, Dan; Gill, Lisa; Clayton, David
2016-06-01
Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.
Abstract Algebra for Teachers: An Evaluative Case Study
ERIC Educational Resources Information Center
Hoffman, Andrew Joseph
2017-01-01
This manuscript describes the study of an abstract algebra course for preservice secondary mathematics teachers (PSMTs). Often, courses in abstract algebra have not been viewed as productive, beneficial learning experiences for future teachers, both by researchers and PSMTs themselves. This despite calls for increased content knowledge for…
Benefits of an Object-oriented Database Representation for Controlled Medical Terminologies
Gu, Huanying; Halper, Michael; Geller, James; Perl, Yehoshua
1999-01-01
Objective: Controlled medical terminologies (CMTs) have been recognized as important tools in a variety of medical informatics applications, ranging from patient-record systems to decision-support systems. Controlled medical terminologies are typically organized in semantic network structures consisting of tens to hundreds of thousands of concepts. This overwhelming size and complexity can be a serious barrier to their maintenance and widespread utilization. The authors propose the use of object-oriented databases to address the problems posed by the extensive scope and high complexity of most CMTs for maintenance personnel and general users alike. Design: The authors present a methodology that allows an existing CMT, modeled as a semantic network, to be represented as an equivalent object-oriented database. Such a representation is called an object-oriented health care terminology repository (OOHTR). Results: The major benefit of an OOHTR is its schema, which provides an important layer of structural abstraction. Using the high-level view of a CMT afforded by the schema, one can gain insight into the CMT's overarching organization and begin to better comprehend it. The authors' methodology is applied to the Medical Entities Dictionary (MED), a large CMT developed at Columbia-Presbyterian Medical Center. Examples of how the OOHTR schema facilitated updating, correcting, and improving the design of the MED are presented. Conclusion: The OOHTR schema can serve as an important abstraction mechanism for enhancing comprehension of a large CMT, and thus promotes its usability. PMID:10428002
Pourabbasi, Ata; Farzami, Jalal; Shirvani, Mahbubeh-Sadat Ebrahimnegad; Shams, Amir Hossein; Larijani, Bagher
2017-01-01
One of the main usages of social networks in clinical studies is facilitating the process of sampling and case finding for scientists. The main focus of this study is on comparing two different methods of sampling through phone calls and using social network, for study purposes. One of the researchers started calling 214 families of children with diabetes during 90 days. After this period, phone calls stopped, and the team started communicating with families through telegram, a virtual social network for 30 days. The number of children who participated in the study was evaluated. Although the telegram method was 60 days shorter than the phone call method, researchers found that the number of participants from telegram (17.6%) did not have any significant differences compared with the ones being phone called (12.9%). Using social networks can be suggested as a beneficial method for local researchers who look for easier sampling methods, winning their samples' trust, following up with the procedure, and an easy-access database.
Abstraction in Mathematics and Mathematics Learning
ERIC Educational Resources Information Center
Mitchelmore, Michael; White, Paul
2004-01-01
It is claimed that, since mathematics is essentially a self-contained system, mathematical objects may best be described as "abstract-apart." On the other hand, fundamental mathematical ideas are closely related to the real world and their learning involves empirical concepts. These concepts may be called "abstract-general" because they embody…
2015-09-01
Gateway 2 4. Voice Packet Flow: SIP , Session Description Protocol (SDP), and RTP 3 5. Voice Data Analysis 5 6. Call Analysis 6 7. Call Metrics 6...analysis processing is designed for a general VoIP system architecture based on Session Initiation Protocol ( SIP ) for negotiating call sessions and...employs Skinny Client Control Protocol for network communication between the phone and the local CallManager (e.g., for each dialed digit), SIP
Assessing the Effects of Multi-Node Sensor Network Configurations on the Operational Tempo
2014-09-01
receiver, nP is the noise power of the receiver, and iL is the implementation loss of the receiver due to hardware manufacturing. The received...13. ABSTRACT (maximum 200 words) The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations by...INTENTIONALLY LEFT BLANK v ABSTRACT The LPISimNet software tool provides the capability to quantify the performance of sensor network configurations
Biomedical hypothesis generation by text mining and gene prioritization.
Petric, Ingrid; Ligeti, Balazs; Gyorffy, Balazs; Pongor, Sandor
2014-01-01
Text mining methods can facilitate the generation of biomedical hypotheses by suggesting novel associations between diseases and genes. Previously, we developed a rare-term model called RaJoLink (Petric et al, J. Biomed. Inform. 42(2): 219-227, 2009) in which hypotheses are formulated on the basis of terms rarely associated with a target domain. Since many current medical hypotheses are formulated in terms of molecular entities and molecular mechanisms, here we extend the methodology to proteins and genes, using a standardized vocabulary as well as a gene/protein network model. The proposed enhanced RaJoLink rare-term model combines text mining and gene prioritization approaches. Its utility is illustrated by finding known as well as potential gene-disease associations in ovarian cancer using MEDLINE abstracts and the STRING database.
Network Visualization Project (NVP)
2016-07-01
network visualization, network traffic analysis, network forensics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...shell, is a command-line framework used for network forensic analysis. Dshell processes existing pcap files and filters output information based on
Popa, Radu; Cimpoiasu, Vily M
2013-05-01
Properties of avenues of transformation and their mutualism with forms of organization in dynamic systems are essential for understanding the evolution of prebiotic order. We have analyzed competition between two avenues of transformation in an A↔B system, using the simulation approach called BiADA (Biotic Abstract Dual Automata). We discuss means of avoiding common pitfalls of abstract system modeling and benefits of BiADA-based simulations. We describe the effect of the availability of free energy, energy sink magnitude, and autocatalysis on the evolution of energy flux and order in the system. Results indicate that prebiotic competition between avenues of transformation was more stringent in energy-limited environments. We predict that in such conditions the efficiency of autocatalysis during competition between alternative system states will increase for systems with forms of organization having short half-lives and thus information that is time-sensitive to energy starvation. Our results also offer a potential solution to Manfred Eigen's error catastrophe dilemma. In the conditions discussed above, the exponential growth of quasi species is curbed through the removal of less competitive "genetic" variants via energy starvation. We propose that one of the most important achievements (and selective edges) of a dynamic network during competition in energy-limited or energy-variable environments was the capacity to correlate the internal energy flux and the need for free energy with the availability of free energy in the environment.
Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong
2017-01-01
Abstract Background: Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line–based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. Results: We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. Conclusions: As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. PMID:28327936
NASA Astrophysics Data System (ADS)
Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.
2017-05-01
Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.
Sadeghi, Zahra
2016-09-01
In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
1997-10-01
NSF-Course and Curriculum Development Program Call for Award Nominations Gordon Conference- Innocations in College Chemistry Teaching Summer Opportunity for Students High School Chemistry Day ACS Satellite TV Seminars Wanted - Newletter Editor ACS Abstract Deadline Call for Award Nominations
Practice‐based Research Network Research Good Practices (PRGPs): Summary of Recommendations
Campbell‐Voytal, Kimberly; Daly, Jeanette; Nagykaldi, Zsolt J.; O'Beirne, Maeve; Sterling, Pamela; Fagnan, Lyle J.; Levy, Barcey; Michaels, LeAnn; Louks, Hannah A.; Smith, Paul; Aspy, Cheryl B.; Patterson, V. Beth; Kano, Miria; Sussman, Andrew L.; Williams, Robert; Neale, Anne Victoria
2015-01-01
Abstract Introduction Practice‐based research networks (PBRNs) conduct research in community settings, which poses quality control challenges to the integrity of research, such as study implementation and data collection. A foundation for improving research processes within PBRNs is needed to ensure research integrity. Methods Network directors and coordinators from seven U.S.‐based PBRNs worked with a professional team facilitator during semiannual in‐person meetings and monthly conference calls to produce content for a compendium of recommended research practices specific to the context of PBRNs. Participants were assigned to contribute content congruent with their expertise. Feedback on the draft document was obtained from attendees at the preconference workshop at the annual PBRN meeting in 2013. A revised document was circulated to additional PBRN peers prior to finalization. Results The PBRN Research Good Practices (PRGPs) document is organized into four chapters: (1) Building PBRN Infrastructure; (2) Study Development and Implementation; (3) Data Management, and (4) Dissemination Policies. Each chapter contains an introduction, detailed procedures for each section, and example resources with information links. Conclusion The PRGPs is a PBRN‐specific resource to facilitate PBRN management and staff training, to promote adherence to study protocols, and to increase validity and generalizability of study findings. PMID:26296309
Fin whale tracks recorded by a seismic network on the Juan de Fuca Ridge, Northeast Pacific Ocean.
Soule, Dax C; Wilcock, William S D
2013-03-01
Fin whale calls recorded from 2003 to 2004 by a seafloor seismic network on the Endeavour segment of the Juan de Fuca Ridge were analyzed to determine tracks and calling patterns. Over 150 tracks were obtained with a total duration of ~800 h and swimming speeds from 1 to 12 km/h. The dominant inter-pulse interval (IPI) is 24 s and the IPI patterns define 4 categories: a 25 s single IPI and 24/30 s dual IPI produced by single calling whales, a 24/13 s dual IPI interpreted as two calling whales, and an irregular IPI interpreted as groups of calling whales. There are also tracks in which the IPI switches between categories. Call rates vary seasonally with all the tracks between August and April. From August to October tracks are dominated by the irregular IPI and are predominantly headed to the northwest, suggesting that a portion of the fin whale population does not migrate south in the fall. The other IPI categories occur primarily from November to March. These tracks have slower swimming speeds, tend to meander, and are predominantly to the south. The distribution of fin whales around the network is non-random with more calls near the network and to the east and north.
ERIC Educational Resources Information Center
Tabor, Whitney; Cho, Pyeong W.; Dankowicz, Harry
2013-01-01
Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the…
Chen, Liang; Xue, Wei; Tokuda, Naoyuki
2010-08-01
In many pattern classification/recognition applications of artificial neural networks, an object to be classified is represented by a fixed sized 2-dimensional array of uniform type, which corresponds to the cells of a 2-dimensional grid of the same size. A general neural network structure, called an undistricted neural network, which takes all the elements in the array as inputs could be used for problems such as these. However, a districted neural network can be used to reduce the training complexity. A districted neural network usually consists of two levels of sub-neural networks. Each of the lower level neural networks, called a regional sub-neural network, takes the elements in a region of the array as its inputs and is expected to output a temporary class label, called an individual opinion, based on the partial information of the entire array. The higher level neural network, called an assembling sub-neural network, uses the outputs (opinions) of regional sub-neural networks as inputs, and by consensus derives the label decision for the object. Each of the sub-neural networks can be trained separately and thus the training is less expensive. The regional sub-neural networks can be trained and performed in parallel and independently, therefore a high speed can be achieved. We prove theoretically in this paper, using a simple model, that a districted neural network is actually more stable than an undistricted neural network in noisy environments. We conjecture that the result is valid for all neural networks. This theory is verified by experiments involving gender classification and human face recognition. We conclude that a districted neural network is highly recommended for neural network applications in recognition or classification of 2-dimensional array patterns in highly noisy environments. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
White, Christina A; Jones, Marshall R; Kuester, Melanie K; Myers, Kelly L; Schnarr, Barbara A
2015-05-01
To establish a cost-effective centralized pharmacy call center to serve the patients of Veterans Integrated Service Network (VISN) 11 that would meet established performance metrics. A pilot project began in August 2011 with the Indianapolis VA Medical Center (VAMC) and the Health Resource Center (HRC) in Topeka, Kansas. The Indianapolis VAMC used a first-call resolution business model consisting of pharmacy technicians receiving tier 1 phone calls that could be escalated to a tier 2 line that consisted of lead technicians and pharmacists, while the HRC utilized general telephone agents that would transfer unresolved calls to the primary facility. Pre- and post-VISN 11 Pharmacy Call Center performance metrics were compared for each of the 7 facilities in the network with the goals being monthly average abandoned call rate less than 5% and average speed to answer less than 30 seconds. Cost per call was also compared. The average abandoned call rate for the network during the year prior to VISN 11 Pharmacy Call Center implementation (August 2010-July 2011) was 15.66% and decreased to 3% in July 2014. The average abandoned call rate decreased for each individual facility. In fiscal year 2014, the VISN 11 Pharmacy Call Center was operating at a cost of $4.35 per call while providing more services than the HRC, resulting in less workload being transferred back to the individual facilities. A centralized VISN pharmacy call center is a reasonable alternative to individual facility call centers or the HRC.
Neural-tree call admission controller for ATM networks
NASA Astrophysics Data System (ADS)
Rughooputh, Harry C. S.
1999-03-01
Asynchronous Transfer Mode (ATM) has been recommended by ITU-T as the transport method for broadband integrated services digital networks. In high-speed ATM networks different types of multimedia traffic streams with widely varying traffic characteristics and Quality of Service (QoS) are asynchronously multiplexed on transmission links and switched without window flow control as found in X.25. In such an environment, a traffic control scheme is required to manage the required QoS of each class individually. To meet the QoS requirements, Bandwidth Allocation and Call Admission Control (CAC) in ATM networks must be able to adapt gracefully to the dynamic behavior of traffic and the time-varying nature of the network condition. In this paper, a Neural Network approach for CAC is proposed. The call admission problem is addressed by designing controllers based on Neural Tree Networks. Simulations reveal that the proposed scheme is not only simple but it also offers faster response than conventional neural/neuro-fuzzy controllers.
A fuzzy call admission control scheme in wireless networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Gong, Shenguang; Hu, Xiulin; Zhang, Yunyu
2007-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in wireless networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities. Simulation compares the proposed fuzzy scheme with an adaptive channel reservation scheme. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Output power distributions of terminals in a 3G mobile communication network.
Persson, Tomas; Törnevik, Christer; Larsson, Lars-Eric; Lovén, Jan
2012-05-01
The objective of this study was to examine the distribution of the output power of mobile phones and other terminals connected to a 3G network in Sweden. It is well known that 3G terminals can operate with very low output power, particularly for voice calls. Measurements of terminal output power were conducted in the Swedish TeliaSonera 3G network in November 2008 by recording network statistics. In the analysis, discrimination was made between rural, suburban, urban, and dedicated indoor networks. In addition, information about terminal output power was possible to collect separately for voice and data traffic. Information from six different Radio Network Controllers (RNCs) was collected during at least 1 week. In total, more than 800000 h of voice calls were collected and in addition to that a substantial amount of data traffic. The average terminal output power for 3G voice calls was below 1 mW for any environment including rural, urban, and dedicated indoor networks. This is <1% of the maximum available output power. For data applications the average output power was about 6-8 dB higher than for voice calls. For rural areas the output power was about 2 dB higher, on average, than in urban areas. Copyright © 2011 Wiley Periodicals, Inc.
Thode, Aaron M; Kim, Katherine H; Blackwell, Susanna B; Greene, Charles R; Nations, Christopher S; McDonald, Trent L; Macrander, A Michael
2012-05-01
An automated procedure has been developed for detecting and localizing frequency-modulated bowhead whale sounds in the presence of seismic airgun surveys. The procedure was applied to four years of data, collected from over 30 directional autonomous recording packages deployed over a 280 km span of continental shelf in the Alaskan Beaufort Sea. The procedure has six sequential stages that begin by extracting 25-element feature vectors from spectrograms of potential call candidates. Two cascaded neural networks then classify some feature vectors as bowhead calls, and the procedure then matches calls between recorders to triangulate locations. To train the networks, manual analysts flagged 219 471 bowhead call examples from 2008 and 2009. Manual analyses were also used to identify 1.17 million transient signals that were not whale calls. The network output thresholds were adjusted to reject 20% of whale calls in the training data. Validation runs using 2007 and 2010 data found that the procedure missed 30%-40% of manually detected calls. Furthermore, 20%-40% of the sounds flagged as calls are not present in the manual analyses; however, these extra detections incorporate legitimate whale calls overlooked by human analysts. Both manual and automated methods produce similar spatial and temporal call distributions.
Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-05-01
The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
Asymmetries in commitment in an avian communication network.
Randler, Christoph; Vollmer, Christian
2013-02-01
Mobbing of predators occurs within a conspecific and heterospecific context but has not been quantified within the framework of a communication network and analysed with respect to heterospecific reciprocity. Here, we used playbacks of mobbing calls to show that mobbing is unequally distributed within a community of deciduous forest birds. Five species (great tit Parus major, blue tit Cyanistes caeruleus, marsh tit Poecile palustris, nuthatch Sitta europaea and chaffinch Fringilla coelebs) responded to each other's playbacks of mobbing calls. Commitment to mob was measured by minimum distance, response latency and uttering of calls. Commitment was higher when conspecific calls were broadcast. Yet, responses to heterospecific calls were significantly different between the five species. Chaffinches had the lowest commitment, and blue tits tended to have the highest. The communication network is asymmetric. Some species invest more than they receive from other species. As mobbing might incur costs, these are unequally distributed across the community.
Asymmetries in commitment in an avian communication network
NASA Astrophysics Data System (ADS)
Randler, Christoph; Vollmer, Christian
2013-02-01
Mobbing of predators occurs within a conspecific and heterospecific context but has not been quantified within the framework of a communication network and analysed with respect to heterospecific reciprocity. Here, we used playbacks of mobbing calls to show that mobbing is unequally distributed within a community of deciduous forest birds. Five species (great tit Parus major, blue tit Cyanistes caeruleus, marsh tit Poecile palustris, nuthatch Sitta europaea and chaffinch Fringilla coelebs) responded to each other's playbacks of mobbing calls. Commitment to mob was measured by minimum distance, response latency and uttering of calls. Commitment was higher when conspecific calls were broadcast. Yet, responses to heterospecific calls were significantly different between the five species. Chaffinches had the lowest commitment, and blue tits tended to have the highest. The communication network is asymmetric. Some species invest more than they receive from other species. As mobbing might incur costs, these are unequally distributed across the community.
Auditing Complex Concepts in Overlapping Subsets of SNOMED
Wang, Yue; Wei, Duo; Xu, Junchuan; Elhanan, Gai; Perl, Yehoshua; Halper, Michael; Chen, Yan; Spackman, Kent A.; Hripcsak, George
2008-01-01
Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED’s Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries. PMID:18998838
Auditing complex concepts in overlapping subsets of SNOMED.
Wang, Yue; Wei, Duo; Xu, Junchuan; Elhanan, Gai; Perl, Yehoshua; Halper, Michael; Chen, Yan; Spackman, Kent A; Hripcsak, George
2008-11-06
Limited resources and the sheer volume of concepts make auditing a large terminology, such as SNOMED CT, a daunting task. It is essential to devise techniques that can aid an auditor by automatically identifying concepts that deserve attention. A methodology for this purpose based on a previously introduced abstraction network (called the p-area taxonomy) for a SNOMED CT hierarchy is presented. The methodology algorithmically gathers concepts appearing in certain overlapping subsets, defined exclusively with respect to the p-area taxonomy, for review. The results of applying the methodology to SNOMED's Specimen hierarchy are presented. These results are compared against a control sample composed of concepts residing in subsets without the overlaps. With the use of the double bootstrap, the concept group produced by our methodology is shown to yield a statistically significant higher proportion of error discoveries.
Structural methodologies for auditing SNOMED.
Wang, Yue; Halper, Michael; Min, Hua; Perl, Yehoshua; Chen, Yan; Spackman, Kent A
2007-10-01
SNOMED is one of the leading health care terminologies being used worldwide. As such, quality assurance is an important part of its maintenance cycle. Methodologies for auditing SNOMED based on structural aspects of its organization are presented. In particular, automated techniques for partitioning SNOMED into smaller groups of concepts based primarily on relationships patterns are defined. Two abstraction networks, the area taxonomy and p-area taxonomy, are derived from the partitions. The high-level views afforded by these abstraction networks form the basis for systematic auditing. The networks tend to highlight errors that manifest themselves as irregularities at the abstract level. They also support group-based auditing, where sets of purportedly similar concepts are focused on for review. The auditing methodologies are demonstrated on one of SNOMED's top-level hierarchies. Errors discovered during the auditing process are reported.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
Burbank, Kendra S
2015-12-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
Burbank, Kendra S.
2015-01-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645
Daudelin, Geneviève; Lehoux, Pascale; Abelson, Julia; Denis, Jean L.
2010-01-01
Abstract Objectives While there are increasing calls for public input into health research and policy, the actual obtaining of such input faces many challenges in practice. This article examines how a Canadian science/policy network in the field of genetics integrated citizens into its structure and then managed their participation. Methods Our ethnographic case study covers a 5‐year period (2003–08) and combines four data sources: observations of the network’s meetings and informal activities, debriefing sessions with the network’s leaders, semi‐structured interviews with network members (n = 20) and document analysis. Results When setting up the network, the leaders wanted to include a range of perspectives (research, clinical and policy) to increase the relevance of their research production and knowledge‐transfer activities. After 2 years of operation, the network’s members agreed to also include citizens who were not knowledgeable in genetics and policy issues. As neither the structure nor the dynamics of the network were modified, the citizens very soon started to feel uncomfortable with their role. They doubted the relevance of their contribution, pointing to an asymmetry in knowledge between them and the expert members. There were significant tensions in the network’s governance and the citizens’ concerns during the process were not fully addressed. Conclusion The integration of citizens into transdisciplinary networks requires recognizing and addressing the asymmetry of expertise that underpins such a collaborative endeavour. It also requires understanding that citizens may feel uncomfortable adopting the pre‐defined role ascribed to them, may need a space of their own or may even withdraw if they feel being used. PMID:21029284
Using Networks To Understand Medical Data: The Case of Class III Malocclusions
Scala, Antonio; Auconi, Pietro; Scazzocchio, Marco; Caldarelli, Guido; McNamara, James A.; Franchi, Lorenzo
2012-01-01
A system of elements that interact or regulate each other can be represented by a mathematical object called a network. While network analysis has been successfully applied to high-throughput biological systems, less has been done regarding their application in more applied fields of medicine; here we show an application based on standard medical diagnostic data. We apply network analysis to Class III malocclusion, one of the most difficult to understand and treat orofacial anomaly. We hypothesize that different interactions of the skeletal components can contribute to pathological disequilibrium; in order to test this hypothesis, we apply network analysis to 532 Class III young female patients. The topology of the Class III malocclusion obtained by network analysis shows a strong co-occurrence of abnormal skeletal features. The pattern of these occurrences influences the vertical and horizontal balance of disharmony in skeletal form and position. Patients with more unbalanced orthodontic phenotypes show preponderance of the pathological skeletal nodes and minor relevance of adaptive dentoalveolar equilibrating nodes. Furthermore, by applying Power Graphs analysis we identify some functional modules among orthodontic nodes. These modules correspond to groups of tightly inter-related features and presumably constitute the key regulators of plasticity and the sites of unbalance of the growing dentofacial Class III system. The data of the present study show that, in their most basic abstraction level, the orofacial characteristics can be represented as graphs using nodes to represent orthodontic characteristics, and edges to represent their various types of interactions. The applications of this mathematical model could improve the interpretation of the quantitative, patient-specific information, and help to better targeting therapy. Last but not least, the methodology we have applied in analyzing orthodontic features can be applied easily to other fields of the medical science. PMID:23028552
Jones, Marshall R.; Kuester, Melanie K.; Myers, Kelly L.; Schnarr, Barbara A.
2015-01-01
Purpose: To establish a cost-effective centralized pharmacy call center to serve the patients of Veterans Integrated Service Network (VISN) 11 that would meet established performance metrics. Methods: A pilot project began in August 2011 with the Indianapolis VA Medical Center (VAMC) and the Health Resource Center (HRC) in Topeka, Kansas. The Indianapolis VAMC used a first-call resolution business model consisting of pharmacy technicians receiving tier 1 phone calls that could be escalated to a tier 2 line that consisted of lead technicians and pharmacists, while the HRC utilized general telephone agents that would transfer unresolved calls to the primary facility. Pre- and post-VISN 11 Pharmacy Call Center performance metrics were compared for each of the 7 facilities in the network with the goals being monthly average abandoned call rate less than 5% and average speed to answer less than 30 seconds. Cost per call was also compared. Results: The average abandoned call rate for the network during the year prior to VISN 11 Pharmacy Call Center implementation (August 2010-July 2011) was 15.66% and decreased to 3% in July 2014. The average abandoned call rate decreased for each individual facility. In fiscal year 2014, the VISN 11 Pharmacy Call Center was operating at a cost of $4.35 per call while providing more services than the HRC, resulting in less workload being transferred back to the individual facilities. Conclusion: A centralized VISN pharmacy call center is a reasonable alternative to individual facility call centers or the HRC. PMID:26405322
Developing brain networks of attention.
Posner, Michael I; Rothbart, Mary K; Voelker, Pascale
2016-12-01
Attention is a primary cognitive function critical for perception, language, and memory. We provide an update on brain networks related to attention, their development, training, and pathologies. An executive attention network, also called the cingulo-opercular network, allows voluntary control of behavior in accordance with goals. Individual differences among children in self-regulation have been measured by a higher order factor called effortful control, which is related to the executive network and to the size of the anterior cingulate cortex. Brain networks of attention arise in infancy and are related to individual differences, including pathology during childhood. Methods of training attention may improve performance and ameliorate pathology.
Neural network for control of rearrangeable Clos networks.
Park, Y K; Cherkassky, V
1994-09-01
Rapid evolution in the field of communication networks requires high speed switching technologies. This involves a high degree of parallelism in switching control and routing performed at the hardware level. The multistage crossbar networks have always been attractive to switch designers. In this paper a neural network approach to controlling a three-stage Clos network in real time is proposed. This controller provides optimal routing of communication traffic requests on a call-by-call basis by rearranging existing connections, with a minimum length of rearrangement sequence so that a new blocked call request can be accommodated. The proposed neural network controller uses Paull's rearrangement algorithm, along with the special (least used) switch selection rule in order to minimize the length of rearrangement sequences. The functional behavior of our model is verified by simulations and it is shown that the convergence time required for finding an optimal solution is constant, regardless of the switching network size. The performance is evaluated for random traffic with various traffic loads. Simulation results show that applying the least used switch selection rule increases the efficiency in switch rearrangements, reducing the network convergence time. The implementation aspects are also discussed to show the feasibility of the proposed approach.
Precisely Tracking Childhood Death
Farag, Tamer H.; Koplan, Jeffrey P.; Breiman, Robert F.; Madhi, Shabir A.; Heaton, Penny M.; Mundel, Trevor; Ordi, Jaume; Bassat, Quique; Menendez, Clara; Dowell, Scott F.
2017-01-01
Abstract. Little is known about the specific causes of neonatal and under-five childhood death in high-mortality geographic regions due to a lack of primary data and dependence on inaccurate tools, such as verbal autopsy. To meet the ambitious new Sustainable Development Goal 3.2 to eliminate preventable child mortality in every country, better approaches are needed to precisely determine specific causes of death so that prevention and treatment interventions can be strengthened and focused. Minimally invasive tissue sampling (MITS) is a technique that uses needle-based postmortem sampling, followed by advanced histopathology and microbiology to definitely determine cause of death. The Bill & Melinda Gates Foundation is supporting a new surveillance system called the Child Health and Mortality Prevention Surveillance network, which will determine cause of death using MITS in combination with other information, and yield cause-specific population-based mortality rates, eventually in up to 12–15 sites in sub-Saharan Africa and south Asia. However, the Gates Foundation funding alone is not enough. We call on governments, other funders, and international stakeholders to expand the use of pathology-based cause of death determination to provide the information needed to end preventable childhood mortality. PMID:28719334
Defeating Adversary Network Intelligence Efforts with Active Cyber Defense Techniques
2008-06-01
Hide Things from Hackers: Processes, Principles, and Techniques,” Journal of Information Warfare , 5 (3): 26-40 (2006). 20. Rosenau, William ...54 Additional Sources Apel , Thomas. Generating Fingerprints of Network Servers and their Use in Honeypots. Thesis. Aachen University, Aachen...Paul Williams , PhD (ENG) REPORT U ABSTRACT U c. THIS PAGE U 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 55
Integrating Network Management for Cloud Computing Services
2015-06-01
abstraction and system design. In this dissertation, we make three major contributions. We rst propose to consolidate the tra c and infrastructure management...abstraction and system design. In this dissertation, we make three major contributions. We first propose to consolidate the traffic and infrastructure ...1.3.1 Safe Datacenter Traffic/ Infrastructure Management . . . . . . 9 1.3.2 End-host/Network Cooperative Traffic Management . . . . . . 10 1.3.3 Direct
Persistence of social signatures in human communication.
Saramäki, Jari; Leicht, E A; López, Eduardo; Roberts, Sam G B; Reed-Tsochas, Felix; Dunbar, Robin I M
2014-01-21
The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an ego's network ties are not well understood. Here we use a unique 18-mo dataset that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus, as new network members are added, some old network members either are replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments.
Persistence of social signatures in human communication
Saramäki, Jari; Leicht, E. A.; López, Eduardo; Roberts, Sam G. B.; Reed-Tsochas, Felix; Dunbar, Robin I. M.
2014-01-01
The social network maintained by a focal individual, or ego, is intrinsically dynamic and typically exhibits some turnover in membership over time as personal circumstances change. However, the consequences of such changes on the distribution of an ego’s network ties are not well understood. Here we use a unique 18-mo dataset that combines mobile phone calls and survey data to track changes in the ego networks and communication patterns of students making the transition from school to university or work. Our analysis reveals that individuals display a distinctive and robust social signature, captured by how interactions are distributed across different alters. Notably, for a given ego, these social signatures tend to persist over time, despite considerable turnover in the identity of alters in the ego network. Thus, as new network members are added, some old network members either are replaced or receive fewer calls, preserving the overall distribution of calls across network members. This is likely to reflect the consequences of finite resources such as the time available for communication, the cognitive and emotional effort required to sustain close relationships, and the ability to make emotional investments. PMID:24395777
Abstracts of Research, July 1973 through June 1974.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Computer and Information Science Research Center.
Abstracts of research papers in the fields of computer and information science are given; 72 papers are abstracted in the areas of information storage and retrieval, information processing, linguistic analysis, artificial intelligence, mathematical techniques, systems programing, and computer networks. In addition, the Ohio State University…
Orena, E F; Caldiroli, D; Acerbi, F; Barazzetta, I; Papagno, C
2018-06-05
Neuropsychological, neuroimaging and electrophysiological studies demonstrate that abstract and concrete word processing relies not only on the activity of a common bilateral network but also on dedicated networks. The neuropsychological literature has shown that a selective sparing of abstract relative to concrete words can be documented in lesions of the left anterior temporal regions. We investigated concrete and abstract word processing in 10 patients undergoing direct electrical stimulation (DES) for brain mapping during awake surgery in the left hemisphere. A lexical decision and a concreteness judgment task were added to the neuropsychological assessment during intra-operative monitoring. On the concreteness judgment, DES delivered over the inferior frontal gyrus significantly decreased abstract word accuracy while accuracy for concrete words decreased when the anterior temporal cortex was stimulated. These results are consistent with a lexical-semantic model that distinguishes between concrete and abstract words related to different neural substrates in the left hemisphere.
NASA Astrophysics Data System (ADS)
Rumsewicz, Michael
1994-04-01
In this paper, we examine call completion performance, rather than message throughput, in a Common Channel Signaling network in which the processing resources, and not transmission resources, of a Signaling Transfer Point (STP) are overloaded. Specifically, we perform a transient analysis, via simulation, of a network consisting of a single Central Processor-based STP connecting many local exchanges. We consider the efficacy of using the Transfer Controlled (TFC) procedure when the network call attempt rate exceeds the processing capability of the STP. We find the following: (1) the success of the control depends critically on the rate at which TFC's are sent; (2) use of the TFC procedure in theevent of processor overload can provide reasonable call completion rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.W.; Johnston, W.E.; Hall, D.E.
1990-03-01
We describe the use of the Sun Remote Procedure Call and Unix socket interprocess communication mechanisms to provide the network transport for a distributed, client-server based, image handling system. Clients run under Unix or UNICOS and servers run under Unix or MS-DOS. The use of remote procedure calls across local or wide-area networks to make video movies is addressed.
Coding the Eggen Cards (Poster abstract)
NASA Astrophysics Data System (ADS)
Silvis, G.
2014-06-01
(Abstract only) A look at the Eggen Portal for accessing the Eggen cards. And a call for volunteers to help code the cards: 100,000 cards must be looked at and their star references identified and coded into the database for this to be a valuable resource.
Integration of Heterogeneous Bibliographic Information through Data Abstractions.
ERIC Educational Resources Information Center
Breazeal, Juliette Ow
This study examines the integration of heterogeneous bibliographic information resources from geographically distributed locations in an automated, unified, and controlled way using abstract data types called "classes" through the Message-Object Model defined in Smalltalk-80 software. The concept of achieving data consistency by…
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Aggregate information. The term “aggregate information” means collective data that relate to a group or... Signaling System 7 network. (d) Charge number. The term “charge number” refers to the delivery of the... Signaling System 7 network, that indicates whether the calling party authorizes presentation of the calling...
NASA Astrophysics Data System (ADS)
Hooda, Nikhil; Damani, Om
2017-06-01
The classic problem of the capital cost optimization of branched piped networks consists of choosing pipe diameters for each pipe in the network from a discrete set of commercially available pipe diameters. Each pipe in the network can consist of multiple segments of differing diameters. Water networks also consist of intermediate tanks that act as buffers between incoming flow from the primary source and the outgoing flow to the demand nodes. The network from the primary source to the tanks is called the primary network, and the network from the tanks to the demand nodes is called the secondary network. During the design stage, the primary and secondary networks are optimized separately, with the tanks acting as demand nodes for the primary network. Typically the choice of tank locations, their elevations, and the set of demand nodes to be served by different tanks is manually made in an ad hoc fashion before any optimization is done. It is desirable therefore to include this tank configuration choice in the cost optimization process itself. In this work, we explain why the choice of tank configuration is important to the design of a network and describe an integer linear program model that integrates the tank configuration to the standard pipe diameter selection problem. In order to aid the designers of piped-water networks, the improved cost optimization formulation is incorporated into our existing network design system called JalTantra.
Change Detection Algorithms for Information Assurance of Computer Networks
2002-01-01
original document contains color images. 14. ABSTRACT see report 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...number of computer attacks increases steadily per year. At the time of this writing the Internet Security Systems’ baseline assessment is that a new...across a network by exploiting security flaws in widely-used services offered by vulnerable computers. In order to locate the vulnerable computers, the
An Overview of MSHN: The Management System for Heterogeneous Networks
1999-04-01
An Overview of MSHN: The Management System for Heterogeneous Networks Debra A. Hensgen†, Taylor Kidd†, David St. John§, Matthew C . Schnaidt†, Howard...ABSTRACT UU 18. NUMBER OF PAGES 15 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE...Alhusaini, V. K. Prasanna, and C . S. Raghavendra, “A unified resource scheduling framework for heterogeneous computing environments,” Proc. 8th IEEE
A Sensemaking Approach to Visual Analytics of Attribute-Rich Social Networks
ERIC Educational Resources Information Center
Gou, Liang
2012-01-01
Social networks have become more complex, in particular considering the fact that elements in social networks are not only abstract topological nodes and links, but contain rich social attributes and reflecting diverse social relationships. For example, in a co-authorship social network in a scientific community, nodes in the social network, which…
Assuring SS7 dependability: A robustness characterization of signaling network elements
NASA Astrophysics Data System (ADS)
Karmarkar, Vikram V.
1994-04-01
Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.
NOW: A Workflow Language for Orchestration in Nomadic Networks
NASA Astrophysics Data System (ADS)
Philips, Eline; van der Straeten, Ragnhild; Jonckers, Viviane
Existing workflow languages for nomadic or mobile ad hoc networks do not offer adequate support for dealing with the volatile connections inherent to these environments. Services residing on mobile devices are exposed to (temporary) network failures, which should be considered the rule rather than the exception. This paper proposes a nomadic workflow language built on top of an ambient-oriented programming language which supports dynamic service discovery and communication primitives resilient to network failures. Our proposed language provides high level workflow abstractions for control flow and supports rich network and service failure detection and handling through compensating actions. Moreover, we introduce a powerful variable binding mechanism which enables dynamic data flow between services in a nomadic environment. By adding this extra layer of abstraction on top of an ambient-oriented programming language, the application programmer is offered a flexible way to develop applications for nomadic networks.
Dynamic Visualization of Co-expression in Systems Genetics Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Huang, Jian; Chesler, Elissa J
2008-01-01
Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biologicalmore » networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.« less
1987 Robert E. Horton Award to Thomas Dunne
NASA Astrophysics Data System (ADS)
Dunne, Thomas
Robert Horton demonstrated in his seminal 1945 paper that physically based quantitative models for landscape evolution can be constructed by using predicted overland flow in a sediment transport equation for sheetwash. He envisioned drainage network evolution by infiltration-limited overland flow as a process of channel incision, network growth, and then abstraction to a stable channel network fed by hillslopes too short for channel initiation. Not until the work of Tom Dunne in the late 1960s in the Sleepers River watershed, Vermont, was it realized that overland flow, and consequently hillslope evolution, could occur by an entirely different mechanism than that proposed by Horton. Dunne showed that in certain predictable zones of the landscape, exfiltration from saturated grounds adds to precipitation on the soil surface to form what he later called saturation overland flow. Many researchers have since found that this form of overland flow occurs in humid and semiarid landscapes throughout the world. So clear is Dunne's contribution to defining this process that some refer to it as the “Dunne mechanism” to distinguish it from “Horton overland flow.” His work also documented unquestionably the applicability of the partial area concept in explaining runoff generation. Because of this work, his research in snowmelt runoff, and his subsequent authorship with Luna Leopold of the widely used book entitled Water in Environmental Planning, Dunne has established himself as a leader of process hydrology.
Tabor, Whitney; Cho, Pyeong W; Dankowicz, Harry
2013-01-01
Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the Elsewhere Condition (Kiparsky, 1973). Previous connectionist accounts of related phenomena have often been vague about the nature of the networks' encoding systems. We analyzed our network using dynamical systems theory, revealing topological and geometric properties that can be directly compared with the mechanisms of non-connectionist, rule-based accounts. The results reveal that the networks "contain" structures related to mechanisms posited by rule-based models, partly vindicating the insights of these models. On the other hand, they support the one mechanism (OM), as opposed to the more than one mechanism (MOM), view of symbolic abstraction by showing how the appearance of MOM behavior can arise emergently from one underlying set of principles. The key new contribution of this study is to show that dynamical systems theory can allow us to explicitly characterize the relationship between the two perspectives in implemented models. © 2013 Cognitive Science Society, Inc.
NASA Technical Reports Server (NTRS)
Ansari, Nirwan; Liu, Dequan
1991-01-01
A neural-network-based traffic management scheme for a satellite communication network is described. The scheme consists of two levels of management. The front end of the scheme is a derivation of Kohonen's self-organization model to configure maps for the satellite communication network dynamically. The model consists of three stages. The first stage is the pattern recognition task, in which an exemplar map that best meets the current network requirements is selected. The second stage is the analysis of the discrepancy between the chosen exemplar map and the state of the network, and the adaptive modification of the chosen exemplar map to conform closely to the network requirement (input data pattern) by means of Kohonen's self-organization. On the basis of certain performance criteria, whether a new map is generated to replace the original chosen map is decided in the third stage. A state-dependent routing algorithm, which arranges the incoming call to some proper path, is used to make the network more efficient and to lower the call block rate. Simulation results demonstrate that the scheme, which combines self-organization and the state-dependent routing mechanism, provides better performance in terms of call block rate than schemes that only have either the self-organization mechanism or the routing mechanism.
Enabling Tussle-Agile Inter-networking Architectures by Underlay Virtualisation
NASA Astrophysics Data System (ADS)
Dianati, Mehrdad; Tafazolli, Rahim; Moessner, Klaus
In this paper, we propose an underlay inter-network virtualisation framework in order to enable tussle-agile flexible networking over the existing inter-network infrastructures. The functionalities that inter-networking elements (transit nodes, access networks, etc.) need to support in order to enable virtualisation are discussed. We propose the base architectures of each the abstract elements to support the required inter-network virtualisation functionalities.
Intelligent call admission control for multi-class services in mobile cellular networks
NASA Astrophysics Data System (ADS)
Ma, Yufeng; Hu, Xiulin; Zhang, Yunyu
2005-11-01
Scarcity of the spectrum resource and mobility of users make quality of service (QoS) provision a critical issue in mobile cellular networks. This paper presents a fuzzy call admission control scheme to meet the requirement of the QoS. A performance measure is formed as a weighted linear function of new call and handoff call blocking probabilities of each service class. Simulation compares the proposed fuzzy scheme with complete sharing and guard channel policies. Simulation results show that fuzzy scheme has a better robust performance in terms of average blocking criterion.
Fault recovery in the reliable multicast protocol
NASA Technical Reports Server (NTRS)
Callahan, John R.; Montgomery, Todd L.; Whetten, Brian
1995-01-01
The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed programs that need to handle reconfiguration events at the application layer. This model, called membership views, provides an abstraction in which events such as site failures, network partitions, and normal join-leave events are viewed as group reformations. RMP provides access to this model through an application programming interface (API) that notifies an application when a group is reformed as the result of a some event. RMP provides applications with reliable delivery of messages using an underlying IP Multicast (12, 5) media to other group members in a distributed environment even in the case of reformations. A distributed application can use various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This paper explores the implementation details of the mechanisms in RMP that provide distributed applications with membership view information and fault recovery capabilities.
Specification and Design of a Fault Recovery Model for the Reliable Multicast Protocol
NASA Technical Reports Server (NTRS)
Montgomery, Todd; Callahan, John R.; Whetten, Brian
1996-01-01
The Reliable Multicast Protocol (RMP) provides a unique, group-based model for distributed programs that need to handle reconfiguration events at the application layer. This model, called membership views, provides an abstraction in which events such as site failures, network partitions, and normal join-leave events are viewed as group reformations. RMP provides access to this model through an application programming interface (API) that notifies an application when a group is reformed as the result of a some event. RMP provides applications with reliable delivery of messages using an underlying IP Multicast media to other group members in a distributed environment even in the case of reformations. A distributed application can use various Quality of Service (QoS) levels provided by RMP to tolerate group reformations. This paper explores the implementation details of the mechanisms in RMP that provide distributed applications with membership view information and fault recovery capabilities.
Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios
Ball, Alyssa S.; Chaparian, Ryan R.
2017-01-01
ABSTRACT The coordination of group behaviors in bacteria is accomplished via the cell-cell signaling process called quorum sensing. Vibrios have historically been models for studying bacterial communication due to the diverse and remarkable behaviors controlled by quorum sensing in these bacteria, including bioluminescence, type III and type VI secretion, biofilm formation, and motility. Here, we discuss the Vibrio LuxR/HapR family of proteins, the master global transcription factors that direct downstream gene expression in response to changes in cell density. These proteins are structurally similar to TetR transcription factors but exhibit distinct biochemical and genetic features from TetR that determine their regulatory influence on the quorum sensing gene network. We review here the gene groups regulated by LuxR/HapR and quorum sensing and explore the targets that are common and unique among Vibrio species. PMID:28484045
CoPub: a literature-based keyword enrichment tool for microarray data analysis.
Frijters, Raoul; Heupers, Bart; van Beek, Pieter; Bouwhuis, Maurice; van Schaik, René; de Vlieg, Jacob; Polman, Jan; Alkema, Wynand
2008-07-01
Medline is a rich information source, from which links between genes and keywords describing biological processes, pathways, drugs, pathologies and diseases can be extracted. We developed a publicly available tool called CoPub that uses the information in the Medline database for the biological interpretation of microarray data. CoPub allows batch input of multiple human, mouse or rat genes and produces lists of keywords from several biomedical thesauri that are significantly correlated with the set of input genes. These lists link to Medline abstracts in which the co-occurring input genes and correlated keywords are highlighted. Furthermore, CoPub can graphically visualize differentially expressed genes and over-represented keywords in a network, providing detailed insight in the relationships between genes and keywords, and revealing the most influential genes as highly connected hubs. CoPub is freely accessible at http://services.nbic.nl/cgi-bin/copub/CoPub.pl.
2002-01-01
Submitted to ICN 2002 Organic Techniques for Protecting Virtual Private Network (VPN) Services from Access Link Flooding Attacks1 Ranga S. Ramanujan ...using these techniques is also described. Contact author: Dr. Ranga S. Ramanujan Architecture Technology Corporation 9971 Valley View Road Eden Prairie...OF ABSTRACT 18. NUMBER OF PAGES 15 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified
Evolutionary neural networks for anomaly detection based on the behavior of a program.
Han, Sang-Jun; Cho, Sung-Bae
2006-06-01
The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.
Labyrinth, An Abstract Model for Hypermedia Applications. Description of its Static Components.
ERIC Educational Resources Information Center
Diaz, Paloma; Aedo, Ignacio; Panetsos, Fivos
1997-01-01
The model for hypermedia applications called Labyrinth allows: (1) the design of platform-independent hypermedia applications; (2) the categorization, generalization and abstraction of sparse unstructured heterogeneous information in multiple and interconnected levels; (3) the creation of personal views in multiuser hyperdocuments for both groups…
Abstracts for the symposium on the Application of neural networks to the earth sciences
Singer, Donald A.
2002-01-01
Artificial neural networks are a group of mathematical methods that attempt to mimic some of the processes in the human mind. Although the foundations for these ideas were laid as early as 1943 (McCulloch and Pitts, 1943), it wasn't until 1986 (Rumelhart and McClelland, 1986; Masters, 1995) that applications to practical problems became possible. It is the acknowledged superiority of the human mind at recognizing patterns that the artificial neural networks are trying to imitate with their interconnected neurons. Interconnections used in the methods that have been developed allow robust learning. Capabilities of neural networks fall into three kinds of applications: (1) function fitting or prediction, (2) noise reduction or pattern recognition, and (3) classification or placing into types. Because of these capabilities and the powerful abilities of artificial neural networks, there have been increasing applications of these methods in the earth sciences. The abstracts in this document represent excellent samples of the range of applications. Talks associated with the abstracts were presented at the Symposium on the Application of Neural Networks to the Earth Sciences: Seventh International Symposium on Mineral Exploration (ISME–02), held August 20–21, 2002, at NASA Moffett Field, Mountain View, California. This symposium was sponsored by the Mining and Materials Processing Institute of Japan (MMIJ), the U.S. Geological Survey, the Circum-Pacific Council, and NASA. The ISME symposia have been held every two years in order to bring together scientists actively working on diverse quantitative methods applied to the earth sciences. Although the title, International Symposium on Mineral Exploration, suggests exclusive focus on mineral exploration, interests and presentations have always been wide-ranging—abstracts presented here are no exception.
Autonomous perception and decision making in cyber-physical systems
NASA Astrophysics Data System (ADS)
Sarkar, Soumik
2011-07-01
The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.
Network structure exploration in networks with node attributes
NASA Astrophysics Data System (ADS)
Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin
2016-05-01
Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.
Enhanced polychronization in a spiking network with metaplasticity.
Guise, Mira; Knott, Alistair; Benuskova, Lubica
2015-01-01
Computational models of metaplasticity have usually focused on the modeling of single synapses (Shouval et al., 2002). In this paper we study the effect of metaplasticity on network behavior. Our guiding assumption is that the primary purpose of metaplasticity is to regulate synaptic plasticity, by increasing it when input is low and decreasing it when input is high. For our experiments we adopt a model of metaplasticity that demonstrably has this effect for a single synapse; our primary interest is in how metaplasticity thus defined affects network-level phenomena. We focus on a network-level phenomenon called polychronicity, that has a potential role in representation and memory. A network with polychronicity has the ability to produce non-synchronous but precisely timed sequences of neural firing events that can arise from strongly connected groups of neurons called polychronous neural groups (Izhikevich et al., 2004). Polychronous groups (PNGs) develop readily when spiking networks are exposed to repeated spatio-temporal stimuli under the influence of spike-timing-dependent plasticity (STDP), but are sensitive to changes in synaptic weight distribution. We use a technique we have recently developed called Response Fingerprinting to show that PNGs formed in the presence of metaplasticity are significantly larger than those with no metaplasticity. A potential mechanism for this enhancement is proposed that links an inherent property of integrator type neurons called spike latency to an increase in the tolerance of PNG neurons to jitter in their inputs.
Nonbinary Tree-Based Phylogenetic Networks.
Jetten, Laura; van Iersel, Leo
2018-01-01
Rooted phylogenetic networks are used to describe evolutionary histories that contain non-treelike evolutionary events such as hybridization and horizontal gene transfer. In some cases, such histories can be described by a phylogenetic base-tree with additional linking arcs, which can, for example, represent gene transfer events. Such phylogenetic networks are called tree-based. Here, we consider two possible generalizations of this concept to nonbinary networks, which we call tree-based and strictly-tree-based nonbinary phylogenetic networks. We give simple graph-theoretic characterizations of tree-based and strictly-tree-based nonbinary phylogenetic networks. Moreover, we show for each of these two classes that it can be decided in polynomial time whether a given network is contained in the class. Our approach also provides a new view on tree-based binary phylogenetic networks. Finally, we discuss two examples of nonbinary phylogenetic networks in biology and show how our results can be applied to them.
A Network Optimization Approach for Improving Organizational Design
2004-01-01
functions, Dynamic Network Analysis, Social Network Analysis Abstract Organizations are frequently designed and redesigned, often in...links between sites on the web. Hence a change in any one of the four networks in which people are involved can potentially result in a cascade of...in terms of a set of networks that open the possibility of using all networks (both social and dynamic network measures) as indicators of potential
Osaka, Kengo; Toriumi, Fujio; Sugawara, Toshihauru
2017-01-01
Social networking services (SNSs) are widely used as communicative tools for a variety of purposes. SNSs rely on the users' individual activities associated with some cost and effort, and thus it is not known why users voluntarily continue to participate in SNSs. Because the structures of SNSs are similar to that of the public goods (PG) game, some studies have focused on why voluntary activities emerge as an optimal strategy by modifying the PG game. However, their models do not include direct reciprocity between users, even though reciprocity is a key mechanism that evolves and sustains cooperation in human society. We developed an abstract SNS model called the reciprocity rewards and meta-rewards games that include direct reciprocity by extending the existing models. Then, we investigated how direct reciprocity in an SNS facilitates cooperation that corresponds to participation in SNS by posting articles and comments and how the structure of the networks of users exerts an influence on the strategies of users using the reciprocity rewards game. We run reciprocity rewards games on various complex networks and an instance network of Facebook and found that two types of stable cooperation emerged. First, reciprocity slightly improves the rate of cooperation in complete graphs but the improvement is insignificant because of the instability of cooperation. However, this instability can be avoided by making two assumptions: high degree of fun, i.e. articles are read with high probability, and different attitudes to reciprocal and non-reciprocal agents. We then propose the concept of half free riders to explain what strategy sustains cooperation-dominant situations. Second, we indicate that a certain WS network structure affects users' optimal strategy and facilitates stable cooperation without any extra assumptions. We give a detailed analysis of the different characteristics of the two types of cooperation-dominant situations and the effect of the memory of reciprocal agents on cooperation.
An automatic method to generate domain-specific investigator networks using PubMed abstracts.
Yu, Wei; Yesupriya, Ajay; Wulf, Anja; Qu, Junfeng; Gwinn, Marta; Khoury, Muin J
2007-06-20
Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit) as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8%) and from 94.2% of HuGE PubMed records (accuracy 87.0). We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit), indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70-90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. We successfully created a web-based prototype capable of creating domain-specific investigator networks based on an application that accurately generates detailed investigator profiles from PubMed abstracts combined with robust standard vocabularies. This approach could be used for other biomedical fields to efficiently establish domain-specific investigator networks.
An automatic method to generate domain-specific investigator networks using PubMed abstracts
Yu, Wei; Yesupriya, Ajay; Wulf, Anja; Qu, Junfeng; Gwinn, Marta; Khoury, Muin J
2007-01-01
Background Collaboration among investigators has become critical to scientific research. This includes ad hoc collaboration established through personal contacts as well as formal consortia established by funding agencies. Continued growth in online resources for scientific research and communication has promoted the development of highly networked research communities. Extending these networks globally requires identifying additional investigators in a given domain, profiling their research interests, and collecting current contact information. We present a novel strategy for building investigator networks dynamically and producing detailed investigator profiles using data available in PubMed abstracts. Results We developed a novel strategy to obtain detailed investigator information by automatically parsing the affiliation string in PubMed records. We illustrated the results by using a published literature database in human genome epidemiology (HuGE Pub Lit) as a test case. Our parsing strategy extracted country information from 92.1% of the affiliation strings in a random sample of PubMed records and in 97.0% of HuGE records, with accuracies of 94.0% and 91.0%, respectively. Institution information was parsed from 91.3% of the general PubMed records (accuracy 86.8%) and from 94.2% of HuGE PubMed records (accuracy 87.0). We demonstrated the application of our approach to dynamic creation of investigator networks by creating a prototype information system containing a large database of PubMed abstracts relevant to human genome epidemiology (HuGE Pub Lit), indexed using PubMed medical subject headings converted to Unified Medical Language System concepts. Our method was able to identify 70–90% of the investigators/collaborators in three different human genetics fields; it also successfully identified 9 of 10 genetics investigators within the PREBIC network, an existing preterm birth research network. Conclusion We successfully created a web-based prototype capable of creating domain-specific investigator networks based on an application that accurately generates detailed investigator profiles from PubMed abstracts combined with robust standard vocabularies. This approach could be used for other biomedical fields to efficiently establish domain-specific investigator networks. PMID:17584920
A Thesaurus for Use in a Computer-Aided Abstracting Tool Kit.
ERIC Educational Resources Information Center
Craven, Timothy C.
1993-01-01
Discusses the use of thesauri in automatic indexing and describes the development of a prototype computerized abstractor's assistant. Topics addressed include TEXNET, a text network management system; the use of TEXNET for abstracting; the structure and use of a thesaurus for abstracting in TEXNET; and weighted terms. (Contains 26 references.)…
ERIC Educational Resources Information Center
Proceedings of the ASIS Annual Meeting, 1997
1997-01-01
Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…
Detecting Role Errors in the Gene Hierarchy of the NCI Thesaurus
Min, Hua; Cohen, Barry; Halper, Michael; Oren, Marc; Perl, Yehoshua
2008-01-01
Gene terminologies are playing an increasingly important role in the ever-growing field of genomic research. While errors in large, complex terminologies are inevitable, gene terminologies are even more susceptible to them due to the rapid growth of genomic knowledge and the nature of its discovery. It is therefore very important to establish quality-assurance protocols for such genomic-knowledge repositories. Different kinds of terminologies oftentimes require auditing methodologies adapted to their particular structures. In light of this, an auditing methodology tailored to the characteristics of the NCI Thesaurus’s (NCIT’s) Gene hierarchy is presented. The Gene hierarchy is of particular interest to the NCIT’s designers due to the primary role of genomics in current cancer research. This multiphase methodology focuses on detecting role-errors, such as missing roles or roles with incorrect or incomplete target structures, occurring within that hierarchy. The methodology is based on two kinds of abstraction networks, called taxonomies, that highlight the role distribution among concepts within the IS-A (subsumption) hierarchy. These abstract views tend to highlight portions of the hierarchy having a higher concentration of errors. The errors found during an application of the methodology are reported. Hypotheses pertaining to the efficacy of our methodology are investigated. PMID:19221606
Malm, Annika; Axelsson, Gösta; Barregard, Lars; Ljungqvist, Jakob; Forsberg, Bertil; Bergstedt, Olof; Pettersson, Thomas J R
2013-09-01
There are relatively few studies on the association between disturbances in drinking water services and symptoms of gastrointestinal (GI) illness. Health Call Centres data concerning GI illness may be a useful source of information. This study investigates if there is an increased frequency of contacts with the Health Call Centre (HCC) concerning gastrointestinal symptoms at times when there is a risk of impaired water quality due to disturbances at water works or the distribution network. The study was conducted in Gothenburg, a Swedish city with 0.5 million inhabitants with a surface water source of drinking water and two water works. All HCC contacts due to GI symptoms (diarrhoea, vomiting or abdominal pain) were recorded for a three-year period, including also sex, age, and geocoded location of residence. The number of contacts with the HCC in the affected geographical areas were recorded during eight periods of disturbances in the water works (e.g. short stops of chlorine dosing), six periods of large disturbances in the distribution network (e.g. pumping station failure or pipe breaks with major consequences), and 818 pipe break and leak repairs over a three-year period. For each period of disturbance the observed number of calls was compared with the number of calls during a control period without disturbances in the same geographical area. In total about 55, 000 calls to the HCC due to GI symptoms were recorded over the three-year period, 35 per 1000 inhabitants and year, but much higher (>200) for children <3 yrs of age. There was no statistically significant increase in calls due to GI illness during or after disturbances at the water works or in the distribution network. Our results indicate that GI symptoms due to disturbances in water works or the distribution network are rare. The number of serious failures was, however limited, and further studies are needed to be able to assess the risk of GI illness in such cases. The technique of using geocoded HCC data together with geocoded records of disturbances in the drinking water network was feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Enriched Unified Medical Language System Semantic Network with a Multiple Subsumption Hierarchy
Zhang, Li; Perl, Yehoshua; Halper, Michael; Geller, James; Cimino, James J.
2004-01-01
Objective: The Unified Medical Language System's (UMLS's) Semantic Network's (SN's) two-tree structure is restrictive because it does not allow a semantic type to be a specialization of several other semantic types. In this article, the SN is expanded into a multiple subsumption structure with a directed acyclic graph (DAG) IS-A hierarchy, allowing a semantic type to have multiple parents. New viable IS-A links are added as warranted. Design: Two methodologies are presented to identify and add new viable IS-A links. The first methodology is based on imposing the characteristic of connectivity on a previously presented partition of the SN. Four transformations are provided to find viable IS-A links in the process of converting the partition's disconnected groups into connected ones. The second methodology identifies new IS-A links through a string matching process involving names and definitions of various semantic types in the SN. A domain expert is needed to review all the results to determine the validity of the new IS-A links. Results: Nineteen new IS-A links are added to the SN, and four new semantic types are also created to support the multiple subsumption framework. The resulting network, called the Enriched Semantic Network (ESN), exhibits a DAG-structured hierarchy. A partition of the ESN containing 19 connected groups is also derived. Conclusion: The ESN is an expanded abstraction of the UMLS compared with the original SN. Its multiple subsumption hierarchy can accommodate semantic types with multiple parents. Its representation thus provides direct access to a broader range of subsumption knowledge. PMID:14764611
Optical network democratization.
Nejabati, Reza; Peng, Shuping; Simeonidou, Dimitra
2016-03-06
The current Internet infrastructure is not able to support independent evolution and innovation at physical and network layer functionalities, protocols and services, while at same time supporting the increasing bandwidth demands of evolving and heterogeneous applications. This paper addresses this problem by proposing a completely democratized optical network infrastructure. It introduces the novel concepts of the optical white box and bare metal optical switch as key technology enablers for democratizing optical networks. These are programmable optical switches whose hardware is loosely connected internally and is completely separated from their control software. To alleviate their complexity, a multi-dimensional abstraction mechanism using software-defined network technology is proposed. It creates a universal model of the proposed switches without exposing their technological details. It also enables a conventional network programmer to develop network applications for control of the optical network without specific technical knowledge of the physical layer. Furthermore, a novel optical network virtualization mechanism is proposed, enabling the composition and operation of multiple coexisting and application-specific virtual optical networks sharing the same physical infrastructure. Finally, the optical white box and the abstraction mechanism are experimentally evaluated, while the virtualization mechanism is evaluated with simulation. © 2016 The Author(s).
Improving publication rates in a collaborative clinical trials research network.
Archer, Stephanie Wilson; Carlo, Waldemar A; Truog, William E; Stevenson, David K; Van Meurs, Krisa P; Sánchez, Pablo J; Das, Abhik; Devaskar, Uday; Nelin, Leif D; Petrie Huitema, Carolyn M; Crawford, Margaret M; Higgins, Rosemary D
2016-10-01
Unpublished results can bias biomedical literature, favoring positive over negative findings, primary over secondary analyses, and can lead to duplicate studies that unnecessarily endanger subjects and waste resources. The Neonatal Research Network's (NRN) publication policies for approving, reviewing, and tracking abstracts and papers work to combat these problems. In 2003, the NRN restricted investigators with unfinished manuscripts from proposing new ones and in 2010, urged authors to complete long-outstanding manuscripts. Data from 1991 to 2015 were analyzed to determine effectiveness of these policy changes. The NRN has achieved an overall publication rate of 78% for abstracts. For 1990-2002, of 137 abstracts presented, 43 (31%) were published within 2 years; for 2003-2009, after the manuscript completion policy was instituted, of 140 abstracts presented, 68 (49%) were published within 2 years. Following the effort in 2010, the rate increased to 64%. The NRN surpassed reported rates by developing a comprehensive process, holding investigators accountable and tracking abstracts from presentation to publication. Copyright © 2016. Published by Elsevier Inc.
Software Certification for Temporal Properties With Affordable Tool Qualification
NASA Technical Reports Server (NTRS)
Xia, Songtao; DiVito, Benedetto L.
2005-01-01
It has been recognized that a framework based on proof-carrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the "trust base" of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification approaches is described, each different in expressive power, level of automation and trust base. Of particular interest is the so-called abstraction-carrying code, which can certify temporal properties. When a pure abstraction-carrying code method is used in the context of industrial software certification, the fact that the trust base includes a model checker would incur a high qualification cost. This position paper proposes a hybrid of abstraction-based and proof-based certification methods so that the model checker used by a client can be significantly simplified, thereby leading to lower cost in tool qualification.
ERIC Educational Resources Information Center
Lee, Young-Jin
2010-01-01
Teaching computer programming to young children has been considered difficult because of its abstract and complex nature. The objectives of this study are (1) to investigate whether an innovative educational technology tool called Scratch could enable young children to learn abstract knowledge of computer programming while creating multimedia…
A Computer-Assisted Instruction in Teaching Abstract Statistics to Public Affairs Undergraduates
ERIC Educational Resources Information Center
Ozturk, Ali Osman
2012-01-01
This article attempts to demonstrate the applicability of a computer-assisted instruction supported with simulated data in teaching abstract statistical concepts to political science and public affairs students in an introductory research methods course. The software is called the Elaboration Model Computer Exercise (EMCE) in that it takes a great…
Wu, Jing-Tao; Wu, Hui-Zhen; Yan, Chao-Gan; Chen, Wen-Xin; Zhang, Hong-Ying; He, Yong; Yang, Hai-Shan
2011-10-17
Intrinsic brain activity in a resting state incorporates components of the task negative network called default mode network (DMN) and task-positive networks called attentional networks. In the present study, the reciprocal neuronal networks in the elder group were compared with the young group to investigate the differences of the intrinsic brain activity using a method of temporal correlation analysis based on seed regions of posterior cingulate cortex (PCC) and ventromedial prefrontal cortex (vmPFC). We found significant decreased positive correlations and negative correlations with the seeds of PCC and vmPFC in the old group. The decreased coactivations in the DMN network components and their negative networks in the old group may reflect age-related alterations in various brain functions such as attention, motor control and inhibition modulation in cognitive processing. These alterations in the resting state anti-correlative networks could provide neuronal substrates for the aging brain. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Indiva: a middleware for managing distributed media environment
NASA Astrophysics Data System (ADS)
Ooi, Wei-Tsang; Pletcher, Peter; Rowe, Lawrence A.
2003-12-01
This paper presents a unified set of abstractions and operations for hardware devices, software processes, and media data in a distributed audio and video environment. These abstractions, which are provided through a middleware layer called Indiva, use a file system metaphor to access resources and high-level commands to simplify the development of Internet webcast and distributed collaboration control applications. The design and implementation of Indiva are described and examples are presented to illustrate the usefulness of the abstractions.
Using Synchronous Boolean Networks to Model Several Phenomena of Collective Behavior
Kochemazov, Stepan; Semenov, Alexander
2014-01-01
In this paper, we propose an approach for modeling and analysis of a number of phenomena of collective behavior. By collectives we mean multi-agent systems that transition from one state to another at discrete moments of time. The behavior of a member of a collective (agent) is called conforming if the opinion of this agent at current time moment conforms to the opinion of some other agents at the previous time moment. We presume that at each moment of time every agent makes a decision by choosing from the set (where 1-decision corresponds to action and 0-decision corresponds to inaction). In our approach we model collective behavior with synchronous Boolean networks. We presume that in a network there can be agents that act at every moment of time. Such agents are called instigators. Also there can be agents that never act. Such agents are called loyalists. Agents that are neither instigators nor loyalists are called simple agents. We study two combinatorial problems. The first problem is to find a disposition of instigators that in several time moments transforms a network from a state where the majority of simple agents are inactive to a state with the majority of active agents. The second problem is to find a disposition of loyalists that returns the network to a state with the majority of inactive agents. Similar problems are studied for networks in which simple agents demonstrate the contrary to conforming behavior that we call anticonforming. We obtained several theoretical results regarding the behavior of collectives of agents with conforming or anticonforming behavior. In computational experiments we solved the described problems for randomly generated networks with several hundred vertices. We reduced corresponding combinatorial problems to the Boolean satisfiability problem (SAT) and used modern SAT solvers to solve the instances obtained. PMID:25526612
Methods for solving reasoning problems in abstract argumentation – A survey
Charwat, Günther; Dvořák, Wolfgang; Gaggl, Sarah A.; Wallner, Johannes P.; Woltran, Stefan
2015-01-01
Within the last decade, abstract argumentation has emerged as a central field in Artificial Intelligence. Besides providing a core formalism for many advanced argumentation systems, abstract argumentation has also served to capture several non-monotonic logics and other AI related principles. Although the idea of abstract argumentation is appealingly simple, several reasoning problems in this formalism exhibit high computational complexity. This calls for advanced techniques when it comes to implementation issues, a challenge which has been recently faced from different angles. In this survey, we give an overview on different methods for solving reasoning problems in abstract argumentation and compare their particular features. Moreover, we highlight available state-of-the-art systems for abstract argumentation, which put these methods to practice. PMID:25737590
Airborne Network Optimization with Dynamic Network Update
2015-03-26
Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University...Member Dr. Barry E. Mullins Member AFIT-ENG-MS-15-M-030 Abstract Modern networks employ congestion and routing management algorithms that can perform...airborne networks. Intelligent agents can make use of Kalman filter predictions to make informed decisions to manage communication in airborne networks. The
Wireless Sensor Networks for Detection of IED Emplacement
2009-06-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Abstract We are investigating the use of wireless nonimaging -sensor...networks for the difficult problem of detection of suspicious behavior related to IED emplacement. Hardware for surveillance by nonimaging -sensor networks...with people crossing a live sensor network. We conclude that nonimaging -sensor networks can detect a variety of suspicious behavior, but
A social network approach to understanding science communication among fire professionals (Abstract)
Vita Wright; Andrea Thode; Anne Mottek-Lucas; Jacklynn Fallon; Megan Matonis
2012-01-01
Studies of science communication and use in the fire management community suggest manager's access research via informal information networks and that these networks vary by both agency and position. We used a phone survey followed by traditional statistical analyses to understand the informal social networks of fire professionals in two western regions of the...
NASA Astrophysics Data System (ADS)
Tiwari, Shivendra N.; Padhi, Radhakant
2018-01-01
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as 'Dynamically Re-optimised single network adaptive critic (DR-SNAC)'. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Exploring Normalization and Network Reconstruction Methods using In Silico and In Vivo Models
Abstract: Lessons learned from the recent DREAM competitions include: The search for the best network reconstruction method continues, and we need more complete datasets with ground truth from more complex organisms. It has become obvious that the network reconstruction methods t...
Towards an Analytic Foundation for Network Architecture
2010-12-31
SUPPLEMENTARY NOTES N/A 14. ABSTRACT In this project, we develop the analytic tools of stochastic optimization for wireless network design and apply them...and Mung Chiang, “ DaVinci : Dynamically Adaptive Virtual Networks for a Customized Internet,” in Proc. ACM SIGCOMM CoNext Conference, December 2008
Network inference using informative priors
Mukherjee, Sach; Speed, Terence P.
2008-01-01
Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of “network inference” is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling. PMID:18799736
Network inference using informative priors.
Mukherjee, Sach; Speed, Terence P
2008-09-23
Recent years have seen much interest in the study of systems characterized by multiple interacting components. A class of statistical models called graphical models, in which graphs are used to represent probabilistic relationships between variables, provides a framework for formal inference regarding such systems. In many settings, the object of inference is the network structure itself. This problem of "network inference" is well known to be a challenging one. However, in scientific settings there is very often existing information regarding network connectivity. A natural idea then is to take account of such information during inference. This article addresses the question of incorporating prior information into network inference. We focus on directed models called Bayesian networks, and use Markov chain Monte Carlo to draw samples from posterior distributions over network structures. We introduce prior distributions on graphs capable of capturing information regarding network features including edges, classes of edges, degree distributions, and sparsity. We illustrate our approach in the context of systems biology, applying our methods to network inference in cancer signaling.
Deformable complex network for refining low-resolution X-ray structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chong; Wang, Qinghua; Ma, Jianpeng, E-mail: jpma@bcm.edu
2015-10-27
A new refinement algorithm called the deformable complex network that combines a novel angular network-based restraint with a deformable elastic network model in the target function has been developed to aid in structural refinement in macromolecular X-ray crystallography. In macromolecular X-ray crystallography, building more accurate atomic models based on lower resolution experimental diffraction data remains a great challenge. Previous studies have used a deformable elastic network (DEN) model to aid in low-resolution structural refinement. In this study, the development of a new refinement algorithm called the deformable complex network (DCN) is reported that combines a novel angular network-based restraint withmore » the DEN model in the target function. Testing of DCN on a wide range of low-resolution structures demonstrated that it constantly leads to significantly improved structural models as judged by multiple refinement criteria, thus representing a new effective refinement tool for low-resolution structural determination.« less
ERIC Educational Resources Information Center
Gidley, Jennifer M.
2007-01-01
Rudolf Steiner and Ken Wilber claim that human consciousness is evolving beyond the "formal", abstract, intellectual mode toward a "post-formal", integral mode. Wilber calls this "vision-logic" and Steiner calls it "consciousness/spiritual soul". Both point to the emergence of more complex, dialectical,…
Biotechnology worldwide and the 'European Biotechnology Thematic Network' Association (EBTNA).
Bruschi, F; Dundar, M; Gahan, P B; Gartland, K; Szente, M; Viola-Magni, M P; Akbarova, Y
2011-09-01
The European Biotechnology Congress 2011 held under the auspices of the European Biotechnology Thematic Network Association (EBTNA) in conjunction with the Turkish Medical Genetics Association brings together a broad spectrum of biotechnologists from around the world. The subsequent abstracts indicate the manner in which biotechnology has permeated all aspects of research from the basic sciences through to small and medium enterprises and major industries. The brief statements before the presentation of the abstracts aim to introduce not only Biotechnology in general and its importance around the world, but also the European Biotechnology Thematic Network Association and its aims especially within the framework of education and ethics in biotechnology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hologram representation of design data in an expert system knowledge base
NASA Technical Reports Server (NTRS)
Shiva, S. G.; Klon, Peter F.
1988-01-01
A novel representational scheme for design object descriptions is presented. An abstract notion of modules and signals is developed as a conceptual foundation for the scheme. This abstraction relates the objects to the meaning of system descriptions. Anchored on this abstraction, a representational model which incorporates dynamic semantics for these objects is presented. This representational model is called a hologram scheme since it represents dual level information, namely, structural and semantic. The benefits of this scheme are presented.
USDA-ARS?s Scientific Manuscript database
Improving strategies for monitoring subsurface contaminant transport includes performance comparison of competing models, developed independently or obtained via model abstraction. Model comparison and parameter discrimination involve specific performance indicators selected to better understand s...
Computer Code for Transportation Network Design and Analysis
DOT National Transportation Integrated Search
1977-01-01
This document describes the results of research into the application of the mathematical programming technique of decomposition to practical transportation network problems. A computer code called Catnap (for Control Analysis Transportation Network A...
Graph Design via Convex Optimization: Online and Distributed Perspectives
NASA Astrophysics Data System (ADS)
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation problems in sensor networks, multi-agent coordination. Distributed optimization aims to optimize a global objective function formed by summation of coupled local functions over a graph via only local communication and computation. We developed a weighted proximal ADMM for distributed optimization using graph structure. This fully distributed, single-loop algorithm allows simultaneous updates and can be viewed as a generalization of existing algorithms. More importantly, we achieve faster convergence by jointly designing graph weights and algorithm parameters. Finally, we propose a new problem on networks called Online Network Formation Problem: starting with a base graph and a set of candidate edges, at each round of the game, player one first chooses a candidate edge and reveals it to player two, then player two decides whether to accept it; player two can only accept limited number of edges and make online decisions with the goal to achieve the best properties of the synthesized network. The network properties considered include the number of spanning trees, algebraic connectivity and total effective resistance. These network formation games arise in a variety of cooperative multiagent systems. We propose a primal-dual algorithm framework for the general online network formation game, and analyze the algorithm performance by the competitive ratio and regret.
LGscore: A method to identify disease-related genes using biological literature and Google data.
Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun
2015-04-01
Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods. Copyright © 2015 Elsevier Inc. All rights reserved.
DeLay, Dawn; Hanish, Laura D; Zhang, Linlin; Martin, Carol Lynn
2017-05-01
The goal of the current study was to improve our understanding of why adolescence is a critical period for the consideration of declining mental health. We did this by focusing on the impact of homophobic name calling on early adolescent mental health after the transition to middle school. Because we know that homophobic name calling emerges within a dynamic peer group structure, we used longitudinal social network analysis to assess the relation between homophobic name calling, depressive symptoms, and self-esteem while simultaneously limiting bias from alternative peer socialization mechanisms. A sample of adolescents who recently transitioned to a large public middle school (N = 299; 53 % girls; M age = 11.13 years, SD = 0.48) were assessed. Longitudinal assessments of peer relationship networks, depressive symptoms, and self-esteem were collected during the fall and spring of the academic year. The results suggest that, after accounting for the simultaneous effect of alternative peer socialization processes, adolescent experiences of homophobic name calling in the fall predict higher levels of depressive symptoms and lower levels of self-esteem over the course of the academic year. These findings provide evidence of a significant influence of homophobic name calling on adolescent mental health.
Artificial intelligence: Deep neural reasoning
NASA Astrophysics Data System (ADS)
Jaeger, Herbert
2016-10-01
The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471
ERIC Educational Resources Information Center
ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.
This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 20 titles deal with the following topics: written communication competencies necessary in the accounting profession; the cooperative school approach to developing a communication network; organizational communication and faculty…
ERIC Educational Resources Information Center
ERIC Clearinghouse on Reading and Communication Skills, Urbana, IL.
This collection of abstracts is part of a continuing series providing information on recent doctoral dissertations. The 11 titles deal with the following topics: the role and function of the California Journalism Articulation Committee; international communication as an academic career for journalism professors; network television news discourse;…
Zheng, Ling; Yumak, Hasan; Chen, Ling; Ochs, Christopher; Geller, James; Kapusnik-Uner, Joan; Perl, Yehoshua
2017-09-01
The National Drug File - Reference Terminology (NDF-RT) is a large and complex drug terminology consisting of several classification hierarchies on top of an extensive collection of drug concepts. These hierarchies provide important information about clinical drugs, e.g., their chemical ingredients, mechanisms of action, dosage form and physiological effects. Within NDF-RT such information is represented using tens of thousands of roles connecting drugs to classifications. In previous studies, we have introduced various kinds of Abstraction Networks to summarize the content and structure of terminologies in order to facilitate their visual comprehension, and support quality assurance of terminologies. However, these previous kinds of Abstraction Networks are not appropriate for summarizing the NDF-RT classification hierarchies, due to its unique structure. In this paper, we present the novel Ingredient Abstraction Network (IAbN) to summarize, visualize and support the audit of NDF-RT's Chemical Ingredients hierarchy and its associated drugs. A common theme in our quality assurance framework is to use characterizations of sets of concepts, revealed by the Abstraction Network structure, to capture concepts, the modeling of which is more complex than for other concepts. For the IAbN, we characterize drug ingredient concepts as more complex if they belong to IAbN groups with multiple parent groups. We show that such concepts have a statistically significantly higher rate of errors than a control sample and identify two especially common patterns of errors. Copyright © 2017 Elsevier Inc. All rights reserved.
Wireless Sensor Network Radio Power Management and Simulation Models
2010-01-01
The Open Electrical & Electronic Engineering Journal, 2010, 4, 21-31 21 1874-1290/10 2010 Bentham Open Open Access Wireless Sensor Network Radio...Air Force Institute of Technology, Wright-Patterson AFB, OH, USA Abstract: Wireless sensor networks (WSNs) create a new frontier in collecting and...consumption. Keywords: Wireless sensor network , power management, energy-efficiency, medium access control (MAC), simulation pa- rameters. 1
From seconds to months: an overview of multi-scale dynamics of mobile telephone calls
NASA Astrophysics Data System (ADS)
Saramäki, Jari; Moro, Esteban
2015-06-01
Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.
ERIC Educational Resources Information Center
Howard, Lyz
2016-01-01
As an experienced face-to-face teacher, working in a small Crown Dependency with no Higher Education Institute (HEI) to call its own, the subsequent geographical and professional isolation in the context of Networked Learning (NL), as a sub-set of eLearning, calls for innovative ways in which to develop self-reliant methods of professional…
GEOMORPHOLOGY OF INTERTIDAL CREEK NETWORKS. (R828677C003)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Facing the IT Talent Squeeze in a Networked Economy
ERIC Educational Resources Information Center
Joyce, Peter J.
2008-01-01
Ten years ago, Cisco began working with schools on a pilot initiative called the Cisco Networking Academy. Today, the Networking Academy program operates in more than 160 countries, comprising a network of more than 7,600 schools that teach the information technology skills essential in a global economy. Cisco Networking Academy has partnered with…
Behavioral networks as a model for intelligent agents
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1990-01-01
On-going work at NASA Langley Research Center in the development and demonstration of a paradigm called behavioral networks as an architecture for intelligent agents is described. This work focuses on the need to identify a methodology for smoothly integrating the characteristics of low-level robotic behavior, including actuation and sensing, with intelligent activities such as planning, scheduling, and learning. This work assumes that all these needs can be met within a single methodology, and attempts to formalize this methodology in a connectionist architecture called behavioral networks. Behavioral networks are networks of task processes arranged in a task decomposition hierarchy. These processes are connected by both command/feedback data flow, and by the forward and reverse propagation of weights which measure the dynamic utility of actions and beliefs.
Improving life sciences information retrieval using semantic web technology.
Quan, Dennis
2007-05-01
The ability to retrieve relevant information is at the heart of every aspect of research and development in the life sciences industry. Information is often distributed across multiple systems and recorded in a way that makes it difficult to piece together the complete picture. Differences in data formats, naming schemes and network protocols amongst information sources, both public and private, must be overcome, and user interfaces not only need to be able to tap into these diverse information sources but must also assist users in filtering out extraneous information and highlighting the key relationships hidden within an aggregated set of information. The Semantic Web community has made great strides in proposing solutions to these problems, and many efforts are underway to apply Semantic Web techniques to the problem of information retrieval in the life sciences space. This article gives an overview of the principles underlying a Semantic Web-enabled information retrieval system: creating a unified abstraction for knowledge using the RDF semantic network model; designing semantic lenses that extract contextually relevant subsets of information; and assembling semantic lenses into powerful information displays. Furthermore, concrete examples of how these principles can be applied to life science problems including a scenario involving a drug discovery dashboard prototype called BioDash are provided.
Erbe, C
2000-07-01
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.
Reiter, Andrea M F; Koch, Stefan P; Schröger, Erich; Hinrichs, Hermann; Heinze, Hans-Jochen; Deserno, Lorenz; Schlagenhauf, Florian
2016-08-01
Behavioral control is influenced not only by learning from the choices made and the rewards obtained but also by "what might have happened," that is, inference about unchosen options and their fictive outcomes. Substantial progress has been made in understanding the neural signatures of direct learning from choices that are actually made and their associated rewards via reward prediction errors (RPEs). However, electrophysiological correlates of abstract inference in decision-making are less clear. One seminal theory suggests that the so-called feedback-related negativity (FRN), an ERP peaking 200-300 msec after a feedback stimulus at frontocentral sites of the scalp, codes RPEs. Hitherto, the FRN has been predominantly related to a so-called "model-free" RPE: The difference between the observed outcome and what had been expected. Here, by means of computational modeling of choice behavior, we show that individuals employ abstract, "double-update" inference on the task structure by concurrently tracking values of chosen stimuli (associated with observed outcomes) and unchosen stimuli (linked to fictive outcomes). In a parametric analysis, model-free RPEs as well as their modification because of abstract inference were regressed against single-trial FRN amplitudes. We demonstrate that components related to abstract inference uniquely explain variance in the FRN beyond model-free RPEs. These findings advance our understanding of the FRN and its role in behavioral adaptation. This might further the investigation of disturbed abstract inference, as proposed, for example, for psychiatric disorders, and its underlying neural correlates.
NASA Astrophysics Data System (ADS)
Bruun, Jesper; Brewe, Eric
2013-12-01
The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI) scores. We find highly significant correlations (p<0.001) between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network), the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively) with future grades. In the CD network, the network measure target entropy shows the highest correlation (r=0.45) with future grades. In the network composed solely of noncontent related social interactions, these patterns of correlation are maintained in the sense that these network measures show the highest correlations and maintain their internal ranking. Using hierarchical linear regression, we find that a linear model that adds the network measures hide and target entropy, calculated on the ICS network, significantly improves a base model that uses only the FCI pretest scores from the beginning of the semester. Though one should not infer causality from these results, they do point to how social interactions in class are intertwined with academic interactions. We interpret this as an integral part of learning, and suggest that physics is a robust example.
Enhancing Teaching and Learning Wi-Fi Networking Using Limited Resources to Undergraduates
ERIC Educational Resources Information Center
Sarkar, Nurul I.
2013-01-01
Motivating students to learn Wi-Fi (wireless fidelity) wireless networking to undergraduate students is often difficult because many students find the subject rather technical and abstract when presented in traditional lecture format. This paper focuses on the teaching and learning aspects of Wi-Fi networking using limited hardware resources. It…
DReAM: Demand Response Architecture for Multi-level District Heating and Cooling Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Saptarshi; Chandan, Vikas; Arya, Vijay
In this paper, we exploit the inherent hierarchy of heat exchangers in District Heating and Cooling (DHC) networks and propose DReAM, a novel Demand Response (DR) architecture for Multi-level DHC networks. DReAM serves to economize system operation while still respecting comfort requirements of individual consumers. Contrary to many present day DR schemes that work on a consumer level granularity, DReAM works at a level of hierarchy above buildings, i.e. substations that supply heat to a group of buildings. This improves the overall DR scalability and reduce the computational complexity. In the first step of the proposed approach, mathematical models ofmore » individual substations and their downstream networks are abstracted into appropriately constructed low-complexity structural forms. In the second step, this abstracted information is employed by the utility to perform DR optimization that determines the optimal heat inflow to individual substations rather than buildings, in order to achieve the targeted objectives across the network. We validate the proposed DReAM framework through experimental results under different scenarios on a test network.« less
Artificial Neural Network Metamodels of Stochastic Computer Simulations
1994-08-10
SUBTITLE r 5. FUNDING NUMBERS Artificial Neural Network Metamodels of Stochastic I () Computer Simulations 6. AUTHOR(S) AD- A285 951 Robert Allen...8217!298*1C2 ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC COMPUTER SIMULATIONS by Robert Allen Kilmer B.S. in Education Mathematics, Indiana...dedicate this document to the memory of my father, William Ralph Kilmer. mi ABSTRACT Signature ARTIFICIAL NEURAL NETWORK METAMODELS OF STOCHASTIC
Monitor Network Traffic with Packet Capture (pcap) on an Android Device
2015-09-01
administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live
Analysis of a large-scale weighted network of one-to-one human communication
NASA Astrophysics Data System (ADS)
Onnela, Jukka-Pekka; Saramäki, Jari; Hyvönen, Jörkki; Szabó, Gábor; Argollo de Menezes, M.; Kaski, Kimmo; Barabási, Albert-László; Kertész, János
2007-06-01
We construct a connected network of 3.9 million nodes from mobile phone call records, which can be regarded as a proxy for the underlying human communication network at the societal level. We assign two weights on each edge to reflect the strength of social interaction, which are the aggregate call duration and the cumulative number of calls placed between the individuals over a period of 18 weeks. We present a detailed analysis of this weighted network by examining its degree, strength, and weight distributions, as well as its topological assortativity and weighted assortativity, clustering and weighted clustering, together with correlations between these quantities. We give an account of motif intensity and coherence distributions and compare them to a randomized reference system. We also use the concept of link overlap to measure the number of common neighbours any two adjacent nodes have, which serves as a useful local measure for identifying the interconnectedness of communities. We report a positive correlation between the overlap and weight of a link, thus providing strong quantitative evidence for the weak ties hypothesis, a central concept in social network analysis. The percolation properties of the network are found to depend on the type and order of removed links, and they can help understand how the local structure of the network manifests itself at the global level. We hope that our results will contribute to modelling weighted large-scale social networks, and believe that the systematic approach followed here can be adopted to study other weighted networks.
"Master-Slave" Biological Network Alignment
NASA Astrophysics Data System (ADS)
Ferraro, Nicola; Palopoli, Luigi; Panni, Simona; Rombo, Simona E.
Performing global alignment between protein-protein interaction (PPI) networks of different organisms is important to infer knowledge about conservation across species. Known methods that perform this task operate symmetrically, that is to say, they do not assign a distinct role to the input PPI networks. However, in most cases, the input networks are indeed distinguishable on the basis of how well the corresponding organism is biologically well-characterized. For well-characterized organisms the associated PPI network supposedly encode in a sound manner all the information about their proteins and associated interactions, which is far from being the case for not well characterized ones. Here the new idea is developed to devise a method for global alignment of PPI networks that in fact exploit differences in the characterization of organisms at hand. We assume that the PPI network (called Master) of the best characterized is used as a fingerprint to guide the alignment process to the second input network (called Slave), so that generated results preferably retain the structural characteristics of the Master (and using the Slave) network. We tested our method showing that the results it returns are biologically relevant.
77 FR 60680 - Development of the Nationwide Interoperable Public Safety Broadband Network
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-04
... public comment on the conceptual network architecture presentation made at the FirstNet Board of... business plan considerations. NTIA also seeks comment on the general concept of how to develop applications... network based on a single, nationwide network architecture called for under the Middle Class Tax Relief...
A Study of the Effects of Fieldbus Network Induced Delays on Control Systems
ERIC Educational Resources Information Center
Mainoo, Joseph
2012-01-01
Fieldbus networks are all-digital, two-way, multi-drop communication systems that are used to connect field devices such as sensors and actuators, and controllers. These fieldbus network systems are also called networked control systems (NCS). Although, there are different varieties of fieldbus networks such as Foundation Field Bus, DeviceNet, and…
Network traffic behaviour near phase transition point
NASA Astrophysics Data System (ADS)
Lawniczak, A. T.; Tang, X.
2006-03-01
We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.
Vocalization frequency and duration are coded in separate hindbrain nuclei.
Chagnaud, Boris P; Baker, Robert; Bass, Andrew H
2011-06-14
Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates.
Vocalization frequency and duration are coded in separate hindbrain nuclei
Chagnaud, Boris P.; Baker, Robert; Bass, Andrew H.
2011-01-01
Temporal patterning is an essential feature of neural networks producing precisely timed behaviours such as vocalizations that are widely used in vertebrate social communication. Here we show that intrinsic and network properties of separate hindbrain neuronal populations encode the natural call attributes of frequency and duration in vocal fish. Intracellular structure/function analyses indicate that call duration is encoded by a sustained membrane depolarization in vocal prepacemaker neurons that innervate downstream pacemaker neurons. Pacemaker neurons, in turn, encode call frequency by rhythmic, ultrafast oscillations in their membrane potential. Pharmacological manipulations show prepacemaker activity to be independent of pacemaker function, thus accounting for natural variation in duration which is the predominant feature distinguishing call types. Prepacemaker neurons also innervate key hindbrain auditory nuclei thereby effectively serving as a call-duration corollary discharge. We propose that premotor compartmentalization of neurons coding distinct acoustic attributes is a fundamental trait of hindbrain vocal pattern generators among vertebrates. PMID:21673667
Significant wave heights from Sentinel-1 SAR: Validation and applications
NASA Astrophysics Data System (ADS)
Stopa, J. E.; Mouche, A.
2017-03-01
Two empirical algorithms are developed for wave mode images measured from the synthetic aperture radar aboard Sentinel-1 A. The first method, called CWAVE_S1A, is an extension of previous efforts developed for ERS2 and the second method, called Fnn, uses the azimuth cutoff among other parameters to estimate significant wave heights (Hs) and average wave periods without using a modulation transfer function. Neural networks are trained using colocated data generated from WAVEWATCH III and independently verified with data from altimeters and in situ buoys. We use neural networks to relate the nonlinear relationships between the input SAR image parameters and output geophysical wave parameters. CWAVE_S1A performs well and has reduced precision compared to Fnn with Hs root mean square errors within 0.5 and 0.6 m, respectively. The developed neural networks extend the SAR's ability to retrieve useful wave information under a large range of environmental conditions including extratropical and tropical cyclones in which Hs estimation is traditionally challenging.
Big Data Smart Socket (BDSS): a system that abstracts data transfer habits from end users.
Watts, Nicholas A; Feltus, Frank A
2017-02-15
The ability to centralize and store data for long periods on an end user's computational resources is increasingly difficult for many scientific disciplines. For example, genomics data is increasingly large and distributed, and the data needs to be moved into workflow execution sites ranging from lab workstations to the cloud. However, the typical user is not always informed on emerging network technology or the most efficient methods to move and share data. Thus, the user defaults to using inefficient methods for transfer across the commercial internet. To accelerate large data transfer, we created a tool called the Big Data Smart Socket (BDSS) that abstracts data transfer methodology from the user. The user provides BDSS with a manifest of datasets stored in a remote storage repository. BDSS then queries a metadata repository for curated data transfer mechanisms and optimal path to move each of the files in the manifest to the site of workflow execution. BDSS functions as a standalone tool or can be directly integrated into a computational workflow such as provided by the Galaxy Project. To demonstrate applicability, we use BDSS within a biological context, although it is applicable to any scientific domain. BDSS is available under version 2 of the GNU General Public License at https://github.com/feltus/BDSS . ffeltus@clemson.edu. © The Author 2016. Published by Oxford University Press.
Big Data Smart Socket (BDSS): a system that abstracts data transfer habits from end users
Watts, Nicholas A.
2017-01-01
Motivation: The ability to centralize and store data for long periods on an end user’s computational resources is increasingly difficult for many scientific disciplines. For example, genomics data is increasingly large and distributed, and the data needs to be moved into workflow execution sites ranging from lab workstations to the cloud. However, the typical user is not always informed on emerging network technology or the most efficient methods to move and share data. Thus, the user defaults to using inefficient methods for transfer across the commercial internet. Results: To accelerate large data transfer, we created a tool called the Big Data Smart Socket (BDSS) that abstracts data transfer methodology from the user. The user provides BDSS with a manifest of datasets stored in a remote storage repository. BDSS then queries a metadata repository for curated data transfer mechanisms and optimal path to move each of the files in the manifest to the site of workflow execution. BDSS functions as a standalone tool or can be directly integrated into a computational workflow such as provided by the Galaxy Project. To demonstrate applicability, we use BDSS within a biological context, although it is applicable to any scientific domain. Availability and Implementation: BDSS is available under version 2 of the GNU General Public License at https://github.com/feltus/BDSS. Contact: ffeltus@clemson.edu PMID:27797780
Dynamic Hierarchical Sleep Scheduling for Wireless Ad-Hoc Sensor Networks
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks. PMID:22412343
Dynamic hierarchical sleep scheduling for wireless ad-hoc sensor networks.
Wen, Chih-Yu; Chen, Ying-Chih
2009-01-01
This paper presents two scheduling management schemes for wireless sensor networks, which manage the sensors by utilizing the hierarchical network structure and allocate network resources efficiently. A local criterion is used to simultaneously establish the sensing coverage and connectivity such that dynamic cluster-based sleep scheduling can be achieved. The proposed schemes are simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithms provide efficient network power control and can achieve high scalability in wireless sensor networks.
Exploring the evolution of London's street network in the information space: A dual approach
NASA Astrophysics Data System (ADS)
Masucci, A. Paolo; Stanilov, Kiril; Batty, Michael
2014-01-01
We study the growth of London's street network in its dual representation, as the city has evolved over the past 224 years. The dual representation of a planar graph is a content-based network, where each node is a set of edges of the planar graph and represents a transportation unit in the so-called information space, i.e., the space where information is handled in order to navigate through the city. First, we discuss a novel hybrid technique to extract dual graphs from planar graphs, called the hierarchical intersection continuity negotiation principle. Then we show that the growth of the network can be analytically described by logistic laws and that the topological properties of the network are governed by robust log-normal distributions characterizing the network's connectivity and small-world properties that are consistent over time. Moreover, we find that the double-Pareto-like distributions for the connectivity emerge for major roads and can be modeled via a stochastic content-based network model using simple space-filling principles.
MODELING NITRATE CONCENTRATION IN NATURAL STREAMS BY USING ARTIFICIAL NEURAL NETWORKS. (R827451)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
PROBING NORWALK-LIKE VIRUS PRESENCE IN SHELLFISH WITH ARTIFICIAL NEURAL NETWORKS. (R829784)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
NASA Astrophysics Data System (ADS)
Intarasothonchun, Silada; Thipchaksurat, Sakchai; Varakulsiripunth, Ruttikorn; Onozato, Yoshikuni
In this paper, we propose a modified scheme of MSODB and PMS, called Predictive User Mobility Behavior (PUMB) to improve performance of resource reservation and call admission control for cellular networks. This algorithm is proposed in which bandwidth is allocated more efficiently to neighboring cells by key mobility parameters in order to provide QoS guarantees for transferring traffic. The probability is used to form a cluster of cells and the shadow cluster, where a mobile unit is likely to visit. When a mobile unit may change the direction and migrate to the cell that does not belong to its shadow cluster, we can support it by making efficient use of predicted nonconforming call. Concomitantly, to ensure continuity of on-going calls with better utilization of resources, bandwidth is borrowed from predicted nonconforming calls and existing adaptive calls without affecting the minimum QoS guarantees. The performance of the PUMB is demonstrated by simulation results in terms of new call blocking probability, handoff call dropping probability, bandwidth utilization, call successful probability, and overhead message transmission when arrival rate and speed of mobile units are varied. Our results show that PUMB provides the better performances comparing with those of MSODB and PMS under different traffic conditions.
Dynamics and thermodynamics of open chemical networks
NASA Astrophysics Data System (ADS)
Esposito, Massimiliano
Open chemical networks (OCN) are large sets of coupled chemical reactions where some of the species are chemostated (i.e. continuously restored from the environment). Cell metabolism is a notable example of OCN. Two results will be presented. First, dissipation in OCN operating in nonequilibrium steady-states strongly depends on the network topology (algebraic properties of the stoichiometric matrix). An application to oligosaccharides exchange dynamics performed by so-called D-enzymes will be provided. Second, at low concentration the dissipation of OCN is in general inaccurately predicted by deterministic dynamics (i.e. nonlinear rate equations for the species concentrations). In this case a description in terms of the chemical master equation is necessary. A notable exception is provided by so-called deficiency zero networks, i.e. chemical networks with no hidden cycles present in the graph of reactant complexes.
Leveraging Social Networking in the United States Army
2011-03-16
ABSTRACT In 2007, the U. S. Department of Defense (DoD) began blocking social networking sites such as including YouTube and MySpace from its computer...issued a memorandum that set a new policy allowing access to social - networking services ( SNS ) from its network . The policy allows all users of...CLASSIFICATION: Unclassified In 2007, the U. S. Department of Defense (DoD) began blocking social networking sites such as including YouTube and MySpace
Security of Quantum Repeater Network Operation
2016-10-03
AFRL-AFOSR-JP-TR-2016-0079 Security of Quantum Repeater Network Operation Rodney Van Meter KEIO UNIVERSITY Final Report 10/03/2016 DISTRIBUTION A...To) 29 May 2014 to 28 May 2016 4. TITLE AND SUBTITLE Security of Quantum Repeater Network Operation 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386...ABSTRACT Much of the work on quantum networks , both entangled and unentangled, has been about the uses of quantum networks to enhance end- host security
A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY
Abstract
Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...
3D Visualizations of Abstract DataSets
2010-08-01
contrasts no shadows, drop shadows and drop lines. 15. SUBJECT TERMS 3D displays, 2.5D displays, abstract network visualizations, depth perception , human...altitude perception in airspace management and airspace route planning—simulated reality visualizations that employ altitude and heading as well as...cues employed by display designers for depicting real-world scenes on a flat surface can be applied to create a perception of depth for abstract
Evaluating the Generality and Limits of Blind Return-Oriented Programming Attacks
2015-12-01
consider a recently proposed information disclosure vulnerability called blind return-oriented programming (BROP). Under certain conditions, this...implementation disclosure attacks 15. NUMBER OF PAGES 75 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF...Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT We consider a recently proposed information disclosure vulnerability called blind return
Roy, Sujoy; Yun, Daqing; Madahian, Behrouz; Berry, Michael W.; Deng, Lih-Yuan; Goldowitz, Daniel; Homayouni, Ramin
2017-01-01
In this study, we developed and evaluated a novel text-mining approach, using non-negative tensor factorization (NTF), to simultaneously extract and functionally annotate transcriptional modules consisting of sets of genes, transcription factors (TFs), and terms from MEDLINE abstracts. A sparse 3-mode term × gene × TF tensor was constructed that contained weighted frequencies of 106,895 terms in 26,781 abstracts shared among 7,695 genes and 994 TFs. The tensor was decomposed into sub-tensors using non-negative tensor factorization (NTF) across 16 different approximation ranks. Dominant entries of each of 2,861 sub-tensors were extracted to form term–gene–TF annotated transcriptional modules (ATMs). More than 94% of the ATMs were found to be enriched in at least one KEGG pathway or GO category, suggesting that the ATMs are functionally relevant. One advantage of this method is that it can discover potentially new gene–TF associations from the literature. Using a set of microarray and ChIP-Seq datasets as gold standard, we show that the precision of our method for predicting gene–TF associations is significantly higher than chance. In addition, we demonstrate that the terms in each ATM can be used to suggest new GO classifications to genes and TFs. Taken together, our results indicate that NTF is useful for simultaneous extraction and functional annotation of transcriptional regulatory networks from unstructured text, as well as for literature based discovery. A web tool called Transcriptional Regulatory Modules Extracted from Literature (TREMEL), available at http://binf1.memphis.edu/tremel, was built to enable browsing and searching of ATMs. PMID:28894735
Casiglia, Edoardo; Tikhonoff, Valérie; Albertini, Federica; Favaro, Jacopo; Montagnana, Martina; Danese, Elisa; Finatti, Francesco; Benati, Marco; Mazza, Alberto; Dal Maso, Lucia; Spinella, Paolo; Palatini, Paolo
2017-08-01
The possible effect of caffeine as an enhancer of cognitive performance, particularly that on abstract reasoning, has never been studied in an epidemiological setting, especially in relation to -163C>A polymorphism of CYP1A2 gene, largely controlling caffeine metabolism. Aim of this study was to ascertain whether in general population free chronic caffeine intake modifies abstract reasoning, and if this effect is influenced by the above mentioned genotype, by age, schooling, ethanol intake and smoking habits. We studied 1374 unselected men and women aged 51 ± 15 years (range 18-89) from a general population. Daily caffeine intake deriving from coffee, tea, chocolate or cola was calculated from an anamnestic questionnaire and from a 7-day dietary diary. Abstract reasoning was measured in the frame of a neuropsychological assessment as the ability to find a concept linking two words indicating objects or actions and explaining how they were connected. In age-schooling-adjusted linear regression, the higher the caffeine intake, the better the abstraction score. Abstract reasoning depended on caffeine in the -163C>A CC homozygous only (so-called slow metabolizers), where it was higher in the 3rd tertile of caffeine intake. Age and ethanol reduced while smoking and schooling enhanced this association. The interaction term between caffeine and the -163C>A polymorphism was accepted in linear regressions. Caffeine consumption resulted innocuous for the A-carriers (so-called fast metabolizers). In general population, a positive association between caffeine intake and abstract reasoning exists in the CC homozygous of the -163C>A polymorphism of CYP1A2 gene. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.
GEsture: an online hand-drawing tool for gene expression pattern search.
Wang, Chunyan; Xu, Yiqing; Wang, Xuelin; Zhang, Li; Wei, Suyun; Ye, Qiaolin; Zhu, Youxiang; Yin, Hengfu; Nainwal, Manoj; Tanon-Reyes, Luis; Cheng, Feng; Yin, Tongming; Ye, Ning
2018-01-01
Gene expression profiling data provide useful information for the investigation of biological function and process. However, identifying a specific expression pattern from extensive time series gene expression data is not an easy task. Clustering, a popular method, is often used to classify similar expression genes, however, genes with a 'desirable' or 'user-defined' pattern cannot be efficiently detected by clustering methods. To address these limitations, we developed an online tool called GEsture. Users can draw, or graph a curve using a mouse instead of inputting abstract parameters of clustering methods. GEsture explores genes showing similar, opposite and time-delay expression patterns with a gene expression curve as input from time series datasets. We presented three examples that illustrate the capacity of GEsture in gene hunting while following users' requirements. GEsture also provides visualization tools (such as expression pattern figure, heat map and correlation network) to display the searching results. The result outputs may provide useful information for researchers to understand the targets, function and biological processes of the involved genes.
sbml-diff: A Tool for Visually Comparing SBML Models in Synthetic Biology.
Scott-Brown, James; Papachristodoulou, Antonis
2017-07-21
We present sbml-diff, a tool that is able to read a model of a biochemical reaction network in SBML format and produce a range of diagrams showing different levels of detail. Each diagram type can be used to visualize a single model or to visually compare two or more models. The default view depicts species as ellipses, reactions as rectangles, rules as parallelograms, and events as diamonds. A cartoon view replaces the symbols used for reactions on the basis of the associated Systems Biology Ontology terms. An abstract view represents species as ellipses and draws edges between them to indicate whether a species increases or decreases the production or degradation of another species. sbml-diff is freely licensed under the three-clause BSD license and can be downloaded from https://github.com/jamesscottbrown/sbml-diff and used as a python package called from other software, as a free-standing command-line application, or online using the form at http://sysos.eng.ox.ac.uk/tebio/upload.
2015-05-22
sensor networks for managing power levels of wireless networks ; air and ground transportation systems for air traffic control and payload transport and... network systems, large-scale systems, adaptive control, discontinuous systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...cover a broad spectrum of ap- plications including cooperative control of unmanned air vehicles, autonomous underwater vehicles, distributed sensor
Distributed Detection with Collisions in a Random, Single-Hop Wireless Sensor Network
2013-05-26
public release; distribution is unlimited. Distributed detection with collisions in a random, single-hop wireless sensor network The views, opinions...1274 2 ABSTRACT Distributed detection with collisions in a random, single-hop wireless sensor network Report Title We consider the problem of... WIRELESS SENSOR NETWORK Gene T. Whipps?† Emre Ertin† Randolph L. Moses† ?U.S. Army Research Laboratory, Adelphi, MD 20783 †The Ohio State University
Space Object and Light Attribute Rendering (SOLAR) Projection System
2017-05-08
AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT A state of the art planetarium style projection system...Rendering (SOLAR) Projection System 1 Abstract A state of the art planetarium style projection system called Space Object and Light Attribute Rendering...planetarium style projection system for emulation of a variety of close proximity and long range imaging experiments. University at Buffalo’s Space
Using a CLIPS expert system to automatically manage TCP/IP networks and their components
NASA Technical Reports Server (NTRS)
Faul, Ben M.
1991-01-01
A expert system that can directly manage networks components on a Transmission Control Protocol/Internet Protocol (TCP/IP) network is described. Previous expert systems for managing networks have focused on managing network faults after they occur. However, this proactive expert system can monitor and control network components in near real time. The ability to directly manage network elements from the C Language Integrated Production System (CLIPS) is accomplished by the integration of the Simple Network Management Protocol (SNMP) and a Abstract Syntax Notation (ASN) parser into the CLIPS artificial intelligence language.
National Communications System: Ensuring Essential Communications for the Homeland
2002-01-01
EP calls receive priority in the Signaling System 7 ( SS7 ) networks that manage calls in the carrier trunk networks. In 1993, the American National...the application of available GETS features. In 1996, ANSI modified the SS7 standards so that NS/EP traffic would have a higher signaling priority...facilitate industry migration to the standard related to SS7 message priority. GETS representatives worked with the GETS interexchange and local
Community Air Sensor Network Project: Lower Cost, Continuous Ambient Monitoring Methods
This is an extended abstract that will be part of the peer-reviewed proceedings of the AWMA annual meeting in 2015. The extended abstract covers preliminary results from the CAIRSENSE project, which involves testing low cost sensors at an NCore site in Atlanta, GA.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
ERIC Educational Resources Information Center
Veletsianos, George; Kimmons, Royce
2012-01-01
We examine the relationship between scholarly practice and participatory technologies and explore how such technologies invite and reflect the emergence of a new form of scholarship that we call "Networked Participatory Scholarship": scholars' participation in online social networks to share, reflect upon, critique, improve, validate, and…
The Ontario Benthos Biomonitoring Network
Chris Jones; Brian Craig; Nicole Dmytrow
2006-01-01
Canadaâs Ontario Ministry of the Environment and Environment Canada (Ecological Monitoring and Assessment Network) are developing an aquatic macroinvertebrate biomonitoring network for Ontarioâs lakes, streams, and wetlands. We are building the program, called the Ontario Benthos Biomonitoring Network (OBBN), on the principles of partnership, free data sharing, and...
Networked Improvement Communities: The Discipline of Improvement Science Meets the Power of Networks
ERIC Educational Resources Information Center
LeMahieu, Paul G.; Grunow, Alicia; Baker, Laura; Nordstrum, Lee E.; Gomez, Louis M.
2017-01-01
Purpose: The purpose of this paper is to delineate an approach to quality assurance in education called networked improvement communities (NICs) that focused on integrating the methodologies of improvement science with few of the networks. Quality improvement, the science and practice of continuously improving programs, practices, processes,…
Functional Interaction Network Construction and Analysis for Disease Discovery.
Wu, Guanming; Haw, Robin
2017-01-01
Network-based approaches project seemingly unrelated genes or proteins onto a large-scale network context, therefore providing a holistic visualization and analysis platform for genomic data generated from high-throughput experiments, reducing the dimensionality of data via using network modules and increasing the statistic analysis power. Based on the Reactome database, the most popular and comprehensive open-source biological pathway knowledgebase, we have developed a highly reliable protein functional interaction network covering around 60 % of total human genes and an app called ReactomeFIViz for Cytoscape, the most popular biological network visualization and analysis platform. In this chapter, we describe the detailed procedures on how this functional interaction network is constructed by integrating multiple external data sources, extracting functional interactions from human curated pathway databases, building a machine learning classifier called a Naïve Bayesian Classifier, predicting interactions based on the trained Naïve Bayesian Classifier, and finally constructing the functional interaction database. We also provide an example on how to use ReactomeFIViz for performing network-based data analysis for a list of genes.
Trees and networks before and after Darwin
2009-01-01
It is well-known that Charles Darwin sketched abstract trees of relationship in his 1837 notebook, and depicted a tree in the Origin of Species (1859). Here I attempt to place Darwin's trees in historical context. By the mid-Eighteenth century the Great Chain of Being was increasingly seen to be an inadequate description of order in nature, and by about 1780 it had been largely abandoned without a satisfactory alternative having been agreed upon. In 1750 Donati described aquatic and terrestrial organisms as forming a network, and a few years later Buffon depicted a network of genealogical relationships among breeds of dogs. In 1764 Bonnet asked whether the Chain might actually branch at certain points, and in 1766 Pallas proposed that the gradations among organisms resemble a tree with a compound trunk, perhaps not unlike the tree of animal life later depicted by Eichwald. Other trees were presented by Augier in 1801 and by Lamarck in 1809 and 1815, the latter two assuming a transmutation of species over time. Elaborate networks of affinities among plants and among animals were depicted in the late Eighteenth and very early Nineteenth centuries. In the two decades immediately prior to 1837, so-called affinities and/or analogies among organisms were represented by diverse geometric figures. Series of plant and animal fossils in successive geological strata were represented as trees in a popular textbook from 1840, while in 1858 Bronn presented a system of animals, as evidenced by the fossil record, in a form of a tree. Darwin's 1859 tree and its subsequent elaborations by Haeckel came to be accepted in many but not all areas of biological sciences, while network diagrams were used in others. Beginning in the early 1960s trees were inferred from protein and nucleic acid sequences, but networks were re-introduced in the mid-1990s to represent lateral genetic transfer, increasingly regarded as a fundamental mode of evolution at least for bacteria and archaea. In historical context, then, the Network of Life preceded the Tree of Life and might again supersede it. Reviewers This article was reviewed by Eric Bapteste, Patrick Forterre and Dan Graur. PMID:19917100
Integrating Computer-Assisted Language Learning in Saudi Schools: A Change Model
ERIC Educational Resources Information Center
Alresheed, Saleh; Leask, Marilyn; Raiker, Andrea
2015-01-01
Computer-assisted language learning (CALL) technology and pedagogy have gained recognition globally for their success in supporting second language acquisition (SLA). In Saudi Arabia, the government aims to provide most educational institutions with computers and networking for integrating CALL into classrooms. However, the recognition of CALL's…
Adverse Outcome Pathway Network Analyses: Techniques and benchmarking the AOPwiki
Abstract: As the community of toxicological researchers, risk assessors, and risk managers adopt the adverse outcome pathway (AOP) paradigm for organizing toxicological knowledge, the number and diversity of adverse outcome pathways and AOP networks are continuing to grow. This ...
Challenges of CAC in Heterogeneous Wireless Cognitive Networks
NASA Astrophysics Data System (ADS)
Wang, Jiazheng; Fu, Xiuhua
Call admission control (CAC) is known as an effective functionality in ensuring the QoS of wireless networks. The vision of next generation wireless networks has led to the development of new call admission control (CAC) algorithms specifically designed for heterogeneous wireless Cognitive networks. However, there will be a number of challenges created by dynamic spectrum access and scheduling techniques associated with the cognitive systems. In this paper for the first time, we recommend that the CAC policies should be distinguished between primary users and secondary users. The classification of different methods of cac policies in cognitive networks contexts is proposed. Although there have been some researches within the umbrella of Joint CAC and cross-layer optimization for wireless networks, the advent of the cognitive networks adds some additional problems. We present the conceptual models for joint CAC and cross-layer optimization respectively. Also, the benefit of Cognition can only be realized fully if application requirements and traffic flow contexts are determined or inferred in order to know what modes of operation and spectrum bands to use at each point in time. The process model of Cognition involved per-flow-based CAC is presented. Because there may be a number of parameters on different levels affecting a CAC decision and the conditions for accepting or rejecting a call must be computed quickly and frequently, simplicity and practicability are particularly important for designing a feasible CAC algorithm. In a word, a more thorough understanding of CAC in heterogeneous wireless cognitive networks may help one to design better CAC algorithms.
ERIC Educational Resources Information Center
Dias, Martin A.
2012-01-01
The purpose of this dissertation is to examine information systems-enabled interorganizational collaborations called public safety networks--their proliferation, information systems architecture, and technology evolution. These networks face immense pressures from member organizations, external stakeholders, and environmental contingencies. This…
Research on invulnerability of equipment support information network
NASA Astrophysics Data System (ADS)
Sun, Xiao; Liu, Bin; Zhong, Qigen; Cao, Zhiyi
2013-03-01
In this paper, the entity composition of equipment support information network is studied, and the network abstract model is built. The influence factors of the invulnerability of equipment support information network are analyzed, and the invulnerability capabilities under random attack are analyzed. According to the centrality theory, the materiality evaluation centralities of the nodes are given, and the invulnerability capabilities under selective attack are analyzed. Finally, the reasons that restrict the invulnerability of equipment support information network are summarized, and the modified principles and methods are given.
Enhancing robustness and immunization in geographical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Liang; Department of Physics, Lanzhou University, Lanzhou 730000; Yang Kongqing
2007-03-15
We find that different geographical structures of networks lead to varied percolation thresholds, although these networks may have similar abstract topological structures. Thus, strategies for enhancing robustness and immunization of a geographical network are proposed. Using the generating function formalism, we obtain an explicit form of the percolation threshold q{sub c} for networks containing arbitrary order cycles. For three-cycles, the dependence of q{sub c} on the clustering coefficients is ascertained. The analysis substantiates the validity of the strategies with analytical evidence.
Xue, Fei; Yue, Xizi; Fan, Yanzhu; Cui, Jianguo; Brauth, Steven E; Tang, Yezhong; Fang, Guangzhan
2018-03-09
Allocating attention to biologically relevant stimuli in a complex environment is critically important for survival and reproductive success. In humans, attention modulation is regulated by the frontal cortex, and is often reflected by changes in specific components of the event-related potential (ERP). Although brain networks for attention modulation have been widely studied in primates and avian species, little is known about attention modulation in amphibians. The present study aimed to investigate the attention modulation networks in an anuran species, the Emei music frog ( Babina daunchina ). Male music frogs produce advertisement calls from within underground nest burrows that modify the acoustic features of the calls, and both males and females prefer calls produced from inside burrows. We broadcast call stimuli to male and female music frogs while simultaneously recording electroencephalographic (EEG) signals from the telencephalon and mesencephalon. Granger causal connectivity analysis was used to elucidate functional brain networks within the time window of ERP components. The results show that calls produced from inside nests which are highly sexually attractive result in the strongest brain connections; both ascending and descending connections involving the left telencephalon were stronger in males while those in females were stronger with the right telencephalon. Our findings indicate that the frog brain allocates neural attention resources to highly attractive sounds within the window of early components of ERP, and that such processing is sexually dimorphic, presumably reflecting the different reproductive strategies of males and females. © 2018. Published by The Company of Biologists Ltd.
Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi
2009-01-01
The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Hubble Exoplanet Pro/Am Collaboration (Abstract)
NASA Astrophysics Data System (ADS)
Conti, D. M.
2016-06-01
(Abstract only) A collaborative effort is being organized between a world-wide network of amateur astronomers and a Hubble Space Telescope (HST) science team. The purpose of this collaboration is to supplement an HST near-infrared spectroscopy survey of some 15 exoplanets with ground-based observations in the visible range.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Networks
2001-01-01
00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE A Receiver-Initiated Collision-Avoidance Protocol for Multi-Channel Netowrks 5a. CONTRACT NUMBER...images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE
Modelling a Network of Decision Makers
2004-06-01
DATES COVERED 00-00-2004 to 00-00-2004 4. TITLE AND SUBTITLE Modelling a Netowrk of Decision Makers (Briefing Charts) 5a. CONTRACT NUMBER 5b...contains color images. 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 31 19a
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Ensuring a C2 Level of Trust and Interoperability in a Networked Windows NT Environment
1996-09-01
addition, it should be noted that the device drivers, microkernel , memory manager, and Hardware Abstraction Layer are all hardware dependent. a. The...Executive The executive is further divided into three conceptual layers which are referred to as-the Hardware Abstraction Layer (HAL), the Microkernel , and...Subsystem Executive Subsystems Manager I/O Manager Cache Manager File Systems Microkernel Device Driver Hardware Abstraction Layer F HARDWARE Figure 3
Modeling Dynamic Evolution of Online Friendship Network
NASA Astrophysics Data System (ADS)
Wu, Lian-Ren; Yan, Qiang
2012-10-01
In this paper, we study the dynamic evolution of friendship network in SNS (Social Networking Site). Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community, but also on the friendship network generated by those friends. In addition, we propose a model which is based on two processes: first, connecting nearest neighbors; second, strength driven attachment mechanism. The model reflects two facts: first, in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor; second, new nodes connect more likely to nodes which have larger weights and interactions, a phenomenon called strength driven attachment (also called weight driven attachment). From the simulation results, we find that degree distribution P(k), strength distribution P(s), and degree-strength correlation are all consistent with empirical data.
RPT: A Low Overhead Single-End Probing Tool for Detecting Network Congestion Positions
2003-12-20
complete evaluation on the Internet , we need to know the real available bandwidth on all the links of a network path. But that information is hard to...School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Detecting the points of network congestion is an intriguing...research problem, because this infor- mation can benefit both regular network users and Internet Service Providers. This is also a highly challenging
Smart Sensing and Recognition Based on Models of Neural Networks
1990-11-15
9P-o ,yY-’. AD-A230 701 University of Pensylvania Philadelphia, PA 19104-6390 SMART SENSING AND RECOGNITION BASED ON MODELS OF NEURAL NETWORKS ... networks , photonic 1 implementations, nonlinear dynamical signal processing 9 ABSTRACT (Continue on reverse if necessary and identify by block number...not develop in isolation but in synergism with sensory organs and their feature forming networks . This means that development of artificial pattern
Ugolini, Cristina; Nobilio, Lucia
2003-01-01
Abstract Objective We analysed the integrated planning model adopted by the Italian region Emilia Romagna in year 2000 to cover the entire range of treatment of cardiovascular disease. This model, called “hub and spoke”, provides for the transfer of patient care and treatment from peripheral units (the spokes) to central units (the hubs) once a certain complexity threshold has been reached. Methods We examined inter-temporal variations in patients flows for the selection/referral and follow-up phases between cardiac surgery and cardiology units during two periods characterised by different organisational set-ups, in order to reflect on the progress being made in the organisation of the network. The database consisted of regional records of hospital discharges during the 1997–2001 period. Results The investigation pointed to the achievement of a good degree of coordination between structures at different levels of specialisation in the case of cardiac surgery, for which six centres were selected already in 1996. On the other hand, the more recent introduction of a hierarchical system for interventional cardiology points to the prevalence of operations on patients previously treated within the same centre, to admissions by direct access, and to follow-up mainly conducted within the hub providing the initial service. Conclusions Despite the progress made towards the more effective rationalisation of the health care network, there is still room for improvement in relations between different centres, in particular with regard to the clearer definition of the roles and interdependence of those intermediate-level centres located between the hub centres and basic healthcare facilities. PMID:16896380
Distance Learning in a Multimedia Networks Project: Main Results.
ERIC Educational Resources Information Center
Ruokamo, Heli; Pohjolainen, Seppo
2000-01-01
Discusses a goal-oriented project, focused on open learning environments using computer networks, called Distance Learning in Multimedia Networks that was part of the Finnish Multimedia Program. Describes the combined efforts of Finnish telecommunications companies, content providers, publishing houses, hardware companies, and educational…
Multidimensional scaling of ideological landscape on social network sites
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Hahn, Kyu S.; Park, Juyong
2012-02-01
Social network sites (SNSs) are valuable source of information on various subjects in network science. Recently, political activity of SNSs users has increasing attention and is an interesting interdisciplinary subject of physical and social science. In this work, we measure ideological positions of the legislators of U.S. and South Korea (S.K.) evaluated by Twitter users, using the information employed in the bipartite network structure of the legislators and their Twitter followers. We compare the result with ideological positions constructed from roll call record of the legislators. This shows there is a discrepancy between the ideological positions evaluated by Twitter users and actual positions estimated from roll call votes in S.K. We also asses the ideological positions of the Twitter users themselves and analyze the distribution of the positions.
Dias, Iuri Ribeiro; de Mira-Mendes, Caio Vinicius; Souza-Costa, Carlos Augusto; Juncá, Flora Acuña; Solé, Mirco
2017-01-01
Abstract Advertisement calls can be used to aid solving taxonomic problems and understanding the evolution of certain groups. In this study, the advertisement call of Eleutherodactylus bilineatus is described. It is composed by two different notes with a total duration of 0.529–4.241 seconds and dominant frequency of 1.72–3.45 kHz. Additionally, new data is provided on the geographical distribution of Eleutherodactylus bilineatus and the most inland record for this species. PMID:28769692
A Very Large Area Network (VLAN) knowledge-base applied to space communication problems
NASA Technical Reports Server (NTRS)
Zander, Carol S.
1988-01-01
This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.
Language Abstractions for Software-Defined Networks
2012-01-01
Academy Christopher Monsanto Princeton University Mark Reitblatt Cornell University Jennifer Rexford Princeton University Alec Story Cornell...Transactions on Networking, 17(4), August 2009. [3] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto , Jennifer Rexford, Alec Story...networks. SIGCOMM CCR, 38(2):69–74, 2008. [7] Christopher Monsanto , Nate Foster, Rob Harrison, and David Walker. A compiler and run-time system for
Bornmann, Lutz; Haunschild, Robin; Hug, Sven E
2018-01-01
During Eugene Garfield's (EG's) lengthy career as information scientist, he published about 1500 papers. In this study, we use the impressive oeuvre of EG to introduce a new type of bibliometric networks: keyword co-occurrences networks based on the context of citations, which are referenced in a certain paper set (here: the papers published by EG). The citation context is defined by the words which are located around a specific citation. We retrieved the citation context from Microsoft Academic. To interpret and compare the results of the new network type, we generated two further networks: co-occurrence networks which are based on title and abstract keywords from (1) EG's papers and (2) the papers citing EG's publications. The comparison of the three networks suggests that papers of EG and citation contexts of papers citing EG are semantically more closely related to each other than to titles and abstracts of papers citing EG. This result accords with the use of citations in research evaluation that is based on the premise that citations reflect the cognitive influence of the cited on the citing publication.
ERIC Educational Resources Information Center
Mishara, Brian L.; Chagnon, Francois; Daigle, Marc; Balan, Bogdan; Raymond, Sylvaine; Marcoux, Isabelle; Bardon, Cecile; Campbell, Julie K.; Berman, Alan
2007-01-01
A total of 2,611 calls to 14 helplines were monitored to observe helper behaviors and caller characteristics and changes during the calls. The relationship between intervention characteristics and call outcomes are reported for 1,431 crisis calls. Empathy and respect, as well as factor-analytically derived scales of supportive approach and good…
ERIC Educational Resources Information Center
Cohen, Moshe; And Others
Electronic networks provide new opportunities to create functional learning environments which allow students in many different locations to carry out joint educational activities. A set of participant observation studies was conducted in the context of a cross-cultural, cross-language network called the Intercultural Learning Network in order to…
Considerations for Software Defined Networking (SDN): Approaches and use cases
NASA Astrophysics Data System (ADS)
Bakshi, K.
Software Defined Networking (SDN) is an evolutionary approach to network design and functionality based on the ability to programmatically modify the behavior of network devices. SDN uses user-customizable and configurable software that's independent of hardware to enable networked systems to expand data flow control. SDN is in large part about understanding and managing a network as a unified abstraction. It will make networks more flexible, dynamic, and cost-efficient, while greatly simplifying operational complexity. And this advanced solution provides several benefits including network and service customizability, configurability, improved operations, and increased performance. There are several approaches to SDN and its practical implementation. Among them, two have risen to prominence with differences in pedigree and implementation. This paper's main focus will be to define, review, and evaluate salient approaches and use cases of the OpenFlow and Virtual Network Overlay approaches to SDN. OpenFlow is a communication protocol that gives access to the forwarding plane of a network's switches and routers. The Virtual Network Overlay relies on a completely virtualized network infrastructure and services to abstract the underlying physical network, which allows the overlay to be mobile to other physical networks. This is an important requirement for cloud computing, where applications and associated network services are migrated to cloud service providers and remote data centers on the fly as resource demands dictate. The paper will discuss how and where SDN can be applied and implemented, including research and academia, virtual multitenant data center, and cloud computing applications. Specific attention will be given to the cloud computing use case, where automated provisioning and programmable overlay for scalable multi-tenancy is leveraged via the SDN approach.
The Crucial Role of Amateur-Professional Networks in the Golden Age of Large Surveys (Abstract)
NASA Astrophysics Data System (ADS)
Rodriguez, J. E.
2017-06-01
(Abstract only) With ongoing projects such as HATNet, SuperWASP, KELT, MEarth, and the CoRoT and Kepler/K2 mission, we are in a golden era of large photometric surveys. In addition, LSST and TESS will be coming online in the next three to five years. The combination of all these projects will increased the number of photometrically monitored stars by orders of magnitude. It is expected that these surveys will enhance our knowledge of circumstellar architecture and the early stages of stellar and planetary formation, while providing a better understanding of exoplanet demographics. However, the success of these surveys will be dependent on simultaneous and continued follow up by large networks. With federal scientific funding reduced over the past few years, the availability of astronomical observations has been directly affected. Fortunately, ground based amateur-professional networks like the AAVSO and the KELT Follow-up Network (KELT-FUN) are already providing access to an international, independent resource for professional grade astronomical observations. These networks have both multi-band photometric and spectroscopic capabilities. I provide an overview of the ongoing and future surveys, highlight past and current contributions by amateur-professional networks to scientific discovery, and discuss the role of these networks in upcoming projects.
Using telephony data to facilitate discovery of clinical workflows.
Rucker, Donald W
2017-04-19
Discovery of clinical workflows to target for redesign using methods such as Lean and Six Sigma is difficult. VoIP telephone call pattern analysis may complement direct observation and EMR-based tools in understanding clinical workflows at the enterprise level by allowing visualization of institutional telecommunications activity. To build an analytic framework mapping repetitive and high-volume telephone call patterns in a large medical center to their associated clinical units using an enterprise unified communications server log file and to support visualization of specific call patterns using graphical networks. Consecutive call detail records from the medical center's unified communications server were parsed to cross-correlate telephone call patterns and map associated phone numbers to a cost center dictionary. Hashed data structures were built to allow construction of edge and node files representing high volume call patterns for display with an open source graph network tool. Summary statistics for an analysis of exactly one week's call detail records at a large academic medical center showed that 912,386 calls were placed with a total duration of 23,186 hours. Approximately half of all calling called number pairs had an average call duration under 60 seconds and of these the average call duration was 27 seconds. Cross-correlation of phone calls identified by clinical cost center can be used to generate graphical displays of clinical enterprise communications. Many calls are short. The compact data transfers within short calls may serve as automation or re-design targets. The large absolute amount of time medical center employees were engaged in VoIP telecommunications suggests that analysis of telephone call patterns may offer additional insights into core clinical workflows.
Flexible embedding of networks
NASA Astrophysics Data System (ADS)
Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka
We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.
Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano
2009-02-01
Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.
Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia
2012-08-01
www.netscience.usma.edu 845.938.0804 enterprise that supports the German Government in achieving its objectives in the field of international cooperation for...U.S. Government . 14. ABSTRACT A Network Science Center research team demonstrated a network analysis “tool kit” to the Political and Economic...by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a
2003-11-01
Command Historian , and the personnel from the Center for Army Lessons Learned (CALL) for their assistance in gaining access to the many documents that...after the Network Centric Warfare Case Study operations. The Center for Army Lessons Learned (CALL), the V Corps Command Historian , and other... Historian , Dr. Charles Kirkpatrick, in Heidelberg, Germany, assisted in this effort. Nu- merous documents were collected, both unclassified and classified
Reinforcement learning for resource allocation in LEO satellite networks.
Usaha, Wipawee; Barria, Javier A
2007-06-01
In this paper, we develop and assess online decision-making algorithms for call admission and routing for low Earth orbit (LEO) satellite networks. It has been shown in a recent paper that, in a LEO satellite system, a semi-Markov decision process formulation of the call admission and routing problem can achieve better performance in terms of an average revenue function than existing routing methods. However, the conventional dynamic programming (DP) numerical solution becomes prohibited as the problem size increases. In this paper, two solution methods based on reinforcement learning (RL) are proposed in order to circumvent the computational burden of DP. The first method is based on an actor-critic method with temporal-difference (TD) learning. The second method is based on a critic-only method, called optimistic TD learning. The algorithms enhance performance in terms of requirements in storage, computational complexity and computational time, and in terms of an overall long-term average revenue function that penalizes blocked calls. Numerical studies are carried out, and the results obtained show that the RL framework can achieve up to 56% higher average revenue over existing routing methods used in LEO satellite networks with reasonable storage and computational requirements.
Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.
Nitta, Tohru
2017-10-01
We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).
Human initiated cascading failures in societal infrastructures.
Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S P; Vullikanti, Anil Kumar S
2012-01-01
In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%.
Human Initiated Cascading Failures in Societal Infrastructures
Barrett, Chris; Channakeshava, Karthik; Huang, Fei; Kim, Junwhan; Marathe, Achla; Marathe, Madhav V.; Pei, Guanhong; Saha, Sudip; Subbiah, Balaaji S. P.; Vullikanti, Anil Kumar S.
2012-01-01
In this paper, we conduct a systematic study of human-initiated cascading failures in three critical inter-dependent societal infrastructures due to behavioral adaptations in response to a crisis. We focus on three closely coupled socio-technical networks here: (i) cellular and mesh networks, (ii) transportation networks and (iii) mobile call networks. In crises, changes in individual behaviors lead to altered travel, activity and calling patterns, which influence the transport network and the loads on wireless networks. The interaction between these systems and their co-evolution poses significant technical challenges for representing and reasoning about these systems. In contrast to system dynamics models for studying these interacting infrastructures, we develop interaction-based models in which individuals and infrastructure elements are represented in detail and are placed in a common geographic coordinate system. Using the detailed representation, we study the impact of a chemical plume that has been released in a densely populated urban region. Authorities order evacuation of the affected area, and this leads to individual behavioral adaptation wherein individuals drop their scheduled activities and drive to home or pre-specified evacuation shelters as appropriate. They also revise their calling behavior to communicate and coordinate among family members. These two behavioral adaptations cause flash-congestion in the urban transport network and the wireless network. The problem is exacerbated with a few, already occurring, road closures. We analyze how extended periods of unanticipated road congestion can result in failure of infrastructures, starting with the servicing base stations in the congested area. A sensitivity analysis on the compliance rate of evacuees shows non-intuitive effect on the spatial distribution of people and on the loading of the base stations. For example, an evacuation compliance rate of 70% results in higher number of overloaded base stations than the evacuation compliance rate of 90%. PMID:23118847
Modelling Metamorphism by Abstract Interpretation
NASA Astrophysics Data System (ADS)
Dalla Preda, Mila; Giacobazzi, Roberto; Debray, Saumya; Coogan, Kevin; Townsend, Gregg M.
Metamorphic malware apply semantics-preserving transformations to their own code in order to foil detection systems based on signature matching. In this paper we consider the problem of automatically extract metamorphic signatures from these malware. We introduce a semantics for self-modifying code, later called phase semantics, and prove its correctness by showing that it is an abstract interpretation of the standard trace semantics. Phase semantics precisely models the metamorphic code behavior by providing a set of traces of programs which correspond to the possible evolutions of the metamorphic code during execution. We show that metamorphic signatures can be automatically extracted by abstract interpretation of the phase semantics, and that regular metamorphism can be modelled as finite state automata abstraction of the phase semantics.
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems
Elmeligy Abdelhamid, Sherif H.; Kuhlman, Chris J.; Marathe, Madhav V.; Mortveit, Henning S.; Ravi, S. S.
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools. PMID:26263006
GDSCalc: A Web-Based Application for Evaluating Discrete Graph Dynamical Systems.
Elmeligy Abdelhamid, Sherif H; Kuhlman, Chris J; Marathe, Madhav V; Mortveit, Henning S; Ravi, S S
2015-01-01
Discrete dynamical systems are used to model various realistic systems in network science, from social unrest in human populations to regulation in biological networks. A common approach is to model the agents of a system as vertices of a graph, and the pairwise interactions between agents as edges. Agents are in one of a finite set of states at each discrete time step and are assigned functions that describe how their states change based on neighborhood relations. Full characterization of state transitions of one system can give insights into fundamental behaviors of other dynamical systems. In this paper, we describe a discrete graph dynamical systems (GDSs) application called GDSCalc for computing and characterizing system dynamics. It is an open access system that is used through a web interface. We provide an overview of GDS theory. This theory is the basis of the web application; i.e., an understanding of GDS provides an understanding of the software features, while abstracting away implementation details. We present a set of illustrative examples to demonstrate its use in education and research. Finally, we compare GDSCalc with other discrete dynamical system software tools. Our perspective is that no single software tool will perform all computations that may be required by all users; tools typically have particular features that are more suitable for some tasks. We situate GDSCalc within this space of software tools.
Variable Discretisation for Anomaly Detection using Bayesian Networks
2017-01-01
UNCLASSIFIED DST- Group –TR–3328 1 Introduction Bayesian network implementations usually require each variable to take on a finite number of mutually...UNCLASSIFIED Variable Discretisation for Anomaly Detection using Bayesian Networks Jonathan Legg National Security and ISR Division Defence Science...and Technology Group DST- Group –TR–3328 ABSTRACT Anomaly detection is the process by which low probability events are automatically found against a
Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments
NASA Technical Reports Server (NTRS)
Pepin, Gerard R.; Hager, E. Paul
1991-01-01
The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.
Group Recommendation in Social Networks
2011-01-01
APPROVAL SHEET Title of Thesis: Group recognition in social networks Name of Candidate: Nagapradeep Chinnam Master of...2011 4. TITLE AND SUBTITLE Group recognition in social networks 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Recent years have seen an exponential growth in the use of social
Efficient Strategies for Active Interface-Level Network Topology Discovery
2013-09-01
Network Information Centre API Application Programming Interface APNIC Asia-Pacific Network Information Centre ARIN American Registry for Internet Numbers...very convenient Application Programming Interface ( API ) for easy primitive implementation. Ark’s API facilitates easy development and rapid...prototyping – important attributes as the char- acteristics of our primitives evolve. The API allows a high-level of abstraction, which in turn leads to rapid
NETWORK SYNTHESIS OF CASCADED THRESHOLD ELEMENTS.
A threshold function is a switching function which can be stimulated by a single, simplified, idealized neuron, or threshold element. In this report... threshold functions are examined in the context of abstract set theory and linear algebra for the purpose of obtaining practical synthesis procedures...for networks of threshold elements. A procedure is described by which, for any given switching function, a cascade network of these elements can be
ERIC Educational Resources Information Center
Cohen, Moshe; Miyake, Naomi
A worldwide international computer network, called the Intercultural Learning Network, has been developed to provide students from different cultures with opportunities to work cooperatively. Prototype activities have been developed and tested which facilitate and contextualize interactions among secondary and college students. Joint projects in…
Adaptive Neurons For Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1990-01-01
Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.
78 FR 72087 - Proposed Data Collections Submitted for Public Comment and Recommendations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-02
... days of this notice. Proposed Project Data Calls for the Laboratory Response Network (0920-0881... Response Network (LRN) was established by the Department of Health and Human Services, Centers for Disease... LRN's mission is to maintain an integrated national and international network of laboratories that can...
75 FR 70929 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... Project Data Calls for the Laboratory Response Network--Existing collection in use without an OMB Control... Response Network (LRN) was established by the Department of Health and Human Services, Centers for Disease... LRN's mission is to maintain an integrated national and international network of laboratories that can...
Characteristics of Effective Networking Environments.
ERIC Educational Resources Information Center
Kaye, Judith C.
This document chronicles a project called Model Nets, which studies the characteristics of computer networks that have a positive impact on K-12 learning. Los Alamos National Laboratory undertook the study so that their recommendations could help federal agencies wisely fund networking projects in an era when the national imperative has driven…
Neural network applications in telecommunications
NASA Technical Reports Server (NTRS)
Alspector, Joshua
1994-01-01
Neural network capabilities include automatic and organized handling of complex information, quick adaptation to continuously changing environments, nonlinear modeling, and parallel implementation. This viewgraph presentation presents Bellcore work on applications, learning chip computational function, learning system block diagram, neural network equalization, broadband access control, calling-card fraud detection, software reliability prediction, and conclusions.
ERIC Educational Resources Information Center
Krannich, Caryl Rae; Krannich, Ronald L.
This book guides job seekers in using communication approaches that will generate useful information, advice, and referrals that lead to job interviews and offers. The book provides guidance on how to do the following: organize effective job networks; prospect for job leads; write networking letters; make cold calls; join electronic networks;…
Wei, Duo; Bodenreider, Olivier
2015-01-01
Objectives To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. Conclusions DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors. PMID:20841848
Wei, Duo; Bodenreider, Olivier
2010-01-01
To investigate errors identified in SNOMED CT by human reviewers with help from the Abstraction Network methodology and examine why they had escaped detection by the Description Logic (DL) classifier. Case study; Two examples of errors are presented in detail (one missing IS-A relation and one duplicate concept). After correction, SNOMED CT is reclassified to ensure that no new inconsistency was introduced. DL-based auditing techniques built in terminology development environments ensure the logical consistency of the terminology. However, complementary approaches are needed for identifying and addressing other types of errors.
Cyber War Game in Temporal Networks
2016-02-09
Boston, Massachusetts 02115, United States of America * jianxi.gao@gmail.com Abstract In a cyber war game where a network is fully distributed and... game with minimum effort. Given the system goal states of attackers and defenders, we study what strategies attackers or defenders can take to reach
Network Evolution by Relevance and Importance Preferential Attachment
2014-08-06
Polytechnic Institute 110 8th Street Troy , NY 12180 -3522 ABSTRACT Network Evolution by Relevance and Importance Preferential Attachment Report Title...Science 286 (5439): 509-512. [3] Watts , Duncan J.; Strogatz, Steven H. (1998). ”Collective dynamics of ’small-world’ networks”. Nature 393 (6684): 440
ERIC Educational Resources Information Center
Telecommunications Policy Research Conference, Inc., Washington, DC.
The paper for which an abstract is presented here, "Future Network Architectures" (Anthony Rutowski), discussed innovations in processing/switching and transmission technologies, including the development of new broadband optical transfer modes using label and position multiplexing techniques. It is suggested that future network…
NASA Technical Reports Server (NTRS)
Cullen, Cionaith J.; Benedicto, Xavier; Tafazolli, Rahim; Evans, Barry
1993-01-01
Various design factors for mobile satellite systems, whose aim is to provide worldwide voice and data communications to users with hand-held terminals, are examined. Two network segments are identified - the ground segment (GS) and the space segment (SS) - and are seen to be highly dependent on each other. The overall architecture must therefore be adapted to both of these segments, rather than each being optimized according to its own criteria. Terrestrial networks are grouped and called the terrestrial segment (TS). In the SS, of fundamental importance is the constellation altitude. The effect of the altitude on decisions such as constellation design choice and on network aspects like call handover statistics are fundamental. Orbit resonance is introduced and referred to throughout. It is specifically examined for its useful properties relating to GS/SS connectivities.
NASA Astrophysics Data System (ADS)
Felix, J.
The management center and new circuit switching services offered by the French Telecom I network are described. Attention is focused on business services. The satellite has a 125 Mbit/sec capability distributed over 5 frequency bands, yielding the equivalent of 1800 channels. Data are transmitted in digitized bursts with TDMA techniques. Besides the management center, Telecom I interfaces with 310 local network antennas with access managed by the center through a reservation service and protocol assignment. The center logs and supervises alarms and network events, monitors traffic, logs taxation charges and manages the man-machine dialog for TDMA and terrestrial operations. Time slots are arranged in terms of minimal 10 min segments. The reservations can be directly accessed by up to 1000 terminals. All traffic is handled on a call-by-call basis.
Micro-Macro Analysis of Complex Networks
Marchiori, Massimo; Possamai, Lino
2015-01-01
Complex systems have attracted considerable interest because of their wide range of applications, and are often studied via a “classic” approach: study a specific system, find a complex network behind it, and analyze the corresponding properties. This simple methodology has produced a great deal of interesting results, but relies on an often implicit underlying assumption: the level of detail on which the system is observed. However, in many situations, physical or abstract, the level of detail can be one out of many, and might also depend on intrinsic limitations in viewing the data with a different level of abstraction or precision. So, a fundamental question arises: do properties of a network depend on its level of observability, or are they invariant? If there is a dependence, then an apparently correct network modeling could in fact just be a bad approximation of the true behavior of a complex system. In order to answer this question, we propose a novel micro-macro analysis of complex systems that quantitatively describes how the structure of complex networks varies as a function of the detail level. To this extent, we have developed a new telescopic algorithm that abstracts from the local properties of a system and reconstructs the original structure according to a fuzziness level. This way we can study what happens when passing from a fine level of detail (“micro”) to a different scale level (“macro”), and analyze the corresponding behavior in this transition, obtaining a deeper spectrum analysis. The obtained results show that many important properties are not universally invariant with respect to the level of detail, but instead strongly depend on the specific level on which a network is observed. Therefore, caution should be taken in every situation where a complex network is considered, if its context allows for different levels of observability. PMID:25635812
American Association for Geriatric Psychiatry
... Meeting: Call for Presentations AAGP welcomes proposal submissions posters that will enhance our focus on patient care ... Click here for more information. Late-Breaking Research Poster abstracts are due by December 15. Looking for ...
Protocol independent transmission method in software defined optical network
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Hou, Yanfang; Qiu, Yajun; Ji, Yuefeng
2016-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.i., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). Using a proprietary protocol or encoding format is a way to improve information security. However, the flow, which carried by proprietary protocol or code, cannot go through the traditional IP network. In addition, ultra- high-definition video transmission service once again become a hot spot. Traditionally, in the IP network, the Serial Digital Interface (SDI) signal must be compressed. This approach offers additional advantages but also bring some disadvantages such as signal degradation and high latency. To some extent, HD-SDI can also be regard as a proprietary protocol, which need transparent transmission such as optical channel. However, traditional optical networks cannot support flexible traffics . In response to aforementioned challenges for future network, one immediate solution would be to use NFV technology to abstract the network infrastructure and provide an all-optical switching topology graph for the SDN control plane. This paper proposes a new service-based software defined optical network architecture, including an infrastructure layer, a virtualization layer, a service abstract layer and an application layer. We then dwell on the corresponding service providing method in order to implement the protocol-independent transport. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit the HD-SDI signal in the software-defined optical network.
Fiber-channel audio video standard for military and commercial aircraft product lines
NASA Astrophysics Data System (ADS)
Keller, Jack E.
2002-08-01
Fibre channel is an emerging high-speed digital network technology that combines to make inroads into the avionics arena. The suitability of fibre channel for such applications is largely due to its flexibility in these key areas: Network topologies can be configured in point-to-point, arbitrated loop or switched fabric connections. The physical layer supports either copper or fiber optic implementations with a Bit Error Rate of less than 10-12. Multiple Classes of Service are available. Multiple Upper Level Protocols are supported. Multiple high speed data rates offer open ended growth paths providing speed negotiation within a single network. Current speeds supported by commercially available hardware are 1 and 2 Gbps providing effective data rates of 100 and 200 MBps respectively. Such networks lend themselves well to the transport of digital video and audio data. This paper summarizes an ANSI standard currently in the final approval cycle of the InterNational Committee for Information Technology Standardization (INCITS). This standard defines a flexible mechanism whereby digital video, audio and ancillary data are systematically packaged for transport over a fibre channel network. The basic mechanism, called a container, houses audio and video content functionally grouped as elements of the container called objects. Featured in this paper is a specific container mapping called Simple Parametric Digital Video (SPDV) developed particularly to address digital video in avionics systems. SPDV provides pixel-based video with associated ancillary data typically sourced by various sensors to be processed and/or distributed in the cockpit for presentation via high-resolution displays. Also highlighted in this paper is a streamlined Upper Level Protocol (ULP) called Frame Header Control Procedure (FHCP) targeted for avionics systems where the functionality of a more complex ULP is not required.
2014-11-01
Canada (Department of National Defence), 2014 c© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2014 Abstract In recent...2006), Network security mechanisms utilising network address translation, International journal of critical infrastructures, 2(1), 10–49. [5] Dunlop...Lu, S. (2008), Full service hopping for proactive cyber-defense, In ICNSC 2008: IEEE International Conference on Networking, Sensing and Control, pp
Society for Ambulatory Anesthesia
... Us Member Center Join SAMBA Renew SAMBA Member Benefits Discussion Forum Member Directory My Profile SAMBA Member Discounts Meetings Annual Meeting Call for Abstracts Sponsorship & Exhibitor Information Education Annual Meeting Recordings MOCA® Opportunities Webinars Office Based ...
On the Inference of Functional Circadian Networks Using Granger Causality
Pourzanjani, Arya; Herzog, Erik D.; Petzold, Linda R.
2015-01-01
Being able to infer one way direct connections in an oscillatory network such as the suprachiastmatic nucleus (SCN) of the mammalian brain using time series data is difficult but crucial to understanding network dynamics. Although techniques have been developed for inferring networks from time series data, there have been no attempts to adapt these techniques to infer directional connections in oscillatory time series, while accurately distinguishing between direct and indirect connections. In this paper an adaptation of Granger Causality is proposed that allows for inference of circadian networks and oscillatory networks in general called Adaptive Frequency Granger Causality (AFGC). Additionally, an extension of this method is proposed to infer networks with large numbers of cells called LASSO AFGC. The method was validated using simulated data from several different networks. For the smaller networks the method was able to identify all one way direct connections without identifying connections that were not present. For larger networks of up to twenty cells the method shows excellent performance in identifying true and false connections; this is quantified by an area-under-the-curve (AUC) 96.88%. We note that this method like other Granger Causality-based methods, is based on the detection of high frequency signals propagating between cell traces. Thus it requires a relatively high sampling rate and a network that can propagate high frequency signals. PMID:26413748
Bibliographic Services for a National Network.
ERIC Educational Resources Information Center
Avram, Henriette D.; Pulsifer, Josephine S.
The thesis of this paper is that efficient functioning of a network is dependent upon the organization of bibliographic services so that the basic record for each bibliographic item is created once. This record must be minimally capable of serving the needs of libraries, information centers, abstracting and indexing services, and national and…
AbstractTITLE: A MULTIPLEXED ASSAY FOR DETERMINATION OF NEUROTOXICANT EFFECTS ON SPONTANEOUS NETWORK ACTIVITY AND CELL VIABILITY FROM MICROELECTRODE ARRAYSABSTRACT BODY: Microelectrode array (MEA) recordings are increasingly being used as an in vitro method to detect and characte...
Why Do Academics Use Academic Social Networking Sites?
ERIC Educational Resources Information Center
Meishar-Tal, Hagit; Pieterse, Efrat
2017-01-01
Academic social-networking sites (ASNS) such as Academia.edu and ResearchGate are becoming very popular among academics. These sites allow uploading academic articles, abstracts, and links to published articles; track demand for published articles, and engage in professional interaction. This study investigates the nature of the use and the…
An Approach and Framework to Synchronize Joint Exercises and Training with Military Operations
2014-06-06
13. SUPPLEMENTARY NOTES 14. ABSTRACT In this dynamic, complex, and uncertain global environment, supporting and conducting joint military...achieved by leveraging a globally networked approach and an integrated framework that shares resources and coordinates activities. A recommended...Intentionally left blank ABSTRACT In this dynamic, complex, and uncertain global environment, supporting and conducting joint military
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Performance Evaluation and Control of Distributed Computer Communication Networks.
1985-09-01
Zukerman, S. Katz, P. Rodriguez, R. Pazos , S. Resheff, Z. Tsai, Z. Zhang, L. Jong, V. Minh. Other participants are the following visiting... Pazos -Rangel "Bandwidth Allocation and Routing in ISDN’s," IEEE Communications Magazine, February 1984. Abstract The goal of communications network design...location and routing for integrated networks - is formulated, and efficient methods for its solution are presented. (2) R.A. Pazos -Rangel "Evaluation
Default, Cognitive, and Affective Brain Networks in Human Tinnitus
2015-10-01
AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military
Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence
2016-08-01
Award Number: TITLE: Metabolic Networks Integrative Cardiac Health Project (ICHP) - Center of Excellence PRINCIPAL INVESTIGATOR: COL (Ret) Marina N...2016 2. REPORT TYPE FINAL 3. DATES COVERED (From - To) 29 Sep 2011 – 31 May 2016 4. TITLE AND SUBTITLE "Metabolic Networks Integrative Cardiac Health...ABSTRACT The Integrative Cardiac Health Project (ICHP) aims to lead the way in Cardiovascular Disease (CVD) Prevention by conducting novel research
Learning to Predict Social Influence in Complex Networks
2012-03-29
03/2010 – 17/03/2012 Abstract: First, we addressed the problem of analyzing information diffusion process in a social network using two kinds...algorithm which avoids the inner loop optimization during the search. We tested the performance using the structures of four real world networks, and...result of information diffusion that starts from the node. 2 We use “infected” and “activated” interchangeably. Efficient Discovery of Influential
Multi-Frame Convolutional Neural Networks for Object Detection in Temporal Data
2017-03-01
maximum 200 words) Given the problem of detecting objects in video , existing neural-network solutions rely on a post-processing step to combine...information across frames and strengthen conclusions. This technique has been successful for videos with simple, dominant objects but it cannot detect objects...Computer Science iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT Given the problem of detecting objects in video , existing neural-network solutions rely
Bell Inequalities for Complex Networks
2015-10-26
AFRL-AFOSR-VA-TR-2015-0355 YIP Bell Inequalities for Complex Networks Greg Ver Steeg UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES Final Report 10/26...performance report PI: Greg Ver Steeg Young Investigator Award Grant Title: Bell Inequalities for Complex Networks Grant #: FA9550-12-1-0417 Reporting...October 20, 2015 Final Report for “Bell Inequalities for Complex Networks” Greg Ver Steeg Abstract This effort studied new methods to understand the effect
End-to-End Network QoS via Scheduling of Flexible Resource Reservation Requests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, S.; Katramatos, D.; Yu, D.
2011-11-14
Modern data-intensive applications move vast amounts of data between multiple locations around the world. To enable predictable and reliable data transfer, next generation networks allow such applications to reserve network resources for exclusive use. In this paper, we solve an important problem (called SMR3) to accommodate multiple and concurrent network reservation requests between a pair of end-sites. Given the varying availability of bandwidth within the network, our goal is to accommodate as many reservation requests as possible while minimizing the total time needed to complete the data transfers. We first prove that SMR3 is an NP-hard problem. Then we solvemore » it by developing a polynomial-time heuristic, called RRA. The RRA algorithm hinges on an efficient mechanism to accommodate large number of requests by minimizing the bandwidth wastage. Finally, via numerical results, we show that RRA constructs schedules that accommodate significantly larger number of requests compared to other, seemingly efficient, heuristics.« less
NASA Astrophysics Data System (ADS)
Xia, Weiwei; Shen, Lianfeng
We propose two vertical handoff schemes for cellular network and wireless local area network (WLAN) integration: integrated service-based handoff (ISH) and integrated service-based handoff with queue capabilities (ISHQ). Compared with existing handoff schemes in integrated cellular/WLAN networks, the proposed schemes consider a more comprehensive set of system characteristics such as different features of voice and data services, dynamic information about the admitted calls, user mobility and vertical handoffs in two directions. The code division multiple access (CDMA) cellular network and IEEE 802.11e WLAN are taken into account in the proposed schemes. We model the integrated networks by using multi-dimensional Markov chains and the major performance measures are derived for voice and data services. The important system parameters such as thresholds to prioritize handoff voice calls and queue sizes are optimized. Numerical results demonstrate that the proposed ISHQ scheme can maximize the utilization of overall bandwidth resources with the best quality of service (QoS) provisioning for voice and data services.
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
Short Cuts and Extended Techniques: Rethinking Relations between Technology and Educational Theory
ERIC Educational Resources Information Center
Thumlert, Kurt; de Castell, Suzanne; Jenson, Jennifer
2015-01-01
Building upon a recent call to renew actor-network theory (ANT) for educational research, this article reconsiders relations between technology and educational theory. Taking cues from actor-network theorists, this discussion considers the technologically-mediated networks in which learning actors are situated, acted upon, and acting, and traces…
75 FR 10860 - Announcement of a Meeting of the International Telecommunication Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... (ITU) Telecommunication Standardization Sector (ITU-T) Study Group 13 (Future networks including mobile and Next Generation Networks). The ITAC will meet by conference call to prepare advice for the U.S. government for the meeting of ITU-T Study Group 13 (Future networks including mobile and Next Generation...
Massively Open Online Course for Educators (MOOC-Ed) Network Dataset
ERIC Educational Resources Information Center
Kellogg, Shaun; Edelmann, Achim
2015-01-01
This paper presents the Massively Open Online Course for Educators (MOOC-Ed) network dataset. It entails information on two online communication networks resulting from two consecutive offerings of the MOOC called "The Digital Learning Transition in K-12 Schools" in spring and fall 2013. The courses were offered to educators from the USA…
Communication Network Design: West Ottawa School District.
ERIC Educational Resources Information Center
Couch, David deS.
This report describes the technical details and rationale behind the decisions in the design and development of the communications network installed as part of a 1991-1993 district-wide construction project in the West Ottawa Public Schools (Michigan). The project called for development of a communications network to carry voice, data, and video…
Implementation of a Framework for Collaborative Social Networks in E-Learning
ERIC Educational Resources Information Center
Maglajlic, Seid
2016-01-01
This paper describes the implementation of a framework for the construction and utilization of social networks in ELearning. These social networks aim to enhance collaboration between all E-Learning participants (i.e. both traineeto-trainee and trainee-to-tutor communication are targeted). E-Learning systems that include a so-called "social…
ERIC Educational Resources Information Center
Ngamassi Tchouakeu, Louis-Marie
2011-01-01
Massive international response to humanitarian crises such as the South Asian Tsunami in 2004, the Hurricane Katrina in 2005 and the Haiti earthquake in 2010 highlights the importance of humanitarian inter-organizational collaboration networks, especially in information management and exchange. Despite more than a decade old call for more research…
Toward edge minability for role mining in bipartite networks
NASA Astrophysics Data System (ADS)
Dong, Lijun; Wang, Yi; Liu, Ran; Pi, Benjie; Wu, Liuyi
2016-11-01
Bipartite network models have been extensively used in information security to automatically generate role-based access control (RBAC) from dataset. This process is called role mining. However, not all the topologies of bipartite networks are suitable for role mining; some edges may even reduce the quality of role mining. This causes unnecessary time consumption as role mining is NP-hard. Therefore, to promote the quality of role mining results, the capability that an edge composes roles with other edges, called the minability of edge, needs to be identified. We tackle the problem from an angle of edge importance in complex networks; that is an edge easily covered by roles is considered to be more important. Based on this idea, the k-shell decomposition of complex networks is extended to reveal the different minability of edges. By this way, a bipartite network can be quickly purified by excluding the low-minability edges from role mining, and thus the quality of role mining can be effectively improved. Extensive experiments via the real-world datasets are conducted to confirm the above claims.
An intermediate level of abstraction for computational systems chemistry.
Andersen, Jakob L; Flamm, Christoph; Merkle, Daniel; Stadler, Peter F
2017-12-28
Computational techniques are required for narrowing down the vast space of possibilities to plausible prebiotic scenarios, because precise information on the molecular composition, the dominant reaction chemistry and the conditions for that era are scarce. The exploration of large chemical reaction networks is a central aspect in this endeavour. While quantum chemical methods can accurately predict the structures and reactivities of small molecules, they are not efficient enough to cope with large-scale reaction systems. The formalization of chemical reactions as graph grammars provides a generative system, well grounded in category theory, at the right level of abstraction for the analysis of large and complex reaction networks. An extension of the basic formalism into the realm of integer hyperflows allows for the identification of complex reaction patterns, such as autocatalysis, in large reaction networks using optimization techniques.This article is part of the themed issue 'Reconceptualizing the origins of life'. © 2017 The Author(s).
Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension
Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.
2016-01-01
Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858
MET network in PubMed: a text-mined network visualization and curation system.
Dai, Hong-Jie; Su, Chu-Hsien; Lai, Po-Ting; Huang, Ming-Siang; Jonnagaddala, Jitendra; Rose Jue, Toni; Rao, Shruti; Chou, Hui-Jou; Milacic, Marija; Singh, Onkar; Syed-Abdul, Shabbir; Hsu, Wen-Lian
2016-01-01
Metastasis is the dissemination of a cancer/tumor from one organ to another, and it is the most dangerous stage during cancer progression, causing more than 90% of cancer deaths. Improving the understanding of the complicated cellular mechanisms underlying metastasis requires investigations of the signaling pathways. To this end, we developed a METastasis (MET) network visualization and curation tool to assist metastasis researchers retrieve network information of interest while browsing through the large volume of studies in PubMed. MET can recognize relations among genes, cancers, tissues and organs of metastasis mentioned in the literature through text-mining techniques, and then produce a visualization of all mined relations in a metastasis network. To facilitate the curation process, MET is developed as a browser extension that allows curators to review and edit concepts and relations related to metastasis directly in PubMed. PubMed users can also view the metastatic networks integrated from the large collection of research papers directly through MET. For the BioCreative 2015 interactive track (IAT), a curation task was proposed to curate metastatic networks among PubMed abstracts. Six curators participated in the proposed task and a post-IAT task, curating 963 unique metastatic relations from 174 PubMed abstracts using MET.Database URL: http://btm.tmu.edu.tw/metastasisway. © The Author(s) 2016. Published by Oxford University Press.
On Tree-Based Phylogenetic Networks.
Zhang, Louxin
2016-07-01
A large class of phylogenetic networks can be obtained from trees by the addition of horizontal edges between the tree edges. These networks are called tree-based networks. We present a simple necessary and sufficient condition for tree-based networks and prove that a universal tree-based network exists for any number of taxa that contains as its base every phylogenetic tree on the same set of taxa. This answers two problems posted by Francis and Steel recently. A byproduct is a computer program for generating random binary phylogenetic networks under the uniform distribution model.
Analysis Methods and Models for Small Unit Operations
2006-07-01
wordt in andere studies ogebruikt orn a-an te geven welke op welke wijze operationele effectiviteit kan worden gekwalificeerd en gekwanuificeerd...the node ’Prediction’ is called a child of the node ’Success’ and the node ’Success’ is called a parent of the node ’Prediction’. Figure C.2 A simple...event A is a child of event B and event B is a child of event C ( C -- B -- A). The belief network or influence diagram has to be a directed network
Low Temperature Performance of High-Speed Neural Network Circuits
NASA Technical Reports Server (NTRS)
Duong, T.; Tran, M.; Daud, T.; Thakoor, A.
1995-01-01
Artificial neural networks, derived from their biological counterparts, offer a new and enabling computing paradigm specially suitable for such tasks as image and signal processing with feature classification/object recognition, global optimization, and adaptive control. When implemented in fully parallel electronic hardware, it offers orders of magnitude speed advantage. Basic building blocks of the new architecture are the processing elements called neurons implemented as nonlinear operational amplifiers with sigmoidal transfer function, interconnected through weighted connections called synapses implemented using circuitry for weight storage and multiply functions either in an analog, digital, or hybrid scheme.
Direct lifts of coupled cell networks
NASA Astrophysics Data System (ADS)
Dias, A. P. S.; Moreira, C. S.
2018-04-01
In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure—the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks’ topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.
GOClonto: an ontological clustering approach for conceptualizing PubMed abstracts.
Zheng, Hai-Tao; Borchert, Charles; Kim, Hong-Gee
2010-02-01
Concurrent with progress in biomedical sciences, an overwhelming of textual knowledge is accumulating in the biomedical literature. PubMed is the most comprehensive database collecting and managing biomedical literature. To help researchers easily understand collections of PubMed abstracts, numerous clustering methods have been proposed to group similar abstracts based on their shared features. However, most of these methods do not explore the semantic relationships among groupings of documents, which could help better illuminate the groupings of PubMed abstracts. To address this issue, we proposed an ontological clustering method called GOClonto for conceptualizing PubMed abstracts. GOClonto uses latent semantic analysis (LSA) and gene ontology (GO) to identify key gene-related concepts and their relationships as well as allocate PubMed abstracts based on these key gene-related concepts. Based on two PubMed abstract collections, the experimental results show that GOClonto is able to identify key gene-related concepts and outperforms the STC (suffix tree clustering) algorithm, the Lingo algorithm, the Fuzzy Ants algorithm, and the clustering based TRS (tolerance rough set) algorithm. Moreover, the two ontologies generated by GOClonto show significant informative conceptual structures.
Nolan, Brodie; Tien, Homer; Sawadsky, Bruce; Rizoli, Sandro; McFarlan, Amanda; Phillips, Andrea; Ackery, Alun
2017-01-01
Helicopter emergency medical services (HEMS) have become an engrained component of trauma systems. In Ontario, transportation for trauma patients is through one of three ways: scene call, modified scene call, or interfacility transfer. We hypothesize that differences exist between these types of transports in both patient demographics and patient outcomes. This study compares the characteristics of patients transported by each of these methods to two level 1 trauma centers and assesses for any impact on morbidity or mortality. As a secondary outcome reasons for delay were identified. A local trauma registry was used to identify and abstract data for all patients transported to two trauma centers by HEMS over a 36-month period. Further chart abstraction using the HEMS patient care reports was done to identify causes of delay during HEMS transport. During the study period HEMS transferred a total of 911 patients of which 139 were scene calls, 333 were modified scene calls and 439 were interfacility transfers. Scene calls had more patients with an ISS of less than 15 and had more patients discharged home from the ED. Modified scene calls had more patients with an ISS greater than 25. The most common delays that were considered modifiable included the sending physician doing a procedure, waiting to meet a land EMS crew, delays for diagnostic imaging and confirming disposition or destination. Differences exist between the types of transports done by HEMS for trauma patients. Many identified reasons for delay to HEMS transport are modifiable and have practical solutions. Future research should focus on solutions to identified delays to HEMS transport. Key words: helicopter emergency medical services; trauma; prehospital care; delays.
Observations of Transiting Exoplanet Candidates Using BYU Facilities (Abstract)
NASA Astrophysics Data System (ADS)
Joner, M. D.; Hintz, E. G.; Stephens, D. C.
2018-06-01
(Abstract only) During the past five years, faculty and student observers at Brigham Young University have actively participated in observations of candidate objects as part of the follow-up network of observers for the KELT transiting exoplanet survey. These observations have made use of several small telescopes at the main campus Orson Pratt Observatory and adjacent observing deck, as well as the more remote West Mountain Observatory. Examples will be presented in this report to illustrate the wide variety of objects that have been encountered while securing observations for the KELT Follow-up Network. Many of these observations have contributed to publications that include both faculty and student researchers as coauthors.
Thinking Big or Small: Does Mental Abstraction Affect Social Network Organization?
Bacev-Giles, Chantal; Peetz, Johanna
2016-01-01
Four studies examined how mental abstraction affects how people perceive their relationships with other people, specifically, how these relationships may be categorized in social groups. We expected that individuals induced to think abstractly would report fewer more global social groups, compared to those induced to think concretely, who would report more specific groups. However, induced abstract mindset did not affect how people structured their social groups (Study 2–4), despite evidence that the mindset manipulation changed the level of abstraction in their thoughts (Study 3) and evidence that it changed how people structured groups for a control condition (household objects, Study 4). Together, these studies suggest that while the way people organize their relationships into groups is malleable; cognitive abstraction does not seem to affect how people categorize their relationships into social groups. PMID:26808086
Wireless cellular networks with Pareto-distributed call holding times
NASA Astrophysics Data System (ADS)
Rodriguez-Dagnino, Ramon M.; Takagi, Hideaki
2001-07-01
Nowadays, there is a growing interest in providing internet to mobile users. For instance, NTT DoCoMo in Japan deploys an important mobile phone network with that offers the Internet service, named 'i-mode', to more than 17 million subscribers. Internet traffic measurements show that the session duration of Call Holding Time (CHT) has probability distributions with heavy-tails, which tells us that they depart significantly from the traffic statistics of traditional voice services. In this environment, it is particularly important to know the number of handovers during a call for a network designer to make an appropriate dimensioning of virtual circuits for a wireless cell. The handover traffic has a direct impact on the Quality of Service (QoS); e.g. the service disruption due to the handover failure may significantly degrade the specified QoS of time-constrained services. In this paper, we first study the random behavior of the number of handovers during a call, where we assume that the CHT are Pareto distributed (heavy-tail distribution), and the Cell Residence Times (CRT) are exponentially distributed. Our approach is based on renewal theory arguments. We present closed-form formulae for the probability mass function (pmf) of the number of handovers during a Pareto distributed CHT, and obtain the probability of call completion as well as handover rates. Most of the formulae are expressed in terms of the Whittaker's function. We compare the Pareto case with cases of $k(subscript Erlang and hyperexponential distributions for the CHT.
From integrative genomics to systems genetics in the rat to link genotypes to phenotypes
Moreno-Moral, Aida
2016-01-01
ABSTRACT Complementary to traditional gene mapping approaches used to identify the hereditary components of complex diseases, integrative genomics and systems genetics have emerged as powerful strategies to decipher the key genetic drivers of molecular pathways that underlie disease. Broadly speaking, integrative genomics aims to link cellular-level traits (such as mRNA expression) to the genome to identify their genetic determinants. With the characterization of several cellular-level traits within the same system, the integrative genomics approach evolved into a more comprehensive study design, called systems genetics, which aims to unravel the complex biological networks and pathways involved in disease, and in turn map their genetic control points. The first fully integrated systems genetics study was carried out in rats, and the results, which revealed conserved trans-acting genetic regulation of a pro-inflammatory network relevant to type 1 diabetes, were translated to humans. Many studies using different organisms subsequently stemmed from this example. The aim of this Review is to describe the most recent advances in the fields of integrative genomics and systems genetics applied in the rat, with a focus on studies of complex diseases ranging from inflammatory to cardiometabolic disorders. We aim to provide the genetics community with a comprehensive insight into how the systems genetics approach came to life, starting from the first integrative genomics strategies [such as expression quantitative trait loci (eQTLs) mapping] and concluding with the most sophisticated gene network-based analyses in multiple systems and disease states. Although not limited to studies that have been directly translated to humans, we will focus particularly on the successful investigations in the rat that have led to primary discoveries of genes and pathways relevant to human disease. PMID:27736746
A security architecture for health information networks.
Kailar, Rajashekar; Muralidhar, Vinod
2007-10-11
Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.
Network Design for Reliability and Resilience to Attack
2014-03-01
attacker can destroy n arcs in the network SPNI Shortest-Path Network-Interdiction problem TSP Traveling Salesman Problem UB upper bound UKR Ukraine...elimination from the traveling salesman problem (TSP). Literature calls a walk that does not contain a cycle a path [19]. The objective function in...arc lengths as random variables with known probability distributions. The m-median problem seeks to design a network with minimum average travel cost
Vulnerability of complex networks
NASA Astrophysics Data System (ADS)
Mishkovski, Igor; Biey, Mario; Kocarev, Ljupco
2011-01-01
We consider normalized average edge betweenness of a network as a metric of network vulnerability. We suggest that normalized average edge betweenness together with is relative difference when certain number of nodes and/or edges are removed from the network is a measure of network vulnerability, called vulnerability index. Vulnerability index is calculated for four synthetic networks: Erdős-Rényi (ER) random networks, Barabási-Albert (BA) model of scale-free networks, Watts-Strogatz (WS) model of small-world networks, and geometric random networks. Real-world networks for which vulnerability index is calculated include: two human brain networks, three urban networks, one collaboration network, and two power grid networks. We find that WS model of small-world networks and biological networks (human brain networks) are the most robust networks among all networks studied in the paper.
Quality Inservice Education: Final Report of the National Inservice Network, 1978-1981.
ERIC Educational Resources Information Center
Burrello, Leonard C.; And Others
The document comprises the final report of the National Inservice Network (NIN), a program to describe and distribute regular education inservice (REGI) project abstracts, products, and lessons aimed at more effectively working with handicapped students. Initial sections contain an executive summary and an overview explaining the NIN as a…
Wolff, J. Gerard
2016-01-01
The SP theory of intelligence, with its realization in the SP computer model, aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory—SP-neural—is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory—outlined in the paper—provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns, where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a “pattern” is realized as an array of neurons called a pattern assembly, similar to Hebb's concept of a “cell assembly” but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment, borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory—and significantly different from the “Hebbian” kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence. PMID:27857695
Wolff, J Gerard
2016-01-01
The SP theory of intelligence , with its realization in the SP computer model , aims to simplify and integrate observations and concepts across artificial intelligence, mainstream computing, mathematics, and human perception and cognition, with information compression as a unifying theme. This paper describes how abstract structures and processes in the theory may be realized in terms of neurons, their interconnections, and the transmission of signals between neurons. This part of the SP theory- SP-neural -is a tentative and partial model for the representation and processing of knowledge in the brain. Empirical support for the SP theory-outlined in the paper-provides indirect support for SP-neural. In the abstract part of the SP theory (SP-abstract), all kinds of knowledge are represented with patterns , where a pattern is an array of atomic symbols in one or two dimensions. In SP-neural, the concept of a "pattern" is realized as an array of neurons called a pattern assembly , similar to Hebb's concept of a "cell assembly" but with important differences. Central to the processing of information in SP-abstract is information compression via the matching and unification of patterns (ICMUP) and, more specifically, information compression via the powerful concept of multiple alignment , borrowed and adapted from bioinformatics. Processes such as pattern recognition, reasoning and problem solving are achieved via the building of multiple alignments, while unsupervised learning is achieved by creating patterns from sensory information and also by creating patterns from multiple alignments in which there is a partial match between one pattern and another. It is envisaged that, in SP-neural, short-lived neural structures equivalent to multiple alignments will be created via an inter-play of excitatory and inhibitory neural signals. It is also envisaged that unsupervised learning will be achieved by the creation of pattern assemblies from sensory information and from the neural equivalents of multiple alignments, much as in the non-neural SP theory-and significantly different from the "Hebbian" kinds of learning which are widely used in the kinds of artificial neural network that are popular in computer science. The paper discusses several associated issues, with relevant empirical evidence.
Network Science Center Research Teams Visit to Addis Ababa, Ethiopia
2012-08-01
Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a gift from the Government of China, and consists of a 2,500... German Government in achieving its objectives in the field of international cooperation for sustainable development. Construction of Road...authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government . 14. ABSTRACT A Network Science Center
Cooperative Autonomous Robots for Reconnaissance
2009-03-06
REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing
Language Views on Social Networking Sites for Language Learning: The Case of Busuu
ERIC Educational Resources Information Center
Álvarez Valencia, José Aldemar
2016-01-01
Social networking has compelled the area of computer-assisted language learning (CALL) to expand its research palette and account for new virtual ecologies that afford language learning and socialization. This study focuses on Busuu, a social networking site for language learning (SNSLL), and analyzes the views of language that are enacted through…
Implementing the Fussy Baby Network[R] Approach
ERIC Educational Resources Information Center
Gilkerson, Linda; Hofherr, Jennifer; Heffron, Mary Claire; Sims, Jennifer Murphy; Jalowiec, Barbara; Bromberg, Stacey R.; Paul, Jennifer J.
2012-01-01
Erikson Institute Fussy Baby Network[R] (FBN) developed an approach to engaging parents around their urgent concerns about their baby's crying, sleeping, or feeding in a way which builds their longer-term capacities as parents. This approach, called the FAN, is now in place in new Fussy Baby Network programs around the country and is being infused…
NASA Astrophysics Data System (ADS)
Lallahem, S.; Hani, A.
2017-02-01
Water sustainability in the lower Seybouse River basin, eastern Algeria, must take into account the importance of water quantity and quality integration. So, there is a need for a better knowledge and understanding of the water quality determinants of groundwater abstraction to meet the municipal and agricultural uses. In this paper, the artificial neural network (ANN) models were used to model and predict the relationship between groundwater abstraction and water quality determinants in the lower Seybouse River basin. The study area chosen is the lower Seybouse River basin and real data were collected from forty five wells for reference year 2006. Results indicate that the feed-forward multilayer perceptron models with back-propagation are useful tools to define and prioritize the important water quality parameters of groundwater abstraction and use. The model evaluation shows that the correlation coefficients are more than 95% for training, verification and testing data. The model aims to link the water quantity and quality with the objective to strengthen the Integrated Water Resources Management approach. It assists water planners and managers to better assess the water quality parameters and progress towards the provision of appropriate quantities of water of suitable quality.
Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi
2016-11-01
To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.
DeLay, Dawn; Lynn Martin, Carol; Cook, Rachel E; Hanish, Laura D
2018-03-01
Adolescents actively evaluate their identities during adolescence, and one of the most salient and central identities for youth concerns their gender identity. Experiences with peers may inform gender identity. Unfortunately, many youth experience homophobic name calling, a form of peer victimization, and it is unknown whether youth internalize these peer messages and how these messages might influence gender identity. The goal of the present study was to assess the role of homophobic name calling on changes over the course of an academic year in adolescents' gender identity. Specifically, this study extends the literature using a new conceptualization and measure of gender identity that involves assessing how similar adolescents feel to both their own- and other-gender peers and, by employing longitudinal social network analyses, provides a rigorous analytic assessment of the impact of homophobic name calling on changes in these two dimensions of gender identity. Symbolic interaction perspectives-the "looking glass self"-suggest that peer feedback is incorporated into the self-concept. The current study tests this hypothesis by determining if adolescents respond to homophobic name calling by revising their self-view, specifically, how the self is viewed in relation to both gender groups. Participants were 299 6th grade students (53% female). Participants reported peer relationships, experiences of homophobic name calling, and gender identity (i.e., similarity to own- and other-gender peers). Longitudinal social network analyses revealed that homophobic name calling early in the school year predicted changes in gender identity over time. The results support the "looking glass self" hypothesis: experiencing homophobic name calling predicted identifying significantly less with own-gender peers and marginally more with other-gender peers over the course of an academic year. The effects held after controlling for participant characteristics (e.g., gender), social network features (e.g., norms), and peer experiences (e.g., friend influence, general victimization). Homophobic name calling emerged as a form of peer influence that changed early adolescent gender identity, such that adolescents in this study appear to have internalized the messages they received from peers and incorporated these messages into their personal views of their own gender identity.
77 FR 13656 - Call for Papers: National Symposium on Moving Target Research
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
... of moving target. There will be an accompanying poster session open for researchers and companies... dates/time 18:00 EDT): Draft Papers due April 2, 2012 Notification April 20, 2012 Poster abstracts due...
Szathmáry, E
2000-01-01
Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914
Szathmáry, E
2000-11-29
Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
(abstract) Generic Modeling of a Life Support System for Process Technology Comparisons
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Seshan, P. K.; Rohatgi, N. K.; Ganapathi, G. B.
1993-01-01
This paper describes a simulation model called the Life Support Systems Analysis Simulation Tool (LiSSA-ST), the spreadsheet program called the Life Support Systems Analysis Trade Tool (LiSSA-TT), and the Generic Modular Flow Schematic (GMFS) modeling technique. Results of using the LiSSA-ST and the LiSSA-TT will be presented for comparing life support systems and process technology options for a Lunar Base and a Mars Exploration Mission.
Design and Implementation of a Mobile Phone Locator Using Software Defined Radio
2007-09-01
time difference of arrival 15. NUMBER OF PAGES 116 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF...THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 20. LIMITATION OF ABSTRACT UU NSN 7540012805500 Standard Form 298...relatively inexpensive device called the Universal Software Radio Peripheral (USRP). The USRP consists of a motherboard which performs the analog-to
1990-05-25
INCLUDING ORIENTATIONAL INTERACTIONS BETWEEN CHAIN SEGMENTS B. Deloche, E.T. Samulski (France, USA) CHAIN SEGMENT ORDERING IN STRAINED BIMODAL P-2 PDMS...theory of elastomers is difficult because it requires a detailed study of many body interactions . A theory of elasticity must address the following: (1...a Kirchhoff matrix which describes the connectivity of the network (Kc) or the linear chains (Ku). The nonbonded interactions are handled with the
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
VRML metabolic network visualizer.
Rojdestvenski, Igor
2003-03-01
A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.
Brain Activity Associated with Emoticons: An fMRI Study
NASA Astrophysics Data System (ADS)
Yuasa, Masahide; Saito, Keiichi; Mukawa, Naoki
In this paper, we describe that brain activities associated with emoticons by using fMRI. In communication over a computer network, we use abstract faces such as computer graphics (CG) avatars and emoticons. These faces convey users' emotions and enrich their communications. However, the manner in which these faces influence the mental process is as yet unknown. The human brain may perceive the abstract face in an entirely different manner, depending on its level of reality. We conducted an experiment using fMRI in order to investigate the effects of emoticons. The results show that right inferior frontal gyrus, which associated with nonverbal communication, is activated by emoticons. Since the emoticons were created to reflect the real human facial expressions as accurately as possible, we believed that they would activate the right fusiform gyrus. However, this region was not found to be activated during the experiment. This finding is useful in understanding how abstract faces affect our behaviors and decision-making in communication over a computer network.
A Security Architecture for Health Information Networks
Kailar, Rajashekar
2007-01-01
Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization. PMID:29255440
Ding, Jinfeng; Liu, Wenjuan; Yang, Yufang
2017-01-01
On the basis of previous studies revealing a processing advantage of concrete words over abstract words, the current study aimed to further explore the influence of concreteness on the integration of novel words into semantic memory with the event related potential (ERP) technique. In the experiment during the learning phase participants read two-sentence contexts and inferred the meaning of novel words. The novel words were two-character non-words in Chinese language. Their meaning was either a concrete or abstract known concept which could be inferred from the contexts. During the testing phase participants performed a lexical decision task in which the learned novel words served as primes for either their corresponding concepts, semantically related or unrelated targets. For the concrete novel words, the semantically related words belonged to the same semantic categories with their corresponding concepts. For the abstract novel words, the semantically related words were synonyms of their corresponding concepts. The unrelated targets were real words which were concrete or abstract for the concrete or abstract novel words respectively. The ERP results showed that the corresponding concepts and the semantically related words elicited smaller N400s than the unrelated words. The N400 effect was not modulated by the concreteness of the concepts. In addition, the concrete corresponding concepts elicited a smaller late positive component (LPC) than the concrete unrelated words. This LPC effect was absent for the abstract words. The results indicate that although both concrete and abstract novel words can be acquired and linked to their related words in the semantic network after a short learning phase, the concrete novel words are learned better. Our findings support the (extended) dual coding theory and broaden our understanding of adult word learning and changes in concept organization.
Huebner, Philip A.; Willits, Jon A.
2018-01-01
Previous research has suggested that distributional learning mechanisms may contribute to the acquisition of semantic knowledge. However, distributional learning mechanisms, statistical learning, and contemporary “deep learning” approaches have been criticized for being incapable of learning the kind of abstract and structured knowledge that many think is required for acquisition of semantic knowledge. In this paper, we show that recurrent neural networks, trained on noisy naturalistic speech to children, do in fact learn what appears to be abstract and structured knowledge. We trained two types of recurrent neural networks (Simple Recurrent Network, and Long Short-Term Memory) to predict word sequences in a 5-million-word corpus of speech directed to children ages 0–3 years old, and assessed what semantic knowledge they acquired. We found that learned internal representations are encoding various abstract grammatical and semantic features that are useful for predicting word sequences. Assessing the organization of semantic knowledge in terms of the similarity structure, we found evidence of emergent categorical and hierarchical structure in both models. We found that the Long Short-term Memory (LSTM) and SRN are both learning very similar kinds of representations, but the LSTM achieved higher levels of performance on a quantitative evaluation. We also trained a non-recurrent neural network, Skip-gram, on the same input to compare our results to the state-of-the-art in machine learning. We found that Skip-gram achieves relatively similar performance to the LSTM, but is representing words more in terms of thematic compared to taxonomic relations, and we provide reasons why this might be the case. Our findings show that a learning system that derives abstract, distributed representations for the purpose of predicting sequential dependencies in naturalistic language may provide insight into emergence of many properties of the developing semantic system. PMID:29520243
Principal Component Analysis Based Measure of Structural Holes
NASA Astrophysics Data System (ADS)
Deng, Shiguo; Zhang, Wenqing; Yang, Huijie
2013-02-01
Based upon principal component analysis, a new measure called compressibility coefficient is proposed to evaluate structural holes in networks. This measure incorporates a new effect from identical patterns in networks. It is found that compressibility coefficient for Watts-Strogatz small-world networks increases monotonically with the rewiring probability and saturates to that for the corresponding shuffled networks. While compressibility coefficient for extended Barabasi-Albert scale-free networks decreases monotonically with the preferential effect and is significantly large compared with that for corresponding shuffled networks. This measure is helpful in diverse research fields to evaluate global efficiency of networks.
Conditions for extinction events in chemical reaction networks with discrete state spaces.
Johnston, Matthew D; Anderson, David F; Craciun, Gheorghe; Brijder, Robert
2018-05-01
We study chemical reaction networks with discrete state spaces and present sufficient conditions on the structure of the network that guarantee the system exhibits an extinction event. The conditions we derive involve creating a modified chemical reaction network called a domination-expanded reaction network and then checking properties of this network. Unlike previous results, our analysis allows algorithmic implementation via systems of equalities and inequalities and suggests sequences of reactions which may lead to extinction events. We apply the results to several networks including an EnvZ-OmpR signaling pathway in Escherichia coli.
Robust and Cost-Efficient Communication Based on SNMP in Mobile Networks
NASA Astrophysics Data System (ADS)
Ryu, Sang-Hoon; Baik, Doo-Kwon
A main challenge in the design of this mobile network is the development of dynamic routing protocols that can efficiently find routes between two communicating nodes. Multimedia streaming services are receiving considerable interest in the mobile network business. An entire mobile network may change its point of attachment to the Internet. The mobile network is operated by a basic specification to support network mobility called Network Mobility (NEMO) Basic Support. However, NEMO basic Support mechanism has some problem in continuous communication. In this paper, we propose robust and cost-efficient algorithm. And we simulate proposed method and conclude some remarks.
Multiplex visibility graphs to investigate recurrent neural network dynamics
NASA Astrophysics Data System (ADS)
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-03-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods.
CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks
2017-01-01
Many structural variations (SVs) detection methods have been proposed due to the popularization of next-generation sequencing (NGS). These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel trains convolutional neural networks (CNNs) to distinguish true unlabeled candidates from false ones. Results show that CNNdel works well with NGS reads from 26 low coverage genomes of the 1000 Genomes Project. The paper demonstrates that convolutional neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously. PMID:28630866
Multiplex visibility graphs to investigate recurrent neural network dynamics
Bianchi, Filippo Maria; Livi, Lorenzo; Alippi, Cesare; Jenssen, Robert
2017-01-01
A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods. PMID:28281563
PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS
EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...
Temporal abstraction and temporal Bayesian networks in clinical domains: a survey.
Orphanou, Kalia; Stassopoulou, Athena; Keravnou, Elpida
2014-03-01
Temporal abstraction (TA) of clinical data aims to abstract and interpret clinical data into meaningful higher-level interval concepts. Abstracted concepts are used for diagnostic, prediction and therapy planning purposes. On the other hand, temporal Bayesian networks (TBNs) are temporal extensions of the known probabilistic graphical models, Bayesian networks. TBNs can represent temporal relationships between events and their state changes, or the evolution of a process, through time. This paper offers a survey on techniques/methods from these two areas that were used independently in many clinical domains (e.g. diabetes, hepatitis, cancer) for various clinical tasks (e.g. diagnosis, prognosis). A main objective of this survey, in addition to presenting the key aspects of TA and TBNs, is to point out important benefits from a potential integration of TA and TBNs in medical domains and tasks. The motivation for integrating these two areas is their complementary function: TA provides clinicians with high level views of data while TBNs serve as a knowledge representation and reasoning tool under uncertainty, which is inherent in all clinical tasks. Key publications from these two areas of relevance to clinical systems, mainly circumscribed to the latest two decades, are reviewed and classified. TA techniques are compared on the basis of: (a) knowledge acquisition and representation for deriving TA concepts and (b) methodology for deriving basic and complex temporal abstractions. TBNs are compared on the basis of: (a) representation of time, (b) knowledge representation and acquisition, (c) inference methods and the computational demands of the network, and (d) their applications in medicine. The survey performs an extensive comparative analysis to illustrate the separate merits and limitations of various TA and TBN techniques used in clinical systems with the purpose of anticipating potential gains through an integration of the two techniques, thus leading to a unified methodology for clinical systems. The surveyed contributions are evaluated using frameworks of respective key features. In addition, for the evaluation of TBN methods, a unifying clinical domain (diabetes) is used. The main conclusion transpiring from this review is that techniques/methods from these two areas, that so far are being largely used independently of each other in clinical domains, could be effectively integrated in the context of medical decision-support systems. The anticipated key benefits of the perceived integration are: (a) during problem solving, the reasoning can be directed at different levels of temporal and/or conceptual abstractions since the nodes of the TBNs can be complex entities, temporally and structurally and (b) during model building, knowledge generated in the form of basic and/or complex abstractions, can be deployed in a TBN. Copyright © 2014 Elsevier B.V. All rights reserved.
Nocchi, Federico; Gazzellini, Simone; Grisolia, Carmela; Petrarca, Maurizio; Cannatà, Vittorio; Cappa, Paolo; D'Alessio, Tommaso; Castelli, Enrico
2012-07-24
The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.
Test Input Generation for Red-Black Trees using Abstraction
NASA Technical Reports Server (NTRS)
Visser, Willem; Pasareanu, Corina S.; Pelanek, Radek
2005-01-01
We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees.
LMSS communication network design
NASA Technical Reports Server (NTRS)
1982-01-01
The architecture of the telecommunication network as the first step in the design of the LMSS system is described. A set of functional requirements including the total number of users to be served by the LMSS are hypothesized. The design parameters are then defined at length and are systematically selected such that the resultant system is capable of serving the hypothesized number of users. The design of the backhaul link is presented. The number of multiple backhaul beams required for communication to the base stations is determined. A conceptual procedure for call-routing and locating a mobile subscriber within the LMSS network is presented. The various steps in placing a call are explained, and the relationship between the two sets of UHF and S-band multiple beams is developed. A summary of the design parameters is presented.
Cooperative Spatial Retreat for Resilient Drone Networks.
Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon
2017-05-03
Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes.
NASA Astrophysics Data System (ADS)
Yu, Chih-Min; Huang, Chia-Chi
In this letter, a decentralized scatternet formation algorithm called Bluelayer is proposed. First, Bluelayer uses a designated root to construct a tree-shaped subnet and propagates an integer variable k1 called counter limit as well as a constant k in its downstream direction to determine new roots. Then each new root asks its upstream master to start a return connection procedure to convert the tree-shaped subnet into a web-shaped subnet for its immediate upstream root. At the same time, each new root repeats the same procedure as the root to build its own subnet until the whole scatternet is formed. Simulation results show that Bluelayer achieves good network scalability and generates an efficient scatternet configuration for various sizes of Bluetooth ad hoc network.
Sensitivity and network topology in chemical reaction systems
NASA Astrophysics Data System (ADS)
Okada, Takashi; Mochizuki, Atsushi
2017-08-01
In living cells, biochemical reactions are catalyzed by specific enzymes and connect to one another by sharing substrates and products, forming complex networks. In our previous studies, we established a framework determining the responses to enzyme perturbations only from network topology, and then proved a theorem, called the law of localization, explaining response patterns in terms of network topology. In this paper, we generalize these results to reaction networks with conserved concentrations, which allows us to study any reaction system. We also propose network characteristics quantifying robustness. We compare E. coli metabolic network with randomly rewired networks, and find that the robustness of the E. coli network is significantly higher than that of the random networks.
2011-12-19
have shown through positron annihilation studies that a substantial amount of free volume develops during the final stages of cyanate ester cure...Polymers from 5b. GRANT NUMBER Studies of Co-Cured Polycyanurate Networks (preprint) 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner...Macromolecules. 14. ABSTRACT Studies of the physical properties of the co-cured networks formed from three similar dicyanate ester monomers revealed a
Composite Social Network for Predicting Mobile Apps Installation
2011-06-02
analysis used by social scientists such as matched sample estimation (Aral, Muchnik, and Sundararajan 2009) are only for identifying network effects and...ar X iv :1 10 6. 03 59 v1 [ cs .S I] 2 J un 2 01 1 Composite Social Network for Predicting Mobile Apps Installation Wei Pan and Nadav Aharony...and Alex (Sandy) Pentland MIT Media Laboratory 20 Ames Street Cambridge, Massachusetts 02139 Abstract We have carefully instrumented a large portion of
2010-03-01
separate LoA heuristic. If any of the examined heuristics produced competitive player , then the final measurement was a success . Barring that, a...if offline training actually results in a successful player . Whereas offline learning plays many games and then trains as many networks as desired...a competitive Lines of Action player , shedding light on the difficulty of developing a neural network to model such a large and complex solution
Vrijheid, M; Mann, S; Vecchia, P; Wiart, J; Taki, M; Ardoino, L; Armstrong, B K; Auvinen, A; Bédard, D; Berg-Beckhoff, G; Brown, J; Chetrit, A; Collatz-Christensen, H; Combalot, E; Cook, A; Deltour, I; Feychting, M; Giles, G G; Hepworth, S J; Hours, M; Iavarone, I; Johansen, C; Krewski, D; Kurttio, P; Lagorio, S; Lönn, S; McBride, M; Montestrucq, L; Parslow, R C; Sadetzki, S; Schüz, J; Tynes, T; Woodward, A; Cardis, E
2009-10-01
The output power of a mobile phone is directly related to its radiofrequency (RF) electromagnetic field strength, and may theoretically vary substantially in different networks and phone use circumstances due to power control technologies. To improve indices of RF exposure for epidemiological studies, we assessed determinants of mobile phone output power in a multinational study. More than 500 volunteers in 12 countries used Global System for Mobile communications software-modified phones (GSM SMPs) for approximately 1 month each. The SMPs recorded date, time, and duration of each call, and the frequency band and output power at fixed sampling intervals throughout each call. Questionnaires provided information on the typical circumstances of an individual's phone use. Linear regression models were used to analyse the influence of possible explanatory variables on the average output power and the percentage call time at maximum power for each call. Measurements of over 60,000 phone calls showed that the average output power was approximately 50% of the maximum, and that output power varied by a factor of up to 2 to 3 between study centres and network operators. Maximum power was used during a considerable proportion of call time (39% on average). Output power decreased with increasing call duration, but showed little variation in relation to reported frequency of use while in a moving vehicle or inside buildings. Higher output powers for rural compared with urban use of the SMP were observed principally in Sweden where the study covered very sparsely populated areas. Average power levels are substantially higher than the minimum levels theoretically achievable in GSM networks. Exposure indices could be improved by accounting for average power levels of different telecommunications systems. There appears to be little value in gathering information on circumstances of phone use other than use in very sparsely populated regions.
K. E. Little and the Texas STARBASE Experience
NASA Technical Reports Server (NTRS)
Bonett, D. M.; Whittemore-Smith, G. K. E.
2002-01-01
25 fifth grade students from Bacliff, Texas will be participating in a hands-on interactive science education experience called Starbase Texas at Ellington Field January 9th-February 6th. Additional information is contained in the original extended abstract.
2016-01-22
basic mechanism of link-based routing schemes is the broadcasting of a control message (called a “ hello ”) to all of its neighbors. If a response is...to a destination by using the set of ex- changed hello messages between users of the network. With suciently high frequency, hello messages are suc
Characterizing Crowd Participation and Productivity of Foldit Through Web Scraping
2016-03-01
Berkeley Open Infrastructure for Network Computing CDF Cumulative Distribution Function CPU Central Processing Unit CSSG Crowdsourced Serious Game...computers at once can create a similar capacity. According to Anderson [6], principal investigator for the Berkeley Open Infrastructure for Network...extraterrestrial life. From this project, a software-based distributed computing platform called the Berkeley Open Infrastructure for Network Computing
Nationwide Network of TalentPoints: The Hungarian Approach to Talent Support
ERIC Educational Resources Information Center
Csermely, Peter; Rajnai, Gabor; Sulyok, Katalin
2013-01-01
In 2006 a novel approach to talent support was promoted by several talent support programmes in Hungary. The new idea was a network approach. The nationwide network of so-called TalentPoints and its framework, the Hungarian Genius Program, gained substantial European Union funding in 2009, and today it is growing rapidly. A novel concept of talent…
NASA Astrophysics Data System (ADS)
Luo, Yanting; Zhang, Yongjun; Gu, Wanyi
2009-11-01
In large dynamic networks it is extremely difficult to maintain accurate routing information on all network nodes. The existing studies have illustrated the impact of imprecise state information on the performance of dynamic routing and wavelength assignment (RWA) algorithms. An algorithm called Bypass Based Optical Routing (BBOR) proposed by Xavier Masip-Bruin et al can reduce the effects of having inaccurate routing information in networks operating under the wavelength-continuity constraint. Then they extended the BBOR mechanism (for convenience it's called EBBOR mechanism below) to be applied to the networks with sparse and limited wavelength conversion. But it only considers the characteristic of wavelength conversion in the step of computing the bypass-paths so that its performance may decline with increasing the degree of wavelength translation (this concept will be explained in the section of introduction again). We will demonstrate the issue through theoretical analysis and introduce a novel algorithm which modifies both the lightpath selection and the bypass-paths computation in comparison to EBBOR algorithm. Simulations show that the Modified EBBOR (MEBBOR) algorithm improves the blocking performance significantly in optical networks with Conversion Capability.
Skeleton of weighted social network
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhu, J.
2013-03-01
In the literature of social networks, understanding topological structure is an important scientific issue. In this paper, we construct a network from mobile phone call records and use the cumulative number of calls as a measure of the weight of a social tie. We extract skeletons from the weighted social network on the basis of the weights of ties, and we study their properties. We find that strong ties can support the skeleton in the network by studying the percolation characters. We explore the centrality of w-skeletons based on the correlation between some centrality measures and the skeleton index w of a vertex, and we find that the average centrality of a w-skeleton increases as w increases. We also study the cumulative degree distribution of the successive w-skeletons and find that as w increases, the w-skeleton tends to become more self-similar. Furthermore, fractal characteristics appear in higher w-skeletons. We also explore the global information diffusion efficiency of w-skeletons using simulations, from which we can see that the ties in the high w-skeletons play important roles in information diffusion. Identifying such a simple structure of a w-skeleton is a step forward toward understanding and representing the topological structure of weighted social networks.
The Earth Science Research Network as Seen Through Network Analysis of the AGU
NASA Astrophysics Data System (ADS)
Narock, T.; Hasnain, S.; Stephan, R.
2017-12-01
Scientometrics is the science of science. Scientometric research includes measurements of impact, mapping of scientific fields, and the production of indicators for use in policy and management. We have leveraged network analysis in a scientometric study of the American Geophysical Union (AGU). Data from the AGU's Linked Data Abstract Browser was used to create a visualization and analytics tools to explore the Earth science's research network. Our application applies network theory to look at network structure within the various AGU sections, identify key individuals and communities related to Earth science topics, and examine multi-disciplinary collaboration across sections. Opportunities to optimize Earth science output, as well as policy and outreach applications, are discussed.
A MOLA-controlled RAND-USGS Control Network for Mars
NASA Technical Reports Server (NTRS)
Archinal, B. A.; Colvin, T. R.; Davies, M. E.; Kirk, R. L.; Duxbury, T. C.; Lee, E. M.; Cook, D.; Gitlin, A. R.
2002-01-01
We are undertaking, in support of the Mars Digital Image Mosaic (MDIM) 2.1, many improvements in the RAND-USGS photogrammetric control network for Mars, primarily involving the use of Mars Orbiter Laser Altimeter (MOLA)-derived radii and DIMs to improve control point absolute radii and horizontal positions. Additional information is contained in the original extended abstract.
Prostate Cancer Biorepository Network (PCBN)
2017-10-01
Award Number: W81XWH-14-2-0183 TITLE: Prostate Cancer Biorepository Network (PCBN) PRINCIPAL INVESTIGATOR: Colm Morrissey CONTRACTING...1. REPORT DATE October 2017 2. REPORT TYPE Annual 3. DATES COVERED 09/30/2016 - 09/29/2017 4. TITLE AND SUBTITLE Prostate Cancer Biorepository...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Genitourinary Cancer
ERIC Educational Resources Information Center
Bastiaansen, Marcel C. M.; Oostenveld, Robert; Jensen, Ole; Hagoort, Peter
2008-01-01
An influential hypothesis regarding the neural basis of the mental lexicon is that semantic representations are neurally implemented as distributed networks carrying sensory, motor and/or more abstract functional information. This work investigates whether the semantic properties of words partly determine the topography of such networks. Subjects…
Joint Services Electronics Program.
1993-03-05
Mary- land, June 1992. Interconnection Network Design Based on Packaging Considerations Professor Abhiram Ranade with M. T. Raghunath A central...characterized by our abstract models of packaging technology. JSEP Publications [1] M.T. Raghunath and Abhiram Ranade, "Customizing Interconnection...94720, January 1993. [21 M.T. Raghunath and Abhiram Ranade, "Fault-Tolerant Routing in Partitioned Butterfly Networks," submitted to the 1993
System and Network Security Acronyms and Abbreviations
2009-09-01
hazards of electromagnetic radiation to fuel HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic ...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 System and Network Security Acronyms...authentication and key management ALG application layer gateway ANSI American National Standards Institute AP access point API application
The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity but MoA classification in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity mode of action using a recently published dataset contain...
Collective Computation of Neural Network
1990-03-15
Sciences, Beijing ABSTRACT Computational neuroscience is a new branch of neuroscience originating from current research on the theory of computer...scientists working in artificial intelligence engineering and neuroscience . The paper introduces the collective computational properties of model neural...vision research. On this basis, the authors analyzed the significance of the Hopfield model. Key phrases: Computational Neuroscience , Neural Network, Model
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
INTRODUCTION 1 3 METHODS , ASUMPTIONS, AND PROCEDURES 2 Software Abstractions for Graph Analytic Applications 2 High performance Platforms for Graph Processing...data is stored in a distributed file system. 3 METHODS , ASUMPTIONS, AND PROCEDURES Software Abstractions for Graph Analytic Applications To...implementations of novel methods for networks analysis: several methods for detection of overlapping communities, personalized PageRank, node embeddings into a d
An Introduction to Intelligent Networks
1994-02-01
customers in particular) to "specify a different geographic location for the call to terminate at. depending on the location of the calling customer ...corporate and military alike), with the promise also that they support affordable and dynamic reconfiguration. For example, as a domestic customer . I... relationship has an SCP serving a distribution of SSP elements to pnride wupport for calls that invoke IN functionality. And is in turn coatrolied and
Determination of groundwater abstractions by means of GRACE data and Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Gemitzi, Alexandra; Tsagkarakis, Konstantinos; Lakshmi, Venkat
2017-04-01
The EU Water Framework Directive requires for each groundwater body the determination of annual average rates of abstraction from all points providing more than 10m3 per day as well as groundwater level monitoring, so as to ensure that the available groundwater resource is not exceeded by the long-term annual average rate of abstraction. In order to acquire such information in situ observation networks are necessary. However, there are cases, e.g. Greece where WFD monitoring programme has not yet become operational due to bureaucratic, socioeconomic and often political constraints. The present study aims at determining groundwater use at the aquifer scale by using Gravity Recovery and Climate Experiment (GRACE) satellite data coupled with readily available meteorological data. Traditionally, GRACE data have been used at the global and regional scale due to their coarse resolution and the difficulties in disaggregating the various Total Water Storage (TWS) components. Previous works have evaluated the subsurface anomalies (ΔGW), using supplementary data sets and hydrologic modeling results in order to disaggregate GRACE TWS anomalies into their various components. Recent works however, have shown that changes in groundwater storage are dominating the GRACE Total Water Storage (TWS) changes, therefore it was though reasonable to use changes in Grace derived TWS in order to quantify abstractions from a groundwater body. Statistical downscaling was performed using an Artificial Neural Network in the form a Multilayer Perceptron model, in conjunction with local meteorological data. An ensemble of 100 ANNs provided a means of quantifying uncertainty and improving generalization. The methodology was applied in Rhodope area (NE Greece) and proved to be an efficient way of downscaling GRACE data in order to estimate the monthly quantity of water extracted from a certain aquifer. Although our methodology does not aim at estimating abstractions at single points, it manages to capture the total monthly abstracted quantities from a groundwater body The developed herein approach offers a handy advantage to water managers who will be able to acquire information on groundwater uses without having to adhere to in situ costly observations.
Securing mobile ad hoc networks using danger theory-based artificial immune algorithm.
Abdelhaq, Maha; Alsaqour, Raed; Abdelhaq, Shawkat
2015-01-01
A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs.
A Self-Organizing Incremental Neural Network based on local distribution learning.
Xing, Youlu; Shi, Xiaofeng; Shen, Furao; Zhou, Ke; Zhao, Jinxi
2016-12-01
In this paper, we propose an unsupervised incremental learning neural network based on local distribution learning, which is called Local Distribution Self-Organizing Incremental Neural Network (LD-SOINN). The LD-SOINN combines the advantages of incremental learning and matrix learning. It can automatically discover suitable nodes to fit the learning data in an incremental way without a priori knowledge such as the structure of the network. The nodes of the network store rich local information regarding the learning data. The adaptive vigilance parameter guarantees that LD-SOINN is able to add new nodes for new knowledge automatically and the number of nodes will not grow unlimitedly. While the learning process continues, nodes that are close to each other and have similar principal components are merged to obtain a concise local representation, which we call a relaxation data representation. A denoising process based on density is designed to reduce the influence of noise. Experiments show that the LD-SOINN performs well on both artificial and real-word data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Securing Mobile Ad Hoc Networks Using Danger Theory-Based Artificial Immune Algorithm
2015-01-01
A mobile ad hoc network (MANET) is a set of mobile, decentralized, and self-organizing nodes that are used in special cases, such as in the military. MANET properties render the environment of this network vulnerable to different types of attacks, including black hole, wormhole and flooding-based attacks. Flooding-based attacks are one of the most dangerous attacks that aim to consume all network resources and thus paralyze the functionality of the whole network. Therefore, the objective of this paper is to investigate the capability of a danger theory-based artificial immune algorithm called the mobile dendritic cell algorithm (MDCA) to detect flooding-based attacks in MANETs. The MDCA applies the dendritic cell algorithm (DCA) to secure the MANET with additional improvements. The MDCA is tested and validated using Qualnet v7.1 simulation tool. This work also introduces a new simulation module for a flooding attack called the resource consumption attack (RCA) using Qualnet v7.1. The results highlight the high efficiency of the MDCA in detecting RCAs in MANETs. PMID:25946001
47 CFR 2.303 - Other forms of identification of stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... whose signals are being relayed, or by network identification. Broadcasting (television booster.... (b) Digital selective calls will be authorized by the Commission and will be formed by groups of... identification number: 4 digits. (2) Ship station selective call number: 5 digits. (3) Predetermined group of...
Developing Multimedia Courseware for the Internet's Java versus Shockwave.
ERIC Educational Resources Information Center
Majchrzak, Tina L.
1996-01-01
Describes and compares two methods for developing multimedia courseware for use on the Internet: an authoring tool called Shockwave, and an object-oriented language called Java. Topics include vector graphics, browsers, interaction with network protocols, data security, multithreading, and computer languages versus development environments. (LRW)
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks.
Schrum, Jacob; Miikkulainen, Risto
2016-03-12
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games.
Where-Fi: a dynamic energy-efficient multimedia distribution framework for MANETs
NASA Astrophysics Data System (ADS)
Mohapatra, Shivajit; Carbunar, Bogdan; Pearce, Michael; Chaudhri, Rohit; Vasudevan, Venu
2008-01-01
Next generation mobile ad-hoc applications will revolve around users' need for sharing content/presence information with co-located devices. However, keeping such information fresh requires frequent meta-data exchanges, which could result in significant energy overheads. To address this issue, we propose distributed algorithms for energy efficient dissemination of presence and content usage information between nodes in mobile ad-hoc networks. First, we introduce a content dissemination protocol (called CPMP) for effectively distributing frequent small meta-data updates between co-located devices using multicast. We then develop two distributed algorithms that use the CPMP protocol to achieve "phase locked" wake up cycles for all the participating nodes in the network. The first algorithm is designed for fully-connected networks and then extended in the second to handle hidden terminals. The "phase locked" schedules are then exploited to adaptively transition the network interface to a deep sleep state for energy savings. We have implemented a prototype system (called "Where-Fi") on several Motorola Linux-based cell phone models. Our experimental results show that for all network topologies our algorithms were able to achieve "phase locking" between nodes even in the presence of hidden terminals. Moreover, we achieved battery lifetime extensions of as much as 28% for fully connected networks and about 20% for partially connected networks.
Discovering Multimodal Behavior in Ms. Pac-Man through Evolution of Modular Neural Networks
Schrum, Jacob; Miikkulainen, Risto
2015-01-01
Ms. Pac-Man is a challenging video game in which multiple modes of behavior are required: Ms. Pac-Man must escape ghosts when they are threats and catch them when they are edible, in addition to eating all pills in each level. Past approaches to learning behavior in Ms. Pac-Man have treated the game as a single task to be learned using monolithic policy representations. In contrast, this paper uses a framework called Modular Multi-objective NEAT (MM-NEAT) to evolve modular neural networks. Each module defines a separate behavior. The modules are used at different times according to a policy that can be human-designed (i.e. Multitask) or discovered automatically by evolution. The appropriate number of modules can be fixed or discovered using a genetic operator called Module Mutation. Several versions of Module Mutation are evaluated in this paper. Both fixed modular networks and Module Mutation networks outperform monolithic networks and Multitask networks. Interestingly, the best networks dedicate modules to critical behaviors (such as escaping when surrounded after luring ghosts near a power pill) that do not follow the customary division of the game into chasing edible and escaping threat ghosts. The results demonstrate that MM-NEAT can discover interesting and effective behavior for agents in challenging games. PMID:27030803
Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks
Fu, Jun-Song; Liu, Yun
2015-01-01
In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914
Leroux, Janette S; Moore, Spencer; Dubé, Laurette
2013-01-01
Recent research has shown the importance of networks in the spread of obesity. Yet, the translation of research on social networks and obesity into health promotion practice has been slow. To review the types of obesity interventions targeting social relational factors. Six databases were searched in January 2013. A Boolean search was employed with the following sets of terms: (1) social dimensions: social capital, cohesion, collective efficacy, support, social networks, or trust; (2) intervention type: intervention, experiment, program, trial, or policy; and (3) obesity in the title or abstract. Titles and abstracts were reviewed. Articles were included if they described an obesity intervention with the social relational component central. Articles were assessed on the social relational factor(s) addressed, social ecological level(s) targeted, the intervention's theoretical approach, and the conceptual placement of the social relational component in the intervention. Database searches and final article screening yielded 30 articles. Findings suggested that (1) social support was most often targeted; (2) few interventions were beyond the individual level; (3) most interventions were framed on behaviour change theories; and (4) the social relational component tended to be conceptually ancillary to the intervention. Theoretically and practically, social networks remain marginal to current interventions addressing obesity.
Consumer language, patient language, and thesauri: a review of the literature
Smith, Catherine A
2011-01-01
Objective: Online social networking sites are web services in which users create public or semipublic profiles and connect to build online communities, finding likeminded people through self-labeled personal attributes including ethnicity, leisure interests, political beliefs, and, increasingly, health status. Thirty-nine percent of patients in the United States identified themselves as users of social networks in a recent survey. “Tags,” user-generated descriptors functioning as labels for user-generated content, are increasingly important to social networking, and the language used by patients is thus becoming important for knowledge representation in these systems. However, patient language poses considerable challenges for health communication and networking. How have information systems traditionally incorporated these languages in their controlled vocabularies and thesauri? How do system builders know what consumers and patients say? Methods: This comprehensive review of the literature of health care (PubMed MEDLINE, CINAHL), library science, and information science (Library and Information Science and Technology Abstracts, Library and Information Science Abstracts, and Library Literature) examines the research domains in which consumer and patient language has been explored. Results: Consumer contributions to controlled vocabulary appear to be seriously under-researched inside and outside of health care. Conclusion: The author reflects on the implications of these findings for online social networks devoted to patients and the patient experience. PMID:21464851
Consumer language, patient language, and thesauri: a review of the literature.
Smith, Catherine A
2011-04-01
Online social networking sites are web services in which users create public or semipublic profiles and connect to build online communities, finding like-minded people through self-labeled personal attributes including ethnicity, leisure interests, political beliefs, and, increasingly, health status. Thirty-nine percent of patients in the United States identified themselves as users of social networks in a recent survey. "Tags," user-generated descriptors functioning as labels for user-generated content, are increasingly important to social networking, and the language used by patients is thus becoming important for knowledge representation in these systems. However, patient language poses considerable challenges for health communication and networking. How have information systems traditionally incorporated these languages in their controlled vocabularies and thesauri? How do system builders know what consumers and patients say? This comprehensive review of the literature of health care (PubMed MEDLINE, CINAHL), library science, and information science (Library and Information Science and Technology Abstracts, Library and Information Science Abstracts, and Library Literature) examines the research domains in which consumer and patient language has been explored. Consumer contributions to controlled vocabulary appear to be seriously under-researched inside and outside of health care. The author reflects on the implications of these findings for online social networks devoted to patients and the patient experience.
Pike, Emily C.; Fowler, Beth; LeGrand, Sara; Parsons, Jeffrey T.; Bull, Sheana S.; Wilson, Patrick A.; Wohl, David A.; Hightow-Weidman, Lisa B.
2013-01-01
Abstract Young black men who have sex with men (MSM) bear a disproportionate burden of HIV. Rapid expansion of mobile technologies, including smartphone applications (apps), provides a unique opportunity for outreach and tailored health messaging. We collected electronic daily journals and conducted surveys and focus groups with 22 black MSM (age 18–30) at three sites in North Carolina to inform the development of a mobile phone-based intervention. Qualitative data was analyzed thematically using NVivo. Half of the sample earned under $11,000 annually. All participants owned smartphones and had unlimited texting and many had unlimited data plans. Phones were integral to participants' lives and were a primary means of Internet access. Communication was primarily through text messaging and Internet (on-line chatting, social networking sites) rather than calls. Apps were used daily for entertainment, information, productivity, and social networking. Half of participants used their phones to find sex partners; over half used phones to find health information. For an HIV-related app, participants requested user-friendly content about test site locators, sexually transmitted diseases, symptom evaluation, drug and alcohol risk, safe sex, sexuality and relationships, gay-friendly health providers, and connection to other gay/HIV-positive men. For young black MSM in this qualitative study, mobile technologies were a widely used, acceptable means for HIV intervention. Future research is needed to measure patterns and preferences of mobile technology use among broader samples. PMID:23565925
Qualitative Constraint Reasoning For Image Understanding
NASA Astrophysics Data System (ADS)
Perry, John L.
1987-05-01
Military planners and analysts are exceedingly concerned with increasing the effectiveness of command and control (C2) processes for battlefield management (BM). A variety of technical approaches have been taken in this effort. These approaches are intended to support and assist commanders in situation assessment, course of action generation and evaluation, and other C2 decision-making tasks. A specific task within this technology support includes the ability to effectively gather information concerning opposing forces and plan/replan tactical maneuvers. Much of the information that is gathered is image-derived, along with collateral data supporting this visual imagery. In this paper, we intend to describe a process called qualitative constraint reasoning (QCR) which is being developed as a mechanism for reasoning in the mid to high level vision domain. The essential element of QCR is the abstraction process. One of the factors that is unique to QCR is the level at which the abstraction process occurs relative to the problem domain. The computational mechanisms used in QCR belong to a general class of problem called the consistent labeling problem. The success of QCR is its ability to abstract out from a visual domain a structure appropriate for applying the labeling procedure. An example will be given that will exemplify the abstraction process for a battlefield management application. Exploratory activities are underway for investigating the suitability of QCR approach for the battlefield scenario. Further research is required to investigate the utility of QCR in a more complex battlefield environment.
Mobile telephones: a comparison of radiated power between 3G VoIP calls and 3G VoCS calls.
Jovanovic, Dragan; Bragard, Guillaume; Picard, Dominique; Chauvin, Sébastien
2015-01-01
The purpose of this study is to assess the mean RF power radiated by mobile telephones during voice calls in 3G VoIP (Voice over Internet Protocol) using an application well known to mobile Internet users, and to compare it with the mean power radiated during voice calls in 3G VoCS (Voice over Circuit Switch) on a traditional network. Knowing that the specific absorption rate (SAR) is proportional to the mean radiated power, the user's exposure could be clearly identified at the same time. Three 3G (High Speed Packet Access) smartphones from three different manufacturers, all dual-band for GSM (900 MHz, 1800 MHz) and dual-band for UMTS (900 MHz, 1950 MHz), were used between 28 July and 04 August 2011 in Paris (France) to make 220 two-minute calls on a mobile telephone network with national coverage. The places where the calls were made were selected in such a way as to describe the whole range of usage situations of the mobile telephone. The measuring equipment, called "SYRPOM", recorded the radiation power levels and the frequency bands used during the calls with a sampling rate of 20,000 per second. In the framework of this study, the mean normalised power radiated by a telephone in 3G VoIP calls was evaluated at 0.75% maximum power of the smartphone, compared with 0.22% in 3G VoCS calls. The very low average power levels associated with use of 3G devices with VoIP or VoCS support the view that RF exposure resulting from their use is far from exceeding the basic restrictions of current exposure limits in terms of SAR.
A Systematic Review of Research on Social Networks of Older Adults.
Ayalon, Liat; Levkovich, Inbar
2018-01-29
There has been a substantial interest in life course/life span changes in older adults' social networks and in the relationship between social networks and health and wellbeing. The study embarked on a systematic review to examine the existing knowledgebase on social network in the field of gerontology. Our focus was on studies in which both ego (respondents) and his or her alters (network members) are queried about their social ties. We searched for studies published in English before September, 2017, relied on quantitative methods to obtain data from both ego (60 years of age and older) and alters and provided a quantitative account of the social network properties. We searched the following data sets: APA Psychnet, Pubmed, Sociological abstracts, and Ageline. This was followed by a snowball search of relevant articles using Google Scholar. Titles and abstracts were reviewed and selected articles were extracted independently by two reviewers. A total of 5,519 records were retrieved. Of these, 3,994 records remained after the removal of duplicates. Ten records reporting on five original samples were kept for the systematic review. One study described a social network of community dwelling older adults and the remaining studies described social networks of institutional older adults. The present study points to a lacuna in current understanding of social networks in the field of gerontology. It provides a useful review and possible tools for the design of future studies to address current shortcomings in the field. © The Author(s) 2018. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2012-01-01
dimensionality, Tesauro used a backpropagation- based , three-layer neural network and implemented the outcome from a self-play game as the reinforcement signal...a school of fish, flock of birds, and colony of ants. Our literature review reveals that no one has used PSO to train the neural network ...trained with a variant of PSO called cellular PSO (CPSO). CSRN is a supervised learning neural network (SLNN). The proposed algorithm for the
An iteration algorithm for optimal network flows
NASA Astrophysics Data System (ADS)
Woong, C. J.
1983-09-01
A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.
HARDROCK MINING 2002 CALL FOR ABSTRACTS
This flyer will announcement the Hardrock Mining 2002 Conference on May 7-9/2002 in Westminster, CO. This conference will provide participants with an opportunity to examine and discuss current and future environmental issues shaping the hardrock mining industry with emphasis on ...
ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.
2002-01-01
ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.
Code of Federal Regulations, 2014 CFR
2014-10-01
... lines, counting the total of all business and residential fixed subscriber lines and mobile phones and... service as defined in 47 U.S.C. 153(36) to the extent such a provider offers the capability to place calls to the public switched telephone network. Initial long-distance call path choice. The term “initial...
Women and the Emergence of the NAACP
ERIC Educational Resources Information Center
Moore, Linda S.
2013-01-01
This article discusses contributions of women to the emergence of the National Association for the Advancement of Colored People. Using network analysis, the author studied affiliations between African American and White women who signed "The Call," a petition calling for a national conference to obtain civil rights for African…
Towards cortex sized artificial neural systems.
Johansson, Christopher; Lansner, Anders
2007-01-01
We propose, implement, and discuss an abstract model of the mammalian neocortex. This model is instantiated with a sparse recurrently connected neural network that has spiking leaky integrator units and continuous Hebbian learning. First we study the structure, modularization, and size of neocortex, and then we describe a generic computational model of the cortical circuitry. A characterizing feature of the model is that it is based on the modularization of neocortex into hypercolumns and minicolumns. Both a floating- and fixed-point arithmetic implementation of the model are presented along with simulation results. We conclude that an implementation on a cluster computer is not communication but computation bounded. A mouse and rat cortex sized version of our model executes in 44% and 23% of real-time respectively. Further, an instance of the model with 1.6 x 10(6) units and 2 x 10(11) connections performed noise reduction and pattern completion. These implementations represent the current frontier of large-scale abstract neural network simulations in terms of network size and running speed.
Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond
NASA Astrophysics Data System (ADS)
Pyari Srivastava, Dayal; Sahni, Vishal; Saran Satsangi, Prem
2016-01-01
The scientific approach to understand the nature of consciousness revolves around the study of the human brain. Neurobiological studies that compare the nervous system of different species have accorded the highest place to humans on account of various factors that include a highly developed cortical area comprising of approximately 100 billion neurons, that are intrinsically connected to form a highly complex network. Quantum theories of consciousness are based on mathematical abstraction and the Penrose-Hameroff Orch-OR theory is one of the most promising ones. Inspired by the Penrose-Hameroff Orch-OR theory, Behrman et al. have simulated a quantum Hopfield neural network with the structure of a microtubule. They have used an extremely simplified model of the tubulin dimers with each dimer represented simply as a qubit, a single quantum two-state system. The extension of this model to n-dimensional quantum states or n-qudits presented in this work holds considerable promise for even higher mathematical abstraction in modelling consciousness systems.
Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.
2014-01-01
The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083
Mathematical Abstraction: Constructing Concept of Parallel Coordinates
NASA Astrophysics Data System (ADS)
Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.
2017-09-01
Mathematical abstraction is an important process in teaching and learning mathematics so pre-service mathematics teachers need to understand and experience this process. One of the theoretical-methodological frameworks for studying this process is Abstraction in Context (AiC). Based on this framework, abstraction process comprises of observable epistemic actions, Recognition, Building-With, Construction, and Consolidation called as RBC + C model. This study investigates and analyzes how pre-service mathematics teachers constructed and consolidated concept of Parallel Coordinates in a group discussion. It uses AiC framework for analyzing mathematical abstraction of a group of pre-service teachers consisted of four students in learning Parallel Coordinates concepts. The data were collected through video recording, students’ worksheet, test, and field notes. The result shows that the students’ prior knowledge related to concept of the Cartesian coordinate has significant role in the process of constructing Parallel Coordinates concept as a new knowledge. The consolidation process is influenced by the social interaction between group members. The abstraction process taken place in this group were dominated by empirical abstraction that emphasizes on the aspect of identifying characteristic of manipulated or imagined object during the process of recognizing and building-with.
A new technique in the global reliability of cyclic communications network
NASA Technical Reports Server (NTRS)
Sjogren, Jon A.
1989-01-01
The global reliability of a communications network is the probability that given any pair of nodes, there exists a viable path between them. A characterization of connectivity, for a given class of networks, can enable one to find this reliability. Such a characterization is described for a useful class of undirected networks called daisy-chained or braided networks. This leads to a new method of quickly computing the global reliability of these networks. Asymptotic behavior in terms of component reliability is related to geometric properties of the given graph. Generalization of the technique is discussed.
NASA Technical Reports Server (NTRS)
Benediktsson, J. A.; Ersoy, O. K.; Swain, P. H.
1991-01-01
A neural network architecture called a consensual neural network (CNN) is proposed for the classification of data from multiple sources. Its relation to hierarchical and ensemble neural networks is discussed. CNN is based on the statistical consensus theory and uses nonlinearly transformed input data. The input data are transformed several times, and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote-sensing data and geographic data are given.
76 FR 43695 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-21
... Project: Networking Suicide Prevention Hotlines--Evaluation of the Lifeline Policies for Helping Callers... approved data collection activities [Evaluation of Networking Suicide Prevention Hotlines Follow-Up Assessment (OMB No. 0930-0274) and Call Monitoring of National Suicide Prevention Lifeline Form (OMB No. 0930...
Phase Transition in Opinion Diffusion in Social Networks
2012-05-01
the opinions of social agents diffuse in a network under a so-called hard-interaction model, in which the agents inter- act more strongly with...gent behavior. Index Terms— opinion diffusion , opinion dynamics, social net- works, phase transition, herding. 1. INTRODUCTION The study of the
ERIC Educational Resources Information Center
Panettieri, Joseph C.
2007-01-01
Without proper security, mobile devices are easy targets for worms, viruses, and so-called robot ("bot") networks. Hackers increasingly use bot networks to launch massive attacks against eCommerce websites--potentially targeting one's online tuition payment or fundraising/financial development systems. How can one defend his mobile systems against…
Growing optimal scale-free networks via likelihood
NASA Astrophysics Data System (ADS)
Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin
2015-04-01
Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
Phase transition in NK-Kauffman networks and its correction for Boolean irreducibility
NASA Astrophysics Data System (ADS)
Zertuche, Federico
2014-05-01
In a series of articles published in 1986, Derrida and his colleagues studied two mean field treatments (the quenched and the annealed) for NK-Kauffman networks. Their main results lead to a phase transition curve Kc 2 pc(1-pc)=1 (0
NASA Astrophysics Data System (ADS)
Ji, Zhengping; Ovsiannikov, Ilia; Wang, Yibing; Shi, Lilong; Zhang, Qiang
2015-05-01
In this paper, we develop a server-client quantization scheme to reduce bit resolution of deep learning architecture, i.e., Convolutional Neural Networks, for image recognition tasks. Low bit resolution is an important factor in bringing the deep learning neural network into hardware implementation, which directly determines the cost and power consumption. We aim to reduce the bit resolution of the network without sacrificing its performance. To this end, we design a new quantization algorithm called supervised iterative quantization to reduce the bit resolution of learned network weights. In the training stage, the supervised iterative quantization is conducted via two steps on server - apply k-means based adaptive quantization on learned network weights and retrain the network based on quantized weights. These two steps are alternated until the convergence criterion is met. In this testing stage, the network configuration and low-bit weights are loaded to the client hardware device to recognize coming input in real time, where optimized but expensive quantization becomes infeasible. Considering this, we adopt a uniform quantization for the inputs and internal network responses (called feature maps) to maintain low on-chip expenses. The Convolutional Neural Network with reduced weight and input/response precision is demonstrated in recognizing two types of images: one is hand-written digit images and the other is real-life images in office scenarios. Both results show that the new network is able to achieve the performance of the neural network with full bit resolution, even though in the new network the bit resolution of both weight and input are significantly reduced, e.g., from 64 bits to 4-5 bits.
Impact analysis of two kinds of failure strategies in Beijing road transportation network
NASA Astrophysics Data System (ADS)
Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan
The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.
Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.
2004-03-09
The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.
Predicting and controlling infectious disease epidemics using temporal networks
Holme, Petter
2013-01-01
Infectious diseases can be considered to spread over social networks of people or animals. Mainly owing to the development of data recording and analysis techniques, an increasing amount of social contact data with time stamps has been collected in the last decade. Such temporal data capture the dynamics of social networks on a timescale relevant to epidemic spreading and can potentially lead to better ways to analyze, forecast, and prevent epidemics. However, they also call for extended analysis tools for network epidemiology, which has, to date, mostly viewed networks as static entities. We review recent results of network epidemiology for such temporal network data and discuss future developments. PMID:23513178
Predicting and controlling infectious disease epidemics using temporal networks.
Masuda, Naoki; Holme, Petter
2013-01-01
Infectious diseases can be considered to spread over social networks of people or animals. Mainly owing to the development of data recording and analysis techniques, an increasing amount of social contact data with time stamps has been collected in the last decade. Such temporal data capture the dynamics of social networks on a timescale relevant to epidemic spreading and can potentially lead to better ways to analyze, forecast, and prevent epidemics. However, they also call for extended analysis tools for network epidemiology, which has, to date, mostly viewed networks as static entities. We review recent results of network epidemiology for such temporal network data and discuss future developments.
Auditing as part of the terminology design life cycle.
Min, Hua; Perl, Yehoshua; Chen, Yan; Halper, Michael; Geller, James; Wang, Yue
2006-01-01
To develop and test an auditing methodology for detecting errors in medical terminologies satisfying systematic inheritance. This methodology is based on various abstraction taxonomies that provide high-level views of a terminology and highlight potentially erroneous concepts. Our auditing methodology is based on dividing concepts of a terminology into smaller, more manageable units. First, we divide the terminology's concepts into areas according to their relationships/roles. Then each multi-rooted area is further divided into partial-areas (p-areas) that are singly-rooted. Each p-area contains a set of structurally and semantically uniform concepts. Two kinds of abstraction networks, called the area taxonomy and p-area taxonomy, are derived. These taxonomies form the basis for the auditing approach. Taxonomies tend to highlight potentially erroneous concepts in areas and p-areas. Human reviewers can focus their auditing efforts on the limited number of problematic concepts following two hypotheses on the probable concentration of errors. A sample of the area taxonomy and p-area taxonomy for the Biological Process (BP) hierarchy of the National Cancer Institute Thesaurus (NCIT) was derived from the application of our methodology to its concepts. These views led to the detection of a number of different kinds of errors that are reported, and to confirmation of the hypotheses on error concentration in this hierarchy. Our auditing methodology based on area and p-area taxonomies is an efficient tool for detecting errors in terminologies satisfying systematic inheritance of roles, and thus facilitates their maintenance. This methodology concentrates a domain expert's manual review on portions of the concepts with a high likelihood of errors.
ERIC Educational Resources Information Center
Van Cleemput, Katrien
2010-01-01
This study explores some possibilities of social network analysis for studying adolescents' communication patterns. A full network analysis was conducted on third-grade high school students (15 year olds, 137 students) in Belgium. The results pointed out that face-to-face communication was still the most prominent way for information to flow…
When Networks Build a Platform Students Step up. Lumina Foundation Lesson. Spring 2010
ERIC Educational Resources Information Center
Brennan, Patricia L.
2010-01-01
For the people behind the Lumina Foundation for Education, the term "network" has particular meaning. In fact, largely as a result of their work in a national college awareness and action campaign called KnowHow2GO, they have come to define networks in a specific way--and they ask their KnowHow2GO grantees and partners to form networks…
ERIC Educational Resources Information Center
Mayer, John; Kieras, David E.
Using a system based on standard augmented transition network (ATN) parsing approach, this report describes a technique for the rapid development of natural language parsing, called High-Level Grammar Specification Language (HGSL). The first part of the report describes the syntax and semantics of HGSL and the network implementation of each of its…
The Design of NetSecLab: A Small Competition-Based Network Security Lab
ERIC Educational Resources Information Center
Lee, C. P.; Uluagac, A. S.; Fairbanks, K. D.; Copeland, J. A.
2011-01-01
This paper describes a competition-style of exercise to teach system and network security and to reinforce themes taught in class. The exercise, called NetSecLab, is conducted on a closed network with student-formed teams, each with their own Linux system to defend and from which to launch attacks. Students are expected to learn how to: 1) install…
Automated selection of synthetic biology parts for genetic regulatory networks.
Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob
2012-08-17
Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps.
Megchelenbrink, Wout; Huynen, Martijn; Marchiori, Elena
2014-01-01
Constraint-based models of metabolic networks are typically underdetermined, because they contain more reactions than metabolites. Therefore the solutions to this system do not consist of unique flux rates for each reaction, but rather a space of possible flux rates. By uniformly sampling this space, an estimated probability distribution for each reaction's flux in the network can be obtained. However, sampling a high dimensional network is time-consuming. Furthermore, the constraints imposed on the network give rise to an irregularly shaped solution space. Therefore more tailored, efficient sampling methods are needed. We propose an efficient sampling algorithm (called optGpSampler), which implements the Artificial Centering Hit-and-Run algorithm in a different manner than the sampling algorithm implemented in the COBRA Toolbox for metabolic network analysis, here called gpSampler. Results of extensive experiments on different genome-scale metabolic networks show that optGpSampler is up to 40 times faster than gpSampler. Application of existing convergence diagnostics on small network reconstructions indicate that optGpSampler converges roughly ten times faster than gpSampler towards similar sampling distributions. For networks of higher dimension (i.e. containing more than 500 reactions), we observed significantly better convergence of optGpSampler and a large deviation between the samples generated by the two algorithms. optGpSampler for Matlab and Python is available for non-commercial use at: http://cs.ru.nl/~wmegchel/optGpSampler/.
Virtual shelves in a digital library: a framework for access to networked information sources.
Patrick, T B; Springer, G K; Mitchell, J A; Sievert, M E
1995-01-01
Develop a framework for collections-based access to networked information sources that addresses the problem of location-dependent access to information sources. This framework uses a metaphor of a virtual shelf. A virtual shelf is a general-purpose server that is dedicated to a particular information subject class. The identifier of one of these servers identifies its subject class. Location-independent call numbers are assigned to information sources. Call numbers are based on standard vocabulary codes. The call numbers are first mapped to the location-independent identifiers of virtual shelves. When access to an information resource is required, a location directory provides a second mapping of these location-independent server identifiers to actual network locations. The framework has been implemented in two different systems. One system is based on the Open System Foundation/Distributed Computing Environment and the other is based on the World Wide Web. This framework applies in new ways traditional methods of library classification and cataloging. It is compatible with two traditional styles of selecting information searching and browsing. Traditional methods may be combined with new paradigms of information searching that will be able to take advantage of the special properties of digital information. Cooperation between the library-informational science community and the informatics community can provide a means for a continuing application of the knowledge and techniques of library science to the new problems of networked information sources.
Unterberger, Michael J; Holzapfel, Gerhard A
2014-11-01
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Cooperative epidemics on multiplex networks.
Azimi-Tafreshi, N
2016-04-01
The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.
Cooperative epidemics on multiplex networks
NASA Astrophysics Data System (ADS)
Azimi-Tafreshi, N.
2016-04-01
The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.
Towards a flexible middleware for context-aware pervasive and wearable systems.
Muro, Marco; Amoretti, Michele; Zanichelli, Francesco; Conte, Gianni
2012-11-01
Ambient intelligence and wearable computing call for innovative hardware and software technologies, including a highly capable, flexible and efficient middleware, allowing for the reuse of existing pervasive applications when developing new ones. In the considered application domain, middleware should also support self-management, interoperability among different platforms, efficient communications, and context awareness. In the on-going "everything is networked" scenario scalability appears as a very important issue, for which the peer-to-peer (P2P) paradigm emerges as an appealing solution for connecting software components in an overlay network, allowing for efficient and balanced data distribution mechanisms. In this paper, we illustrate how all these concepts can be placed into a theoretical tool, called networked autonomic machine (NAM), implemented into a NAM-based middleware, and evaluated against practical problems of pervasive computing.
Cooperative Spatial Retreat for Resilient Drone Networks †
Kang, Jin-Hyeok; Kwon, Young-Min; Park, Kyung-Joon
2017-01-01
Drones are broadening their scope to various applications such as networking, package delivery, agriculture, rescue, and many more. For proper operation of drones, reliable communication should be guaranteed because drones are remotely controlled. When drones experience communication failure due to bad channel condition, interference, or jamming in a certain area, one existing solution is to exploit mobility or so-called spatial retreat to evacuate them from the communication failure area. However, the conventional spatial retreat scheme moves drones in random directions, which results in inefficient movement with significant evacuation time and waste of battery lifetime. In this paper, we propose a novel spatial retreat technique that takes advantage of cooperation between drones for resilient networking, which is called cooperative spatial retreat (CSR). Our performance evaluation shows that the proposed CSR significantly outperforms existing schemes. PMID:28467390
Overhead-Performance Tradeoffs in Distributed Wireless Networks
2015-06-26
grew this fraction. See the tutorial for details and acronym definitions. Key Publication & Abstract • Gwanmo Ku and John MacLaren Walsh, Resource...tradeoffs. Key Publication & Abstract • Gwanmo Ku , Jie Ren, and John MacLaren Walsh, Computing the Rate Distortion Region for the CEO Problem with...IID. • Jie Ren, Bradford Boyle, Gwanmo Ku , Steven Weber, John MacLaren Walsh, Overhead Performance Tradeoffs A Resource Allocation Perspective, IEEE
Weiss, Sabine; Müller, Horst M.
2013-01-01
Current grounding theories propose that sensory-motor brain systems are not only modulated by the comprehension of concrete but also partly of abstract language. In order to investigate whether concrete or abstract language elicits similar or distinct brain activity, neuronal synchronization patterns were investigated by means of long-range EEG coherence analysis. Participants performed a semantic judgment task with concrete and abstract sentences. EEG coherence between distant electrodes was analyzed in various frequencies before and during sentence processing using a bivariate AR-model with time-varying parameters. The theta frequency band (3–7 Hz) reflected common and different synchronization networks related to working memory processes and memory-related lexico-semantic retrieval during processing of both sentence types. In contrast, the beta1 band (13–18 Hz) showed prominent differences between both sentence types, whereby concrete sentences were associated with higher coherence implicating a more widespread range and intensity of mental simulation processes. The gamma band (35–40 Hz) reflected the sentences' congruency and indicated the more difficult integration of incongruent final nouns into the sentence context. Most importantly, findings support the notion that different cognitive operations during sentence processing are associated with multiple brain oscillations. PMID:24027515
Cognitive Radio Cloud Networks: Assured Access In The Future Electromagnetic Operating Environment
2017-04-04
AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY COGNITIVE RADIO CLOUD NETWORKS: ASSURED ACCESS IN THE FUTURE ELECTROMAGNETIC OPERATING...3 Abstract The electromagnetic spectrum is a finite resource that is critical to the United States military’s...ability to gain superiority in the other five warfighting domains. The Department of Defense’s electromagnetic strategy is spectrum access when and
SONET Synchronization: What’s Happening
1992-12-01
SONET Synchronization : What’s Happening Robert W. Cubbage Alcatel Network Systems, Inc. Richardson, Texas Abstract Almost everyone that has...heard of SONETkwws that the acronym stands for Synchronous Opticd NETwork. There has been a host of manazine articles on SONET rinns. SONET features, ewn...SONET componmponbility w th digital radio. ~ jza t h& not been highlypnblicizedk the critical relationship between SONET. nehuork synchronization
Cultural Geography Model Validation
2010-03-01
the Cultural Geography Model (CGM), a government owned, open source multi - agent system utilizing Bayesian networks, queuing systems, the Theory of...referent determined either from theory or SME opinion. 4. CGM Overview The CGM is a government-owned, open source, data driven multi - agent social...HSCB, validation, social network analysis ABSTRACT: In the current warfighting environment , the military needs robust modeling and simulation (M&S
Toward Privacy-preserving Content Access Control for Information Centric Networking
2014-03-01
REPORT Toward Privacy-preserving Content Access Control for Information Centric Networking 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Information...regardless the security mechanisms provided by different content hosting servers. However, using ABE has a drawback that the enforced content access...Encryption (ABE) is a flexible approach to enforce the content access policies regardless the security mechanisms provided by different content hosting
Topology Design for Directional Range Extension Networks with Antenna Blockage
2017-03-19
introduced by pod-based antenna blockages. Using certain modeling approximations, the paper presents a quantitative analysis showing design trade-offs...parameters. Sec- tion IV develops quantitative relationships among key design elements and performance metrics. Section V considers some implications of the...Topology Design for Directional Range Extension Networks with Antenna Blockage Thomas Shake MIT Lincoln Laboratory shake@ll.mit.edu Abstract
Leveraging Emerging Technology to Maintain Corporate Situational Awareness
2008-06-01
Abstract and Outline for 13th ICCRTS For the paper entitled: Leveraging Emerging Technology to Maintain Corporate ...Situational Awareness Topics: Topic 5. Organizational Issues Topic 4. Cognitive and Social Issues Topic: 2 Networks and Networking Mr. José...for the collection of information is estimated to average 1 hour per response , including the time for reviewing instructions, searching existing data
Wireless Sensor Networks--A Hands-On Modular Experiments Platform for Enhanced Pedagogical Learning
ERIC Educational Resources Information Center
Taslidere, E.; Cohen, F. S.; Reisman, F. K.
2011-01-01
This paper presents the use of wireless sensor networks (WSNs) in educational research as a platform for enhanced pedagogical learning. The aim here with the use of a WSN platform was to go beyond the implementation stage to the real-life application stage, i.e., linking the implementation to real-life applications, where abstract theory and…
Reading fiction and reading minds: the role of simulation in the default network
Bricker, Andrew B.; Dodell-Feder, David; Mitchell, Jason P.
2016-01-01
Research in psychology has suggested that reading fiction can improve individuals’ social-cognitive abilities. Findings from neuroscience show that reading and social cognition both recruit the default network, a network which is known to support our capacity to simulate hypothetical scenes, spaces and mental states. The current research tests the hypothesis that fiction reading enhances social cognition because it serves to exercise the default subnetwork involved in theory of mind. While undergoing functional neuroimaging, participants read literary passages that differed along two dimensions: (i) vivid vs abstract and (ii) social vs non-social. Analyses revealed distinct subnetworks of the default network respond to the two dimensions of interest: the medial temporal lobe subnetwork responded preferentially to vivid passages, with or without social content; the dorsomedial prefrontal cortex (dmPFC) subnetwork responded preferentially to passages with social and abstract content. Analyses also demonstrated that participants who read fiction most often also showed the strongest social cognition performance. Finally, mediation analysis showed that activity in the dmPFC subnetwork in response to the social content mediated this relation, suggesting that the simulation of social content in fiction plays a role in fiction’s ability to enhance readers’ social cognition. PMID:26342221
2017-01-01
ABSTRACT Male-male vocal competition in anuran species is critical for mating success; however, it is also energetically demanding and highly time-consuming. Thus, we hypothesized that males may change signal elaboration in response to competition in real time. Male serrate-legged small treefrogs (Kurixalus odontotarsus) produce compound calls that contain two kinds of notes, harmonic sounds called ‘A notes’ and short broadband sounds called ‘B notes’. Using male evoked vocal response experiments, we found that competition influences the temporal structure and complexity of vocal signals produced by males. Males produce calls with a higher ratio of notes:call, and more compound calls including more A notes but fewer B notes with contest escalation. In doing so, males minimize the energy costs and maximize the benefits of competition when the level of competition is high. This means that the evolution of sexual signal complexity in frogs may be susceptible to selection for plasticity related to adjusting performance to the pressures of competition, and supports the idea that more complex social contexts can lead to greater vocal complexity. PMID:29175862
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
Information Leakage Analysis by Abstract Interpretation
NASA Astrophysics Data System (ADS)
Zanioli, Matteo; Cortesi, Agostino
Protecting the confidentiality of information stored in a computer system or transmitted over a public network is a relevant problem in computer security. The approach of information flow analysis involves performing a static analysis of the program with the aim of proving that there will not be leaks of sensitive information. In this paper we propose a new domain that combines variable dependency analysis, based on propositional formulas, and variables' value analysis, based on polyhedra. The resulting analysis is strictly more accurate than the state of the art abstract interpretation based analyses for information leakage detection. Its modular construction allows to deal with the tradeoff between efficiency and accuracy by tuning the granularity of the abstraction and the complexity of the abstract operators.
76 FR 61107 - Agency Information Collection Activities: Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
.... Project: Networking Suicide Prevention Hotlines--Evaluation of the Lifeline Policies for Helping Callers... approved data collection activities [Evaluation of Networking Suicide Prevention Hotlines Follow-Up Assessment (OMB No. 0930-0274) and Call Monitoring of National Suicide Prevention Lifeline Form (OMB No. 0930...
Cloud-Based Virtual Laboratory for Network Security Education
ERIC Educational Resources Information Center
Xu, Le; Huang, Dijiang; Tsai, Wei-Tek
2014-01-01
Hands-on experiments are essential for computer network security education. Existing laboratory solutions usually require significant effort to build, configure, and maintain and often do not support reconfigurability, flexibility, and scalability. This paper presents a cloud-based virtual laboratory education platform called V-Lab that provides a…
Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell
Lim, Wendell A.; Lee, Connie M.; Tang, Chao
2013-01-01
A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241
Autonomous distributed self-organization for mobile wireless sensor networks.
Wen, Chih-Yu; Tang, Hung-Kai
2009-01-01
This paper presents an adaptive combined-metrics-based clustering scheme for mobile wireless sensor networks, which manages the mobile sensors by utilizing the hierarchical network structure and allocates network resources efficiently A local criteria is used to help mobile sensors form a new cluster or join a current cluster. The messages transmitted during hierarchical clustering are applied to choose distributed gateways such that communication for adjacent clusters and distributed topology control can be achieved. In order to balance the load among clusters and govern the topology change, a cluster reformation scheme using localized criterions is implemented. The proposed scheme is simulated and analyzed to abstract the network behaviors in a number of settings. The experimental results show that the proposed algorithm provides efficient network topology management and achieves high scalability in mobile sensor networks.
Delay/Disruption Tolerant Networking for the International Space Station (ISS)
NASA Technical Reports Server (NTRS)
Schlesinger, Adam; Willman, Brett M.; Pitts, Lee; Davidson, Suzanne R.; Pohlchuck, William A.
2017-01-01
Disruption Tolerant Networking (DTN) is an emerging data networking technology designed to abstract the hardware communication layer from the spacecraft/payload computing resources. DTN is specifically designed to operate in environments where link delays and disruptions are common (e.g., space-based networks). The National Aeronautics and Space Administration (NASA) has demonstrated DTN on several missions, such as the Deep Impact Networking (DINET) experiment, the Earth Observing Mission 1 (EO-1) and the Lunar Laser Communication Demonstration (LLCD). To further the maturation of DTN, NASA is implementing DTN protocols on the International Space Station (ISS). This paper explains the architecture of the ISS DTN network, the operational support for the system, the results from integrated ground testing, and the future work for DTN expansion.
Crossbar Switches For Optical Data-Communication Networks
NASA Technical Reports Server (NTRS)
Monacos, Steve P.
1994-01-01
Optoelectronic and electro-optical crossbar switches called "permutation engines" (PE's) developed to route packets of data through fiber-optic communication networks. Basic network concept described in "High-Speed Optical Wide-Area Data-Communication Network" (NPO-18983). Nonblocking operation achieved by decentralized switching and control scheme. Each packet routed up or down in each column of this 5-input/5-output permutation engine. Routing algorithm ensures each packet arrives at its designated output port without blocking any other packet that does not contend for same output port.
HEALTH CONSEQUENCES OF DIOXIN EXPOSURE
Abstract TCDD is often called the most toxic man-made chemical because of its potency to cause health effects in a wide variety of vertebrates. Structurally related persistent compounds, known as 'dioxins', have the same plethora of responses. Dioxins have effects in mu...
An Integrating Framework for Interdisciplinary Military Analyses
2017-04-01
Effectiveness, System Performance, Task Prosecution, War Gaming 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES...and space for every play of the game . Called plays can be compared to collective tasks with each player responsible for executing one or more
NOAA- NESDIS Banner Satellite Conferences Collage images of earth, POES and GOES satellites in space HOME Call for Poster Abstracts DOC Logo NOAA Logo Satellite Conferences Welcome to the website for National Oceanic and Atmospheric Administration (NOAA) Satellite Conferences; past, present and future
Inclusive Education and the Arts
ERIC Educational Resources Information Center
Allan, Julie
2014-01-01
This paper addresses the troubled, problematic and contested field of inclusive education, characterised by antagonisms between so-called inclusionists and special educationists; frustration, particularly among disability activists caused by the abstraction of the social model of disability and the expansion of the special educational needs…
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
Crystallization and dynamical arrest of attractive hard spheres.
Babu, Sujin; Gimel, Jean-Christophe; Nicolai, Taco
2009-02-14
Crystallization of hard spheres interacting with a square well potential was investigated by numerical simulations using so-called Brownian cluster dynamics. The phase diagram was determined over a broad range of volume fractions. The crystallization rate was studied as a function of the interaction strength expressed in terms of the second virial coefficient. For volume fractions below about 0.3 the rate was found to increase abruptly with increasing attraction at the binodal of the metastable liquid-liquid phase separation. The rate increased until a maximum was reached after which it decreased with a power law dependence on the second virial coefficient. Above a critical percolation concentration, a transient system spanning network of connected particles was formed. Crystals were formed initially as part of the network, but eventually crystallization led to the breakup of the network. The lifetime of the transient gels increased very rapidly over a small range of interaction energies. Weak attraction destabilized the so-called repulsive crystals formed in pure hard sphere systems and shifted the coexistence line to higher volume fractions. Stronger attraction led to the formation of a denser, so-called attractive, crystalline phase. Nucleation of attractive crystals in the repulsive crystalline phase was observed close to the transition.
Bearer channel control protocol for the dynamic VB5.2 interface in ATM access networks
NASA Astrophysics Data System (ADS)
Fragoulopoulos, Stratos K.; Mavrommatis, K. I.; Venieris, Iakovos S.
1996-12-01
In the multi-vendor systems, a customer connected to an Access network (AN) must be capable of selecting a specific Service Node (SN) according to the services the SN provides. The multiplicity of technologically varying AN calls for the definition of a standard reference point between the AN and the SN widely known as the VB interface. Two versions are currently offered. The VB5.1 is simpler to implement but is not as flexible as the VB5.2, which supports switched connections. The VB5.2 functionality is closely coupled to the Broadband Bearer Channel Connection Protocol (B-BCCP). The B-BCCP is used for conveying the necessary information for dynamic resource allocation, traffic policing and routing in the AN as well as for information exchange concerning the status of the AN before a new call is established by the SN. By relying on such a protocol for the exchange of information instead of intercepting and interpreting signalling messages in the AN, the architecture of the AN is simplified because the functionality related to processing is not duplicated. In this paper a prominent B- BCCP candidate is defined, called the Service node Access network Interaction Protocol.
Networks In Real Space: Characteristics and Analysis for Biology and Mechanics
NASA Astrophysics Data System (ADS)
Modes, Carl; Magnasco, Marcelo; Katifori, Eleni
Functional networks embedded in physical space play a crucial role in countless biological and physical systems, from the efficient dissemination of oxygen, blood sugars, and hormonal signals in vascular systems to the complex relaying of informational signals in the brain to the distribution of stress and strain in architecture or static sand piles. Unlike their more-studied abstract cousins, such as the hyperlinked internet, social networks, or economic and financial connections, these networks are both constrained by and intimately connected to the physicality of their real, embedding space. We report on the results of new computational and analytic approaches tailored to these physical networks with particular implications and insights for mammalian organ vasculature.
Design and optimization of all-optical networks
NASA Astrophysics Data System (ADS)
Xiao, Gaoxi
1999-10-01
In this thesis, we present our research results on the design and optimization of all-optical networks. We divide our results into the following four parts: 1.In the first part, we consider broadcast-and-select networks. In our research, we propose an alternative and cheaper network configuration to hide the tuning time. In addition, we derive lower bounds on the optimal schedule lengths and prove that they are tighter than the best existing bounds. 2.In the second part, we consider all-optical wide area networks. We propose a set of algorithms for allocating a given number of WCs to the nodes. We adopt a simulation-based optimization approach, in which we collect utilization statistics of WCs from computer simulation and then perform optimization to allocate the WCs. Therefore, our algorithms are widely applicable and they are not restricted to any particular model and assumption. We have conducted extensive computer simulation on regular and irregular networks under both uniform and non-uniform traffic. We see that our method can get nearly the same performance as that of full wavelength conversion by using a much smaller number of WCs. Compared with the best existing method, the results show that our algorithms can significantly reduce (1)the overall blocking probability (i.e., better mean quality of service) and (2)the maximum of the blocking probabilities experienced at all the source nodes (i.e., better fairness). Equivalently, for a given performance requirement on blocking probability, our algorithms can significantly reduce the number of WCs required. 3.In the third part, we design and optimize the physical topology of all-optical wide area networks. We show that the design problem is NP-complete and we propose a heuristic algorithm called two-stage cut saturation algorithm for this problem. Simulation results show that (1)the proposed algorithm can efficiently design networks with low cost and high utilization, and (2)if wavelength converters are available to support full wavelength conversion, the cost of the links can be significantly reduced. 4.In the fourth part, we consider all-optical wide area networks with multiple fibers per link. We design a node configuration for all-optical networks. We exploit the flexibility that, to establish a lightpath across a node, we can select any one of the available channels in the incoming link and any one of the available channels in the outgoing link. As a result, the proposed node configuration requires a small number of small optical switches while it can achieve nearly the same performance as the existing one. And there is no additional crosstalk other than the intrinsic crosstalk within each single-chip optical switch.* (Abstract shortened by UMI.) *Originally published in DAI Vol. 60, No. 2. Reprinted here with corrected author name.
Biblio-MetReS: A bibliometric network reconstruction application and server
2011-01-01
Background Reconstruction of genes and/or protein networks from automated analysis of the literature is one of the current targets of text mining in biomedical research. Some user-friendly tools already perform this analysis on precompiled databases of abstracts of scientific papers. Other tools allow expert users to elaborate and analyze the full content of a corpus of scientific documents. However, to our knowledge, no user friendly tool that simultaneously analyzes the latest set of scientific documents available on line and reconstructs the set of genes referenced in those documents is available. Results This article presents such a tool, Biblio-MetReS, and compares its functioning and results to those of other user-friendly applications (iHOP, STRING) that are widely used. Under similar conditions, Biblio-MetReS creates networks that are comparable to those of other user friendly tools. Furthermore, analysis of full text documents provides more complete reconstructions than those that result from using only the abstract of the document. Conclusions Literature-based automated network reconstruction is still far from providing complete reconstructions of molecular networks. However, its value as an auxiliary tool is high and it will increase as standards for reporting biological entities and relationships become more widely accepted and enforced. Biblio-MetReS is an application that can be downloaded from http://metres.udl.cat/. It provides an easy to use environment for researchers to reconstruct their networks of interest from an always up to date set of scientific documents. PMID:21975133
Energetic Constraints Produce Self-sustained Oscillatory Dynamics in Neuronal Networks
Burroni, Javier; Taylor, P.; Corey, Cassian; Vachnadze, Tengiz; Siegelmann, Hava T.
2017-01-01
Overview: We model energy constraints in a network of spiking neurons, while exploring general questions of resource limitation on network function abstractly. Background: Metabolic states like dietary ketosis or hypoglycemia have a large impact on brain function and disease outcomes. Glia provide metabolic support for neurons, among other functions. Yet, in computational models of glia-neuron cooperation, there have been no previous attempts to explore the effects of direct realistic energy costs on network activity in spiking neurons. Currently, biologically realistic spiking neural networks assume that membrane potential is the main driving factor for neural spiking, and do not take into consideration energetic costs. Methods: We define local energy pools to constrain a neuron model, termed Spiking Neuron Energy Pool (SNEP), which explicitly incorporates energy limitations. Each neuron requires energy to spike, and resources in the pool regenerate over time. Our simulation displays an easy-to-use GUI, which can be run locally in a web browser, and is freely available. Results: Energy dependence drastically changes behavior of these neural networks, causing emergent oscillations similar to those in networks of biological neurons. We analyze the system via Lotka-Volterra equations, producing several observations: (1) energy can drive self-sustained oscillations, (2) the energetic cost of spiking modulates the degree and type of oscillations, (3) harmonics emerge with frequencies determined by energy parameters, and (4) varying energetic costs have non-linear effects on energy consumption and firing rates. Conclusions: Models of neuron function which attempt biological realism may benefit from including energy constraints. Further, we assert that observed oscillatory effects of energy limitations exist in networks of many kinds, and that these findings generalize to abstract graphs and technological applications. PMID:28289370
The General Base in the Thymidylate Synthase Catalyzed Proton Abstraction
Ghosh, Ananda K.; Islam, Zahidul; Krueger, Jonathan; Abeysinghe, Don Thelma; Kohen, Amnon
2015-01-01
The enzyme thymidylate synthase (TSase), an important chemotherapeutic drug target, catalyzes the formation of 2′-deoxythymidine-5′-monophosphate (dTMP), a precursor of one of the DNA building blocks. TSase catalyzes a multi-step mechanism that includes the abstraction of a proton from the C5 of the substrate 2′-deoxyuridine-5′-monophosphate (dUMP). Previous studies on ecTSase proposed that an active-site residue, Y94 serves the role of the general base abstracting this proton. However, since Y94 is neither very basic, nor connected to basic residues, nor located close enough to the pyrimidine proton to be abstracted, the actual identity of this base remains enigmatic. Based on crystal structures, an alternative hypothesis is that the nearest potential proton-acceptor of C5 of dUMP is a water molecule that is part of a hydrogen bond (H-bond) network comprised of several water molecules and several protein residues including H147, E58, N177, and Y94. Here, we examine the role of the residue Y94 in the proton abstraction step by removing its hydroxyl group (Y94F mutant). We investigated the effect of the mutation on the temperature dependence of intrinsic kinetic isotope effects (KIEs) and found that these KIEs are more temperature dependent than those of the wild-type enzyme (WT). These results suggest that the phenolic –OH of Y94 is a component of the transition state for the proton abstraction step. The findings further support the hypothesis that no single functional group is the general base, but a network of bases and hydroxyls (from water molecules and tyrosine) sharing H-bonds across the active site can serve the role of the general base to remove the pyrimidine proton. PMID:25912171
Devine, Emily Beth; Van Eaton, Erik; Zadworny, Megan E; Symons, Rebecca; Devlin, Allison; Yanez, David; Yetisgen, Meliha; Keyloun, Katelyn R; Capurro, Daniel; Alfonso-Cristancho, Rafael; Flum, David R; Tarczy-Hornoch, Peter
2018-05-22
The availability of high fidelity electronic health record (EHR) data is a hallmark of the learning health care system. Washington State's Surgical Care Outcomes and Assessment Program (SCOAP) is a network of hospitals participating in quality improvement (QI) registries wherein data are manually abstracted from EHRs. To create the Comparative Effectiveness Research and Translation Network (CERTAIN), we semi-automated SCOAP data abstraction using a centralized federated data model, created a central data repository (CDR), and assessed whether these data could be used as real world evidence for QI and research. Describe the validation processes and complexities involved and lessons learned. Investigators installed a commercial CDR to retrieve and store data from disparate EHRs. Manual and automated abstraction systems were conducted in parallel (10/2012-7/2013) and validated in three phases using the EHR as the gold standard: 1) ingestion, 2) standardization, and 3) concordance of automated versus manually abstracted cases. Information retrieval statistics were calculated. Four unaffiliated health systems provided data. Between 6 and 15 percent of data elements were abstracted: 51 to 86 percent from structured data; the remainder using natural language processing (NLP). In phase 1, data ingestion from 12 out of 20 feeds reached 95 percent accuracy. In phase 2, 55 percent of structured data elements performed with 96 to 100 percent accuracy; NLP with 89 to 91 percent accuracy. In phase 3, concordance ranged from 69 to 89 percent. Information retrieval statistics were consistently above 90 percent. Semi-automated data abstraction may be useful, although raw data collected as a byproduct of health care delivery is not immediately available for use as real world evidence. New approaches to gathering and analyzing extant data are required.
Using Call Detail Records for Modeling Coastal Recreation Behavior
Call data records (CDR) are data from cellular phone networks that can be used to understand human mobility or where people go spatially. They can be used to estimate visitation to an area such as a coastal access point for a given time window, as well as provide information on t...
Network Quality of Service Monitoring for IP Telephony.
ERIC Educational Resources Information Center
Ghita, B. V.; Furnell, S. M.; Lines, B. M.; Le-Foll, D.; Ifeachor, E. C.
2001-01-01
Discusses the development of real-time applications on the Internet for telecommunications and presents a non-intrusive way of determining network performance parameters for voice packet flows within a voice over IP (Internet Protocol), or Internet telephony call. Considers measurement of quality of service and describes results of a preliminary…
Non Invasive Biomedical Analysis - Breath Networking Session at PittCon 2011, Atlanta, Georgia
This was the second year that our breath colleagues organized a networking session at the Pittsburgh Conference and Exposition or ''PittCon'' (http://www.pincon.org/).This time it was called "Non-invasive Biomedical Analysis" to broaden the scope a bit, but the primary focus rema...
Exploratory Visualization of Graphs Based on Community Structure
ERIC Educational Resources Information Center
Liu, Yujie
2013-01-01
Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding…
Code of Federal Regulations, 2014 CFR
2014-10-01
... data from both network-based solutions and handset-based solutions may be blended to measure compliance... shall be applied to the accuracy data from each solution and measured against the network-based accuracy... the 911 operator will not be able to call the user back, and that the user should convey the exact...
ERIC Educational Resources Information Center
Cepic, Mojca
2008-01-01
Light beams in wavy unclear water, also called underwater rays, and caustic networks of light formed at the bottom of shallow water are two faces of a single phenomenon. Derivation of the caustic using only simple geometry, Snell's law and simple derivatives accounts for observations such as the existence of the caustic network on vertical walls,…
Specification of Computer Systems by Objectives.
ERIC Educational Resources Information Center
Eltoft, Douglas
1989-01-01
Discusses the evolution of mainframe and personal computers, and presents a case study of a network developed at the University of Iowa called the Iowa Computer-Aided Engineering Network (ICAEN) that combines Macintosh personal computers with Apollo workstations. Functional objectives are stressed as the best measure of system performance. (LRW)