Science.gov

Sample records for abt-888 radiosensitizes malignant

  1. Radiosensitization of Pancreatic Cancer Cells In Vitro and In Vivo through Poly (ADP-ribose) Polymerase Inhibition with ABT-888.

    PubMed

    Tuli, Richard; Surmak, Andrew J; Reyes, Juvenal; Armour, Michael; Hacker-Prietz, Amy; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2014-05-13

    To determine whether poly (ADP-ribose) polymerase-1/2 (PARP-1/2) inhibition enhances radiation-induced cytotoxicity of pancreatic adenocarcinoma in vitro and in vivo, and the mechanism by which this occurs. Pancreatic carcinoma cells were treated with ABT-888, radiation, or both. In vitro cell viability, apoptosis, and PARP activity were measured. Orthotopic xenografts were generated in athymic mice and treated with ABT-888 (25mg/kg), radiation (5Gy), both, or no treatment. Mice were monitored with bioluminescence imaging. In vitro, treatment with ABT-888 and radiation led to higher rates of cell death after 8days (P < .01). Co-treatment with 5Gy and 1, 10 or 100μmol/l of ABT-888 led to dose enhancement factors of 1.29, 1.41 and 2.36, respectively. Caspase activity was not significantly increased when treated with ABT-888 (10 μmol/l) alone (1.28-fold, P = .08), but became significant when radiation was added (2.03-fold, P < .01). PARP activity increased post-radiation and was abrogated following co-treatment with ABT-888. In vivo, treatment with ABT-888, radiation or both led to tumor growth inhibition (TGI) of 8, 30 and 39days, and survival at 60days of 0%, 0% and 40%, respectively. ABT-888 with radiation significantly enhanced tumor response in vitro and in vivo. ABT-888 inhibited PAR protein polymerization resulting in dose-dependent feedback up-regulation of PARP and p-ATM suggesting increased DNA damage. This translated into enhancement in TGI and survival with radiation in vivo. In vitro PAR levels correlated with levels of tumor apoptosis suggesting potential as a predictive biomarker. These data are being used to support a Phase I study in locally advanced pancreatic cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The PARP inhibitor ABT-888 potentiates dacarbazine-induced cell death in carcinoids.

    PubMed

    Somnay, Y; Lubner, S; Gill, H; Matsumura, J B; Chen, H

    2016-10-01

    Monoagent DNA-alkylating chemotherapies like dacarbazine are among a paucity of medical treatments for advanced carcinoid tumors, but are limited by host toxicity and intrinsic chemoresistance through the base excision repair (BER) pathway via poly (ADP-ribose) polymerase (PARP). Hence, inhibitors of PARP may potentiate DNA-damaging agents by blocking BER and DNA restoration. We show that the PARP inhibitor ABT-888 (Veliparib) enhances the cytotoxic effects of dacarbazine in carcinoids. Two human carcinoid cell lines (BON and H727) treated with a combination of ABT-888 and dacarbazine resulted in synergistic growth inhibition signified by combination indices <1 on the Chou-Talalay scale. ABT-888 administered prior to varying dacarbazine doses promoted the suppression of neuroendocrine biomarkers of malignancy, ASCL1 and chromogranin A, as shown by western analysis. Ataxia telangiectasia mitogen factor phosphorylation and p21 Waf1/Cip1 activation, indicative of DNA damage, were increased by ABT-888 when combined with dacarbazine treatment, suggesting BER pathway attenuation by ABT-888. PE Annexin V/7-AAD staining and sorting revealed a profound induction of apoptosis following combination treatment, which was further confirmed by increased PARP cleavage. These results demonstrate that ABT-888 synergizes dacarbazine treatment in carcinoids. Therefore, ABT-888 may help treat carcinoids unresponsive or refractory to mainstay therapies.

  3. In Vitro and In Vivo Enhancement of Chemoradiation Using the Oral PARP Inhibitor ABT-888 in Colorectal Cancer Cells

    SciTech Connect

    Shelton, Joseph W., E-mail: jwshelt@emory.edu; Waxweiler, Timothy V.; Landry, Jerome

    2013-07-01

    Purpose: Poly(ADP-ribose) polymerase plays a critical role in the recognition and repair of DNA single-strand breaks and double-strand breaks (DSBs). ABT-888 is an orally available inhibitor of this enzyme. This study seeks to evaluate the use of ABT-888 combined with chemotherapy and radiation therapy (RT) in colorectal carcinoma models. Methods and Materials: RT clonogenic assays were performed on HCT116 and HT29 cells treated with 5-fluorouracil, irinotecan, or oxaliplatin with or without ABT. The surviving fraction at 2 Gy and dose-modifying factor at 10% survival were analyzed. Synergism was assessed by isobologram analysis for combination therapies. γH2AX and neutral comet assaysmore » were performed to assess the effect of therapy on DSB formation/repair. In vivo assessments were made by use of HCT116 cells in a xenograft mouse model. Tumor growth delay was measured at a volume of 500 mm{sup 3}. Results: Both lines were radiosensitized by ABT alone, and ABT further increased chemotherapy dose-modifying factors to the 1.6 to 1.8 range. All combinations were synergistic (combination indices <0.9). ABT treatment significantly increased DSB after RT (γH2AX, 69% vs 43%; P=.017) and delayed repair. We found tumor growth delays of 7.22 days for RT; 11.90 days for RT and ABT; 13.5 days for oxaliplatin, RT, and ABT; 14.17 days for 5-fluorouracil, RT, and ABT; and 23.81 days for irinotecan, RT, and ABT. Conclusion: ABT-888 radiosensitizes at similar or higher levels compared with classic chemotherapies and acts synergistically with these chemotherapies to enhance RT effects. In vivo confirmation of these results indicates a potential role for combining its use with existing chemoradiation regimens.« less

  4. Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model.

    PubMed

    Lemasson, Benjamin; Wang, Hanxiao; Galbán, Stefanie; Li, Yinghua; Zhu, Yuan; Heist, Kevin A; Tsein, Christina; Chenevert, Thomas L; Rehemtulla, Alnawaz; Galbán, Craig J; Holland, Eric C; Ross, Brian D

    2016-02-01

    Despite the use of ionizing radiation (IR) and temozolomide (TMZ), outcome for glioblastoma (GBM) patients remains dismal. Poly (ADP-ribose) polymerase (PARP) is important in repair pathways for IR-induced DNA damage and TMZ-induced alkylation at N7-methylguanine and N3-methyldenine. However, optimized protocols for administration of PARP inhibitors have not been delineated. In this study, the PARP inhibitor ABT-888 was evaluated in combination with and compared to current standard-of-care in a genetically engineered mouse GBM model. Results demonstrated that concomitant TMZ/IR/ABT-888 with adjuvant TMZ/ABT-888 was more effective in inducing apoptosis and reducing proliferation with significant tumor growth delay and improved overall survival over concomitant TMZ/IR with adjuvant TMZ. Diffusion-weighted MRI, an early translatable response biomarker detected changes in tumors reflecting response at 1 day post TMZ/IR/ABT-888 treatment. This study provides strong scientific rationale for the development of an optimized dosing regimen for a PARP inhibitor with TMZ/IR for upfront treatment of GBM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Intra-arterial bromodeoxyuridine radiosensitization of malignant gliomas

    SciTech Connect

    Hegarty, T.J.; Thornton, A.F.; Diaz, R.F.

    1990-08-01

    In the 1950's it was first observed that mammalian cells exposed to the halogenated deoxyuridines were more sensitive to ultraviolet light and radiation than untreated cells. This prompted early clinical trials with bromodeoxyuridine (BUdR) which showed mixed results. More recently, several Phase I studies, while establishing the feasibility of continuous intravenous (IV) infusion of BUdR, have reported significant dose limiting skin and bone marrow toxicities and have questioned the optimal method of BUdR delivery. To exploit the high mitotic activity of malignant gliomas relative to surrounding normal brain tissue, we have developed a permanently implantable infusion pump system for safe,more » continuous intraarterial (IA) internal carotid BUdR delivery. Since July 1985, 23 patients with malignant brain tumors (18 grade 4, 5 grade 3) have been treated in a Phase I clinical trial using IA BUdR (400-600 mg/m2/day X 8 1/2 weeks) and focal external beam radiotherapy (59.4 Gy at 1.8 Gy/day in 6 1/2 weeks). Following initial biopsy/surgery the infusion pump system was implanted; BUdR infusion began 2 weeks prior to and continued throughout the 6 1/2 week course of radiotherapy. There have been no vascular complications. Side-effects in all patients have included varying degrees of anorexia, fatigue, ipsilateral forehead dermatitis, blepharitis, and conjunctivitis. Myelosuppression requiring dose reduction occurred in one patient. An overall Kaplan-Meier estimated median survival of 20 months has been achieved. As in larger controlled series, histologic grade and age are prognostically significant. We have shown in a Phase I study that IA BUdR radiosensitization is safe, tolerable, may lead to improved survival, and appears to be an efficacious primary treatment of malignant gliomas.« less

  6. Enhanced radiosensitivity of malignant glioma cells after adenoviral p53 transduction.

    PubMed

    Broaddus, W C; Liu, Y; Steele, L L; Gillies, G T; Lin, P S; Loudon, W G; Valerie, K; Schmidt-Ullrich, R K; Fillmore, H L

    1999-12-01

    The goal of this study was to determine whether adenoviral vector-mediated expression of human wildtype p53 can enhance the radiosensitivity of malignant glioma cells that express native wild-type p53. The p53 gene is thought to function abnormally in the majority of malignant gliomas, although it has been demonstrated to be mutated in only approximately 30%. This has led to studies in which adenoviral transduction with wild-type human p53 has been investigated in an attempt to slow tumor cell growth. Recent studies suggest that reconstitution of wild-type p53 can render cells more susceptible to radiation-mediated death, primarily by p53-mediated apoptosis. Rat RT2 glioma cells were analyzed for native p53 status by reverse transcriptase-polymerase chain reaction and sequence analysis and for p53 expression by Western blot analysis. Clonogenic survival and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were used to characterize RT2 cell radiosensitivity and apoptosis, respectively, with and without prior transduction with p53-containing and control adenoviral vectors. Animal survival length was monitored after intracerebral implantation with transduced and nontransduced RT2 cells, with and without cranial radiation. The RT2 cells were demonstrated to express native rat wild-type p53 and to markedly overexpress human p53 following adenoviral p53 transduction. The combination of p53 transduction followed by radiation resulted in marked decreases in RT2 cell survival and increases in apoptosis at radiation doses from 2 to 6 Gy. Animals receiving cranial radiation after intracerebral implantation with RT2 cells previously transduced with p53 survived significantly longer than control animals (p<0.01). The ability to enhance the radiosensitivity of malignant glioma cells that express wild-type p53 by using adenoviral transduction to induce overexpression of p53 offers hope for this approach as a therapeutic strategy

  7. IDH1(R132H) mutation causes a less aggressive phenotype and radiosensitizes human malignant glioma cells independent of the oxygenation status.

    PubMed

    Kessler, Jacqueline; Güttler, Antje; Wichmann, Henri; Rot, Swetlana; Kappler, Matthias; Bache, Matthias; Vordermark, Dirk

    2015-09-01

    In malignant glioma the presence of the IDH1 mutation (IDH1(R132H)) is associated with better clinical outcome. However, it is unclear whether IDH1 mutation is associated with a less aggressive phenotype or directly linked to increased sensitivity to radiotherapy. We determined the influence of IDH1(R132H) mutant protein on proliferation and growth in 3D culture, migration, cell survival and radiosensitivity in vitro under normoxia (21% O2) and hypoxia (<1% O2) in a panel of human malignant glioma cell lines (U-251MG, U-343MG, LN-229) with stable overexpression of wild-type (IDH1(wt)) and mutated IDH1 (IDH1(R132H)). Overexpression of IDH1(R132H) in glioma cells resulted in slightly decreased cell proliferation, considerably reduced cell migration and caused differences in growth properties in 3D spheroid cultures. Furthermore, IDH1(R132H)-positive cells consistently demonstrated an increased radiosensitivity in human malignant glioma cells U-251MG (DMF10: 1.52, p<0.01 and 1.42, p<0.01), U-343MG (DMF10: 1.78, p<0.01 and 1.75, p<0.01) and LN-229 (DMF10: 1.41, p<0.05 and 1.68, p<0.01) under normoxia and hypoxia, respectively. Our data indicate that IDH1(R132H) mutation causes both a less aggressive biological behavior and direct radiosensitization of human malignant glioma cells. Targeting IDH1 appears to be an attractive approach in combination with radiotherapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  9. ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors

    ClinicalTrials.gov

    2014-07-07

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Brain Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  10. Radiosensitivity in plants

    SciTech Connect

    Nauman, A F

    1979-01-01

    The report presents a compilation of available data on the sensitivity of plants to ionizing radiation, and provides basic information on methods of determining such sensitivities, or of estimating radiosensitivities by calcuation of the nuclear factors upon which they depend. The scope of the data presented here is necessarily limited to the most generally useful radiobiological end points and to the most commonly-used types of radiation. Many of the factors which influence radiosensitivity, particularly nuclear factors, will be discussed. Emphasis will be upon whole-plant studies done at Brookhaven National Laboratory by A.H. Sparrow and his associates, since these studies aremore » the source of most of the available radiosensitivity data and of all the sensitivity predictions listed here. Data presented here include summaries of experimentally-determined radiosensitivities at various end points for both herbaceous and woody higher plants, and for a few species of ferns and lower plants. The algae and fungi have not been considered here due to space limitations.« less

  11. Evaluation of Radioresponse and Radiosensitizers in Glioblastoma Organotypic Cultures.

    PubMed

    Bayin, N Sumru; Ma, Lin; Placantonakis, Dimitris G; Barcellos-Hoff, Mary Helen

    2018-01-01

    Glioblastoma (GBM), a deadly primary brain malignancy, manifests pronounced radioresistance. Identifying agents that improve the sensitivity of tumor tissue to radiotherapy is critical for improving patient outcomes. The response to ionizing radiation is regulated by both cell-intrinsic and -extrinsic mechanisms. In particular, the tumor microenvironment is known to promote radioresistance in GBM. Therefore, model systems used to test radiosensitizing agents need to take into account the tumor microenvironment. We recently showed that GBM explant cultures represent an adaptable ex vivo platform for rapid and personalized testing of radiosensitizers. These explants preserve the cellular composition and tissue architecture of parental patient tumors and therefore capture the microenvironmental context that critically determines the response to radiotherapy. This chapter focuses on the detailed protocol for testing candidate radiosensitizing agents in GBM explants.

  12. THE RADIOSENSITIVITY OF BIRDS

    SciTech Connect

    Kushnuruk, V.A.

    1962-01-01

    ABS>Earlier reports suggest that the radiosensitivity of birds varies according to the systematic position of the species in question. To study this question in greater detail, birds belonging to different species were exposed to x rays and the LD/sub 50/ for 30 days recorded. During exposure, the birds were kept in a small cage but could move freely. Five different species were investigated: the greenfinch (Chloris chloris L.), goldfinch (Carduelis carduelis L.), linnet (Acantis cannabina L.), house sparrow (Passer domesticus), and the canary (Serinus canarina L.). It appeared that the radiosensitivity of the birds moved within a fairly narrow rangemore » quite independently of the species. The LD/ sub 50/ for 30 days varied in the 5 species in question between 400 and 625 r. All birds showed disorders of the coordination of movements, in the reflex governing the picking of food, in flight, and in perching. (OTS)« less

  13. MiR-593 mediates curcumin-induced radiosensitization of nasopharyngeal carcinoma cells via MDR1.

    PubMed

    Fan, Haoning; Shao, Meng; Huang, Shaohui; Liu, Ying; Liu, Jie; Wang, Zhiyuan; Diao, Jianxin; Liu, Yuanliang; Tong, L I; Fan, Qin

    2016-06-01

    Curcumin (Cur) exhibits radiosensitization effects to a variety of malignant tumors. The present study investigates the radiosensitizing effect of Cur on nasopharyngeal carcinoma (NPC) cells and whether its mechanism is associated with microRNA-593 (miR-593) and multidrug resistance gene 1 (MDR1). A clonogenic assay was performed to measure the radiosensitizing effect. The expression of miR-593 and MDR1 was analyzed by quantitative polymerase chain reaction (qPCR) or western blot assay. A transplanted tumor model was established to identify the radiosensitizing effect in vivo . A luciferase-based reporter was constructed to evaluate the effect of direct binding of miR-593 to the putative target site on the 3' UTR of MDR1. The clonogenic assay showed that Cur enhanced the radiosensitivity of cells. Cur (100 mg/kg) combined with 4 Gy irradiation inhibited the growth of a transplanted tumor model in vivo , resulting in the higher inhibition ratio compared with the radiotherapy-alone group. These results demonstrated that Cur had a radiosensitizing effect on NPC cells in vivo and in vitro ; Cur-mediated upregulation of miR-593 resulted in reduced MDR1 expression, which may promote radiosensitivity of NPC cells.

  14. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly,more » combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.« less

  15. Predicting normal tissue radiosensitivity

    NASA Astrophysics Data System (ADS)

    Dickson, Jeanette

    Two methods of predicting normal cell radiosensitivity were investigated in different patient groups. Plasma transforming growth factor beta one (TGFbeta1) levels were measured by ELISA, using a commercially available kit. Residual DNA double strand breaks were measured in normal epidermal fibroblasts following 150 Gy. After allowing 24 hours for repair, the DNA damage was assayed using pulsed field gel electrophoresis (PFGE). Pretreatment plasma TGFbeta1 levels were investigated retrospectively in patients with carcinoma of the cervix in relation to tumour control and late morbidity following radiotherapy. Plasma TGFbeta1 levels increased with increasing disease stage. They also correlated with two other known measures of tumour burden i.e. plasma levels of carcinoma antigen 125 (CA125) and tissue polypeptide antigen (TPA). Elevated pretreatment plasma TGFbeta1 levels predicted for a poor outcome both in terms of local control and overall survival. Plasma TGF?l levels did not predict for the development of radiotherapy morbidity of any grade. In conclusion pre-treatment plasma TGFbeta1 levels predict for tumour burden and tumour outcome in patients with carcinoma of the cervix. Changes in plasma TGFbeta1 levels measured prospectively may predict for radiation morbidity and should be investigated. A prospective study was undertaken in patients with carcinoma of the head and neck region. Changes in plasma TGFbeta1 levels between the start and the end of a course of radical radiotherapy were investigated in relation to the development of acute radiation toxicity. Patients were categorised according to the pattern of response of their TGFbeta1 levels over the course of their treatment. Those patients whose TGFbeta1 levels decreased, but did not normalise during radiotherapy were assigned to category 2. Category 2 predicted for a severe acute reaction, as measured using the LENT SOMA score, with a sensitivity of 33% and a specificity of 100%. The positive predictive

  16. Localized delivery of chemotherapy to the cervix for radiosensitization.

    PubMed

    Hodge, Lucy S; Downs, Levi S; Chura, Justin C; Thomas, Sajeena G; Callery, Patrick S; Soisson, A Patrick; Kramer, Paul; Wolfe, Stephen S; Tracy, Timothy S

    2012-10-01

    Chemoradiation is the mainstay of therapy for advanced cervical cancer, with the most effective treatment regimens involving combinations of radiosensitizing agents. However, administration of radiosensitizing chemotherapeutics concurrently with pelvic radiation is not without side effects. The aim of this study was to examine the utility of localized drug delivery as a means of improving drug targeting of radiosensitizing chemotherapeutics to the cervix while limiting systemic toxicities. An initial proof-of-concept study was performed in 14 healthy women following local administration of diazepam utilizing a novel cervical delivery device (CerviPrep™). Uterine vein and peripheral blood samples were collected and diazepam was measured using a GC-MS method. In the follow-up study, gemcitabine was applied to the cervix in 17 women undergoing hysterectomy for various gynecological malignancies. Cervical tissue, uterine vein blood samples, and peripheral plasma were collected, and gemcitabine and its deaminated metabolite 2',2'-difluorodeoxyuridine (dFdU) were measured using HPLC-UV and LC/MS methods. Targeted delivery of diazepam to the cervix was consistent with parent drug detectable in the uterine vein of 13 of 14 women. In the second study, pharmacologically relevant concentrations of gemcitabine (0.01-6.6 nmol/g tissue) were detected in the cervical tissue of 11 of 16 available specimens with dFdU measureable in 15 samples (0.04-8.8 nmol/g tissue). Neither gemcitabine nor its metabolites were detected in the peripheral plasma of any subject. Localized drug delivery to the cervix is possible and may be useful in limiting toxicity associated with intravenous administration of chemotherapeutics for radiosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Malignant hyperthermia

    MedlinePlus

    ... about MH: Malignant Hyperthermia Association of the United States -- www.mhaus.org National Organization for Rare Disorders -- rarediseases.org/rare-diseases/malignant-hyperthermia NIH Genetics Home Reference -- ghr.nlm.nih.gov/condition/malignant-hyperthermia

  18. Malignant hypertension

    MedlinePlus

    ... Nephrosclerosis - arteriolar; Hypertension - malignant; High blood pressure - malignant Images Hypertensive kidney References Archbold A, Naish J. The cardiovascular system. In: Naish J, Court DS, ...

  19. Mechanism of radiosensitization by porphyrins.

    PubMed

    Luksiene, Zivile; Labeikyte, Danute; Juodka, Benediktas; Moan, Johan

    2006-01-01

    According to our previous data, hematoporphyrin dimethyl ether (HPde) at concentrations useful for photodynamic therapy can radiosensitize aggressive Ehrlich ascite carcinoma (EAT) to 2Gy irradiation inducing total tumour growth inhibition. The aim of this study was to further investigate the possible mechanism of radiosensitization of EAT by dicarboxylic porphyrin-HPde. Our results reveal that HPde is inducing several rearrangements in the EAT cells: 1.2 x 10-6 M of the photosensitizer diminishes the number of cells in mitosis by a factor of 3, increases the number of cells in the S phase of the cell cycle, modifies the activities of antioxidant enzymes glutation S-transferase (GST) and DT-diaphorase (DTD), and eventually induces slight apoptosis. Moreover, it was shown that HPde is a ligand of peripheral benzodiazepine receptor (PBR). Named "house keeper," PBR is usually responsible for all these perturbations, which, in our case, act in concert with the following ionizing radiation, producing the interaction of two antiproliferative/destructive factors.

  20. Phase I Study of Veliparib (ABT-888) Combined with Cisplatin and Vinorelbine in Advanced Triple-Negative Breast Cancer and/or BRCA Mutation-Associated Breast Cancer.

    PubMed

    Rodler, Eve T; Kurland, Brenda F; Griffin, Melissa; Gralow, Julie R; Porter, Peggy; Yeh, Rosa F; Gadi, Vijayakrishna K; Guenthoer, Jamie; Beumer, Jan H; Korde, Larissa; Strychor, Sandra; Kiesel, Brian F; Linden, Hannah M; Thompson, John A; Swisher, Elizabeth; Chai, Xiaoyu; Shepherd, Stacie; Giranda, Vincent; Specht, Jennifer M

    2016-06-15

    Cisplatin is synergistic with vinorelbine and the PARP inhibitor veliparib, and has antineoplastic activity in triple-negative breast cancer (TNBC) and BRCA mutation-associated breast cancer. This phase I study assessed veliparib with cisplatin and vinorelbine. A 3+3 dose-escalation design evaluated veliparib administered twice daily for 14 days with cisplatin (75 mg/m(2) day 1) and vinorelbine (25 mg/m(2) days 1, 8) every 21 days, for 6 to 10 cycles, followed by veliparib monotherapy. Pharmacokinetics, measurement of poly(ADP-ribose) in peripheral blood mononuclear cells, and preliminary efficacy were assessed. IHC and gene-expression profiling were evaluated as potential predictors of response. Forty-five patients enrolled in nine dose cohorts plus five in an expansion cohort at the highest dose level and recommended phase II dose, 300 mg twice daily. The MTD of veliparib was not reached. Neutropenia (36%), anemia (30%), and thrombocytopenia (12%) were the most common grade 3/4 adverse events. Best overall response for 48 patients was radiologic response with 9-week confirmation for 17 (35%; 2 complete, 15 partial), and stable disease for 21 (44%). Germline BRCA mutation presence versus absence was associated with 6-month progression-free survival [PFS; 10 of 14 (71%) vs. 8 of 27 (30%), mid-P = 0.01]. Median PFS for all 50 patients was 5.5 months (95% confidence interval, 4.1-6.7). Veliparib at 300 mg twice daily combined with cisplatin and vinorelbine is well tolerated with encouraging response rates. A phase II randomized trial is planned to assess veliparib's contribution to cisplatin chemotherapy in metastatic TNBC and BRCA mutation-associated breast cancer. Clin Cancer Res; 22(12); 2855-64. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. Circadian rhythmometry of mammalian radiosensitivity

    NASA Technical Reports Server (NTRS)

    Haus, E.; Halberg, F.; Loken, M. K.; Kim, Y. S.

    1974-01-01

    In the case of human bone marrow, the largest number of mitoses is seen in the evening in diurnally active men, mitotic activity being at a minimum in the morning. The opposite pattern is observed for nocturnal animals such as rats and mice on a regimen of light during the daytime alternating with darkness during the night hours. The entirety of these rhythms plays an important role in the organism's responses to environmental stimuli, including its resistance to potentially harmful agents. Conditions under which circadian rhythms can be observed and validated by inferential statistical means are discussed while emphasizing how artifacts of the laboratory environment can be shown to obscure circadian periodic variations in radiosensitivity.

  2. Radiosensitization of cancer cells by hydroxychalcones.

    PubMed

    Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L; Sekhar, Konjeti R

    2010-10-15

    Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2',5'-dihydroxychalcone (D-601) and 2,2'-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Radiosensitization of Cancer Cells by Hydroxychalcones

    PubMed Central

    Pruitt, Rory; Sasi, Nidhish; Freeman, Michael L.; Sekhar, Konjeti R.

    2010-01-01

    Radiation sensitization is significantly increased by proteotoxic stress, such as a heat shock. We undertook an investigation, seeking to identify natural products that induced proteotoxic stress and then determined if a compound exhibited radiosensitizing properties. The hydroxychalcones, 2′,5′-dihydroxychalcone (D-601) and 2,2′-dihydroxychalcone (D-501), were found to activate heat shock factor 1 (Hsf1) and exhibited radiation sensitization properties in colon and pancreatic cancer cells. The radiosensitization ability of D-601 was blocked by pretreatment with α-napthoflavone (ANF), a specific inhibitor of cytochrome P450 1A2 (CYP1A2), suggesting that the metabolite of D-601 is essential for radiosensitization. The study demonstrated the ability of hydroxychalcones to radiosensitize cancer cells and provides new leads for developing novel radiation sensitizers. PMID:20826087

  4. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    PubMed

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  5. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    SciTech Connect

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity wasmore » assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing gammaH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2mug/mL], Trinovin [10mug/mL], and Prostate Rx [50 mug/mL]). However, both Trinovin (10mug/mL) and Prostate Rx (6mug/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.« less

  6. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity.

    PubMed

    Gursoy-Yuzugullu, Ozge; Carman, Chelsea; Serafim, Rodolfo Bortolozo; Myronakis, Marios; Valente, Valeria; Price, Brendan D

    2017-04-11

    Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.

  7. Radiosensitization by inhibiting STAT1 in renal cell carcinoma.

    PubMed

    Hui, Zhouguang; Tretiakova, Maria; Zhang, Zhongfa; Li, Yan; Wang, Xiaozhen; Zhu, Julie Xiaohong; Gao, Yuanhong; Mai, Weiyuan; Furge, Kyle; Qian, Chao-Nan; Amato, Robert; Butler, E Brian; Teh, Bin Tean; Teh, Bin S

    2009-01-01

    Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10(-8) for clear cell; and p = 3.6 x 10(-4) for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  8. Cisplatin radiosensitizes radioresistant human mesenchymal stem cells.

    PubMed

    Rühle, Alexander; Perez, Ramon Lopez; Glowa, Christin; Weber, Klaus-Josef; Ho, Anthony D; Debus, Jürgen; Saffrich, Rainer; Huber, Peter E; Nicolay, Nils H

    2017-10-20

    Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect of the combined treatment on the stem cells remains unknown. Here we demonstrate that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-dependent manner and increased levels of radiation-induced apoptosis. However, the defining stem cell properties of MSCs remained largely intact after cisplatin-based chemo-radiation, and stem cell motility, adhesion, surface marker expression and the characteristic differentiation potential were not significantly influenced. The increased cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs towards the radiosensitive G2/M phase and increased residual DNA double-strand breaks. These data demonstrate for the first time a dose-dependent radiosensitization effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity and subsequent loss of regenerative MSCs may contribute to the often severe late toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.

  9. Radiosensitizing effects of neem (Azadirachta indica) oil.

    PubMed

    Kumar, Ashok; Rao, A R; Kimura, H

    2002-02-01

    Radiosensitization by neem oil was studied using Balbc/3T3 cells and SCID cells. Neem oil enhanced the radiosensitivity of the cells when applied both during and after x-irradiation under aerobic conditions. Neem oil completely inhibited the repair of sublethal damage and potentially lethal damage repair in Balbc/3T3 cells. The cytofluorimeter data show that neem oil treatment before and after x-irradiation reduced the G(2) + M phase, thus inhibiting the expression of the radiation induced arrest of cells in the G(2) phase of the cell cycle. However, SCIK cells (derived from the SCID mouse), deficient in DSB repair, treated with neem oil did not show any enhancement in the radiosensitivity. There was no effect of neem oil on SLD repair or its inhibition in SCIK cells. These results suggest that neem oil enhanced the radiosensitivity of cells by interacting with residual damage after x-irradiation, thereby converting the sublethal damage or potentially lethal damage into lethal damage, inhibiting the double-strand break repair or reducing the G(2) phase of the cell cycle. Copyright 2002 John Wiley & Sons, Ltd.

  10. Effect of Antisense Oligodeoxynucleotides Glucose Transporter-1 on Enhancement of Radiosensitivity of Laryngeal Carcinoma

    PubMed Central

    Yan, Sen-Xiang; Luo, Xing-Mei; Zhou, Shui-Hong; Bao, Yang-Yang; Fan, Jun; Lu, Zhong-Jie; Liao, Xin-Biao; Huang, Ya-Ping; Wu, Ting-Ting; Wang, Qin-Ying

    2013-01-01

    Purpose: Laryngeal carcinomas always resist to radiotherapy. Hypoxia is an important factor in radioresistance of laryngeal carcinoma. Glucose transporter-1 (GLUT-1) is considered to be a possible intrinsic marker of hypoxia in malignant tumors. We speculated that the inhibition of GLUT-1 expression might improve the radiosensitivity of laryngeal carcinoma. Methods: We assessed the effect of GLUT-1 expression on radioresistance of laryngeal carcinoma and the effect of GLUT-1 expressions by antisense oligodeoxynucleotides (AS-ODNs) on the radiosensitivity of laryngeal carcinoma in vitro and in vivo. Results: After transfection of GLUT-1 AS-ODNs: MTS assay showed the survival rates of radiation groups were reduced with the prolongation of culture time (p<0.05); Cell survival rates were significantly reduced along with the increasing of radiation dose (p<0.05). There was significant difference in the expression of GLUT-1mRNA and protein in the same X-ray dose between before and after X-ray radiation (p<0.05). In vivo, the expressions of GLUT-1 mRNA and protein after 8Gy radiation plus transfection of GLUT-1 AS-ODNs were significant decreased compared to 8Gy radiation alone (p<0.001). Conclusion: Radioresistance of laryngeal carcinoma may be associated with increased expression of GLUT-1 mRNA and protein. GLUT-1 AS-ODNs may enhance the radiosensitivity of laryngeal carcinoma mainly by inhibiting the expression of GLUT-1. PMID:23983599

  11. Pleural malignancies.

    PubMed

    Vargas, F S; Teixeira, L R

    1996-07-01

    Carcinoma of the lung, metastatic breast carcinoma, and lymphoma are responsible for approximately 75% of all malignant pleural effusions. The presence of malignant cells in the pleural fluid or in the parietal pleura confirms the diagnosis. Recently, several authors have proposed the combination of morphometric procedures and quantitative analysis of nucleolar organizer regions stained by silver nitrate. Videothoracoscopy is recommended for patients suspected of having a malignant pleural effusion in whom the diagnosis is not established after two cytologic studies of the fluid and one needle biopsy. The standard treatment is the intrapleural instillation of a chemical agent to produce a pleurodesis. The recommended sclerosant is talc, a tetracycline derivative, or Corynebacterium parvum where it is available. When a patient is not an ideal candidate for chemical pleurodesis, the options include symptomatic treatment, serial thoracentesis, implantation of a pleuroperitoneal shunt, and pleurectomy.

  12. Hematologic malignancies

    SciTech Connect

    Hoogstraten, B.

    1986-01-01

    The principle aim of this book is to give practical guidelines to the modern treatment of the six important hematologic malignancies. Topics considered include the treatment of the chronic leukemias; acute leukemia in adults; the myeloproliferative disorders: polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis/agnogenic myeloid metaplasia; Hodgkin's Disease; non-Hodgkin's lymphoma; and Multiple Myeloma.

  13. Daily rhythms of radiosensitivity of animals and several determining causes

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Malyutina, T. S.; Seraya, V. M.; Rodina, G. P.; Vatsek, A.; Rakova, A.

    1974-01-01

    Daily rhythms of radiosensitivity in rats and mice were determined by survival rates after acute total radiation at the same dosage at different times of the day. Radiosensitivity differed in animals of different species and varieties. Inbred mice exhibited one or two increases in radiosensitivity during the dark, active period of the day. These effects were attributed to periodic changes in the state of stem hematopoietic cells.

  14. Taxonomic and developmental aspects of radiosensitivity

    SciTech Connect

    Harrison, F.L.; Anderson, S.L.

    1996-11-01

    Considerable information is available on the effects of radioactivity on adult and early life stages of organisms. The preponderance of data is on mortality after a single irradiation with relatively high doses. Unfortunately, because experiments were carried out under different conditions and for different time periods, the validity of comparing the results from different laxonomic groups is questionable. In general, the conclusions are that there is a relationship (1) between radioresistance to high doses of acute radiation and taxonomy of the organism, primitive forms being more radioresistant than complex vertebrates and (2) between radiosensitivity and developmental stage, early life stagesmore » being more sensitive than later stages. The first conclusion may be related to the capability of the organism to repopulate cells and to differentiate and redifferentiate them; the second to the rate of cellular division and to the degree of differentiation. In question, however, is the relevance of the responses from high levels of acute radiation to that of the responses to long-term exposure to low levels of radiation, which are ecologically of more interest. Data from studies of the effects of acute and chronic exposure on development of gametes and zygotes indicate that, for some fishes and invertebrates, responses at the cellular and molecular levels show effect levels comparable to those observed in some mammals. Acute doses between 0,05 and 0.5Cy and dose rates between 0.02 to 0.2mCy/h appear to define critical ranges in which detrimental effects on fertility are first observed in a variety of radiosensitive organisms. To better understand inherent radiosensitivity, we need more information on the ability of cells to repopulate and differentiate and to prevent or repair damage to biological critical molecules, such as DNA, because these factors may alter significantly organisms` responses to radiation.« less

  15. Actual questions raised by nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Brun, Emilie; Sicard-Roselli, Cécile

    2016-11-01

    Radiosensitization by metallic nanoparticles (NP) has been explored for more than a decade with promising results in vitro and in cellulo reported in a vast number of publications. Yet, few clinical trials are on-going. This could be related to the lack of selectivity of NP leading to massive quantities to be injected to observe an effect but also to the higher degree of complexity than first thought leading to an absence of consensus probably caused by the lack of standardization in pre-clinical studies. Given the wide panel of NP used, in terms of core nature, size, coating, not to mention of cell lines and irradiation modalities, cross-comparison of data is not a walk in the park. But only a thorough examination could help identifying the key parameters and the possible mechanisms involved. This step is crucial as it should provide guidance for designing the most efficient combination NP/radiation and rationally establishing clinical protocols. In this review, we will combine and confront cellular radiosensitization results with in vitro and numerical experiments in order to give the more recent vision of this complex phenomenon. We decided to address a few hot topics such as the influence of the incident radiation energy, the localization of NP or the so-called ;biological; effect. We will highlight that among the barriers to break down, some are not restricted to the ;nano; community: an incontestable support could be offered by the ;radiation; community in the broadest sense.

  16. Radiosensitization in prostate cancer: mechanisms and targets

    PubMed Central

    2013-01-01

    Prostate cancer is the second most commonly diagnosed cancer in American men over the age of 45 years and is the third most common cause of cancer related deaths in American men. In 2012 it is estimated that 241,740 men will be diagnosed with prostate cancer and 28,170 men will succumb to prostate cancer. Currently, radiation therapy is one of the most common definitive treatment options for localized prostate cancer. However, significant number of patients undergoing radiation therapy will develop locally persistent/recurrent tumours. The varying response rates to radiation may be due to 1) tumor microenvironment, 2) tumor stage/grade, 3) modality used to deliver radiation, and 4) dose of radiation. Higher doses of radiation has not always proved to be effective and have been associated with increased morbidity. Compounds designed to enhance the killing effects of radiation, radiosensitizers, have been extensively investigated over the past decade. The development of radiosensitizing agents could improve survival, improve quality of life and reduce costs, thus benefiting both patients and healthcare systems. Herin, we shall review the role and mechanisms of various agents that can sensitize tumours, specifically prostate cancer. PMID:23351141

  17. Change in radiosensitivity of rats during hypokinetic stress

    NASA Technical Reports Server (NTRS)

    Chernov, I. P.

    1980-01-01

    The laws governing stress modification of radiation sickness in relation to hypokinetic stress were investigated. It was found that gamma irradiation (800 rad) of rats on the third day of exposure to hypokinesia increased the radiosensitivity of the animals which was determined by the survival rate and the dynamics of body weight and the weight of some internal organs. The same radiation dose was given on the 20th day of hypokinesia and on the third day of recovery from the 20 day hypokinesia decreased the radiosensitivity of rats. It is concluded that the variations in the radiosensitivity observed may be due to a stress effect of hypokinesia.

  18. Malignant hyperpyrexia

    PubMed Central

    Isaacs, Hyam; Barlow, M. B.

    1973-01-01

    The history, clinical presentation, and management of malignant hyperpyrexia are presented. The aetiology seems to be associated with some inherited abnormality which affects the movement and binding of calcium ions in the sarcoplasmic reticulum, sarcoplasm, and mitochondria. Whether this is a primary muscular defect or secondary to some trophic neural influence is yet to be established. The subjects carrying the abnormal trait show evidence of a myopathy which is subclinical in most instances and revealed only by estimation of serum CPK or biopsy. In some families where the myopathy is clinically obvious there may be, in addition, a variety of musculoskeletal abnormalities. A plea is made for routine monitoring of temperature during anaesthesia and for procainamide or procaine to be readily available in all operating theatres. A history of anaesthetic deaths in a family calls for special care, and, if the serum CPK is elevated, suxamethonium and halothane are to be avoided. Families with orthopaedic and muscular abnormalities are at increased risk and should have estimation of serum CPK before surgery. As a bonus of this study it is suggested that serum CPK estimations be used to screen pigs for selective breeding and so eliminate the disease, which causes soft exudative pork. Images PMID:4708457

  19. Can Drugs Enhance Hypofractionated Radiotherapy? A Novel Method of Modeling Radiosensitization Using In Vitro Data

    SciTech Connect

    Ohri, Nitin; Dicker, Adam P.; Lawrence, Yaacov Richard, E-mail: yaacovla@gmail.com

    2012-05-01

    Purpose: Hypofractionated radiotherapy (hRT) is being explored for a number of malignancies. The potential benefit of giving concurrent chemotherapy with hRT is not known. We sought to predict the effects of combined modality treatments by using mathematical models derived from laboratory data. Methods and Materials: Data from 26 published clonogenic survival assays for cancer cell lines with and without the use of radiosensitizing chemotherapy were collected. The first three data points of the RT arm of each assay were used to derive parameters for the linear quadratic (LQ) model, the multitarget (MT) model, and the generalized linear quadratic (gLQ) model.more » For each assay and model, the difference between the predicted and observed surviving fractions at the highest tested RT dose was calculated. The gLQ model was fitted to all the data from each RT cell survival assay, and the biologically equivalent doses in 2-Gy fractions (EQD2s) of clinically relevant hRT regimens were calculated. The increase in cell kill conferred by the addition of chemotherapy was used to estimate the EQD2 of hRT along with a radiosensitizing agent. For comparison, this was repeated using conventionally fractionated RT regimens. Results: At a mean RT dose of 8.0 Gy, the average errors for the LQ, MT, and gLQ models were 1.63, 0.83, and 0.56 log units, respectively, favoring the gLQ model (p < 0.05). Radiosensitizing chemotherapy increased the EQD2 of hRT schedules by an average of 28% to 82%, depending on disease site. This increase was similar to the gains predicted for the addition of chemotherapy to conventionally fractionated RT. Conclusions: Based on published in vitro assays, the gLQ equation is superior to the LQ and MT models in predicting cell kill at high doses of RT. Modeling exercises demonstrate that significant increases in biologically equivalent dose may be achieved with the addition of radiosensitizing agents to hRT. Clinical study of this approach is warranted.« less

  20. Metalloporphyrins and their uses as radiosensitizers for radiation therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    2004-07-06

    The present invention covers radiosensitizers containing as an active ingredient halogenated derivatives of boronated porphyrins containing multiple carborane cages having the structure ##STR1## which selectively accumulate in neoplastic tissue within the irradiation volume and thus can be used in cancer therapies including, but not limited to, boron neutron--capture therapy and photodynamic therapy. The present invention also covers methods for using these radiosensitizers in tumor imaging and cancer treatment.

  1. Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions.

    PubMed

    Bache, Matthias; Zschornak, Martin P; Passin, Sarina; Kessler, Jacqueline; Wichmann, Henri; Kappler, Matthias; Paschke, Reinhard; Kaluđerović, Goran N; Kommera, Harish; Taubert, Helge; Vordermark, Dirk

    2011-09-09

    Betulinic acid (BA) is a novel antineoplastic agent under evaluation for tumor therapy. Because of the selective cytotoxic effects of BA in tumor cells (including gliomas), the combination of this agent with conservative therapies (such as radiotherapy and chemotherapy) may be useful. Previously, the combination of BA with irradiation under hypoxic conditions had never been studied. In this study, the effects of 3 to 30 μM BA on cytotoxicity, migration, the protein expression of PARP, survivin and HIF-1α, as well as radiosensitivity under normoxic and hypoxic conditions were analyzed in the human malignant glioma cell lines U251MG and U343MG. Cytotoxicity and radiosensitivity were analyzed with clonogenic survival assays, migration was analyzed with Boyden chamber assays (or scratch assays) and protein expression was examined with Western blot analyses. Under normoxic conditions, a half maximal inhibitory concentration (IC50) of 23 μM was observed in U251MG cells and 24 μM was observed in U343MG cells. Under hypoxic conditions, 10 μM or 15 μM of BA showed a significantly increased cytotoxicity in U251MG cells (p = 0.004 and p = 0.01, respectively) and U343MG cells (p < 0.05 and p = 0.01, respectively). The combination of BA with radiotherapy resulted in an additive effect in the U343MG cell line under normoxic and hypoxic conditions. Weak radiation enhancement was observed in U251MG cell line after treatment with BA under normoxic conditions. Furthermore, under hypoxic conditions, the incubation with BA resulted in increased radiation enhancement. The enhancement factor, at an irradiation dose of 15 Gy after treatment with 10 or 15 μM BA, was 2.20 (p = 0.02) and 4.50 (p = 0.03), respectively. Incubation with BA led to decreased cell migration, cleavage of PARP and decreased expression levels of survivin in both cell lines. Additionally, BA treatment resulted in a reduction of HIF-1α protein under hypoxic conditions. Our results suggest that BA is capable of

  2. Enhanced G2 chromatid radiosensitivity, an early stage in the neoplastic transformation of human epidermal keratinocytes in culture

    SciTech Connect

    Gantt, R.; Sanford, K.K.; Parshad, R.

    1987-03-01

    A deficiency in DNA repair, manifest as enhanced chromatid radiosensitivity during the G2 phase of the cell cycle, together with a proliferative stimulus such as that provided by active oncogenes may be necessary and sufficient for the malignant neoplastic transformation of human keratinocytes in culture. Normal epidermal keratinocytes established as continuous cell lines by transfection with pSV3-neo or infection with adeno 12-SV40 hybrid virus developed enhanced G2 chromatid radiosensitivity after 18 passages in culture. In contrast to cells from primary or secondary culture, these cells could be transformed to malignant neoplastic cells by infection with Kirsten murine sarcoma virus containingmore » the Ki-ras oncogene or in one line by the chemical carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine; both of these agents produced a marked proliferative response. Cytological heterogeneity and karyotypic instability characterized the cells during their progression to neoplasia. These results are interpreted in terms of a mechanism for neoplastic transformation.« less

  3. Radiosensitization of mammalian cells by diamide

    SciTech Connect

    Vos, O.; Grant, G.A.; Budke, L.

    1976-01-01

    The effect of diamide on the radiosensitivity of T-cells was investigated under oxic and anoxic conditions. The compound was found to sensitize the cells under both conditions. Under oxic conditions, exposure for 10 min before and during irradiation to 0.1, 0.5, and 1.0 mm diamide produced dose-modifying factors of 0.81, 0.60, and 0.55, respectively. Under anoxic conditions exposure for 10 min before and during irradiation to 0.5 mm produced a dose-modifying factor of 0.34. When the cells in oxic conditions were exposed for just 20 min before irradiation, the sensitizing effect was smaller, but some sensitization effect was still apparentmore » after a 120 min interval between diamide treatment and irradiation. Diamide also sensitized the cells after irradiation but this effect was less than when it was present during irradiation. It is proposed that sensitization is due to lack of capacity for repair of radicals by hydrogen transfer and biochemical repair processes. (Author) (GRA)« less

  4. Nuclear 3D organization and radiosensitivity

    NASA Astrophysics Data System (ADS)

    Eidelman, Y. A.; Slanina, S. V.; Aleshchenko, A. V.; Sen'ko, O. V.; Kononkova, A. D.; Andreev, S. G.

    2017-01-01

    Current mechanisms of radiation-induced chromosomal aberration (CA) formation suggest misrepair of chromosomal lesions being in spatial proximity. In this case CAs have to depend on pattern of chromosomal contacts and on chromosome spatial organization in a cell nucleus. We were interested in whether variation of nucleus 3D organization results in difference of radiation induced CA formation frequency. Experimental data available do not provide information sufficient for definite conclusions. To have more deep insight in this issue we developed the biophysical modeling technique taking into account different levels of chromosome/nuclear organization and radiation damage of DNA and chromosomes. Computer experiments on gamma irradiation were carried out for two types of cells with different 3D organization of nuclei, preferentially peripheral and internal. CA frequencies were found to depend on spatial positioning of chromosomes within a nucleus which determines a pattern of interchromosomal contacts. For individual chromosomes this effect can be more pronounced than for genome averaged. Since significant part of aberrations, for example dicentrics, results in cell death, the proposed technique is capable of evaluating radiosensitivity of cells, both normal and cancer, with the incorporation of 3D genome information. This predictive technology allows to reduce uncertainties of prognosis of biological effects of radiation compared to phenomenological methods and may have variety of biomedical applications, in particular, in cancer radiation therapy.

  5. Lanthanum fluoride nanoparticles for radiosensitization of tumors

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Bekah, Devesh; Cooper, Daniel; Shastry, Sathvik; Hill, Colin; Bradforth, Stephen; Nadeau, Jay

    2016-03-01

    Dense inorganic nanoparticles have recently been identified as promising radiosensitizers. In addition to dose enhancement through increased attenuation of ionizing radiation relative to biological tissue, scintillating nanoparticles can transfer energy to coupled photosensitizers to amplify production of reactive oxygen species, as well as provide UVvisible emission for optical imaging. Lanthanum fluoride is a transparent material that is easily prepared as nanocrystals, and which can provide radioluminescence at a number of wavelengths through simple substitution of lanthanum ions with other luminescent lanthanides. We have prepared lanthanum fluoride nanoparticles doped with cerium, terbium, or both, that have good spectral overlap with chlorine6 or Rose Bengal photosensitizer molecules. We have also developed a strategy for stable conjugation of the photosensitizers to the nanoparticle surface, allowing for high energy transfer efficiencies on a per molecule basis. Additionally, we have succeeded in making our conjugates colloidally stable under physiological conditions. Here we present our latest results, using nanoparticles and nanoparticle-photosensitizer conjugates to demonstrate radiation dose enhancement in B16 melanoma cells. The effects of nanoparticle treatment prior to 250 kVp x-ray irradiation were investigated through clonogenic survival assays and cell cycle analysis. Using a custom apparatus, we have also observed scintillation of the nanoparticles and conjugates under the same conditions that the cell samples are irradiated.

  6. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeuticmore » regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.« less

  7. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants

    NASA Technical Reports Server (NTRS)

    Asaad, N. A.; Zeng, Z. C.; Guan, J.; Thacker, J.; Iliakis, G.

    2000-01-01

    The radiosensitizing effect of caffeine has been associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints, but several lines of evidence also implicate inhibition of DNA repair. The role of DNA repair inhibition in caffeine radiosensitization remains uncharacterized, and it is unknown which repair process, or lesion, is affected. We show that a radiosensitive cell line, mutant for the RAD51 homolog XRCC2 and defective in homologous recombination repair (HRR), displays significantly diminished caffeine radiosensitization that can be restored by expression of XRCC2. Despite the reduced radiosensitization, caffeine effectively abrogates checkpoints in S and G2 phases in XRCC2 mutant cells indicating that checkpoint abrogation is not sufficient for radiosensitization. Another radiosensitive line, mutant for XRCC3 and defective in HRR, similarly shows reduced caffeine radiosensitization. On the other hand, a radiosensitive mutant (irs-20) of DNA-PKcs with a defect in non-homologous end-joining (NHEJ) is radiosensitized by caffeine to an extent comparable to wild-type cells. In addition, rejoining of radiation-induced DNA DSBs, that mainly reflects NHEJ, remains unaffected by caffeine in XRCC2 and XRCC3 mutants, or their wild-type counterparts. These observations suggest that caffeine targets steps in HRR but not in NHEJ and that abrogation of checkpoint response is not sufficient to explain radiosensitization. Indeed, immortalized fibroblasts from AT patients show caffeine radiosensitization despite the checkpoint defects associated with ATM mutation. We propose that caffeine radiosensitization is mediated by inhibition of stages in DNA DSB repair requiring HRR and that checkpoint disruption contributes by allowing these DSBs to transit into irreparable states. Thus, checkpoints may contribute to genomic stability by promoting error-free HRR.

  8. Mannose phosphate isomerase regulates fibroblast growth factor receptor family signaling and glioma radiosensitivity.

    PubMed

    Cazet, Aurélie; Charest, Jonathan; Bennett, Daniel C; Sambrooks, Cecilia Lopez; Contessa, Joseph N

    2014-01-01

    Asparagine-linked glycosylation is an endoplasmic reticulum co- and post-translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.

  9. [Changes in cellular radiosensitivity after low dose irradiation].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O V; Riabchenko, N I; Akleev, A V

    2012-01-01

    When the adaptive response (AR) was studied on human blood lymphocytes, a new dependence was discovered. This dependence defines the direction of the radiosensitivity change after a low dose of irradiation. Using micronucleus (MN) test with cytochalasin B the dependence between the cell reaction after low level irradiation and radiosensititvity (the effect after irradiation at the dose of 1 Gy) was observed. The negative correlation between the frequency of AR manifestation, sensibilization, intermediate links and radiosensitivity was discovered. This regularity is observed in the population of Moscow, Obninsk, Chelyabinsk region (irradiated and control) inhabitants, Chernobyl accident liquidators, Moscow children, in individuals with Hodgkin's lymphoma before and during treatment. The negative correlation is also noted by AR determination with two irradiation schemes: in one or two different cell cycle phases (G1-G1 or G1-G2). Similar links are observed using the chromosome methaphase analysis (the frequency of cells with chromosome aberrations). So, the results of the experiments conducted allow us to suppose that the connection between the cell radiosensitivity and a different type of reaction after low dose irradiation--from AR to the increase in radiosensitivity (sensibilization) is a general regularity. AR is induced by low level irradiation and high cell radiosensitivity, while sensibilization is induced by low radiosensitivity. Since AR and sensibilization can be induced not only by irradiation, but many different chemicals and physical agents, the described correlation can be observed in the case of different exposures. Cellular AR and sensibilization are integral indexes depending on many genetic and epigenetic factors, as well as on the initiation of a large number of events. However, the discovered mechanisms of interrelations are still difficult to explain.

  10. Malignant disease and dentistry.

    PubMed

    Walton, Graham; Seymour, Robin A

    2009-11-01

    Reports of an ageing population, increasing incidence of malignancy and improved treatments mean that dentists may have an increasing number of patients with, or who have recovered from, a malignancy. Dental professionals are expected to have an understanding of this important disease group so that appropriate dental care can be provided safely. In this first of three articles, we shall describe the important epidemiological and clinical features of the commonest malignancies in the United Kingdom. Dentists should understand the clinical implications of a patient with, or recovering from, a malignancy. This article gives a summary of the relevant features of the commonest malignancies.

  11. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models

    PubMed Central

    Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G.; Pike, Kurt G.; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Barrett, Ian; Jones, Gemma; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Cronin, Anna; Chapman, Melissa; Illingworth, Ruth; Pass, Martin

    2018-01-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC50, 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase–related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11C-labeled AZD1390 (Kp,uu, 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies. PMID:29938225

  12. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models.

    PubMed

    Durant, Stephen T; Zheng, Li; Wang, Yingchun; Chen, Kan; Zhang, Lingli; Zhang, Tianwei; Yang, Zhenfan; Riches, Lucy; Trinidad, Antonio G; Fok, Jacqueline H L; Hunt, Tom; Pike, Kurt G; Wilson, Joanne; Smith, Aaron; Colclough, Nicola; Reddy, Venkatesh Pilla; Sykes, Andrew; Janefeldt, Annika; Johnström, Peter; Varnäs, Katarina; Takano, Akihiro; Ling, Stephanie; Orme, Jonathan; Stott, Jonathan; Roberts, Caroline; Barrett, Ian; Jones, Gemma; Roudier, Martine; Pierce, Andrew; Allen, Jasmine; Kahn, Jenna; Sule, Amrita; Karlin, Jeremy; Cronin, Anna; Chapman, Melissa; Valerie, Kristoffer; Illingworth, Ruth; Pass, Martin

    2018-06-01

    Poor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR. We report the primary pharmacology of the clinical-grade, exquisitely potent (cell IC 50 , 0.78 nM), highly selective [>10,000-fold over kinases within the same phosphatidylinositol 3-kinase-related kinase (PIKK) family], orally bioavailable ATM inhibitor AZD1390 specifically optimized for BBB penetration confirmed in cynomolgus monkey brain positron emission tomography (PET) imaging of microdosed 11 C-labeled AZD1390 ( K p,uu , 0.33). AZD1390 blocks ATM-dependent DDR pathway activity and combines with radiation to induce G 2 cell cycle phase accumulation, micronuclei, and apoptosis. AZD1390 radiosensitizes glioma and lung cancer cell lines, with p53 mutant glioma cells generally being more radiosensitized than wild type. In in vivo syngeneic and patient-derived glioma as well as orthotopic lung-brain metastatic models, AZD1390 dosed in combination with daily fractions of IR (whole-brain or stereotactic radiotherapy) significantly induced tumor regressions and increased animal survival compared to IR treatment alone. We established a pharmacokinetic-pharmacodynamic-efficacy relationship by correlating free brain concentrations, tumor phospho-ATM/phospho-Rad50 inhibition, apoptotic biomarker (cleaved caspase-3) induction, tumor regression, and survival. On the basis of the data presented here, AZD1390 is now in early clinical development for use as a radiosensitizer in central nervous system malignancies.

  13. Roadmap to clinical use of gold nanoparticles for radiosensitization

    PubMed Central

    Schuemann, J.; Berbeco, R.; Chithrani, B. D.; Cho, S.; Kumar, R.; McMahon, S.; Sridhar, S.; Krishnan, S.

    2015-01-01

    The past decade has seen a dramatic increase in interest in the use of Gold Nanoparticles (GNPs) as radiation sensitizers for radiotherapy. This interest was initially driven by their strong absorption of ionizing radiation and the resulting ability to increase dose deposited within target volumes even at relatively low concentrations. These early observations are supported by extensive experimental validation, showing GNPs’ efficacy at sensitizing tumors in both in vitro and in vivo systems to a range of types of ionizing radiation, including kilovoltage and megavoltage X-rays as well as charged particles. Despite this experimental validation, there has been limited translation of GNP-mediated radiosensitization to a clinical setting. One of the key challenges in this area is the wide range of experimental systems that have been investigated, spanning a range of particle sizes, shapes and preparations. As a result, mechanisms of uptake and radiosensitization have remained difficult to clearly identify. This has proven a significant impediment to the identification of optimal GNP formulations which strike a balance among their radiosensitizing properties, their specificity to the tumors, their biocompatibility, and their imageability in vivo. This white paper reviews the current state of knowledge in each of the areas concerning the use of GNPs as radiosensitizers, and outlines the steps which will be required to advance GNP-enhanced radiation therapy from their current pre-clinical setting to clinical trials and eventual routine usage. PMID:26700713

  14. Chloronitroimidazoles as radiosensitizers of hypoxic cells in vitro.

    PubMed

    Wideł, M; Watras, J; Suwiński, J; Salwińska, E

    1987-01-01

    Some results of the first more complex studies in vitro on radio-sensitizing efficiency, cytotoxicity and reactivity with blood-thiols of a series of 4- or 5-nitroimidazoles substituted in the 5, 4 or 2 position with chlorine are presented. The derivatives of 4-nitroimidazole substituted in 5 position ("ortho" position) with Cl show higher radiosensitizing efficiency than one may expect from their reduction potential, E1/2. At the same time they are extremely toxic, especially for aerobic cells. It is considered that high biological activity of ortho-substituted 4-nitroimidazoles is connected with their considerable chemical reactivity towards thiols and suppression of those natural protective compounds in the cells. The corresponding 5-nitro isomers are about tenfold weaker sensitizers, and simultaneously much less cytotoxic, either in aerobic or in hypoxic conditions. The chloro-4(5)-nitroimidazoles nonsubstituted at N-1 and ionizable in aqueous solution are relatively weaker at the same time less toxic radiosensitizers. It is evaluated that potential application in radiotherapy may have those chloronitroimidazoles which show low aerobic cytotoxicity, moderate radiosensitizing ability and no reactivity towards thiols. On the basis of the study in vitro, we have selected such a compound: 1-methyl-2-chloro-4-nitroimidazole (P13) for screening in vivo.

  15. Inhibiting DNA-PK{sub CS} radiosensitizes human osteosarcoma cells

    SciTech Connect

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK{sub CS}), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK{sub CS} in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK{sub CS} inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK{submore » CS} was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK{sub CS} inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.« less

  16. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles

    PubMed Central

    Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang

    2013-01-01

    Background Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. Methods In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Results Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. Conclusions These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe. PMID:23519742

  17. In vitro and in vivo radiosensitization induced by hydroxyapatite nanoparticles.

    PubMed

    Chu, Sheng-Hua; Karri, Surya; Ma, Yan-Bin; Feng, Dong-Fu; Li, Zhi-Qiang

    2013-07-01

    Previous study showed that hydroxyapatite nanoparticles (nano-HAPs) inhibited glioma growth in vitro and in vivo; and in a drug combination, they could reduce adverse reactions. We investigated the possible enhancement of radiosensitivity induced by nano-HAPs. In vitro radiosensitization of nano-HAPs was measured using a clonogenic survival assay in human glioblastoma U251 and breast tumor brain metastatic tumor MDA-MB-231BR cells. DNA damage and repair were measured using γH2AX foci, and mitotic catastrophe was determined by immunostaining. The effect of nano-HAPs on in vivo tumor radiosensitivity was investigated in a subcutaneous and an orthotopic model. Nano-HAPs enhanced each cell line's radiosensitivity when the exposure was 1 h before irradiation, and they had no significant effect on irradiation-induced apoptosis or on the activation of the G2 cell cycle checkpoint. The number of γH2AX foci per cell was significantly large at 24 h after the combination modality of nano-HAPs + irradiation compared with single treatments. Mitotic catastrophe was also significantly increased at an interval of 72 h in tumor cells receiving the combined modality compared with the individual treatments. In a subcutaneous model, nano-HAPs caused a larger than additive increase in tumor growth delay. In an orthotopic model, nano-HAPs significantly reduced tumor growth and extended the prolongation of survival induced by irradiation. These results show that nano-HAPs can enhance the radiosensitivity of tumor cells in vitro and in vivo through the inhibition of DNA repair, resulting in an increase in mitotic catastrophe.

  18. Pediatric Salivary Gland Malignancies.

    PubMed

    Ord, Robert A; Carlson, Eric R

    2016-02-01

    Pediatric malignant salivary gland tumors are extremely rare. The percentage of malignant tumors is higher than that seen in adults, although the outcomes in terms of survival are better in pediatric patients. The mainstay of treatment is surgical excision with negative margins. This article reviews current concepts in demographics, etiology, management, and outcomes of malignant salivary tumors in children. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Rockets, radiosensitizers, and RRx-001: an origin story part I.

    PubMed

    Oronsky, Bryan; Scicinski, Jan; Ning, Shoucheng; Peehl, Donna; Oronsky, Arnold; Cabrales, Pedro; Bednarski, Mark; Knox, Susan

    2016-03-01

    From Adam and Eve, to Darwinism, origin stories attempt to fill in the blanks, connect the dots, and define the turning points that are fundamental to subsequent developments. The purpose of this review is to present the origin story of a one-of-a-kind anticancer agent, RRx-001, which emerged from the aerospace industry as a putative radiosensitizer; not since the dynamite-to-dilator transformation of nitroglycerin in 1878 or the post-World War II explosive-to-elixir conversion of hydralazine, an ingredient in rocket fuel, to an antihypertensive, an antidepressant and an antituberculant, has energetic chemistry been harnessed for therapeutic purposes. This is Part 1 of the radiosensitization story; Parts 2 and 3, which detail the crossover activity of RRx-001 as a chemosensitizer in multiple tumor types and disease states including malaria, hemorrhagic shock and sickle cell anemia, are the subject of future reviews.

  20. [Synthesis of 1-substituted nitroimidazoles and its evaluation as radiosensitizing agents].

    PubMed

    Adams, D R; Martul, R; Alvarez, M V; López Zumel, M C; Espada, M

    1991-01-01

    The synthesis of various substituted nitroimidazoles with lipophilic and hydrophilic side chains as potential radiosensitizing agents is described. The starting material employed was 4(5)-nitroimidazole, which was alkylated via the sodium salt with various chloro-methylated, substituted alcohols and esters, in order to obtain analogues of misonidazole, metronidazole and desmethylmisonidazole of known radiosensitizing and bactericidal activity. Some final products were assayed for their radiosensitizing properties giving negative results under the testing conditions used.

  1. Etoposide radiosensitizes p53-defective cholangiocarcinoma cell lines independent of their G2 checkpoint efficacies

    PubMed Central

    Hematulin, Arunee; Meethang, Sutiwan; Utapom, Kitsana; Wongkham, Sopit; Sagan, Daniel

    2018-01-01

    Radiotherapy has been accounted as the most comprehensive cancer treatment modality over the past few decades. However, failure of this treatment modality occurs in several malignancies due to the resistance of cancer cells to radiation. It was previously reported by the present authors that defective cell cycle checkpoints could be used as biomarkers for predicting the responsiveness to radiation in individual patients with cholangiocarcinoma (CCA). However, identification of functional defective cell cycle checkpoints from cells from a patient's tissues is cumbersome and not applicable in the clinic. The present study evaluated the radiosensitization potential of etoposide in p53-defective CCA KKU-M055 and KKU-M214 cell lines. Treatment with etoposide enhanced the responsiveness of two p53-defective CCA cell lines to radiation independent of G2 checkpoint function. In addition, etoposide treatment increased radiation-induced cell death without altering the dominant mode of cell death of the two cell lines. These findings indicate that etoposide could be used as a radiation sensitizer for p53-defective tumors, independent of the function of G2 checkpoint. PMID:29541168

  2. Radiosensitization of Hypoxic Tumor Cells by Depletion of Intracellular Glutathione

    NASA Astrophysics Data System (ADS)

    Bump, Edward A.; Yu, Ning Y.; Brown, J. Martin

    1982-08-01

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  3. Silibinin preferentially radiosensitizes prostate cancer by inhibiting DNA repair signaling

    PubMed Central

    Nambiar, Dhanya K.; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K.; Agarwal, Rajesh; Singh, Rana P.

    2015-01-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer (PCa). The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant PCa cell lines by clonogenic, cell cycle, cell death and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μM) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P<0.001) of colony formation selectively in PCa cells, and prolonged and enhanced IR-caused G2/M arrest, apoptosis and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of anti-apoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P<0.01) with higher apoptotic response (10-fold, P<0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced pro-survival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Since silibinin is already in phase II clinical trial for PCa patients, the present finding has translational relevance for radioresistant PCa. PMID:26516160

  4. Silibinin Preferentially Radiosensitizes Prostate Cancer by Inhibiting DNA Repair Signaling.

    PubMed

    Nambiar, Dhanya K; Rajamani, Paulraj; Deep, Gagan; Jain, Anil K; Agarwal, Rajesh; Singh, Rana P

    2015-12-01

    Radiotherapy, a frequent mode of cancer treatment, is often restricted by dose-related toxicity and development of therapeutic resistance. To develop a novel and selective radiosensitizer, we studied the radiosensitizing effects and associated mechanisms of silibinin in prostate cancer. The radiosensitizing effect of silibinin with ionizing radiation (IR) was assessed on radioresistant prostate cancer cell lines by clonogenic, cell cycle, cell death, and DNA repair assays. Tumor xenograft growth, immunohistochemical (IHC) analysis of tumor tissues, and toxicity-related parameters were measured in vivo. Silibinin (25 μmol/L) enhanced IR (2.5-10 Gy)-caused inhibition (up to 96%, P < 0.001) of colony formation selectively in prostate cancer cells, and prolonged and enhanced IR-caused G2-M arrest, apoptosis, and ROS production. Mechanistically, silibinin inhibited IR-induced DNA repair (ATM and Chk1/2) and EGFR signaling and attenuated the levels of antiapoptotic proteins. Specifically, silibinin suppressed IR-induced nuclear translocation of EGFR and DNA-PK, an important mediator of DSB repair, leading to an increased number of γ-H2AX (ser139) foci suggesting lesser DNA repair. In vivo, silibinin strongly radiosensitized DU145 tumor xenograft inhibition (84%, P < 0.01) with higher apoptotic response (10-fold, P < 0.01) and reduced repair of DNA damage, and rescued the mice from IR-induced toxicity and hematopoietic injury. Overall, silibinin enhanced the radiotherapeutic response via suppressing IR-induced prosurvival signaling and DSB repair by inhibiting nuclear translocation of EGFR and DNA-PK. Because silibinin is already in phase II clinical trial for prostate cancer patients, the present finding has translational relevance for radioresistant prostate cancer. ©2015 American Association for Cancer Research.

  5. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiationmore » exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1

  6. Radiosensitization of hypoxic tumor cells by depletion of intracellular glutathione

    SciTech Connect

    Bump, E.A.; Yu, N.Y.; Brown, J.M.

    1982-08-06

    Depletion of glutathione in Chinese hamster ovary cells in vitro by diethyl maleate resulted in enhancement of the effect of x-rays on cell survival under hypoxic conditions but not under oxygenated conditions. Hypoxic EMT6 tumor cells were similarly sensitized in vivo. The action of diethyl maleate is synergistic with the effect of the electron-affinic radiosensitizer misonidazole, suggesting that the effectiveness of misonidazole in cancer radiotherapy may be improved by combining it with drugs that deplete intracellular glutathione.

  7. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers

    PubMed Central

    Flor, Amy C.; Sutton, Harold G.; Kron, Stephen J.; Weichselbaum, Ralph R.

    2016-01-01

    Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy. PMID:27129153

  8. Repurposing cephalosporin antibiotics as pro-senescent radiosensitizers.

    PubMed

    Labay, Edwardine; Mauceri, Helena J; Efimova, Elena V; Flor, Amy C; Sutton, Harold G; Kron, Stephen J; Weichselbaum, Ralph R

    2016-06-07

    Radiation therapy remains a significant therapeutic modality in the treatment of cancer. An attractive strategy would be to enhance the benefits of ionizing radiation (IR)with radiosensitizers. A high-content drug repurposing screen of approved and investigational agents, natural products and other small molecules has identified multiple candidates that blocked repair of IR damage in vitro. Here, we validated a subset of these hits in vitro and then examined effects on tumor growth after IR in a murine tumor model. Based on robust radiosensitization in vivo and other favorable properties of cephalexin, we conducted additional studies with other beta-lactam antibiotics. When combined with IR, each cephalosporin tested increased DNA damage and slowed tumor growth without affecting normal tissue toxicity. Our data implicate reactive oxygen species in the mechanism by which cephalosporins augment the effects of IR. This work provides a rationale for using commonly prescribed beta-lactam antibiotics as non-toxic radiosensitizers to enhance the therapeutic ratio of radiotherapy.

  9. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  10. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    SciTech Connect

    Tangutoori, S; Kumar, R; Sridhar, S

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischermore » Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing

  11. Early Non Invasive Ventilation and Hematological Malignancies

    ClinicalTrials.gov

    2018-01-03

    Hematological Malignancies; Chronic Hypoxemic Respiratory Failure; Blood And Marrow Transplantation; Malignant Neoplasm of Breast; Malignant Neoplasms of Bone and Articular Cartilage; Malignant Neoplasms of Digestive Organs; Malignant Neoplasms of Eye Brain and Other Parts of Central Nervous System; Malignant Neoplasms of Female Genital Organs; Malignant Neoplasms of Ill-defined Secondary and Unspecified Sites; Malignant Neoplasms of Independent (Primary) Multiple Sites; Malignant Neoplasms of Lip Oral Cavity and Pharynx; Malignant Neoplasms of Male Genital Organs; Malignant Neoplasms of Mesothelial and Soft Tissue; Malignant Neoplasms of Respiratory and Intrathoracic Organs; Malignant Neoplasms of Thyroid and Other Endocrine Glands; Malignant Neoplasms of Urinary Tract; Malignant Neoplasms Stated as Primary Lymphoid Haematopoietic

  12. Enhance tumor radiosensitivity by intracellular delivery of eukaryotic translation initiation factor 4E binding proteins.

    PubMed

    Tian, Shuang; Li, Xiu-Li; Shi, Mei; Yao, Yuan-Qing; Li, Li-Wen; Xin, Xiao-Yan

    2011-02-01

    PTEN (phosphatase and tensin homologue deleted on chromosome ten)/PI3K (phosphatidylinositol 3-kinase)/Akt/mTOR (mammalian target of rapamycin) signaling pathway, which is commonly dysregulated in a broad array of human malignancies, controls the assembly of eukaryotic translation initiation factor 4F (eIF4F) complex through regulation of eIF4E binding proteins (4E-BPs) phosphorylation. And accumulated data over the past two decades implicated eIF4F complex as one of the promising targets for anticancer therapy. It has been confirmed that the translation initiation of mRNA coding for hypoxia-inducible factor-1α (HIF-1α) and survivin, which had been considered as the two major determinants of tumor radiosensitivity, are both controlled by eIF4F complex. Also, eIF4F complex controls the expression of VEGF and bFGF, the two well-known pro-angiogenic factors involved in developing radioresistance. Therefore eIF4F complex plays a pivotal role in regulation of radiosensitivity. In this article, we postulate that cell-permeable, phosphorylation-defective 4E-BP fusion proteins, which could be prepared by substituting the mTOR recognition motif located in N-terminal of 4E-BPs with protein transduction domain from HIV-1 TAT, HSV-1 VP22 or PTD4, could not only inhibit tumor growth but also enhance tumor response to radiation therapy through disruption of eIF4F complex assembly. In our opinion, the recombinant fusion proteins are superior to mTOR inhibitors for they do not cause immunosuppression, do not lead to Akt activation, and could be easily prepared by prokaryotic expression. If the hypothesis was proved to be practical, the cell-permeable, phosphorylation-defective 4E-BP fusion proteins would be widely used in clinical settings to improve tumor response to radiotherapy in the near future. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    SciTech Connect

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai

    2014-09-03

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samplesmore » which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.« less

  14. Effects of low-level chronic irradiation on radiosensitivity of mammals: modeling and experimental studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.; Yonezawa, M.

    Effects of low dose rate chronic irradiation on radiosensitivity of mammals mice are studied by experimental and modeling methods Own and reference experiments show that priming chronic low-level short-term and long-term exposures to radiation induce respectively elevated radiosensitivity and lowered radiosensitivity radioresistance in mice The manifestation of these radiosensitization and radioprotection effects are respectively increased and decreased mortality of preirradiated specimens after challenge acute irradiation in comparison with those for previously unexposed ones Taking into account that the reason of the animal death in the experiments was the hematopoietic syndrome the biophysical models of the critical body system hematopoiesis are used to simulate the dynamics of the major hematopoietic lines in mice exposed to challenge acute irradiation following the chronic one Juxtaposition of the modeling results obtained and the relevant experimental data shows that the radiosensitization effect of chronic low-level short-term less than 1 month preirradiation on mice is due to increased radiosensitivity of lymphopoietic granulocytopoietic and erythropoietic systems accompanied by increased or close to the normal level radiosensitivity of thrombocytopoietic system which are induced by the above-indicated exposure In turn the radioprotection effect of chronic low-level long-term more than 1 month preirradiation on mice is caused by decreased radiosensitivity radioresistance of the granulocytopoietic system which

  15. Synthesis and radiosensitization properties of hydrogen peroxide and sodium hyaluronate complex

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Ratasha Alia Md.; Mohamed, Faizal; Heng, Cheong Kai; Rahman, Irman Abdul; Ahmad, Ainee Fatimah; Mohamad, Hur Munawar Kabir

    2014-09-01

    Cancer cells which are large in size are resistant towards radiation therapy due to the presence of large amount of anti-oxidative enzymes and hypoxic cancer cells. Thus radiosensitizer agents have been developed to enhance the therapeutic effect of radiotherapy by increasing the sensitivity of these cancer cells towards radiation. This study is conducted to investigate the radiosensitization properties of radiosensitizer complex containing hydrogen peroxide and sodium hyaluronate. Combination with sodium hyaluronate may decrease reactivity of hydrogen peroxide but maintain the oxygen concentration needed for radiosensitizing effect. HepG2 cancer cells are cultured as the mean of test subject. Cancer cell samples which are targeted and not targeted with these radiosensitizers are irradiated with 2Gy single fractionated dose. Results obtained shows that the cancer cells which are not targeted with radiosensitizers has a cell viability of 98.80±0.37% after a time interval of 48 hours and has even repopulated over 100% after a 72 hour time interval. This shows that the cancer cells are resistant towards radiation. However, when the cancer cells are targeted with radiosensitizers prior to irradiation, there is a reduction of cell viability by 25.50±10.81% and 10.30±5.10% at time intervals of 48 and 72 hours respectively. This indicates that through the use of these radiosensitizers, cancer cells are more sensitive towards radiation.

  16. Electrophilic 5-Substituted Uracils as Potential Radiosensitizers: A Density Functional Theory Study.

    PubMed

    Makurat, Samanta; Chomicz-Mańka, Lidia; Rak, Janusz

    2016-08-18

    Although 5-bromo-2'-deoxyuridine (5BrdU) possesses significant radiosensitizing power in vitro, clinical studies do not confirm any advantages of radiotherapy employing 5BrdU. This situation calls for a continuous search for efficient radiosensitizers. Using the proposed mechanism of radiosensitization by 5BrdU, we propose a series of 5-substituted uracils, XYU, that should undergo efficient dissociative electron attachment. The DFT-calculated thermodynamic and kinetic data concerning the XYU degradations induced by electron addition suggests that some of the scrutinized derivatives have much better characteristics than 5BrdU itself. Synthesis of these promising candidates for radiosensitizers, followed by studies of their radiosensitizing properties in DNA context, and ultimately in cancer cells, are further steps to confirm their potential applicability in anticancer treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Malignancy-related pericardial effusion. 127 cases from the Roswell Park Cancer Institute.

    PubMed

    Wilkes, J D; Fidias, P; Vaickus, L; Perez, R P

    1995-10-15

    Malignancy-related pericardial effusions may represent a terminal event in patients with therapeutically unresponsive disease. However, select patients with malignancies sensitive to available therapies may achieve significant improvement in palliation and long term survival with prompt recognition and appropriate intervention. From 1968 to 1994, 150 invasive procedures were performed for the treatment or diagnosis of pericardial effusion in 127 patients with underlying malignancies. These cases were reviewed retrospectively to best identify the clinical features, appropriate diagnostic workup, and optimal therapy for this complication of malignancy. Dyspnea (81%) and an abnormal pulsus paradoxus (32%) were the most common symptoms. Echocardiography had a 96% diagnostic accuracy. Cytology and pericardial biopsy had sensitivities of 90% and 56%, respectively. Fifty-five percent of all effusions were malignant comprising 71% of adenocarcinomas of the lung, breast, esophagus, and unknown primary site. In 57 patients, a malignant effusion could not be determined, and no definitive etiology could be established for 74% of these effusions. Radiation-induced, infectious, and hemorrhagic pericarditis each were identified in fewer than 5% of cases. Subxyphoid pericardiotomy proved to be a safe and effective intervention that successfully relieved pericardial effusions in 99% of cases with recurrence and reoperation rates of 9% and 7%, respectively. Survival most closely was related to the extent of disease and its inherent chemo-/radiosensitivity, with 72% of the patients who survived longer than 1 year having breast cancer, leukemia, or lymphoma.

  18. Malignant central airway obstruction

    PubMed Central

    Mudambi, Lakshmi; Miller, Russell

    2017-01-01

    This review comprehensively describes recent advances in the management of malignant central airway obstruction (CAO). Malignant CAO can be a dramatic and devastating manifestation of primary lung cancer or metastatic disease. A variety of diagnostic modalities are available to provide valuable information to plan a therapeutic intervention. Clinical heterogeneity in the presentation of malignant CAO provides opportunities to adapt and utilize endoscopic technology and tools in many ways. Mechanical debulking, thermal tools, cryotherapy and airway stents are methods and instruments used to rapidly restore airway patency. Delayed bronchoscopic methods, such as photodynamic therapy (PDT) and brachytherapy can also be utilized in specific non-emergent situations to establish airway patency. Although data regarding the success and complications of therapeutic interventions are retrospective and characterized by clinical and outcome measure variability, the symptoms of malignant CAO can often be successfully palliated. Assessment of risks and benefits of interventions in each individual patient during the decision-making process forms the critical foundation of the management of malignant CAO. PMID:29214067

  19. [Hematologic malignancies in pregnancy].

    PubMed

    Doubek, R; Petrovová, D; Kalvodová, J; Doubek, M

    2009-04-01

    To summarize available data concerning hematologic malignancies in pregnancy. Review article. Department of Obstetrics and Gynekology, Fakulty of Medicine, Masaryk University and University Hospital Brno. Compilation of published data from scientific literature. Cancer complicating pregnancy is a rare coexistence. The incidence is approximately 1 in 1,000 pregnancies. The most frequent hematologic malignant tumor is Hodgkin's lymphoma, leukemia is less frequent and myeloproliferative diseases complicating pregnancy are sporadic coexistence. Symptoms of these deseases are often nonspecific and disguised in pregnancy, then the diagnosis can be late. It is imperative that a multidisciplinary team involving hematooncologist and obstetrician (pediatric specialist) care for patient with hematologic malignancies. Cleary, every patient have to know whole prognosis and all risk factors of treatment. Optimum timing of delivery is after 36th week of pregnancy (when chemotherapy is ended more than two weeks ago). We prefer vaginal delivery to caesarean section.

  20. Hemostasis and malignancy.

    PubMed

    Francis, J L; Biggerstaff, J; Amirkhosravi, A

    1998-01-01

    There is considerable evidence that the hemostatic system is involved in the growth and spread of malignant disease. There is an increased incidence of thromboembolic disease in patients with cancers and hemostatic abnormalities are extremely common in such patients. Antihemostatic agents have been successfully used to treat a variety of experimental tumors, and several clinical trials in humans have been initiated. Although metastasis is undoubtedly multifactorial, intravascular coagulation activation and peritumor fibrin deposition seem to be important. The mechanisms by which hemostatic activation facilitates the malignant process remain to be completely elucidated. Of central importance may be the presence on malignant cells of tissue factor and urokinase receptor. Recent studies have suggested that these proteins, and others, may be involved at several stages of metastasis, including the key event of neovascularization. Tissue factor, the principal initiator of coagulation, may have additional roles, outside of fibrin formation, that are central to the biology of some solid tumors.

  1. Paraspinal tuberculosis mimicking malignancy.

    PubMed

    Alherabi, Ameen Z; Marglani, Osama A; Gazzaz, Malak J; Abbas, Mohammed M

    2013-12-01

    Tuberculosis (TB) of the paraspinal muscles is a rare clinical entity. We present a case of an 18-year-old, Saudi male patient presenting with the clinical picture of a paraspinal mass that turned out to be paraspinal TB. It originated from the paraspinal tissues and muscles, and invaded the C6 and C7 vertebrae. Initially, it was highly suspicious for malignancy. A biopsy confirmed the diagnosis of TB, and the patient was treated successfully with anti-TB therapy. It is important to be aware that paraspinal TB can mimic malignancy.

  2. NLP-1: a DNA intercalating hypoxic cell radiosensitizer and cytotoxin

    SciTech Connect

    Panicucci, R.; Heal, R.; Laderoute, K.

    The 2-nitroimidazole linked phenanthridine, NLP-1 (5-(3-(2-nitro-1-imidazoyl)-propyl)-phenanthridinium bromide), was synthesized with the rationale of targeting the nitroimidazole to DNA via the phenanthridine ring. The drug is soluble in aqueous solution (greater than 25 mM) and stable at room temperature. It binds to DNA with a binding constant 1/30 that of ethidium bromide. At a concentration of 0.5 mM, NLP-1 is 8 times more toxic to hypoxic than aerobic cells at 37 degrees C. This concentration is 40 times less than the concentration of misonidazole, a non-intercalating 2-nitroimidazole, required for the same degree of hypoxic cell toxicity. The toxicity of NLP-1 ismore » reduced at least 10-fold at 0 degrees C. Its ability to radiosensitize hypoxic cells is similar to misonidazole at 0 degrees C. Thus the putative targeting of the 2-nitroimidazole, NLP-1, to DNA, via its phenanthridine group, enhances its hypoxic toxicity, but not its radiosensitizing ability under the present test conditions. NLP-1 represents a lead compound for intercalating 2-nitroimidazoles with selective toxicity for hypoxic cells.« less

  3. Pharmacological Inhibition of the Protein Kinase MRK/ZAK Radiosensitizes Medulloblastoma.

    PubMed

    Markowitz, Daniel; Powell, Caitlin; Tran, Nhan L; Berens, Michael E; Ryken, Timothy C; Vanan, Magimairajan; Rosen, Lisa; He, Mingzu; Sun, Shan; Symons, Marc; Al-Abed, Yousef; Ruggieri, Rosamaria

    2016-08-01

    Medulloblastoma is a cerebellar tumor and the most common pediatric brain malignancy. Radiotherapy is part of the standard care for this tumor, but its effectiveness is accompanied by significant neurocognitive sequelae due to the deleterious effects of radiation on the developing brain. We have previously shown that the protein kinase MRK/ZAK protects tumor cells from radiation-induced cell death by regulating cell-cycle arrest after ionizing radiation. Here, we show that siRNA-mediated MRK depletion sensitizes medulloblastoma primary cells to radiation. We have, therefore, designed and tested a specific small molecule inhibitor of MRK, M443, which binds to MRK in an irreversible fashion and inhibits its activity. We found that M443 strongly radiosensitizes UW228 medulloblastoma cells as well as UI226 patient-derived primary cells, whereas it does not affect the response to radiation of normal brain cells. M443 also inhibits radiation-induced activation of both p38 and Chk2, two proteins that act downstream of MRK and are involved in DNA damage-induced cell-cycle arrest. Importantly, in an animal model of medulloblastoma that employs orthotopic implantation of primary patient-derived UI226 cells in nude mice, M443 in combination with radiation achieved a synergistic increase in survival. We hypothesize that combining radiotherapy with M443 will allow us to lower the radiation dose while maintaining therapeutic efficacy, thereby minimizing radiation-induced side effects. Mol Cancer Ther; 15(8); 1799-808. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize.

    PubMed

    Adams, Stephen R; Yang, Howard C; Savariar, Elamprakash N; Aguilera, Joe; Crisp, Jessica L; Jones, Karra A; Whitney, Michael A; Lippman, Scott M; Cohen, Ezra E W; Tsien, Roger Y; Advani, Sunil J

    2016-10-04

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery.

  5. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize

    PubMed Central

    Adams, Stephen R.; Yang, Howard C.; Savariar, Elamprakash N.; Aguilera, Joe; Crisp, Jessica L.; Jones, Karra A.; Whitney, Michael A.; Lippman, Scott M.; Cohen, Ezra E. W.; Tsien, Roger Y.; Advani, Sunil J.

    2016-01-01

    Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. PMID:27698471

  6. Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    PubMed Central

    Kriegs, Malte; Kasten-Pisula, Ulla; Riepen, Britta; Hoffer, Konstantin; Struve, Nina; Myllynen, Laura; Braig, Friederike; Binder, Mascha; Rieckmann, Thorsten; Grénman, Reidar; Petersen, Cordula; Dikomey, Ekkehard; Rothkamm, Kai

    2016-01-01

    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells. PMID:27281611

  7. Malignant tumors of childhood

    SciTech Connect

    Brooks, B.J.

    1986-01-01

    This book contains 34 papers about malignant tumors. some of the titles are: Invasive Cogenital Mesoblastic Nephroma, Leukemia Update, Unusual Perinatal Neoplasms, Lymphoma Update, Gonadal Germ Cell Tumors in Children, Nutritional Status and Cancer of Childhood, and Chemotherapy of Brain tumors in Children.

  8. Early malignant syphilis*

    PubMed Central

    Ortigosa, Yara Martins; Bendazzoli, Paulo Salomão; Barbosa, Angela Marques; Ortigosa, Luciena Cegatto Martins

    2016-01-01

    Early malignant syphilis is a rare and severe variant of secondary syphilis. It is clinically characterized by lesions, which can suppurate and be accompanied by systemic symptoms such as high fever, asthenia, myalgia, and torpor state. We report a diabetic patient with characteristic features of the disease showing favorable evolution of the lesions after appropriate treatment. PMID:28300925

  9. Differentiation and radiosensitivity of hemopoietic stem cells of mice during hypokinesia

    NASA Technical Reports Server (NTRS)

    Shvets, V. N.

    1980-01-01

    The potential for differentiation and radiosensitivity of the stem hemopoietic cells (KOE) under conditions of initial and later hypokinesia is examined. It is established that in the initial period of hypokinesia (3 days) when a stress reaction prevails, changes occur in the erythroid differentiation and radiosensitivity of KOE. This effect is associated with redistribution of T-lymphocytes that increase in number in the bone marrow of mice during hypokinesia. At later periods of hypokinesia (30 days) when changes in the organism are related to hypokinesia proper, differentiation and radiosensitivity of KOE were normalized.

  10. Malignant Mesothelioma—Patient Version

    Cancer.gov

    Malignant mesothelioma is a cancer of the thin tissue (mesothelium) that lines the lung, chest wall, and abdomen. The major risk factor for mesothelioma is asbestos exposure. Start here to find information on malignant mesothelioma treatment.

  11. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids

    PubMed Central

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous (“sea”) routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects. PMID:28971063

  12. Nanoparticle Drones to Target Lung Cancer with Radiosensitizers and Cannabinoids.

    PubMed

    Ngwa, Wilfred; Kumar, Rajiv; Moreau, Michele; Dabney, Raymond; Herman, Allen

    2017-01-01

    Nanotechnology has opened up a new, previously unimaginable world in cancer diagnosis and therapy, leading to the emergence of cancer nanomedicine and nanoparticle-aided radiotherapy. Smart nanomaterials (nanoparticle drones) can now be constructed with capability to precisely target cancer cells and be remotely activated with radiation to emit micrometer-range missile-like electrons to destroy the tumor cells. These nanoparticle drones can also be programmed to deliver therapeutic payloads to tumor sites to achieve optimal therapeutic efficacy. In this article, we examine the state-of-the-art and potential of nanoparticle drones in targeting lung cancer. Inhalation (INH) (air) versus traditional intravenous ("sea") routes of navigating physiological barriers using such drones is assessed. Results and analysis suggest that INH route may offer more promise for targeting tumor cells with radiosensitizers and cannabinoids from the perspective of maximizing damage to lung tumors cells while minimizing any collateral damage or side effects.

  13. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    NASA Astrophysics Data System (ADS)

    Huber, S. E.; Śmiałek, M. A.; Tanzer, K.; Denifl, S.

    2016-06-01

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO-, water, and the amidogen (NH2) radical. The second and third most dominant dissociation channels are associated with formation of NCNH- and NHCONH2-, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH2-/O-, OH-, CN-, HNOH-, NCONH2-, and ONHCONH2-.

  14. Microbiome and Malignancy

    PubMed Central

    Plottel, Claudia S.; Blaser, Martin J.

    2011-01-01

    Current knowledge is insufficient to explain why only a proportion of individuals exposed to environmental carcinogens or carrying a genetic predisposition to cancer develop disease. Clearly, other factors must be important and one such element that has recently received attention is the human microbiome, the residential microbes including Bacteria, Archaea, Eukaryotes, and viruses that colonize humans. Here, we review principles and paradigms of microbiome-related malignancy, as illustrated by three specific microbial-host interactions. We review the effects of the microbiota on local and adjacent-neoplasia, present the estrobolome model of distant effects, and discuss the complex interactions with a latent virus leading to malignancy. These are separate facets of a complex biology interfacing all the microbial species we harbor from birth onward toward early reproductive success and eventual senescence. PMID:22018233

  15. Radiosensitivity of antibody responses and radioresistant secondary tetanus antitoxin responses

    SciTech Connect

    Stoner, R.; Terres, G.; Cottier, H.

    1976-01-01

    Primary tetanus antitoxin responses were increasingly repressed in mice when gamma radiation doses of 100 to 400 rads were delivered by whole-body exposure prior to immunization with fluid tetanus toxoid (FTT). Nearly normal secondary antitoxin responses were obtained in mice exposed to 600 rads of gamma radiation 4 days after secondary antigenic stimulation with FTT. A rapid transition from radiosensitivity of the antibody-forming system on days 1 to 3 was followed by relative radioresistance on day 4 after the booster injection of toxoid. Studies on lymphoid cellular kinetics in popliteal lymph nodes after injection of $sup 3$H--thymidine ($sup 3$H--TdR) andmore » incorporation of $sup 3$H--L- histidine into circulating antitoxin were carried out. Analysis of tritium radioactivity in antigen--antibody precipitates of serums 2 hr after injection of the labeled amino acid revealed maximum incorporation into antibody around day 7 after the booster in nonirradiated controls and about day 12, i.e., 8 days after irradiation, in experimental mice. The shift from radiosensitivity to relative radioresistance was attributed to a marked peak of plasma-cell proliferation in the medulla of lymph nodes on day 3. Many medullary plasma cells survived and continued to proliferate after exposure to radiation. Germinal centers were destroyed by radiation within 1 day. Since antibody formation continued after exposure to radiation and after the loss of germinal centers, this supports the view that germinal-center cells were involved more in the generation of memory cells than in antibody synthesis. (auth)« less

  16. Validation of a Radiosensitivity Molecular Signature in Breast Cancer

    PubMed Central

    Eschrich, Steven A.; Fulp, William J.; Pawitan, Yudi; Foekens, John A.; Smid, Marcel; Martens, John W. M.; Echevarria, Michelle; Kamath, Vidya; Lee, Ji-Hyun; Harris, Eleanor E.; Bergh, Jonas; Torres-Roca, Javier F.

    2014-01-01

    Purpose Previously, we developed a radiosensitivity molecular signature (RSI) that was clinically-validated in three independent datasets (rectal, esophageal, head and neck) in 118 patients. Here, we test RSI in radiotherapy (RT) treated breast cancer patients. Experimental Design RSI was tested in two previously published breast cancer datasets. Patients were treated at the Karolinska University Hospital (n=159) and Erasmus Medical Center (n=344). RSI was applied as previously described. Results We tested RSI in RT-treated patients (Karolinska). Patients predicted to be radiosensitive (RS) had an improved 5 yr relapse-free survival when compared with radioresistant (RR) patients (95% vs. 75%, p=0.0212) but there was no difference between RS/RR patients treated without RT (71% vs. 77%, p=0.6744), consistent with RSI being RT-specific (interaction term RSIxRT, p=0.05). Similarly, in the Erasmus dataset RT-treated RS patients had an improved 5-year distant-metastasis-free survival over RR patients (77% vs. 64%, p=0.0409) but no difference was observed in patients treated without RT (RS vs. RR, 80% vs. 81%, p=0.9425). Multivariable analysis showed RSI is the strongest variable in RT-treated patients (Karolinska, HR=5.53, p=0.0987, Erasmus, HR=1.64, p=0.0758) and in backward selection (removal alpha of 0.10) RSI was the only variable remaining in the final model. Finally, RSI is an independent predictor of outcome in RT-treated ER+ patients (Erasmus, multivariable analysis, HR=2.64, p=0.0085). Conclusions RSI is validated in two independent breast cancer datasets totaling 503 patients. Including prior data, RSI is validated in five independent cohorts (621 patients) and represents, to our knowledge, the most extensively validated molecular signature in radiation oncology. PMID:22832933

  17. Pembrolizumab in Treating Patients With Malignant Mesothelioma

    ClinicalTrials.gov

    2018-03-01

    Biphasic Mesothelioma; Epithelioid Mesothelioma; Peritoneal Malignant Mesothelioma; Pleural Biphasic Mesothelioma; Pleural Epithelioid Mesothelioma; Pleural Malignant Mesothelioma; Pleural Sarcomatoid Mesothelioma; Recurrent Peritoneal Malignant Mesothelioma; Recurrent Pleural Malignant Mesothelioma; Sarcomatoid Mesothelioma

  18. Effect of hydrocortisone on radiosensitivity of hemopoietic stem cells. [. gamma. rays; mice; bone marrow; spleen

    SciTech Connect

    Shvets, V.N.

    Studies were made of the direction of differentiation and radiosensitivity of CFU (colony-forming units) of bone marrow and spleen for 1 month after single injection of 5 mg hydrocortisone (HC) per mouse. It was found that there was a sharp change in direction of differentiation of CFU from different sources. Bone marrow CFU enhanced erythropoiesis and CFU of the spleen enhanced myelopoiesis, which is not inherent in the same CFU of normal mice. Determination of radiosensitivity of CFU from different sources according to the spleen colony test failed to demonstrate any differences in value of D/sub 0/ and extrapolation number,more » whereas substantial changes in radiosensitivity were demonstrated in the bone marrow colony test. Radiosensitivity of marrow CFU diminished while that of the spleen increased, as compared to the control. It is assumed that these phenomena are due to redistribution of T lymphocytes in response to HC.« less

  19. Asbestos-related malignancy

    SciTech Connect

    Talcott, J.A.; Antman, K.H.

    Asbestos-associated malignancies have received significant attention in the lay and medical literature because of the increasing frequency of two asbestos-associated tumors, lung carcinoma and mesothelioma; the wide distribution of asbestos; its status as a prototype environmental carcinogen; and the many recent legal compensation proceedings, for which medical testimony has been required. The understanding of asbestos-associated carcinogenesis has increased through study of animal models, human epidemiology, and, recently, the application of modern molecular biological techniques. However, the detailed mechanisms of carcinogenesis remain unknown. A wide variety of malignancies have been associated with asbestos, although the strongest evidence for a causal associationmore » is confined to lung cancer and mesothelioma. Epidemiological studies have provided evidence that both the type of asbestos fiber and the industry in which the exposure occurs may affect the rates of asbestos-associated cancers. It has been shown that asbestos exerts a carcinogenic effect independent of exposure to cigarette smoking that, for lung cancers, is synergistically enhanced by smoking. Other questions remain controversial, such as whether pulmonary fibrosis necessarily precedes asbestos-associated lung cancer and whether some threshold level of exposure to asbestos (including low-dose exposures that may occur in asbestos-associated public buildings) may be safe. Mesothelioma, the most closely asbestos-associated malignancy, has a dismal natural history and has been highly resistant to therapy. However, investigational multi-modality therapy may offer benefit to some patients. 179 references.« less

  20. Hypocalcaemia of malignancy.

    PubMed

    Schattner, A; Dubin, I; Huber, R; Gelber, M

    2016-07-01

    Hypercalcaemia of malignancy is well recognised, but hypocalcaemia in cancer patients is not, although it is increasingly encountered. Analysis of an exemplary case and a narrative review of the literature based on the search terms cancer and hypocalcaemia. Hypocalcaemia may affect as many as 10% of hospitalised cancer patients. We identified 12 different potential mechanisms of hypocalcaemia of malignancy. Identifying the pathogenesis is essential for the correct treatment and can usually be performed at the bedside, based on serum parathyroid hormone (PTH) levels, creatinine, phosphate, magnesium, creatine kinase, liver enzymes and 25(OH)D. Essentially, decreased or normal PTH hypocalcaemia is seen after removal or destruction of its source, hypomagnesaemia, or cinacalcet treatment. In all other cancer-associated hypocalcaemia, PTH is elevated, including significant renal impairment, critically ill patients, extensive cell destruction (rhabdomyolysis, tumour lysis, haemolysis), acute pancreatitis, adverse drug reactions, cancer or cancer treatment-related malabsorption syndromes, vitamin D deficiency, or osteoblastic metastases. Different mechanisms may often operate in tandem. Pathogenesis determines treatment and affects prognosis. However, hypocalcaemia of malignancy as such did not imply a worse prognosis, in contrast with hypercalcaemia. Hypocalcaemia in cancer patients is commonly encountered, particularly in hospitalised patients, may be mediated by diverse mechanisms and should be better recognised.

  1. Immunotherapy for Gastrointestinal Malignancies

    PubMed Central

    Toomey, Paul G.; Vohra, Nasreen A.; Ghansah, Tomar; Sarnaik, Amod A.; Pilon-Thomas, Shari A.

    2016-01-01

    Background Gastrointestinal (GI) cancers are the most common human tumors encountered worldwide. The majority of GI cancers are unresectable at the time of diagnosis, and in the subset of patients undergoing resection, few are cured. There is only a modest improvement in survival with the addition of modalities such as chemotherapy and radiation therapy. Due to an increasing global cancer burden, it is imperative to integrate alternative strategies to improve outcomes. It is well known that cancers possess diverse strategies to evade immune detection and destruction. This has led to the incorporation of various immunotherapeutic strategies, which enable reprogramming of the immune system to allow effective recognition and killing of GI tumors. Methods A review was conducted of the results of published clinical trials employing immunotherapy for esophageal, gastroesophageal, gastric, hepatocellular, pancreatic, and colorectal cancers. Results Monoclonal antibody therapy has come to the forefront in the past decade for the treatment of colorectal cancer. Immunotherapeutic successes in solid cancers such as melanoma and prostate cancer have led to the active investigation of immunotherapy for GI malignancies, with some promising results. Conclusions To date, monoclonal antibody therapy is the only immunotherapy approved by the US Food and Drug Administration for GI cancers. Initial trials validating new immunotherapeutic approaches, including vaccination-based and adoptive cell therapy strategies, for GI malignancies have demonstrated safety and the induction of antitumor immune responses. Therefore, immunotherapy is at the forefront of neoadjuvant as well as adjuvant therapies for the treatment and eradication of GI malignancies. PMID:23302905

  2. Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor-Associated Angiogenesis

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-15-1-0296 TITLE: Targeting MEK5 Enhances Radiosensitivity of Human Prostate Cancer and Impairs Tumor- Associated...3. DATES COVERED 31 Aug 2015 - 30 Aug 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting MEK5 Enhances Radiosensitivity of Human Prostate...therapeutic modality for the treatment of human prostate cancer. However, tumors often demonstrate resistance to ionizing radiation and continue to

  3. Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    PubMed Central

    De Ruyck, K; de Gelder, V; Van Eijkeren, M; Boterberg, T; De Neve, W; Vral, A; Thierens, H

    2008-01-01

    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G2 assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G2 scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (⩽50 years, 1.32 breaks per cell, 38%) and in the non- and light smoking patient group (⩽10 pack-years, 1.28 breaks per cell, 46%). In conclusion, enhanced chromosomal radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients. PMID:18414410

  4. Celecoxib enhances radiosensitivity of hypoxic glioblastoma cells through endoplasmic reticulum stress

    PubMed Central

    Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Sun, Lue; Zenkoh, Junko; Moritake, Takashi; Tsuboi, Koji

    2013-01-01

    Background Refractoriness of glioblastoma multiforme (GBM) largely depends on its radioresistance. We investigated the radiosensitizing effects of celecoxib on GBM cell lines under both normoxic and hypoxic conditions. Methods Two human GBM cell lines, U87MG and U251MG, and a mouse GBM cell line, GL261, were treated with celecoxib or γ-irradiation either alone or in combination under normoxic and hypoxic conditions. Radiosensitizing effects were analyzed by clonogenic survival assays and cell growth assays and by assessing apoptosis and autophagy. Expression of apoptosis-, autophagy-, and endoplasmic reticulum (ER) stress–related genes was analyzed by immunoblotting. Results Celecoxib significantly enhanced the radiosensitivity of GBM cells under both normoxic and hypoxic conditions. In addition, combined treatment with celecoxib and γ-irradiation induced marked autophagy, particularly in hypoxic cells. The mechanism underlying the radiosensitizing effect of celecoxib was determined to be ER stress loading on GBM cells. Conclusion Celecoxib enhances the radiosensitivity of GBM cells by a mechanism that is different from cyclooxygenase-2 inhibition. Our results indicate that celecoxib may be a promising radiosensitizing drug for clinical use in patients with GBM. PMID:23658321

  5. Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?

    PubMed

    De Ruyck, K; de Gelder, V; Van Eijkeren, M; Boterberg, T; De Neve, W; Vral, A; Thierens, H

    2008-05-20

    The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G(2) assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G(2) scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients.

  6. [Malignant tumors of thyroid gland].

    PubMed

    Uhliarová, B; Bugová, G; Hajtman, A

    2015-01-01

    The incidence of thyroid cancer has been increasing. The aim of this work was to determine risk factors, diagnostic methods and extent of surgical treatment of malignant goiter. The authors retrospectively analyzed patients who were surgically treated for thyroid disease at the Department of Otorhinolaryngology, Head and Neck Surgery, Comenius University, Jessenius Faculty of Medicine, Teaching Hospital in Martin, Slovakia, from the January 1st, 2006 to December 31st, 2013, for thyroid disease. The incidence, risk factors of malignant thyroid tumors, indication for surgery and its complications were evaluated. A total of 1,620 adult patients were surgically treated for thyroid disease at the Department of ENT, Head and Neck Surgery, CU JMF, UH in Martin, Slovakia, between 2006- 2013. Malignant tumors were identified in 238 patients (15%). Microcarcinoma (incidentally detected malignant tumor 1 cm) occurred in 78 cases (5%). Malignant thyroid tumor was more common in younger patients (p = 0.002). Newly created and larger nodules positively correlated with the occurrence of malignancy (p = 0.003, p = 0.041, resp.). Gender, family history of thyroid disorder, previous radiation therapy, and previous malignancy did not affect the incidence of malignant tumor of thyroid gland. High sensitivity and specificity in the dia-gnosis of malignant thyroid nodule was observed using aspiration cytology (75%, 97%, resp.) and intraoperative histopathological examination (88%, 100%, resp.). Malignant tumor of thyroid gland is more common in younger patients with newly developed nodule. The risk factors of malignancy increase with the size of the thyroid nodule. Aspiration cytology and peroperative histopathology have high sensitivity and specificity in the dia-gnosis of malignant thyroid tumor; therefore, they should be a standard method in the dia-gnosis of nodular goiter. The method of choice in the treatment of thyroid malignancy is total thyroidectomy.

  7. Bronchoalveolar lavage in malignancy.

    PubMed

    Poletti, Venerino; Poletti, Giovanni; Murer, Bruno; Saragoni, Luca; Chilosi, Marco

    2007-10-01

    Bronchoalveolar lavage is a useful diagnostic tool in diffuse or disseminated lung malignancies that do not involve the bronchial structures visible by endoscopy. The neoplastic histotype and the intraparenchymal neoplastic growth pattern are good predictors for diagnostic yield; adenocarcinoma, and tumors with lymphangitic or lepidic growth patterns are more easily diagnosed by bronchoalveolar lavage; in these cases the diagnostic yield reported is higher than 80%. In hematologic malignancies the diagnostic yield is quite good in secondary diffuse indolent B cell lymphomas and in primary B cell lymphomas of mucosa-associated lymphoid tissue (MALT) type but low in Hodgkin disease. Morphological analysis may be implemented by immunocytochemical or molecular tests to identify the cell lineage and the presence of monoclonality. Disorders in which bronchioloalveolar cell hyperplasia/dysplasia is a significant morphological component may have cytological features in bronchoalveolar lavage fluid that mimic lung neoplasms: acute respiratory distress syndrome (ARDS), acute interstitial pneumonitis (AIP), and acute exacerbation of idiopathic pulmonary fibrosis are the most important clinical entities in this group.

  8. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle

    PubMed Central

    Morrison, Rachel A; Rybak-Smith, Malgorzata J; Thompson, James M; Thiebaut, Bénédicte; Hill, Mark A; Townley, Helen E

    2017-01-01

    The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors. PMID:28572729

  9. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle.

    PubMed

    Morrison, Rachel A; Rybak-Smith, Malgorzata J; Thompson, James M; Thiebaut, Bénédicte; Hill, Mark A; Townley, Helen E

    2017-01-01

    The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors.

  10. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells.

    PubMed

    Cheng, Huawen

    2016-09-20

    BACKGROUND Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. MATERIAL AND METHODS CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. RESULTS CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. CONCLUSIONS These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity.

  11. Radiosensitization Effect of STI-571 on Pancreatic Cancer Cells In Vitro

    SciTech Connect

    Chung, Hye Won; Wen, Jing; Lim, Jong-Baeck

    2009-11-01

    Purpose: To examine STI-571-induced radiosensitivity in human pancreatic cancer cells in vitro. Methods and Materials: Three human pancreatic cancer cell lines (Bxpc-3, Capan-1, and MiaPaCa-2) exhibiting different expression levels of c-Kit and platelet-derived growth factor receptor beta (PDGFRbeta) and showing different K-ras mutation types were used. For evaluation of the antitumor activity of STI-571 in combination with radiation, clonogenic survival assays, Western blot analysis, and the annexin V/propidium iodide assay with microscopic evaluation by 4',6-diamidino-2-phenylindole were conducted. Results: Dramatic phosphorylated (p)-c-Kit and p-PDGFRbeta attenuation, a modest dose- and time-dependent growth inhibition, and significant radiosensitization were observed after STI-571 treatment inmore » view of apoptosis, although the levels of growth inhibition and increased radiosensitization were different according to cell lines. The grades of radiosensitivity corresponded to the attenuation levels of p-c-Kit and p-PDGFRbeta by STI-571, particularly to those of p-c-Kit, and the radiosensitivity was partially affected by K-ras mutation in pancreatic cancer cells. Among downstream pathways associated with c-Kit or PDGFRbeta, p-PLCgamma was more closely related to radiosensitivity compared with p-Akt1 or p-extracellular signal-regulated kinase 1. Conclusion: STI-571 enhances radiation response in pancreatic cancer cells. This effect is affected by the attenuation levels of p-c-Kit or p-PDGFRbeta, and K-ras mutation status. Among them, p-c-Kit plays more important roles in the radiosensitivity in pancreatic cancer compared with p-PDGFRbeta or K-ras mutation status.« less

  12. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    SciTech Connect

    Hirai, Takahisa; Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Chuo-ku, Tokyo; Saito, Soichiro

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in Nationalmore » Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.« less

  13. Malignant melanoma of the nose.

    PubMed

    Souza, S D; Sujata, G

    2001-04-01

    Invasive tumors containing abnormal melanocvtes are termed ax malignant melanomas. Primary malignant melanomas of the nasal and paranasal cavities are extremely rare. A 65 years old female presented with bleeding from the nose and a gradually increasing mass in the left nostril. Histopathological examination of the specimen showed "poorly differentiated carcinoma" like features. But S-100 staining proved it to be a malignant melanoma. This case is reported here for its rarity. The literature on malignant melanoma is reviewed and the aetiology pathology, diagnostic and therapeutic problems are also discussed.

  14. Survivin, a target to modulate the radiosensitivity of Ewing's sarcoma.

    PubMed

    Greve, B; Sheikh-Mounessi, F; Kemper, B; Ernst, I; Götte, M; Eich, H T

    2012-11-01

    Radiotherapy constitutes an essential element in the multimodal therapy of Ewing's sarcoma. Compared to other sarcomas, Ewing tumors normally show a good response to radiotherapy. However, there are consistently tumors with a radioresistant phenotype, and the underlying mechanisms are not known in detail. Here we investigated the association between survivin protein expression and the radiosensitivity of Ewing's sarcoma in vitro. An siRNA-based knockdown approach was used to investigate the influence of survivin expression on cell proliferation, double-strand break (DSB) induction and repair, apoptosis and colony-forming ability in four Ewing's sarcoma cell lines with and without irradiation. Survivin protein and mRNA were upregulated in all cell lines tested in a dose-dependent manner. As a result of survivin knockdown, STA-ET-1 cells showed reduced cell proliferation, an increased number of radiation-induced DSBs, and reduced repair. Apoptosis was increased by knockdown alone and increased further in combination with irradiation. Colony formation was significantly reduced by survivin knockdown in combination with irradiation. Survivin is a radiation-inducible protein in Ewing's sarcoma and its down-regulation sensitizes cells toward irradiation. Survivin knockdown in combination with radiation inhibits cell proliferation, repair, and colony formation significantly and increases apoptosis more than each single treatment alone. This might open new perspectives in the radiation treatment of Ewing's sarcoma.

  15. In-vitro radiosensitivity in patients with systemic lupus erythematosus.

    PubMed

    Carrillo-Alascio, P L; Sabio, J M; Núñez-Torres, M I; López, E; Muñoz-Gámez, J A; Hidalgo-Tenorio, C; Jáimez, L; Martín, J; Jiménez-Alonso, J

    2009-06-01

    To determine the "in-vitro" intrinsic cell radiosensitivity (RS) as a risk indicator of radiation-related side-effects in patients with systemic lupus erythematosus (SLE) compared with healthy subjects (control group). Moreover, we elucidated if clinical, therapeutic and biological parameters could affect the "in-vitro" intrinsic RS in patients with SLE. Intrinsic RS was determined by the quantification of the initial radiation-induced DNA double-strand breaks in peripheral lymphocytes, measured by pulsed-field gel electrophoresis from 52 patients with SLE and a control group consisting of 48 sex- and age-matched healthy subjects. No difference in intrinsic RS was found among both groups. However, SLE patients with anaemia, increased erythrocyte sedimentation rate and those with positive result for anti-La/SSB and anti-RNP antibodies showed significantly higher DNA double-strand breaks than those without them. In our study, patients with SLE did not have a higher intrinsic RS than healthy subjects. According to these results, and with the caution of being a limited laboratory study, the use of radiotherapy should not be avoided in patients with SLE when it is clinically needed.

  16. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    SciTech Connect

    Daniels, E.W.; Roth, L.E.

    1962-10-01

    Pelomyxa illinoisensis amoebae, the large radiosensitive species, were fixed in OsO/sub 4/ and embedded in either Epon 812 or methacrylate. Ultrastructural morphology is demonstrated in subnuclear structures at interphase and during specific times in mitosis. Evidence of nuclear envelope breakdown and reconstruction is presented. Fragments of nuclear envelope membranes are traced throughout metaphase and anaphase to telophase. Annuli in the nuclear envelope and its fragments are demonstrated. P. illinoisensis is unique in mitochondrial arrangement during metaphase and anaphase-- mitochondria are aligned at the ends of fibrils distal to the chromosomes at the positions occupied by centrioles in other types ofmore » cells; there they remain until the end of anaphase. The radioresistant amoebae, Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria. P. illinoisensis also differs from the two radioresistant species in nucleolar morphology during interphase, and in the manner of nucleolar dissolution during prophase. On the other hand, helical coils are shown in the interphase nucleoplasm which appear similar to those in the radioresistant amoebae, P. carolinensis and A. groteus. A blister stage in the telophase of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to interphase. This has not been observed in the radioresistant amoebae. (auth)« less

  17. Enhanced radiosensitization of p53 mutant cells by oleamide.

    PubMed

    Lee, Yoon-Jin; Chung, Da Yeon; Lee, Su-Jae; Ja Jhon, Gil; Lee, Yun-Sil

    2006-04-01

    Effect of oleamide, an endogenous fatty-acid primary amide, on tumor cells exposed to ionizing radiation (IR) has never before been explored. NCI H460, human lung cancer cells, and human astrocytoma cell lines, U87 and U251, were used. The cytotoxicity of oleamide alone or in combination with IR was determined by clonogenic survival assay, and induction of apoptosis was estimated by FACS analysis. Protein expressions were confirmed by Western blotting, and immunofluorescence analysis of Bax by use of confocal microscopy was also performed. The combined effect of IR and oleamide to suppress tumor growth was studied by use of xenografts in the thighs of nude mice. Oleamide in combination with IR had a synergistic effect that decreased clonogenic survival of lung-carcinoma cell lines and also sensitized xenografts in nude mice. Enhanced induction of apoptosis of the cells by the combined treatment was mediated by loss of mitochondrial membrane potential, which resulted in the activation of caspase-8, caspase-9, and caspase-3 accompanied by cytochrome c release and Bid cleavage. The synergistic effects of the combined treatment were more enhanced in p53 mutant cells than in p53 wild-type cells. In p53 wild-type cells, both oleamide and radiation induced Bax translocation to mitochondria. On the other hand, in p53 mutant cells, radiation alone slightly induced Bax translocation to mitochondria, whereas oleamide induced a larger translocation. Oleamide may exhibit synergistic radiosensitization in p53 mutant cells through p53-independent Bax translocation to mitochondria.

  18. Effect of anesthetics on the radiosensitivity of a murine tumor

    SciTech Connect

    Sheldon, P.W.; Chu, A.M.

    The effect of four anesthetics on the single dose of x rays required to locally control 50% of implanted MT tumors was investigated. Compared with unanesthetized animals, no change in radiosensitivity was observed if mice were irradiated under either tribromoethanol or fentanyl-fluanisone-diazepam anesthesia. However, a small but significant degree of radioprotection was observed under chloral hydrate or pentobarbital anesthesia. Hypothermia or increased hypoxia are considered unlikely mechanisms for the protection, a direct chemical action being most probable. The preferred method for immobilizing the mice in order to locally irradiate the tumors was by simple physical restraint (with care taken tomore » minimize physiological stress). However, if anesthesia was a necessity, the present work suggests that for the MT tumor at least the nonprotecting tribromoethanol and fentanyl-fluanisone-diazepam are preferable to the protecting chloral hydrate and pentobarbital. Tribromoethanol is preferable to fetanyl-fluanisone-diazepam in that it produces a smaller drop in temperature. However, it is only a short-acting anesthetic, and prolongation of the state of anesthesia by repeated doses simply prolongs the temperature decline so that there may be no real benefit over fentanyl-fluanisone-diazepam.« less

  19. Dissociative electron attachment to the radiosensitizing chemotherapeutic agent hydroxyurea

    SciTech Connect

    Huber, S. E.; Tanzer, K.; Denifl, S.

    Dissociative electron attachment to hydroxyurea was studied in the gas phase for electron energies ranging from zero to 9 eV in order to probe its radiosensitizing capabilities. The experiments were carried out using a hemispherical electron monochromator coupled with a quadrupole mass spectrometer. Diversified fragmentation of hydroxyurea was observed upon low energy electron attachment and here we highlight the major dissociation channels. Moreover, thermodynamic thresholds for various fragmentation reactions are reported to support the discussion of the experimental findings. The dominant dissociation channel, which was observed over a broad range of energies, is associated with formation of NCO{sup −}, water,more » and the amidogen (NH{sub 2}) radical. The second and third most dominant dissociation channels are associated with formation of NCNH{sup −} and NHCONH{sub 2}{sup −}, respectively, which are both directly related to formation of the highly reactive hydroxyl radical. Other ions observed with significant abundance in the mass spectra were NH{sub 2}{sup −}/O{sup −}, OH{sup −}, CN{sup −}, HNOH{sup −}, NCONH{sub 2}{sup −}, and ONHCONH{sub 2}{sup −}.« less

  20. Effect of medroxyprogesterone acetate (Provera) on ovarian radiosensitivity

    SciTech Connect

    Jarrell, J.; YoungLai, E.V.; McMahon, A.

    1989-04-01

    Medroxyprogesterone acetate (Provera) is a drug that is commonly given to young women with cancer during chemotherapy and radiation to control heavy bleeding associated with anovulation. Because hypothalamic-pituitary-ovarian suppression has been associated with ovarian protection from the effects of chemotherapy and medroxyprogesterone acetate has been identified as a radiosensitizing agent, we explored the effects of medroxyprogesterone acetate on a rat model with known radiation injury characteristics. Sprague-Dawley rats were treated with medroxyprogesterone acetate or vehicle from day 22 to day 37 of life and were either irradiated or sham-irradiated on day 30 of life and then killed on day 44.more » Radiation with medroxyprogesterone acetate administration produced a greater loss in preantral and healthy control follicles than in control follicles. No suppression of luteinizing hormone or follicle-stimulating hormone had occurred by day 30 but ovarian glutathione content was reduced. These findings indicate that the administration of medroxyprogesterone acetate with radiotherapy may enhance ovarian injury.« less

  1. ELECTRON MICROSCOPY OF MITOSIS IN A RADIOSENSITIVE GIANT AMOEBA

    PubMed Central

    Daniels, E. W.; Roth, L. E.

    1964-01-01

    Various aspects of the ultrastructure of the dividing nuclei in the large radiosensitive amoeba Pelomyxa illinoisensis are demonstrated. Evidence of nuclear envelope breakdown is presented, and membrane fragments are traced throughout metaphase to envelope reconstruction in anaphase and telophase. Annuli in the nuclear envelope and its fragments are shown throughout mitosis. During metaphase and anaphase some 15 to 20 mitochondria are aligned at each end of the spindle, and are called polar mitochondria. The radioresistant amoebae Pelomyxa carolinensis and Amoeba proteus do not have polar mitochondria, and Pelomyxa illinoisensis is unique in this regard. The shape of the P. illinoisensis interphase nucleoli differs from that in the two radioresistant species, and certain aspects of nucleolar dissolution in the prophase vary. Helical coils in the interphase nucleoplasm are similar to those in the radioresistant amoebae. A "blister" phase in the flatly shaped telophase nuclei of P. illinoisensis is described which is interpreted to be the result of a rapid nuclear expansion leading to the formation of the normal spherical interphase nuclei. PMID:14105218

  2. Malignant Pleural Mesothelioma

    PubMed Central

    Tsao, Anne S.; Wistuba, Ignacio; Roth, Jack A.; Kindler, Hedy Lee

    2009-01-01

    Malignant pleural mesothelioma (MPM) is a deadly disease that occurs in 2,000 to 3,000 people each year in the United States. Although MPM is an extremely difficult disease to treat, with the median overall survival ranging between 9 and 17 months regardless of stage, there has been significant progress over the last few years that has reshaped the clinical landscape. This article will provide a comprehensive discussion of the latest developments in the treatment of MPM. We will provide an update of the major clinical trials that impact mesothelioma treatment in the resectable and unresectable settings, discuss the impact of novel therapeutics, and provide perspective on where the clinical research in mesothelioma is moving. In addition, there are controversial issues, such as the role of extrapleural pneumonectomy, adjuvant radiotherapy, and use of intensity-modulated radiotherapy versus hemithoracic therapy that will also be addressed in this manuscript. PMID:19255316

  3. Effects of low-level chronic irradiation on the radiosensitivity of mammals: Modeling studies

    NASA Astrophysics Data System (ADS)

    Smirnova, O. A.

    Mathematical models of the major hematopoietic lines are used to study the modifying effects of low-level chronic preirradiation on radiosensitivity of mammals which resulted in their reduced radiosensitivity (acquired radioresistance) and elevated radiosensitivity (hypersensitivity) to the subsequent radiation exposure. These effects of preirradiation manifest themselves, respectively, in decreased and increased mortality of preirradiated experimental animals (mice) after challenge acute exposure in comparison with that for previously nonirradiated ones. Analysis of the modeling results reveals the biological mechanisms of these radioprotection and radiosensitization effects, and enables one to estimate the ranges of dose rate and duration of chronic preirradiation where these effects are realized. Juxtapositions of the modeling predictions with the relevant experimental data show their qualitative agreement. All this testifies to the importance of accounting the nonlinear effect of low-level chronic irradiation on radiosensitivity of the hematopoiesis system and organism as a whole, when the radiation risk for astronauts on long-term space missions is estimated. The developed models of hematopoiesis can be used, after appropriate identification, as a component of the mathematical tools for radiation risk assessment.

  4. Corynebacterium parvum-induced radiosensitivity and cycling changes of hematopoietic spleen colony-forming units

    SciTech Connect

    Maruyama, Y.; Magura, C.; Feola, J.

    1977-07-01

    Ten days after total-body irradiation with 550 rads of /sup 60/Co, spleen colonies were observed in adult C57BL mice. A change in radiosensitivity induced by Corynebacterium parvum, as measured by increased numbers of colony-forming units that survived the 550 rads, began shortly after C. parvum stimulation and extended for at least 7 days before irradiation. C. parvum given 4-24 hours before, followed by high specific activity (/sup 3/H)thymidine (HSATT) 1 hour before total-body irradiation greatly reduced survival of the stem cells that formed spleen colonies (CFU/sub s/) and CFU/sub s/ radiosensitivity to control levels. The HSATT sensitivity by ''suicide'' assaymore » in vivo and the time-response change in radiosensitivity corresponded with the decrease in radiosensitivity, which showed that CFU/sub s/ were stimulated by C. parvum administration and entered the S-phase shortly after stimulation. The data indicated a resting population close to the S-phase. After stimulation, this population entered S-phase. Syngeneic mouse lymphoma cells injected iv 24 hours earlier did not elicit any effect as a stimulus to CFU/sub s/ radiosensitivity change.« less

  5. Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells

    PubMed Central

    2014-01-01

    Objective Myricetin, a common dietary flavonoid is widely distributed in fruits and vegetables, and is used as a health food supplement based on its immune function, anti-oxidation, anti-tumor, and anti-inflammatory properties. The aim of this study was to investigate the effects of myricetin on combination with radiotherapy enhance radiosensitivity of lung cancer A549 and H1299 cells. Methods A549 cells and H1299 cells were exposed to X-ray with or without myricetin treatment. Colony formation assays, CCK-8 assay, flow cytometry and Caspase-3 level detection were used to evaluate the radiosensitization activity of myricetin on cell proliferation and apoptosis in vitro. Nude mouse tumor xenograft model was built to assessed radiosensitization effect of myricetin in vivo. Results Compared with the exposed group without myricetin treatment, the groups treated with myricetin showed significantly suppressed cell surviving fraction and proliferation, increased the cell apoptosis and increased Caspase-3 protein expression after X-ray exposure in vitro. And in vivo assay, growth speed of tumor xenografts was significantly decreased in irradiated mice treated with myricetin. Conclusions The study demonstrated both in vitro and in vivo evidence that combination of myricetin with radiotherapy can enhance tumor radiosensitivity of pulmonary carcinoma A549 and H1299 cells, and myricetin could be a potential radiosensitizer for lung cancer therapy. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5791518001210633 PMID:24650056

  6. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    PubMed

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  7. Enhancement of radiosensitivity of melanoma cells by pegylated gold nanoparticles under irradiation of megavoltage electrons.

    PubMed

    Mousavi, Mehdi; Nedaei, Hassan Ali; Khoei, Samideh; Eynali, Samira; Khoshgard, Karim; Robatjazi, Mostafa; Iraji Rad, Rasoul

    2017-02-01

    Gold nanoparticles (GNP) have significant potential as radiosensitizer agents due to their distinctive properties. Several studies have shown that the surface modification of nanoparticles with methyl polyethylene glycol (mPEG) can increase their biocompatibility. However, the present study investigated the radiosensitization effects of mPEG-coated GNP (mPEG-GNP) in B16F10 murine melanoma cells under irradiation of 6 MeV Electron beam. The synthesized GNP were characterized by UV-Visible spectroscopy, dynamic light scattering, transmission electron microscopy, and zeta potential. Enhancement of radiosensitization was evaluated by the clonogenic assay at different radiation doses of megavoltage electron beams. It was observed that mPEG-GNP with a hydrodynamic size of approximately 50 nm are almost spherical and cellular uptake occurred at all concentrations. Both proliferation efficiency and survival fraction decreased with increasing mPEG-GNP concentration. Furthermore, significant GNP sensitization occurred with a maximum dose enhancement factor of 1.22 at a concentration of 30 μM. Pegylated-GNP are taken up by B16F10 cancer cells and cause radiosensitization in the presence of 6 MeV electrons. The radiosensitization effects of GNP may probably be due to biological processes. Therefore, the underlying biological mechanisms beyond the physical dose enhancement need to be further clarified.

  8. Foretinib Enhances the Radiosensitivity in Esophageal Squamous Cell Carcinoma by Inhibiting Phosphorylation of c-Met

    PubMed Central

    Chen, Guang-Zong; Dai, Wang-Shu; Zhu, Hong-Cheng; Song, Hong-Mei; Yang, Xi; Wang, Yuan-Dong; Min, Hua; Lu, Qian; Liu, Shu; Sun, Xin-Chen; Zeng, Xiao-Ning

    2017-01-01

    As a crucial event involved in the metastasis and relapse of esophageal cancer, c-Met overexpression has been considered as one of the culprits responsible for the failure in patients who received radiochemotherapy. Since c-Met has been confirmed to be pivotal for cell survival, proliferation and migration, little is known about its impact on the regulation of radiosensitivity in esophageal cancer. The present study investigated the radiosensitization effects of c-Met inhibitor foretinib in ECA-109 and TE-13 cell lines. Foretinib inhibited c-Met signaling in a dose-dependent manner resulting in decreases in the cell viability of ECA-109 and TE-13. Pretreatment with foretinib synergistically prompted cell apoptosis and G2/M arrest induced by irradiation. Moreover, decreases ability of DNA damage repair was also observed. In vivo studies confirmed that the combinatorial use of foretinib with irradiation significantly diminishes tumor burden compared to either treatment alone. The present findings implied a crucial role of c-Met in the modulation of radiosensitization in esophageal cancer, and foretinib increased the radiosensitivity in ECA-109 and TE-13 cells mainly via c-Met signaling, highlighting a novel profile of foretinib as a potential radiosensitizer for the treatment of esophageal cancer. PMID:28529610

  9. The use of the term 'radiosensitivity' through history of radiation: from clarity to confusion.

    PubMed

    Britel, Manon; Bourguignon, Michel; Foray, Nicolas

    2018-05-01

    The term 'radiosensitivity' appeared for the first time at the beginning of the 20th century, few years after the discovery of X-rays. Initially used by French and German radiologists, it illustrated the risk of radiation-induced (RI) skin reactions. From the 1950s, 'radiosensitivity' was progressively found to describe other features of RI response such as RI cancers or cataracts. To date, such confusion may raise legal issues and complexify the message addressed to general public. Here, through an historical review, we aimed to better understand how this confusion appeared. To support our historical review, a quantitative and qualitative wording analysis of the 'radiosensitivity' occurrences and its derived terms was performed with Google books, Pubmed, Web of Science™ databases, and in all the ICRP publications. While 'radiosensitivity' was historically related to RI adverse tissue events attributable to cell death, the first efforts to quantify the RI risk specific to each organ/tissue revealed some different semantic fields that are not necessarily compatible together (e.g. adverse tissue events for skin, cataracts for eyes, RI cancer for breast or thyroid). To avoid such confusion, we propose to keep the historical definition of 'radiosensitivity' to any clinical and cellular consequences of radiation attributable to cell death and to introduce the term 'radiosusceptibility' to describe the RI cancers or any feature that is attributable to cell transformation.

  10. 5-(Halomethyl)uridine derivatives as potential antitumor radiosensitizers: A DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Shoushan; Zhang, Min; Liu, Peng; Xie, Shilei; Cheng, Faliang; Wang, Lishi

    2018-01-01

    Considering the fact that the efficiency of the uridine-5-methyl radical in producing cytotoxic DNA intrastrand cross-link lesions is greatly higher than that of the uridine-5-yl radical, the radiosensitizing action of 5-(halomethyl)uridines (5-XCH2U, X = F, Cl, or Br) is studied in the present work. It is found that 5-XCH2U has sufficient electron affinity to capture a pre-hydrated or a hydrated electron, and electron attachment leads to significantly facile X- elimination forming the uridine-5-methyl radical. All these three halogenated uridine derivatives are shown to be potential radiosensitizers, with their radiosensitizing abilities increased in an order 5-FCH2U < 5-ClCH2U ≈ 5-BrCH2U.

  11. Radiosensitivity of different tissues from carrot root at different phases of growth in culture

    SciTech Connect

    Degani, N.; Pickholtz, D.

    1980-09-01

    The present work compares the effect of ..gamma..-radiation dose and time in culture on the growth of cambium and phloem carrot (Daucus carota) root explants. It was found that the phloem is more radiosensitive than the cambium and that both tissues were more radiosensitive when irradiated on excision at the G/sub 1/ phase rather than at the end of the lag phase on the ninth day of growth in culture when cells were predominantly at the G/sub 2/ phase. The nuclear volumes of cells from both tissues were similar but were larger at the end of the more radioresistant lagmore » phase than those of the G/sub 1/ phase on excision. However, nuclear volume could not account for the differences in radiosensitivity between either the tissues or irradiation times in culture.« less

  12. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    PubMed Central

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.; Aftab, Blake T.; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John; Rudin, Charles M.; Tran, Phuoc T.; Hales, Russell K.

    2012-01-01

    Purpose Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of KrasG12D-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radio-sensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. PMID:23182391

  13. Hedgehog pathway inhibition radiosensitizes non-small cell lung cancers.

    PubMed

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T; Aftab, Blake T; Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M; Wong, John; Rudin, Charles M; Tran, Phuoc T; Hales, Russell K

    2013-05-01

    Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras(G12D)-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    SciTech Connect

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T.

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntagmore » and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.« less

  15. The mechanism of action of radiosensitization of conventional chemotherapeutic agents.

    PubMed

    Lawrence, Theodore S; Blackstock, A William; McGinn, Cornelius

    2003-01-01

    It is not an exaggeration to state that most of the advances in curing cancer in the last decade have come from successful combinations of conventional chemotherapeutic agents with radiation therapy. Further improvements in therapy will depend on understanding the mechanisms by which chemotherapy improves the effectiveness of radiation in model systems and in patients. In this review, we discuss the mechanisms of action of the fluoropyrimidines, gemcitabine, and the platinums. The fluoropyrimidines (5-fluorouracil and fluorodeoxyuridine) increase the effectiveness of radiation chiefly when given before and during radiation. Increased radiation sensitivity occurs in cells that progress inappropriately into S phase in the presence of drug, suggesting a key role for dysregulation of S-phase checkpoints. Gemcitabine may radiosensitize by a similar mechanism, although the relative roles of specific DNA repair pathways (such as homologous end rejoining) and of apoptosis remain to be determined. For both of these categories of drugs, sensitization probably results when cells that are progressing inappropriately through S phase misrepair DNA damage inflicted by radiation. Thus, loss of the S-phase checkpoint in cancer cells may provide the molecular basis for selective killing of tumors compared with normal tissues. Cisplatin has multiple effects on cells, such as adduct formation and DNA damage repair inhibition, but the mechanism for selectivity against cancer cells compared with normal cells is not yet determined. The identification of the enzymatic targets for these drugs offers the potential to develop predictive assays for response and to develop methods of imaging the progress of therapy. Copyright 2003, Elsevier Science (USA). All rights reserved.

  16. Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery.

    PubMed

    Buckel, Lisa; Savariar, Elamprakash N; Crisp, Jessica L; Jones, Karra A; Hicks, Angel M; Scanderbeg, Daniel J; Nguyen, Quyen T; Sicklick, Jason K; Lowy, Andrew M; Tsien, Roger Y; Advani, Sunil J

    2015-04-01

    Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor-targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell-penetrating peptide targeting matrix metalloproteinases and RGD-binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low-passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule- and dose-dependent manner, correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double-strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with nontargeted free MMAE or tumor-targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor-targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell-penetrating peptides. ©2015 American Association for Cancer Research.

  17. Tumor radiosensitization by monomethyl auristatin E: mechanism of action and targeted delivery

    PubMed Central

    Crisp, Jessica L.; Jones, Karra A.; Hicks, Angel M.; Scanderbeg, Daniel J.; Nguyen, Quyen T.; Sicklick, Jason K.; Lowy, Andrew M.; Tsien, Roger Y.; Advani, Sunil J.

    2015-01-01

    Intrinsic tumor resistance to radiotherapy limits the efficacy of ionizing radiation (IR). Sensitizing cancer cells specifically to IR would improve tumor control and decrease normal tissue toxicity. The development of tumor targeting technologies allows for developing potent radiosensitizing drugs. We hypothesized that the anti-tubulin agent monomethyl auristatin E (MMAE), a component of a clinically approved antibody-directed conjugate, could function as a potent radiosensitizer and be selectively delivered to tumors using an activatable cell penetrating peptide targeting matrix metalloproteinases and RGD binding integrins (ACPP-cRGD-MMAE). We evaluated the ability of MMAE to radiosensitize both established cancer cells and a low passage cultured human pancreatic tumor cell line using clonogenic and DNA damage assays. MMAE sensitized colorectal and pancreatic cancer cells to IR in a schedule and dose dependent manner correlating with mitotic arrest. Radiosensitization was evidenced by decreased clonogenic survival and increased DNA double strand breaks in irradiated cells treated with MMAE. MMAE in combination with IR resulted in increased DNA damage signaling and activation of CHK1. To test a therapeutic strategy of MMAE and IR, PANC-1 or HCT-116 murine tumor xenografts were treated with non-targeted free MMAE or tumor targeted MMAE (ACPP-cRGD-MMAE). While free MMAE in combination with IR resulted in tumor growth delay, tumor targeted ACPP-cRGD-MMAE with IR produced a more robust and significantly prolonged tumor regression in xenograft models. Our studies identify MMAE as a potent radiosensitizer. Importantly, MMAE radiosensitization can be localized to tumors by targeted activatable cell penetrating peptides. PMID:25681274

  18. Effect of anemia on tumor radiosensitivity under normo and hyperbaric conditions

    SciTech Connect

    Rojas, A.; Stewart, F.A.; Smith, K.A.

    1987-11-01

    The effect of chronic anemia on tumor radiosensitivity in a murine tumor has been investigated. Anemia was induced by bilateral kidney irradiation given several months before tumor implantation. Anemic, anemic transfused, and normal non-anemic age-matched tumor bearing animals were irradiated with X rays (2 F/24 hr) either in air, air plus misonidazole, or under hyperbaric oxygen. The most resistant response was that of tumors grown in normal mice treated in air. Anemia produced an increase in radiosensitivity which was further enhanced by red blood cell replacement. The most sensitive overall response was seen in the anemic-transfused group treated with HBO.

  19. Effect of salt solutions on radiosensitivity of mammalian cells. I. Specific ion effects.

    PubMed

    Raaphorst, G P; Kruuv, J

    1977-07-01

    The radiation isodose survival curve of cells subjected to a wide concentration range of sucrose solutions has two maxima separated by a minimum. Both cations and anions can alter the cellular radiosensitivity above and beyond the osmotic effect observed for cells treated with sucrose solutions. The basic shape of the isodose curve can also be modulated by changes in temperature and solution exposure times. Some of these alterations in radiosensitivity may be related to changes in the amount and structure of cellular water or macromolecular conformation or to the direct effect of the ions, expecially at high solute concentrations.

  20. Malignant sigmoidoduodenal fistula

    PubMed Central

    Shapey, I.M.; Mahmood, K.; Solkar, M.H.

    2014-01-01

    INTRODUCTION Duodenocolic fistula is a rare complication of malignant colonic disease especially when involving and originating from the sigmoid colon. We aim to discuss the unusual clinical presentation of this case as well as the investigation and management of duodenocolic fistulas. PRESENTATION OF CASE A 91 year old lady presented as an emergency to a general surgical service at a District General Hospital with diarrhoea, vomiting and weight loss. Computed Tomography (CT) reported a large ovarian cyst elevating the sigmoid colon into immediate proximity of the duodenum. Adenocarcinoma was confirmed on histology obtained by colonoscopy. A classic apple core lesion with fistulating tract from the sigmoid colon to the duodenum was synchronously demonstrated on barium enema. DISCUSSION Sigmoido-duodenal fistulae represent a complex manifestation of gastrointestinal pathologies. CONCLUSION Management options must be considered in the context of patient wishes, their co-morbidities, and predicted post-operative outcome. In most cases this is likely to represent a non-operative approach, however surgical resection may benefit selected cases on occasion. PMID:25460456

  1. Malignant sigmoidoduodenal fistula.

    PubMed

    Shapey, I M; Mahmood, K; Solkar, M H

    2014-01-01

    Duodenocolic fistula is a rare complication of malignant colonic disease especially when involving and originating from the sigmoid colon. We aim to discuss the unusual clinical presentation of this case as well as the investigation and management of duodenocolic fistulas. A 91 year old lady presented as an emergency to a general surgical service at a District General Hospital with diarrhoea, vomiting and weight loss. Computed Tomography (CT) reported a large ovarian cyst elevating the sigmoid colon into immediate proximity of the duodenum. Adenocarcinoma was confirmed on histology obtained by colonoscopy. A classic apple core lesion with fistulating tract from the sigmoid colon to the duodenum was synchronously demonstrated on barium enema. Sigmoido-duodenal fistulae represent a complex manifestation of gastrointestinal pathologies. Management options must be considered in the context of patient wishes, their co-morbidities, and predicted post-operative outcome. In most cases this is likely to represent a non-operative approach, however surgical resection may benefit selected cases on occasion. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Genetics Home Reference: malignant hyperthermia

    MedlinePlus

    ... Genetic and Rare Diseases Information Center (2 links) King Denborough syndrome Malignant hyperthermia Educational Resources (4 links) ... 19 [updated 2013 Jan 31]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean ...

  3. Malignant external otitis: CT evaluation

    SciTech Connect

    Curtin, H.D.; Wolfe, P.; May, M.

    1982-11-01

    Malignant external otitis is an aggressive infection caused by Pseudomonas aeruginosa that most often occurs in elderly diabetics. Malignant external otitis often spreads inferiorly from the external canal to involve the subtemporal area and progresses medially towards the petrous apex leading to multiple cranial nerve palsies. The computed tomographic (CT) findings in malignant external otitis include obliteration of the normal fat planes in the subtemporal area as well as patchy destruction of the bony cortex of the mastoid. The point of exit of the various cranial nerves can be identified on CT scans, and the extent of the inflammatory massmore » correlates well with the clinical findings. Four cases of malignant external otitis are presented. In each case CT provided a good demonstration of involvement of the soft tissues at the base of the skull.« less

  4. Drugs Approved for Malignant Mesothelioma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for malignant mesothelioma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  5. Malignant hypertension: a preventable emergency.

    PubMed

    van der Merwe, Walter; van der Merwe, Veronica

    2013-08-16

    The Waitemata Hypertension Clinic Database 2009-2012 (Auckland, New Zealand) was searched for patients meeting the definition of Malignant Hypertension. Eighteen of 565 patients met the criteria. All patients had essential hypertension which was either undiagnosed, untreated or undertreated. Most cases responded satisfactorily to standard drug therapy, but a number were left with significant chronic kidney disease. Malignant hypertension is a life-threatening disease which should be entirely preventable with regular blood pressure checks in primary care.

  6. Oesophagus side effects related to the treatment of oesophageal cancer or radiotherapy of other thoracic malignancies.

    PubMed

    Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Brunner, Thomas B

    2016-08-01

    The oesophagus as a serial organ located in the central chest is frequent subject to "incidental" dose application in radiotherapy for several thoracic malignancies including oesophageal cancer itself. Especially due to the radiosensitive mucosa severe radiotherapy induced sequelae can occur, acute oesophagitis and strictures as late toxicity being the most frequent side-effects. In this review we focus on oesophageal side effects derived from treatment of gastrointestinal cancer and secondly provide an overview on oesophageal toxicity from conventional and stereotactic fractionated radiotherapy to the thoracic area in general. Available data on pathogenesis, frequency, onset, and severity of oesophageal side effects are summarized. Whereas for conventional radiotherapy the associations of applied doses to certain volumes of the oesophagus are well described, the tolerance dose to the mediastinal structures for hypofractionated therapy is unknown. The review provides available attempts to predict the risk of oesophageal side effects from dosimetric parameters of SBRT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. High-throughput Screening Identifies Aclacinomycin as a Radiosensitizer of EGFR-Mutant Non-Small Cell Lung Cancer1

    PubMed Central

    Bennett, Daniel C; Charest, Jonathan; Sebolt, Katrina; Lehrman, Mark; Rehemtulla, Alnawaz; Contessa, Joseph N

    2013-01-01

    The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function. PMID:23730419

  8. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  9. Silencing the Girdin gene enhances radio-sensitivity of hepatocellular carcinoma via suppression of glycolytic metabolism.

    PubMed

    Yu, Li; Sun, Yifan; Li, Jingjing; Wang, Yan; Zhu, Yuxing; Shi, Yong; Fan, Xiaojun; Zhou, Jianda; Bao, Ying; Xiao, Jie; Cao, Ke; Cao, Peiguo

    2017-08-15

    Radiotherapy has been used increasingly to treat primary hepatocellular carcinoma. Clinically, the main cause of radiotherapy failure is cellular radioresistance, conferred via glycolytic metabolism. Our previous study demonstrated that Girdin is upregulated in primary hepatocellular carcinoma and promotes the invasion and metastasis of tumor cells. However, whether Girdin underlies the radio-sensitivity of hepatocellular carcinoma remains unclear. A short hairpin RNA (shRNA) was used to silence CCDC88A (encoding Girdin), and real-time PCR was performed to determine CCDC88A mRNA expression. Then, cell proliferation, colony formation, flow cytometric, scratch, and transwell assays were to examine the influence of Girdin silencing on cellular radiosensitivity. Glycolysis assays were conducted to exam cell glycolysis process. Western blotting was performed to explore the signaling pathway downstream of Girdin. Finally, animal experiments were performed to demonstrate the effect of CCDC88A silencing on the radiosensitivity of hepatoma in vivo. shRNA-induced Girdin silencing suppressed glycolysis and enhanced the radio-sensitivity of hepatic cell lines, HepG2 and Huh-7. Furthermore, silencing of Girdin inhibited the PI3K/AKT/HIF-1α signaling pathway, which is a central regulator of glycolysis. Girdin can regulate glycolysis in hepatocellular carcinoma cells through the PI3K/AKT/HIF-1α signaling pathway, which decreases the sensitivity of tumor cells to radiotherapy.

  10. Everything Old Is New Again: Using Nelfinavir to Radiosensitize Rectal Cancer

    PubMed Central

    Meyn, Raymond E.; Krishnan, Sunil; Skinner, Heath D.

    2016-01-01

    Summary Repurposing agents approved for other indications to radiosensitize tumors may be advantageous. The study by Hill and colleagues utilizes Nelfinavir, an HIV protease inhibitor, in combination with radiotherapy in rectal cancer in a prospective study. This combination may improve tumor perfusion and regression compared to radiotherapy alone. PMID:26920893

  11. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells.

    PubMed

    Huang, Ai; Yao, Jing; Liu, Tao; Lin, Zhenyu; Zhang, Sheng; Zhang, Tao; Ma, Hong

    2018-04-01

    This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.

  12. Curcumin enhances the radiosensitivity of renal cancer cells by suppressing NF-κB signaling pathway.

    PubMed

    Li, Gang; Wang, Ziming; Chong, Tie; Yang, Jie; Li, Hongliang; Chen, Haiwen

    2017-10-01

    The radiation resistance of renal cell carcinoma (RCC) remains the primary obstacle to improve patient survival. This study aimed to investigate the effects of curcumin on the radiosensitivity of RCC cells. Human RCC cell (ACHN) was exposed to irradiation (IR) and/or curcumin treatment. Cell viability, DNA repair, cell cycle, and apoptosis, were evaluated by MTT, immunofluoresence staining and flow cytometry. Moreover, ACHN cells were xenografted into nude mice and subjected to IR and/or curcumin treatment. The expression of NF-κB signaling related proteins in ACHN cells and xenografts was detected by western blot analysis. The results showed that curcumin significantly increased radiosensitivity of ACHN cells by inhibiting the cell proliferation and DNA damage repair, causing cell cycle arrest at G2/M phase, inducing apoptosis in vitro, and suppressing the growth of xenografts in vivo. In addition, curcumin enhanced radiosensitivity was through markedly inhibiting IR-induced NF-κB signaling by modulating the related protein expressions including NF-κBP65, I-κB, VEGF, COX2, and Bcl-2 in ACHN cells, which was further strengthened by NF-κB inhibitor PDTC treatment. Thus, curcumin may confer radiosensitivity on RCC via inhibition of NF-κB activation and its downstream regulars, suggesting the potential application of curcumin as an adjuvant in radiotherapy of RCC. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cellmore » transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.« less

  14. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study.

    PubMed

    Colen, Chaim B; Seraji-Bozorgzad, Navid; Marples, Brian; Galloway, Matthew P; Sloan, Andrew E; Mathupala, Saroj P

    2006-12-01

    To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. We inhibited lactate transport in U87-MG gliomas with alpha-cyano-4-hydroxycinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen.

  15. Short hairpin RNA suppression of thymidylate synthase produces DNA mismatches and results in excellent radiosensitization.

    PubMed

    Flanagan, Sheryl A; Cooper, Kristin S; Mannava, Sudha; Nikiforov, Mikhail A; Shewach, Donna S

    2012-12-01

    To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur. shRNA suppression of TS was compared with 5-fluoro-2'-deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay. Cell cycle effects were measured by flow cytometry. The effects of FdUrd or shRNA suppression of TS on dNTP deoxynucleotide triphosphate imbalances and consequent nucleotide misincorporations into deoxyribonucleic acid (DNA) were analyzed by high-pressure liquid chromatography and as pSP189 plasmid mutations, respectively. TS shRNA produced profound (≥ 90%) and prolonged (≥ 8 days) suppression of TS in HCT116 and HT29 cells, whereas FdUrd increased TS expression. TS shRNA also produced more specific and prolonged effects on dNTPs deoxynucleotide triphosphates compared with FdUrd. TS shRNA suppression allowed accumulation of cells in S-phase, although its effects were not as long-lasting as those of FdUrd. Both treatments resulted in phosphorylation of Chk1. TS shRNA alone was less cytotoxic than FdUrd but was equally effective as FdUrd in eliciting radiosensitization (radiation enhancement ratio: TS shRNA, 1.5-1.7; FdUrd, 1.4-1.6). TS shRNA and FdUrd produced a similar increase in the number and type of pSP189 mutations. TS shRNA produced less cytotoxicity than FdUrd but was equally effective at radiosensitizing tumor cells. Thus, the inhibitory effect of FdUrd on TS alone is sufficient to elicit radiosensitization with FdUrd, but it only partially explains FdUrd-mediated cytotoxicity and cell cycle inhibition. The increase in DNA mismatches after TS shRNA or FdUrd supports a causal and sufficient role for the depletion of dTTP thymidine triphosphate and consequent DNA mismatches underlying radiosensitization. Importantly, sh

  16. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    SciTech Connect

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may

  17. TAK228 With Carbo and Taxol in Advanced Malignancies

    ClinicalTrials.gov

    2018-03-12

    Malignant Neoplasm of Breast; Malignant Neoplasms of Bone and Articular Cartilage; Malignant Neoplasms of Digestive Organs; Malignant Neoplasms of Eye Brain and Other Parts of Central Nervous System; Malignant Neoplasms of Female Genital Organs; Malignant Neoplasms of Ill-defined Secondary and Unspecified Sites; Malignant Neoplasms of Independent (Primary) Multiple Sites; Malignant Neoplasms of Lip Oral Cavity and Pharynx; Malignant Neoplasms of Male Genital Organs; Malignant Neoplasms of Mesothelial and Soft Tissue; Malignant Neoplasms of Respiratory and Intrathoracic Organs; Malignant Neoplasms of Thyroid and Other Endocrine Glands; Malignant Neoplasms of Urinary Tract; Malignant Neoplasms Stated as Primary Lymphoid Haematopoietic

  18. Location of radiosensitive organs inside pediatric anthropomorphic phantoms: Data required for dosimetry.

    PubMed

    Inkoom, Stephen; Raissaki, Maria; Perisinakis, Kostas; Maris, Thomas G; Damilakis, John

    2015-12-01

    The aim of this study was to determine the location of radiosensitive organs in the interior of four pediatric anthropomorphic phantoms for dosimetric purposes. Four pediatric anthropomorphic phantoms representing the average individual as newborn, 1-year-old, 5-year-old and 10-year-old child underwent head, thorax and abdomen CT scans. CT and MRI scans of all children aged 0-16 years performed during a 5-year-period in our hospital were reviewed, and 503 were found to be eligible for normal anatomy. Anterior-posterior and lateral dimensions of twelve of the above children closely matched that of the phantoms' head, thoracic and abdominal region in each four phantoms. The mid-sagittal and mid-coronal planes were drawn on selected matching axial images of patients and phantoms. Multiple points outlining large radiosensitive organs in patient images were identified at each slice level and their orthogonal distances from the mid-sagittal and mid-coronal planes were measured. In small organs, the coordinates of organs' centers were similarly determined. The outlines and centers of all radiosensitive organs were reproduced using the coordinates of each organ on corresponding phantoms' transverse images. The locations of the following radiosensitive organs in the interior of the four phantoms was determined: brain, eye lenses, salivary glands, thyroid, lungs, heart, thymus, esophagus, breasts, adrenals, liver, spleen, kidneys, stomach, gallbladder, small bowel, pancreas, colon, ovaries, bladder, prostate, uterus and rectum. The production of charts of radiosensitive organs inside pediatric anthropomorphic phantoms was feasible and may provide users reliable data for positioning of dosimeters during direct organ dose measurements. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Enhancement of P53-Mutant Human Colorectal Cancer Cells Radiosensitivity by Flavonoid Fisetin

    SciTech Connect

    Chen Wenshu; Lee Yijang; Yu Yichu

    Purpose: The aim of this study was to investigate whether fisetin is a potential radiosensitizer for human colorectal cancer cells, which are relatively resistant to radiotherapy. Methods and Materials: Cell survival was examined by clonogenic survival assay, and DNA fragmentation was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The effects of treatments on cell cycle distribution and apoptosis were examined by flow cytometry. Western blot analysis was performed to ascertain the protein levels of {gamma}-H2AX, phospho-Chk2, active caspase-3, PARP cleavage, phospho-p38, phospho-AKT, and phospho-ERK1/2. Results: Fisetin pretreatment enhanced the radiosensitivity of p53-mutant HT-29 human colorectal cancer cellsmore » but not human keratocyte HaCaT cells; it also prolonged radiation-induced G{sub 2}/M arrest, enhanced radiation-induced cell growth arrest in HT-29 cells, and suppressed radiation-induced phospho-H2AX (Ser-139) and phospho-Chk2 (Thr-68) in p53-mutant HT-29 cells. Pretreatment with fisetin enhanced radiation-induced caspase-dependent apoptosis in HT-29 cells. Fisetin pretreatment augmented radiation-induced phosphorylation of p38 mitogen-activated protein kinase, which is involved in caspase-mediated apoptosis, and SB202190 significantly reduced apoptosis and radiosensitivity in fisetin-pretreated HT-29 cells. By contrast, both phospho-AKT and phospho-ERK1/2, which are involved in cell proliferation and antiapoptotic pathways, were suppressed after irradiation combined with fisetin pretreatment. Conclusions: To our knowledge, this study is the first to provide evidence that fisetin exerts a radiosensitizing effect in p53-mutant HT-29 cells. Fisetin could potentially be developed as a novel radiosensitizer against radioresistant human cancer cells.« less

  20. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams

    PubMed Central

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30–100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the

  1. Optimal energy for cell radiosensitivity enhancement by gold nanoparticles using synchrotron-based monoenergetic photon beams.

    PubMed

    Rahman, Wan Nordiana; Corde, Stéphanie; Yagi, Naoto; Abdul Aziz, Siti Aishah; Annabell, Nathan; Geso, Moshi

    2014-01-01

    Gold nanoparticles have been shown to enhance radiation doses delivered to biological targets due to the high absorption coefficient of gold atoms, stemming from their high atomic number (Z) and physical density. These properties significantly increase the likelihood of photoelectric effects and Compton scattering interactions. Gold nanoparticles are a novel radiosensitizing agent that can potentially be used to increase the effectiveness of current radiation therapy techniques and improve the diagnosis and treatment of cancer. However, the optimum radiosensitization effect of gold nanoparticles is strongly dependent on photon energy, which theoretically is predicted to occur in the kilovoltage range of energy. In this research, synchrotron-generated monoenergetic X-rays in the 30-100 keV range were used to investigate the energy dependence of radiosensitization by gold nanoparticles and also to determine the photon energy that produces optimum effects. This investigation was conducted using cells in culture to measure dose enhancement. Bovine aortic endothelial cells with and without gold nanoparticles were irradiated with X-rays at energies of 30, 40, 50, 60, 70, 81, and 100 keV. Trypan blue exclusion assays were performed after irradiation to determine cell viability. Cell radiosensitivity enhancement was indicated by the dose enhancement factor which was found to be maximum at 40 keV with a value of 3.47. The dose enhancement factor obtained at other energy levels followed the same direction as the theoretical calculations based on the ratio of the mass energy absorption coefficients of gold and water. This experimental evidence shows that the radiosensitization effect of gold nanoparticles varies with photon energy as predicted from theoretical calculations. However, prediction based on theoretical assumptions is sometimes difficult due to the complexity of biological systems, so further study at the cellular level is required to fully characterize the effects

  2. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells.

    PubMed

    Dolman, M Emmy M; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization.

  3. DNA-Dependent Protein Kinase As Molecular Target for Radiosensitization of Neuroblastoma Cells

    PubMed Central

    Dolman, M. Emmy M.; van der Ploeg, Ida; Koster, Jan; Bate-Eya, Laurel Tabe; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2015-01-01

    Tumor cells might resist therapy with ionizing radiation (IR) by non-homologous end-joining (NHEJ) of IR-induced double-strand breaks. One of the key players in NHEJ is DNA-dependent protein kinase (DNA-PK). The catalytic subunit of DNA-PK, i.e. DNA-PKcs, can be inhibited with the small-molecule inhibitor NU7026. In the current study, the in vitro potential of NU7026 to radiosensitize neuroblastoma cells was investigated. DNA-PKcs is encoded by the PRKDC (protein kinase, DNA-activated, catalytic polypeptide) gene. We showed that PRKDC levels were enhanced in neuroblastoma patients and correlated with a more advanced tumor stage and poor prognosis, making DNA-PKcs an interesting target for radiosensitization of neuroblastoma tumors. Optimal dose finding for combination treatment with NU7026 and IR was performed using NGP cells. One hour pre-treatment with 10 μM NU7026 synergistically sensitized NGP cells to 0.63 Gy IR. Radiosensitizing effects of NU7026 increased in time, with maximum effects observed from 96 h after IR-exposure on. Combined treatment of NGP cells with 10 μM NU7026 and 0.63 Gy IR resulted in apoptosis, while no apoptotic response was observed for either of the therapies alone. Inhibition of IR-induced DNA-PK activation by NU7026 confirmed the capability of NGP cells to, at least partially, resist IR by NHEJ. NU7026 also synergistically radiosensitized other neuroblastoma cell lines, while no synergistic effect was observed for low DNA-PKcs-expressing non-cancerous fibroblasts. Results obtained for NU7026 were confirmed by PRKDC knockdown in NGP cells. Taken together, the current study shows that DNA-PKcs is a promising target for neuroblastoma radiosensitization. PMID:26716839

  4. Epidemiologic overview of malignant lymphoma

    PubMed Central

    2012-01-01

    Malignant lymphoma encompasses a wide variety of distinct disease entities. It is generally more common in developed countries and less common in developing countries. The East Asia region has one of the lowest incidence rates of malignant lymphoma. The incidence of malignant lymphoma around the world has been increasing at a rate of 3-4% over the last 4 decades, while some stabilization has been observed in developed countries in recent years. The reasons behind this lymphoma epidemic are poorly understood, although improving diagnostic accuracy, the recent AIDS epidemic, an aging world population and the increasing adoption of cancer-causing behaviors are suggested as contributing factors. Etiologies of malignant lymphoma include infectious agents, immunodeficiency, autoimmune disease, exposure to certain organic chemicals, and pharmaceuticals. The distribution of many subtypes exhibit marked geographic variations. Compared to the West, T/natural killer (NK) cell lymphomas (T/NK-cell lymphoma) and extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma) are relatively more common, whereas other B-cell lymphomas, particularly follicular lymphoma and chronic lymphocytic leukemia/small lymphocytic lymphoma, are less common in Asia. Some subtypes of T/NK-cell lymphomas defined by Epstein-Barr virus association are predominantly Asian diseases, if not exclusively so. Both ethnic and environmental factors play roles in such diversity. In this review, we discuss the geographic distribution and etiology of malignant lymphoma, as well as the trend. PMID:22783355

  5. Eosinophilic Dermatosis of Hematologic Malignancy.

    PubMed

    Lucas-Truyols, S; Rodrigo-Nicolás, B; Lloret-Ruiz, C; Quecedo-Estébanez, E

    Dermatosis characterized by tissue eosinophilia arising in the context of hematologic disease is known as eosinophilic dermatosis of hematologic malignancy. The most commonly associated malignancy is chronic lymphocytic leukemia. Eosinophilic dermatosis of hematologic malignancy is a rare condition with a wide variety of clinical presentations, ranging from papules, erythematous nodules, or blisters that simulate arthropod bites, to the formation of true plaques of differing sizes. Histology reveals the presence of abundant eosinophils. We present 4 new cases seen in Hospital Arnau de Vilanova, Valencia, during the past 7 years. Three of these cases were associated with chronic lymphocytic leukemia and 1 with mycosis fungoides. It is important to recognize this dermatosis as it can indicate progression of the underlying disease, as was the case in 3 of our patients. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Malignant hemangiopericytoma of pituitary fossa.

    PubMed

    Das, Prasenjit; Haresh, Kunhi P; Suri, Vaishali; Sharma, Mehar Chand; Sharma, Bhawani Shankar; Sarkar, Chitra

    2010-01-01

    Intracranial hemangiopericytomas are rare tumors with aggressive behavior. Other than the meninges, this lesion has rarely been reported in periventricular and sellar region. We report a case of malignant hemangiopericytoma in sellar region in a 47-year-old male who presented with history of sudden onset of bilateral visual disturbances. To best of our knowledge, this is the second case report of malignant hemangiopericytoma in this location. As this intracranial lesion shows aggressive behavior, in the form of recurrence or extracranial metastasis in comparison to its extracranial counterparts, diagnosis should be made cautiously.

  7. Stenting in Malignant Biliary Obstruction.

    PubMed

    Almadi, Majid A; Barkun, Jeffrey S; Barkun, Alan N

    2015-10-01

    Decompression of the biliary system in patients with malignant biliary obstruction has been widely accepted and implemented as part of the care. Despite a wealth of literature, there remains a significant amount of uncertainty as to which approach would be most appropriate in different clinical settings. This review covers stenting of the biliary system in cases of resectable or palliative malignant biliary obstruction, potential candidates for biliary drainage, technical aspects of the procedure, as well as management of biliary stent dysfunction. Furthermore, periprocedural considerations including proper mapping of the location of obstruction and the use of antibiotics are addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. TU-F-CAMPUS-T-03: Enhancing the Tumor Specific Radiosensitization Using Molecular Targeted Gold Nanorods

    SciTech Connect

    Diagaradjane, P; Deorukhkar, A; Sankaranarayanapillai, M

    2015-06-15

    Purpose: Gold nanoparticle (GNP) mediated radiosensitization has gained significant attention in recent years. However, the widely used passive targeting strategy requires high concentration of GNPs to induce the desired therapeutic effect, thus dampening the enthusiasm for clinical translation. The purpose of this study is to utilize a molecular targeting strategy to minimize the concentration of GNPs injected while simultaneously enhancing the tumor specific radiosensitization for an improved therapeutic outcome. Methods: Cetuximab (antibody specific to the epidermal growth factor receptor that is over-expressed in tumors) conjugated gold nanorods (cGNRs) was used for the tumor targeting. The binding affinity, internalization, and inmore » vitro radiosensitization were evaluated using dark field microscopy, transmission electron microscopy, and clonogenic cell survival assay, respectively. In vivo biodistribution in tumor (HCT116-colorectal cancer cells) bearing mice were quantified using inductively coupled plasma mass spectrometry. In vivo radiosensitization potential was tested using 250-kVp x-rays and clinically relevant 6-MV radiation beams. Results: cGNRs displayed excellent cell-surface binding and internalization (∼31,000 vs 12,000/cell) when compared to unconjugated GNRs (pGNRs). In vitro, the dose enhancement factor at 10% survival (DEF10) was estimated as 1.06 and 1.17, respectively for both 250-kVp and 6-MV beams. In vivo biodistribution analysis revealed enhanced uptake of cGNRs in tumor (1.3 µg/g of tumor tissue), which is ∼1000-fold less than the reported values using passive targeting strategy. Nonetheless, significant radiosensitization was observed in vivo with cGNRs when compared to pGNRs, when irradiated with 250-kVp (tumor volume doubling time 35 days vs 25 days; p=0.002) and 6 MV (17 days vs 13 days; p=0.0052) beams. Conclusion: The enhanced radiosensitization effect observed with very low intratumoral concentrations of gold and

  9. Basic and clinical aspects of malignant melanoma

    SciTech Connect

    Nathanson, L.

    1987-01-01

    This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignantmore » melanoma by fast neutrons.« less

  10. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies.

    PubMed

    Lesueur, Paul; Chevalier, François; Austry, Jean-Baptiste; Waissi, Waisse; Burckel, Hélène; Noël, Georges; Habrand, Jean-Louis; Saintigny, Yannick; Joly, Florence

    2017-09-15

    Poly-(ADP-Ribose)-Polymerase (PARP) inhibitors are becoming important actors of anti-neoplasic agents landscape, with recent but narrow FDA's approvals for ovarian BRCA mutated cancers and prostatic cancer. Nevertheless, PARP inhibitors are also promising drugs for combined treatments particularly with radiotherapy. More than seven PARP inhibitors have been currently developed. Central Role of PARP in DNA repair, makes consider PARP inhibitor as potential radiosensitizers, especially for tumors with DNA repair defects, such as BRCA mutation, because of synthetic lethality. Furthermore the replication-dependent activity of PARP inhibitor helps to maintain the differential effect between tumoral and healthy tissues. Inhibition of chromatin remodeling, G2/M arrest, vasodilatory effect induced by PARP inhibitor, also participate to their radio-sensitization effect. Here, after highlighting mechanisms of PARP inhibitors radiosensitization we methodically searched PubMed, Google Scholar, Cochrane Databases and meeting proceedings for human pre-clinical and clinical studies that evaluated PARP inhibitor radiosensitizing effect. Enhancement ratio, when available, was systematically reported. Sixty four studies finally met our selection criteria and were included in the analysis. Only three pre-clinical studies didn't find any radiosensitizing effect. Median enhancement ratio vary from 1,3 for prostate tumors to 1,5 for lung cancers. Nine phase I or II trials assessed safety data. PARP inhibitors are promising radiosensitizers, but need more clinical investigation. The next ten years will be determining for judging their real potential.

  11. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity

    PubMed Central

    Warenius, H M; Jones, M; Gorman, T; McLeish, R; Seabra, L; Barraclough, R; Rudland, P

    2000-01-01

    The tumour suppressor gene, p53, and genes coding for positive signal transduction factors can influence transit through cell-cycle checkpoints and modulate radiosensitivity. Here we examine the effects of RAF1 protein on the rate of exit from a G2/M block induced by γ-irradiation in relation to intrinsic cellular radiosensitivity in human cell lines expressing wild-type p53 (wtp53) protein as compared to mutant p53 (mutp53) protein. Cell lines which expressed mutp53 protein were all relatively radioresistant and exhibited no relationship between RAF1 protein and cellular radiosensitivity. Cell lines expressing wtp53 protein, however, showed a strong relationship between RAF1 protein levels and the radiosensitivity parameter SF2. In addition, when post-irradiation perturbation of G2/M transit was compared using the parameter T50 (time after the peak of G2/M delay at which 50% of the cells had exited from a block induced by 2 Gy of irradiation), RAF1 was related to T50 in wtp53, but not mutp53, cell lines. Cell lines which expressed wtp53 protein and high levels of RAF1 had shorter T50s and were also more radiosensitive. These results suggest a cooperative role for wtp53 and RAF1 protein in determining cellular radiosensitivity in human cells, which involves control of the G2/M checkpoint. © 2000 Cancer Research Campaign PMID:10993658

  12. Precursor Lesions of Urologic Malignancies.

    PubMed

    Khani, Francesca; Robinson, Brian D

    2017-12-01

    - Precursor lesions of urologic malignancies are established histopathologic entities, which are important not only to recognize for clinical purposes, but also to further investigate at the molecular level in order to gain a better understanding of the pathogenesis of these malignancies. - To provide a brief overview of precursor lesions to the most common malignancies that develop within the genitourinary tract with a focus on their clinical implications, histologic features, and molecular characteristics. - Literature review from PubMed, urologic pathology textbooks, and the 4th edition of the World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs. All photomicrographs were taken from cases seen at Weill Cornell Medicine or from the authors' personal slide collections. - The clinical importance and histologic criteria are well established for the known precursor lesions of the most common malignancies throughout the genitourinary tract, but further investigation is warranted at the molecular level to better understand the pathogenesis of these lesions. Such investigation may lead to better risk stratification of patients and potentially novel treatments.

  13. The Origin of Malignant Malaria

    USDA-ARS?s Scientific Manuscript database

    Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...

  14. Circadian Rhythm Shapes the Gut Microbiota Affecting Host Radiosensitivity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Luo, Dan; Zhang, Xin; Zhao, Shuyi; Zheng, Qisheng; Li, Yuan; Zhao, Yu; Dong, Jiali; Li, Hang; Wang, Haichao; Fan, Saijun

    2016-10-26

    Modern lifestyles, such as shift work, nocturnal social activities, and jet lag, disturb the circadian rhythm. The interaction between mammals and the co-evolved intestinal microbiota modulates host physiopathological processes. Radiotherapy is a cornerstone of modern management of malignancies; however, it was previously unknown whether circadian rhythm disorder impairs prognosis after radiotherapy. To investigate the effect of circadian rhythm on radiotherapy, C57BL/6 mice were housed in different dark/light cycles, and their intestinal bacterial compositions were compared using high throughput sequencing. The survival rate, body weight, and food intake of mice in diverse cohorts were measured following irradiation exposure. Finally, the enteric bacterial composition of irradiated mice that experienced different dark/light cycles was assessed using 16S RNA sequencing. Intriguingly, mice housed in aberrant light cycles harbored a reduction of observed intestinal bacterial species and shifts of gut bacterial composition compared with those of the mice kept under 12 h dark/12 h light cycles, resulting in a decrease of host radioresistance. Moreover, the alteration of enteric bacterial composition of mice in different groups was dissimilar. Our findings provide novel insights into the effects of biological clocks on the gut bacterial composition, and underpin that the circadian rhythm influences the prognosis of patients after radiotherapy in a preclinical setting.

  15. Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors

    SciTech Connect

    Hartson-Eaton, M.; Malcolm, A.W.; Hahn, G.M.

    1984-07-01

    CHO cells subline HA-1 were made thermotolerant by a priming heat treatment(43/sup 0/C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43/sup 0/C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D/sub 0/ value of the clonogenic survival curve. However the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumorsmore » were either irradiated or heated (43/sup 0/C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.« less

  16. The High Radiosensitizing Efficiency of a Trace of Gadolinium-Based Nanoparticles in Tumors

    NASA Astrophysics Data System (ADS)

    Dufort, Sandrine; Le Duc, Géraldine; Salomé, Murielle; Bentivegna, Valerie; Sancey, Lucie; Bräuer-Krisch, Elke; Requardt, Herwig; Lux, François; Coll, Jean-Luc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2016-07-01

    We recently developed the synthesis of ultrasmall gadolinium-based nanoparticles (GBN), (hydrodynamic diameter <5 nm) characterized by a safe behavior after intravenous injection (renal clearance, preferential accumulation in tumors). Owing to the presence of gadolinium ions, GBN can be used as contrast agents for magnetic resonance imaging (MRI) and as radiosensitizers. The attempt to determine the most opportune delay between the intravenous injection of GBN and the irradiation showed that a very low content of radiosensitizing nanoparticles in the tumor area is sufficient (0.1 μg/g of particles, i.e. 15 ppb of gadolinium) for an important increase of the therapeutic effect of irradiation. Such a promising and unexpected result is assigned to a suited distribution of GBN within the tumor, as revealed by the X-ray fluorescence (XRF) maps.

  17. Inhibition of Hsp27 Radiosensitizes Head-and-Neck Cancer by Modulating Deoxyribonucleic Acid Repair

    SciTech Connect

    Guttmann, David M.; Hart, Lori; Du, Kevin

    Purpose: To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Methods and Materials: Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Results: Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cellmore » lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. Conclusions: These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.« less

  18. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells.

    PubMed

    Macha, Muzafar A; Rachagani, Satyanarayana; Qazi, Asif Khurshid; Jahan, Rahat; Gupta, Suprit; Patel, Anery; Seshacharyulu, Parthasarathy; Lin, Chi; Li, Sicong; Wang, Shuo; Verma, Vivek; Kishida, Shosei; Kishida, Michiko; Nakamura, Norifumi; Kibe, Toshiro; Lydiatt, William M; Smith, Russell B; Ganti, Apar K; Jones, Dwight T; Batra, Surinder K; Jain, Maneesh

    2017-03-28

    The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication.

  19. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells

    PubMed Central

    Macha, Muzafar A; Rachagani, Satyanarayana; Qazi, Asif Khurshid; Jahan, Rahat; Gupta, Suprit; Patel, Anery; Seshacharyulu, Parthasarathy; Lin, Chi; Li, Sicong; Wang, Shuo; Verma, Vivek; Kishida, Shosei; Kishida, Michiko; Nakamura, Norifumi; Kibe, Toshiro; Lydiatt, William M; Smith, Russell B; Ganti, Apar K; Jones, Dwight T; Batra, Surinder K; Jain, Maneesh

    2017-01-01

    The dismal prognosis of locally advanced and metastatic squamous cell carcinoma of the head and neck (HNSCC) is primarily due to the development of resistance to chemoradiation therapy (CRT). Deregulation of Epidermal Growth Factor Receptor (EGFR) signaling is involved in HNSCC pathogenesis by regulating cell survival, cancer stem cells (CSCs), and resistance to CRT. Here we investigated the radiosensitizing activity of the pan-EGFR inhibitor afatinib in HNSCC in vitro and in vivo. Our results showed strong antiproliferative effects of afatinib in HNSCC SCC1 and SCC10B cells, compared to immortalized normal oral epithelial cells MOE1a and MOE1b. Comparative analysis revealed stronger antitumor effects with afatinib than observed with erlotinib. Furthermore, afatinib enhanced in vitro radiosensitivity of SCC1 and SCC10B cells by inducing mesenchymal to epithelial transition, G1 cell cycle arrest, and the attenuating ionizing radiation (IR)-induced activation of DNA double strand break repair (DSB) ATM/ATR/CHK2/BRCA1 pathway. Our studies also revealed the effect of afatinib on tumor sphere- and colony-forming capabilities of cancer stem cells (CSCs), and decreased IR-induced CSC population in SCC1 and SCC10B cells. Furthermore, we observed that a combination of afatinib with IR significantly reduced SCC1 xenograft tumors (median weight of 168.25 ± 20.85 mg; p = 0.05) compared to afatinib (280.07 ± 20.54 mg) or IR alone (324.91 ± 28.08 mg). Immunohistochemical analysis of SCC1 tumor xenografts demonstrated downregulation of the expression of IR-induced pEGFR1, ALDH1 and upregulation of phosphorylated γH2AX by afatinib. Overall, afatinib reduces tumorigenicity and radiosensitizes HNSCC cells. It holds promise for future clinical development as a novel radiosensitizer by improving CSC eradication. PMID:28423495

  20. Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice.

    PubMed

    Medhat, Amina M; Azab, Khaled Sh; Said, Mahmoud M; El Fatih, Neama M; El Bakary, Nermeen M

    2017-10-01

    Considerable attention has been paid to the introduction of novel naturally occurring plant-derived radiosensitizer compounds in order to augment the radiation efficacy and improve the treatment outcome of different tumors. This study was therefore undertaken to evaluate the antitumor, antiangiogeneic, and synergistic radiosensitizing effects of apigenin, a dietary flavonoid, and/or cryptotanshinone, a terpenoid isolated from the roots of Salvia miltiorrhiza, against the growth of solid Ehrlich carcinoma in female mice. Apigenin (50 mg/kg body weight) and/or cryptotanshinone (40 mg/kg body weight) was intraperitoneally (i.p.) injected into non-irradiated or γ-irradiated (6.5 Gy whole-body γ-irradiation) solid Ehrlich carcinoma-bearing mice for 30 consecutive days. Investigations included molecular targets involved in proliferation, inflammation, angiogenesis, and tumor invasiveness. Treatment with apigenin and/or cryptotanshinone significantly suppressed the growth of solid Ehrlich carcinoma tumors and demonstrated a synergistic radiosensitizing efficacy together with γ-irradiation. These effects were achieved through downregulating the expression of angiogenic and lymphangiogenic regulators, including signal transducer and activator of transcription 3, vascular endothelial growth factor C, and tumor necrosis factor alpha, suppressing matrix metalloproteinase-2 and -9 activities, which play a key role in tumor invasion and metastasis, and enhancing apoptosis via inducing cleaved caspase-3 and granzyme B levels. Histological findings of solid Ehrlich carcinoma tumors verified the recorded data. In conclusion, a synergistic radiosensitizing efficacy for apigenin and cryptotanshinone was demonstrated against Ehrlich carcinoma in the current in vivo murine model, representing therefore a potential therapeutic strategy for increasing the radiation response of solid tumors.

  1. Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair.

    PubMed

    Guttmann, David M; Hart, Lori; Du, Kevin; Seletsky, Andrew; Koumenis, Constantinos

    2013-09-01

    To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer. Copyright © 2013. Published by Elsevier Inc.

  2. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    PubMed

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P < 0.05) with a sensitizing enhancement ratio of 1.28. Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P < 0.001; P < 0.05). Moreover, compared with the independent radiation group, the andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  3. Comparison of microwave and magnetic nanoparticle hyperthermia radiosensitization in murine breast tumors

    NASA Astrophysics Data System (ADS)

    Giustini, Andrew J.; Petryk, Alicia A.; Hoopes, Paul J.

    2011-03-01

    Hyperthermia has been shown to be an effective radiosensitizer. Its utility as a clinical modality has been limited by a minimally selective tumor sensitivity and the inability to be delivered in a tumor-specific manner. Recent in vivo studies (rodent and human) have shown that cancer cell-specific cytotoxicity can be effectively and safely delivered via iron oxide magnetic nanoparticles (mNP) and an appropriately matched noninvasive alternating magnetic field (AMF). To explore the tumor radiosensitization potential of mNP hyperthermia we used a syngeneic mouse breast cancer model, dextran-coated 110 nm hydrodynamic diameter mNP and a 169 kHz / 450 Oe (35.8 kA/m) AMF. Intradermally implanted (flank) tumors (150 +/- 40 mm3) were treated by injection of 0.04 ml mNP (7.5 mg Fe) / cm3 into the tumor and an AMF (35.8 kA/m and 169 kHz) exposure necessary to achieve a CEM (cumulative equivalent minute) thermal dose of 60 (CEM 60). Tumors were treated with mNP hyperthermia (CEM 60), radiation alone (15 Gy, single dose) and in combination. Compared to the radiation and heat alone treatments, the combined treatment resulted in a greater than two-fold increase in tumor regrowth tripling time (tumor treatment efficacy). None of the treatments resulted in significant normal tissue toxicity or morbidity. Studies were also conducted to compare the radiosensitization effect of mNP hyperthermia with that of microwave-induced hyperthermia. The effects of incubation of nanoparticles within tumors (to allow nanoparticles to be endocytosed) before application of AMF and radiation were determined. This preliminary information suggests cancer cell specific hyperthermia (i.e. antibody-directed or anatomically-directed mNP) is capable of providing significantly greater radiosensitization / therapeutic ratio enhancement than other forms of hyperthermia delivery.

  4. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells

    SciTech Connect

    Chiu, Shu-Jun, E-mail: chiusj@mail.tcu.edu.tw; Institute of Radiation Sciences, Tzu Chi Technology College, Hualien, Taiwan; Hsaio, Ching-Hui

    2010-04-09

    Combined-modality treatment has improved the outcome in cases of various solid tumors, and radiosensitizers are used to enhance the radiotherapeutic efficiency. Rosiglitazone, a synthetic ligand of peroxisome proliferator-activated receptors {gamma} used in the treatment of type-2 diabetes, has been shown to reduce tumor growth and metastasis in human cancer cells, and may have the potential to be used as a radiosensitizer in radiotherapy for human colorectal cancer cells. In this study, rosiglitazone treatment significantly reduced the cell viability of p53-wild type HCT116 cells but not p53-mutant HT-29 cells. Interestingly, rosiglitazone pretreatment enhanced radiosensitivity in p53-mutant HT-29 cells but not HCT116more » cells, and prolonged radiation-induced G{sub 2}/M arrest and enhanced radiation-induced cell growth inhibition in HT-29 cells. Pretreatment with rosiglitazone also suppressed radiation-induced H2AX phosphorylation in response to DNA damage and AKT activation for cell survival; on the contrary, rosiglitazone pretreatment enhanced radiation-induced caspase-8, -9, and -3 activation and PARP cleavage in HT-29 cells. In addition, pretreatment with a pan-caspase inhibitor, zVAD-fmk, attenuated the levels of caspase-3 activation and PARP cleavage in radiation-exposed cancer cells in combination with rosiglitazone pretreatment. Our results provide proof for the first time that rosiglitazone suppresses radiation-induced survival signals and DNA damage response, and enhances the radiation-induced apoptosis signaling cascade. These findings can assist in the development of rosiglitazone as a novel radiosensitizer.« less

  5. Targeting radiosensitizers to DNA by attachment of an intercalating group: Nitroimidazole-linked phenanthridines

    SciTech Connect

    Cowan, D.S.; Panicucci, R.; McClelland, R.A.

    The nitroimidazole-linked phenanthridine series of compounds (NLP-1, 2, and 3) were synthesized under the assumption that it should be possible to enhance the molar efficiency of 2-nitroimidazoles as hypoxic cell radiosensitizers and cytotoxins by targeting them to their likely site of action, DNA. The targeting group chosen was the phenanthridine moiety, the major component of the classical DNA intercalating compound, ethidium bromide. The sole difference between the compounds is the length of the hydrocarbon chain linking the nitroimidazole to the phenanthridine. The phenanthridine group with a three-carbon side chain, P-1, was also synthesized to allow studies on the effect ofmore » the targeting group by itself. The ability of the compounds to bind to DNA is inversely proportional to their linker chain length with binding constant values ranging from approximately 1 {times} 10(5) mol-1 for NLP-2 to 6 {times} 10(5) mol-1 for NLP-3. The NLP compounds show selective toxicity to hypoxic cells at 37 degrees C at external drug concentrations 10-40 times lower than would be required for untargeted 2-nitroimidazoles such as misonidazole in vitro. Toxicity to both hypoxic and aerobic cells is dependent on the linker chain: the shorter the chain, the greater the toxicity. In addition, the NLP compounds radiosensitize hypoxic cells at external drug concentrations as low as 0.05 mM with almost the full oxygen effect being observed at a concentration of 0.5 mM. These concentrations are 10-100 times lower than would be required for similar radiosensitization using misonidazole. Radiosensitizing ability is independent of linker chain length. The present compounds represent prototypes for further studies of the efficacy and mechanism of action of 2-nitroimidazoles targeted to DNA by linkage to an intercalating group.« less

  6. Vascular endothelial growth factor-C enhances radiosensitivity of lymphatic endothelial cells

    PubMed Central

    Kesler, Cristina T.; Kuo, Angera; Wong, Hon-Kit; Masuck, David J.; Shah, Jennifer L.; Kozak, Kevin; Held, Kathryn D.; Padera, Timothy P.

    2013-01-01

    Radiation therapy after lymph node dissection increases the risk of developing painful and incurable lymphedema in breast cancer patients. Lymphedema occurs when lymphatic vessels become unable to maintain proper fluid balance. The sensitivity of lymphatic endothelial cells (LECs) to ionizing radiation has not been reported to date. Here, the radiosensitivity of LECs in vitro has been determined using clonogenic survival assays. The ability of various growth factors to alter LEC radiosensitivity was also examined. Vascular endothelial growth factor (VEGF)-C enhanced radiosensitivity when LECs were treated prior to radiation. VEGF-C-treated LECs exhibited higher levels of entry into the cell cycle at the time of radiation, with a greater number of cells in the S and G2/M phases. These LECs showed higher levels of H2A.X—an indicator of DNA damage—after radiation. VEGF-C did not increase cell death as a result of radiation. Instead, it increased the relative number of quiescent LECs. These data suggest that abundant VEGF-C or lymphangiogenesis may predispose patients to radiation-induced lymphedema by impairing lymphatic vessel repair through induction of LEC quiescence. PMID:24201897

  7. Host cell reactivation of gamma-irradiated adenovirus 5 in human cell lines of varying radiosensitivity.

    PubMed Central

    Eady, J. J.; Peacock, J. H.; McMillan, T. J.

    1992-01-01

    DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659

  8. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy.

    PubMed

    Zhao, Jun; Zhou, Min; Li, Chun

    2016-01-01

    Radiotherapy has been, and will continue to be, a critical modality to treat cancer. Since the discovery of radiation-induced cytotoxicity in the late 19th century, both external and internal radiation sources have provided tremendous benefits to extend the life of cancer patients. Despite the dramatic improvement of radiation techniques, however, one challenge persists to limit the anti-tumor efficacy of radiotherapy, which is to maximize the deposited dose in tumor while sparing the rest of the healthy vital organs. Nanomedicine has stepped into the spotlight of cancer diagnosis and therapy during the past decades. Nanoparticles can potentiate radiotherapy by specifically delivering radionuclides or radiosensitizers into tumors, therefore enhancing the efficacy while alleviating the toxicity of radiotherapy. This paper reviews recent advances in synthetic nanoparticles for radiotherapy and radiosensitization, with a focus on the enhancement of in vivo anti-tumor activities. We also provide a brief discussion on radiation-associated toxicities as this is an area that, up to date, has been largely missing in the literature and should be closely examined in future studies involving nanoparticle-mediated radiosensitization.

  9. Heat exposure enhances radiosensitivity by depressing DNA-PK kinase activity during double strand break repair.

    PubMed

    Ihara, Makoto; Takeshita, Satoshi; Okaichi, Kumio; Okumura, Yutaka; Ohnishi, Takeo

    2014-03-01

    From the role of double strand DNA dependent protein kinase (DNA-PKcs) activity of non-homologous end joining (NHEJ) repair for DNA double strand breaks (DSBs), we aim to define possible associations between thermo-sensitisation and the enzyme activities in X-ray irradiated cells. DNA-PKcs deficient mouse, Chinese hamster and human cultured cells were compared to the parental wild-type cells. The radiosensitivities, the number of DSBs and DNA-PKcs activities after heat-treatment were measured. Both DNA-PKcs deficient cells and the wild-type cells showed increased radiosensitivities after heat-treatment. The wild-type cells have two repair processes; fast repair and slow repair. In contrast, DNA-PKcs deficient cells have only the slow repair process. The fast repair component apparently disappeared by heat-treatment in the wild-type cells. In both cell types, additional heat exposure enhanced radiosensitivities. Although DNA-PKcs activity was depressed by heat, the inactivated DNA-PKcs activity recovered during an incubation at 37 °C. DSB repair efficiency was dependent on the reactivation of DNA-PKcs activity. It was suggested that NHEJ is the major process used to repair X-ray-induced DSBs and utilises DNA-PKcs activity, but homologous recombination repair provides additional secondary levels of DSB repair. The thermo-sensitisation in X-ray-irradiated cells depends on the inhibition of NHEJ repair through the depression of DNA-PKcs activities.

  10. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  11. Radiosensitization of HT-29 cells and xenografts by the nitric oxide donor DETANONOate.

    PubMed

    Gao, Xiaohuan; Saha, Debabrata; Kapur, Payal; Anthony, Thomas; Livingston, Edward H; Huerta, Sergio

    2009-08-01

    Mechanisms of radioresistance in rectal cancer remain unclear. To determine mechanisms of radioresistance in rectal cancer cells and to assess the role of the nitric oxide donor DETANONOate as a radiosensitizing agent. Survival was determined by clonogenic assays, apoptosis by PARP-1 cleavage, and phenotypic differences by Western blot analysis. SCID mice bearing HT-29 xenografts were treated with ionizing radiation (IR) [2.0 Gy x 5], DETANONOate [0.4 mg/kg i.p.], or combination treatment. Colorectal cancer HT-29-p53-null cells were resistant and HCT-116-p53 wild-type cells sensitive to IR, which correlated with cleaved PARP-1. Increased levels of p21 occurred in HCT-116 cells, while Bcl-2 and survivin were elevated in HT-29 cells. Radiosensitization was achieved with a substantial elevation of cleaved PARP-1 in DETANONOate-HT-29-treated versus control cells, which was accompanied by elevation of p21, p27, and BAX, and a concomitant decrease in Bcl-2. SCID mice bearing HT-29 xenografts demonstrated a 37.6%, 51.1%, and 70.1% inhibition in tumor growth in mice receiving IR, DETANONOate, and combination treatment versus control, respectively. Radioresistant HT-29 cells are p53-null and have substantially decreased levels of p21. DETANONOate radiosensitized HT-29 cells in vitro and in vivo by an additive effect in apoptosis.

  12. Theranostic gold-magnetite hybrid nanoparticles for MRI-guided radiosensitization.

    PubMed

    Maniglio, D; Benetti, F; Minati, L; Jovicich, J; Valentini, A; Speranza, G; Migliaresi, C

    2018-08-03

    The main limitation of drug-enhanced radiotherapy concerns the difficulty to evaluate the effectiveness of cancer targeting after drug administration hindering the standardization of therapies based on current radiosensitizing compounds. The challenge regards the development of systems able to combine imaging and radiotherapy enhancement in order to perform highly reliable cancer theragnosis. For these reasons, gold-magnetite hybrid nanoparticles (H-NPs) are proposed as innovative theranostic nanotools for imaging-guided radiosensitization in cancer treatment. In this work we propose a novel method for the synthesis of hydrophilic and superparamagnetic Tween20-stabilized gold-magnetite H-NPs. Morphology and chemical composition of nanoparticles were assessed by transmission electron microscopy, x-ray diffraction analysis and ion-coupled plasma optical emission spectroscopy. Colloidal stability and magnetic properties of nanoparticles were determined by dynamic light scattering and magnetometry. The potentialities of H-NPs for magnetic resonance imaging were studied using a human 4T-MRI scanner. Nanoparticles were proven to induce concentration-dependent contrast enhancement in T2*-weighted MR-images. The cytotoxicity, the cellular uptake and the radiosensitization activity of H-NPs were investigated in human osteosarcoma MG63 cell cultures and murine 3T3 fibroblasts, using specific bioassays and laser scanning confocal microscopy. H-NPs did not exhibit significant toxicity and were demonstrated to be internalized by cells. A significant x-ray enhancement at specific H-NPs exposure concentrations was evidenced on MG63 cell line.

  13. A chemical screen for medulloblastoma identifies quercetin as a putative radiosensitizer.

    PubMed

    Lagerweij, Tonny; Hiddingh, Lotte; Biesmans, Dennis; Crommentuijn, Matheus H W; Cloos, Jacqueline; Li, Xiao-Nan; Kogiso, Mari; Tannous, Bakhos A; Vandertop, W Peter; Noske, David P; Kaspers, Gertjan J L; Würdinger, Tom; Hulleman, Esther

    2016-06-14

    Treatment of medulloblastoma in children fails in approximately 30% of patients, and is often accompanied by severe late sequelae. Therefore, more effective drugs are needed that spare normal tissue and diminish long-term side effects. Since radiotherapy plays a pivotal role in the treatment of medulloblastoma, we set out to identify novel drugs that could potentiate the effect of ionizing radiation.Thereto, a small molecule library, consisting of 960 chemical compounds, was screened for its ability to sensitize towards irradiation. This small molecule screen identified the flavonoid quercetin as a novel radiosensitizer for the medulloblastoma cell lines DAOY, D283-med, and, to a lesser extent, D458-med at low micromolar concentrations and irradiation doses used in fractionated radiation schemes. Quercetin did not affect the proliferation of neural precursor cells or normal human fibroblasts. Importantly, in vivo experiments confirmed the radiosensitizing properties of quercetin. Administration of this flavonoid at the time of irradiation significantly prolonged survival in orthotopically xenografted mice. Together, these findings indicate that quercetin is a potent radiosensitizer for medulloblastoma cells that may be a promising lead for the treatment of medulloblastoma in patients.

  14. Fundamental mechanisms of DNA radiosensitization: damage induced by low-energy electrons in brominated oligonucleotide trimers.

    PubMed

    Park, Yeunsoo; Polska, Katarzyna; Rak, Janusz; Wagner, J Richard; Sanche, Léon

    2012-08-16

    The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.

  15. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    SciTech Connect

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression andmore » radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.« less

  16. Chromosomal Radiosensitivity in Lymphocytes of Cervix Cancer Patients—Correlation with Side Effect after Radiotherapy

    NASA Astrophysics Data System (ADS)

    Wegierek-Ciuk, Aneta; Lankoff, Anna; Lisowska, Halina; Banasik-Nowak, Anna; Arabski, Michał; Kedzierawski, Piotr; Florek, Agnieszka; Wojcik, Andrzej

    2010-01-01

    It is well known that cancer patients receiving similar radiotherapy treatments differ widely in normal tissue reactions ranging from undetectable to unacceptably severe levels. Therefore, an important goal of radiobiological research is to establish a test which would allow identifying individual radiosensitivity of patients prior to radiotherapy. The aim of the presented study is to assess the relationship between lymphocyte intrinsic radiosensitivity in vitro and early reaction of normal tissue in cervix cancer patients treated by radiotherapy. The following endpoints are analyzed in vitro: frequency of micronuclei, the kinetics of DNA repair and apoptosis. Acute normal tissue reaction to radiotherapy in the skin, bladder and rectum are scored according to the EORTC/RTOG scale. Our results show a wide inter-individual variability in chromosomal radiosensitivity in vitro. The majority of patients show a Grade 0, 1 or 2 reaction for all organs studied. No statistically significant correlation has been observed between the in vitro results in lymphocytes and the degree of early normal tissue and organ reaction.

  17. Bilateral primary malignant lymphoma of the breast.

    PubMed Central

    Shpitz, B.; Witz, M.; Kaufman, Z.; Griffel, B.; Manor, Y.; Dinbar, A.

    1985-01-01

    A rare case of bilateral primary malignant lymphoma of breast in a 76 year old woman is presented. The lesion was examined by electron microscopy and immunochemistry. The diagnosis of primary malignant lymphoma remains a diagnosis by exclusion and requires extensive work-up to exclude widespread malignant process. The behaviour of this malignancy tends to be an aggressive one and the prognosis is generally poor. Images Figure 1 Figure 2 PMID:4034464

  18. Bilateral primary malignant lymphoma of the breast.

    PubMed

    Shpitz, B; Witz, M; Kaufman, Z; Griffel, B; Manor, Y; Dinbar, A

    1985-08-01

    A rare case of bilateral primary malignant lymphoma of breast in a 76 year old woman is presented. The lesion was examined by electron microscopy and immunochemistry. The diagnosis of primary malignant lymphoma remains a diagnosis by exclusion and requires extensive work-up to exclude widespread malignant process. The behaviour of this malignancy tends to be an aggressive one and the prognosis is generally poor.

  19. Second primary malignancies after treatment for malignant lymphoma

    PubMed Central

    Okines, A; Thomson, C S; Radstone, C R; Horsman, J M; Hancock, B W

    2005-01-01

    To determine the incidence and possible causes of second primary malignancies after treatment for Hodgkin's and Non-Hodgkin's lymphoma (HL and NHL). A cohort of 3764 consecutive patients diagnosed with HL or NHL between January 1970 and July 2001 was identified using the Sheffield Lymphoma Group database. A search was undertaken for all patients diagnosed with a subsequent primary malignancy. Two matched controls were identified for each case. Odds ratios were calculated to detect and quantify any risk factors in the cases compared to their matched controls. Mean follow-up for the cohort was 5.2 years. A total of 68 patients who developed second cancers at least 6 months after their primary diagnosis were identified, giving a crude incidence of 1.89% overall: 3.21% among the patients treated for HL, 1.32% in those treated for NHL. Most common were bronchial, breast, colorectal and haematological malignancies. High stage at diagnosis almost reached statistical significance in the analysis of just the NHL patients (odds ratio=3.48; P=0.068) after adjustment for other factors. Treatment modality was not statistically significant in any analysis. High stage at diagnosis of NHL may be a risk factor for developing a second primary cancer. PMID:16106249

  20. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions

    PubMed Central

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M.; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term “relative dose effect” (RDE). This ratio is advantageous, as it allows for simple comparison of dose–response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2–15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low

  1. Comparison of Individual Radiosensitivity to γ-Rays and Carbon Ions.

    PubMed

    Shim, Grace; Normil, Marie Delna; Testard, Isabelle; Hempel, William M; Ricoul, Michelle; Sabatier, Laure

    2016-01-01

    Carbon ions are an up-and-coming ion species, currently being used in charged particle radiotherapy. As it is well established that there are considerable interindividual differences in radiosensitivity in the general population that can significantly influence clinical outcomes of radiotherapy, we evaluate the degree of these differences in the context of carbon ion therapy compared with conventional radiotherapy. In this study, we evaluate individual radiosensitivity following exposure to carbon-13 ions or γ-rays in peripheral blood lymphocytes of healthy individuals based on the frequency of ionizing radiation (IR)-induced DNA double strand breaks (DSBs) that was either misrepaired or left unrepaired to form chromosomal aberrations (CAs) (simply referred to here as DSBs for brevity). Levels of DSBs were estimated from the scoring of CAs visualized with telomere/centromere-fluorescence in situ hybridization (TC-FISH). We examine radiosensitivity at the dose of 2 Gy, a routinely administered dose during fractionated radiotherapy, and we determined that a wide range of DSBs were induced by the given dose among healthy individuals, with highly radiosensitive individuals harboring more IR-induced breaks in the genome than radioresistant individuals following exposure to the same dose. Furthermore, we determined the relative effectiveness of carbon irradiation in comparison to γ-irradiation in the induction of DSBs at each studied dose (isodose effect), a quality we term "relative dose effect" (RDE). This ratio is advantageous, as it allows for simple comparison of dose-response curves. At 2 Gy, carbon irradiation was three times more effective in inducing DSBs compared with γ-irradiation (RDE of 3); these results were confirmed using a second cytogenetic technique, multicolor-FISH. We also analyze radiosensitivity at other doses (0.2-15 Gy), to represent hypo- and hyperfractionation doses and determined that RDE is dose dependent: high ratios at low doses

  2. Venous thromboembolism in malignant gliomas

    PubMed Central

    JENKINS, E. O.; SCHIFF, D.; MACKMAN, N.; KEY, N. S.

    2010-01-01

    Summary Malignant gliomas are associated with a very high risk of venous thromboembolism (VTE). While many clinical risk factors have previously been described in brain tumor patients, the risk of VTE associated with newer anti-angiogenic therapies such as bevacizumab in these patients remains unclear. When VTE occurs in this patient population, concern regarding the potential for intracranial hemorrhage complicates management decisions regarding anticoagulation, and these patients have a worse prognosis than their VTE-free counterparts. Risk stratification models identifying patients at high risk of developing VTE along with predictive plasma biomarkers may guide the selection of eligible patients for primary prevention with pharmacologic thromboprophylaxis. Recent studies exploring disordered coagulation, such as increased expression of tissue factor (TF), and tumorigenic molecular signaling may help to explain the increased risk of VTE in patients with malignant gliomas. PMID:19912518

  3. Malignant glaucoma after cataract surgery.

    PubMed

    Varma, Devesh K; Belovay, Graham W; Tam, Diamond Y; Ahmed, Iqbal Ike K

    2014-11-01

    To report a series of eyes that developed malignant glaucoma after cataract surgery. Private academic practice, Toronto, Ontario, Canada. Retrospective case series. Eyes that developed malignant glaucoma after cataract surgery were treated with medical therapy. This was followed by laser iridozonulohyaloidotomy, anterior chamber reformation and intraocular lens (IOL) pushback, and finally with surgical iridozonulohyaloidovitrectomy if all other measures were unsuccessful. Refraction, intraocular pressure (IOP), gonioscopy, and anterior chamber depth (ACD) by anterior segment optical coherence tomography were analyzed before treatment and after treatment. The study evaluated 20 eyes of 18 female patients aged 44 to 86 years. Preoperatively, the mean refraction was +3.11 diopters (D) ± 2.89 (SD), the mean axial length was 21.30 ± 1.40 mm, and all eyes had narrow or closed angles. Malignant glaucoma was diagnosed a mean of 5.8 ± 7.1 weeks postoperatively. At diagnosis, the mean refraction was -2.15 ± 2.95 D; the mean ACD, 2.49 ± 0.72 mm; and the mean IOP, 28.3 ± 10.8 mm Hg on a mean of 1.3 ± 1.6 medications. Two eyes responded to cycloplegia, 7 to laser iridozonulohyaloidotomy, and 6 to anterior chamber reformation-IOL pushback; 5 eyes required vitrectomy. Posttreatment, the mean refraction was -0.56 ± 1.07 D; the mean ACD, 3.30 ± 0.50 mm; and the mean IOP, 14.4 ± 4.60 mm Hg on a mean of 1.2 ± 1.4 medications. Cycloplegia was discontinued in 17 eyes. Malignant glaucoma can occur after phacoemulsification and presents with myopic surprise, anterior chamber shallowing and, possibly, elevated IOP. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Giant Malignant Pheochromocytoma with Palpable Rib Metastases

    PubMed Central

    Gokce, Gokhan; Kilicli, Fatih; Elagoz, Sahande; Ayan, Semih; Gultekin, Emin Yener

    2014-01-01

    Pheochromocytoma is a rare and usually benign neuroendocrine neoplasm. Only 10% of all these tumors are malignant and there are no definitive histological or cytological criteria of malignancy. Single malignancy criteria are the presence of advanced locoregional disease or metastases. We report a case, with a giant retroperitoneal tumor having multiple metastases including palpable rib metastases, who was diagnosed as a malignant pheochromocytoma. The patient was treated with surgery. The literature was reviewed to evaluate tumor features and current diagnostic and therapeutic approaches for patients with metastatic or potentially malignant pheochromocytoma. PMID:25152826

  5. Malignancy

    MedlinePlus

    ... Cancer biology and genetics. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 181. National Cancer Institute. NCI dictionary of cancer terms. Cancer.gov ...

  6. Doxorubicin-mediated radiosensitivity in multicellular spheroids from a lung cancer cell line is enhanced by composite micelle encapsulation

    PubMed Central

    Xu, Wen-Hong; Han, Min; Dong, Qi; Fu, Zhi-Xuan; Diao, Yuan-Yuan; Liu, Hai; Xu, Jing; Jiang, Hong-Liang; Zhang, Su-Zhan; Zheng, Shu; Gao, Jian-Qing; Wei, Qi-Chun

    2012-01-01

    Background The purpose of this study is to evaluate the efficacy of composite doxorubicinloaded micelles for enhancing doxorubicin radiosensitivity in multicellular spheroids from a non-small cell lung cancer cell line. Methods A novel composite doxorubicin-loaded micelle consisting of polyethylene glycolpolycaprolactone/Pluronic P105 was developed, and carrier-mediated doxorubicin accumulation and release from multicellular spheroids was evaluated. We used confocal laser scanning microscopy and flow cytometry to study the accumulation and efflux of doxorubicin from A549 multicellular spheroids. Doxorubicin radiosensitization and the combined effects of irradiation and doxorubicin on cell migration and proliferation were compared for the different doxorubicin delivery systems. Results Confocal laser scanning microscopy and quantitative flow cytometry studies both verified that, for equivalent doxorubicin concentrations, composite doxorubicin-loaded micelles significantly enhanced cellular doxorubicin accumulation and inhibited doxorubicin release. Colony-forming assays demonstrated that composite doxorubicin-loaded micelles are radiosensitive, as shown by significantly reduced survival of cells treated by radiation + composite micelles compared with those treated with radiation + free doxorubicin or radiation alone. The multicellular spheroid migration area and growth ability verified higher radiosensitivity for the composite micelles loaded with doxorubicin than for free doxorubicin. Conclusion Our composite doxorubicin-loaded micelle was demonstrated to have radiosensitization. Doxorubicin loading in the composite micelles significantly increased its cellular uptake, improved drug retention, and enhanced its antitumor effect relative to free doxorubicin, thereby providing a novel approach for treatment of cancer. PMID:22679376

  7. Dimethoxycurcumin, a metabolically stable analogue of curcumin enhances the radiosensitivity of cancer cells: Possible involvement of ROS and thioredoxin reductase

    SciTech Connect

    Jayakumar, Sundarraj; Patwardhan, R.S.; Pal, Debojyoti

    Dimethoxycurcumin (DIMC), a structural analogue of curcumin, has been shown to have more stability, bioavailability, and effectiveness than its parent molecule curcumin. In this paper the radiosensitizing effect of DIMC has been investigated in A549 lung cancer cells. As compared to its parent molecule curcumin, DIMC showed a very potent radiosensitizing effect as seen by clonogenic survival assay. DIMC in combination with radiation significantly increased the apoptosis and mitotic death in A549 cells. This combinatorial treatment also lead to effective elimination of cancer stem cells. Further, there was a significant increase in cellular ROS, decrease in GSH to GSSG ratiomore » and also significant slowdown in DNA repair when DIMC was combined with radiation. In silico docking studies and in vitro studies showed inhibition of thioredoxin reductase enzyme by DIMC. Overexpression of thioredoxin lead to the abrogation of radiosensitizing effect of DIMC underscoring the role of thioredoxin reductase in radiosensitization. Our results clearly demonstrate that DIMC can synergistically enhance the cancer cell killing when combined with radiation by targeting thioredoxin system. - Highlights: • DIMC enhances radiosensitivity of cancer cells by inducing cell death. • DIMC with radiation disrupted the cellular redox and targeted cancer stem cells. • DNA repair is hampered when cells are treated with DIMC. • DIMC inhibited thioredoxin reductase in cancer cells.« less

  8. Giant hydronephrosis mimicking progressive malignancy

    PubMed Central

    Schrader, Andres Jan; Anderer, Georgia; von Knobloch, Rolf; Heidenreich, Axel; Hofmann, Rainer

    2003-01-01

    Background Cases of giant hydronephroses are rare and usually contain no more than 1–2 litres of fluid in the collecting system. We report a remarkable case of giant hydronephrosis mimicking a progressive malignant abdominal tumour. Case presentation A 78-year-old cachectic woman presented with an enormous abdominal tumour, which, according to the patient, had slowly increased in diameter. Medical history was unremarkable except for a hysterectomy >30 years before. A CT scan revealed a giant cystic tumour filling almost the entire abdominal cavity. It was analysed by two independent radiologists who suspected a tumour originating from the right kidney and additionally a cystic ovarian neoplasm. Subsequently, a diagnostic and therapeutic laparotomy was performed: the tumour presented as a cystic, 35 × 30 × 25 cm expansive structure adhesive to adjacent organs without definite signs of invasive growth. The right renal hilar vessels could finally be identified at its basis. After extirpation another tumourous structure emerged in the pelvis originating from the genital organs and was also resected. The histopathological examination revealed a >15 kg hydronephrotic right kidney, lacking hardly any residual renal cortex parenchyma. The second specimen was identified as an ovary with regressive changes and a large partially calcified cyst. There was no evidence of malignant growth. Conclusion Although both clinical symptoms and the enormous size of the tumour indicated malignant growth, it turned out to be a giant hydronephrosis. Presumably, a chronic obstruction of the distal ureter had caused this extraordinary hydronephrosis. As demonstrated in our case, an accurate diagnosis of giant hydronephrosis remains challenging due to the atrophy of the renal parenchyma associated with chronic obstruction. Therefore, any abdominal cystic mass even in the absence of other evident pathologies should include the differential diagnosis of a possible hydronephrosis. Diagnostic

  9. Eosinophilic dermatosis of hematologic malignancy.

    PubMed

    Martires, Kathryn; Callahan, Shields; Terushkin, Vitaly; Brinster, Nooshin; Leger, Marie; Soter, Nicholas A

    2016-12-15

    We report a 68-year-old woman with chroniclymphocytic leukemia, who developed numerous,pruritic, edematous, and vesicobullous skin lesionsof the face and extremities over the course of severalmonths. The diagnosis of eosinophilic dermatosis ofhematologic malignancy (EDHM) was made basedon the clinical history and histopathologic features.Owing to the possible link between EDHM and amore aggressive underlying CLL, she was startedagain on chemotherapy. This case serves as areminder that, although the precise pathogenesis ofEDHM remains unclear, the paraneoplastic disorderis the result of immune dysregulation. Patientswho develop EDHM should undergo prompthematologic/oncologic evaluation.

  10. Intracavitary Therapeutics for Pleural Malignancies.

    PubMed

    Murthy, Vivek; Mangalick, Keshav; Sterman, Daniel H

    2018-03-01

    Pleural malignancies remain a serious therapeutic challenge, and are frequently refractory to standard treatment; however, they have the advantage of occurring in an enclosed cavity readily accessible for examination, biopsy, and serial sampling. Novel therapeutics can be administered via intracavitary delivery to maximize efficacy by targeting the site of involvement and potentially mitigating the adverse effects of systemic therapies. The easy accessibility of the pleural space lends itself well to repeated sampling and analysis to determine efficacy and toxicity of a given treatment paradigm. These factors support the rationale for delivery of novel therapeutics directly into the pleural space. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1

    PubMed Central

    YANG, LIANG; LIU, REN; MA, HONG-BIN; YING, MING-ZHEN; WANG, YA-JIE

    2015-01-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 (GSTP1) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G2/M phase arrest in the GSTP1-expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1-expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G2/M phase arrest. PMID:26622693

  12. Radiosensitivity in HeLa cervical cancer cells overexpressing glutathione S-transferase π 1.

    PubMed

    Yang, Liang; Liu, Ren; Ma, Hong-Bin; Ying, Ming-Zhen; Wang, Ya-Jie

    2015-09-01

    The aims of the present study were to investigate the effect of overexpressed exogenous glutathione S-transferase π 1 ( GSTP1 ) gene on the radiosensitivity of the HeLa human cervical cancer cell line and conduct a preliminarily investigation into the underlying mechanisms of the effect. The full-length sequence of human GSTP1 was obtained by performing a polymerase chain reaction (PCR) using primers based on the GenBank sequence of GSTP1. Subsequently, the gene was cloned into a recombinant eukaryotic expression plasmid, and the resulting construct was confirmed by restriction analysis and DNA sequencing. A HeLa cell line that was stably expressing high levels of GSTP1 was obtained through stable transfection of the constructed plasmids using lipofectamine and screening for G418 resistance, as demonstrated by reverse transcription-PCR. Using the transfected HeLa cells, a colony formation assay was conducted to detect the influence of GSTP1 overexpression on the cell radiosensitivity. Furthermore, flow cytometry was used to investigate the effect of GSTP1 overexpression on cell cycle progression, with the protein expression levels of the cell cycle regulating factor cyclin B1 detected using western blot analysis. Colony formation and G 2 /M phase arrest in the GSTP1 -expressing cells were significantly increased compared with the control group (P<0.01). In addition, the expression of cyclin B1 was significantly reduced in the GSTP1 -expressing cells. These results demonstrated that increased expression of GSTP1 inhibits radiosensitivity in HeLa cells. The mechanism underlying this effect may be associated with the ability of the GSTP1 protein to reduce cyclin B1 expression, resulting in significant G 2 /M phase arrest.

  13. TGF{beta}1 polymorphisms and late clinical radiosensitivity in patients treated for gynecologic tumors

    SciTech Connect

    Ruyck, Kim de; Van Eijkeren, Marc; Claes, Kathleen

    2006-07-15

    Purpose: To investigate the association between six transforming growth factor {beta}1 gene (TGF{beta}1) polymorphisms (-1.552delAGG, -800G>A, -509C>T, Leu10Pro, Arg25Pro, Thr263Ile) and the occurrence of late normal tissue reactions after gynecologic radiotherapy (RT). Methods and Materials: Seventy-eight women with cervical or endometrial cancer and 140 control individuals were included in the study. According to the Common Terminology Criteria for Adverse Events version 3.0 (CTCAEv3.0) scale, 25 patients showed late adverse RT reactions (CTC2+), of whom 11 had severe complications (CTC3+). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), single base extension and genotyping assays were performed to examine the polymorphic sites inmore » TGF{beta}1. Results: Homozygous variant -1.552delAGG, -509TT, and 10Pro genotypes were associated with the risk of developing late severe RT reactions. Triple (variant) homozygous patients had a 3.6 times increased risk to develop severe RT reactions (p = 0.26). Neither the -800A allele, nor the 25Pro allele or the 263Ile allele were associated with clinical radiosensitivity. There was perfect linkage disequilibrium (LD) between the -1.552delAGG and the -509C>T polymorphisms, and tight LD between the -1.552/-509 and the Leu10Pro polymorphisms. Haplotype analysis revealed two major haplotypes but could not distinguish radiosensitive from nonradiosensitive patients. Conclusions: The present study shows that homozygous variant TGF{beta}1 -1.552delAGG, -509TT, and 10Pro genotypes may be associated with severe clinical radiosensitivity after gynecologic RT.« less

  14. Inhibition of STAT-3 Results in Radiosensitization of Human Squamous Cell Carcinoma

    PubMed Central

    Bonner, James A.; Trummell, Hoa Q.; Willey, Christopher D.; Plants, Brian A.; Raisch, Kevin P.

    2009-01-01

    Background Signal Transducer and Activator of Transcription – 3 (STAT-3) is a downstream component of the Epidermal Growth Factor Receptor (EGFr) signaling process that may facilitate the resistance of tumor cells to conventional cancer treatments. Studies were performed to determine if inhibition of this downstream protein may produce radiosensitization. Methods/Results A431 cells (human squamous cell carcinoma cells with EGFr overexpression) were found to be sensitized to radiation after treatment with STAT-3 small interfering RNA (siRNA). Therefore, a short hairpin RNA (shRNA) against STAT-3 was designed and cloned into a pBABE vector system modified for shRNA expression. Following transfection, clone 2.1 was selected for further study as it showed a dramatic reduction of STAT-3 protein (and mRNA) when compared to A431 parental cells or a negative control shRNA cell line (transfected with STAT-3 shRNA with 2 base pairs mutated). A431 2.1 showed doubling times of 25-31 h as compared to 18-24 h for the parental cell line. The A431 shRNA knockdown STAT-3 cells A431 were more sensitive to radiation than A431 parental or negative STAT-3 control cells. Conclusion A431 cells stably transfected with shRNA against STAT-3 resulted in enhanced radiosensitivity. Further work will be necessary to determine whether inhibition of STAT-3 phosphorylation is a necessary step for the radiosensitization that is induced by inhibition of EGFr. PMID:19616333

  15. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins.

    PubMed

    Maachani, Uday Bhanu; Kramp, Tamalee; Hanson, Ryan; Zhao, Shuping; Celiku, Orieta; Shankavaram, Uma; Colombo, Riccardo; Caplen, Natasha J; Camphausen, Kevin; Tandle, Anita

    2015-05-01

    To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell-specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells were analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor NMS-P715 on radiosensitivity in multiple model systems, including GBM cell lines, a normal astrocyte, and a normal fibroblast cell line. DNA double-strand breaks (DSB) were evaluated using γH2AX foci, and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Furthermore, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of postradiation mitotic catastrophe. NMS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1-silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair, and replication, including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. Inhibition of MPS1 kinase in combination with radiation represents a promising new approach for glioblastoma and for other cancer therapies. ©2015 American Association for Cancer Research.

  16. Targeting MPS1 Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins

    PubMed Central

    Maachani, Uday B.; Kramp, Tamalee; Hanson, Ryan; Zhao, Shuping; Celiku, Orieta; Shankavaram, Uma; Colombo, Riccardo; Caplen, Natasha J.; Camphausen, Kevin; Tandle, Anita

    2015-01-01

    To ensure faithful chromosome segregation, cells use the spindle assembly checkpoint (SAC), which can be activated in aneuploid cancer cells. Targeting the components of SAC machinery required for the growth of aneuploid cells may offer a cancer cell specific therapeutic approach. In this study, the effects of inhibiting Monopolar spindle 1, MPS1 (TTK), an essential SAC kinase, on the radiosensitization of glioblastoma (GBM) cells was analyzed. Clonogenic survival was used to determine the effects of the MPS1 inhibitor, NMS-P715 on radiosensitivity in multiple model systems including: GBM cell lines, a normal astrocyte and a normal fibroblast cell line. DNA double strand breaks (DSBs) were evaluated using γH2AX foci and cell death was measured by mitotic catastrophe evaluation. Transcriptome analysis was performed via unbiased microarray expression profiling. Tumor xenografts grown from GBM cells were used in tumor growth delay studies. Inhibition of MPS1 activity resulted in reduced GBM cell proliferation. Further, NMS-P715 enhanced the radiosensitivity of GBM cells by decreased repair of DSBs and induction of post-radiation mitotic catastrophe. MNS-P715 in combination with fractionated doses of radiation significantly enhanced the tumor growth delay. Molecular profiling of MPS1 silenced GBM cells showed an altered expression of transcripts associated with DNA damage, repair and replication including the DNA-dependent protein kinase (PRKDC/DNAPK). Next, inhibition of MPS1 blocked two important DNA repair pathways. In conclusion, these results not only highlight a role for MPS1 kinase in DNA repair and as prognostic marker but also indicate it as a viable option in glioblastoma therapy. PMID:25722303

  17. Integrating Radiosensitivity and Immune Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer.

    PubMed

    Cui, Yi; Li, Bailiang; Pollom, Erqi Liu; Horst, Kathleen; Li, Ruijiang

    2018-06-19

    Breast cancer is a heterogeneous disease and not all patients respond equally to adjuvant radiotherapy. Predictive biomarkers are needed to select patients who will benefit from the treatment and spare others the toxicity and burden of radiation. We first trained and tested an intrinsic radiosensitivity gene signature to predict local recurrence after radiotherapy in three cohorts of 948 patients. Next, we developed an antigen processing and presentation-based immune signature by maximizing the treatment interaction effect in 129 patients. To test their predictive value, we matched patients treated with or without radiotherapy in an independent validation cohort for clinicopathologic factors including age, ER status, HER2 status, stage, hormone-therapy, chemotherapy, and surgery. Disease specific survival (DSS) was the primary endpoint. Our validation cohort consisted of 1,439 patients. After matching and stratification by the radiosensitivity signature, patients who received radiotherapy had better DSS than patients who did not in the radiation-sensitive group (hazard ratio [HR]=0.68, P=0.059, n=322), while a reverse trend was observed in the radiation-resistant group (HR=1.53, P=0.059, n=202). Similarly, patients treated with radiotherapy had significantly better DSS in the immuneeffective group (HR=0.46, P=0.0076, n=180), with no difference in DSS in the immunedefective group (HR=1.27, P=0.16, n=348). Both signatures were predictive of radiotherapy benefit (P interaction =0.007 and 0.005). Integration of radiosensitivity and immune signatures further stratified patients into three groups with differential outcomes for those treated with or without radiotherapy (P interaction =0.003). The proposed signatures have the potential to select patients who are most likely to benefit from radiotherapy. Copyright ©2018, American Association for Cancer Research.

  18. Gold nanoparticles and electroporation impose both separate and synergistic radiosensitizing effects in HT-29 tumor cells: an in vitro study.

    PubMed

    Rezaee, Zohre; Yadollahpour, Ali; Bayati, Vahid; Negad Dehbashi, Fereshteh

    2017-01-01

    Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. Despite recent improvements in RT efficiency, the side effects of ionizing radiation (IR) in normal tissues are a dose-limiting factor that restricts higher doses in tumor treatment. One approach to enhance the efficiency of RT is the application of radiosensitizers to selectively increase the dose at the tumor site. Gold nanoparticles (GNPs) and electroporation (EP) have shown good potential as radiosensitizers for RT. This study aims to investigate the sensitizing effects of EP, GNPs, and combined GNPs-EP on the dose enhancement factor (DEF) for 6 MV photon energy. Radiosensitizing effects of EP, GNPs, and combinations of GNPs-EP were comparatively investigated in vitro for intestinal colon cancer (HT-29) and Chinese hamster ovary (CHO) cell lines by MTT assay and colony formation assay at 6 MV photon energy in six groups: IR (control group), GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR. Treatment of both cell lines with EP, GNPs, and combined GNPs-EP significantly enhanced the response of cells to irradiation. However, the HT-29 showed higher DEF values for all groups. In addition, the DEF value for HT-29 cells for GNPs+IR, GNPs (24 h)+IR, EP+IR, GNPs+EP+IR, and GNPs (24 h)+EP+IR was, respectively, 1.17, 1.47, 1.36, 2.61, and 2.89, indicating synergistic radiosensitizing effect for the GNPs (24 h)+EP+IR group. Furthermore, the synergistic effect was observed just for HT-29 tumor cell lines. Combined GNPs-EP protocols induced synergistic radiosensitizing effect in HT-29 cells, and the effect is also tumor specific. This combined therapy can be beneficially used for the treatment of intrinsically less radiosensitive tumors.

  19. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence ofmore » this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.« less

  20. Celecoxib enhances the radiosensitivity of HCT116 cells in a COX-2 independent manner by up-regulating BCCIP

    PubMed Central

    Xu, Xiao-Ting; Hu, Wen-Tao; Zhou, Ju-Ying; Tu, Yu

    2017-01-01

    It has been reported that celecoxib, a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug (NSAID), regulates the radiosensitivity of several cancer cells. BCCIP (BRCA2 and CDKN1A interacting protein) plays a critical role in maintaining the critical functions of p53 in tumor suppression and response to therapy. However, whether the effect of celecoxib on the radiosensitivity of colorectal cancer (CRC) cells is dependent on BCCIP is largely unclear. In this study, we found that celecoxib enhanced the radiosensitivity of HeLa (a human cervical carcinoma cell line), A549 (a human lung carcinoma cell line), and HCT116 cells (a human CRC cells line). Among these cells, COX-2 expression was undetected in HCT116 cells. Treatment with celecoxib significantly increased BCCIP expression in COX-2 negative HCT116 cells. Knockdown of BCCIP obviously abrogated the enhanced radiosensitivity of HCT116 cells induced by celecoxib. A combination of celecoxib and irradiation treatment induced much more γ-H2AX foci formation, higher levels of radiation injury-related proteins phosphorylation, G2/M arrest, apoptosis, and p53 and p21 expression, and lower levels of Cyclin B1 in HCT116 cells than those in cells treated with irradiation alone. However, these changes were undetected in BCCIP-silenced HCT116 cells. Therefore, these data suggest that BCCIP gene may be a radiosensitivity-related gene in CRC. Celecoxib affects the functions of p53 and inhibits the recovery from the irradiation-induced injury by up-regulating the expression of BCCIP, and subsequently regulates the expressions of genes such as p21 and Cyclin B1 to enhance the radiosensitivity of HCT116 cells in a COX-2 independent manner. PMID:28386336

  1. Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo.

    PubMed

    Luo, Judong; Zhu, Wei; Tang, Yiting; Cao, Han; Zhou, Yuanyuan; Ji, Rong; Zhou, Xifa; Lu, Zhongkai; Yang, Hongying; Zhang, Shuyu; Cao, Jianping

    2014-03-25

    Cervical cancer is the third most common type of cancer in women worldwide and radiotherapy remains its predominant therapeutic treatment. Artesunate (ART), a derivative of artemisinin, has shown radiosensitization effect in previous studies. However, such effects of ART have not yet been revealed for cervical cancer cells. The effect of ART on radiosensitivity of human cervical cancer cell lines HeLa and SiHa was assessed using the clonogenic assay. Cell cycle progression and apoptosis alterations were analyzed by flow cytometry. For in vivo study, HeLa or SiHa cells were inoculated into nude mice to establish tumors. Tissues from xenografts were obtained to detect the changes of microvessel density, apoptosis and cell cycle distribution. Microarray was used to analyze differentially expressed genes. ART increased the radiosensitivity of HeLa cells (SER=1.43, P<0.001) but not of SiHa cells. Apoptosis and the G2-M phase transition induced by X-ray irradiation (IR) were enhanced by ART via increased Cyclin B1 expression in HeLa cells. Tumor growth of xenografts from HeLa but not SiHa cells was significantly inhibited by irradiation combined with ART (tumor volume reduction of 72.34% in IR+ART group vs. 41.22% in IR group in HeLa cells and 48.79% in IR+ART group vs. 44.03% in IR alone group in SiHa cells). Compared with the irradiated group, cell apoptosis was increased and the G2/M cell cycle arrest was enhanced in the group receiving irradiation combined with ART. Furthermore, compared with radiation alone, X-ray irradiation plus ART affected the expression of 203 genes that function in multiple pathways including RNA transport, the spliceosome, RNA degradation and p53 signaling. ART potently abrogates the G2 checkpoint control in HeLa cells. ART can induce radiosensitivity of HeLa cells in vitro and in vivo.

  2. [Individual variability of immunological markers, radiosensitivity and oxidative status in blood lymphocytes of Moscow residents].

    PubMed

    Pelevina, I I; Aleshchenko, A V; Antoshchina, M M; Kudriashova, O M; Nikonova, M F; Riabchenko, N I; Serebrianyĭ, A M; Iarilin, A A

    2013-01-01

    Expression of activation (CD69) and proliferation (Ki67) markers, their connection with each other, with the oxidative status (reactive oxygen species--ROS) and with radiosensitivity (determined by micronucleus test) have been studied on stimulated blood lymphocytes from Moscow inhabitants. It was shown that the content of T-lymphocytes with the expressed CD69 and the content of T-lymphocytes with the expressed Ki67 markers correlate (r = 0.571; p = 0.0004). We can suppose that expression of the CD69 marker (24 h after PHA stimulation) is needed for the cell cycle progression, but it is not enough for the high expression of Ki67 markers 48 h after stimulation (DNA synthesis phase). It was discovered that T-lymphocytes with the CD69 marker or T-lymphocytes with the Ki67 marker are connected by the negative correlation with the frequency of irradiated cell with micronucleus (MN) r = -0.487; p = 0.010; r = -0.440; p = 0.008, respectively. So we can suppose that lymphocyte radiosensitivity decreased with the increase of expression activation and proliferation markers. It was shown that radiosensitivity determined by MN test is not connected with the oxidative status determined by the reactive oxygen species content including superoxide anion radicals. It is possible to explain by the fact that the ROS concentration has been determined in non-stimulated lymphocytes, but frequencies of cells with MN - in the stimulated cells 48 h after stimulation. Using separate analysis of individual differences by the studied parameters that were determined in the same people, it was shown that individual differences are high enough in the same cases. For example, the radiosensitivity when cells were irradiated 48 h after stimulation, ROS concentration, cell content with activation and proliferation markers. In conclusion, we can say that we failed to find important correlation between the parameters studied. However, the presence of individual differences in the marker expression

  3. Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells.

    PubMed

    Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R; Alsner, Jan; Overgaard, Jens

    2013-09-01

    HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDuDD, UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1mM Nimorazole, and the clonogenic survival was determined. The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3-2.9, and a sensitizer effect of Nimorazole of 1.13-1.29, similar to HPV negative cells. Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity or response to Nimorazole, but can be accounted for by the overall higher

  4. NUCLEIC ACID CONCENTRATION AND RADIOSENSITIVITY OF THE SCORPION ANDROCTONUS AMOREUXI AUD. AND SAV (in French)

    SciTech Connect

    Pascaud, X.; Niaussat, P.

    1963-01-01

    The concentration of desoxyribonucleic acid and of ribonucleic acid in the soft tissues was determined for the two invertebrates of the arid zone, the scorpion Androctonus amoreuxi Aud. and Sav. and the tenebrionide Pimelia angulata expiata Peyer. The radiosensitivity to gamma rays had been previously determined: LD/sub 50/30// days is 100,000 r for Androctonus and 40,000 for Pimelia. The mean rate of nucleic acids determined in the scorpion was relatively low. A possible relation between the high radioresistance of the scorpion and the low nucleic acid concentration was discussed. (J.S.R.)

  5. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies.

    PubMed

    Jain, Suneil; Coulter, Jonathan A; Hounsell, Alan R; Butterworth, Karl T; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Dickson, Glenn R; Prise, Kevin M; Currell, Fred J; O'Sullivan, Joe M; Hirst, David G

    2011-02-01

    Gold nanoparticles (GNPs) have been shown to cause sensitization with kilovoltage (kV) radiation. Differences in the absorption coefficient between gold and soft tissue, as a function of photon energy, predict that maximum enhancement should occur in the kilovoltage (kV) range, with almost no enhancement at megavoltage (MV) energies. Recent studies have shown that GNPs are not biologically inert, causing oxidative stress and even cell death, suggesting a possible biological mechanism for sensitization. The purpose of this study was to assess GNP radiosensitization at clinically relevant MV X-ray energies. Cellular uptake, intracellular localization, and cytotoxicity of GNPs were assessed in normal L132, prostate cancer DU145, and breast cancer MDA-MB-231 cells. Radiosensitization was measured by clonogenic survival at kV and MV photon energies and MV electron energies. Intracellular DNA double-strand break (DSB) induction and DNA repair were determined and GNP chemosensitization was assessed using the radiomimetic agent bleomycin. GNP uptake occurred in all cell lines and was greatest in MDA-MB-231 cells with nanoparticles accumulating in cytoplasmic lysosomes. In MDA-MB-231 cells, radiation sensitizer enhancement ratios (SERs) of 1.41, 1.29, and 1.16 were achieved using 160 kVp, 6 MV, and 15 MV X-ray energies, respectively. No significant effect was observed in L132 or DU145 cells at kV or MV energies (SER 0.97-1.08). GNP exposure did not increase radiation-induced DSB formation or inhibit DNA repair; however, GNP chemosensitization was observed in MDA-MB-231 cells treated with bleomycin (SER 1.38). We have demonstrated radiosensitization in MDA-MB-231 cells at MV X-ray energies. The sensitization was cell-specific with comparable effects at kV and MV energies, no increase in DSB formation, and GNP chemopotentiation with bleomycin, suggesting a possible biological mechanism of radiosensitization. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Familial association of specific histologic types of ovarian malignancy with other malignancies.

    PubMed

    Lorenzo Bermejo, Justo; Rawal, Rajesh; Hemminki, Kari

    2004-04-01

    Population-based data on the familial association of specific histologic types of ovarian malignancy with other malignancies are limited. Such data may help to elucidate etiologic differences among histologic types of ovarian malignancy. The nationwide Swedish Family-Cancer Database, which includes 10.3 million individuals and 20,974 ovarian carcinomas, was used to calculate standardized incidence ratios and 95% confidence intervals for age- and histology-specific ovarian malignancies in women whose parents or siblings were affected with malignancies at the most common disease sites. Ovarian malignancy was found to be associated with ovarian, laryngeal, breast, endometrial, liver, and colon carcinoma, as well as myeloma; epithelial ovarian malignancy was found to be associated with ovarian, endometrial, and skin malignancies and with melanoma and myeloma; papillary serous cystadenocarcinoma was found to be associated with ovarian and skin malignancies and with myeloma; and endometrioid carcinoma was found to be associated with endometrial, ovarian, and prostate malignancies and with melanoma. For younger women (ages 40-45 years) whose mothers were affected with endometrial malignancies, the risk of developing endometrioid carcinoma was slightly greater than the risk of developing papillary serous cystadenocarcinoma. Specific types of ovarian malignancy may be associated with specific familial disease sites, with such associations depending on age at diagnosis; the strength of the observed associations varied according to histology. Associations were found between endometrioid carcinoma and endometrial malignancy and between serous carcinoma and Hodgkin disease. Copyright 2004 American Cancer Society.

  7. Malignant mesothelioma with squamous differentiation.

    PubMed

    Tanaka, Hiroyuki; Akiyama, Yutaka; Kitamura, Akiko; Matsumoto, Nobuhiro; Tomita, Masaki; Kataoka, Hiroaki

    2018-06-01

    We report the autopsy findings of a 58-year-old man with malignant mesothelioma in the left pleural cavity. The patient had a history of asbestos exposure, and the chest computed tomography scan on initial admission demonstrated an extrapleural sign, suggesting a nodular lesion in the chest wall. However, no nodular lesions were detectable in either of his lungs. In spite of chemotherapy, he died 4 months after the initial admission. An autopsy revealed markedly thickened pleura in a large section of the left pleural cavity without visible intrapulmonary primary tumour lesions. Histological examination of a biopsy specimen obtained prior to chemotherapy and that of an autopsy specimen showed that the pleural tumour was composed of a mixture of mesothelioma and tumour cells with squamous differentiation mimicking squamous cell carcinoma. To the best of our knowledge, this is the first case report of mesothelioma with extensive squamous differentiation in the English-language literature. The extensive squamous differentiation reminiscent of squamous cell carcinoma can be a pitfall in the pathological diagnosis of pleural cytology and that of biopsy specimens from patients with mesothelioma. Here, we report autopsy findings of a case of malignant mesothelioma with portions of extensive squamous differentiation, mimicking a squamous cell carcinoma. © 2018 John Wiley & Sons Ltd.

  8. Cellular immunotherapy for malignant gliomas.

    PubMed

    Lin, Yi; Okada, Hideho

    2016-10-01

    Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy.

  9. Cellular immunotherapy for malignant gliomas

    PubMed Central

    Lin, Yi

    2016-01-01

    Introduction Cancer immunotherapy has made much progress in recent years. Clinical trials evaluating a variety of immunotherapeutic approaches are underway in patients with malignant gliomas. Thanks to recent advancements in cell engineering technologies, infusion of ex vivo prepared immune cells have emerged as promising strategies of cancer immunotherapy. Areas covered Herein, the authors review recent and current studies using cellular immunotherapies for malignant gliomas. Specifically, they cover the following areas: a) cellular vaccine approaches using tumor cell-based or dendritic cell (DC)-based vaccines, and b) adoptive cell transfer (ACT) approaches, including lymphokine-activated killer (LAK) cells, γδ T cells, tumor-infiltrating lymphocytes (TIL), chimeric antigen receptor (CAR)-T cells and T-cell receptor (TCR) transduced T cells. Expert opinion While some of the recent studies have shown promising results, the ultimate success of cellular immunotherapy in brain tumor patients would require improvements in the following areas: 1) feasibility in producing cellular therapeutics; 2) identification and characterization of targetable antigens given the paucity and heterogeneity of tumor specific antigens; 3) the development of strategies to promote effector T-cell trafficking; 4) overcoming local and systemic immune suppression, and 5) proper interpretation of imaging data for brain tumor patients receiving immunotherapy. PMID:27434205

  10. HIV-Associated Urogenital Malignancies.

    PubMed

    Hentrich, Marcus; Pfister, David

    2017-01-01

    Non-AIDS-defining malignancies (NADM) are a leading cause of morbidity and mortality for HIV-infected subjects. The risk of testicular germ cell cancer (GCC) and renal cell cancer is slightly increased in the setting of HIV, whereas there is a slightly decreased risk of prostate cancer and bladder cancer. As in industrialized countries the majority of people living with HIV are men, and people aged 55 and older now account for more than a quarter of persons living with HIV, both testis and prostate cancer are assumed to occur with increased frequency in HIV-infected subjects. Overall, treatments should be the same as in HIV-negative patients with urogenital malignancies. Since the introduction of combination antiretroviral therapy (cART) the outcome appears to have improved due to a decrease in HIV-related deaths. HIV-infected men who are treated with standard therapies for GCC now have a similar cancer-free survival compared with their HIV-negative counterparts. Screening and treatment for prostate cancer should follow recommendations established for HIV-negative men. During radio- or chemotherapy patients should receive concurrent cART but the drug-drug interaction potential must be taken into account. © 2017 S. Karger GmbH, Freiburg.

  11. [Acute surgical treatment of malignant stroke].

    PubMed

    Lilja-Cyron, Alexander; Eskesen, Vagn; Hansen, Klaus; Kondziella, Daniel; Kelsen, Jesper

    2016-10-24

    Malignant stroke is an intracranial herniation syndrome caused by cerebral oedema after a large hemispheric or cerebellar stroke. Malignant middle cerebral artery infarction is a devastating disease with a mortality around 80% despite intensive medical treatment. Decompressive craniectomy reduces mortality and improves functional outcome - especially in younger patients (age ≤ 60 years). Decompression of the posterior fossa is a life-saving procedure in patients with malignant cerebellar infarctions and often leads to good neurological outcome.

  12. Leuloplakia - Review of A Potentially Malignant Disorder

    PubMed Central

    Abidullah, Mohammed; Gaddikeri, Kavitha; Raghoji, Swetha; Ravishankar T, Shilpa

    2014-01-01

    Leukoplakias are oral white lesions that have not been diagnosed as any other specific disease. They are grouped under premalignant lesions, now redesignated as potentially malignant disorders. Their significance lies in the fact that they have propensity for malignant transformation at a higher rate when compared to other oral lesions. This article reviews aetiology, epidemiology, clinical characteristics, histopathologic features, malignant potential and treatment of oral leukoplakia. PMID:25302287

  13. Cerebellar degeneration following neuroleptic malignant syndrome.

    PubMed Central

    Lal, V.; Sardana, V.; Thussu, A.; Sawhney, I. M.; Prabhakar, S.

    1997-01-01

    A 55-year-old woman with a history of bipolar affective disorder developed hyperpyrexia, rigidity and depressed consciousness (neuroleptic malignant syndrome) after commencing neuroleptic therapy. On regaining consciousness, she was mute and had signs suggesting pancerebellar involvement. Hyperpyrexia, which is a cardinal feature of neuroleptic malignant syndrome, may have caused cerebellar damage. Neuroleptic malignant syndrome needs both early recognition and prompt treatment to obviate devastating complications. PMID:9519191

  14. Malignant gastric lymphoma with spontaneous perforation.

    PubMed

    Shimada, Satoko; Gen, Tokichi; Okamoto, Hiroyuki

    2013-01-17

    Malignant gastric lymphoma, accounting only for 1% of primary gastric carcinoma, is usually a diffuse large B-cell lymphoma. Toyota et al reported that 37% of gastric perforations involved malignancy, generally gastric carcinoma. Fukuda et al found that less than 5% of malignant gastric lymphomas perforate. While it is relatively well known that perforations often take place during chemotherapy, they are rare in patients not receiving chemotherapy. To our knowledge, spontaneous perforation is rare in gastric malignant lymphoma, having been reported in the Japanese literature only 26 times, including this case, in the last 25 years.

  15. Malignant histiocytic lymphoma with large lacunar cells.

    PubMed

    Leahu, S; Dobrea, M

    1997-01-01

    A case of lymph node biopsy with a peculiar histological aspect is described. The clinical data suggest a malignant lymphoid disease. The histological picture is that of a malignant histiocytosis but, among the majority of small histiocytes, there are some large cells like the large lacunar cells from Hodgkin's disease. These large cells (and some small cells) contain the CD 30 antigen of Reed-Sternberg cells. It is discussed whether the appropriate diagnosis is Hodgkin's disease, malignant histiocytosis, or non-Hodgkin's malignant lymphoma. Our diagnosis is Hodgkin's disease, the nodular sclerosing form.

  16. Markers of Oral Lichen Planus Malignant Transformation

    PubMed Central

    Tampa, Mircea; Mitran, Madalina; Mitran, Cristina; Matei, Clara; Georgescu, Simona-Roxana

    2018-01-01

    Oral lichen planus (OLP) is a chronic inflammatory disease of unknown etiology with significant impact on patients' quality of life. Malignant transformation into oral squamous cell carcinoma (OSCC) is considered as one of the most serious complications of the disease; nevertheless, controversy still persists. Various factors seem to be involved in the progression of malignant transformation; however, the mechanism of this process is not fully understood yet. Molecular alterations detected in OLP samples might represent useful biomarkers for predicting and monitoring the malignant progression. In this review, we discuss various studies which highlight different molecules as ominous predictors of OLP malignant transformation. PMID:29682099

  17. B-Cell Hematologic Malignancy Vaccination Registry

    ClinicalTrials.gov

    2017-12-29

    Monoclonal Gammopathy of Undetermined Significance; Multiple Myeloma; Waldenstrom Macroglobulinemia; Lymphocytosis; Lymphoma, Non-Hodgkin; B-Cell Chronic Lymphocytic Leukemia; Hematological Malignancies

  18. Mitochondrial stress controls the radiosensitivity of the oxygen effect: Implications for radiotherapy.

    PubMed

    Richardson, Richard B; Harper, Mary-Ellen

    2016-04-19

    It has been more than 60 years since the discovery of the oxygen effect that empirically demonstrates the direct association between cell radiosensitivity and oxygen tension, important parameters in radiotherapy. Yet the mechanisms underlying this principal tenet of radiobiology are poorly understood. Better understanding of the oxygen effect may explain difficulty in eliminating hypoxic tumor cells, a major cause of regrowth after therapy. Our analysis utilizes the Howard-Flanders and Alper formula, which describes the relationship of radiosensitivity with oxygen tension. Here, we assign and qualitatively assess the relative contributions of two important mechanisms. The first mechanism involves the emission of reactive oxygen species from the mitochondrial electron transport chain, which increases with oxygen tension. The second mechanism is related to an energy and repair deficit, which increases with hypoxia. Following a radiation exposure, the uncoupling of the oxidative phosphorylation system (proton leak) in mitochondria lowers the emission of reactive oxygen species which has implications for fractionated radiotherapy, particularly of hypoxic tumors. Our analysis shows that, in oxygenated tumor and normal cells, mitochondria, rather than the nucleus, are the primary loci of radiotherapy effects, especially for low linear energy transfer radiation. Therefore, the oxygen effect can be explained by radiation-induced effects in mitochondria that generate reactive oxygen species, which in turn indirectly target nuclear DNA.

  19. Radiosensitizing effect of PSMC5, a 19S proteasome ATPase, in H460 lung cancer cells

    SciTech Connect

    Yim, Ji-Hye; Yun, Hong Shik; Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791

    2016-01-01

    The function of PSMC5 (proteasome 26S subunit, ATPase 5) in tumors, particularly with respect to cancer radioresistance, is not known. Here, we identified PSMC5 as a novel radiosensitivity biomarker, demonstrating that radiosensitive H460 cells were converted to a radioresistance phenotype by PSMC5 depletion. Exposure of H460 cells to radiation induced a marked accumulation of cell death-promoting reactive oxygen species, but this effect was blocked in radiation-treated H460 PSMC5-knockdown cells through downregulation of the p53-p21 pathway. Interestingly, PSMC5 depletion in H460 cells enhanced both AKT activation and MDM2 transcription, thereby promoting the degradation of p53 and p21 proteins. Furthermore, specific inhibitionmore » of AKT with triciribine or knockdown of MDM2 with small interfering RNA largely restored p21 expression in PSMC5-knockdown H460 cells. Our data suggest that PSMC5 facilitates the damaging effects of radiation in radiation-responsive H460 cancer cells and therefore may serve as a prognostic indicator for radiotherapy and molecular targeted therapy in lung cancer patients. - Highlights: • PSMC5 is a radiation-sensitive biomarker in H460 cells. • PSMC5 depletion inhibits radiation-induced apoptosis in H460 cells. • PSMC5 knockdown blocks ROS generation through inhibition of the p53-p21 pathway. • PSMC5 knockdown enhances p21 degradation via AKT-dependent MDM2 stabilization.« less

  20. Enhancing radiosensitization in EphB4 receptor-expressing Head and Neck Squamous Cell Carcinomas

    PubMed Central

    Bhatia, Shilpa; Hirsch, Kellen; Sharma, Jaspreet; Oweida, Ayman; Griego, Anastacia; Keysar, Stephen; Jimeno, Antonio; Raben, David; Krasnoperov, Valery; Gill, Parkash S.; Pasquale, Elena B.; Wang, Xiao-Jing; Karam, Sana D.

    2016-01-01

    Members of the Eph family of receptor tyrosine kinases have been implicated in a wide array of human cancers. The EphB4 receptor is ubiquitously expressed in head and neck squamous cell carcinoma (HNSCC) and has been shown to impart tumorigenic and invasive characteristics to these cancers. In this study, we investigated whether EphB4 receptor targeting can enhance the radiosensitization of HNSCC. Our data show that EphB4 is expressed at high to moderate levels in HNSCC cell lines and patient-derived xenograft (PDX) tumors. We observed decreased survival fractions in HNSCC cells following EphB4 knockdown in clonogenic assays. An enhanced G2 cell cycle arrest with activation of DNA damage response pathway and increased apoptosis was evident in HNSCC cells following combined EphB4 downregulation and radiation compared to EphB4 knockdown and radiation alone. Data using HNSCC PDX models showed significant reduction in tumor volume and enhanced delay in tumor regrowth following sEphB4-HSA administration with radiation compared to single agent treatment. sEphB4-HSA is a protein known to block the interaction between the EphB4 receptor and its ephrin-B2 ligand. Overall, our findings emphasize the therapeutic relevance of EphB4 targeting as a radiosensitizer that can be exploited for the treatment of human head and neck carcinomas. PMID:27941840

  1. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells

    PubMed Central

    Liu, Yan; Zhang, Pengcheng; Li, Feifei; Jin, Xiaodong; Li, Jin; Chen, Weiqiang; Li, Qiang

    2018-01-01

    Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed. PMID:29556359

  2. The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer

    PubMed Central

    Pattje, W J; Schuuring, E; Mastik, M F; Slagter-Menkema, L; Schrijvers, M L; Alessi, S; van der Laan, B F A M; Roodenburg, J L N; Langendijk, J A; van der Wal, J E

    2010-01-01

    Background: For locally advanced squamous cell carcinoma of the head and neck (HNSCC), the recurrence rate after surgery and postoperative radiotherapy is between 20 and 40%, and the 5-year overall survival rate is ∼50%. Presently, no markers exist to accurately predict treatment outcome. Expression of proteins in the human epidermal growth factor receptor (EGFR) pathway has been reported as a prognostic marker in several types of cancer. Methods: The aim of this study was to investigate the prognostic value of proteins in the EGFR pathway in HNSCC. For this purpose, we collected surgically resected tissue of 140 locally advanced head and neck cancer patients, all treated with surgery and postoperative radiotherapy. Results: In a multivariate analysis, expression of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was significantly related to worse locoregional control (LRC; HR: 2.2, 95% CI: 1.1–4.6; P=0.03), independent of lymph node metastases (HR: 5.6, 95% CI: 1.2–27.4; P=0.03) and extranodal spread (HR: 2.7; 95% CI: 1.2–6.5; P=0.02). In vitro clonogenic radiosensitivity assays confirmed that overexpression of PTEN resulted in increased radioresistance. Conclusion: Our study is the first report showing that expression of PTEN mediates radiosensitivity in vitro and that increased expression in advanced HNSCC predicts worse LRC. PMID:20502457

  3. Aberrant rhythmic expression of cryptochrome2 regulates the radiosensitivity of rat gliomas.

    PubMed

    Fan, Wang; Caiyan, Li; Ling, Zhu; Jiayun, Zhao

    2017-09-29

    In this study, we investigated the role of the clock regulatory protein cryptochrome 2 (Cry2) in determining the radiosensitivity of C6 glioma cells in a rat model. We observed that Cry2 mRNA and protein levels showed aberrant rhythmic periodicity of 8 h in glioma tissues, compared to 24 h in normal brain tissue. Cry2 mRNA and protein levels did not respond to irradiation in normal tissues, but both were increased at the ZT4 (low Cry2) and ZT8 (high Cry2) time points in gliomas. Immunohistochemical staining of PCNA and TUNEL assays demonstrated that high Cry2 expression in glioma tissues was associated with increased cell proliferation and decreased apoptosis. Western blot analysis showed that glioma cell fate was independent of p53, but was probably dependent on p73, which was more highly expressed at ZT4 (low Cry2) than at ZT8 (high Cry2). Levels of both p53 and p73 were unaffected by irradiation in normal brain tissues. These findings suggest aberrant rhythmic expression of Cry2 influence on radiosensitivity in rat gliomas.

  4. Radiosensitizing Pancreatic Cancer Xenografts by an Implantable Micro-Oxygen Generator.

    PubMed

    Cao, Ning; Song, Seung Hyun; Maleki, Teimour; Shaffer, Michael; Stantz, Keith M; Cao, Minsong; Kao, Chinghai; Mendonca, Marc S; Ziaie, Babak; Ko, Song-Chu

    2016-04-01

    Over the past decades, little progress has been made to improve the extremely low survival rates in pancreatic cancer patients. Extreme hypoxia observed in pancreatic tumors contributes to the aggressive and metastatic characteristics of this tumor and can reduce the effectiveness of conventional radiation therapy and chemotherapy. In an attempt to reduce hypoxia-induced obstacles to effective radiation treatment, we used a novel device, the implantable micro-oxygen generator (IMOG), for in situ tumor oxygenation. After subcutaneous implantation of human pancreatic xenograft tumors in athymic rats, the IMOG was wirelessly powered by ultrasonic waves, producing 30 μA of direct current (at 2.5 V), which was then utilized to electrolyze water and produce oxygen within the tumor. Significant oxygen production by the IMOG was observed and corroborated using the NeoFox oxygen sensor dynamically. To test the radiosensitization effect of the newly generated oxygen, the human pancreatic xenograft tumors were subcutaneously implanted in nude mice with either a functional or inactivated IMOG device. The tumors in the mice were then exposed to ultrasonic power for 10 min, followed by a single fraction of 5 Gy radiation, and tumor growth was monitored thereafter. The 5 Gy irradiated tumors containing the functional IMOG exhibited tumor growth inhibition equivalent to that of 7 Gy irradiated tumors that did not contain an IMOG. Our study confirmed that an activated IMOG is able to produce sufficient oxygen to radiosensitize pancreatic tumors, enhancing response to single-dose radiation therapy.

  5. Icaritin Synergistically Enhances the Radiosensitivity of 4T1 Breast Cancer Cells

    PubMed Central

    Lv, Wenlong; Zhang, Mei; Chen, Chun; Yang, Shanmin; Li, Shan; Zhang, Lurong; Han, Deping; Zhang, Weijian

    2013-01-01

    Icaritin (ICT) is a hydrolytic form of icariin isolated from plants of the genus Epimedium. This study was to investigate the radiosensitization effect of icaritin and its possible underlying mechanism using murine 4T1 breast cancer cells. The combination of Icaritin at 3 µM or 6 µM with 6 or 8 Gy of ionizing radiation (IR) in the clonogenic assay yielded an ER (enhancement ratio) of 1.18 or 1.28, CI (combination index) of 0.38 or 0.19 and DRI (dose reducing index) of 2.51 or 5.07, respectively. These strongly suggest that Icaritin exerted a synergistic killing (?) effect with radiation on the tumor cells. This effect might relate with bioactivities of ICT: 1) exert an anti-proliferative effect in a dose- and time-dependent manner, which is different from IR killing effect but likely work together with the IR effect; 2) suppress the IR-induced activation of two survival paths, ERK1/2 and AKT; 3) induce the G2/M blockage, enhancing IR killing effect; and 4) synergize with IR to enhance cell apoptosis. In addition, ICT suppressed angiogenesis in chick embryo chorioallantoic membrane (CAM) assay. Taken together, ICT is a new radiosensitizer and can enhance anti-cancer effect of IR or other therapies. PMID:23977023

  6. On the Role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles

    PubMed Central

    Xiao, Fangxing; Zheng, Yi; Cloutier, Pierre; He, Yunhui; Hunting, Darel; Sanche, Léon

    2013-01-01

    Four different gold nanoparticle (GNP) preparations, including nude GNP and GNP coated either with thiolated undecane (S-C11H23), or with dithiolated diethylenetriaminepentaacetic (DTDTPA) or gadolinium (Gd) DTDTPA chelating agents were synthesized. The average diameters, for each type of nanoparticle are 5 nm, 10 and 13 nm, respectively. Dry films of plasmid DNA pGEM-3Zf(-), DNA with bound GNP and DNA with coated GNP were bombarded with 60 keV electrons. The yields of single and double strand breaks were measured as a function of exposure by electrophoresis. The binding of only one GNP without coating to DNA containing 3197 base pairs increases single and double strand breaks by a factor of 2.3 while for GNP coated with S-C11H23 this factor is reduced to 1.6. GNP coated with the DTDTPA and DTDTPA:Gd in same ratio with DNA, produce essentially no increment in damage. These results could be explained by the attenuation by the coatings of the intensity of low energy photoelectrons emitted from GNP. Thus, coatings of GNP may considerably attenuate short-range low energy electrons emitted from gold, leading to a considerable decrease of radiosensitization. According to our results, the highest radiosensitization should be obtained with GNP having the shortest possible ligand, directed to the DNA of cancer cells. PMID:22024607

  7. Radiosensitivity study and radiation effects on morphology characterization of grey oyster mushroom Pleurotus sajor-caju

    SciTech Connect

    Rashid, Rosnani Abdul; Awang, Mat Rasol; Mohamad, Azhar

    2014-09-03

    Radiosensitive dosage and morphology characterization of irradiated grey oyster mushroom Pleurotus sajor-caju by gamma rays was investigated due to effects of irradiation. In order to establish the effect, mycelium of P. sajor-caju was irradiated by gamma rays at dose 0.1 to 8.0 kGy with dose rate 0.227 Gy sec{sup −1}. The irradiation of mycelia was carried out at the radiation facility in Malaysian Nuclear Agency. The radiosensitivity study was performed by evaluating the percentage of survival irradiated mycelia. The lethal dose of the mycelium P. sajor-caju was determined at 4.0 kGy and LD{sub 50} to be equal at 2.2 kGy.more » The radiation effects on morphology were evaluated based on growth rate of irradiated mycelia, mycelia types, colonization period on substrate, morphology of fruit bodies and yields. The results shown growth rate of irradiated mycelium was slightly lower than the control and decreased as the dose increased. Irradiation was found can induced the primordia formation on PDA and the BE of irradiated seed is higher than to control. The irradiation is proven to be useful for generating new varieties of mushroom with commercial value to the industry.« less

  8. Radiosensitivity study and radiation effects on morphology characterization of grey oyster mushroom Pleurotus sajor-caju

    NASA Astrophysics Data System (ADS)

    Rashid, Rosnani Abdul; Daud, Fauzi; Senafi, Sahidan; Awang, Mat Rasol; Mohamad, Azhar; Mutaat, Hassan Hamdani; Maskom, Mohd Meswan

    2014-09-01

    Radiosensitive dosage and morphology characterization of irradiated grey oyster mushroom Pleurotus sajor-caju by gamma rays was investigated due to effects of irradiation. In order to establish the effect, mycelium of P. sajor-caju was irradiated by gamma rays at dose 0.1 to 8.0 kGy with dose rate 0.227 Gy sec-1. The irradiation of mycelia was carried out at the radiation facility in Malaysian Nuclear Agency. The radiosensitivity study was performed by evaluating the percentage of survival irradiated mycelia. The lethal dose of the mycelium P. sajor-caju was determined at 4.0 kGy and LD50 to be equal at 2.2 kGy. The radiation effects on morphology were evaluated based on growth rate of irradiated mycelia, mycelia types, colonization period on substrate, morphology of fruit bodies and yields. The results shown growth rate of irradiated mycelium was slightly lower than the control and decreased as the dose increased. Irradiation was found can induced the primordia formation on PDA and the BE of irradiated seed is higher than to control. The irradiation is proven to be useful for generating new varieties of mushroom with commercial value to the industry.

  9. Investigation of gold nanoparticle radiosensitization mechanisms using a free radical scavenger and protons of different energies.

    PubMed

    Jeynes, J C G; Merchant, M J; Spindler, A; Wera, A-C; Kirkby, K J

    2014-11-07

    Gold nanoparticles (GNPs) have been shown to sensitize cancer cells to x-ray radiation, particularly at kV energies where photoelectric interactions dominate and the high atomic number of gold makes a large difference to x-ray absorption. Protons have a high cross-section for gold at a large range of relevant clinical energies, and so potentially could be used with GNPs for increased therapeutic effect.Here, we investigate the contribution of secondary electron emission to cancer cell radiosensitization and investigate how this parameter is affected by proton energy and a free radical scavenger. We simulate the emission from a realistic cell phantom containing GNPs after traversal by protons and x-rays with different energies. We find that with a range of proton energies (1-250 MeV) there is a small increase in secondaries compared to a much larger increase with x-rays. Secondary electrons are known to produce toxic free radicals. Using a cancer cell line in vitro we find that a free radical scavenger has no protective effect on cells containing GNPs irradiated with 3 MeV protons, while it does protect against cells irradiated with x-rays. We conclude that GNP generated free radicals are a major cause of radiosensitization and that there is likely to be much less dose enhancement effect with clinical proton beams compared to x-rays.

  10. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    PubMed

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  11. In vitro radiosensitizing effects of ultrasmall gadolinium based particles on tumour cells.

    PubMed

    Mowat, P; Mignot, A; Rima, W; Lux, F; Tillement, O; Roulin, C; Dutreix, M; Bechet, D; Huger, S; Humbert, L; Barberi-Heyob, M; Aloy, M T; Armandy, E; Rodriguez-Lafrasse, C; Le Duc, G; Roux, S; Perriat, P

    2011-09-01

    Since radiotherapy is widely used in cancer treatment, it is essential to develop strategies which lower the irradiation burden while increasing efficacy and become efficient even in radio resistant tumors. Our new strategy is relying on the development of solid hybrid nanoparticles based on rare-earth such as gadolinium. In this paper, we then evidenced that gadolinium-based particles can be designed to enter efficiently into the human glioblastoma cell line U87 in quantities that can be tuned by modifying the incubation conditions. These sub-5 nm particles consist in a core of gadolinium oxide, a shell of polysiloxane and are functionalized by diethylenetriaminepentaacetic acid (DTPA). Although photoelectric effect is maximal in the [10-100 keV] range, such particles were found to possess efficient in-vitro radiosensitizing properties at an energy of 660 keV by using the "single-cell gel electrophoresis comet assay," an assay that measures the number of DNA damage that occurs during irradiation. Even more interesting, the particles have been evidenced by MTT assays to be also efficient radiosensitizers at an energy of 6 MeV for doses comprised between 2 and 8 Gy. The properties of the gadolinium-based particles give promising opening to a particle-assisted radio-therapy by using irradiation systems already installed in the majority of hospitals.

  12. Selective Targeting of Brain Tumors with Gold Nanoparticle-Induced Radiosensitization

    PubMed Central

    Joh, Daniel Y.; Sun, Lova; Stangl, Melissa; Al Zaki, Ajlan; Murty, Surya; Santoiemma, Phillip P.; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Bhang, Dongha; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.

    2013-01-01

    Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature. PMID:23638079

  13. Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization

    PubMed Central

    2013-01-01

    Gold nanoparticles (AuNPs) have generated interest as both imaging and therapeutic agents. AuNPs are attractive for imaging applications since they are nontoxic and provide nearly three times greater X-ray attenuation per unit weight than iodine. As therapeutic agents, AuNPs can sensitize tumor cells to ionizing radiation. To create a nanoplatform that could simultaneously exhibit long circulation times, achieve appreciable tumor accumulation, generate computed tomography (CT) image contrast, and serve as a radiosensitizer, gold-loaded polymeric micelles (GPMs) were prepared. Specifically, 1.9 nm AuNPs were encapsulated within the hydrophobic core of micelles formed with the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ε-capralactone). GPMs were produced with low polydispersity and mean hydrodynamic diameters ranging from 25 to 150 nm. Following intravenous injection, GPMs provided blood pool contrast for up to 24 h and improved the delineation of tumor margins via CT. Thus, GPM-enhanced CT imaging was used to guide radiation therapy delivered via a small animal radiation research platform. In combination with the radiosensitizing capabilities of gold, tumor-bearing mice exhibited a 1.7-fold improvement in the median survival time, compared with mice receiving radiation alone. It is envisioned that translation of these capabilities to human cancer patients could guide and enhance the efficacy of radiation therapy. PMID:24377302

  14. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.

    PubMed

    Jin, Cheng; Bai, Ling; Wu, Hong; Tian, Furong; Guo, Guozhen

    2007-09-01

    Paclitaxel and etanidazole are hypoxic radiosensitizers that exhibit cytotoxic action at different mechanisms. The poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles containing paclitaxel, etanidazole and paclitaxel+etanidazole were prepared by o/w and w/o/w emulsification-solvent evaporation method. The morphology of the nanoparticles was investigated by scanning electron microscope (SEM). The drug encapsulation efficiency (EE) and release profile in vitro were measured by high-performance liquid chromatography (HPLC). The cellular uptake of nanoparticles for the human breast carcinoma cells (MCF-7) and the human carcinoma cervicis cells (HeLa) was evaluated by transmission electronic microscopy and fluorescence microscopy. Cell viability was determined by the ability of single cell to form colonies in vitro. The prepared nanoparticles were spherical shape with size between 80 and 150 nm. The EE was higher for paclitaxel and lower for etanidazole. The drug release was controlled over time. The cellular uptake of nanoparticles was observed. Co-culture of the two tumor cell lines with drug-loaded nanoparticles demonstrated that released drug effectively sensitized hypoxic tumor cells to radiation. The radiosensitization of paclitaxel+etanidazole nanoparticles was more significant than that of single drug-loaded nanoparticles.

  15. Malignant biliary disease: percutaneous interventions.

    PubMed

    Morgan, R A; Adam, A N

    2001-09-01

    Interventional radiologists have an important role in the management of patients with malignant biliary obstruction. This article describes the techniques for percutaneous biliary drainage, insertion of biliary endoprostheses, and the management of occluded biliary endoprostheses. Most procedures are performed by using fluoroscopic guidance alone. Ultrasound is also a useful modality for guiding biliary drainage, particularly drainage of the left biliary ducts. Patients should be treated by internal drainage if possible. Metallic endoprostheses can be inserted at the time of the initial biliary drainage procedure. Plastic tubes should be inserted a few days after biliary drainage because of their relatively large size compared with metallic stents. Occluded plastic stents should be replaced. Blocked metallic stents should be treated either by placement of additional overlapping metallic stents or by placement of plastic stents within the metallic stent lumen. Copyright 2001 by W.B. Saunders Company

  16. The genetics of malignant hyperthermia.

    PubMed Central

    Ball, S P; Johnson, K J

    1993-01-01

    Malignant hyperthermia susceptibility remains the commonest cause of death owing to general anaesthesia. This is despite the availability of presymptomatic testing, admittedly by a highly invasive method, and a recognised treatment for implementation immediately a patient shows signs of developing a crisis. Recently the finding of linkage to markers from chromosome 19q13.1-13.2 and the identification of mutations in a candidate gene held out hope of genetic diagnosis being available. However, it is likely that only about 50% of families have a mutation of the skeletal muscle calcium release channel gene. With this degree of genetic heterogeneity, presymptomatic testing based on DNA markers can only be offered at present to a limited number of families where linkage to markers from 19q13.1-13.2 has been clearly shown. Images PMID:8383206

  17. Management of malignant pleural effusion.

    PubMed

    Chen, Hongbin; Brahmer, Julie

    2008-07-01

    Malignant pleural effusion (MPE) often presents in patients with cancer at an advanced stage and thus carries a poor prognosis. This review updates the current knowledge on the management of MPE, focusing on recent literature about the efficacy and safety of the most common methods, including pleurodesis by either thoracoscopy with talc insufflation or thoracostomy with talc slurry, use of an indwelling pleural catheter, and intrapleural chemotherapy. Talc remains the agent of choice in pleurodesis, although the use of alternative agents continues to be explored. The choice of procedure to achieve pleurodesis depends on careful patient selection based on predictive factors and individual characteristics. Talc pleuro-desis is relatively well tolerated and safe, as is an indwelling pleural catheter, in an appropriate patient population. Because MPE is a common problem in cancer patients, future research with more randomized, prospective designs and innovative interventions is needed.

  18. Salvage immunotherapy of malignant glioma.

    PubMed

    Ingram, M; Jacques, S; Freshwater, D B; Techy, G B; Shelden, C H; Helsper, J T

    1987-12-01

    We present the preliminary results of a phase I trial of adoptive immunotherapy for recurrent or residual malignant glioma. The protocol is based on surgical debulking followed by implantation into the tumor bed of autologous lymphocytes that have been stimulated with phytohemagglutinin-P and then cultured in vitro in the presence of interleukin 2. Fifty-five patients with a mean Karnofsky rating of 64 were treated between February 1985 and March 1987. No significant toxicity was associated with the immunotherapy. Fifty patients had a positive initial response to therapy, nine patients had early recurrence (two to four months after treatment), and 22 patients died. We comment on major differences between the protocol described and other immunotherapy protocols.

  19. Histopathology of malignant salivary gland tumours.

    PubMed

    Seifert, G

    1992-07-01

    This report is based upon the Salivary Gland Register in Hamburg and on the second revised edition of the WHO Histological Typing of Salivary Gland Tumours. The group of malignant salivary gland tumours contains carcinomas, malignant non-epithelial tumours, malignant lymphomas and secondary tumours. The various carcinomas are classified in a continuous separate listing because the different types are distinguished not only by histopathology, but also by differences in prognosis and treatment. The term "tumour" is replaced by "carcinoma" in two entities: acinic cell carcinoma and mucoepidermoid carcinoma. New entities are: polymorphous low-grade adenocarcinoma, basal cell adenocarcinoma, salivary duct carcinoma and malignant myoepithelioma. Carcinoma in pleomorphic adenoma can be distinguished as non-invasive and invasive carcinoma, and carcinosarcoma. Malignant non-epithelial tumours are mostly malignant fibrous histiocytoma, malignant schwannoma and rhabdomyosarcoma. The large majority of malignant lymphomas are non-Hodgkin-lymphomas with high differentiation. Many lymphomas are associated with chronic immunosialadenitis (Sjögren's syndrome). Secondary tumours are mostly metastases from primary squamous cell carcinomas or from melanomas of the skin (head and neck area). Haematogeneous metastases are very rare (mainly from lung, kidney or breast).

  20. Malignancy in solitary solid cold thyroid nodule.

    PubMed

    Fariduddin, M; Amin, A H; Ahmed, M U; Karim, S S; Moslem, F; Kamal, M

    2012-04-01

    Solitary thyroid nodule is a common endocrine problem. The main concern of solitary thyroid nodule lies in excluding the malignancy & to operate on as few patients as possible. Other than history & clinical examination, hormone assessment, USG of thyroid gland, radionuclide scan & FNAC were used to differentiate malignant nodules from benign ones. In this study 127 cases with solitary thyroid nodule of all age group & both sexes were included from Endocrine & Thyroid clinic of BSMMU. They were clinically & biochemically euthyroid & had cold nodule on radionuclide scan. USG & FNAC were done & subsequently they underwent surgical procedure. On the basis of postoperative histopathological report the specimens were divided into benign & malignant groups. All the nodules were cold among which 104 were solid & 23 were mixed in consistency. Of the 104 solid cold nodules histopathology revealed 36(34.6%) malignant & 68(65.4%) benign cases. From the 23 mixed cold solitary nodule 5(21.7%) appeared malignant & 18(78.3%) were benign. So malignancy was higher in solid cold group than the mixed cold one but this was not statistically significant (p=0.673). FNAC was done & it revealed that 83(65.5%) cases were benign, 10(7.8%) cases were suspicious & 34(26.7%) were malignant. Finally histopathology showed 41(32.3%) cases were positive & 86(67.7%) cases were negative for malignancy.

  1. Malignant Mesothelioma—Health Professional Version

    Cancer.gov

    Epithelial mesothelioma is the most common type of malignant mesothelioma, which forms in the cells that line organs. The other types begin in spindle-shaped cells called sarcomatoid cells or are a mixture of both cell types. Find evidence-based information on malignant mesothelioma treatment.

  2. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer-Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

    PubMed

    Hayashi, Naoya; Ogawa, Yasuhiro; Kubota, Kei; Okino, Kazuhiro; Akima, Ryo; Morita-Tokuhiro, Shiho; Tsuzuki, Akira; Yaogawa, Shin; Nishioka, Akihito; Miyamura, Mitsuhiko

    2016-04-01

    We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of -457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method.

  3. Development of a Hypoxic Radiosensitizer-Prodrug Liposome Delivery DNA Repair Inhibitor Dbait Combination with Radiotherapy for Glioma Therapy.

    PubMed

    Liu, Hongmei; Cai, Yifan; Zhang, Yafei; Xie, Yandong; Qiu, Hui; Hua, Lei; Liu, Xuejiao; Li, Yuling; Lu, Jun; Zhang, Longzhen; Yu, Rutong

    2017-06-01

    Gliomas are highly radioresistant tumors, mainly due to hypoxia in the core region of the gliomas and efficient DNA double-strand break repair. However, the design of a radiosensitizer incorporating the two above mechanisms is difficult and has rarely been reported. Thus, this study develops a hypoxic radiosensitizer-prodrug liposome (MLP) to deliver the DNA repair inhibitor Dbait (MLP/Dbait) to achieve the simultaneous entry of radiosensitizers with two different mechanisms into the glioma. MLP/Dbait effectively sensitizes glioma cells to X-ray radiotherapy (RT). Histological and microscopic examinations of dissected brain tissue confirm that MLP effectively delivers Dbait into the glioma. Furthermore, the combination of MLP/Dbait with RT significantly inhibits growth of the glioma, as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a Dbait delivery system to enhance the effect of RT on glioma, owing to the synergistic effects of the two different radiosensitizers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Radiosensitization of Aspergillus niger and Penicillium chrysogenum using basil essential oil and ionizing radiation for food decontamination.

    USDA-ARS?s Scientific Manuscript database

    The Minimum Inhibitory Concentration (MIC) of basil oil, was determined for two pathogenic fungi of rice, Aspergillus niger and Penicillium chrysogenum. The antifungal activity of the basil oil in combination with ionising radiation was then investigated to determine if basil oil caused radiosensit...

  5. MiR-26a enhances the radiosensitivity of glioblastoma multiforme cells through targeting of ataxia–telangiectasia mutated

    SciTech Connect

    Guo, Pin; Lan, Jin; Ge, Jianwei

    Glioblastoma multiforme (GBM) is notoriously resistant to radiation, and consequently, new radiosensitizers are urgently needed. MicroRNAs are a class of endogenous gene modulators with emerging roles in DNA repair. We found that overexpression of miR-26a can enhance radiosensitivity and reduce the DNA repair ability of U87 cells. However, knockdown miR-26a in U87 cells could act the converse manner. Mechanistically, this effect is mediated by direct targeting of miR-26a to the 3′UTR of ATM, which leads to reduced ATM levels and consequent inhibition of the homologous recombination repair pathway. These results suggest that miR-26a may act as a new radiosensitizer ofmore » GBM. - Highlights: ●miR-26a directly target ATM in GBM cells. ●miR-26a enhances the radiosensitivity of GBM cells. ●miR-26a could reduce the DNA repair capacity of GBM cells.« less

  6. Prediction of cellular radiosensitivity from DNA damage induced by gamma-rays and carbon ion irradiation in canine tumor cells.

    PubMed

    Wada, Seiichi; Van Khoa, Tran; Kobayashi, Yasuhiko; Funayama, Tomoo; Ogihara, Kikumi; Ueno, Shunji; Ito, Nobuhiko

    2005-11-01

    Diseases of companion animals are shifting from infectious diseases to neoplasms (cancer), and since radiation therapy is one of the effective choices available for cancer treatment, the application of radiotherapy in veterinary medicine is likely to increase. However tumor tissues have different radiosensitivities, and therefore it is important to determine the intrinsic radiosensitivity of tumors in individual patients in advance of radiotherapy. We have studied the relationship between the surviving cell fraction measured by a clonogenic assay and DNA double strand breaks detected by a comet assay under neutral conditions in three canine tumor cell lines, after gamma-ray and carbon ion irradiation. In all the cell lines, cell death assessed by the clonogenic assay was much higher following irradiation with carbon ions than with gamma-rays. The initial and residual (4 hr) DNA damage due to gamma-ray and carbon ion irradiation were higher in a radiosensitive cell line than in a radioresistant cell line. The surviving cell fraction at 2 Gy (SF2) showed a tendency for correlation with both the initial and residual DNA damage. In particular, the residual damage per Gy was significantly correlated with SF2, regardless of the type of radiation. This indicates that cellular radiosensitivity can be predicted by detection of radiation-induced residual DNA damage.

  7. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2.

    PubMed

    Orth, M; Unger, K; Schoetz, U; Belka, C; Lauber, K

    2018-01-04

    Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

  8. Malignant Degeneration of Gastric Ulcer

    PubMed Central

    Finsterer, H.

    1939-01-01

    Malignant degeneration is the most serious complication of gastric ulcer. Its recognition is difficult both in the early stage and in advanced cases in which only the evidence of a previous ulcer-cavity, and the radiating folds of the mucous membrane indicate progressive development of carcinoma from an original ulcer. It is impossible to say how often gastric ulcer becomes malignant; one can only state the frequency of ulcer-carcinoma, found in gastric resections. One hundred and forty-one personal cases of ulcer-carcinoma are recorded, and are divided into three groups. Group I: 41 which were diagnosed clinically and at operation as cases of ulcer, but in which histological examination showed incipient cancer. Group II: 55 diagnosed clinically as cases of ulcer, but in which a diagnosis of ulcer-carcinoma was made during operation and afterwards histologically confirmed. Group III: 45 diagnosed both clinically and macroscopically (from the typical folding of the mucous membrane) as cases of ulcer-cancer, in which the cancer had entirely overgrown the ulcer. Therefore in the series of 532 resections for gastric ulcer the frequency of ulcer-carcinoma was 20.9%, or 15.2% if the third group is omitted. In a series of 718 resections for gastric cancer, the frequency of ulcer-carcinoma was 19.6% (or 14.2% if the third group is omitted). The mortality in simple two-third resection of the stomach is low (four deaths in 99 cases = 4%). When the pancreas, liver, colon, or œsophagus, is involved, the resection mortality is high (14 deaths in 42 cases = 33.3%), but even in these cases the operation is justifiable because permanent cures were achieved in a number of cases. The prognosis in cases of ulcer-cancer is very grave. In many cases, judging from the author's own experience, patients suffering from incipient ulcer-cancer—only histologically diagnosed as cancer—die from liver metastases, in spite of radical resection. It will thus be seen that the end-results of

  9. The XPO1 inhibitor Selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown in vitro and in vivo.

    PubMed

    Wahba, Amy; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J

    2018-06-04

    Analysis of the radiation-induced translatome of glioblastoma stem-like cells (GSCs) identified an interacting network in which XPO1 serves as a major hub protein. To determine whether this nuclear export protein provides a target for radiosensitization, we defined the effects of the clinically relevant XPO1 inhibitor Selinexor on the radiosensitivity of glioblastoma cells. As determined by clonogenic survival analysis, Selinexor enhanced the radiosensitivity of GSCs but not normal fibroblast cell lines. Based on γH2AX foci and neutral comet analyses, Selinexor inhibited the repair of radiation-induced DNA double strand breaks in GSCs suggesting that the Selinexor-induced radiosensitization is mediated by an inhibition of DNA repair. Consistent with a role for XPO1 in the nuclear to cytoplasm export of rRNA, Selinexor reduced 5S and 18S rRNA nuclear export in GSCs, which was accompanied by a decrease in gene translation efficiency, as determined from polysome profiles, as well as in protein synthesis. In contrast, rRNA nuclear export and protein synthesis were not reduced in normal cells treated with Selinexor. Orthotopic xenografts initiated from a GSC line were then used to define the in vivo response to Selinexor and radiation. Treatment of mice bearing orthotopic xenografts with Selinexor decreased tumor translational efficiency as determined from polysome profiles. Although Selinexor treatment alone had no effect on the survival of mice with brain tumors, it significantly enhanced the radiation-induced prolongation of survival. These results indicate that Selinexor enhances the radiosensitivity of glioblastoma cells and suggest that this effect involves a global inhibition of gene translation. Copyright ©2018, American Association for Cancer Research.

  10. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis

    SciTech Connect

    Bigdeli, Bahareh, E-mail: bhr.bigdeli@ut.ac.ir

    Introduction: Radiotherapy is a potent treatment against breast cancer, which is the most commonly diagnosed cancer among women. However, the emergence of radioresistance due to increased DNA repair leads to radiotherapeutic failure. Applying polyphenols combined with radiation is a more promising method leading to better survival. Enterolactone, a phytoestrogenic polyphenol, has been reported to inhibit an important radioresistance signaling pathway, therefore we conjectured that enterolactone could enhance radiosensitivity in breast cancer. To assess this hypothesis, radiation response of enterolactone treated MDA-MB-231 and T47D cell lines and corresponding cellular mechanisms were investigated. Methods: Cytotoxicity of enterolactone was measured via MTT assay.more » Cells were treated with enterolactone before X-irradiation, and clonogenic assay was used to evaluate radiosensitivity. Cell cycle distribution and apoptosis were measured by flow cytometric analysis. In addition, DNA damages and corresponding repair, chromosomal damages, and aberrations were assessed by comet, micronucleus, and cytogenetic assays, respectively. Results: Enterolactone decreased the viability of cells in a concentration- and time dependent manner. Enterolactone significantly enhanced radiosensitivity of cells by abrogating G2/M arrest, impairing DNA repair, and increasing radiation-induced apoptosis. Furthermore, increased chromosomal damages and aberrations were detected in cells treated with enterolactone combined with X-rays than X-ray alone. These effects were more prominent in T47D than MDA-MB-231 cells. Discussion: To our knowledge, this is the first report that enterolactone is a novel radiosensitizer for breast cancer irrespective of estrogen receptor status. Authors propose enterolactone as a candidate for combined therapy to decrease the radiation dose delivered to patients and subsequent side effects. - Highlights: • Enterolactone is proposed to be a novel

  11. What's New in Malignant Mesothelioma Research and Treatment?

    MedlinePlus

    ... and Treatment? Malignant Mesothelioma About Malignant Mesothelioma What’s New in Malignant Mesothelioma Research and Treatment? There is ... that has shown promise in some studies. Other new drugs have different targets. For example, some new ...

  12. Changing presentation of cutaneous malignant melanoma.

    PubMed

    Klit, Anders; Lassen, Cecilie Brandt; Olsen, Caroline Holkmann; Lock-Andersen, Jørgen

    2015-10-01

    The incidence of cutaneous malignant melanoma is rapidly increasing in Denmark like in other Northern and Western European countries. Our objective was to investigate the characteristics of current patients suffering from cutaneous malignant melanoma. We evaluated patient and tumour characteristics in a cross-sectional study based on data from the Danish Melanoma Register. We included all patients diagnosed with cutaneous malignant melanoma in Healthcare Region Zealand in 2012 and 2013. We identified 520 patients with invasive cutaneous malignant melanoma. More females than males suffered from cutaneous malignant melanoma. Furthermore, females were younger than males, and the anatomical distribution of malignant melanoma varied between the genders. Outcome of sentinel lymph node biopsy was associated with tumour thickness. When comparing findings in our study with earlier Danish studies, we see a trend towards an increase in age at diagnosis. Furthermore, tumour thickness is decreasing and the topical distribution of cutaneous malignant melanoma in females changes towards a male pattern. none. The study has been approved by the Danish National Data Protection Agency.

  13. Metastatic malignant blue nevus: a case report.

    PubMed

    Ozgür, F; Akyürek, M; Kayikçioğlu, A; Barişta, I; Gököz, A

    1997-10-01

    This report presents a 63-year-old Caucasian woman with a malignant blue nevus, which is an extremely rare form of melanoma originating from or associated with a preexisting blue nevus. The background blue nevus on the left upper arm, which had been present for 5 to 6 years, increased in size and darkened in color for 3 months prior to histological diagnosis of malignant blue nevus. Although the tumor looked much like a nodular melanoma clinically, the diagnosis of malignant blue nevus was established histologically. The patient had a poor outcome due to metastatic spread of the tumor to the visceral organs 1 year following the initial excision of the tumor. To distinguish this rare tumor from other melanocytic lesions, strict histological criteria are needed to make the diagnosis of malignant blue nevus. Differential diagnosis includes cellular blue nevus, atypical cellular blue nevus, primary malignant melanoma, and metastatic melanoma to the dermis. Malignant blue nevus is most commonly seen on the scalp. The tumor has an aggressive behavior and metastasizes in the majority of patients. This paper describes the second reported case of malignant blue nevus involving the upper arm. Clinical and histological features of this uncommon tumor are presented, along with a review of the literature.

  14. Parasitic infections associated with malignancy and leprosy.

    PubMed

    Azab, M E; Mohamed, N H; Salem, S A; Safar, E H; Bebars, M A; Sabry, N M; Mohamed, M S

    1992-04-01

    Results of parasitic infections, as revealed by urine and stool examination was significant (P less than 0.05) in 43.3% of patients suffering from different malignant diseases and non significant (P greater than 0.05) in 29.3% of leprosy patients compared to 22% in control subjects. The most prevalent parasites were E. histolytica and G. lamblia. Cryptosporidium occysts were not detected. By stool examination and culture, S. stercoralis larvae were detected only in the malignancy group. The most common parasites occurring concomitantly were A. duodenale and S. stercoralis. By the IFAT, strongyloidiasis gave significantly higher positive results in the malignancy group than in the leprosy and control groups. IFAT for toxocariasis, showed highly significant positivity in the leprosy group and significantly positivity in the malignancy group. For toxoplasmosis, it showed highly significant positive results in both leprosy and malignancy groups. Eosinophilia was significantly more prominent among malignancy patients and insignificant among those with leprosy. Parasitic infection detected by urine and stool examination among patients with eosinophilia was found in 76% of the malignancy patients and in 66.7% of the leprosy patients.

  15. Impression cytology diagnosis of ulcerative eyelid malignancy.

    PubMed

    Sen, S; Lyngdoh, A D; Pushker, N; Meel, R; Bajaj, M S; Chawla, B

    2015-02-01

    The utility of impression cytology in ocular diseases has predominantly been restricted to the diagnosis of dry eye, limbal stem cell deficiency and conjunctival neoplasias. Its role in malignant eyelid lesions remains largely unexplored. Although scrape cytology is more popular for cutaneous lesions, impression cytology, being non-traumatic, has an advantage in small and delicate areas such as the eyelid. The present study has been designed to evaluate its role in the diagnosis and management of malignant eyelid lesions. Thirty-two histopathologically proven malignant eyelid lesions diagnosed over a 2-year period, including 13 basal cell carcinomas, 11 sebaceous carcinomas, four squamous cell carcinomas, two malignant melanomas and two poorly differentiated carcinomas, formed the study group. The results of impression cytology were compared with those of histopathology in the study group and with an age- and sex-matched group of benign cases as controls. The sensitivity of impression cytology was 84% (27/32) for the diagnosis of malignancy and 28% (9/32) for categorization of the type of malignancy. Impression cytology is a simple, useful, non-invasive technique for the detection of malignant ulcerative eyelid lesions. It is especially useful as a follow-up technique for the detection of recurrences. © 2014 John Wiley & Sons Ltd.

  16. [About the signs of malignant pheochromocytoma].

    PubMed

    Simonenko, V B; Makanin, M A; Dulin, P A; Vasilchenko, M I; Lesovik, V S

    2012-01-01

    Morphological criteria for malignant pheochromocytoma remain to be developed According to the WHO recommendations, the sole absolute criteria is the presence of metastases in the organs normally containing no chromaffin tissue. Such signs as cellular and nuclear polymorphism, mytotic activity, vascular invasion, capsular ingrowth are not sufficient to describe a pheochromocytoma as malignant. It is equally dfficult to differentiate between malignant and benign tumours based on histological data since histologically mature neoplasms can produce metastases. Based on the results of original studies, the authors believe that such histological features as vascular and capsular invasion do not necessarily suggest unfavourable prognosis. Therefore, the conclusion of malignancy based on such features can not be regarded as absolute. Probably such neoplasms should be called "pheochromocytomas with morphological signs of malignant growths". They should be referred to the tumours with uncertain malignancy potential based on the known discrepancy between morphological structure and biological activity of neoplasms. Comparative studies of clinical and morphological features of pheochromocytomas showed that their histological type (alveolar; solid, dyscomplexed, trabecular) and morphological signs of malignant growth influence both the clinical picture and arterial hypertension. There are no significant relationship between the above morphological signs, timour mass and clinical manifestations of pheochromocytomas.

  17. P16.29 Malignant craniopharyngioma

    PubMed Central

    Unal, E.; Kilic, K.; Ozdemir, N.; Gunver, F.; Isik, S.; Can, S.

    2017-01-01

    Abstract Introduction: Malignant transformation of craniopharyngioma has rarely been described. In this article, we report a case of 28th malignant craniopharyngioma ever mentioned in English literature. Materials and Methods: We performed a PUBMED, HUBMED, BAU Library Database and Ovid search on malignant craniopharyngiomas and identified 27 reported cases. CASE DESCRIPTION: 44 years old female patient was diagnosed with craniopharyngioma two years ago and underwent surgical resection of a typical craniopharyngioma, the histopathological result was adamantinomatous craniopharyngioma of Grade I. There was no malignancy. One year ago cavernous sinus invasion has been detected and gamma knife irradiation has been made. At admission she was blind in the right eye for the last six months and the vision was diminished in the left eye for a month. The MRI showed that nasal cavity was full of tumor, that the clivus was almost completely destructed and that orbita and maxillary sinus were also invaded. Firstly the ENT surgeons debulked the tumor via transmaxillary route and then the transcranial approach allowed only a subtotal removal due to a profuse bleeding. The histopatological examination showed malignant tumoral infiltration rich in cells with many mitoses. The patient died two years later. CONCLUSION: The relevant literature of malignant craniopharyngioma is reviewed and discussed. The surgeon must be aware that total removal of a malignant craniopharyngioma can be hazardous because of intractable bleedings occurring during surgery.

  18. [Diode laser in "Malignant Glaucoma" treatment].

    PubMed

    Bresson Dumont, H; Ballereau, L; Lehoux, A; Santiago, P-Y

    2006-05-01

    Malignant glaucoma remains one of the most dramatic complications of ocular surgery. It can occur after glaucoma surgery but also after iridotomy, capsulotomy, or cataract extraction. However, the mechanisms remain unclear. to evaluate diode laser cyclodestruction as a complementary treatment in refractory malignant glaucoma. Seven women with malignant glaucoma with onset several months before (mean, 43 months; range, 12-96 months), in whom shallow anterior chamber and high IOP (25 mmHg +/- 5.5 treated with 2.86 +/- 0.9 topical and systemic medications) persisted despite prior surgical treatment (mean, 2; range, 1-5). Controlateral eyes had hyperopia (mean, +3.7 D, range, +1 to +6), five had shallow anterior chamber and high IOP. UBM detected plateau iris in four women. Seven eyes with malignant glaucoma and three controlateral eyes underwent cyclodestruction with diode laser (Viridis Twin Quantel Medical, laser, 810 nm), 22 burns around 270 degrees , 2 mm from the limbus for glaucomatous eyes and 15 inferior burns for controlateral eyes. Resolution of malignant glaucoma, with lower pressure (mean, 35%; range, 10%-70%), lower levels of medications (64%), final IOP at 13.2 mmHg (+/- 4.7), and deepening anterior chamber was achieved in all cases (mean follow-up, 18 months; range, 12-22). Cycloplegic topical treatment was stopped in 70% of cases. Diode laser cyclodestruction can help to resolve refractory malignant glaucoma. Larger UBM studies could help us to better understand the mechanisms of malignant glaucoma.

  19. Improved radioimmunotherapy of hematologic malignancies

    SciTech Connect

    Press, O.W.

    This research project proposes to develop novel new approaches of improving the radioimmunodetection and radioimmunotherapy of malignancies by augmenting retention of radioimmunoconjugates by tumor cells. The approaches shown to be effective in these laboratory experiments will subsequently be incorporated into out ongoing clinical trials in patients. Specific project objectives include: to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells; To examine the effects of lysosomotropic amines (e.g. chloroquine, amantadine), carboxylic ionophores (monensin, nigericin), and thioamides (propylthiouracil), on the retention of radiolabeled MoAbs by tumor cells;more » to examine the impact of newer radioiodination techniques (tyramine cellobiose, paraiodobenzoyl) on the metabolic degradation of radioiodinated antibodies; to compare the endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with different radionuclides ({sup 131}Iodine, {sup 111}Indium, {sup 90}Yttrium, {sup 99m}Technetium, {sup 186}Rhenium); and to examine the utility of radioimmunoconjugates targeting oncogene products for the radioimmunotherapy and radioimmunoscintigraphy of cancer.« less

  20. Pleurodesis for malignant pleural effusions.

    PubMed

    Shaw, P; Agarwal, R

    2004-01-01

    Approximately half of all patients with metastatic cancer develop a malignant pleural effusion which is likely to lead to a significant reduction in quality of life secondary to symptoms such as dyspnoea and cough. The aim of pleurodesis in these patients is to prevent re-accumulation of the effusion and thereby of symptoms, and avoid the need for repeated hospitalization for thoracocentesis. Numerous clinical studies have been performed to try to determine the optimal pleurodesis strategy, and synthesis of the available evidence should facilitate this. The aims of this review were to ascertain the optimal technique of pleurodesis in cases of malignant pleural effusion; to confirm the need for a sclerosant; and to clarify which, if any, of the sclerosants is the most effective. The Cochrane Central Register of Controlled Trials was searched for studies on 'pleurodesis'. Studies for inclusion were also identified from MEDLINE (1980 to June 2002) and EMBASE (1980 to May 2002). No language restriction was applied. RCTs of adults subjects undergoing pleurodesis for pleural effusion in the context of metastatic malignancy (or a malignant process leading to pleural effusion) were included. Two reviewers independently selected studies for inclusion in the review, and extracted data using a standard data collection form. Primary outcome measures sought were effectiveness of pleurodesis as defined by freedom from recurrence of effusions, and mortality after pleurodesis. Secondary outcomes were adverse events due to pleurodesis. Dichotomous data were meta-analysed using a fixed effect model and expressed as relative risk. The number-needed-to-treat (NNT) was calculated for pleurodesis efficacy. In addition, for adverse events, the overall percentage of patients across studies exhibiting a particular adverse effect such as fever, pain, or gastrointestinal symptoms was calculated. A total of 36 RCTs with 1499 subjects were eligible for meta-analysis. The use of sclerosants

  1. Malignant presentation of uterine lymphangioleiomyomatosis.

    PubMed

    Szpurek, Dariusz; Szubert, Sebastian; Zielinski, Pawel; Frankowski, Andrzej; Sajdak, Stefan; Moszynski, Rafal

    2015-10-01

    The main aim of this case report was to present the method of diagnosis, management, and the 12-year-follow-up of a patient diagnosed with primary uterine lymphangioleiomyomatosis (LAM). A 47-year-old woman was admitted to the Department of Thoracosurgery due to pulmonary lesions suspected to be metastatic. The potential primary site of the neoplasm was not identified by previous imaging studies and specialist counseling. The patient had a history of total abdominal hysterectomy without ovaries due to a uterine tumor recognized as cellular leiomyoma and left salpingo-oophorectomy due to a solid ovarian tumor also recognized as leiomyoma. She had previously undergone the removal of a left kidney angiomyolipoma. After histopathological examination of the pulmonary lesions and repeated evaluation of the ovarian and uterine tumors, the diagnosis of primary uterine LAM with metastases to the ovary and the lungs was established. Although new metastatic lesions occurred, the patient remained in good condition during the 12-year-follow-up. The history of our patient and review of the literature suggest that although uterine LAM presents malignant features (i.e., metastasis), the disease is long lasting and the patient can be in good condition for a number of years. Copyright © 2015. Published by Elsevier B.V.

  2. Novel immunotherapies for hematological malignancies

    PubMed Central

    Nelson, Michelle H.; Paulos, Chrystal M.

    2014-01-01

    Summary The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise the state of the art in immunotherapy with a focus on strategies that exploit the patient’s immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematological malignancies, including (i) conventional monoclonal therapies like rituximab, (ii) engineered monoclonal antibodies called bispecific T cell engagers (BiTEs), (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4 and IDO), and (iv) adoptive cell transfer (ACT) therapy with T cells engineered to express chimeric antigen receptors (CARs) or T-cell receptors (TCRs). We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients. PMID:25510273

  3. A preclinical model of CD38-pretargeted radioimmunotherapy for plasma cell malignancies.

    PubMed

    Green, Damian J; Orgun, Nural N; Jones, Jon C; Hylarides, Mark D; Pagel, John M; Hamlin, Donald K; Wilbur, D S; Lin, Yukang; Fisher, Darrell R; Kenoyer, Aimee L; Frayo, Shani L; Gopal, Ajay K; Orozco, Johnnie J; Gooley, Theodore A; Wood, Brent L; Bensinger, William I; Press, Oliver W

    2014-02-15

    The vast majority of patients with plasma cell neoplasms die of progressive disease despite high response rates to novel agents. Malignant plasma cells are very radiosensitive, but the potential role of radioimmunotherapy (RIT) in the management of plasmacytomas and multiple myeloma has undergone only limited evaluation. Furthermore, CD38 has not been explored as a RIT target despite its uniform high expression on malignant plasma cells. In this report, both conventional RIT (directly radiolabeled antibody) and streptavidin-biotin pretargeted RIT (PRIT) directed against the CD38 antigen were assessed as approaches to deliver radiation doses sufficient for multiple myeloma cell eradication. PRIT demonstrated biodistributions that were markedly superior to conventional RIT. Tumor-to-blood ratios as high as 638:1 were seen 24 hours after PRIT, whereas ratios never exceeded 1:1 with conventional RIT. (90)Yttrium absorbed dose estimates demonstrated excellent target-to-normal organ ratios (6:1 for the kidney, lung, liver; 10:1 for the whole body). Objective remissions were observed within 7 days in 100% of the mice treated with doses ranging from 800 to 1,200 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin, including 100% complete remissions (no detectable tumor in treated mice compared with tumors that were 2,982% ± 2,834% of initial tumor volume in control animals) by day 23. Furthermore, 100% of animals bearing NCI-H929 multiple myeloma tumor xenografts treated with 800 μCi of anti-CD38 pretargeted (90)Y-DOTA-biotin achieved long-term myeloma-free survival (>70 days) compared with none (0%) of the control animals. ©2013 AACR.

  4. Radiotherapy of oral malignant melanomas in dogs.

    PubMed

    Blackwood, L; Dobson, J M

    1996-07-01

    To evaluate response to radiotherapy in dogs with oral malignant melanomas. Clinical trial. 36 dogs with histologically confirmed oral malignant melanomas. The prescribed radiation dose was 36 Gy given in 4 fractions of 9 Gy at 7-day intervals. The primary radiation source was a linear accelerator. In 25 of 36 dogs, complete remission was achieved, and in 9 dogs, partial remission was achieved. Recurrence of the primary tumor was the cause of euthanasia of 4 dogs. Twenty-one dogs were euthanatized because of metastasis. Radiotherapy was an effective palliative treatment for the primary tumor in dogs with oral malignant melanomas. However, rapid development of metastatic disease remained a major challenge.

  5. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles.

    PubMed

    Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry

    This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.

  6. Monte Carlo simulations guided by imaging to predict the in vitro ranking of radiosensitizing nanoparticles

    PubMed Central

    Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry

    2016-01-01

    This article addresses the in silico–in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy. PMID:27920524

  7. Immunosuppression by hypoxic cell radiosensitizers: a phenomenon of potential clinical importance

    SciTech Connect

    Rockwell, S.; Kapp, D.S.

    1982-06-01

    The nitroimidazoles metronidazole, misonidazol, and desmethyl misonidazole are currently undergoing clinical trials as possible adjuncts to radiotherapy. Ongoing clinical trials are evaluating the effectiveness of these agents and also documenting the pharmacokinetics and toxicities of radiosensitizing doses of these drugs in man. A variety of toxic effects have been noted in man, including anorexia, nausea and vomiting, peripheral neuropathy, central nervous system symptoms, ototoxicity, allergy, and fear. Laboratory studies have also suggested that these agents have potential to be mutagenic, carcinogenic, and teratogenic. In the editorial presented, the author attempts to draw attention to an additional toxic effect of nitroimidazolesmore » - the inhibition of cell-mediated immune responses. (JMT)« less

  8. 6-shogaol induces apoptosis and enhances radiosensitivity in head and neck squamous cell carcinoma cell lines.

    PubMed

    Kotowski, Ulana; Kadletz, Lorenz; Schneider, Sven; Foki, Elisabeth; Schmid, Rainer; Seemann, Rudolf; Thurnher, Dietmar; Heiduschka, Gregor

    2018-02-01

    Ginger (Zingiber officinale Roscoe) is used for a wide array of conditions in traditional medicine in Asia, but little is known about the effect on head and neck cancer. In this study, the effect of two major pharmacologically active compounds of ginger, 6-gingerol and 6-shogaol, were studied on head and neck cancer cell lines. Furthermore, experiments in combination with established treatment methods for head and neck cancer were performed. Proliferation assays showed a dose-dependent reduction of cell viability. Flow cytometry analysis revealed the induction of apoptosis. Western blot analysis indicated that the antiapoptotic protein survivin was suppressed after treatment. Although a combination of 6-shogaol with cisplatin exhibited no synergistic effect, the combination with irradiation showed a synergistic reduction of clonogenic survival. In conclusion, ginger compounds have many noteworthy effects on head and neck cancer cell lines. In particular, the enhancement of radiosensitivity is remarkable. Copyright © 2017 John Wiley & Sons, Ltd.

  9. The radiosensitive effect of apatinib for hepatocellular carcinoma patient with big paraspinal metastasis

    PubMed Central

    Zhu, Hong; Zhao, Yaqin; Wang, Xin

    2018-01-01

    Abstract Rationale: Hepatocellular carcinoma (HCC) is a highly invasive cancer associated with great mortality rates. The prognosis of advanced HCC is very poor. Patient concerns: Here, we report a HCC patient with a big paraspinal metastasis with 10 cm in diameter who failed the treatment of sorafenib. Diagnoses: Sorafenib refractory HCC with big paraspinal metastasis. Interventions: The concurrent treatment of apatinib with stereotactic body radiotherapy (SBRT). Outcomes: The paraspinal metastasis with 10 cm in diameter showed nearly complete response. Lessons: We think that the apatinib may be a good choice for HCC and it may function as a radiosensitizer of HCC. However, it warrants further investigation in the future prospective clinical studies. PMID:29480860

  10. Bacterial radiosensitization by using radiation processing in combination with essential oil: Mechanism of action

    NASA Astrophysics Data System (ADS)

    Lacroix, Monique; Caillet, Stéphane; Shareck, Francois

    2009-07-01

    Spice extracts under the form of essential oils were tested for their efficiency to increase the relative radiosensitivity of Listeria monocytogenes and Escherichia coli O157H7 in culture media. The two pathogens were treated by gamma-irradiation alone or in combination with oregano essential oil to evaluate their mechanism of action. The membrane murein composition, and the intracellular and extracellular concentration of ATP was determined. The bacterial strains were treated with two irradiation doses: 1.2 kGy to induce cell damage and 3.5 kGy to cause cell death for L. monocytogenes. A dose of 0.4 kGy to induce cell damages, 1.1 kGy to obtain viable but nonculturable (VBNC) state and 1.3 kGy to obtain a lethal dose was also applied on E. coli O157H7. Oregano essential oil was used at 0.020% and 0.025% (w/v), which is the minimum inhibitory concentration (MIC) for L. monocytogenes. For E. coli O157H7, a concentration of 0.006% and 0.025% (w/v) which is the minimum inhibitory concentration was applied. The use of essential oils in combination with irradiation has permitted an increase of the bacterial radiosensitization by more than 3.1 times. All treatments had also a significant effect ( p⩽0.05) on the murein composition, although some muropeptides did not seem to be affected by the treatment. Each treatment influenced differently the relative percentage and number of muropeptides. There was a significant ( p⩽0.05) correlation between the reduction of intracellular ATP and increase in extracellular ATP following treatment of the cells with oregano oil. The reduction of intracellular ATP was even more important when essential oil was combined with irradiation, but irradiation of L. monocytogenes alone induced a significant decrease ( p⩽0.05) of the internal ATP without affecting the external ATP.

  11. Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells.

    PubMed

    Hahnel, Antje; Wichmann, Henri; Kappler, Matthias; Kotzsch, Matthias; Vordermark, Dirk; Taubert, Helge; Bache, Matthias

    2010-09-17

    Osteopontin (OPN) is a secreted glycophosphoprotein that is overexpressed in various tumors, and high levels of OPN have been associated with poor prognosis of cancer patients. In patients with head and neck cancer, high OPN plasma levels have been associated with poor prognosis following radiotherapy. Since little is known about the relationship between OPN expression and radiosensitivity, we investigated the cellular and radiation induced effects of OPN siRNA in human MDA-MB-231 breast cancer cells. MDA-MB-231 cells were transfected with OPN-specific siRNAs and irradiated after 24 h. To verify the OPN knockdown, we measured the OPN mRNA and protein levels using qRT-PCR and Western blot analysis. Furthermore, the functional effects of OPN siRNAs were studied by assays to assess clonogenic survival, migration and induction of apoptosis. Treatment of MDA-MB-231 cells with OPN siRNAs resulted in an 80% decrease in the OPN mRNA level and in a decrease in extracellular OPN protein level. Transfection reduced clonogenic survival to 42% (p = 0.008), decreased the migration rate to 60% (p = 0.15) and increased apoptosis from 0.3% to 1.7% (p = 0.04). Combination of OPN siRNA and irradiation at 2 Gy resulted in a further reduction of clonogenic survival to 27% (p < 0.001), decreased the migration rate to 40% (p = 0.03) and increased apoptosis to 4% (p < 0.005). Furthermore, OPN knockdown caused a weak radiosensitization with an enhancement factor of 1.5 at 6 Gy (p = 0.09) and a dose modifying factor (DMF10) of 1.1. Our results suggest that an OPN knockdown improves radiobiological effects in MDA-MB-231 cells. Therefore, OPN seems to be an attractive target to improve the effectiveness of radiotherapy.

  12. DOUGLAS LEA MEMORIAL LECTURE: From targets to genes: a brief history of radiosensitivity

    NASA Astrophysics Data System (ADS)

    Steel, G. Gordon

    1996-02-01

    The biological work of Douglas Lea spanned the period from 1934 to his early death in 1947, and during this short period he made important contributions to the theory of radiation action. He interpreted experimental data relating to the effects of radiation on viruses, bacteria, bean roots, etc in terms of the inactivation of discrete targets, which he identified with cellular genes. He thus laid the foundation of much subsequent research. It is now well recognized that mammalian cells differ substantially in radiosensitivity, especially in the low-dose region of the survival curve. The dependence of radiosensitivity on dose rate has been widely studied; this has practical significance for clinical radiotherapy as well as mechanistic implications. Since Lea's time there have been a number of efforts to describe models that can relate cell killing to radiation dose, dose rate, and track structure. So far these have not led to a comprehensive and widely accepted picture. Microdosimetric considerations lead to the concept of differing severity of lesions induced in DNA. Much is known about the sequence of processes that subsequently lead to cell inactivation: this can be divided into phases of induction, processing, and manifestation. Chromosomal events are currently attracting much attention, as they did in Lea's time. Considerable progress has also been made in identifying genes that control the repair of radiation damage. It has been found that mutation is frequently associated with the loss of a large segment of the genome around the damage site and this will have important implications for interactive processes between particle tracks.

  13. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  14. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  15. Autophagy inhibition enhances radiosensitivity of Eca-109 cells via the mitochondrial apoptosis pathway

    PubMed Central

    Tao, Hua; Qian, Pudong; Lu, Jincheng; Guo, Yesong; Zhu, Huanfeng; Wang, Feijiang

    2018-01-01

    Autophagy inhibition is crucial for the improvement of the efficacy of radiotherapy in cancer. The aim of the present study was to determine the potential therapeutic value of autophagy and its correlation with mitochondria in human esophageal carcinoma cells following treatment with ionizing radiation (IR). Autophagy in Eca-109 cells was induced under poor nutrient conditions. The formation of autophagic vacuoles was monitored using electron microscopy. In addition, cell apoptosis after IR and mitochondrial membrane potential (MMP) were analyzed by flow cytometry. LC3, beclin-1, cytochrome c and apoptosis-related proteins were assayed by western blotting. A nude mouse xenograft model was also employed to verify the biological effects and mechanisms underlying autophagy in vivo. The formed autophagic vesicles and increased LC3 II/LC3 I ratio indicated marked induction of autophagy by Earle's balanced salt solution (EBSS) in Eca-109 cells. 3-Methyladenine or LY294002 significantly antagonized EBSS-induced autophagy and increased apoptosis of irradiated cells, suggesting that autophagy inhibition conferred radiosensitivity in vitro. Notably, IR induced prominent release of cytochrome c and Bax activation, and decreased Bcl-2 and MMP expression in Eca-109 cells under poor nutrient conditions. Of note, these changes were more prominent following pretreatment with autophagy inhibitors. In vivo, IR treatment mildly delayed tumor growth, but the radiotherapeutic effect was improved significantly by abolishing autophagy. Furthermore, mitochondrial signaling was investigated in the Eca-109 xenograft nude mice model, and the results were consistent with the in vitro study. Therefore, the mitochondrial pathway may be associated with improvement of radiosensitivity in Eca-109 cells. PMID:29620258

  16. Radiation dose to radiosensitive organs in PET/CT myocardial perfusion examination using versatile optical fibre

    NASA Astrophysics Data System (ADS)

    Salasiah, M.; Nordin, A. J.; Fathinul Fikri, A. S.; Hishar, H.; Tamchek, N.; Taiman, K.; Ahmad Bazli, A. K.; Abdul-Rashid, H. A.; Mahdiraji, G. A.; Mizanur, R.; Noor, Noramaliza M.

    2013-05-01

    Cardiac positron emission tomography (PET) provides a precise method in order to diagnose obstructive coronary artery disease (CAD), compared to single photon emission tomography (SPECT). PET is suitable for obese and patients who underwent pharmacologic stress procedures. It has the ability to evaluate multivessel coronary artery disease by recording changes in left ventricular function from rest to peak stress and quantifying myocardial perfusion (in mL/min/g of tissue). However, the radiation dose to the radiosensitive organs has become crucial issues in the Positron Emission Tomography/Computed Tomography(PET/CT) scanning procedure. The objective of this study was to estimate radiation dose to radiosensitive organs of patients who underwent PET/CT myocardial perfusion examination at Centre for Diagnostic Nuclear Imaging, Universiti Putra Malaysia in one month period using versatile optical fibres (Ge-B-doped Flat Fibre) and LiF (TLD-100 chips). All stress and rest paired myocardial perfusion PET/CT scans will be performed with the use of Rubidium-82 (82Rb). The optic fibres were loaded into plastic capsules and attached to patient's eyes, thyroid and breasts prior to the infusion of 82Rb, to accommodate the ten cases for the rest and stress PET scans. The results were compared with established thermoluminescence material, TLD-100 chips. The result shows that radiation dose given by TLD-100 and Germanium-Boron-doped Flat Fiber (Ge-B-doped Flat Fiber) for these five organs were comparable to each other where the p>0.05. For CT scans,thyroid received the highest dose compared to other organs. Meanwhile, for PET scans, breasts received the highest dose.

  17. A comparison of the cytological effects of three hypoxic cell radiosensitizers

    SciTech Connect

    Spunberg, J.J.; Geard, C.R.; Rutledge-Freeman, M.H.

    1982-07-01

    Misonidazole has entered Phase III clinical trials as a hypoxic cell radiosensitizer. Neurotoxocity is the major dose-limiting factor and has prompted the development of two further compounds with reduced lipophilicity and shorter half-life in vivo. Aside from the short-term problem of neurotoxicity, other potential long-term consequences should be considered. Such is the purpose of this investigation where the cytological effects of three radiosensitizers upon oxic and hypoxic Chinese hamster V-79 cells have been examined. Two newer compounds, desmethylmisonidazole and Stanford Research compound 2508, were compared with their clinically used predecessor misonidazole. Under aerated conditions, cell killing was increased with SR-2508more » in a concentration and time dependent manner, so as to exceed by more than three times the level produced by the other two drugs at 5 mM for 72 hours.Cell progression into mitosis was also markedly reduced by as much as 1/10,000 of control values. However, as the three compounds induced similar frequencies of sister chromatid exchange (SCE) and chromosome aberration, the enhanced cytotoxic effect of SR-2508 appears to be mediated via an interphase rather than a post-mitotic cell death. Cells were made hypoxic and treated with the three drugs for 4 hr, then mitoses sequentially collected for 16 hr. The three compounds produced similar levels of cell killing, slowing of cell cycle progression, SCE's and chromosome aberrations, with cycle-specific effect on S and G-I phase cells for SCE induction. These results indicate that desmethylmisonidazole and misonidazole have similar cytotoxic and clastogenic properties under oxic and hypoxic conditions. SR-2508 is relatively more toxic to aerated cells and may deserve close clinical observation for toxicity to normal tissues.« less

  18. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    SciTech Connect

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome.more » The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.« less

  19. Malignant pleural mesothelioma in Italy

    PubMed Central

    Bianchi, Claudio; Bianchi, Tommaso

    2009-01-01

    This study reviews a series of 811 malignant pleural mesothelioma cases, diagnosed at hospitals in Trieste and Monfalcone districts of north eastern Italy, a narrow coastal strip with a population of about three lakh, in the period 1968-2008. The diagnosis was based on histological examination in 801 cases, and cytological findings in 10. Necropsy was performed in 610 cases. Occupational histories were obtained directly from the patients or their relatives through personal or telephone interviews. Routine lung sections were examined for asbestos bodies in 500 cases. In 143 cases asbestos bodies were isolated and counted by chemical digestion of the lung tissue using the Smith-Naylor method. The series included 717 men and 94 women aged between 32 and 93 years (mean 69.2 years). Detailed occupational data was obtained for 732 cases. The majority of patients had marine jobs - shipbuilding (449 cases), maritime trades (56 cases), and port activities (39 cases). The nature of work of other patients included a variety of occupations, with non-shipbuilding industries being the most common. Thirty-four women cleaned the work clothes of family members occupationally exposed and hence had a history of asbestos exposure at home. Most of the patients had their first exposure to asbestos before 1960. The latency period ranged between 13 and 73 years (mean 48.2). Latency period among insulators and dock workers were shorter than other categories. Asbestos bodies were detected on routine lung sections in 343 cases (68.6%). Lung asbestos body burdens after isolation ranged between two to 10 millions bodies per gram of dried tissue. Despite some limitations in the use of asbestos in this area since the 1970s, the incidence of tumor remained high during the last years. PMID:20386624

  20. Malignant pleural mesothelioma in Italy.

    PubMed

    Bianchi, Claudio; Bianchi, Tommaso

    2009-08-01

    This study reviews a series of 811 malignant pleural mesothelioma cases, diagnosed at hospitals in Trieste and Monfalcone districts of north eastern Italy, a narrow coastal strip with a population of about three lakh, in the period 1968-2008. The diagnosis was based on histological examination in 801 cases, and cytological findings in 10. Necropsy was performed in 610 cases. Occupational histories were obtained directly from the patients or their relatives through personal or telephone interviews. Routine lung sections were examined for asbestos bodies in 500 cases. In 143 cases asbestos bodies were isolated and counted by chemical digestion of the lung tissue using the Smith-Naylor method. The series included 717 men and 94 women aged between 32 and 93 years (mean 69.2 years). Detailed occupational data was obtained for 732 cases.The majority of patients had marine jobs - shipbuilding (449 cases), maritime trades (56 cases), and port activities (39 cases). The nature of work of other patients included a variety of occupations, with non-shipbuilding industries being the most common. Thirty-four women cleaned the work clothes of family members occupationally exposed and hence had a history of asbestos exposure at home. Most of the patients had their first exposure to asbestos before 1960. The latency period ranged between 13 and 73 years (mean 48.2). Latency period among insulators and dock workers were shorter than other categories. Asbestos bodies were detected on routine lung sections in 343 cases (68.6%). Lung asbestos body burdens after isolation ranged between two to 10 millions bodies per gram of dried tissue. Despite some limitations in the use of asbestos in this area since the 1970s, the incidence of tumor remained high during the last years.

  1. New developments in surgery of malignant gliomas

    PubMed Central

    Vranic, Andrej

    2011-01-01

    Background Malignant gliomas account for a high proportion of brain tumours. With new advances in neurooncology, the recurrence-free survival of patients with malignant gliomas has been substantially prolonged. It, however, remains dependent on the thoroughness of the surgical resection. The maximal tumour resection without additional postoperative deficit is the goal of surgery on patients with malignant gliomas. In order to minimize postoperative deficit, several pre- and intraoperative techniques have been developed. Conclusions Several techniques used in malignant glioma surgery have been developed, including microsurgery, neuroendoscopy, stereotactic biopsy and brachytherapy. Imaging and functional techniques allowing for safer tumour resection have a special value. Imaging techniques allow for better preoperative visualization and choice of the approach, while functional techniques help us locate eloquent regions of the brain. PMID:22933950

  2. Stages of Ovarian Low Malignant Potential Tumors

    MedlinePlus

    ... ovarian low malignant potential tumor . The type of surgery usually depends on whether a woman plans to have children. For women who plan to have children, surgery is either: unilateral salpingo-oophorectomy ; or partial oophorectomy . ...

  3. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    PubMed

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  4. Radiological interventions in malignant biliary obstruction

    PubMed Central

    Madhusudhan, Kumble Seetharama; Gamanagatti, Shivanand; Srivastava, Deep Narayan; Gupta, Arun Kumar

    2016-01-01

    Malignant biliary obstruction is commonly caused by gall bladder carcinoma, cholangiocarcinoma and metastatic nodes. Percutaneous interventions play an important role in managing these patients. Biliary drainage, which forms the major bulk of radiological interventions, can be palliative in inoperable patients or pre-operative to improve liver function prior to surgery. Other interventions include cholecystostomy and radiofrequency ablation. We present here the indications, contraindications, technique and complications of the radiological interventions performed in patients with malignant biliary obstruction. PMID:27247718

  5. Malignant ventricular arrhythmias in alcoholic cardiomyopathy.

    PubMed

    Guzzo-Merello, Gonzalo; Dominguez, Fernando; González-López, Esther; Cobo-Marcos, Marta; Gomez-Bueno, Manuel; Fernandez-Lozano, Ignacio; Millan, Isabel; Segovia, Javier; Alonso-Pulpon, Luis; Garcia-Pavia, Pablo

    2015-11-15

    Excessive alcohol consumption is a well-known aetiology of atrial arrhythmias but there is little information concerning the prevalence or incidence of malignant ventricular arrhythmias in alcoholic cardiomyopathy (ACM). This study sought to investigate incidence and predictive factors of ventricular arrhythmias in ACM. Retrospective observational study of the clinical characteristics and long-term arrhythmic events in 282 consecutive patients with ACM (94 individuals) and idiopathic dilated cardiomyopathy (IDCM) (188 individuals) evaluated between 1993 and 2011. During a median follow-up of 38months (IQR:12-77), 42 patients died and 79 underwent heart transplantation [31 (33%) with ACM vs 90 (48%) with IDCM; p=0.017]. A total of 37 (13%) patients [18 (19%) ACM vs 20 (11%) IDCM; p=0.048] suffered malignant ventricular arrhythmias. On multivariate analysis, left bundle branch block (LBBB) (OR 2.4; CI95%: 1.2-5; p=0.015) and alcoholic aetiology (OR 2.3; CI95%: 1.1-4.5; p=0.026) were the only independent predictors of malignant ventricular arrhythmic events. A total of 18 (19%) ACM patients experienced 20 malignant ventricular arrhythmic events (4 aborted SCD, 8 SCD and 8 appropriate ICD therapies). At baseline evaluation, the only independent predictor of malignant ventricular arrhythmias in ACM patients was LBBB (OR 11.2; CI95%: 2.6-50; p=0.001). No malignant ventricular arrhythmias were recorded during follow-up in ACM patients if left ventricular ejection fraction (LVEF) had increased or remained ≥40%. Malignant ventricular arrhythmias are more frequent in ACM than in IDCM. LBBB identifies ACM patients with increased risk of SCD. No malignant ventricular arrhythmias were found during follow-up in ACM patients when LVEF was ≥40%. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Malignant syphilis in an immunocompetent female patient*

    PubMed Central

    Requena, Camila Bueno; Orasmo, Cínthia Rosane; Ocanha, Juliana Polizel; Barraviera, Silvia Regina Catharino Sartore; Marques, Mariangela Esther Alencar; Marques, Silvio Alencar

    2014-01-01

    Malignant syphilis is an uncommon manifestation of secondary syphilis, in which necrotic lesions may be associated with systemic signs and symptoms. Generally it occurs in an immunosuppressed patient, mainly HIV-infected, but might be observed on those who have normal immune response. Since there is an exponential increase in the number of syphilis cases, more diagnoses of malignant syphilis must be expected. We report a case in an immunocompetent female patient. PMID:25387504

  7. [Multiple conjunctival malignant melanomas (author's transl)].

    PubMed

    Haddad, R

    1979-04-01

    5 1/2 years after excision of pigmented malignant melanoma which apparently arose in a nevus of the paralimbal bulbar conjunctiva, this 42-year-old male presented himself with a nonpigmented mass of the lid margin which also proved to be a malignant melanoma. "Acquired melanosis sine pigmento" was considered as a site of origin, but histopathologically there is more evidence that this melanoma arose in a non-pigmented compound nevus.

  8. A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma.

    PubMed

    Yi, Hanjie; Yan, Xianglei; Luo, Qiuyun; Yuan, Luping; Li, Baoxia; Pan, Wentao; Zhang, Lin; Chen, Haibo; Wang, Jing; Zhang, Yubin; Zhai, Yifan; Qiu, Miao-Zhen; Yang, Da-Jun

    2018-05-02

    Gastric cancer is the leading cause of cancer related death worldwide. Radiation alone or combined with chemotherapy plays important role in locally advanced and metastatic gastric adenocarcinoma. MDM2-p53 interaction and downstream signaling affect cellular response to DNA damage which leads to cell cycle arrest and apoptosis. Therefore, restoring p53 function by inhibiting its interaction with MDM2 is a promising therapeutic strategy for cancer. APG-115 is a novel small molecule inhibitor which blocks the interaction of MDM2 and p53. In this study, we investigated that the radiosensitivity of APG-115 in gastric adenocarcinoma in vitro and in vivo. The role of APG-115 in six gastric cancer cells viability in vitro was determined by CCK-8 assay. The expression level of MDM2, p21, PUMA and BAX in AGS and MKN45 cell lines was measured via real-time PCR (RT-PCR). The function of treatment groups on cell cycle and cell apoptosis were detected through Flow Cytometry assay. Clonogenic assays were used to measure the radiosensitivity of APG-115 in p53 wild type gastric cancer cell lines. Western blot was conducted to detect the protein expressions of mdm2-p53 signal pathway. Xenograft models in nude mice were established to explore the radiosensitivity role of APG-115 in gastric cancer cells in vivo. We found that radiosensitization by APG-115 occurred in p53 wild-type gastric cancer cells. Increasing apoptosis and cell cycle arrest was observed after administration of APG-115 and radiation. Radiosensitivity of APG-115 was mainly dependent on MDM2-p53 signal pathway. In vivo, APG-115 combined with radiation decreased xenograft tumor growth much more significantly than either single treatment. Moreover, the number of proliferating cells (Ki-67) significantly decreased in combination group compared with single treatment group. In summary, we found that combination of MDM2-p53 inhibitor (APG-115) and radiotherapy can enhance antitumor effect both in vitro and in vivo. This

  9. Malignant lymphoma simulating lymph node toxoplasmosis.

    PubMed

    Miettinen, M; Franssila, K

    1982-03-01

    On histological examination of 667 cases originally suspected of lymph node toxoplasmosis, 12 cases were diagnosed as malignant lymphoma and 15 cases as atypical hyperplasia (AH), suspicious of malignant lymphoma. All 12 malignant cases were of Hodgkin's disease: eight of the lymphocyte predominant nodular type, two of lymphocyte predominant diffuse type, and two of the nodular sclerosis type. In all cases, the lymph nodes contained small groups of epithelioid cells which were virtually indistinguishable from those seen in toxoplasmosis. In the differential diagnosis between lymph node toxoplasmosis and malignant lymphoma, the following features were found helpful. In toxoplasmosis the general structure is preserved and germinal centres are frequent, while in malignant lymphoma and in AH the general structure is destroyed. However, in some cases of toxoplasmosis germinal centres may be difficult to identify because their margins are indistinct due to clusters of epithelioid cells. Also, in some types of Hodgkin's disease and in some cases of AH with epithelioid cells, the general structure of the lymph node may be partially preserved. The occurrence of epithelioid cells within germinal centres seems to be a specific feature for toxoplasmosis; it was never seen in malignant lymphoma nor in AH. The occurrence of strands of monocytoid cells (unreife Sinushistiocytose) though a fairly typical feature of toxoplasmosis, was also occasionally seen in Hodgkin's disease or AH.

  10. Peripheral organ doses from radiotherapy for heterotopic ossification of non-hip joints: is there a risk for radiation-induced malignancies?

    PubMed

    Berris, Theocharis; Mazonakis, Michalis; Kachris, Stefanos; Damilakis, John

    2014-05-01

    Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85-62 mSv, 0.28-1.6 mSv and 0.04-1.6 mSv, respectively. Respective ranges for cancer risk were 0-5.1, 0-0.6 and 0-1.3 cases per 10(4) persons. Increasing the field size caused an average increase of peripheral doses by 15-20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  12. The temporal organization of processes of cell reproduction and its connection with rhythms of radiosensitivity of the body

    NASA Technical Reports Server (NTRS)

    Druzhinin, Y. P.; Romanov, Y. A.; Vatsek, A.

    1974-01-01

    Radiosensitivity of individual phases of the mitotic cycle was studied in synchronous cell cultures and in several biological objects. It was found that radiosensitivity changed essentially according to phases of the mitotic cycle, depending on the kind of cells, evaluation criteria and the radiation dosage. Tests on partially synchronized HeLa cell populations, according to the criterion of survival, showed them most sensitive during mitosis, as well as in later G sub 1- or early DNA-synthesizing stages. With radiation in doses of 300 rad, the proportion of surviving cells showed a sensitivity directly before DNA synthesis of approximately 4 times higher than the later S-phase and during the major portion of G sub 1- and G sub 2-periods. Sensitivity of cells in mitosis was approximately 3 times higher than in late G sub 1- and early S-phases.

  13. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse

    NASA Technical Reports Server (NTRS)

    Okayasu, R.; Suetomi, K.; Yu, Y.; Silver, A.; Bedford, J. S.; Cox, R.; Ullrich, R. L.

    2000-01-01

    We have studied the efficiency of DNA double strand break (DSB) rejoining in primary cells from mouse strains that show large differences in in vivo radiosensitivity and tumor susceptibility. Cells from radiosensitive, cancer-prone BALB/c mice showed inefficient end joining of gamma ray-induced DSBs as compared with cells from all of the other commonly used strains and F1 hybrids of C57BL/6 and BALB/c mice. The BALB/c repair phenotype was accompanied by a significantly reduced expression level of DNA-PKcs protein as well as a lowered DNA-PK activity level as compared with the other strains. In conjunction with published reports, these data suggest that natural genetic variation in nonhomologous end joining processes may have a significant impact on the in vivo radiation response of mice.

  14. Individualization of radiotherapy in breast cancer patients: possible usefulness of a DNA damage assay to measure normal cell radiosensitivity.

    PubMed

    Ruiz de Almodóvar, José Mariano; Guirado, Damian; Isabel Núñez, María; López, Escarlata; Guerrero, Rosario; Valenzuela, María Teresa; Villalobos, Mercedes; del Moral, Rosario

    2002-03-01

    The purpose of this study was to determine whether the distribution of sensitivities in breast cancer patients, measured using a DNA damage assay on lymphocytes, is likely to provide sufficient discrimination to enable the reliable identification of patients with abnormal sensitivities. Radiosensitivity (x) was assessed in 226 samples of lymphocytes from unselected women with breast cancer and was quantified as the initial number of DNA double-strand breaks (dsb) induced per Gy and per DNA unit (200 Mbp). The existence of an inter-individual variation in the parameter (x) is described through the range (0.40-4.72 dsb/Gy/DNA unit) of values found, which have been fitted to the mathematical model defined by the log-normal distribution (mu = 0.42+/-0.03; sigma = 0.52+/-0.03; R(2)=0.9475). A total of 189 patients received radiotherapy after surgical treatment. Among them, we have detected 15 patients who developed severe skin reactions and we have compared their radiosensitivity values with the rest of patients treated. Our results suggest that DNA initial damage measured on lymphocytes offers an approach to predict the acute response of human normal tissues prior to radiotherapy. Values of x higher than 3.20 dsb/Gy/DNA unit theoretically should correspond to the highly radio-sensitive patients. Using the experimental results, we have calculated the strength of the test by means of the area under the receiver operator characteristic curves (A(Z)) to determine whether the radiosensitivity assay can discriminate between patients according to their radiation response. The value found (A(Z)=0.675+/-0.072) is indicative of a fair-poor discriminating capacity of the test to identify the patients with higher risk of developing a severe acute reaction during the radiotherapy treatment.

  15. Developmental-stage-dependent radiosensitivity of neural cells in the ventricular zone of telencephalon in mouse and rat fetuses

    SciTech Connect

    Hoshino, K.; Kameyama, Y.

    1988-03-01

    Pregnant ICR mice were treated with single whole-body X-radiation at a dose of 0.24 Gy on day 10, 13, or 15 of gestation. Fetuses were obtained from mothers during 1 and 24 hours after irradiation. Pyknotic cells in the ventricular zone of telencephalon were counted in serial histological sections. Incidence of pyknotic cells peaked during 6 and 9 hours after irradiation in each gestation day group. Then, dose-response curves were obtained 6 hours after 0-0.48 Gy of irradiation. All three dose-response curves showed clear linearity in the dose range lower than 0.24 Gy. Ratios of radiosensitivity estimated from the slopesmore » of dose-response curves in day 10, 13, and 15 groups were 1, 1.4, and 0.4, respectively. These demonstrated that ventricular cells in the day 13 fetal telencephalon were the most radiosensitive among the three different age groups. In order to confirm the presence of the highly radiosensitive stage common to mammalian cerebral cortical histogenesis, pregnant F344 rats were treated with single whole-body gamma-irradiation at a dose of 0.48 Gy on day 13, 14, 15, 17, or 19 of gestation. The incidence of pyknotic cells in the ventricular zone of telencephalon was examined microscopically during 1 and 24 hours after irradiation. The peak incidence was shown 6 hours after irradiation in all the treated groups, and the highest peak incidence was shown in day-15-treated group. The developmental stage of telencephalon of day 15 rat fetuses was comparable to that of day 13 mouse fetuses. Thus, the highest radiosensitivity in terms of acute cell death was shown in the same developmental stage of brain development, i.e., the beginning phase of cerebral cortical histogenesis, in both mice and rats.« less

  16. [Exploration of relationship between the expression level of DNA polymerase beta and 60Co gamma-ray radiosensitivity].

    PubMed

    Cui, Jie; Xu, Xin; Yang, Mo; Chen, Chen; Zhao, Wei; Wu, Mei; Zhang, Zun-zhen

    2011-11-01

    To explore the relationship between the expression level of DNA polymerase beta (pol beta) and 60Co gamma-ray radiosensitivity and provide a basis on improving the efficiency of radiotherapy theoretically. pol beta wild-type cells (pol beta +/+), pol beta null cells (pol beta -/-) and pol beta overexpressed cells (polp beta oe) were applied as a model system. The radiosensitivity of 60Co gamma-ray on the cell was detected by MTT assay and clone formation assay. The DCFH-DA fluorescent probe was used to examine the cellular ROS after 60Co gamma-rays radiation. MTT assay showed that after radiation by 60Co gamma-rays followed with 72 h incubation, the cell viabilities in the three kinds of cells decreased significantly with a dose-response relationship (r-/+ = -0.976, r-/- = -0.977, r(oe) = -0.982, P<0.05). In addition, the viability of pol beta -/- cell was lower than those of other two kinds of cells at the same dose (P<0.05). Likewise, the colony number and colony formation rate in all tested cells also decreased after exposure to 60Co gamma-rays. The ROS level in the three kinds of cells was enhanced after treatment with 60Co gamma-ray, and the ROS level in pol beta -/- cells was much higher than that in the other two kinds of cells (P<0.05). Cell death caused by 60Co gamma-ray may associated with the DNA oxidative damage mediated by ROS; Overexpression of pol beta could protect against oxidative DNA damage, thus the cell apoptosis/death, thereby leading to reducing the radiosensitivity of 60Co gamma-rays, while null of DNA pol beta could increase radiosensitivity of 60Co gamma-rays by compromising the DNA repair.

  17. The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown In Vitro and as Orthotopic Xenografts.

    PubMed

    Timme, Cindy R; Rath, Barbara H; O'Neill, John W; Camphausen, Kevin; Tofilon, Philip J

    2018-06-01

    Radiotherapy is a primary treatment modality for glioblastomas (GBM). Because DNA-PKcs is a critical factor in the repair of radiation-induced double strand breaks (DSB), this study evaluated the potential of VX-984, a new DNA-PKcs inhibitor, to enhance the radiosensitivity of GBM cells. Treatment of the established GBM cell line U251 and the GBM stem-like cell (GSC) line NSC11 with VX-984 under in vitro conditions resulted in a concentration-dependent inhibition of radiation-induced DNA-PKcs phosphorylation. In a similar concentration-dependent manner, VX-984 treatment enhanced the radiosensitivity of each GBM cell line as defined by clonogenic analysis. As determined by γH2AX expression and neutral comet analyses, VX-984 inhibited the repair of radiation-induced DNA double-strand break in U251 and NSC11 GBM cells, suggesting that the VX-984-induced radiosensitization is mediated by an inhibition of DNA repair. Extending these results to an in vivo model, treatment of mice with VX-984 inhibited radiation-induced DNA-PKcs phosphorylation in orthotopic brain tumor xenografts, indicating that this compound crosses the blood-brain tumor barrier at sufficient concentrations. For mice bearing U251 or NSC11 brain tumors, VX-984 treatment alone had no significant effect on overall survival; radiation alone increased survival. The survival of mice receiving the combination protocol was significantly increased as compared with control and as compared with radiation alone. These results indicate that VX-984 enhances the radiosensitivity of brain tumor xenografts and suggest that it may be of benefit in the therapeutic management of GBM. Mol Cancer Ther; 17(6); 1207-16. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Icotinib enhances lung cancer cell radiosensitivity in vitro and in vivo by inhibiting MAPK/ERK and AKT activation.

    PubMed

    Fu, Yonghong; Zhang, Sen; Wang, Dongjie; Wang, Jing

    2018-05-16

    Icotinib hydrochloride is a small epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that was developed by Chinese scientists. While clinical trials have revealed its efficacy in the treatment of lung cancer, very little is known about its role in enhancing radiosensitivity. In this study, we investigated the effectiveness of Icotinib in enhancing lung cancer cell radiosensitivity and have detailed its underlying molecular mechanism. The lung cancer cell line H1650 was pretreated with or without Icotinib for 24 hours before radiation, and clonogenic survival assay was performed. Cell apoptosis was also analyzed by flow cytometry, while western blotting was performed to examine the activation of EGFR and its downstream kinases in H1650 cells after Icotinib and radiation treatment. Furthermore, a xenograft animal model was established to evaluate the radiosensitivity of Icotinib in vivo and to confirm its mechanism. Our results demonstrate that pretreatment with Icotinib reduced clonogenic survival after radiation, inhibited EGFR activation, and increased radiation-induced apoptosis in H1650 cells. The phosphorylation of protein kinase B (AKT), extracellular regulated protein kinase 1/2 (ERK1/2), and EGFR was inhibited after Icotinib and radiation combination treatment in vitro and in vivo compared with individual treatments. Combination treatment also affected the expression of the DNA repair protein H2A histone family member X (γ-H2AX). In conclusion, our results reveal that Icotinib enhances radiosensitivity in lung cancers in vitro and in vivo and the mechanism of this may involve blocking the EGFR-AKT and MAPK-ERK pathways and limiting DNA repair. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients.

    PubMed

    Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv

    2018-05-01

    Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient

  20. Collecting and Storing Malignant, Borderline Malignant Neoplasms, and Related Samples From Young Patients With Cancer

    ClinicalTrials.gov

    2017-12-11

    Acute Undifferentiated Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Childhood Acute Lymphoblastic Leukemia; Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Chronic Myelogenous Leukemia; Chronic Lymphocytic Leukemia; Hairy Cell Leukemia; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Neoplasm of Uncertain Malignant Potential; Prolymphocytic Leukemia; Secondary Acute Myeloid Leukemia; T-cell Large Granular Lymphocyte Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  1. Biomarkers of Radiosensitivity in A-Bomb Survivors Pregnant at the Time of Bombings in Hiroshima and Nagasaki

    DOE PAGES

    Miles, Edward F.; Tatsukawa, Yoshimi; Funamoto, Sachiyo; ...

    2011-01-01

    Purpose . There is evidence in the literature of increased maternal radiosensitivity during pregnancy. Materials and Methods . We tested this hypothesis using information from the atomic-bomb survivor cohort, that is, the Adult Health Study database at the Radiation Effects Research Foundation, which contains data from a cohort of women who were pregnant at the time of the bombings of Hiroshima and Nagasaki. Previous evaluation has demonstrated long-term radiation dose-response effects. Results/Conclusions . Data on approximately 250 women were available to assess dose-response rates for serum cholesterol, white blood cell count, erythrocyte sedimentation rate, and serum hemoglobin, and on approximatelymore » 85 women for stable chromosome aberrations, glycophorin A locus mutations, and naïve CD4 T-cell counts. Although there is no statistically significant evidence of increased radiosensitivity in pregnant women, the increased slope of the linear trend line in the third trimester with respect to stable chromosome aberrations is suggestive of an increased radiosensitivity.« less

  2. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-11-06

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications.

  3. Roscovitine strongly enhances the effect of olaparib on radiosensitivity for HPV neg. but not for HPV pos. HNSCC cell lines.

    PubMed

    Ziemann, Frank; Seltzsam, Steve; Dreffke, Kristin; Preising, Stefanie; Arenz, Andrea; Subtil, Florentine S B; Rieckmann, Thorsten; Engenhart-Cabillic, Rita; Dikomey, Ekkehard; Wittig, Andrea

    2017-12-01

    At present, advanced stage human Papillomavirus (HPV) negative and positive head and neck squamous cell carcinoma (HNSCC) are treated by intense multimodal therapy that includes radiochemotherapy, which are associated with relevant side effects. Patients with HPV positive tumors possess a far better prognosis than those with HPV negative cancers. Therefore, new therapeutic strategies are needed to improve the outcome especially of the latter one as well as quality of life for all HNSCC patients. Here we tested whether roscovitine, an inhibitor of cyclin-dependent kinases (CDKs), which hereby also blocks homologous recombination (HR), can be used to enhance the radiation sensitivity of HNSCC cell lines. In all five HPV negative and HPV positive cell lines tested, roscovitine caused inhibition of CDK1 and 2. Surprisingly, all HPV positive cell lines were found to be defective in HR. In contrast, HPV negative strains demonstrated efficient HR, which was completely suppressed by roscovitine. In line with this, for HPV negative but not for HPV positive cell lines, treatment with roscovitine resulted in a pronounced enhancement of the radiation-induced G2 arrest as well as a significant increase in radiosensitivity. Due to a defect in HR, all HPV positive cell lines were efficiently radiosensitized by the PARP-1 inhibitor olaparib. In contrast, in HPV negative cell lines a significant radiosensitization by olaparib was only achieved when combined with roscovitine.

  4. Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization.

    PubMed

    Fan, Wenpei; Shen, Bo; Bu, Wenbo; Zheng, Xiangpeng; He, Qianjun; Cui, Zhaowen; Zhao, Kuaile; Zhang, Shengjian; Shi, Jianlin

    2015-03-01

    Clinically applied chemotherapy and radiotherapy is sometimes not effective due to the limited dose acting on DNA chains resident in the nuclei of cancerous cells. Herein, we develop a new theranostic technique of "intranuclear radiosensitization" aimed at directly damaging the DNA within the nucleus by a remarkable synergetic chemo-/radiotherapeutic effect based on intranuclear chemodrug-sensitized radiation enhancement. To achieve this goal, a sub-50 nm nuclear-targeting rattle-structured upconversion core/mesoporous silica nanotheranostic system was firstly constructed to directly transport the radiosensitizing drug Mitomycin C (MMC) into the nucleus for substantially enhanced synergetic chemo-/radiotherapy and simultaneous magnetic/upconversion luminescent (MR/UCL) bimodal imaging, which can lead to efficient cancer treatment as well as multi-drug resistance circumvention in vitro and in vivo . We hope the technique of intranuclear radiosensitization along with the design of nuclear-targeting nanotheranostics will contribute greatly to the development of cancer theranostics as well as to the improvement of the overall therapeutic effectiveness.

  5. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    PubMed

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  6. Radiosensitization of human glioma cells by tamoxifen is associated with the inhibition of PKC-ι activity in vitro.

    PubMed

    Yang, Lei; Yuan, Xiaopeng; Wang, Jie; Gu, Cheng; Zhang, Haowen; Yu, Jiahua; Liu, Fenju

    2015-07-01

    The present study aimed to investigate the radiosensitizing effects of tamoxifen (TAM), a non-steroidal anti-estrogen drug, in human glioma A172 and U251 cells in vitro . A colony-forming assay revealed that TAM enhances radiosensitivity in A172 and U251 cells. Treatment with TAM also increased the percentage of apoptotic cells subsequent to ionizing radiation, and increased the expression of apoptotic markers, including cleaved caspase-3 and poly(ADP-ribose) polymerase. Ionizing radiation induced G2/M phase arrest, which was alleviated within 24 h when the radiation-induced DNA damage was repaired. However, flow cytometry analysis revealed that TAM treatment delayed the recovery of cell cycle progression. Additional examination demonstrated that TAM-mediated protein kinase C-ι (PKC-ι) inhibition may lead to the activation of pro-apoptotic B-cell lymphoma 2-associated death promoter, and the dephosphorylation of cyclin-dependent kinase 7, resulting in increased cell apoptosis and sustained G2/M phase arrest following exposure to radiation. The present data indicate that the radiosensitizing effects of TAM on glioma cells are partly due to the inhibition of PKC-ι activity in vitro .

  7. Noninvasive Predictors of Malignant Arrhythmias.

    PubMed

    Golukhova, Elena Z; Gromova, Olga; Grigoryan, Marina; Merzlyakov, Vadim; Shumkov, Konstantin; Bockeria, Leo; Serebruany, Victor L

    2016-01-01

    Prediction and potential prevention of sudden cardiac death (SCD) due to malignant ventricular arrhythmia (MVA) represent an obvious unmet medical need. We estimated the prognostic relevance of numerous biomarkers associated with future MVA development in patients with coronary artery disease (CAD) over 2 years of follow-up. Patients with stable documented CAD (n = 97) with a mean age of 61 ± 10 years were prospectively enrolled in a single-center observational cohort study. Heart failure was diagnosed in 68% of the patients (NYHA class II-III). The mean left ventricular ejection fraction (LVEF) was 50 ± 13%, while 20% of patients had LVEF ≤35%. Sixty-two patients underwent myocardial revascularization during the follow-up (mean 25 ± 11 months). Clinical characteristics (age, gender, diabetes, history of coronary disease and arrhythmias, prior interventions and antecedent medications), noninvasive electrophysiological markers [microvolt T-wave alterations, signal-averaged electrocardiography, QT interval duration and alteration, and heart rate turbulence (HRT) and HR variability], laboratory indices [serum creatinine and creatinine clearance, brain natriuretic peptide (BNP), NT-proBNP, and C-reactive protein and troponin T levels] were assessed with regard to the MVA prognosis. MVA was diagnosed in 11 patients during the prospective follow-up. Prior percutaneous coronary intervention (p < 0.05), MVA or syncope (p < 0.05), on-pump coronary artery bypass grafting during follow-up (p < 0.01), LVEF ≤47% (p < 0.01), a left atrium size ≥4.7 cm (p < 0.05), left atrium index (p = 0.01), filtered QRS duration (p < 0.05), abnormal HRT (x03C7;2 = 6.2, p = 0.01) or turbulence slope (x03C7;2 = 9.5, p < 0.01), BNP ≥158 pg/ml (p < 0.01) and NT-proBNP ≥787 pg/ml (x03C7;2 = 4.4, p < 0.05) were significantly associated with MVA risk by univariate analysis. However, only prior MVA or syncope [odds ratio (OR) 11.1; 95% confidence interval (CI) 2.8-44.4; p < 0

  8. Intercellular crosstalk in human malignant melanoma.

    PubMed

    Dvořánková, Barbora; Szabo, Pavol; Kodet, Ondřej; Strnad, Hynek; Kolář, Michal; Lacina, Lukáš; Krejčí, Eliška; Naňka, Ondřej; Šedo, Aleksi; Smetana, Karel

    2017-05-01

    Incidence of malignant melanoma is increasing globally. While the initial stages of tumors can be easily treated by a simple surgery, the therapy of advanced stages is rather limited. Melanoma cells spread rapidly through the body of a patient to form multiple metastases. Consequently, the survival rate is poor. Therefore, emphasis in melanoma research is given on early diagnosis and development of novel and more potent therapeutic options. The malignant melanoma is arising from melanocytes, cells protecting mitotically active keratinocytes against damage caused by UV light irradiation. The melanocytes originate in the neural crest and consequently migrate to the epidermis. The relationship between the melanoma cells, the melanocytes, and neural crest stem cells manifests when the melanoma cells are implanted to an early embryo: they use similar migratory routes as the normal neural crest cells. Moreover, malignant potential of these melanoma cells is overdriven in this experimental model, probably due to microenvironmental reprogramming. This observation demonstrates the crucial role of the microenvironment in melanoma biology. Indeed, malignant tumors in general represent complex ecosystems, where multiple cell types influence the growth of genetically mutated cancer cells. This concept is directly applicable to the malignant melanoma. Our review article focuses on possible strategies to modify the intercellular crosstalk in melanoma that can be employed for therapeutic purposes.

  9. Resection for secondary malignancy of the pancreas.

    PubMed

    Hung, Jui-Hsia; Wang, Shin-E; Shyr, Yi-Ming; Su, Cheng-Hsi; Chen, Tien-Hua; Wu, Chew-Wun

    2012-01-01

    This study tried to clarify the role of pancreatic resection in the treatment of secondary malignancy with metastasis or local invasion to the pancreas in terms of surgical risk and survival benefit. Data of secondary malignancy of the pancreas from our 19 patients and cases reported in the English literature were pooled together for analysis. There were 329 cases of resected secondary malignancy of the pancreas, including 241 cases of metastasis and 88 cases of local invasion. The most common primary tumor metastatic to the pancreas and amenable to resection was renal cell carcinoma (RCC) (73.9%). More than half (52.3%) of the primary cancers with local invasion to the pancreas were colon cancer, and nearly half (40.9%) were stomach cancer. The median metastatic interval was 84 months (7 years) for overall primary tumors and 108 months (9 years) for RCC. The 5-year survival for secondary malignancy of the pancreas after resection was 61.1% for metastasis and 58.9% for local invasion, with 72.8% for RCC metastasis, 69.0% for colon cancer, and 43.8% for stomach cancer with local invasion to the pancreas. Pancreatic resection should not be precluded for secondary malignancy of the pancreas because long-term survival could be achieved with acceptable surgical risk in selected patients.

  10. Potentially malignant oral lesions: clinicopathological correlations

    PubMed Central

    Maia, Haline Cunha de Medeiros; Pinto, Najara Alcântara Sampaio; Pereira, Joabe dos Santos; de Medeiros, Ana Miryam Costa; da Silveira, Éricka Janine Dantas; Miguel, Márcia Cristina da Costa

    2016-01-01

    ABSTRACT Objective To determine the incidence of potentially malignant oral lesions, and evaluate and correlate their clinical and pathological aspects. Methods The sample consisted of cases clinically diagnosed as oral leukoplakia, oral erythroplakia, erythroleukoplakia, actinic cheilitis, and oral lichen planus treated at a diagnostic center, between May 2012 and July 2013. Statistical tests were conducted adopting a significance level of 5% (p≤0.05). Results Out of 340 patients, 106 (31.2%) had potentially malignant oral lesions; and 61 of these (17.9%) were submitted to biopsy. Actinic cheilitis was the most frequent lesion (37.5%) and the lower lip was the most affected site (49.6%). Among 106 patients in the sample, 48 (45.3%) reported nicotine consumption, 35 (33%) reported alcohol intake and 34 (32.1%) sun exposure while working. When clinical and histopathological diagnoses were compared, oral erythroplakia and atypical ulcer were the lesions that exhibited greater compatibility (100% each). Conclusion In most cases, clinical and histopathological diagnoses were compatible. An association between the occurrence of erythroplakia, leukoplakia and erythroleukoplakia with smoking was observed. Similarly, an association between actinic cheilitis and sun exposure was noted. Erythroleukoplakia presented the highest malignancy grade in this study. Finally, dental surgeons should draw special attention to diagnosis of potentially malignant oral lesions, choose the best management, and control the lesions to avoid their malignant transformation. PMID:27074232

  11. Malignant melanocytic neoplasm of pancreas with liver metastasis: Is it malignant melanoma or clear cell sarcoma?

    PubMed

    Kodiatte, Thomas Alex; George, Sam Varghese; Chacko, Raju Titus; Ramakrishna, Banumathi

    2017-01-01

    Malignant melanocytic neoplasm, usually seen in soft tissues, is rare in a visceral location and presents as a diagnostic dilemma. We present a case of pancreatic malignant melanocytic neoplasm with liver metastasis. A 58-year-old man presented with left upper abdominal swelling and loss of appetite. Imaging revealed a large mass arising from the pancreatic tail, and this was diagnosed as malignant neoplasm with melanocytic differentiation on biopsy with the possible differentials of malignant melanoma, clear cell sarcoma (CCS), and perivascular epithelioid cell neoplasm. The patient underwent distal pancreatectomy and splenectomy for the same. Follow-up imaging 6 months later showed a metastatic liver lesion, for which he also underwent a liver resection. BRAF mutational analysis was found to be negative. Both CCS and malignant melanoma have similar morphological features and melanocytic differentiation, but each harbors a distinct genetic background. Differentiation of both has diagnostic and therapeutic implications.

  12. Lipid peroxidation and antioxidants status in human malignant and non-malignant thyroid tumours.

    PubMed

    Stanley, J A; Neelamohan, R; Suthagar, E; Vengatesh, G; Jayakumar, J; Chandrasekaran, M; Banu, S K; Aruldhas, M M

    2016-06-01

    Thyroid epithelial cells produce moderate amounts of reactive oxygen species that are physiologically required for thyroid hormone synthesis. Nevertheless, when they are produced in excessive amounts, they may become toxic. The present study is aimed to compare the lipid peroxidation (LPO), antioxidant enzymes - superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-protein thiols (reduced glutathione (GSH)) in human thyroid tissues with malignant and non-malignant disorders. The study used human thyroid tissues and blood samples from 157 women (147 diseased and 10 normal). Thyroid hormones, oxidative stress markers and antioxidants were estimated by standard methods. LPO significantly increased in most of the papillary thyroid carcinoma (PTC: 82.9%) and follicular thyroid adenoma (FTA: 72.9%) tissues, whilst in a majority of nodular goitre (69.2%) and Hashimoto's thyroiditis (HT: 73.7%) thyroid tissues, it remained unaltered. GSH increased in PTC (55.3%), remained unaltered in FTA (97.3%) and all other goiter samples studied. SOD increased in PTC (51.1%) and all other malignant thyroid tissues studied. CAT remained unaltered in PTC (95.7%), FTA (97.3%) and all other non-malignant samples (HT, MNG, TMNG) studied. GPx increased in PTC (63.8%), all other malignant thyroid tissues and remained unaltered in many of the FTA (91.9%) tissues and all other non-malignant samples (HT, MNG, TMNG) studied. In the case of non-malignant thyroid tumours, the oxidant-antioxidant balance was undisturbed, whilst in malignant tumours the balance was altered, and the change in r value observed in the LPO and SOD pairs between normal and PTC tissues and also in many pairs with multi-nodular goitre (MNG)/toxic MNG tissues may be used as a marker to differentiate/detect different malignant/non-malignant thyroid tumours. © The Author(s) 2015.

  13. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    PubMed Central

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the 66Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 106 counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from

  14. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers.

    PubMed

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-08-01

    Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the (66)Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10(6) counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from mostly decaying (66)Ga

  15. Polymorphisms in nonhomologous end-joining genes associated with breast cancer risk and chromosomal radiosensitivity.

    PubMed

    Willems, Petra; Claes, Kathleen; Baeyens, Ans; Vandersickel, Veerle; Werbrouck, Joke; De Ruyck, Kim; Poppe, Bruce; Van den Broecke, Rudy; Makar, Amin; Marras, Emanuela; Perletti, Gianpaolo; Thierens, Hubert; Vral, Anne

    2008-02-01

    As enhanced chromosomal radiosensitivity (CRS) results from non- or misrepaired double strand breaks (DSBs) and is a hallmark for breast cancer and single nucleotide polymorphisms (SNPs) in DSB repair genes, such as non homologous end-joining (NHEJ) genes, could be involved in CRS and genetic predisposition to breast cancer. In this study, we investigated the association of five SNPs in three different NHEJ genes with breast cancer in a population-based case-control setting. The total patient population composed of a selected group of patients with a family history of the disease and an unselected group, consisting mainly of sporadic cases. SNP analysis showed that the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] has a significant, positive odds ratio (OR) of 2.81 (95% confidence interval (CI): 1.30-6.05) for the heterozygous (He) and homozygous variant (HV) genotypes in the selected patient group. For the c.-1310 C>G SNP (XRCC6Ku70)[corrected] a significant OR of 1.85 (95%CI: 1.01-3.41) was found for the He genotype in the unselected patient group. On the contrary, the HV genotype of c.1781G>T (XRCC6Ku70) [corrected] displays a significant, negative OR of 0.43 (95%CI: 0.18-0.99) in the total patient population. The He+HV genotypes of the c.2099-2408G>A SNP (XRCC5Ku80) [corrected] also showed high and significant ORs in the group of "radiosensitive," familial breast cancer patients. In conclusion, our results provide preliminary evidence that the variant allele of c.-1310C>G (XRCC6Ku70) [corrected]and c.2099-2408G>A (XRCC5Ku80) [corrected] are risk alleles for breast cancer as well as CRS. The HV genotype of c.1781G>T (XRCC6Ku70) [corrected] on the contrary, seems to protect against breast cancer and ionizing radiation induced micronuclei. (c) 2007 Wiley-Liss, Inc.

  16. Drug priming enhances radiosensitivity of adamantinomatous craniopharyngioma via downregulation of survivin.

    PubMed

    Stache, Christina; Bils, Christiane; Fahlbusch, Rudolf; Flitsch, Jörg; Buchfelder, Michael; Stefanits, Harald; Czech, Thomas; Gaipl, Udo; Frey, Benjamin; Buslei, Rolf; Hölsken, Annett

    2016-12-01

    OBJECTIVE In this study, the authors investigated the underlying mechanisms responsible for high tumor recurrence rates of adamantinomatous craniopharyngioma (ACP) after radiotherapy and developed new targeted treatment protocols to minimize recurrence. ACPs are characterized by the activation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR), known to mediate radioresistance in various tumor entities. The impact of tyrosine kinase inhibitors (TKIs) gefitinib or CUDC-101 on radiation-induced cell death and associated regulation of survivin gene expression was evaluated. METHODS The hypothesis that activated EGFR promotes radioresistance in ACP was investigated in vitro using human primary cell cultures of ACP (n = 10). The effects of radiation (12 Gy) and combined radiochemotherapy on radiosensitivity were assessed via cell death analysis using flow cytometry. Changes in target gene expression were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). Survivin, identified in qRT-PCR to be involved in radioresistance of ACP, was manipulated by small interfering RNA (siRNA), followed by proliferation and vitality assays to further clarify its role in ACP biology. Immunohistochemically, survivin expression was assessed in patient tumors used for primary cell cultures. RESULTS In primary human ACP cultures, activation of EGFR resulted in significantly reduced cell death levels after radiotherapy. Treatment with TKIs alone and in combination with radiotherapy increased cell death response remarkably, assessed by flow cytometry. CUDC-101 was significantly more effective than gefitinib. The authors identified regulation of survivin expression after therapeutic intervention as the underlying molecular mechanism of radioresistance in ACP. EGFR activation promoting ACP cell survival and proliferation in vitro is consistent with enhanced survivin gene expression shown by qRT-PCR. TKI treatment, as well as the combination with

  17. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    SciTech Connect

    Cho, Jongmin, E-mail: jongmin.cho@okstate.edu

    2016-08-15

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer tomore » make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the {sup 66}Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10{sup 6} counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed

  18. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer

    SciTech Connect

    Torres-Roca, Javier F., E-mail: javier.torresroca@moffitt.org; Department of Chemical Biology and Molecular Medicine, Moffitt Cancer Center, Tampa, Florida; Fulp, William J.

    Purpose: Recently, we developed radiosensitivity (RSI), a clinically validated molecular signature that estimates tumor radiosensitivity. In the present study, we tested whether integrating RSI with the molecular subtype refines the classification of local recurrence (LR) risk in breast cancer. Methods and Materials: RSI and molecular subtype were evaluated in 343 patients treated with breast-conserving therapy that included whole-breast radiation therapy with or without a tumor bed boost (dose range 45-72 Gy). The follow-up period for patients without recurrence was 10 years. The clinical endpoint was LR-free survival. Results: Although RSI did not uniformly predict for LR across the entire cohort, combining RSImore » and the molecular subtype identified a subpopulation with an increased risk of LR: triple negative (TN) and radioresistant (reference TN-radioresistant, hazard ratio [HR] 0.37, 95% confidence interval [CI] 0.15-0.92, P=.02). TN patients who were RSI-sensitive/intermediate had LR rates similar to those of luminal (LUM) patients (HR 0.86, 95% CI 0.47-1.57, P=.63). On multivariate analysis, combined RSI and molecular subtype (P=.004) and age (P=.001) were the most significant predictors of LR. In contrast, integrating RSI into the LUM subtype did not identify additional risk groups. We hypothesized that radiation dose escalation was affecting radioresistance in the LUM subtype and serving as a confounder. An increased radiation dose decreased LR only in the luminal-resistant (LUM-R) subset (HR 0.23, 95% CI 0.05-0.98, P=.03). On multivariate analysis, the radiation dose was an independent variable only in the LUMA/B-RR subset (HR 0.025, 95% CI 0.001-0.946, P=.046), along with age (P=.008), T stage (P=.004), and chemotherapy (P=.008). Conclusions: The combined molecular subtype–RSI identified a novel molecular subpopulation (TN and radioresistant) with an increased risk of LR after breast-conserving therapy. We propose that the combination of RSI

  19. Non-malignant complications of coeliac disease.

    PubMed

    Holmes, G K

    1996-05-01

    Patients with coeliac disease are at increased risk of developing complications which increase morbidity and mortality. Emphasis on malignant complications has often overshadowed the non-malignant risks, which have received relatively little attention, although some of these can be very troublesome and even life-threatening. This article points out that a large population of unidentified or neglected coeliac patients is at potential risk. The challenge is to identify this group by case-finding or screening programmes in selected populations, so that they can be offered a gluten-free diet and other treatments which will not only improve general health but may also prevent or reduce the development of health problems. The non-malignant risks are outlined and bone and neuropsychiatric disturbances considered in more detail because of recent developments in these areas.

  20. Minimal-change nephropathy and malignant thymoma.

    PubMed

    Varsano, S; Bruderman, I; Bernheim, J L; Rathaus, M; Griffel, B

    1980-05-01

    A 56-year-old man had fever, precordial pain, and a mediastinal mass. The mass disappeared two months later and the patient remained asymptomatic for 2 1/2 years. At that time a full-blown nephrotic syndrome developed, with minimal-change glomerulopathy. The chest x-ray film showed the reappearance of a giant mediastinal mass. On biopsy of the mass, malignant thymoma was diagnosed. Association between minimal-change disease and Hodgkin's disease is well known, while the association with malignant thymoma has not been previously reported. The relationship between malignant thymoma and minimal-change disease is discussed, and a possible pathogenic mechanism involving cell-mediated immunity is proposed.

  1. Malignant histiocytosis in childhood: morphologic considerations.

    PubMed

    Jurco, S; Starling, K; Hawkins, E P

    1983-12-01

    Eight cases diagnosed over a ten-year period as malignant histiocytosis (MH; histiocytic medullary reticulosis) were reviewed to clarify diagnostic criteria for the childhood disease and to identify sources of diagnostic confusion. Five of the eight cases met the authors' criteria for diagnosis; i.e., they were characterized by loose mixed infiltrates composed of three cell types--well-differentiated histiocytes, prohistiocytes, and malignant histiocytes--and they had no leukemic phase. Three cases did not share these features and were reclassified. The liver was found to be the organ most useful in premortem diagnosis, and immunoperoxidase staining for immunoglobulins and lysozyme was also helpful. The clinical and morphologic features of the five cases confirm the authors' view that diagnoses of MH should be limited to cases in which there is a loose pleomorphic population of all three types of histiocytes and that cases with monomorphous populations of aggregated malignant cells should be classified as lymphomas.

  2. [Malignant vascular tumors of the vulva].

    PubMed

    Chokoeva, A; Tchernev, G

    2015-01-01

    Due to the increased vascularity as well as the unique anatomical structure, vascular lesions, which occur in the female reproductive system are common observed and diverse by their morphology. The majority of them are benign, including vascular malformations, lesions due to vascular hyperplasia, tumors with significant vascular component and others. Malignant vascular tumors are rare in the area of the vulva accounting about 1% of all vulvar lesions with vascular origin. Kaposi sarcoma, epithelioid hemangioepithelioma and epithelioid angiosarcoma have been reported with vulvar localization. With a view to their rare incidence, nonspecific clinical manifestation and aggressive behavior associated with high mortality, we present the most common malignant tumors of vascular origin arising in the vulva, as we emphasize on their epidemiology and clinical features, differential diagnosis and therapeutic algorithms for this rare type of malignancies.

  3. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  4. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observedmore » radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.« less

  5. The potential value of the neutral comet assay and the expression of genes associated with DNA damage in assessing the radiosensitivity of tumor cells.

    PubMed

    Jayakumar, Sundarraj; Bhilwade, Hari N; Pandey, Badri N; Sandur, Santosh K; Chaubey, Ramesh C

    2012-10-09

    The assessment of tumor radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. Therefore, the degree of correlation between radiation-induced DNA damage, as measured by the alkaline and the neutral comet assays, and the clonogenic survival of different human tumor cells was studied. Further, tumor radiosensitivity was compared with the expression of genes associated with the cellular response to radiation damage. Five different human tumor cell lines were chosen and the radiosensitivity of these cells was established by clonogenic assay. Alkaline and neutral comet assays were performed in γ-irradiated cells (2-8Gy; either acute or fractionated). Quantitative PCR was performed to evaluate the expression of DNA damage response genes in control and irradiated cells. The relative radiosensitivity of the cell lines assessed by the extent of DNA damage (neutral comet assay) immediately after irradiation (4Gy or 6Gy) was in agreement with radiosensitivity pattern obtained by the clonogenic assay. The survival fraction of irradiated cells showed a better correlation with the magnitude of DNA damage measured by the neutral comet assay (r=-0.9; P<0.05; 6Gy) than evaluated by alkaline comet assay (r=-0.73; P<0.05; 6Gy). Further, a significant correlation between the clonogenic survival and DNA damage was observed in cells exposed to fractionated doses of radiation. Of 15 genes investigated in the gene expression study, HSP70, KU80 and RAD51 all showed significant positive correlations (r=0.9; P<0.05) with tumor radiosensitivity. Our study clearly demonstrated that the neutral comet assay was better than alkaline comet assay for assessment of radiosensitivities of tumor cells after acute or fractionated doses of irradiation. © 2012 Elsevier B.V. All rights reserved.

  6. Preclinical Evaluation of Genexol-PM, a Nanoparticle Formulation of Paclitaxel, as a Novel Radiosensitizer for the Treatment of Non-Small Cell Lung Cancer

    SciTech Connect

    Werner, Michael E.; Cummings, Natalie D.; Sethi, Manish

    2013-07-01

    Purpose: A key research objective in radiation oncology is to identify agents that can improve chemoradiation therapy. Nanoparticle (NP) chemotherapeutics possess several properties, such as preferential accumulation in tumors, that are uniquely suited for chemoradiation therapy. To facilitate the clinical translation of NP chemotherapeutics in chemoradiation therapy, we conducted preclinical evaluation of Genexol-PM, the only clinically approved NP chemotherapeutic with a controlled drug release profile, as a radiosensitizer using non-small cell lung cancer (NSCLC) as a model disease. Methods and Materials: The physical characteristics and drug release profile of Genexol-PM were characterized. Genexol-PM's efficacy as a radiosensitizer was evaluated inmore » vitro using NSCLC cell lines and in vivo using mouse xenograft models of NSCLC. Paclitaxel dose to normal lung and liver after Genexol-PM administration were quantified and compared with that after Taxol administration. Results: Genexol-PM has a size of 23.91 ± 0.41 nm and surface charge of −8.1 ± 3.1 mV. It releases paclitaxel in a controlled release profile. In vitro evaluation of Genexol-PM as a radiosensitizer showed it is an effective radiosensitizer and is more effective than Taxol, its small molecule counterpart, at the half maximal inhibitory concentration. In vivo study of Genexol-PM as a radiosensitizer demonstrated that it is more effective as a radiosensitizer than Taxol. We also found that Genexol-PM leads to lower paclitaxel exposure to normal lung tissue than Taxol at 6 hours postadministration. Conclusions: We have demonstrated that Genexol-PM is more effective than Taxol as a radiosensitizer in the preclinical setting and holds high potential for clinical translation. Our data support the clinical evaluation of Genexol-PM in chemoradiation therapy for NSCLC.« less

  7. Malignant lymphoma in african lions (panthera leo).

    PubMed

    Harrison, T M; McKnight, C A; Sikarskie, J G; Kitchell, B E; Garner, M M; Raymond, J T; Fitzgerald, S D; Valli, V E; Agnew, D; Kiupel, M

    2010-09-01

    Malignant lymphoma has become an increasingly recognized problem in African lions (Panthera leo). Eleven African lions (9 male and 2 female) with clinical signs and gross and microscopic lesions of malignant lymphoma were evaluated in this study. All animals were older adults, ranging in age from 14 to 19 years. Immunohistochemically, 10 of the 11 lions had T-cell lymphomas (CD3(+), CD79a(-)), and 1 lion was diagnosed with a B-cell lymphoma (CD3(-), CD79a(+)). The spleen appeared to be the primary site of neoplastic growth in all T-cell lymphomas, with involvement of the liver (6/11) and regional lymph nodes (5/11) also commonly observed. The B-cell lymphoma affected the peripheral lymph nodes, liver, and spleen. According to the current veterinary and human World Health Organization classification of hematopoietic neoplasms, T-cell lymphoma subtypes included peripheral T-cell lymphoma (4/11), precursor (acute) T-cell lymphoblastic lymphoma/leukemia (2/11), chronic T-cell lymphocytic lymphoma/leukemia (3/11), and T-zone lymphoma (1/11). The single B-cell lymphoma subtype was consistent with diffuse large B-cell lymphoma. Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) testing by immunohistochemistry on sections of malignant lymphoma was negative for all 11 lions. One lion was seropositive for FeLV. In contrast to domestic and exotic cats, in which B-cell lymphomas are more common than T-cell lymphomas, African lions in this study had malignant lymphomas that were primarily of T-cell origin. Neither FeLV nor FIV, important causes of malignant lymphoma in domestic cats, seems to be significant in the pathogenesis of malignant lymphoma in African lions.

  8. Advances in the management of malignant mesothelioma.

    PubMed

    Khalil, Mazen Y; Mapa, Marissa; Shin, Hyung Ju C; Shin, Dong M

    2003-07-01

    Malignant mesotheliomas are very aggressive tumors that originate from mesothelial cells, which form the serosal lining of the pleura, pericardial, and peritoneal cavities. Finding effective chemotherapeutic treatment for malignant mesothelioma is a challenge. There is no standard treatment because this tumor is relatively resistant to therapy. A resurgence of interest has been expressed in novel therapies and conventional treatments used in different ways. Several treatment modalities have been studied, including chemotherapy, radiotherapy, surgery, and immunotherapy. Chemotherapy can be administered systemically or directly into the pleura. This review presents the results of the most recent trials and highlights the most promising advances in the battle against this aggressive disease.

  9. A Hormonally Active Malignant Struma Ovarii

    PubMed Central

    Lara, Carolina; Salame, Latife; Padilla-Longoria, Rafael

    2016-01-01

    Struma ovarii is a rare monodermal variant of ovarian teratoma that contains at least 50% thyroid tissue. Less than 8% of struma ovarii cases present with clinical and biochemical evidence of thyrotoxicosis due to ectopic production of thyroid hormone and only 5% undergo malignant transformation into a papillary thyroid carcinoma. Only isolated cases of hormonally active papillary thyroid carcinoma developing within a struma ovarii have been reported in the literature. We report the case of a 36-year-old woman who presented with clinical signs and symptoms of hyperthyroidism as well as a left adnexal mass, which proved to be a thyroid hormone-producing, malignant struma ovarii. PMID:27882257

  10. Malignancy in Children with Trisomy 21

    PubMed Central

    Rabin, Karen R.; Whitlock, James A.

    2009-01-01

    Patients with Down syndrome (DS) display a unique spectrum of malignancies, with a 10 to 20-fold increased risk of acute leukemias, and a markedly decreased incidence of solid tumors. This review discusses current understanding of the basis for this distinctive pattern of cancer incidence, and the clinical and biologic features of the malignant disorders most frequent in DS: transient myeloproliferative disease, acute megakaryoblastic leukemia, and acute lymphoblastic leukemia. We also review distinctive pharmacogenetic issues, highlighting the differential chemosensitivity and toxicity profiles of DS patients compared to the general population; and epidemiologic studies of protective and adverse environmental risk factors for development of leukemia. PMID:19176633

  11. [Breast metastases from extramammary malignancies in men].

    PubMed

    Murakami, T; Hideura, S; Shimizu, R; Shimizu, T; Yano, K; Ishihara, T

    1985-12-01

    Metastases to the breast from extramammary carcinomas are rare. Carcinoma of the male breast is generally regarded as primary in origin and uncommon, accounting for less than 0.42% of all malignancies in men. Tow men who presented with breast malignancies in the course of their prostatic carcinoma are described. One was metastasis to the breast from prostatic cancer, the other from pancreatic cancer. The prostatic origin of these carcinomas, was confirmed by histological findings and immunocytochemical demonstration of prostatic acid phosphatase with the avidin-biotin-complex method.

  12. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells.

    PubMed

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-11-03

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8-2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer.

  13. Betulinyl Sulfamates as Anticancer Agents and Radiosensitizers in Human Breast Cancer Cells

    PubMed Central

    Bache, Matthias; Münch, Christin; Güttler, Antje; Wichmann, Henri; Theuerkorn, Katharina; Emmerich, Daniel; Paschke, Reinhard; Vordermark, Dirk

    2015-01-01

    Betulinic acid (BA), a natural compound of birch bark, is cytotoxic for many tumors. Recently, a betulinyl sulfamate was described that inhibits carbonic anhydrases (CA), such as CAIX, an attractive target for tumor-selective therapy strategies in hypoxic cancer cells. Data on combined CAIX inhibition with radiotherapy are rare. In the human breast cancer cell lines MDA-MB231 and MCF7, the effects of BA and betulinyl sulfamates on cellular and radiobiological behavior under normoxia and hypoxia were evaluated. The two most effective betulinyl sulfamates CAI 1 and CAI 3 demonstrated a 1.8–2.8-fold higher cytotoxicity than BA under normoxia in breast cancer cells, with IC50 values between 11.1 and 18.1 µM. BA exhibits its strongest cytotoxicity with IC50 values of 8.2 and 16.4 µM under hypoxia. All three substances show a dose-dependent increase in apoptosis, inhibition of migration, and inhibition of hypoxia-induced gene expression. In combination with irradiation, betulinyl sulfamates act as radiosensitizers, with DMF10 values of 1.47 (CAI 1) and 1.75 (CAI 3) under hypoxia in MDA-MB231 cells. BA showed additive effects in combination with irradiation. Taken together; our results suggest that BA and betulinyl sulfamates seem to be attractive substances to combine with radiotherapy; particularly for hypoxic breast cancer. PMID:26540049

  14. RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase DDX3

    PubMed Central

    Xie, Min; Vesuna, Farhad; Tantravedi, Saritha; Bol, Guus M.; Heerma van Voss, Marise R.; Nugent, Katriana; Malek, Reem; Gabrielson, Kathleen; van Diest, Paul J.; Tran, Phuoc T.; Raman, Venu

    2017-01-01

    Despite advances in diagnosis and treatment, prostate cancer is the most prevalent cancer in males and the second highest cause of cancer-related mortality. We identified an RNA helicase gene, DDX3 (DDX3X), which is overexpressed in prostate cancers, and whose expression is directly correlated with high Gleason scores. Knockdown of DDX3 in the aggressive prostate cancer cell lines DU145 and 22Rv1 resulted in significantly reduced clonogenicity. To target DDX3, we rationally designed a small molecule, RK-33, which docks into the ATP-binding domain of DDX3. Functional studies indicated that RK-33 preferentially bound to DDX3 and perturbed its activity. RK-33 treatment of prostate cancer cell lines DU145, 22Rv1, and LNCaP (which have high DDX3 levels) decreased proliferation and induced a G1 phase cell-cycle arrest. Conversely, the low DDX3–expressing cell line, PC3, exhibited few changes following RK-33 treatment. Importantly, combination studies using RK-33 and radiation exhibited synergistic effects both in vitro and in a xenograft model of prostate cancer demonstrating the role of RK-33 as a radiosensitizer. Taken together, these results indicate that blocking DDX3 by RK-33 in combination with radiation treatment is a viable option for treating locally advanced prostate cancer. PMID:27634756

  15. TOPK modulates tumour-specific radiosensitivity and correlates with recurrence after prostate radiotherapy

    PubMed Central

    Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S

    2017-01-01

    Background: Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Methods: Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. Results: TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G1/S transition and G2/M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. Conclusions: This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types. PMID:28677687

  16. TOPK modulates tumour-specific radiosensitivity and correlates with recurrence after prostate radiotherapy.

    PubMed

    Pirovano, Giacomo; Ashton, Thomas M; Herbert, Katharine J; Bryant, Richard J; Verrill, Clare L; Cerundolo, Lucia; Buffa, Francesca M; Prevo, Remko; Harrap, Iona; Ryan, Anderson J; Macaulay, Valentine; McKenna, William G; Higgins, Geoff S

    2017-08-08

    Tumour-specific radiosensitising treatments may enhance the efficacy of radiotherapy without exacerbating side effects. In this study we determined the radiation response following depletion or inhibition of TOPK, a mitogen-activated protein kinase kinase family Ser/Thr protein kinase that is upregulated in many cancers. Radiation response was studied in a wide range of cancer cell lines and normal cells using colony formation assays. The effect on cell cycle progression was assessed and the relationship between TOPK expression and therapeutic efficacy was studied in a cohort of 128 prostate cancer patients treated with radical radiotherapy. TOPK knockdown did not alter radiation response in normal tissues, but significantly enhanced radiosensitivity in cancer cells. This result was recapitulated in TOPK knockout cells and with the TOPK inhibitor, OTS964. TOPK depletion altered the G 1 /S transition and G 2 /M arrest in response to radiation. Furthermore, TOPK depletion increased chromosomal aberrations, multinucleation and apoptotic cell death after irradiation. These results suggest a possible role for TOPK in the radiation-induced DNA damage checkpoints. These findings have clinical relevance, as elevated TOPK protein expression was associated with poorer clinical outcomes in prostate cancer patients treated with radical radiotherapy. This study demonstrates that TOPK disruption may cause tumour-specific radiosensitisation in multiple different tumour types.

  17. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling

    PubMed Central

    Ko, A; Kanehisa, A; Martins, I; Senovilla, L; Chargari, C; Dugue, D; Mariño, G; Kepp, O; Michaud, M; Perfettini, J-L; Kroemer, G; Deutsch, E

    2014-01-01

    Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers. PMID:24037090

  18. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  19. Evaluation of Severe Combined Immunodeficiency and Combined Immunodeficiency Pediatric Patients on the Basis of Cellular Radiosensitivity

    PubMed Central

    Lobachevsky, Pavel; Woodbine, Lisa; Hsiao, Kuang-Chih; Choo, Sharon; Fraser, Chris; Gray, Paul; Smith, Jai; Best, Nickala; Munforte, Laura; Korneeva, Elena; Martin, Roger F.; Jeggo, Penny A.; Martin, Olga A.

    2016-01-01

    Pediatric patients with severe or nonsevere combined immunodeficiency have increased susceptibility to severe, life-threatening infections and, without hematopoietic stem cell transplantation, may fail to thrive. A subset of these patients have the radiosensitive (RS) phenotype, which may necessitate conditioning before hematopoietic stem cell transplantation, and this conditioning includes radiomimetic drugs, which may significantly affect treatment response. To provide statistical criteria for classifying cellular response to ionizing radiation as the measure of functional RS screening, we analyzed the repair capacity and survival of ex vivo irradiated primary skin fibroblasts from five dysmorphic and/or developmentally delayed pediatric patients with severe combined immunodeficiency and combined immunodeficiency. We developed a mathematical framework for the analysis of γ histone 2A isoform X foci kinetics to quantitate DNA-repair capacity, thus establishing crucial criteria for identifying RS. The results, presented in a diagram showing each patient as a point in a 2D RS map, were in agreement with findings from the assessment of cellular RS by clonogenic survival and from the genetic analysis of factors involved in the nonhomologous end-joining repair pathway. We provide recommendations for incorporating into clinical practice the functional assays and genetic analysis used for establishing RS status before conditioning. This knowledge would enable the selection of the most appropriate treatment regimen, reducing the risk for severe therapy-related adverse effects. PMID:26151233

  20. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    PubMed

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Targeting Phosphatidylinositide3-Kinase/Akt pathway by BKM120 for radiosensitization in hepatocellular carcinoma

    PubMed Central

    Liu, Wei-Lin; Gao, Ming; Tzen, Kai-Yuan; Tsai, Chiao-Ling; Hsu, Feng-Ming; Cheng, Ann-Lii; Cheng, Jason Chia-Hsien

    2014-01-01

    Tumor control of hepatocellular carcinoma by radiotherapy remains unsatisfactory. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway plays a critical role in inhibiting cancer cell death. Elevated PI3K/Akt activity is associated with increased cellular resistance to irradiation. Our aim was to determine whether the inhibition of PI3K/Akt activity by a PI3K inhibitor, BKM120, contributes to the increased sensitivity of liver cancer cells to irradiation. The hepatocellular carcinoma cell lines (Huh7 and BNL) were used to evaluate the in vitro synergism between BKM120 and irradiation. Balb/c mice bearing ectopic BNL xenografts were treated with BKM120 and/or radiotherapy to assess the in vivo response. BKM120 increased cell killing by radiation, increased the expression of apoptotic markers, and suppressed the repair of radiation-induced DNA double-strand breaks. BKM120 pretreatment inhibited radiation-induced Akt phosphorylation and enhanced the tumor-suppressive effect and radiation-induced tumor cell apoptosis in ectopic xenografts. Inhibition of mTOR phosphorylation by rapamycin enhanced the radiosensitivity of BKM120-treated hepatocellular carcinoma cells. The synergism between BKM120 and irradiation likely inhibits the activation of Akt by radiation, leading to increased cell apoptosis and suppression of DNA-double-strand breaks repair in hepatocellular carcinoma cells. These data suggest that the BKM120/radiation combination may be a strategy worthy of clinical trials. PMID:25004403

  2. Activating Akt1 mutations alter DNA double strand break repair and radiosensitivity

    PubMed Central

    Oeck, S.; Al-Refae, K.; Riffkin, H.; Wiel, G.; Handrick, R.; Klein, D.; Iliakis, G.; Jendrossek, V.

    2017-01-01

    The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects. Interestingly, DNA-PKcs directly phosphorylated Akt1 at S473 in an in vitro kinase assay but not vice-versa. Pharmacological inhibition of DNA-PKcs or Akt restored radiosensitivity in tumour cells expressing Akt1-E17K or Akt1-TDSD. In conclusion, Akt1-mediated radioresistance depends on its activation state and nuclear localization and is accessible to pharmacologic inhibition. PMID:28209968

  3. miR-25 modulates NSCLC cell radio-sensitivity through directly inhibiting BTG2 expression

    SciTech Connect

    He, Zhiwei, E-mail: carlhe@126.com; Liu, Yi, E-mail: cassieliu@126.com; Xiao, Bing, E-mail: rockg714@aliyun.com

    2015-02-13

    A large proportion of the NSCLC patients were insensitive to radiotherapy, but the exact mechanism is still unclear. This study explored the role of miR-25 in regulating sensitivity of NSCLC cells to ionizing radiation (IR) and its downstream targets. Based on measurement in tumor samples from NSCLC patients, this study found that miR-25 expression is upregulated in both NSCLC and radio-resistant NSCLC patients compared the healthy and radio-sensitive controls. In addition, BTG expression was found negatively correlated with miR-25a expression in the both tissues and cells. By applying luciferase reporter assay, we verified two putative binding sites between miR-25 andmore » BTG2. Therefore, BTG2 is a directly target of miR-25 in NSCLC cancer. By applying loss-and-gain function analysis in NSCLC cell lines, we demonstrated that miR-25-BTG2 axis could directly regulated BTG2 expression and affect radiotherapy sensitivity of NSCLC cells. - Highlights: • miR-25 is upregulated, while BTG2 is downregulated in radioresistant NSCLC patients. • miR-25 modulates sensitivity to radiation induced apoptosis. • miR-25 directly targets BTG2 and suppresses its expression. • miR-25 modulates sensitivity to radiotherapy through inhibiting BTG2 expression.« less

  4. Simple radiosensitizing of hypoxic tumor tissues by N2O/Br(-) mixture.

    PubMed

    Billik, P

    2015-07-01

    The radiosensitization model of hypoxic tumor tissues based on the N2O/Br(-) mixture is described. The well-documented radiolysis of water in the presence of N2O and Br(-) ions at a low concentration supports this model. An aqueous solution saturated with N2O gas during the radiolysis generates OH radicals in a large extent. In N2O/Br- media at pH<9, Br2 is formed. Br2 hydrolyzes in an aqueous solution to form a very reactive hypobromous (HOBr) acid. Such process is described by the following chemical reaction: H2O + Br(-) + N2O + ionizing radiation (IR) --> HOBr + OH(-). In vivo formed HOBr as a long-lived product with a high biological activity induces the hypoxic tumor cell damage via many unique mechanisms. A local application or inhalation of an N2O-O2 mixture before or during the radiotherapy to enhance the saturation of tissues with N2O is a key prerequisite. Since the extracellular concentration of Br(-) ions is very low (0.02-0.05 mM), an oral or local application of NaBr should be used to shift the extracellular concentration of Br(-) ions to the mM region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Runaway Train: A Leaky Radiosensitive SCID with Skin Lesions and Multiple Lymphomas.

    PubMed

    Fevang, Børre; Fagerli, Unn Merete; Sorte, Hanne; Aarset, Harald; Hov, Håkon; Langmyr, Marit; Keil, Thomas Morten; Bjørge, Ellen; Aukrust, Pål; Stray-Pedersen, Asbjørg; Gedde-Dahl, Tobias

    2018-01-01

    The nuclease Artemis is essential for the development of T-cell and B-cell receptors and repair of DNA double-strand breaks, and a loss of expression or function will lead to a radiosensitive severe combined immunodeficiency with no functional T-cells or B-cells (T-B-SCID). Hypomorphic mutations in the Artemis gene can lead to a functional, but reduced, T-cell and B-cell repertoire with a more indolent clinical course called "leaky" SCID. Here, we present the case of a young man who had increasingly aggressive lymphoproliferative skin lesions from 2 years of age which developed into multiple EBV+ B-cell lymphomas, where a hypomorphic mutation in the Artemis gene was found in a diagnostic race against time using whole exome sequencing. The patient was given a haploidentical stem cell transplant while in remission for his lymphomas and although the initial course was successful, he succumbed to a serious Pneumocystis jirovecii pneumonia 5 months after the transplant. The case underscores the importance of next-generation sequencing in the diagnosis of patients with suspected severe immunodeficiency.

  6. Time dependent modulation of tumor radiosensitivity by a pan HDAC inhibitor: abexinostat

    PubMed Central

    Rivera, Sofia; Leteur, Céline; Mégnin, Frédérique; Law, Frédéric; Martins, Isabelle; Kloos, Ioana; Depil, Stéphane; Modjtahedi, Nazanine; Perfettini, Jean Luc; Hennequin, Christophe; Deutsch, Eric

    2017-01-01

    Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in vitro in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.6 and 2.5 for A549 and H460. We found, by immunofluorescence staining, flow cytometry assays and western blotting, in abexinostat treated cells, increasing radio-induced caspase dependent apoptosis and persistent DNA double-strand breaks associated with decreased DNA damage signalling and repair. Interestingly, we demonstrated on nude mice xenografts that abexinostat potentiates tumor growth delay in combined modality treatments associating not only abexinostat and irradiation but also when adding cisplatin. Altogether, our data demonstrate in vitro and in vivo anti-tumor effect potentiation by abexinostat combined with irradiation in NSCLC. Moreover, our work suggests for the first time to our knowledge promising triple combination opportunities with HDACi, irradiation and cisplatin which deserves further investigations and could be of major interest in the treatment of NSCLC. PMID:28915585

  7. [Gynecological malignant tumor related multiple primary malignant neoplasms: clinical analysis of 30 cases].

    PubMed

    Shi, Li; Zhou, Shulin; Jiang, Yi; Wan, Yicong; Ma, Jingjing; Fu, Shilong; Cheng, Wenjun

    2014-03-01

    To investigate the clinical features of gynecological malignant tumor related multiple primary malignant neoplasms (MPMN). Apply retrospective and comprehensive analysis to the clinical data of 30 patients with gynecological malignant tumor related MPMN. Synchronous MPMN were found in 9 patients. Their average age was 50.2 years old and their median age was 49 years old. The neoplasms were located at ovary, uterus, cervix, breast and intestine. Metachronous MPMN were found in 21 patients. Their average age was 57.7 and their median age was 57 years old. The median interval between the first and the second primary malignant neoplasm was 4.0 years. The neoplasms were located at breast, ovary, uterus, gastrointestinal tract, uterine cervix, lung etc. In 30 cases, 26 of them were treated by surgical operation and further adjunctive treatment of chemotherapy and (or) radiotherapy was conducted as per the neoplasm staging and its pathological results. The rest 4 patients (first primary malignant neoplasms were excised from 3 of them and another one was not treated by surgical operation) received adjunctive treatment of chemotherapy and (or) radiotherapy. Followed ups, which varied from 6 to 60 months, were made to 29 patients and 20 out of the 29 were alive.5-year survival rate of patients with gynecological malignant tumor related MPMN was 47.8%, 2-year survival rate was 73.9%, and 1-year survival rate was 88.6%. Pay more attention to the patients with gynecological malignant tumor related MPMN, examine the high-risk patients with malignant tumor comprehensively, identify whether it is recurrence, metastasis or new growth of malignant neoplasm, and further ensure early diagnosis and proper treatment, avoiding misdiagnosis and missed diagnosis.

  8. Multiple metastatic malignant melanoma presenting intraluminal gallbladder bleeding.

    PubMed

    Onozawa, Hisashi; Saito, Motonobu; Yoshida, Sayaka; Sakuma, Takeshi; Matsuzaki, Masami; Katagata, Naoto; Watanabe, Fumiaki; Yamaguchi, Yoshiko; Takenoshita, Seiichi; Nomizu, Tadashi

    2014-01-01

    We report a case of malignant melanoma of unknown primary origin presenting metastasis in various organs as well as intraluminal gallbladder bleeding due to gallbladder metastasis. A 58-year-old woman was diagnosed with stage IV metastatic malignant melanoma. Because she exhibited acute cholecystitis and hemobilia due to malignant melanoma of the gallbladder, laparoscopic cholecystectomy was performed to relieve the symptoms. The resected gallbladder specimen showed a pedunculated black mass indicating malignant melanoma. Pathologic examination and immunohistochemical analysis revealed malignant melanoma of the gallbladder. Only a few cases of gallbladder malignant melanoma presenting hemobilia have been reported; here we present our case, including the experience of multidisciplinary treatment.

  9. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats.

    PubMed

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-05-10

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function.

  10. The Effect of VPA on Increasing Radiosensitivity in Osteosarcoma Cells and Primary-Culture Cells from Chemical Carcinogen-Induced Breast Cancer in Rats

    PubMed Central

    Liu, Guochao; Wang, Hui; Zhang, Fengmei; Tian, Youjia; Tian, Zhujun; Cai, Zuchao; Lim, David; Feng, Zhihui

    2017-01-01

    This study explored whether valproic acid (VPA, a histone deacetylase inhibitor) could radiosensitize osteosarcoma and primary-culture tumor cells, and determined the mechanism of VPA-induced radiosensitization. The working system included osteosarcoma cells (U2OS) and primary-culture cells from chemical carcinogen (DMBA)-induced breast cancer in rats; and clonogenic survival, immunofluorescence, fluorescent in situ hybridization (FISH) for chromosome aberrations, and comet assays were used in this study. It was found that VPA at the safe or critical safe concentration of 0.5 or 1.0 mM VPA could result in the accumulation of more ionizing radiation (IR)-induced DNA double strand breaks, and increase the cell radiosensitivity. VPA-induced radiosensitivity was associated with the inhibition of DNA repair activity in the working systems. In addition, the chromosome aberrations including chromosome breaks, chromatid breaks, and radial structures significantly increased after the combination treatment of VPA and IR. Importantly, the results obtained by primary-culture cells from the tissue of chemical carcinogen-induced breast cancer in rats further confirmed our findings. The data in this study demonstrated that VPA at a safe dose was a radiosensitizer for osteosarcoma and primary-culture tumor cells through suppressing DNA-double strand breaks repair function. PMID:28489060

  11. Radiosensitivity of fibroblasts obtained from a cafe-au-lait spot and normal-appearing skin of a patient with neurofibromatosis (NF-6)

    SciTech Connect

    Hannan, M.A.; Smith, B.P.; Sigut, D.

    Fibroblast cells derived from a cafe-au-lait spot and normal-appearing skin of a neurofibromatosis (NF-6) patient were studied for radiosensitivity in comparison with two normal cell lines used as controls. No difference in radiosensitivity was observed between the patient's cell lines and the controls using acute gamma-irradiation. However, a markedly increased radiosensitivity of the fibroblasts obtained from the patient's skin of normal appearance was demonstrated after chronic gamma-irradiation. The cells from the cafe-au-lait spot showed intermediate sensitivity to chronic irradiation as compared with the control cell lines and the fibroblasts derived from the normal skin of the patient. These results showedmore » the usefulness of chronic irradiation in detecting increased cellular radiosensitivity which may result from a unique DNA repair defect in an NF patient. We suggest that enhanced genetic changes in radiosensitive NF patients may lead to formation of cafe-au-lait lesions and certain tumors. Such a transformation may be associated with production of radiotolerant cells.« less

  12. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    PubMed

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Topology and dynamics of the interaction between 5-nitroimidazole radiosensitizers and duplex DNA studied by a combination of docking, molecular dynamic simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramalho, Teodorico C.; França, Tanos C. C.; Cortopassi, Wilian A.; Gonçalves, Arlan S.; da Silva, Alan W. S.; da Cunha, Elaine F. F.

    2011-04-01

    In spite of recent progress, cancer is still one of the most serious health problems of mankind. Recently, it has been discovered that tumor hypoxia can be exploited for selective anticancer treatment using radiosensitizers that are activated only under hypoxic conditions. The most commonly used radiosensitizers are the 5-nitroimidazole derivatives. The toxicity of bioreductive anticancer drugs, such as radiosensitizers is associated to their interaction with DNA. In this work, we have investigated the interaction between the model radiosensitizers metronizole, nimorazole and secnidazole with salmon DNA in order to get insights on the drug-macromolecule interactions. To this end, we have employed NMR techniques (PFG NMR spectra and spin-lattice relaxation rates) in combination with theoretical tools, such as docking calculations and MD simulations. Initially, results show that the δ values are not the most appropriated NMR parameters to map the interaction topology of drug-macromolecule complexes. Furthermore our data indicate that radiosensitizers, in the inactive form, interact considerably with DNA, significantly increasing its toxicity. In fact, we obtained a good agreement between that technique and docking and MD simulations. This suggests that improvements in the structures of these molecules in order to achieve new and more selective bioreductive anticancer drugs are still necessary.

  14. Second malignancies in children: the usual suspects?

    PubMed

    Moppett, J; Oakhill, A; Duncan, A W

    2001-06-01

    The aim of this article is to provide an up to date review of second malignant neoplasms (SMN's) following treatment for childhood cancer, referring to their incidence, the role of genetic factors, and how the primary malignancy and treatment received influence the type, site and prognosis of SMN's. The role of genetic factors will be discussed as far as they impact upon a predisposition to later development of SMN's. The primary malignancies that have important associations with SMN's will then be discussed, in particular Hodgkin's disease, retinoblastoma and acute lymphoblastic leukaemia. The important second malignancies will be highlighted, including tumours of the CNS and thyroid, osteosarcoma, secondary acute myeloid leukaemia and melanoma. Emphasis will be put upon identifying which patients are most likely to suffer from these tumours. An important part of the article are case histories. These are provided in combination with illustrations as a useful adjunct to the text, with a particular emphasis on radiological features, diagnosis and screening. Finally, the important but different roles of causal agents, in particular chemotherapy and radiotherapy are highlighted.

  15. Hyperparathyroidism After Irradiation for Childhood Malignancy

    SciTech Connect

    McMullen, Todd; Bodie, Greg; Gill, Anthony

    Purpose: To examine the occurrence of hyperparathyroidism in a cohort of patients undergoing combined parathyroid and thyroid surgery after previous head-and-neck irradiation for childhood malignancy. Methods and Materials: This is a retrospective cohort study for the years 1996 to 2007. The study group comprised patients undergoing surgery in University of Sydney Endocrine Surgical Unit who had received previous head-and-neck irradiation in childhood and who were identified as having pathologic thyroid and parathyroid characteristics. Results: A total of 53 patients were identified in whom head-and-neck irradiation for the treatment of childhood malignancy had been documented. In each of the cases, thyroidmore » disease was the primary reason for referral for surgery. Five of these patients (10%) were found to exhibit coexisting hyperparathyroidism. The latency period for hyperparathyroidism was less than 20 years in 4 of the 5 cases. There were four conventional parathyroid adenomas and one parathyroid lipoadenoma. All patients exhibited a significant decrease in postoperative calcium levels after surgery. Conclusions: To our knowledge, this is the first study to document the significant risk of hyperparathyroidism after radiation exposure for childhood malignancy. The timeframe for development of disease is much shorter than that published for individuals who have undergone irradiation for benign diseases. High doses of therapeutic radiation at a young age make childhood survivors of malignancy at especially high risk for developing hyperparathyroidism.« less

  16. [Primary Malignant Melanoma of the Gallbladder].

    PubMed

    Ujiie, Daisuke; Miyamoto, Kotaro; Onozawa, Hisashi; Hoshi, Nobuhiro; Nakayama, Koichi; Urazumi, Kojiro; Takenoshita, Seiichi; Kusakabe, Takashi

    2016-11-01

    Primary malignant melanoma of the gallbladder is a rare disease, and 37 cases have been reported in the literature.The current patient was a 78-year-old man who was admitted with a pelvic tumor and left leg edema due to compression of the external iliac vein by the pelvic tumor.The edema improved following resection of the tumor, which was diagnosed at pathology as a malignant melanoma.After surgery, the patient became anorexic and complained of discomfort in the upper right abdomen.A whole body FDG-PET scan demonstrated significant uptake in the gallbladder and in the lymph nodes of the lower abdomen.The patient underwent open cholecystectomy, and the pathological diagnosis was malignant melanoma. Junctional activity was seen in the gallbladder, suggesting that this was the primary site.No melanocytic lesions of the skin or eyes were detected, further supporting the diagnosis of primary malignant melanoma of the gallbladder.Chemotherapy was initiated, but the patient died on February 28, 2016.

  17. Platelet Glycoprotein lb-1X and Malignancy

    DTIC Science & Technology

    2010-09-01

    supporting the accumulation of more platelets and the elaboration of a fibrin - rich network produced by coagulation factors. This paradigm has been...a platelet - rich thrombus by tethering the platelet to a thrombogenic surface. Several ligands binding to GP Ib-IX have been identified, including...08-1-0576 TITLE: Platelet Glycoprotein lb-1X and Malignancy PRINCIPAL INVESTIGATOR: Dr. Jerry Ware

  18. Platelet Glycoprotein Ib-IX and Malignancy

    DTIC Science & Technology

    2010-09-01

    provide a unique microenvironment supporting the accumulation of more platelets and the elaboration of a fibrin - rich network produced by coagulation...process and can initiate the formation of a platelet - rich thrombus by tethering the platelet to a thrombogenic surface. Several ligands binding to GP Ib... Platelet Glycoprotein Ib-IX and Malignancy PRINCIPAL INVESTIGATOR: Jerry Ware, Ph.D

  19. Malignancy in Noonan syndrome and related disorders.

    PubMed

    Smpokou, P; Zand, D J; Rosenbaum, K N; Summar, M L

    2015-12-01

    Noonan syndrome (NS) and related disorders, such as NS with multiple lentigines (formerly called LEOPARD syndrome), cardiofaciocutaneous syndrome, and Costello syndrome, constitute an important group of developmental malformation syndromes with variable clinical and molecular features. Their underlying pathophysiologic mechanism involves dysregulation of the Ras/mitogen-activated protein kinase signaling pathway, an essential mediator of developmental and growth processes in the prenatal and postnatal setting. Malignant tumor development is an important complication encountered in other RASopathies, such as neurofibromatosis type 1, but the neoplastic risks and incidence of malignant tumors are less clearly defined in NS and related disorders of the Noonan spectrum. Malignant tumor development remains an important complication variably seen in the RASopathies and, thus, a clear understanding of the underlying risks is essential for appropriate clinical care in this patient population. This review discusses previously published reports of malignancies in individuals with RASopathies of the Noonan spectrum. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Inonotosis in Patient with Hematologic Malignancy

    PubMed Central

    Kwon, Mi; Guinea, Jesús; Escribano, Pilar; Jiménez, María del Carmen Martínez; Pulido, Ana; Parra, Verónica; Serrano, David; Gayoso, Jorge; Martín, José Luis Díez; Bouza, Emilio

    2018-01-01

    We report a lung-invasive fungal disease with possible cutaneous needle tract seeding in a patient with a febrile neutropenia caused by the Basidiomycetes mold Inonotus spp. Although rare, Inonotus spp. should be added to the list of microorganisms causing invasive fungal disease in neutropenic patients with hematologic malignancies. PMID:29260664

  1. [Relation of vaccination to childhood malignancy].

    PubMed

    Neumann, G

    1980-01-18

    74 German legitimate children who have died 1972/73 by a malignant neoplasm did not differ significantly from healthy controls by their vaccination history. This holds true for vaccination against tetanus, poliomyelitis, smallpox, and tuberculosis. By BCG-vaccination neither a promoting nor a protecting effect could be discovered. Controls were more often vaccinated against diphtheria than cases.

  2. Sequential Stenting for Extensive Malignant Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Tei, Keiko; Yamamoto, Ryoji

    2014-01-01

    Purpose: Malignant airway stenosis extending from the bronchial bifurcation to the lower lobar orifice was treated with airway stenting. We herein examine the effectiveness of airway stenting for extensive malignant airway stenosis. Methods: Twelve patients with extensive malignant airway stenosis underwent placement of a silicone Dumon Y stent (Novatech, La Ciotat, France) at the tracheal bifurcation and a metallic Spiral Z-stent (Medico’s Hirata, Osaka, Japan) at either distal side of the Y stent. We retrospectively analyzed the therapeutic efficacy of the sequential placement of these silicone and metallic stents in these 12 patients. Results: The primary disease was lung cancer in eight patients, breast cancer in two patients, tracheal cancer in one patient, and thyroid cancer in one patient. The median survival period after airway stent placement was 46 days. The Hugh–Jones classification and performance status improved in nine patients after airway stenting. One patient had prolonged hemoptysis and died of respiratory tract hemorrhage 15 days after the treatment. Conclusion: Because the initial disease was advanced and aggressive, the prognosis after sequential airway stent placement was significantly poor. However, because respiratory distress decreased after the treatment in most patients, this treatment may be acceptable for selected patients with extensive malignant airway stenosis. PMID:25273272

  3. Hyperparathyroidism after irradiation for childhood malignancy.

    PubMed

    McMullen, Todd; Bodie, Greg; Gill, Anthony; Ihre-Lundgren, Catharina; Shun, Albert; Bergin, Mary; Stevens, Graham; Delbridge, Leigh

    2009-03-15

    To examine the occurrence of hyperparathyroidism in a cohort of patients undergoing combined parathyroid and thyroid surgery after previous head-and-neck irradiation for childhood malignancy. This is a retrospective cohort study for the years 1996 to 2007. The study group comprised patients undergoing surgery in the University of Sydney Endocrine Surgical Unit who had received previous head-and-neck irradiation in childhood and who were identified as having pathologic thyroid and parathyroid characteristics. A total of 53 patients were identified in whom head-and-neck irradiation for the treatment of childhood malignancy had been documented. In each of the cases, thyroid disease was the primary reason for referral for surgery. Five of these patients (10%) were found to exhibit coexisting hyperparathyroidism. The latency period for hyperparathyroidism was less than 20 years in 4 of the 5 cases. There were four conventional parathyroid adenomas and one parathyroid lipoadenoma. All patients exhibited a significant decrease in postoperative calcium levels after surgery. To our knowledge, this is the first study to document the significant risk of hyperparathyroidism after radiation exposure for childhood malignancy. The timeframe for development of disease is much shorter than that published for individuals who have undergone irradiation for benign diseases. High doses of therapeutic radiation at a young age make childhood survivors of malignancy at especially high risk for developing hyperparathyroidism.

  4. Genetics of Bladder Malignant Tumors in Childhood

    PubMed Central

    Zangari, Andrea; Zaini, Johan; Gulìa, Caterina

    2016-01-01

    Bladder masses are represented by either benign or malignant entities. Malignant bladder tumors are frequent causes of disease and death in western countries. However, in children they are less common. Additionally, different features are found in childhood, in which non epithelial tumors are more common than epithelial ones. Rhabdomyosarcoma is the most common pediatric bladder tumor, but many other types of lesions may be found, such as malignant rhabdoid tumor (MRT), inflammatory myofibroblastic tumor and neuroblastoma. Other rarer tumors described in literature include urothelial carcinoma and other epithelial neoplasms. Rhabdomyosarcoma is associated to a variety of genetic syndromes and many genes are involved in tumor development. PAX3-FKHR and PAX7-FKHR (P-F) fusion state has important implications in the pathogenesis and biology of RMS, and different genes alterations are involved in the pathogenesis of P-F negative and embryonal RMS, which are the subsets of tumors most frequently affecting the bladder. These genes include p53, MEF2, MYOG, Ptch1, Gli1, Gli3, Myf5, MyoD1, NF1, NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, IGF1R, PDGFRA, ERBB2/4, MET, BCOR. Malignant rhabdoid tumor (MRT) usually shows SMARCB1/INI1 alterations. Anaplastic lymphoma kinase (ALK) gene translocations are the most frequently associated alterations in inflammatory myofibroblastic tumor (IMT). Few genes alterations in urothelial neoplasms have been reported in the paediatric population, which are mainly related to deletion of p16/lnk4, overexpression of CK20 and overexpression of p53. Here, we reviewed available literature to identify genes associated to bladder malignancies in children and discussed their possible relationships with these tumors. PMID:27013922

  5. Catatonic Symptoms Appearing before Autonomic Symptoms Help Distinguish Neuroleptic Malignant Syndrome from Malignant Catatonia.

    PubMed

    Komatsu, Takayuki; Nomura, Tomohisa; Takami, Hiroki; Sakamoto, So; Mizuno, Keiko; Sekii, Hajime; Hatta, Kotaro; Sugita, Manabu

    A 42-year-old Japanese woman with a 10-year history of schizophrenia was admitted due to a disturbance in consciousness that met the diagnostic criteria for both neuroleptic malignant syndrome (NMS) and malignant catatonia. Despite systemic supportive treatments, the catatonic symptoms preceding autonomic symptoms persisted. The symptoms improved after lorazepam administration, leading to a retrospective diagnosis of malignant catatonia. Catatonia is thought to be caused by a dysfunction of ganmma-aminobutyric acid type A receptors in the cortico-cortical networks of the frontal lobes, which causes hypoactivity of the dopaminergic transmission in the subcortical areas. Identifying the catatonic symptoms preceding autonomic symptoms could aid in distinguishing malignant catatonia from NMS.

  6. Catatonic Symptoms Appearing before Autonomic Symptoms Help Distinguish Neuroleptic Malignant Syndrome from Malignant Catatonia

    PubMed Central

    Komatsu, Takayuki; Nomura, Tomohisa; Takami, Hiroki; Sakamoto, So; Mizuno, Keiko; Sekii, Hajime; Hatta, Kotaro; Sugita, Manabu

    2016-01-01

    A 42-year-old Japanese woman with a 10-year history of schizophrenia was admitted due to a disturbance in consciousness that met the diagnostic criteria for both neuroleptic malignant syndrome (NMS) and malignant catatonia. Despite systemic supportive treatments, the catatonic symptoms preceding autonomic symptoms persisted. The symptoms improved after lorazepam administration, leading to a retrospective diagnosis of malignant catatonia. Catatonia is thought to be caused by a dysfunction of ganmma-aminobutyric acid type A receptors in the cortico-cortical networks of the frontal lobes, which causes hypoactivity of the dopaminergic transmission in the subcortical areas. Identifying the catatonic symptoms preceding autonomic symptoms could aid in distinguishing malignant catatonia from NMS. PMID:27725556

  7. Malignant Melanoma Presenting as a Mediastinal Malignant Melanoma Presenting as a Mediastinal Unknown Primary Origin?

    PubMed

    Pujani, Mukta; Hassan, Mohd Jaseem; Jetley, Sujata; Raina, Prabhat Kumar; Kumar, Mukesh

    2017-01-01

    The most common site of primary malignant melanoma is the skin, however, virtually any organ system may be involved. Metastatic melanoma of unknown primary origin accounts for approximately 2-6% of all melanoma cases. The mediastinum as the site for malignant melanoma is extremely rare, both as a primary or metastatic lesion. Primary malignant melanoma of mediastinum is very rare with only a handful of reports in the literature. We hereby report a rare case of malignant melanoma of mediastinum in a 31 year old male who was initially misdiagnosed on fine needle aspiration cytology as adenocarcinoma for which he received chemotherapy with clinical deterioration. Even on extensive meticulous search, no primary was discovered.

  8. Treatment Option Overview (Osteosarcoma and Malignant Fibrous Histiocytoma of Bone)

    MedlinePlus

    ... Treatment Research Osteosarcoma and Malignant Fibrous Histiocytoma of Bone Treatment (PDQ®)–Patient Version General Information About Osteosarcoma and Malignant Fibrous Histiocytoma of Bone Go to Health Professional Version Key Points Osteosarcoma ...

  9. Malignant Mesothelioma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Malignant mesothelioma treatment may include surgery, radiation therapy, and chemotherapy. Get detailed information about the diagnosis and treatment of newly diagnosed and recurrent malignant mesothelioma in this summary for clinicians.

  10. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  11. Skull infarction in a patient with malignant fibrous histiocytoma.

    PubMed

    Nagle, C E; Morayati, S J; LeDuc, M A

    1987-09-01

    The authors describe a case of a skull infarction initially suspected to be an isolated, remote metastasis in a patient diagnosed with soft tissue malignant fibrous histiocytoma. Osseous malignant fibrous histiocytoma has been reported to occur within a bone infarction but the presence of a benign bone infarction remote from a soft tissue malignant fibrous histiocytoma has not been reported previously. Bone infarctions and malignant fibrous histiocytomas are briefly reviewed.

  12. Poor Prognosis Associated With Human Papillomavirus α7 Genotypes in Cervical Carcinoma Cannot Be Explained by Intrinsic Radiosensitivity

    SciTech Connect

    Hall, John S.; Iype, Rohan; Armenoult, Lucile S.C.

    2013-04-01

    Purpose: To investigate the relationship between human papillomavirus (HPV) genotype and outcome after radiation therapy and intrinsic radiosensitivity. Methods and Materials: HPV genotyping was performed on cervix biopsies by polymerase chain reaction using SPF-10 broad-spectrum primers, followed by deoxyribonucleic acid enzyme immunoassay and genotyping by reverse hybridization line probe assay (LiPA{sub 25}) (version 1) (n=202). PapilloCheck and quantitative reverse transcription-polymerase chain reaction were used to genotype cervix cancer cell lines (n=16). Local progression-free survival after radiation therapy alone was assessed using log-rank and Cox proportionate hazard analyses. Intrinsic radiosensitivity was measured as surviving fraction at 2 Gy (SF2) using clonogenicmore » assays. Results: Of the 202 tumors, 107 (53.0%) were positive for HPV16, 29 (14.4%) for HPV18, 9 (4.5%) for HPV45, 23 (11.4%) for other HPV genotypes, and 22 (10.9%) were negative; 11 (5.5%) contained multiple genotypes, and 1 tumor was HPV X (0.5%). In 148 patients with outcome data, those with HPVα9-positive tumors had better local progression-free survival compared with α7 patients in univariate (P<.004) and multivariate (hazard ratio 1.54, 95% confidence interval 1.11-1.76, P=.021) analyses. There was no difference in the median SF2 of α9 and α7 cervical tumors (n=63). In the cell lines, 9 were α7 and 4 α9 positive and 3 negative. There was no difference in SF2 between α9 and α7 cell lines (n=14). Conclusion: The reduced radioresponsiveness of α7 cervical tumors is not related to intrinsic radiosensitivity.« less

  13. Sodium Selenite Radiosensitizes Hormone-Refractory Prostate Cancer Xenograft Tumors but Not Intestinal Crypt Cells In Vivo

    SciTech Connect

    Tian Junqiang; Ning Shouchen; Knox, Susan J., E-mail: sknox@stanford.ed

    Purpose: We have previously shown that sodium selenite (SSE) increases radiation-induced cell killing of human prostate carcinoma cells in vitro. In this study we further evaluated the in vivo radiosensitizing effect of SSE in prostate cancer xenograft tumors and normal radiosensitive intestinal crypt cells. Methods and Materials: Immunodeficient (SCID) mice with hormone-independent LAPC-4 (HI-LAPC-4) and PC-3 xenograft tumors (approximately 200 mm{sup 3}) were divided into four groups: control (untreated), radiation therapy (XRT, local irradiation), SSE (2 mg/kg, intraperitoneally, 3 times/week), and XRT plus SSE. The XRT was given at the beginning of the regimen as a single dose of 5more » Gy for HI-LAPC-4 tumors and a single dose of 7 Gy followed by a fractional dose of 3 Gy/d for 5 days for PC-3 tumors. The tumor volume was measured 3 times per week. The radiosensitizing effect of SSE on normal intestinal epithelial cells was assessed by use of a crypt cell microcolony assay. Results: In the efficacy study, SSE alone significantly inhibited the tumor growth in HI-LAPC-4 tumors but not PC-3 tumors. Sodium selenite significantly enhanced the XRT-induced tumor growth inhibition in both HI-LAPC-4 and PC-3 tumors. In the toxicity study, SSE did not affect the intestinal crypt cell survival either alone or in combination with XRT. Conclusions: Sodium selenite significantly enhances the effect of radiation on well-established hormone-independent prostate tumors and does not sensitize the intestinal epithelial cells to radiation. These results suggest that SSE may increase the therapeutic index of XRT for the treatment of prostate cancer.« less

  14. DW-MRI as a Predictive Biomarker of Radiosensitization of GBM through Targeted Inhibition of Checkpoint Kinases.

    PubMed

    Williams, Terence M; Galbán, Stefanie; Li, Fei; Heist, Kevin A; Galbán, Craig J; Lawrence, Theodore S; Holland, Eric C; Thomae, Tami L; Chenevert, Thomas L; Rehemtulla, Alnawaz; Ross, Brian D

    2013-04-01

    The inherent treatment resistance of glioblastoma (GBM) can involve multiple mechanisms including checkpoint kinase (Chk1/2)-mediated increased DNA repair capability, which can attenuate the effects of genotoxic chemotherapies and radiation. The goal of this study was to evaluate diffusion-weighted magnetic resonance imaging (DW-MRI) as a biomarker for Chk1/2 inhibitors in combination with radiation for enhancement of treatment efficacy in GBM. We evaluated a specific small molecule inhibitor of Chk1/2, AZD7762, in combination with radiation using in vitro human cell lines and in vivo using a genetically engineered GBM mouse model. DW-MRI and T1-contrast MRI were used to follow treatment effects on intracranial tumor cellularity and growth rates, respectively. AZD7762 inhibited clonal proliferation in a panel of GBM cell lines and increased radiosensitivity in p53-mutated GBM cell lines to a greater extent compared to p53 wild-type cells. In vivo efficacy of AZD7762 demonstrated a dose-dependent inhibitory effect on GBM tumor growth rate and a reduction in tumor cellularity based on DW-MRI scans along with enhancement of radiation efficacy. DW-MRI was found to be a useful imaging biomarker for the detection of radiosensitization through inhibition of checkpoint kinases. Chk1/2 inhibition resulted in antiproliferative activity, prevention of DNA damage-induced repair, and radiosensitization in preclinical GBM tumor models, both in vitro and in vivo. The effects were found to be maximal in p53-mutated GBM cells. These results provide the rationale for integration of DW-MRI in clinical translation of Chk1/2 inhibition with radiation for the treatment of GBM.

  15. Radio-sensitization by Piper longumine of human breast adenoma MDA-MB-231 cells in vitro.

    PubMed

    Yao, Jian-Xin; Yao, Zhi-Feng; Li, Zhan-Feng; Liu, Yong-Biao

    2014-01-01

    The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose (D0), quasi-threshold dose (Dq) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM).Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA- MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

  16. Hepatocytes Determine the Hypoxic Microenvironment and Radiosensitivity of Colorectal Cancer Cells Through Production of Nitric Oxide That Targets Mitochondrial Respiration

    SciTech Connect

    Jiang, Heng; Verovski, Valeri N.; Leonard, Wim

    2013-03-01

    Purpose: To determine whether host hepatocytes may reverse hypoxic radioresistance through nitric oxide (NO)-induced oxygen sparing, in a model relevant to colorectal cancer (CRC) liver metastases. Methods and Materials: Hepatocytes and a panel of CRC cells were incubated in a tissue-mimetic coculture system with diffusion-limited oxygenation, and oxygen levels were monitored by an oxygen-sensing fluorescence probe. To activate endogenous NO production, cocultures were exposed to a cytokine mixture, and the expression of inducible nitric oxide synthase was analyzed by reverse transcription–polymerase chain reaction, Western blotting, and NO/nitrite production. The mitochondrial targets of NO were examined by enzymatic activity. To assessmore » hypoxic radioresponse, cocultures were irradiated and reseeded for colonies. Results: Resting hepatocytes consumed 10-40 times more oxygen than mouse CT26 and human DLD-1, HT29, HCT116, and SW480 CRC cells, and thus seemed to be the major effectors of hypoxic conditioning. As a result, hepatocytes caused uniform radioprotection of tumor cells at a 1:1 ratio. Conversely, NO-producing hepatocytes radiosensitized all CRC cell lines more than 1.5-fold, similar to the effect of selective mitochondrial inhibitors. The radiosensitizing effect was associated with a respiratory self-arrest of hepatocytes at the level of aconitase and complex II, which resulted in profound reoxygenation of tumor cells through oxygen sparing. Nitric oxide–producing hepatocytes were at least 10 times more active than NO-producing macrophages to reverse hypoxia-induced radioresistance. Conclusions: Hepatocytes were the major determinants of the hypoxic microenvironment and radioresponse of CRC cells in our model of metabolic hypoxia. We provide evidence that reoxygenation and radiosensitization of hypoxic CRC cells can be achieved through oxygen sparing induced by endogenous NO production in host hepatocytes.« less

  17. Equol as a potent radiosensitizer in estrogen receptor-positive and -negative human breast cancer cell lines.

    PubMed

    Taghizadeh, Bita; Ghavami, Laleh; Nikoofar, Alireza; Goliaei, Bahram

    2015-07-01

    Breast cancer is the most common cause of cancer death among women worldwide, and diet plays an important role in its prevention and progression. Radiotherapy has a limited but important role in the management of nearly every stage of breast cancer. We studied whether equol, the major metabolite of the soybean isoflavone daidzein, could enhance radiosensitivity in two human breast cancer cell lines (T47D and MDA-MB-231). MTT assay was used to examine equol's effect on cell viability. Sensitivity of cells to equol, radiation and a combination of both was determined by colonogenic assays. Induction of apoptosis by equol, radiation and the combination of both was also determined by acridine orange/ethidium bromide double staining fluorescence microscopy. DNA strand breaks were assessed by Comet assay. MTT assay showed that equol (0.1-350 μM) inhibited MDA-MB-231 and T47D cell growth in a time- and dose-dependent manner. Treatment of cells with equol for 72 h (MDA-MB-231) and 24 h (T47D) was found to inhibit cell growth with IC50 values of 252 μM and 228 μM, respectively. Furthermore, pretreatment of cells with 50 μM equol for 72 h (MDA-MB-231) and 24 h (T47D) sensitized the cells to irradiation. Equol was also found to enhance radiation-induced apoptosis. Comet assay results showed that the radiosensitizing effect of equol was accompanied by increased radiation-induced DNA damages. These results suggest for the first time that equol can be considered as a radiosensitizing agent and its effects may be due to increasing cell death following irradiation, increasing the remaining radiation-induced DNA damage and thus reducing the surviving fraction of irradiated cells.

  18. Silencing of ATM expression by siRNA technique contributes to glioma stem cell radiosensitivity in vitro and in vivo.

    PubMed

    Li, Yan; Li, Luchun; Wu, Zhijuan; Wang, Lulu; Wu, Yongzhong; Li, Dairong; Ma, Uiwen; Shao, Jianghe; Yu, Huiqing; Wang, Donglin

    2017-07-01

    Evidence has shown that both high expression of the ataxia-telangiectasia mutated (ATM) gene and glioma stem cells (GSCs) are responsible for radioresistance in glioma. Thus, we hypothesized that brain tumor radiosensitivity may be enhanced via silencing of the ATM gene in GSCs. In the present study we successfully induced GSCs from two cell lines and used CD133 and nestin to identify GSCs. A lentivirus was used to deliver siRNA-ATMPuro (A group) to GSCs prior to radiation, while siRNA-HKPuro (N group) and GSCs (C group) were used as negative and blank controls, respectively. RT-qPCR and western blotting were performed to verify the efficiency of the siRNA-ATM technique. The expression of the ATM gene and ATM protein were significantly downregulated post-transfection. Cell Counting Kit-8 (CCK-8) and colony formation assays revealed that the A group demonstrated weak cell proliferation and lower survival fractions post-irradiation compared to the C/N groups. Flow cytometry was used to examine the percentage of cell apoptosis and G2 phase arrest, which were both higher in the A group than in the C/N groups. We found that the comet tail percentage evaluated by comet assay was higher in the A group than in the C/N groups. After radiation treatment, three radiosensitive genes [p53, proliferating cell nuclear antigen (PCNA), survivin] exhibited a decreasing tendency as determined by RT-qPCR. Mice underwent subcutaneous implantation, followed by radiation, and the resulting necrosis and hemorrhage were more obvious in the A group than in the N groups. In conclusion, silencing of ATM via the siRNA technique improved radiosensitivity of GSCs both in vitro and in vivo.

  19. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    SciTech Connect

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  20. Hyperthermia enhances radiosensitivity of colorectal cancer cells through ROS inducing autophagic cell death.

    PubMed

    Ba, Ming-Chen; Long, Hui; Wang, Shuai; Wu, Yin-Bing; Zhang, Bo-Huo; Yan, Zhao-Fei; Yu, Fei-Hong; Cui, Shu-Zhong

    2018-04-01

    Hyperthermia (HT) enhances the anti-cancer effects of radiotherapy (RT), but the precise biochemical mechanisms involved are unclear. This study was aim to investigate if mild HT sensitizes colorectal cancer cells to RT through reactive oxygen species (ROS)-inducing autophagic cell death in a mice model of HCT116 human colorectal cancer. HCT116 mice model were randomly divided into five groups: mock group, hyperthermia group (HT), radiotherapy group (RT), HT + RT group, and HT + RT +N-acetyl L-cysteine (NAC) group (HT + CT + NAC). After four weeks of treatment, cancer growth inhibition, rate and mitochondrial membrane potential were measured with MTT and JC-1 assays, respectively, while ROS were estimated fluorimetrically. The relationship of these parameters to expressions of autophagy-related genes Beclin1, LC3B, and mTOR was analyzed. Gene expression was measured by Real-Time polymerase chain reaction (RT-PCR). There were significant increases in ROS levels and mitochondrial membrane potential in the HT + RT group. ROS levels in the HT + RT group increased more significantly than in any other group. In contrast, ROS levels in the HT + RT + NAC group were significantly decreased relative to the HT + RT group. The number of autophagic bodies in HT + RT group was higher than that of mock group. There were significant increases in the expression of Beclin1 and LC3B genes, while mTOR expression was significantly decreased in the HT + CT group. Treatment with NAC reversed the pattern of these changes. These results indicate that HT enhances the radiosensitivity of colorectal cancer cells to RT through ROS inducing autophagic cell death. © 2017 Wiley Periodicals, Inc.

  1. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Koger, B.; Kirkby, C.

    2017-11-01

    One of the main appeals of using gold nanoparticles (GNPs) as radiosensitizers is that their surface coatings can be altered to manipulate their pharmacokinetic properties. However, Monte Carlo studies of GNP dosimetry tend to neglect these coatings, potentially changing the dosimetric results. This study quantifies the dosimetric effects of including a polyethylene glycol (PEG) surface coating on GNPs over both nanoscopic and microscopic ranges. Two dosimetric scales were explored using PENELOPE Monte Carlo simulations. In microscopic simulations, 500-1000 GNPs, with and without coatings, were placed in cavities of side lengths 0.8-4 µm, and the reduction of dose deposited to surrounding medium within these volumes due to the coating was quantified. Including PEG surface coatings of up to 20 nm thickness resulted in reductions of up to 7.5%, 4.0%, and 2.0% for GNP diameters of 10, 20, and 50 nm, respectively. Nanoscopic simulations observed the dose falloff in the first 500 nm surrounding a single GNP both with and without surface coatings of various thicknesses. Over the first 500 nm surrounding a single GNP, the presence of a PEG surface coating reduced dose by 5-26%, 8-28%, 8-30%, and 8-34% for 2, 10, 20, and 50 nm diameter GNPs, respectively, for various energies and coating thicknesses. Reductions in dose enhancement due to the inclusion of a GNP surface coating are non-negligible and should be taken into consideration when investigating GNP dose enhancement. Further studies should be carried out to investigate the biological effects of these coatings.

  2. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells

    PubMed Central

    Gandhi, Nishant; Wild, Aaron T.; Chettiar, Sivarajan T.; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P.; Williams, Russell D.; Cades, Jessica A.; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K.; Herman, Joseph M.; Armour, Elwood; DeWeese, Theodore L.; Schaeffer, Edward M.; Tran, Phuoc T.

    2013-01-01

    Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the “non-oncogene” addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded “client” proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4–1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies. PMID:23358469

  3. Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells.

    PubMed

    Gandhi, Nishant; Wild, Aaron T; Chettiar, Sivarajan T; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P; Williams, Russell D; Cades, Jessica A; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K; Herman, Joseph M; Armour, Elwood; DeWeese, Theodore L; Schaeffer, Edward M; Tran, Phuoc T

    2013-04-01

    Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.

  4. VE-821, an ATR inhibitor, causes radiosensitization in human tumor cells irradiated with high LET radiation.

    PubMed

    Fujisawa, Hiroshi; Nakajima, Nakako Izumi; Sunada, Shigeaki; Lee, Younghyun; Hirakawa, Hirokazu; Yajima, Hirohiko; Fujimori, Akira; Uesaka, Mitsuru; Okayasu, Ryuichi

    2015-08-19

    High linear energy transfer (LET) radiation such as carbon ion particles is successfully used for treatment of solid tumors. The reason why high LET radiation accomplishes greater tumor-killing than X-rays is still not completely understood. One factor would be the clustered or complex-type DNA damages. We previously reported that complex DNA double-strand breaks produced by high LET radiation enhanced DNA end resection, and this could lead to higher kinase activity of ATR protein recruited to RPA-coated single-stranded DNA. Although the effect of ATR inhibition on cells exposed to low LET gamma-rays has recently been reported, little is known regarding the effect of ATR inhibitor on cells treated with high LET radiation. The purpose of this study is to investigate the effects of the ATR inhibitor VE-821 in human tumor and normal cells irradiated with high LET carbon ions. HeLa, U2OS, and 1BR-hTERT (normal) cells were pre-treated with 1 μM VE-821 for 1 hour and irradiated with either high LET carbon ions or X-rays. Cell survival, cell cycle distribution, cell growth, and micronuclei formation were evaluated. VE-821 caused abrogation of G2/M checkpoint and forced irradiated cells to divide into daughter cells. We also found that carbon ions caused a higher number of multiple micronuclei than X-rays, leading to decreased cell survival in tumor cells when treated with VE-821, while the survival of irradiated normal cells were not significantly affected by this inhibitor. ATR inhibitor would be an effective tumor radiosensitizer with carbon ion irradiation.

  5. The role of nitric oxide radicals in removal of hyper-radiosensitivity by priming irradiation

    PubMed Central

    Edin, Nina Jeppesen; Sandvik, Joe Alexander; Vollan, Hilde Synnøve; Reger, Katharina; Görlach, Agnes; Pettersen, Erik Olai

    2013-01-01

    In this study, a mechanism in which low-dose hyper-radiosensitivity (HRS) is permanently removed, induced by low-dose-rate (LDR) (0.2–0.3 Gy/h for 1 h) but not by high-dose-rate priming (0.3 Gy at 40 Gy/h) was investigated. One HRS-negative cell line (NHIK 3025) and two HRS-positive cell lines (T-47D, T98G) were used. The effects of different pretreatments on HRS were investigated using the colony assay. Cell-based ELISA was used to measure nitric oxide synthase (NOS) levels, and microarray analysis to compare gene expression in primed and unprimed cells. The data show how permanent removal of HRS, previously found to be induced by LDR priming irradiation, can also be induced by addition of nitric oxide (NO)-donor DEANO combined with either high-dose-rate priming or exposure to prolonged cycling hypoxia followed by reoxygenation, a treatment not involving radiation. The removal of HRS appears not to involve DNA damage induced during priming irradiation as it was also induced by LDR irradiation of cell-conditioned medium without cells present. The permanent removal of HRS in LDR-primed cells was reversed by treatment with inducible nitric oxide synthase (iNOS) inhibitor 1400W. Furthermore, 1400W could also induce HRS in an HRS-negative cell line. The data suggest that LDR irradiation for 1 h, but not 15 min, activates iNOS, and also that sustained iNOS activation is necessary for the permanent removal of HRS by LDR priming. The data indicate that nitric oxide production is involved in the regulatory processes determining cellular responses to low-dose-rate irradiation. PMID:23685670

  6. Standard sub-thermoneutral caging temperature influences radiosensitivity of hematopoietic stem and progenitor cells.

    PubMed

    Povinelli, Benjamin J; Kokolus, Kathleen M; Eng, Jason W-L; Dougher, Christopher W; Curtin, Leslie; Capitano, Maegan L; Sailsbury-Ruf, Christi T; Repasky, Elizabeth A; Nemeth, Michael J

    2015-01-01

    The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI.

  7. Standard Sub-Thermoneutral Caging Temperature Influences Radiosensitivity of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Eng, Jason W.-L.; Dougher, Christopher W.; Curtin, Leslie; Capitano, Maegan L.; Sailsbury-Ruf, Christi T.; Repasky, Elizabeth A.; Nemeth, Michael J.

    2015-01-01

    The production of new blood cells relies on a hierarchical network of hematopoietic stem and progenitor cells (HSPCs). To maintain lifelong hematopoiesis, HSPCs must be protected from ionizing radiation or other cytotoxic agents. For many years, murine models have been a valuable source of information regarding factors that either enhance or reduce the survival of HSPCs after exposure of marrow to ionizing radiation. In a recent series of studies, however, it has become clear that housing-related factors such as the cool room temperature required for laboratory mice can exert a surprising influence on the outcome of experiments. Here we report that the mild, but chronic cold-stress endured by mice housed under these conditions exerts a protective effect on HSPCs after both non-lethal and lethal doses of total body irradiation (TBI). Alleviation of this cold-stress by housing mice at a thermoneutral temperature (30°C) resulted in significantly greater baseline radiosensitivity to a lethal dose of TBI with more HSPCs from mice housed at thermoneutral temperature undergoing apoptosis following non-lethal TBI. Cold-stressed mice have elevated levels of norepinephrine, a key molecule of the sympathetic nervous system that binds to β-adrenergic receptors. We show that blocking this signaling pathway in vivo through use of the β-blocker propanolol completely mitigates the protective effect of cold-stress on HSPC apoptosis. Collectively this study demonstrates that chronic stress endured by the standard housing conditions of laboratory mice increases the resistance of HSPCs to TBI-induced apoptosis through a mechanism that depends upon β-adrenergic signaling. Since β-blockers are commonly prescribed to a wide variety of patients, this information could be important when predicting the clinical impact of HSPC sensitivity to TBI. PMID:25793392

  8. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.

    PubMed

    Leszczynska, Katarzyna B; Foskolou, Iosifina P; Abraham, Aswin G; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N; O'Neill, Eric E; Buffa, Francesca M; Hammond, Ester M

    2015-06-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

  9. Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT

    PubMed Central

    Leszczynska, Katarzyna B.; Foskolou, Iosifina P.; Abraham, Aswin G.; Anbalagan, Selvakumar; Tellier, Céline; Haider, Syed; Span, Paul N.; O’Neill, Eric E.; Buffa, Francesca M.; Hammond, Ester M.

    2015-01-01

    Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage–induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain–containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors. PMID:25961455

  10. miR-124 radiosensitizes human esophageal cancer cell TE-1 by targeting CDK4.

    PubMed

    Zhang, Y H; Wang, Q Q; Li, H; Ye, T; Gao, F; Liu, Y C

    2016-06-03

    Radiotherapy is one of the most important treatments for esophageal cancer, but radioresistance remains a major challenge. Previous studies have shown that microRNAs (miRNAs or miRs) are involved in human cancers. miR-124 has been widely reported in various cancers and it is intimately involved in proliferation, cell cycle regulation, apoptosis, migration, and invasion of cancer cells. The aim of this study was to explore the relationship between the miR-124/cyclin-dependent kinase 4 (CDK4) axis and the radiosensitivity of esophageal cancer cells. In this study, we identified the reduced expression of miR-124 in 18 paired esophageal cancer tissues compared to their matched normal tissues. In order to investigate the physiological role of miR-124 in esophageal cancer, the cell counting kit-8 (CCK-8) assay and wound healing assay were performed, and the results suggest that miR-124 overexpression decreases tumor growth and aggression. Next, we detected the effects of ectopic miR-124 expression on the apoptosis of an esophageal cancer cell line (TE-1) following radiotherapy. Using the CCK-8 assay and Hoechst 332528 stain, we found that ectopic expression of miR-124 led to a higher percentage of apoptotic cells. Finally, we identified that CDK4 is a direct target of miR-124 in TE-1 cells using target prediction algorithms and a luciferase reporter assay. Moreover, western blot assay confirmed that CDK4 was downregulated during miR-124 transfection. Taken together, we illustrate that the miR-124/CDK4 axis plays an important role in radiation sensitivity of human esophageal cancer cells by targeting CDK4.

  11. Radioprotective Effects of Heat-Killed Mycobacterium Tuberculosis in Cultured Cells and Radiosensitive Tissues.

    PubMed

    Chen, Yuanyuan; Xu, Yang; Du, Jicong; Guo, Jiaming; Lei, Xiao; Cui, Jianguo; Liu, Cong; Cheng, Ying; Li, Bailong; Gao, Fu; Ju, Jintao; Cai, Jianming; Yang, Yanyong

    2016-01-01

    Exposure to ionizing radiation (IR) often causes severe damage to radiosensitive tissues, which limits the use of radiotherapy in cancer patients. Novel safe and effective radioprotectant is urgently required. It has been reported toll like receptor 2 (TLR2) plays a critical role in radioresistance. In this study, we demonstrated the protective effects of Heat-Killed Mycobacterium tuberculosis (HKMT), a potent TLR2 agonist, against IR. Cell survival and apoptosis were determined by CCK-8 assay and Annexin V assay, respectively. An immunofluorescence staining assay was used to detect the translocation of nuclear faktor-kappa beta (NF-kB) p65. Tissue damage was evaluated by Haematoxilin-Eosin (HE) staining assay. We also used a flow cytometry assay to measure the number of nucleated cells and CD34+ hemopoietic stem cells in bone marrow. A western blot assay was used to detect the changes of proteins involving TLR signaling pathway. We found that HKMT increased cell viability and inhibited cell apoptosis after irradiation. HKMT induced NF-kB translocation and activated Erk1/2, p38 signaling pathway. HKMT also protected bone marrow and testis from destruction. Radiation-induced decreases of nucleated cells and CD34+ hemopoietic stem cells in bone marrow were also inhibited by HKMT treatment. We found that radiation caused increase of inflammatory cytokines was also suppressed by HKMT. Our data showed that HKMT exhibited radioprotective effects in vivo and in vitro through activating NF-kB and MAPK signaling pathway, suggesting a potential of HKMT as novel radioprotector. © 2016 The Author(s) Published by S. Karger AG, Basel.

  12. Risk of metastatic ovarian involvement in nongynecologic malignancies.

    PubMed

    Kim, Kidong; Cho, Soo Youn; Park, Sang-Il; Kang, Hye Jin; Kim, Beob-Jong; Kim, Moon-Hong; Choi, Seok-Cheol; Ryu, Sang-Young; Lee, Eui-Don

    2012-01-01

    The objectives were to evaluate the risk of malignant adnexal tumors in women with nongynecologic malignancies and to identify variables associated with the risk of malignant adnexal tumors. The eligibility criteria included the diagnosis of a nongynecologic malignancy and adnexal tumors, which were resected or subjected to biopsy at our institute between 1999 and 2010. The risk of malignant adnexal tumors was assessed by dividing the number of patients with metastatic tumors to the adnexa or primary adnexal cancers by the total number of patients. The association of clinicopathologic variables with the risk of malignant adnexal tumors was evaluated using the Fisher exact test and binary logistic regression analysis. In patients with metastatic tumors to the adnexa, the association of clinicopathologic variables with overall survival after adnexal surgery was examined using the log-rank test. In 166 patients with adnexal tumors, 41 benign tumors, 113 metastatic tumors to the adnexa, and 12 primary adnexal cancers were diagnosed. Age older than 46 years, a tumor type associated with a high risk for malignant adnexal tumors, and bilateral tumors significantly increased the risk of malignant adnexal tumors. The overall survival of the patients with stomach cancer was significantly worse than the patients with colorectal or breast cancers. One hundred twenty-five of the 166 patients with nongynecologic malignancies who had adnexal tumors managed surgically were shown to have malignant tumors, and most of the tumors were metastatic from primary sites. The risk of malignant adnexal tumors was associated with age, nongynecologic malignancy, and bilaterality.

  13. Growth inhibition and radiosensitization of glioblastoma and lung cancer cells by siRNA silencing of tumor necrosis factor receptor-associated factor 2

    PubMed Central

    Zheng, Min; Morgan-Lappe, Susan E.; Yang, Jie; Bockbrader, Katrina M.; Pamarthy, Deepika; Thomas, Dafydd; Fesik, Stephen W.; Sun, Yi

    2008-01-01

    Radiotherapy combined with chemotherapy is the treatment of choice for glioblastoma and locally advanced lung cancer, but radioresistance of these two types of cancer remains a significant therapeutic hindrance. To identify molecular target(s) for radiosensitization, we screened a siRNA library targeting all protein kinases and E3 ubiquitin ligases in the human genome and identified TRAF2 (TNF Receptor-associated factor 2). Silencing of TRAF2 using siRNA caused a significant growth suppression of glioblastoma U251 cells and moderately sensitized these radioresistant cells to radiation. Overexpression of a RING deleted dominant negative TRAF2 mutant, also conferred radiosensitivity; whereas over-expression of wild type TRAF2 significantly protected cells from radiation-induced killing. Likewise, siRNA silencing of TRAF2 in radioresistant lung cancer H1299 cells caused growth suppression and radiosensitization, whereas overexpression of wild type TRAF2 enhanced radioresistance in a RING ligase-dependent manner. Moreover, siRNA silencing of TRAF2 in UM-SCC-1 head and neck cancer cells also conferred radiosensitization. Further support for the role of TRAF2 in cancer comes from the observations that TRAF2 is overexpressed in both lung adenocarcinoma tissues and multiple lung cancer cell lines. Importantly, TRAF2 expression was very low in normal bronchial epithelial NL20 cells, and TRAF2 silencing had a minimal effect on NL20 growth and radiation sensitivity. Mechanistically, TRAF2 silencing blocks the activation of the NF-kB signaling pathway, and down-regulates a number of G2/M cell cycle control proteins, resulting in enhanced G2/M arrest, growth suppression, and radiosensitization. Our studies suggest that TRAF2 is an attractive drug target for anti-cancer therapy and for radiosensitization. PMID:18794145

  14. BMI-1 suppression increases the radiosensitivity of oesophageal carcinoma via the PI3K/Akt signaling pathway.

    PubMed

    Yang, Xing-Xiao; Ma, Ming; Sang, Mei-Xiang; Zhang, Xue-Yuan; Liu, Zhi-Kun; Song, Heng; Zhu, Shu-Chai

    2018-02-01

    B-cell‑specific Moloney murine leukaemia virus integration site-1 (BMI-1) contributes to the growth of tumour cells post-irradiation (IR). The aim of the present study was to characterize the effects of BMI-1 on cell viability, radiosensitivity and its mechanisms of action in oesophageal squamous cell cancer (ESCC). Western blotting and immunohistochemistry were employed to evaluate the protein expression of BMI-1 in ESCC cells and specimens, respectively. Additionally, the protein expression levels of BMI-1, H2AK119ub and γH2AX in ESCC cells were detected following different doses of IR and at different times after IR. The protein expression levels of MDC1 and 53BP1 were also measured. Flow cytometry and MTT assays were used to determine cell cycle progression, apoptosis and cell viability. The phosphatidylinositol 3-kinase inhibitor LY294002 and the agonist IGF-1 were employed to suppress or induce the phosphorylation of Akt to determine whether BMI-1 induces radioresistance in ESCC cells via activation of the PI3K/Akt pathway. The expression of BMI-1 was higher in ESCC tissues and cells compared with that in normal oesophageal tissues and cells. In addition, BMI-1 was positively related to tumour size and lymph node metastases and negatively to the overall survival of ESCC patients. IR induced the expression of BMI-1, H2AK119ub and γH2AX in a dose- and time-dependent manner. BMI-1 knockdown lowered the expression of γH2AX, MDC1 and 53BP1, suppressed cell viability and increased radiosensitivity. G2/M phase arrest was eliminated; this was followed by an increased proportion of cells entering the G0/G1 phase after IR and BMI-1 knockdown via the upregulation of P16 and downregulation of cyclin D2 and cyclin-dependent kinase-4. Moreover, BMI-1 knockdown increased cell apoptosis, downregulated MCL-1 and p-Akt and upregulated Bax. Additionally, the inhibitory effect of the downregulation of p-Akt by LY294002 on tumour cell viability was identical to that of

  15. Use of the posteroanterior projection: a method of reducing x-ray exposure to specific radiosensitive organs

    SciTech Connect

    Frank, E.D.; Stears, J.G.; Gray, J.E.

    The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.

  16. Protection and sensitization of normal and malignant cells by a naturally occurring compound in a model of photochemical damage

    NASA Astrophysics Data System (ADS)

    Lee, Yuan-Hao; Kumar, Neeru; Glickman, Randolph D.

    2012-03-01

    Certain phytonutrients are known to confer protection and immunosuppression against radiation insults. Radiation-induced reactive oxygen species (ROS) can either lead to the destruction of normal tissue cells, or induce tumor radioresistance by activating ROS scavenging proteins. To identify whether the triterpene phytonutrient, ursolic acid, reduces radiation-induced damage in normal cells and promotes the apoptosis of malignant cells, we investigated the biologic mechanisms and effect of radiation-cell interaction with or without treatment with ursolic acid in human skin melanoma cells (ATCC CRL-11147TM) and transformed human retinal pigment epithelial (hTERT-RPE) cells. UV-VIS light was employed to investigate the efficacy of ursolic acid in altering cellular viability by modulations of p53 and NF-κB p65 signaling. Cell response was investigated by changes in proliferative activity and free radical generation assessed by 2',7'-dichlorofluorescin liquid chromatography. Ursolic acid pretreatment strongly increased the level of p53 and decreased the level of phosphorylated p65 leading to enhanced cell death of skin melanoma cells in response to UV-VIS exposure. In contrast, ursolic acid appeared to downregulate p53 levels without disturbing NF-κB activation along with an increase of oxidative stress in hTERT-RPE cells. These findings indicate that ursolic acid may beneficially increase the radiosensitivity of tumor cells while potentiating a photoprotective effect on benign cells through differential effects on the NF-κB and p53 signaling pathways.

  17. Phase I Trial Using Patupilone (Epothilone B) and Concurrent Radiotherapy for Central Nervous System Malignancies

    SciTech Connect

    Fogh, Shannon; Machtay, Mitchell; Werner-Wasik, Maria

    Purpose: Based on preclinical data indicating the radiosensitizing potential of epothilone B, the present study was designed to evaluate the toxicity and response rate of patupilone, an epothilone B, with concurrent radiotherapy (RT) for the treatment of central nervous system malignancies. Methods and Materials: The present Phase I study evaluated the toxicities associated with patupilone combined with RT to establish the maximal tolerated dose. Eligible patients had recurrent gliomas (n = 10) primary (n = 5) or metastatic (n = 17) brain tumors. Dose escalation occurred if no dose-limiting toxicities, defined as any Grade 4-5 toxicity or Grade 3 toxicitymore » requiring hospitalization, occurred during treatment. Results: Of 14 patients, 5 were treated with weekly patupilone at 1.5 mg/m{sup 2}, 4 at 2.0 mg/m{sup 2}, 4 at 2.5 mg/m{sup 2}, and 1 at 4 mg/m{sup 2}. Of 18 patients, 7 were treated in the 6-mg/m{sup 2} group, 6 in the 8-mg/m{sup 2} group, and 5 in the 10-mg/m{sup 2} group. Primary central nervous system malignancies received RT to a median dose of 60 Gy. Central nervous system metastases received whole brain RT to a median dose of 37.4 Gy, and patients with recurrent gliomas underwent stereotactic RT to a median dose of 37.5 Gy. One dose-limiting toxicity (pneumonia) was observed in group receiving 8-mg/m{sup 2} every 3 weeks. At the subsequent dose level (10 mg/m{sup 2}), two Grade 4 dose-limiting toxicities occurred (renal failure and pulmonary hemorrhage); thus, 8 mg/m{sup 2} every 3 weeks was the maximal tolerated dose and the recommended Phase II dose. Conclusion: Combined with a variety of radiation doses and fractionation schedules, concurrent patupilone was well tolerated and safe, with a maximal tolerated dose of 8 mg/m{sup 2} every 3 weeks.« less

  18. Normotensive cardiomyopathy and malignant hypertension in phaeochromocytoma

    PubMed Central

    Shapiro, L. M.; Trethowan, N.; Singh, S. P.

    1982-01-01

    A patient with two different presentations of phaeochromocytoma is described. She initially presented with normal blood pressure and heart failure following a prolonged feverish prodrome. A provisional diagnosis of myocarditis or early congestive cardiomyopathy was made and she improved with digoxin and diuretics. Eighteen months later, after a period of normotension free from heart failure, she developed malignant hypertension with recurrence of heart failure. A phaeochromocytoma was surgically removed, with return to normal of blood pressure and cardiac status. It would seem that the initial presentation of the phaeochromocytoma was a catecholamine-induced myocarditis without hypertension and this resolved with the subsequent development of malignant hypertension. The possible mechanisms responsible for this are discussed and it is concluded that phaeochromocytoma should be considered in patients who have heart failure and persistent features of myocarditis. PMID:7100023

  19. Wnt Signaling in Normal and Malignant Hematopoiesis

    PubMed Central

    Lento, William; Congdon, Kendra; Voermans, Carlijn; Kritzik, Marcie; Reya, Tannishtha

    2013-01-01

    One of the most remarkable characteristics of stem cells is their ability to perpetuate themselves through self-renewal while concomitantly generating differentiated cells. In the hematopoietic system, stem cells balance these mechanisms to maintain steady-state hematopoiesis for the lifetime of the organism, and to effectively regenerate the system following injury. Defects in the proper control of self-renewal and differentiation can be potentially devastating and contribute to the development of malignancies. In this review, we trace the emerging role of Wnt signaling as a critical regulator of distinct aspects of self-renewal and differentiation, its contribution to the maintenance of homeostasis and regeneration, and how the pathway can be hijacked to promote leukemia development. A better understanding of these processes could pave the way to enhancing recovery after injury and to developing better therapeutic approaches for hematologic malignancies. PMID:23378582

  20. Targeting malignant mitochondria with therapeutic peptides

    PubMed Central

    Constance, Jonathan E; Lim, Carol S

    2013-01-01

    The current status of peptides that target the mitochondria in the context of cancer is the focus of this review. Chemotherapy and radiotherapy used to kill tumor cells are principally mediated by the process of apoptosis that is governed by the mitochondria. The failure of anticancer therapy often resides at the level of the mitochondria. Therefore, the mitochondrion is a key pharmacological target in cancer due to many of the differences that arise between malignant and healthy cells at the level of this ubiquitous organelle. Additionally, targeting the characteristics of malignant mitochondria often rely on disruption of protein–protein interactions that are not generally amenable to small molecules. We discuss anticancer peptides that intersect with pathological changes in the mitochondrion. PMID:22946430

  1. Seronegative myasthenia gravis associated with malignant thymoma.

    PubMed

    Richards, Jason; Howard, James F

    2017-05-01

    Myasthenia gravis (MG) is generally caused by antibodies directed against the neuromuscular junction, including antibodies against the postsynaptic nicotinic acetylcholine receptor (AChR). Pathologic abnormalities of the thymus gland, including thymoma, are associated with MG. We report a 56-year-old woman who presented with double vision. Single fiber EMG confirmed myasthenia gravis. AChR, striational muscle and MuSK antibodies were absent in the serum. Chest CT demonstrated a malignant thymoma. We report the first case of seronegative myasthenia gravis associated with malignant thymoma. The case challenges the conventional wisdom that all patients with thymoma associated MG test positive for antibodies against AChR. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Systemic antibiotics for treating malignant wounds.

    PubMed

    Ramasubbu, Darshini A; Smith, Valerie; Hayden, Fiona; Cronin, Patricia

    2017-08-24

    Malignant wounds are a devastating complication of cancer. They usually develop in the last six months of life, in the breast, chest wall or head and neck regions. They are very difficult to treat successfully, and the commonly associated symptoms of pain, exudate, malodour, and the risk of haemorrhage are extremely distressing for those with advanced cancer. Treatment and care of malignant wounds is primarily palliative, and focuses on alleviating pain, controlling infection and odour from the wound, managing exudate and protecting the surrounding skin from further deterioration. In malignant wounds, with tissue degradation and death, there is proliferation of both anaerobic and aerobic bacteria. The aim of antibiotic therapy is to successfully eliminate these bacteria, reduce associated symptoms, such as odour, and promote wound healing. To assess the effects of systemic antibiotics for treating malignant wounds. We searched the following electronic databases on 8 March 2017: the Cochrane Wounds Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL; the Cochrane Library, 2017, Issue 3), Ovid MEDLINE, Ovid Embase and EBSCO CINAHL Plus. We also searched the clinical trial registries of the World Health Organization (WHO) International Clinical Trials Registry Platform (apps.who.int/trialsearch) and ClinicalTrials.gov on 20 March 2017; and OpenSIGLE (to identify grey literature) and ProQuest Dissertations & Theses Global (to retrieve dissertation theses related to our topic of interest) on 13 March 2017. Randomised controlled trials that assessed the effects of any systemic antibiotics on malignant wounds were eligible for inclusion. Two review authors independently screened and selected trials for inclusion, assessed risk of bias and extracted study data. A third reviewer checked extracted data for accuracy prior to analysis. We identified only one study for inclusion in this review. This study was a prospective, double-blind cross

  3. The hypoxia signalling pathway in haematological malignancies

    PubMed Central

    Irigoyen, Marta; García-Ruiz, Juan Carlos; Berra, Edurne

    2017-01-01

    Haematological malignancies are tumours that affect the haematopoietic and the lymphatic systems. Despite the huge efforts to eradicate these tumours, the percentage of patients suffering resistance to therapies and relapse still remains significant. The tumour environment favours drug resistance of cancer cells, and particularly of cancer stem/initiating cells. Hypoxia promotes aggressiveness, metastatic spread and relapse in most of the solid tumours. Furthermore, hypoxia is associated with worse prognosis and resistance to conventional treatments through activation of the hypoxia-inducible factors. Haematological malignancies are not considered solid tumours, and therefore, the role of hypoxia in these diseases was initially presumed to be inconsequential. However, hypoxia is a hallmark of the haematopoietic niche. Here, we will review the current understanding of the role of both hypoxia and hypoxia-inducible factors in different haematological tumours. PMID:28415662

  4. Systemic malignancies presenting as primary osteolytic lesion.

    PubMed

    Sirelkhatim, A; Kaiserova, E; Kolenova, A; Puskacova, J; Subova, Z; Petrzalkova, D; Banikova, K; Suvada, J; Sejnova, D

    2009-01-01

    The tumor formation may be the earliest manifestation preceeding other symptoms, signs and bone marrow evidence of systemic malignancy - leukemia/lymphoma. Here we present three cases of systemic malignancy in which bone lesions were the first manifested signs of the disease. All three cases were thought to be orthopedic cases and had been treated as so without genuing improvement. We would like to draw an attention to children who present with multifocal musculoskeletal pain and the importance of whole-body scaning. We describe interesting cases of diffuse large cell lymphoma and leukemia that initially presented as primary osteolytic bone lesion and discuss the differential diagnosis, literature review of non-Hodgkin's lymphoma arising in bone as the primary site (Tab. 1, Fig. 3, Ref. 18). Full Text (Free, PDF) www.bmj.sk.

  5. Interventional bronchoscopy in malignant central airway obstruction by extra-pulmonary malignancy.

    PubMed

    Shin, Beomsu; Chang, Boksoon; Kim, Hojoong; Jeong, Byeong-Ho

    2018-03-13

    Interventional bronchoscopy is considered an effective treatment option for malignant central airway obstruction (MCAO). However, there are few reports of interventional bronchoscopy in patients with MCAOs due to extra-pulmonary malignancy. Therefore, the objective of this study was to investigate treatment outcomes and prognostic factors for bronchoscopic intervention in patients with MCAO due to extra-pulmonary malignancy. We retrospectively analyzed consecutive 98 patients with MCAO due to extra-pulmonary malignancy who underwent interventional bronchoscopy between 2004 and 2014 at Samsung Medical Center (Seoul, Korea). The most common primary site of malignancy was esophageal cancer (37.9%), followed by thyroid cancer (16.3%) and head & neck cancer (10.2%). Bronchoscopic interventions were usually performed using a combination of mechanical debulking (84.7%), stent insertion (70.4%), and laser cauterization (37.8%). Of 98 patients, 76 (77.6%) patients had MCAO due to progression of malignancy, and 42 (42.9%) patients had exhausted all other anti-cancer treatment at the time of bronchoscopic intervention. Technical success was achieved in 89.9% of patients, and acute complications and procedure-related deaths occurred in 20.4% and 3.1% of patients, respectively. Reduced survival was associated with MCAO due to cancer other than thyroid cancer or lymphoma, mixed lesions, and not receiving adjuvant treatment after bronchoscopic intervention. Bronchoscopic intervention could be a safe and effective procedure for MCAO due to end-stage extra-pulmonary malignancies. In addition, we identified possible prognostic factors for poor survival after intervention, which could guide clinicians select candidates that will benefit from bronchoscopic intervention.

  6. Malignancy Risk Models for Oral Lesions

    PubMed Central

    Zarate, Ana M.; Brezzo, María M.; Secchi, Dante G.; Barra, José L.

    2013-01-01

    Objectives: The aim of this work was to assess risk habits, clinical and cellular phenotypes and TP53 DNA changes in oral mucosa samples from patients with Oral Potentially Malignant Disorders (OPMD), in order to create models that enable genotypic and phenotypic patterns to be obtained that determine the risk of lesions becoming malignant. Study Design: Clinical phenotypes, family history of cancer and risk habits were collected in clinical histories. TP53 gene mutation and morphometric-morphological features were studied, and multivariate models were applied. Three groups were estabished: a) oral cancer (OC) group (n=10), b) OPMD group (n=10), and c) control group (n=8). Results: An average of 50% of patients with malignancy were found to have smoking and drinking habits. A high percentage of TP53 mutations were observed in OC (30%) and OPMD (average 20%) lesions (p=0.000). The majority of these mutations were GC ? TA transversion mutations (60%). However, patients with OC presented mutations in all the exons and introns studied. Highest diagnostic accuracy (p=0.0001) was observed when incorporating alcohol and tobacco habits variables with TP53 mutations. Conclusions: Our results prove to be statistically reliable, with parameter estimates that are nearly unbiased even for small sample sizes. Models 2 and 3 were the most accurate for assessing the risk of an OPMD becoming cancerous. However, in a public health context, model 3 is the most recommended because the characteristics considered are easier and less costly to evaluate. Key words:TP53, oral potentially malignant disorders, risk factors, genotype, phenotype. PMID:23722122

  7. Economics of Malignant Gliomas: A Critical Review

    PubMed Central

    Raizer, Jeffrey J.; Fitzner, Karen A.; Jacobs, Daniel I.; Bennett, Charles L.; Liebling, Dustin B.; Luu, Thanh Ha; Trifilio, Steven M.; Grimm, Sean A.; Fisher, Matthew J.; Haleem, Meraaj S.; Ray, Paul S.; McKoy, Judith M.; DeBoer, Rebecca; Tulas, Katrina-Marie E.; Deeb, Mohammed; McKoy, June M.

    2015-01-01

    Purpose: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. Methods: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Results: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. Conclusion: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. PMID:25466707

  8. Economics of Malignant Gliomas: A Critical Review.

    PubMed

    Raizer, Jeffrey J; Fitzner, Karen A; Jacobs, Daniel I; Bennett, Charles L; Liebling, Dustin B; Luu, Thanh Ha; Trifilio, Steven M; Grimm, Sean A; Fisher, Matthew J; Haleem, Meraaj S; Ray, Paul S; McKoy, Judith M; DeBoer, Rebecca; Tulas, Katrina-Marie E; Deeb, Mohammed; McKoy, June M

    2015-01-01

    Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively. Copyright © 2015 by American Society of Clinical Oncology.

  9. Diagnosis and treatment of malignant pleural mesothelioma.

    PubMed

    Rodríguez Panadero, Francisco

    2015-04-01

    There are three major challenges in the diagnosis of malignant pleural mesothelioma: mesothelioma must be distinguished from benign mesothelial hyperplasia; malignant mesothelioma (and its subtypes) must be distinguished from metastatic carcinoma; and invasion of structures adjacent to the pleura must be demonstrated. The basis for clarifying the first two aspects is determination of a panel of monoclonal antibodies with appropriate immunohistochemical evaluation performed by highly qualified experts. Clarification of the third aspect requires sufficiently abundant, deep biopsy material, for which thoracoscopy is the technique of choice. Video-assisted needle biopsy with real-time imaging can be of great assistance when there is diffuse nodal thickening and scant or absent effusion. Given the difficulties of reaching an early diagnosis, cure is not generally achieved with radical surgery (pleuropneumonectomy), so liberation of the tumor mass with pleurectomy/decortication combined with chemo- or radiation therapy (multimodal treatment) has been gaining followers in recent years. In cases in which surgery is not feasible, chemotherapy (a combination of pemetrexed and platinum-derived compounds, in most cases) with pleurodesis or a tunneled pleural drainage catheter, if control of pleural effusion is required, can be considered. Radiation therapy is reserved for treatment of pain associated with infiltration of the chest wall or any other neighboring structure. In any case, comprehensive support treatment for pain control in specialist units is essential: this acquires particular significance in this type of malignancy. Copyright © 2014 SEPAR. Published by Elsevier Espana. All rights reserved.

  10. Monocyte esterase deficiency in malignant neoplasia.

    PubMed Central

    Markey, G M; McCormick, J A; Morris, T C; Alexander, H D; Nolan, L; Morgan, L M; Reynolds, M E; Edgar, S; Bell, A L; McCaigue, M D

    1990-01-01

    A survey of the incidence of monocyte esterase deficiency in 4000 inpatients (including 808 with malignant neoplastic disease) and 474 normal controls was performed using an automated esterase method. A highly significant excess of patients with malignant disease and the deficiency was evident when compared with normal controls or all other patients. Within the group of patients with malignant disease the demonstrable excess occurred in B chronic lymphocytic leukaemia, non-Hodgkin's and Hodgkin's lymphoma, and carcinoma of the gastrointestinal tract. There was also a significant excess of patients with the deficiency attending the renal unit, both among patients who had had renal transplants and those who had not. A familial incidence of monocyte esterase deficiency was found in 19 (35%) of first degree relatives of those patients in whom family studies were done. It is suggested that the reason for the increased prevalence of the anomaly in these disorders might be that the diminution of esterase activity has a role in their development. PMID:2341564

  11. Musculoskeletal Imaging Findings of Hematologic Malignancies.

    PubMed

    Navarro, Shannon M; Matcuk, George R; Patel, Dakshesh B; Skalski, Matthew; White, Eric A; Tomasian, Anderanik; Schein, Aaron J

    2017-01-01

    Hematologic malignancies comprise a set of prevalent yet clinically diverse diseases that can affect every organ system. Because blood components originate in bone marrow, it is no surprise that bone marrow is a common location for both primary and metastatic hematologic neoplasms. Findings of hematologic malignancy can be seen with most imaging modalities including radiography, computed tomography (CT), technetium 99m ( 99m Tc) methylene diphosphonate (MDP) bone scanning, fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, and magnetic resonance (MR) imaging. Because of the diversity of imaging appearances and clinical behavior of this spectrum of disease, diagnosis can be challenging, and profound understanding of the underlying pathophysiologic changes and current treatment modalities can be daunting. The appearance of normal bone marrow at MR imaging and FDG PET/CT is also varied due to dynamic compositional changes with normal aging and in response to hematologic demand or treatment, which can lead to false-positive interpretation of imaging studies. In this article, the authors review the normal maturation and imaging appearance of bone marrow. Focusing on lymphoma, leukemia, and multiple myeloma, they present the spectrum of imaging findings of hematologic malignancy affecting the musculoskeletal system and the current imaging tools available to the radiologist. They discuss the imaging findings of posttreatment bone marrow and review commonly used staging systems and consensus recommendations for appropriate imaging for staging, management, and assessment of clinical remission. © RSNA, 2017.

  12. Chemical pleurodesis for malignant pleural effusions.

    PubMed

    Walker-Renard, P B; Vaughan, L M; Sahn, S A

    1994-01-01

    To provide information about available agents for chemical pleurodesis. A MEDLINE search (1966 to October 1992) was conducted using the terms malignant pleural effusion and pleurodesis. All articles containing references to patients with recurrent, symptomatic, malignant pleural effusions treated with chemical pleurodesis were selected and reviewed for pleurodesis regimen, number of patients treated, success rate (complete response), and adverse effects. The agents studied included doxycycline, minocycline, tetracycline, bleomycin, cisplatin, doxorubicin, etoposide, fluorouracil, interferon-beta, mitomycin-c, Corynebacterium parvum, methylprednisolone, and talc. Independent extraction by three observers. Studies including a total of 1168 patients with malignant pleural effusions were reviewed for efficacy of the pleurodesis agent and studies including 1140 patients were reviewed for toxicity. Chemical pleurodesis produced a complete response in 752 (64%) of 1168 patients. The success rate of the pleurodesis agents varied from 0% with etoposide to 93% with talc. Corynebacterium parvum, the tetracyclines, and bleomycin had success rates of 76%, 67%, and 54%, respectively. The most commonly reported adverse effects were pain (265 of 1140, 23%) and fever (220 of 1140, 19%). Doxycycline and minocycline, with success rates of 72% and 86%, respectively, appear to be effective tetracycline-replacement agents in the few patients studied. Talc appears to be the most effective and least expensive agent; however, insufflation has the disadvantages of the expense of thoracoscopy and the usual need for general anesthesia. Bleomycin appears to be less effective than talc and the tetracyclines and is substantially more expensive.

  13. Malignant external otitis: early scintigraphic detection

    SciTech Connect

    Strashun, A.M.; Nejatheim, M.; Goldsmith, S.J.

    1984-02-01

    Pseudomonas otitis externa in elderly diabetics may extend aggressively to adjacent bone, cranial nerves, meninges, and vessels, leading to a clinical diagnosis of ''malignant'' external otitis. Early diagnosis is necessary for successful treatment. This study compares the findings of initial radiographs, thin-section tomography of temporal bone, CT scans of head and neck, technetium-99m methylene diphosphonate (MDP) and gallium-67 citrate scintigraphy, and single-photon emission computed tomography (SPECT) for detection of temporal bone osteomylitis in ten patients fulfilling the clinical diagnostic criteria of malignant external otitis. Skull radiographs were negative in all of the eight patients studied. Thin-section tomography was positive inmore » one of the seven patients studied using this modality. CT scanning suggested osteomyelitis in three of nine patients. Both Tc-99m and Ga-67 citrate scintigraphy were positive in 10 of 10 patients. These results suggest that technetium and gallium scintigraphy are more sensitive than radiographs and CT scans for early detection of malignant external otitis.« less

  14. Internal stenting in malignant biliary obstruction.

    PubMed

    Cowling, M G; Adam, A N

    2001-03-01

    Internal stenting in inoperable malignant biliary obstruction plays an important role in patient management. Surgical bypass may still be undertaken where there is also duodenal obstruction, though the need for gastroenterostomy may be reduced with the increasing use of metallic stents for the relief of malignant gastric outlet obstruction. Stents may be placed endoscopically or percutaneously, though in most centers the endoscopic route is usually tried first, with the percutaneous route being reserved for endoscopic failures. Plastic and self-expanding metallic biliary stents are available, each with its own advantages and disadvantages. In general, longer periods of patency are observed with metallic stents, though they are more expensive. Plastic stents can be changed endoscopically relatively easily when they have blocked, and in practice it is common for plastic stents to be inserted via this route for initial biliary drainage. If there is prolonged survival thereafter, many workers insert a metallic stent in an attempt to reduce the number of interventions required. If the percutaneous route is being employed, the histologic diagnosis has been confirmed, and the malignancy is inoperable, our practice is to use a self-expanding metallic stent, as the delivery system is relatively small and subsequent occlusion less likely.

  15. Malignant melanoma in World War II veterans.

    PubMed

    Brown, J; Kopf, A W; Rigel, D S; Friedman, R J

    1984-12-01

    In a consecutive series of 1,067 patients entered into the data base of the Melanoma Cooperative Group at New York University School of Medicine between 1972 and 1980, 120 men were of draft age (18-31 years) during World War II (1941-1945). Questionnaires were sent to these 120 individuals; 89 responded. Simultaneously, a control (nonmelanoma) population of 65 men of similar age was queried. Each subject in both groups was asked whether he had served in the armed forces during World War II and, if so, what were his theaters of operation. Based on the response, 83% (74 of 89) of the melanoma group compared with 76% (49 of 65) of the control group had served in the armed forces during World War II; however, a significantly (p = 0.0002) greater percent of the melanoma patients (34%) served in the tropics than did the control subjects (6%). Further, overrepresented in the melanoma group that served in the tropics (compared with the melanoma group who served in the armed forces in nontropical theaters) were malignant melanomas that had their origin in nevocytic nevi. The findings suggest that Caucasian individuals heavily exposed to sunlight in the tropics for several years during early life may be at higher risk to the subsequent development of cutaneous malignant melanoma. In some individuals this may be a two-step phenomenon, in which the first step is the solar induction of nevocytic nevi and the second is malignant transformation within them.

  16. [Fertility preservation in patients with hematological malignancies].

    PubMed

    Kanda, Yoshinobu

    2015-03-01

    Antineoplastic chemotherapy and irradiation affect gonadal function and may lead to infertility. Recovery of gonadal function is frequently observed after conventional chemotherapy in young patients with hematological malignancies, but conditioning regimens before hematopoietic stem cell transplantation result in permanent gonadal failure. Cryopreservation of sperm is effective for male patients, but it becomes difficult even after a single cycle of chemotherapy and therefore should be accomplished before starting chemotherapy. Embryo freezing after in vitro fertilization of harvested oocytes is an established method to preserve fertility in female patients. In addition, harvesting and freezing of unfertilized oocytes is also being evaluated in a clinical study. However, collection of good oocytes after chemotherapy is difficult. In addition, oocyte harvesting is an invasive procedure and may be associated with hemorrhage or infectious complications. Ovarian shielding during total body irradiation allows ovary preservation in most female patients, but this cannot be performed in patients with active malignancies. Strategies for gonadal function preservation should be planned before starting treatment for hematological malignancies.

  17. Diagnosis of toxoplasmosis in children with malignancy.

    PubMed

    Ramadan, N I; Abdel Latif, M M; Abdel Aaty, H E

    2000-08-01

    The study aimed at the diagnosis of toxoplasmosis in 73 children with malignancy; 31 with lymphoma (22 with Hodgkin's and 9 with non-Hodgkin's lymphoma) and 42 with leukemia (34 with acute lymphoblastic leukemia and 8 with acute myelogenic leukemia). In positive cases toxoplasmosis was manifested by any of the following; fever, lymph node enlargement, neurological manifestations and/or hepatosplenomegaly. The indirect hemagglutination test (IHA) for toxoplasmosis detected 4 (5.4%) positive cases with malignancy, 2 with Hodgkin's lymphoma, one with non-Hodgkin's lymphoma and one with acute lymphoblastic leukemia. The immunoglobulin M enzyme-linked immunosorbent assay (IgM ELISA) detected only one (1.4%) case with Hodgkin's lymphoma. Immunoglobulin G (IgG) ELISA detected 6 (8.2%) positive cases, 3 with Hodgkin's lymphoma, one with non-Hodgkin's lymphoma and 2 cases with acute lymphoblastic leukemia. Polymerase chain reaction for detection of parasite DNA in blood (PCR) was the most useful in diagnosing toxoplasmosis with malignancy, as it was able to detect 9 (12.3%) positive cases; 5 (6.8%) with Hodgkin's lymphoma, one (1.4%) with non-Hodgkin's lymphoma and 3 (4.1%) with acute lymphoblastic leukemia. No positive toxoplasmosis cases were detected with acute myelogenic leukemia by any of the above methods.

  18. Metastatic breast disease from cutaneous malignant melanoma.

    PubMed

    Moschetta, Marco; Telegrafo, Michele; Lucarelli, Nicola Maria; Martino, Gianluigi; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe

    2014-01-01

    Malignant melanoma is one of the most rapidly increasing cancer in the world. Breast metastases from melanoma are uncommon but could reflect a widespread disease. We report a case of malignant widespread melanoma presenting with bilateral breast nodules in a 39 year-old pre-menopausal Caucasian woman with an history of cutaneous melanoma of the trunk. Breast clinical examination revealed the presence of a hard and mobile lump located on the left breast. Ultrasound detected two bilateral nodules corresponding to oval opacities with well-defined edges and without calcifications or architectural distortion on mammography. Fine needle aspiration cytology performed on both breast nodules confirmed that the breast lesions were metastases from primary cutaneous malignant melanoma. A total-body CT examination detected brain, lung and abdominal lymph nodes metastases. The breast represents an uncommon site of metastatic disease from extra-mammary tumors. Imaging features of breast metastases from melanoma usually do not allow a differential diagnosis with breast primary tumors. Breast metastases may be asymptomatic or palpable as dense and well-circumscribed nodules. Breast metastases indicate a widespread disease and should lead to avoid aggressive surgical procedures because of the poor prognosis of patients affected by metastatic melanoma. The detection of bilateral breast metastases from melanoma is highly suggestive of metastatic multi-organ disease and could be useful to address the therapeutic approach. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Laparoscopic-Assisted Resection of Colorectal Malignancies

    PubMed Central

    Chapman, Andrew E.; Levitt, Michael D.; Hewett, Peter; Woods, Rodney; Sheiner, Harry; Maddern, Guy J.

    2001-01-01

    Objective To compare the safety and efficacy of laparoscopic-assisted resection of colorectal malignancies with open colectomy. Methods Two search strategies were devised to retrieve literature from the Medline, Current Contents, Embase, and Cochrane Library databases until July 1999. Inclusion of papers was determined using a predetermined protocol, independent assessments by two reviewers, and a final consensus decision. English language papers were selected. Acceptable study designs included randomized controlled trials, controlled clinical trials, case series, or case reports. Fifty-two papers met the inclusion criteria. They were tabulated and critically appraised in terms of methodology and design, outcomes, and the possible influence of bias, confounding, and chance. Results Little high-level evidence was available. Laparoscopic resection of colorectal malignancy was more expensive and time-consuming, but little evidence suggests high rates of port site recurrence. The new procedure’s advantages revolve around early recovery from surgery and reduced pain. Conclusions The evidence base for laparoscopic-assisted resection of colorectal malignancies is inadequate to determine the procedure’s safety and efficacy. Because of inadequate evidence detailing circumferential marginal clearance of tumors and the necessity of determining a precise incidence of cardiac and other major complications, along with wound and port site recurrence, it is recommended that a controlled clinical trial, ideally with random allocation to an intervention and control group, be conducted. Long-term survival rates need to be a primary aim of such a trial. PMID:11685021

  20. Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity.

    PubMed

    Ferlazzo, Mélanie L; Bach-Tobdji, Mohamed Kheir Eddine; Djerad, Amar; Sonzogni, Laurène; Devic, Clément; Granzotto, Adeline; Bodgi, Larry; Bachelet, Jean-Thomas; Djefal-Kerrar, Assia; Hennequin, Christophe; Foray, Nicolas

    2018-06-01

    The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.

  1. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    PubMed Central

    Ghorai, Atanu; Bhattacharyya, Nitai P.; Sarma, Asitikantha; Ghosh, Utpal

    2014-01-01

    Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma. PMID:25018892

  2. Autophagy influences the low-dose hyper-radiosensitivity of human lung adenocarcinoma cells by regulating MLH1.

    PubMed

    Wang, Qiong; Xiao, Zhuya; Lin, Zhenyu; Zhou, Jie; Chen, Weihong; Jie, Wuyun; Cao, Xing; Yin, Zhongyuan; Cheng, Jing

    2017-06-01

    To investigate the impact of autophagy on the low-dose hyper-radiosensitivity (HRS) of human lung adenocarcinoma cells via MLH1 regulation. Immunofluorescent staining, Western blotting, and electron microscopy were utilized to detect autophagy in A549 and H460 cells. shRNA was used to silence MLH1 expression. The levels of MLH1, mTOR, p-mTOR, BNIP3, and Beclin-1 were measured by real-time polymerase chain reaction (PCR) and Western blotting. A549 cells, which have low levels of MLH1 expression, displayed HRS/induced radioresistance (IRR). Conversely, the radiosensitivity of H460 cells, which express high levels of MLH1, conformed to the linear-quadratic (LQ) model. After down-regulating MLH1 expression, A549 cells showed increased HRS and inhibition of autophagy, whereas H460 cells exhibited HRS/IRR. The levels of mTOR, p-mTOR, and BNIP3 were reduced in cells harboring MLH1 shRNA, and the changes in the mTOR/p-mTOR ratio mirrored those in MLH1 expression. Low MLH1-expressing A549 cells may exhibit HRS. Both the mTOR/p-mTOR and BNIP3/Beclin-1 signaling pathways were found to be related to HRS, but only mTOR/p-mTOR is involved in the regulation of HRS via MLH1 and autophagy.

  3. Hypofractionated Palliative Radiotherapy with Concurrent Radiosensitizing Chemotherapy for Advanced Head and Neck Cancer Using the "QUAD-SHOT Regimen".

    PubMed

    Gamez, Mauricio E; Agarwal, Manuj; Hu, Kenneth S; Lukens, John N; Harrison, Louis B

    2017-02-01

    To analyze the outcomes using the hypofractionated palliative radiotherapy regimen "QUAD-Shot" with concurrent radiosensitizing chemotherapy for advanced head and neck cancer. We analyzed twenty-one patients with newly-diagnosed or recurrent head and neck cancer treated with palliative hypofractionated concurrent chemoradiation using the QUAD-Shot regimen. All patients received at least one cycle of RT, with sixteen patients (76%) completing all three cycles. 85.7 % of patients had objective response to therapy with five patients (23.8%) demonstrating complete response (CR) and thirteen patients (61.9%) demonstrating partial response (PR). Palliation of symptoms was achieved in all (100%) of the sixteen patients that completed the three cycles. Median overall survival and median progression-free survival were 7 and 4 months, respectively. QUAD-Shot palliative radiation therapy coupled with radiosensitizing chemotherapy is efficacious and well-tolerated in patients with newly-diagnosed or recurrent head and neck cancer not amenable to curative therapy. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    SciTech Connect

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses formore » phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.« less

  5. Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio therapy (BIS-IGRT)

    NASA Astrophysics Data System (ADS)

    Nagesha, D. K.; Tada, D. B.; Stambaugh, C. K. K.; Gultepe, E.; Jost, E.; Levy, C. O.; Cormack, R.; Makrigiorgos, G. M.; Sridhar, S.

    2010-10-01

    Image-guided radiation treatments (IGRT) routinely utilize radio-opaque implantable devices, such as fiducials or brachytherapy spacers, for improved spatial accuracy. The therapeutic efficiency of IGRT can be further enhanced by biological in situ dose painting (BIS-IGRT) of radiosensitizers through localized delivery within the tumor using gold fiducial markers that have been coated with nanoporous polymer matrices loaded with nanoparticles (NPs). In this work, two approaches were studied: (i) a free drug release system consisting of Doxorubicin (Dox), a hydrophilic drug, loaded into a non-degradable polymer poly(methyl methacrylate) (PMMA) coating and (ii) poly(d,l-lactic-co-glycolic acid) (PLGA) NPs loaded with fluorescent Coumarin-6, serving as a model for a hydrophobic drug, in a biodegradable chitosan matrix. Temporal release kinetics measurements in buffer were carried out using fluorescence spectroscopy. In the first case of free Dox release, an initial release within the first few hours was followed by a sustained release over the course of the next 3 months. In the second platform, release of NPs and the free drug was controlled by the degradation rate of the chitosan matrix and PLGA. The results show that dosage and rate of release of these radiosensitizers coated on gold fiducials for IGRT can be precisely tailored to achieve the desired release profile for radiation therapy of cancer.

  6. Ewing's Sarcoma as a Second Malignancy in Long-Term Survivors of Childhood Hematologic Malignancies.

    PubMed

    Wolpert, Fabian; Grotzer, Michael A; Niggli, Felix; Zimmermann, Dieter; Rushing, Elisabeth; Bode-Lesniewska, Beata

    2016-01-01

    Modern multimodal treatment has significantly increased survival for patients affected by hematologic malignancies, especially in childhood. Following remission, however, the risk of developing a further malignancy is an important issue. The long-term estimated risk of developing a sarcoma as a secondary malignancy is increased severalfold in comparison to the general population. Ewing's sarcoma family encompasses a group of highly aggressive, undifferentiated, intra- and extraosseous, mesenchymal tumors, caused by several types of translocations usually involving the EWSR1 gene. Translocation associated sarcomas, such as Ewing sarcoma, are only rarely encountered as therapy associated secondary tumors. We describe the clinical course and management of three patients from a single institution with Ewing's sarcoma that followed successfully treated lymphoblastic T-cell leukemia or non-Hodgkin lymphoma. The literature on secondary Ewing's sarcoma is summarized and possible pathogenic mechanisms are critically discussed.

  7. Radiosensitivity of human ovarian carcinoma and melanoma cells to γ-rays and protons

    PubMed Central

    Keta, Otilija; Todorović, Danijela; Popović, Nataša; Korićanac, Lela; Cuttone, Giacomo; Petrović, Ivan

    2014-01-01

    Introduction Proton radiation offers physical advantages over conventional radiation. Radiosensitivity of human 59M ovarian cancer and HTB140 melanoma cells was investigated after exposure to γ-rays and protons. Material and methods Irradiations were performed in the middle of a 62 MeV therapeutic proton spread out Bragg peak with doses ranging from 2 to 16 Gy. The mean energy of protons was 34.88 ±2.15 MeV, corresponding to the linear energy transfer of 4.7 ±0.2 keV/µm. Irradiations with γ-rays were performed using the same doses. Viability, proliferation and survival were assessed 7 days after both types of irradiation while analyses of cell cycle and apoptosis were performed 48 h after irradiation. Results Results showed that γ-rays and protons reduced the number of viable cells for both cell lines, with stronger inactivation achieved after irradiation with protons. Surviving fractions for 59M were 0.91 ±0.01 for γ-rays and 0.81 ±0.01 for protons, while those for HTB140 cells were 0.93 ±0.01 for γ-rays and 0.86 ±0.01 for protons. Relative biological effectiveness of protons, being 2.47 ±0.22 for 59M and 2.08 ±0.36 for HTB140, indicated that protons provoked better cell elimination than γ-rays. After proton irradiation proliferation capacity of the two cell lines was slightly higher as compared to γ-rays. Proliferation was higher for 59M than for HTB140 cells after both types of irradiation. Induction of apoptosis and G2 arrest detected after proton irradiation were more prominent in 59M cells. Conclusions The obtained results suggest that protons exert better antitumour effects on ovarian carcinoma and melanoma cells than γ-rays. The dissimilar response of these cells to radiation is related to their different features. PMID:25097591

  8. A Pilot Study Treatment of Malignant Tumors Using [18F] Fluorodeoxyglucose (FDG)

    ClinicalTrials.gov

    2018-05-08

    Radiosensitive Stage IV Solid and Hematological Tumors With High FDG Uptake Not Responding to Standard of Care; Lung Cancer, Head and Neck Cancer, Breast Cancer, Gastric Cancer, Pancreatic Cancer, Colon Cancer, Lymphomas, Sarcomas, Etc

  9. Cause-Specific Mortality Due to Malignant and Non-Malignant Disease in Korean Foundry Workers

    PubMed Central

    Yoon, Jin-Ha; Ahn, Yeon-Soon

    2014-01-01

    Background Foundry work is associated with serious occupational hazards. Although several studies have investigated the health risks associated with foundry work, the results of these studies have been inconsistent with the exception of an increased lung cancer risk. The current study evaluated the mortality of Korean foundry workers due to malignant and non-malignant diseases. Methods This study is part of an ongoing investigation of Korean foundry workers. To date, we have observed more than 150,000 person-years in male foundry production workers. In the current study, we stratified mortality ratios by the following job categories: melting-pouring, molding-coremaking, fettling, and uncategorized production work. We calculated standard mortality ratios (SMR) of foundry workers compare to general Korean men and relative risk (RR) of mortality of foundry production workers reference to non-production worker, respectively. Results Korean foundry production workers had a significantly higher risk of mortality due to malignant disease, including stomach (RR: 3.96; 95% CI: 1.41–11.06) and lung cancer (RR: 2.08; 95% CI: 1.01–4.30), compared with non-production workers. High mortality ratios were also observed for non-malignant diseases, including diseases of the circulatory (RR: 1.92; 95% CI: 1.18–3.14), respiratory (RR: 1.71; 95% CI: 1.52–21.42 for uncategorized production worker), and digestive (RR: 2.27; 95% CI: 1.22–4.24) systems, as well as for injuries (RR: 2.36; 95% CI: 1.52–3.66) including suicide (RR: 3.64; 95% CI: 1.32–10.01). Conclusion This study suggests that foundry production work significantly increases the risk of mortality due to some kinds of malignant and non-malignant diseases compared with non-production work. PMID:24505454

  10. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy

    PubMed Central

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-01-01

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given. PMID:26500732

  11. Synchronous Pulmonary Malignancies: Atypical Presentation of Mantle Cell Lymphoma Masking a Lung Malignancy.

    PubMed

    Masha, Luke; Zinchuk, Andrey; Boosalis, Valia

    2015-09-07

    We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given.

  12. The IASLC/ITMIG thymic malignancies staging project: development of a stage classification for thymic malignancies.

    PubMed

    Detterbeck, Frank C; Asamura, Hisao; Crowley, John; Falkson, Conrad; Giaccone, Giuseppe; Giroux, Dori; Huang, James; Kim, Jhingook; Kondo, Kazuya; Lucchi, Marco; Marino, Mirella; Marom, Edith M; Nicholson, Andrew; Okumura, Meinoshin; Ruffini, Enrico; van Schil, Paul; Stratton, Kelly

    2013-12-01

    The lack of an official-stage classification system for thymic malignancies is an issue that hampers progress in this rare disease. A collaborative effort by the International Association for the Study of Lung Cancer and the International Thymic Malignancies Interest Group is underway to develop proposals for such a system. A database of more than 10,000 cases worldwide has been assembled to provide a solid basis for analysis. This report outlines the structure of the effort and the process that has been designed.

  13. γH2AX/53BP1 foci as a potential pre-treatment marker of HNSCC tumors radiosensitivity - preliminary methodological study and discussion

    NASA Astrophysics Data System (ADS)

    Falk, Martin; Horakova, Zuzana; Svobodova, Marketa; Masarik, Michal; Kopecna, Olga; Gumulec, Jaromir; Raudenska, Martina; Depes, Daniel; Bacikova, Alena; Falkova, Iva; Binkova, Hana

    2017-09-01

    In order to improve patients' post-treatment quality of life, a shift from surgery to non-surgical (chemo)radio-treatment is recognized in head and neck oncology. However, about half of HNSCC tumors are resistant to irradiation and an efficient marker of individual tumor radiosensitivity is still missing. We analyzed whether various parameters of DNA double strand break (DSB) repair determined in vitro can predict, prior to clinical treatment initiation, the radiosensitivity of tumors. We compared formation and decrease of γH2AX/53BP1 foci in 48 h after irradiating tumor cell primocultures with 2 Gy of γ-rays. To better understand complex tumor behavior, three different cell type primocultures - CD90-, CD90+, and a mixed culture of these cells - were isolated from 1 clinically radioresistant, 2 radiosensitive, and 4 undetermined HPV-HNSCC tumors and followed separately. While DSB repair was delayed and the number of persisting DSBs increased in the radiosensitive tumors, the results for the radioresistant tumor were similar to cultured normal human skin fibroblasts. Hence, DSB repair kinetics/efficiency may correlate with clinical response to radiotherapy for a subset of HNSCC tumors but the size (and therefore practical relevance) of this subset remains to be determined. The same is true for contribution of different cell type primocultures to tumor radioresistance.

  14. Late G1 accumulation after 2 Gy of gamma-irradiation is related to endogenous Raf-1 protein expression and intrinsic radiosensitivity in human cells.

    PubMed Central

    Warenius, H. M.; Jones, M.; Jones, M. D.; Browning, P. G.; Seabra, L. A.; Thompson, C. C.

    1998-01-01

    We have previously reported a correlation between high endogenous expression of the protein product of the RAF-1 proto-oncogene, intrinsic cellular radiosensitivity and rapid exit from a G2/M delay induced by 2 Gy of gamma-irradiation. Raf1 is a positive serine/threonine kinase signal transduction factor that relays signals from the cell membrane to the MAP kinase system further downstream and is believed to be involved in an ionizing radiation signal transduction pathway modulating the G1/S checkpoint. We therefore extended our flow cytometric studies to investigate relationships between radiosensitivity, endogenous expression of the Raf1 protein and perturbation of cell cycle checkpoints, leading to alterations in the G1, S and G2/M populations after 2 Gy of gamma-irradiation. Differences in intrinsic radiosensitivity after modulation of the G1/S checkpoint have generally been understood to involve p53 function up to the present time. A role for dominant oncogenes in control of G1/S transit in radiation-treated cells has not been identified previously. Here, we show in 12 human in vitro cancer cell lines that late G1 accumulation after 2 Gy of radiation is related to both Raf1 expression (r = 0.91, P = 0.0001) and the radiosensitivity parameter SF2 (r = -0.71, P = 0.009). PMID:9579826

  15. Thrombosis of the inferior vena cava and malignant disease.

    PubMed

    Kraft, Christiane; Schuettfort, Gundolf; Weil, Yvonne; Tirneci, Vanessa; Kasper, Alexander; Haberichter, Barbara; Schwonberg, Jan; Schindewolf, Marc; Lindhoff-Last, Edelgard; Linnemann, Birgit

    2014-09-01

    Inferior vena cava thrombosis (IVCT) is a rare event, and studies detailing its underlying aetiologies are scarce. One hundred and forty-one IVCT patients (57% females, median age 47 years) were analysed with a focus on malignancy-related thrombosis and compared with 141 age- and sex-matched control patients with isolated lower-extremity deep vein thrombosis. Malignancies were more prevalent among IVCT patients compared with the control group (39% vs. 7.8%; P<0.001). Malignancy-related IVCT more frequently involved the suprarenal and hepatic segments of the IVC and extended more often to the right atrium than IVCT did in non-cancer patients. Among IVCT patients with malignancies, renal cell carcinoma (38%) and other malignancies of the genitourinary tract (25%) were the most common tumours. Analysis of the underlying pathological mechanisms of malignancy-related thrombosis identified external compression of the IVC by tumour masses in 9 cases (16%), and progression of malignancy into the IVC (so-called "tumour thrombosis") in 24 cases (44%). The remaining 22 cases (40%) were attributed to malignancy-related hypercoagulability and the presence of additional venous thromboembolism risk factors, such as previous surgery, immobilisation, or chemotherapy. Malignancies substantially contribute to the risk of thrombosis involving the IVC. Tumour invasion, especially in cases of renal cell cancer and malignancy-related hypercoagulability are major triggering factors for thrombogenesis. Copyright © 2014. Published by Elsevier Ltd.

  16. Malignant testicular tumour incidence and mortality trends

    PubMed Central

    Wojtyła-Buciora, Paulina; Więckowska, Barbara; Krzywinska-Wiewiorowska, Małgorzata; Gromadecka-Sutkiewicz, Małgorzata

    2016-01-01

    Aim of the study In Poland testicular tumours are the most frequent cancer among men aged 20–44 years. Testicular tumour incidence since the 1980s and 1990s has been diversified geographically, with an increased risk of mortality in Wielkopolska Province, which was highlighted at the turn of the 1980s and 1990s. The aim of the study was the comparative analysis of the tendencies in incidence and death rates due to malignant testicular tumours observed among men in Poland and in Wielkopolska Province. Material and methods Data from the National Cancer Registry were used for calculations. The incidence/mortality rates among men due to malignant testicular cancer as well as the tendencies in incidence/death ratio observed in Poland and Wielkopolska were established based on regression equation. The analysis was deepened by adopting the multiple linear regression model. A p-value < 0.05 was arbitrarily adopted as the criterion of statistical significance, and for multiple comparisons it was modified according to the Bonferroni adjustment to a value of p < 0.0028. Calculations were performed with the use of PQStat v1.4.8 package. Results The incidence of malignant testicular neoplasms observed among men in Poland and in Wielkopolska Province indicated a significant rising tendency. The multiple linear regression model confirmed that the year variable is a strong incidence forecast factor only within the territory of Poland. A corresponding analysis of mortality rates among men in Poland and in Wielkopolska Province did not show any statistically significant correlations. Conclusions Late diagnosis of Polish patients calls for undertaking appropriate educational activities that would facilitate earlier reporting of the patients, thus increasing their chances for recovery. Introducing preventive examinations in the regions of increased risk of testicular tumour may allow earlier diagnosis. PMID:27095941

  17. Adoptive cell transfer therapy for malignant gliomas.

    PubMed

    Ishikawa, Eiichi; Takano, Shingo; Ohno, Tadao; Tsuboi, Koji

    2012-01-01

    To date, various adoptive immunotherapies have been attempted for treatment of malignant gliomas using nonspecific and/or specific effector cells. Since the late 1980s, with the development of rIL-2, the efficacy of lymphokine-activated killer (LAK) cell therapy with or without rIL-2 for malignant gliomas had been tested with some modifications in therapeutic protocols. With advancements in technology, ex vivo expanded tumor specific cytotoxic T-lymphocytes (CTL) or those lineages were used in clinical trials with higher tumor response rates. In addition, combinations of those adoptive cell transfer using LAK cells, CTLs or natural killer (NK) cells with autologous tumor vaccine (ATV) therapy were attempted. Also, a strategy of high-dose (or lymphodepleting) chemotherapy followed by adoptive cell transfer has been drawing attentions recently. The most important role of these clinical studies using cell therapy was to prove that these ex vivo expanded effector cells could kill tumor cells in vivo. Although recent clinical results could demonstrate radiologic tumor shrinkage in a number of cases, cell transfer therapy alone has been utilized less frequently, because of the high cost of ex vivo cell expansion, the short duration of antitumor activity in vivo, and the recent shift of interest to vaccine immunotherapy. Nevertheless, NK cell therapy using specific feeder cells or allergenic NK cell lines have potentials to be a good choice of treatment because of easy ex vivo expansion and their efficacy especially when combined with vaccine therapy as they are complementary to each other. Also, further studies are expected to clarify the efficacy of the high-dose chemotherapy followed by a large scale cell transfer therapy as a new therapeutic strategy for malignant gliomas.

  18. Hormone replacement therapy and risk of malignancy.

    PubMed

    Diamanti-Kandarakis, Evanthia

    2004-02-01

    The fact that today our concern is oriented towards the risks rather than the benefits of hormone replacement therapy could be the clearest message about our current position. The safety of hormone replacement therapy, an estrogen-progestin combination which has been sympathetic to and supportive of disturbing menopausal symptoms of women, is seriously challenged. Four randomized trials have now reported on the results of hormone replacement therapy in major potentially fatal conditions, in more than 20,000 women studied for about 5 years. The main concern regarding the increased risk of malignancy in healthy postmenopausal women in western countries has been breast cancer. It is estimated to cause an extra case in about six per 1000 users aged 50-59 and 12 per 1000 aged 60-69. Over the same period the estimated risk of endometrial cancer rates are not increased, with a relative risk of 0.76 per 1000 users aged 50-59. Overall, however, the increased incidence of malignancies is greater than any reduction, one per 230 users aged 50-59 and one per 150 aged 60-69. Randomized trials examining other important but rarer malignancies, like ovarian, gall bladder and urinary bladder cancer, are either nonexistent or too small to reliably describe any effects of hormone replacement therapy. Conclusively epidemiological evidence suggests that hormone replacement therapy is associated with a small but substantial increase in breast cancer risk and combined estrogen-progesterone regimens further increase this hazard. Additionally, the evidence from the recent double blind placebo controlled randomized trial on the slight increase in the incidence of adverse cardiovascular events, has turned our orientation away from hormone replacement therapy as a long term therapy in postmenopausal women. In this review, the effort is to approach comprehensively and globally the information on the risks of hormone replacement therapy on several cancer sites.

  19. Otite externe maligne à Candida Albicans

    PubMed Central

    Elayoubi, Fahd; Lachkar, Azeddine; Aabach, Ahmed; Chouai, Mohamed; Ghailan, Mohamed Rachid

    2016-01-01

    L’otite externe maligne est une ostéomyélite de la base du crane. Le Pseudomonas aeruginosa est le germe le plus incriminé. Cependant l’origine fongique n’est pas rare. Patiente âgée de 80 ans avait présenté une otalgie gauche persistante depuis deux mois malgré un traitement bien conduit. L’examen otologique mettait en évidence des signes inflammatoires au niveau du pavillon, une sténose du conduit avec des granulomes, et otorrhée d’allure purulente. Le scanner montrait un comblement otomastoïdien, un processus inflammatoire extensif des tissus pré et rétro-auriculaire et une lyse du tympanal. Vu l’absence d’amélioration un examen mycologique a été réalisé et qui a révélé la présence de Candida Albicans. Les cas d’otite externe maligne à Candida Albicans sont rarement rapportés. L’origine fongique doit être suspecté devant la négativité des prélèvements bactériologiques et la non amélioration malgré un traitement antibiotique bien conduit, et confirmée par des prélèvements mycologiques parfois multiples. L’otite externe maligne à Candida Albicans est une infection rare potentiellement mortelle. PMID:28154677

  20. Photodynamic Therapy for Malignant Brain Tumors.

    PubMed

    Akimoto, Jiro

    2016-01-01

    Photodynamic therapy (PDT) using talaporfin sodium together with a semiconductor laser was approved in Japan in October 2003 as a less invasive therapy for early-stage lung cancer. The author believes that the principle of PDT would be applicable for controlling the invading front of malignant brain tumors and verified its efficacy through experiments using glioma cell lines and glioma xenograft models. An investigator-initiated clinical study was jointly conducted with Tokyo Women's Medical University with the support of the Japan Medical Association. Patient enrollment was started in May 2009 and a total of 27 patients were enrolled by March 2012. Of 22 patients included in efficacy analysis, 13 patients with newly diagnosed glioblastoma showed progression-free survival of 12 months, progression-free survival at the site of laser irradiation of 20 months, 1-year survival of 100%, and overall survival of 24.8 months. In addition, the safety analysis of the 27 patients showed that adverse events directly related to PDT were mild. PDT was approved in Japan for health insurance coverage as a new intraoperative therapy with the indication for malignant brain tumors in September 2013. Currently, the post-marketing investigation in the accumulated patients has been conducted, and the preparation of guidelines, holding training courses, and dissemination of information on the safe implementation of PDT using web sites and videos, have been promoted. PDT is expected to be a breakthrough for the treatment of malignant glioma as a tumor cell-selective less invasive therapy for the infiltrated functional brain area.

  1. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range < 200 keV, far lower than the energy of the majority of photons in the LINAC energy range. In vitro studies were carried to demonstrate the tumoricidal effects of HZ sensitized F98 rat glioma cells following irradiation with both low energy 160 kV and high energy 6 MV X-ray sources. The platinum compound, pyridine terpyridine Pt(II) nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are

  2. MO-FG-BRA-02: Modulation of Clinical Orthovoltage X-Ray Spectrum Further Enhances Radiosensitization of Cancer Cells Targeted with Gold Nanoparticles

    SciTech Connect

    Wolfe, T; Reynoso, F; Cho, J

    2015-06-15

    Purpose: To assess the potential to amplify radiosensitization of cancer cells targeted with gold nanoparticles by augmenting selective spectral components of X-ray beam. Methods: Human prostate cancer cells were treated for 24h with gold nanorods conjugated to goserelin acetate or pegylated, systematically washed and irradiated with 250 kVp X-rays (25mA, 0.25mm Cu- filter, 8x8cm{sup 2} field size, 50cm SSD) with or without an additional 0.25 mm Erbium (Er) filter. As demonstrated in a companion Monte Carlo study, Er-filter acted as an external target to feed Erbium K-shell X-ray fluorescence photons (∼50 keV) into the 250 kVp beam. After irradiation, wemore » performed measurements of clonogenic viability with doses between 0 -6Gy, irreparable DNA damage assay to measure double-strand breaks via γH2AX-foci staining, and production of stable reactive oxygen species (ROS). Results: The clonogenic assay for the group treated with conjugated nanoparticles showed radiosensitization enhancement factor (REF), calculated at the 10% survival fraction aisle, of (1.62±0.07) vs. (1.23±0.04) with/without the Er-filter in the 250 kVp beam, respectively. The group treated with pegylated nanoparticles, albeit retained in modest amounts within the cells, also showed statistically significant REF (1.13±0.09) when the Erbium filter was added to the beam. No significant radiosensitization was observed for other groups. Measurements of ROS levels showed increments of (1.9±0.2) vs. (1.4±0.1) for combined treatment with targeted nanoparticles and Er-filtered beam. γH2AX-foci showed 50% increase for the same treatment combination, confirming the enhanced radiosensitization in a consistent fashion. Conclusion: Our study demonstrates the feasibility of enhancing radiosensitization of cancer cells by combining actively targeted gold nanoparticles and modulating the X-ray spectrum in the desired energy range. The established technique will not only help develop strategies to

  3. Tyrosine kinase gene rearrangements in epithelial malignancies

    PubMed Central

    Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

    2014-01-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

  4. [Malignant nonepithelial tumors of the lung].

    PubMed

    Trakhtenberg, A Kh; Biriukov, Iu V; Frank, G A; Kunitsyn, A G; Grigor'eva, S P; Aĭtakov, Z N; Korenev, S V; Efimova, O Iu; Vial'tsev, N V

    1990-01-01

    The main peculiarities of the clinical course of lung sarcoma were determined from representative material of 134 patients. The main features differentiating malignant nonepithelial tumors from carcinoma of the lung are: younger age (average age 45.5 years), predominantly peripheral clinico-anatomical form (82.8%), and prevalent hematogenic metastasis. Five-year survival in the whole group of patients after surgical treatment was 54%. The size and histological form of the tumor are the main factors of prognosis. The degree of differentiation acquires prognostic significance in tumors measuring more than 3 cm in diameter.

  5. Malignant fibrous histiocytoma of the conjunctiva.

    PubMed Central

    Pe'er, J.; Levinger, S.; Ilsar, M.; Climenhaga, H.; Okon, E.

    1990-01-01

    Malignant fibrous histiocytoma (MFH) of the conjunctiva is an extremely rare tumour, and only three previous cases have been reported. We describe two patients with MFH of the conjunctiva: a 58-year-old white male with epibulbar tumour who had exenteration and is alive after five years' follow-up, and a 3 1/2-year-old African girl with xeroderma pigmentosum and an MFH of her right eye conjunctiva, the first reported case of this association. The characteristics and the methods of diagnosis of MFH are discussed. Images PMID:1704795

  6. Nitrosoureas in the Management of Malignant Gliomas.

    PubMed

    Brandes, Alba A; Bartolotti, Marco; Tosoni, Alicia; Franceschi, Enrico

    2016-02-01

    Nitrosoureas represent one of the most active classes of agents in the treatment of high-grade gliomas and glioblastoma. In clinical practice, the most commonly used compounds are lomustine (either alone or in combination with procarbazine and vincristine), carmustine, and fotemustine. Given their toxicity profile and subsequent to the introduction of temozolomide in clinical practice, most of these agents were moved to the recurrent setting. This review focuses on the role of the nitrosoureas currently used in clinical practice for the treatment of malignant gliomas.

  7. Molecular targeting in childhood malignancies using nanoparticles

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Barisone, Gustavo; Diaz, Elva; Nitin, Nitin; Nolta, Jan; Lam, Kit

    2012-06-01

    The goal of our project is to develop a new therapy for childhood malignancies using nanoformulated siRNA targeting Mxd3, a molecule in the Sonic Hedgehog signaling pathway, which we believe is important for cell survival. We plan to use cancer-specific ligands and superparamagnetic iron oxide nanoparticles (SPIO NPs) to carry siRNA. This delivery system will be tested in mouse xenograft models that we developed with primary cancer tissues. Our current focus is acute lymphoblastic leukemia (ALL), the most common cancer in children. We report our progress to date.

  8. Risk Factors in Neuroleptic Malignant Syndrome

    PubMed Central

    Gupta, Vinay; Magon, Rakesh; Mishra, B.P.; Sidhu, G.B.S.; Mahajan, Ranjiv

    2003-01-01

    Neuroleptic malignant syndrome (NMS) is an uncommon but potentially serious idiosyncratic response to neuroleptic antipsychotics. It usually affects young males, but the risk has been seen to increase with certain factors including the administration practices of antipsychotic neuroleptics in these individuals. Even though no predictors for NMS are yet known, this article highlights the findings on certain risk factors as seen from a series of fifteen patients who developed NMS. Cautious use of neuroleptics in those at risk, early recognition and institution of immediate management is important. PMID:21206810

  9. Risk factors in neuroleptic malignant syndrome.

    PubMed

    Gupta, Vinay; Magon, Rakesh; Mishra, B P; Sidhu, G B S; Mahajan, Ranjiv

    2003-01-01

    Neuroleptic malignant syndrome (NMS) is an uncommon but potentially serious idiosyncratic response to neuroleptic antipsychotics. It usually affects young males, but the risk has been seen to increase with certain factors including the administration practices of antipsychotic neuroleptics in these individuals. Even though no predictors for NMS are yet known, this article highlights the findings on certain risk factors as seen from a series of fifteen patients who developed NMS. Cautious use of neuroleptics in those at risk, early recognition and institution of immediate management is important.

  10. [Oral complications of chemotherapy of malignant neoplasms].

    PubMed

    Obralić, N; Tahmiscija, H; Kobaslija, S; Beslija, S

    1999-01-01

    Function and integrity disorders of the oral cavity fall into the most frequent complication of the chemotherapy of leucemias, malignant lymphomas and solid tumors. Complications associated with cancer chemotherapy can be direct ones, resulting from the toxic action of antineoplastic agents on the proliferative lining of the mouth, or indirect, as a result of myelosuppression and immunosuppression. The most frequent oral complications associated with cancer chemotherapy are mucositis, infection and bleeding. The principles of prevention and management of oral complications during cancer chemotherapy are considered in this paper.

  11. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    PubMed

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). EL4 tumour-bearing C57BL/J mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a (10)B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Following γ-ray irradiation, the pimonidazo